WO2023178914A1 - 超薄氮氧化硅界面材料、遂穿氧化钝化结构及其制备方法和应用 - Google Patents

超薄氮氧化硅界面材料、遂穿氧化钝化结构及其制备方法和应用 Download PDF

Info

Publication number
WO2023178914A1
WO2023178914A1 PCT/CN2022/113247 CN2022113247W WO2023178914A1 WO 2023178914 A1 WO2023178914 A1 WO 2023178914A1 CN 2022113247 W CN2022113247 W CN 2022113247W WO 2023178914 A1 WO2023178914 A1 WO 2023178914A1
Authority
WO
WIPO (PCT)
Prior art keywords
sion film
interface material
film
silicon oxynitride
passivation
Prior art date
Application number
PCT/CN2022/113247
Other languages
English (en)
French (fr)
Inventor
叶继春
曾俞衡
邢海洋
马典
刘伟
闫宝杰
廖明墩
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2023178914A1 publication Critical patent/WO2023178914A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of solar cells, and specifically to an ultrathin silicon nitride oxide interface material, a tunnel oxide passivation structure and a preparation method and application thereof.
  • Tunnel Oxide Passivated Contact (TOPCon) solar cell is a new type of crystalline silicon solar cell proposed by Fraunhofer in Germany in 2013.
  • the typical structure of its N-type cell is shown in Figure 1.
  • the core of this structure is to use an ultra-thin silicon oxide layer and a doped polysilicon stack structure to passivate the surface of the silicon wafer.
  • the passivation mechanism of the tunneling silicon oxide passivation contact structure mainly comes from two aspects: one is the chemical passivation of the interface silicon oxide layer, and the other is the field passivation of the doped atoms. Therefore, it is helpful to improve the integrity of the interface silicon oxide. It is beneficial to improve the chemical passivation effect of the surface.
  • TOPCon cells are as follows: cleaning and texturing - diffused boron emitter - etching - preparation of SiO 2 on the back - PECVD heavily doped polysilicon - high temperature annealing - front surface alumina, Si 3 N 4 - wire mesh print.
  • n-type phosphorus-doped polysilicon films are used for electron collection, while p-type boron-doped polysilicon films are used for hole collection. Due to the good effect of n-type passivation contact technology, it has been widely accepted as the next generation of industrial high-efficiency crystalline silicon cell technology.
  • n-type TOPCon cells are expensive and not conducive to mass production, while p-type TOPCon technology is compatible with aluminum paste materials. , which is beneficial to reducing costs, so it is of practical significance to develop and improve p-type TOPCon technology.
  • Chinese invention patent CN105742391A discloses a tunneling silicon oxygen nitrogen layer passivation contact solar cell and its preparation method.
  • the preparation method is a plasma-assisted laughing gas oxidation method.
  • the specific method is to use PECVD to oxidize the silicon surface. Due to the reaction
  • the gas contains N element, and during this process, an ultra-thin silicon oxide layer containing nitrogen is formed, that is, a SiON film.
  • the technical problem to be solved by the present invention is how to improve the passivation effect of TOPCon.
  • the first aspect of the present invention provides an ultra-thin silicon oxynitride interface material.
  • the ultra-thin silicon oxynitride interface material is a SiON film with a thickness of 1nm-4nm.
  • the percentage of N atoms in the SiON film is 1%-40%.
  • the ultra-thin silicon oxynitride interface material of the present invention has the characteristics of high nitrogen content. Compared with silicon oxide, the diffusion rate of boron in the SiON film is low, thereby effectively reducing the destructive effect of boron on the SiON film and improving the efficiency of the SiON film. The integrity of the SiON film maintains the chemical passivation effect.
  • the high nitrogen concentration SiON film can significantly reduce the concentration of boron on the silicon surface, thereby reducing boron defects.
  • the energy band structure of the SiON film is close to that of silicon nitride, and its valence band is The small order ratio is conducive to hole transmission, improves hole transmission efficiency and hole selectivity, thereby improving passivation quality and also helping to reduce contact resistivity.
  • a second aspect of the present invention provides a method for preparing the above-mentioned ultra-thin silicon oxynitride interface material, which includes the following steps:
  • the treatment atmosphere is nitrogen-containing gas and oxygen-containing gas to generate a SiON film.
  • This preparation method first grows a silicon oxide layer without bombardment damage on the silicon wafer, which can significantly reduce the ion bombardment damage introduced by the plasma nitridation process, thereby improving the passivation quality.
  • This method effectively reduces interface state defects.
  • the interface state obtained by conventional plasma laughing gas oxidation method is usually 2*10 12 eV*cm -2 .
  • the density of defect states can be reduced to 0.4 *10 12 eV*cm - 2 .
  • the nitrogen-containing gas is NH 3 and the oxygen-containing gas is N 2 O.
  • the nitrogen-containing gas is NH 3 and the oxygen-containing gas is N 2 O.
  • the N concentration is high, which can significantly introduce N elements.
  • H atoms are also produced, which will etch silicon oxide;
  • the introduction N 2 O can replenish the oxygen source at the same time to maintain the thickness of the SiON film and avoid excessively low thickness due to the etching effect of H ions.
  • the flow ratio of the nitrogen-containing gas and the oxygen-containing gas is 2:1 to 8:1.
  • the ion-free bombardment oxidation method in step S1 is an ozone oxidation method or a nitric acid oxidation method.
  • the method of the present invention can adjust the thickness of silicon oxide and the ratio of NH 3 and N 2 O gas mixture according to actual needs, thereby regulating the thickness and composition of the SiON film.
  • a third aspect of the present invention provides a tunnel oxidation passivation structure, including a silicon wafer, a passivation tunnel layer and a doped polysilicon layer.
  • the material of the passivation tunnel layer is the above-mentioned ultra-thin silicon oxynitride interface material,
  • the passivation tunneling layer is located between the silicon wafer and the doped polysilicon layer.
  • the material of the doped polysilicon layer is a boron-doped amorphous silicon film.
  • the tunnel oxide passivation structure of the present invention uses an ultra-thin silicon oxynitride interface material as a passivation tunnel layer, which can reduce the destructive effect of boron on the tunnel oxide layer, improve passivation quality, reduce contact resistivity, and achieve excellent
  • the tunnel oxide passivation structure is applied to P-TOPCon, the potential open circuit voltage can reach more than 720mV, and the contact resistivity is less than 5m ⁇ cm 2 .
  • a fourth aspect of the present invention provides a method for preparing the above-mentioned tunnel oxidation passivation structure, which includes the following steps:
  • the treatment atmosphere is nitrogen-containing gas and oxygen-containing gas to generate a SiON film
  • the preparation method is simple to operate and is compatible with existing mass production equipment technology, especially PECVD equipment.
  • the cost of gas consumables used is low, and there is almost no additional cost of consumables.
  • the annealing temperature is 820-1100°C.
  • Silicon oxynitride has higher thermal stability than silicon oxide and can withstand higher and faster annealing treatments. According to actual needs, the thickness of silicon oxide, the mixing ratio of nitrogen-containing gas and oxygen-containing gas can be adjusted, and the SiON film can be adjusted. thickness and composition to match different high-temperature annealing temperatures.
  • the fifth aspect of the present invention provides the application of the above-mentioned tunnel oxide passivation structure, and the tunnel oxide passivation structure is applied to N-type or P-type tunnel oxide layer passivation contact solar cells.
  • Figure 1 is a structural diagram of a tunnel oxide layer passivation contact solar cell
  • Figure 2 is the microstructure of the SiON film in Example 1.
  • Embodiments of the present invention provide a tunnel oxide passivation structure, including a silicon wafer, a passivation tunnel layer and a doped polysilicon layer.
  • the material of the passivation tunnel layer is an ultra-thin silicon oxynitride interface material.
  • the passivation tunnel layer The layer is between the silicon wafer and the doped polysilicon layer.
  • the ultra-thin silicon oxynitride interface material is a SiON film with a thickness of 1nm-4nm, and the N atom content in the SiON film is 1%-40%.
  • the tunnel oxide passivation structure can be applied to N-type or P-type tunnel oxide layer passivation contact solar cells.
  • the material of the doped polysilicon layer is a boron-doped amorphous silicon film.
  • the high nitrogen content silicon oxynitride interface material is beneficial to improving the passivation quality of p-TOPCon.
  • the principles include: 1) Compared with silicon oxide, the diffusion rate of boron in the SiON film is low, which effectively reduces the destructive effect of boron on the SiON film, improves the integrity of the SiON film, and maintains chemical passivation Effect; 2) A SiON film with a high nitrogen concentration can significantly reduce the concentration of boron on the silicon surface, thereby reducing boron defects; 3) The energy band structure of the SiON film is close to that of silicon nitride, and its valence band has a smaller band order, which is conducive to holes. transmission, which improves hole transmission efficiency and hole selectivity, thereby improving passivation quality and also helping to reduce contact resistivity.
  • the potential open circuit voltage of P-type TOPCon can reach more than 720mV, and the contact resistivity is less than 5m ⁇ cm 2 .
  • Embodiments of the present invention also provide a method for preparing the above-mentioned tunnel oxidation passivation structure, which includes the following steps:
  • the treatment atmosphere is nitrogen-containing gas and oxygen-containing gas to generate a SiON film
  • the ion-free bombardment oxidation method in step S1 is an ozone oxidation method or a nitric acid oxidation method, with the ozone oxidation method being preferred.
  • the nitrogen-containing gas is NH 3 and the oxygen-containing gas is N 2 O.
  • the flow ratio of the nitrogen-containing gas and the oxygen-containing gas is 2:1 to 8:1.
  • the annealing temperature is 820-1100°C.
  • the silicon wafer is an N-type single crystal silicon wafer with a thickness of 160 ⁇ m, and is chemically polished on both sides, with a resistivity of 0.8 ⁇ cm.
  • the passivation structure used in the following embodiments and comparative examples is a double-sided p-type tunneling silicon oxide passivation structure.
  • This embodiment prepares a tunnel oxidation passivation structure, which includes the following steps:
  • annealing temperature 880-1000°C and the time is 30 minutes.
  • This embodiment prepares a tunnel oxidation passivation structure, which includes the following steps:
  • annealing temperature 880-1000°C and the time is 30 minutes.
  • This embodiment prepares a tunnel oxidation passivation structure, which includes the following steps:
  • annealing temperature 880-1000°C and the time is 30 minutes.
  • Comparative Example Preparing a tunnel oxide passivation structure includes the following steps:
  • PECVD is used to deposit boron-doped amorphous silicon films on both sides of the silicon wafer.
  • the annealing temperature is 880-1000°C and the time is 30 minutes.
  • Comparative Example Preparing a tunnel oxide passivation structure includes the following steps:
  • PECVD is used to deposit boron-doped amorphous silicon films on both sides of the silicon wafer.
  • the annealing temperature is 880-1000°C and the time is 30 minutes.
  • Example 1-3 the passivation performance of the tunnel oxidation passivation structure prepared in Example 1-3 is better than that of Comparative Example 1-2.
  • the passivation effect of Example 1-3 can make the potential
  • the open circuit voltage reaches more than 720mV.
  • the efficiency can reach 22.04%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供一种超薄氮氧化硅界面材料、遂穿氧化钝化结构及其制备方法和应用,所述超薄氮氧化硅界面材料为SiON薄膜,厚度为1nm-4nm,所述SiON薄膜中N原子百分含量为1%-40%。本发明的超薄氮氧化硅界面材料具有高含氮量的特点,相比于氧化硅而言,硼在SiON薄膜中的扩散速率低,从而有效减少了硼对SiON薄膜的破坏作用,提高了SiON薄膜的完整性,保持了化学钝化效果,高氮浓度的SiON薄膜可以显著降低硼在硅表面的浓度,从而降低硼缺陷;另外SiON薄膜的能带结构接近氮化硅,其价带带阶比较小,有利于空穴传输,提升了空穴传输效率和空穴选择性,从而改善了钝化质量,也有利于降低接触电阻率。

Description

超薄氮氧化硅界面材料、遂穿氧化钝化结构及其制备方法和应用 技术领域
本发明涉及太阳能电池技术领域,具体而言,涉及一种超薄氮氧化硅界面材料、遂穿氧化钝化结构及其制备方法和应用。
背景技术
隧穿氧化层钝化接触(Tunnel Oxide Passivated Contact,TOPCon)太阳能电池是2013年由德国弗兰霍夫所提出的一种新型晶硅太阳能电池,其N型电池的典型结构如图1所示,这种结构的核心是采用超薄氧化硅层和掺杂多晶硅叠层结构钝化硅片表面。隧穿氧化硅钝化接触结构的钝化机理主要来源于两方面:一是界面氧化硅层的化学钝化作用,二是掺杂原子的场钝化作用,因此提升界面氧化硅的完整性有利于提高表面的化学钝化效果。
现有技术中,TOPCon电池的制备流程如下:清洗制绒—扩散硼发射极—刻蚀—背面制备SiO 2—PECVD重掺杂多晶硅—高温退火—前表面氧化铝、Si 3N 4—丝网印刷。对于隧穿氧化硅钝化接触技术,其电子收集采用n型的磷掺杂多晶硅薄膜,而空穴收集则采用p型的硼掺杂多晶硅薄膜。由于n型钝化接触技术效果好,已被广泛接受为下一代产业用高效晶体硅电池技术,但是n型TOPCon电池成本高,不利于大规模生产,而p型TOPCon技术则可以兼容铝浆材料,有利于降低成本,因此发展并提升p型TOPCon技术具有现实意义。
中国发明专利CN105742391A公开可一种隧穿硅氧氮层钝化接触太阳能电池及其制备方法,其制备方法为等离子体辅助笑气氧化法,具体方法是利用PECVD对硅表面进行氧化处理,由于反应气体中含有N元素,在此过程中形成含氮的超薄氧化硅层,即SiON薄膜。不过,直接使用等离子体笑气辅助氧化法制备的氧化硅层存在两个显著问题:第一、SiON薄膜中的氮浓度较低,达不到阻挡硼扩散和富集的效果;第二、等离子体直接作用在硅片表面,会引入显著的离子轰击损伤缺陷。上述问题都会影响到氧化硅层对硅片的钝化效 果,基于这种含氮的超薄氧化硅层制备的p-TOPCon的最优钝化效果仅能使潜在开路电压达到700mV-705mV。
发明内容
针对现有技术的不足,本发明所要解决的技术问题是如何提高TOPCon的钝化效果。
为解决上述问题,本发明第一方面提供一种超薄氮氧化硅界面材料,所述超薄氮氧化硅界面材料为SiON薄膜,厚度为1nm-4nm,所述SiON薄膜中N原子百分含量为1%-40%。
本发明的超薄氮氧化硅界面材料具有高含氮量的特点,相比于氧化硅而言,硼在SiON薄膜中的扩散速率低,从而有效减少了硼对SiON薄膜的破坏作用,提高了SiON薄膜的完整性,保持了化学钝化效果,高氮浓度的SiON薄膜可以显著降低硼在硅表面的浓度,从而降低硼缺陷;另外SiON薄膜的能带结构接近氮化硅,其价带带阶比较小,有利于空穴传输,提升了空穴传输效率和空穴选择性,从而改善了钝化质量,也有利于降低接触电阻率。
本发明的第二方面提供上述超薄氮氧化硅界面材料的制备方法,包括以下步骤:
S1、采用无离子轰击氧化法在硅片上生长一层SiO 2薄膜;
S2、用PECVD方法对SiO 2薄膜进行表面氮化处理,处理气氛为含氮气体和含氧气体,生成SiON薄膜。
该制备方法先在硅片上生长一层无轰击损伤的氧化硅层,可以显著降低等离子体氮化过程引入的离子轰击损伤,进而提升钝化质量。该方法有效降低了界面态缺陷,常规等离子体笑气氧化法方法得到的界面态通常为2*10 12eV*cm -2,当使用本发明的制备方法时,缺陷态的密度可以下降到0.4*10 12eV*cm - 2
优选地,所述步骤S2中,所述含氮气体为NH 3,所述含氧气体的为N 2O。采用NH 3和N 2O进行表面氮化处理,一方面,NH 3分解过程中,N浓度高,可以显著引入N元素,同时也产生H原子,会对氧化硅进行刻蚀;另一方面引入N 2O,可以同时补充氧源,保持SiON薄膜的厚度,避免因H离子的刻 蚀作用导致厚度过低。
优选地,所述步骤S2中,所述含氮气体和所述含氧气体的流量比为2:1~8:1。
优选地,所述步骤S1中无离子轰击氧化法为臭氧气氧化法或硝酸氧化法。
本发明方法可以根据实际需求,调整氧化硅厚度、NH 3和N 2O混合气比例,从而调控SiON薄膜的厚度和组分。
本发明第三方面提供一种遂穿氧化钝化结构,包括硅片、钝化遂穿层和掺杂多晶硅层,所述钝化遂穿层的材料为上述的超薄氮氧化硅界面材料,所述钝化遂穿层位于所述硅片和所述掺杂多晶硅层之间。
优选地,所述掺杂多晶硅层的材料为硼掺杂非晶硅薄膜。
本发明的遂穿氧化钝化结构由超薄氮氧化硅界面材料作为钝化遂穿层,能减少了硼对隧穿氧化层的破坏作用,提高提高钝化质量,降低接触电阻率,实现优异的接触性能,该遂穿氧化钝化结构应用于P-TOPCon,潜在开路电压可以达到720mV以上,接触电阻率小于5mΩcm 2
本发明第四方面提供一种上述遂穿氧化钝化结构的制备方法,包括以下步骤:
S1、采用无离子轰击氧化法在硅片上生长一层SiO 2薄膜;
S2、用PECVD方法对SiO 2薄膜进行表面氮化处理,处理气氛为含氮气体和含氧气体,生成SiON薄膜;
S3、用PECVD方法在SiON薄膜上沉积掺杂非晶硅薄膜;
S4、进行退火处理,得到遂穿氧化钝化结构。
该制备方法操作简单,兼容现有的量产装备技术,尤其是兼容PECVD装备,所采用的气体耗材成本低,几乎不增加额外耗材成本。
优选地,所述步骤S4中,退火温度为820-1100℃。
氮氧化硅比氧化硅具有更高的热稳定性,可以承受更高、变温速度更快的退火处理;根据实际需求,可以调整氧化硅厚度、含氮气体和含氧气体混合比 例,调控SiON薄膜的厚度和组分,进而匹配不同的高温退火温度。
本发明第五方面提供上述遂穿氧化钝化结构的应用,将所述遂穿氧化钝化结构应用于N型或P型隧穿氧化层钝化接触太阳能电池。
附图说明
图1为隧穿氧化层钝化接触太阳能电池结构图;
图2为实施例1中SiON薄膜的微观结构。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。需要说明的是,以下各实施例仅用于说明本发明的实施方法和典型参数,而不用于限定本发明所述的参数范围,由此引申出的合理变化,仍处于本发明权利要求的保护范围内。
需要说明的是,在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明的实施例提供一种遂穿氧化钝化结构,包括硅片、钝化遂穿层和掺杂多晶硅层,钝化遂穿层的材料为超薄氮氧化硅界面材料,钝化遂穿层位于所述硅片和掺杂多晶硅层之间。超薄氮氧化硅界面材料为SiON薄膜,厚度为1nm-4nm,且SiON薄膜中N原子百分含量为1%-40%。
该遂穿氧化钝化结构可以应用于N型或P型隧穿氧化层钝化接触太阳能电池。应用于P型隧穿氧化层钝化接触太阳能电池时,掺杂多晶硅层的材料为硼掺杂非晶硅薄膜,高含氮量的氮氧化硅界面材料有利于提升p-TOPCon的钝化质量,其原理包括:1)相比于氧化硅而言,硼在SiON薄膜中的扩散速率低,从而有效减少了硼对SiON薄膜的破坏作用,提高了SiON薄膜的完整性,保持了化学钝化效果;2)高氮浓度的SiON薄膜可以显著降低硼在硅表面的浓度,从而降低硼缺陷;3)SiON薄膜的能带结构接近氮化硅,其价带带阶比较小,有利于空穴传输,提升了空穴传输效率和空穴选择性,从而改善了 钝化质量,也有利于降低接触电阻率。P型TOPCon的潜在开路电压可以达到720mV以上,接触电阻率小于5mΩcm 2
本发明的实施例还提供上述遂穿氧化钝化结构的制备方法,包括以下步骤:
S1、采用无离子轰击氧化法在硅片上生长一层SiO 2薄膜;
S2、用PECVD方法对SiO 2薄膜进行表面氮化处理,处理气氛为含氮气体和含氧气体,生成SiON薄膜;
S3、用PECVD方法在SiON薄膜上沉积掺杂非晶硅薄膜;
S4、进行退火处理,得到遂穿氧化钝化结构。
本发明的具体实施方式中,步骤S1中无离子轰击氧化法为臭氧气氧化法或硝酸氧化法,优选臭氧气氧化法。步骤S2中,含氮气体为NH 3,含氧气体的为N 2O,含氮气体和含氧气体的流量比为2:1~8:1。步骤S3中,退火温度为820-1100℃。
以下将通过具体实施例对本发明进行详细描述。以下实施例和对比例中所以硅片是厚为160μm的N型单晶硅片,双面化学抛光处理,电阻率为0.8Ω·cm。以下实施例和对比例所采用的钝化结构为双面p型隧穿氧化硅钝化结构。
实施例1
本实施例制备一种遂穿氧化钝化结构,包括以下步骤:
(1)将硅片切成4cm×4cm的尺寸,进行标准RCA清洗。
(2)将硅片置于臭氧发生器中生长一层约1.5nm的SiO 2薄膜。
(3)将样品放入PECVD中处理,用N 2O和NH 3为处理气氛,N 2O和NH 3的流量比为4:1,功率为5W,处理时间为300S,生成SiON薄膜。SiON薄膜的厚度为1.7nm,微观结构如图2所示。
(4)用PECVD在硅片两面沉积硼掺杂非晶硅薄膜。
(5)将样品放置在管式退火炉中进行退火,退火温度为880-1000℃,时 间为30分钟。
实施例2
本实施例制备一种遂穿氧化钝化结构,包括以下步骤:
(1)将硅片切成4cm×4cm的尺寸,进行标准RCA清洗。
(2)将硅片置于臭氧发生器中生长一层约1.5nm的SiO 2薄膜。
(3)将样品放入PECVD中处理,用N 2O和NH 3为处理气氛,N 2O和NH 3的流量比为2:1,功率为5W,处理时间为300S,生成SiON薄膜。
(4)用PECVD在硅片两面沉积硼掺杂非晶硅薄膜。
(5)将样品放置在管式退火炉中进行退火,退火温度为880-1000℃,时间为30分钟。
实施例3
本实施例制备一种遂穿氧化钝化结构,包括以下步骤:
(1)将硅片切成4cm×4cm的尺寸,进行标准RCA清洗。
(2)将硅片置于臭氧发生器中生长一层约1.5nm的SiO 2薄膜。
(3)将样品放入PECVD中处理,用N 2O和NH 3为处理气氛,N 2O和NH 3的流量比为8:1,功率为5W,处理时间为300S,生成SiON薄膜。
(4)用PECVD在硅片两面沉积硼掺杂非晶硅薄膜。
(5)将样品放置在管式退火炉中进行退火,退火温度为880-1000℃,时间为30分钟。
对比例1
对比例制备一种遂穿氧化钝化结构,包括以下步骤:
(1)将硅片切成4cm×4cm的尺寸,进行标准RCA清洗。
(2)将硅片放入硝酸中,形成SiO 2薄膜。
(3)将硅片清洗吹干之后,接着用PECVD在硅片两面沉积硼掺杂非晶硅薄膜。
(4)将样品放置在管式退火炉中进行退火,退火温度为880-1000℃,时间为30分钟。
对比例2
对比例制备一种遂穿氧化钝化结构,包括以下步骤:
(1)将硅片切成4cm×4cm的尺寸,进行标准RCA清洗。
(2)将硅片放入PECVD中处理,用N 2O和NH 3为处理气氛,N 2O和NH 3的流量比为2:1,N 2O和NH 3的流量比为2:1,功率为5W,处理时间为300S,生成SiON薄膜。
(3)将硅片清洗吹干之后,接着用PECVD在硅片两面沉积硼掺杂非晶硅薄膜。
(4)将样品放置在管式退火炉中进行退火,退火温度为880-1000℃,时间为30分钟。
用X射线光电子能谱分析实施例和对比例遂穿氧化钝化结构中钝化遂穿层的成分,分析结果如下表1所示。
成分 Si原子含量百分比 O原子含量百分比 N原子含量百分比
实施例1 50.74 43.59 5.67
实施例2 50.68 38.94 10.38
实施例3 49.67 47.59 2.74
对比例1 51.65 48.25 0.1
对比例2 50.31 48.93 0.76
表1钝化遂穿层中Si、O、N的含量表
测试钝化性能实施例和对比例遂穿氧化钝化结构的钝化性能结果如下表2所示。
退火温度 实施例1 实施例2 实施例3 对比例1 对比例2
880℃ 717mV 713mV 710mV 678mV 612mV
920℃ 720mV 715mV 713mV 694mV 664mV
980℃ 726mV 722mV 708mV 653mV 698mV
1000℃ 696mV 687mV 623mV 612mV 662mV
表2遂穿氧化钝化结构的钝化性能
从测试结果可知,实施例1-3的制备的遂穿氧化钝化结构的钝化性能要优于对比例1-2,选择合适的退火温度,实施例1-3的钝化效果能使潜在开路电压达到720mV以上。用实施例1的工艺制备背结电池,效率可达22.04%。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (10)

  1. 一种超薄氮氧化硅界面材料,其特征在于,所述超薄氮氧化硅界面材料为SiON薄膜,厚度为1nm-4nm,所述SiON薄膜中N原子百分含量为1%-40%。
  2. 如权利要求1所述的超薄氮氧化硅界面材料的制备方法,其特征在于,包括以下步骤:
    S1、采用无离子轰击氧化法在硅片上生长一层SiO 2薄膜;
    S2、用PECVD方法对SiO 2薄膜进行表面氮化处理,处理气氛为含氮气体和含氧气体,生成SiON薄膜。
  3. 根据权利要求2所述的超薄氮氧化硅界面材料的制备方法,其特征在于,所述步骤S2中,所述含氮气体为NH 3,所述含氧气体的为N 2O。
  4. 根据权利要求2所述的超薄氮氧化硅界面材料的制备方法,其特征在于,所述步骤S2中,所述含氮气体和所述含氧气体的流量比为2:1~8:1。
  5. 根据权利要求2所述的超薄氮氧化硅界面材料的制备方法,其特征在于,所述步骤S1中无离子轰击氧化法为臭氧气氧化法或硝酸氧化法。
  6. 一种遂穿氧化钝化结构,其特征在于,包括硅片、钝化遂穿层和掺杂多晶硅层,所述钝化遂穿层的材料为如权利要求1所述的超薄氮氧化硅界面材料,所述钝化遂穿层位于所述硅片和所述掺杂多晶硅层之间。
  7. 根据权利要求5所述的遂穿氧化钝化结构,其特征在于,所述掺杂多晶硅层的材料为硼掺杂非晶硅薄膜。
  8. 如权利要求6所述的遂穿氧化钝化结构的制备方法,其特征在于,包括以下步骤:
    S1、采用无离子轰击氧化法在硅片上生长一层SiO 2薄膜;
    S2、用PECVD方法对SiO 2薄膜进行表面氮化处理,处理气氛为含氮气体和含氧气体,生成SiON薄膜;
    S3、用PECVD方法在SiON薄膜上沉积硼掺杂非晶硅薄膜;
    S4、进行退火处理,得到遂穿氧化钝化结构。
  9. 根据权利要求8所述的遂穿氧化钝化结构的制备方法,其特征在于,所述步骤S4中,退火温度为820-1100℃。
  10. 如权利要求6所述的遂穿氧化钝化结构的应用,其特征在于,将所述遂穿氧化钝化结构应用于N型或P型隧穿氧化层钝化接触太阳能电池。
PCT/CN2022/113247 2022-03-23 2022-08-18 超薄氮氧化硅界面材料、遂穿氧化钝化结构及其制备方法和应用 WO2023178914A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210368180.3 2022-03-23
CN202210368180.3A CN114843350A (zh) 2022-03-23 2022-03-23 超薄氮氧化硅界面材料、遂穿氧化钝化结构及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023178914A1 true WO2023178914A1 (zh) 2023-09-28

Family

ID=82564963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113247 WO2023178914A1 (zh) 2022-03-23 2022-08-18 超薄氮氧化硅界面材料、遂穿氧化钝化结构及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114843350A (zh)
WO (1) WO2023178914A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843350A (zh) * 2022-03-23 2022-08-02 中国科学院宁波材料技术与工程研究所 超薄氮氧化硅界面材料、遂穿氧化钝化结构及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742391A (zh) * 2016-04-27 2016-07-06 中国科学院宁波材料技术与工程研究所 一种隧穿硅氧氮层钝化接触太阳能电池及其制备方法
CN111509081A (zh) * 2020-03-20 2020-08-07 中国科学院宁波材料技术与工程研究所 超薄含氧氮硅薄膜的制备方法及其在钝化接触电池中的应用
CN114843350A (zh) * 2022-03-23 2022-08-02 中国科学院宁波材料技术与工程研究所 超薄氮氧化硅界面材料、遂穿氧化钝化结构及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108447918A (zh) * 2018-03-29 2018-08-24 晶澳(扬州)太阳能科技有限公司 一种钝化接触多晶硅薄膜的掺杂结构及其制备方法
CN112186067B (zh) * 2019-07-03 2022-05-31 中国科学院宁波材料技术与工程研究所 一种掺杂氮硅化物薄膜钝化接触结构的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742391A (zh) * 2016-04-27 2016-07-06 中国科学院宁波材料技术与工程研究所 一种隧穿硅氧氮层钝化接触太阳能电池及其制备方法
CN111509081A (zh) * 2020-03-20 2020-08-07 中国科学院宁波材料技术与工程研究所 超薄含氧氮硅薄膜的制备方法及其在钝化接触电池中的应用
CN114843350A (zh) * 2022-03-23 2022-08-02 中国科学院宁波材料技术与工程研究所 超薄氮氧化硅界面材料、遂穿氧化钝化结构及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GLUNZ STEFAN W., STEINHAUSER BERND, POLZIN JANA‐ISABELLE, LUDERER CHRISTOPH, GRÜBEL BENJAMIN, NIEWELT TIM, OKASHA ASMAA M. O. M., : "Silicon‐based passivating contacts: The TOPCon route", PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, JOHN WILEY & SONS, LTD., HOBOKEN, USA, Hoboken, USA, XP055916897, ISSN: 1062-7995, DOI: 10.1002/pip.3522 *
LAI YI-SHENG, CHEN J. S.: "Evolution of chemical bonding configuration in ultrathin SiOxNy layers grown by low-temperature plasma nitridation", JOURNAL OF VACUUM SCIENCE, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 21, no. 3, 1 May 2003 (2003-05-01), 2 Huntington Quadrangle, Melville, NY 11747, pages 772 - 778, XP012006367, ISSN: 0734-2101, DOI: 10.1116/1.1570838 *

Also Published As

Publication number Publication date
CN114843350A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
EP0886308B1 (en) Plasma nitridation of a silicon oxide film
US6197701B1 (en) Lightly nitridation surface for preparing thin-gate oxides
Chen et al. Plasma‐enhanced chemical‐vapor‐deposited oxide for low surface recombination velocity and high effective lifetime in silicon
CN105355561B (zh) 一种降低SiC MOS界面态密度的表面预处理方法
TW200401372A (en) Substrate processing method
US20240145610A1 (en) Tunnel oxide layer, n-type bifacial crystalline silicon solar cell and method for manufacturing same
WO2023178914A1 (zh) 超薄氮氧化硅界面材料、遂穿氧化钝化结构及其制备方法和应用
CN109003895B (zh) 一种提高SiC MOSFET器件性能稳定性的制作方法
CN100380609C (zh) 半导体基片的uv增强的氧氮化
WO2024007495A1 (zh) 改性隧穿氧化层及制备方法、TOPCon结构及制备方法和太阳电池
CN111509081B (zh) 超薄含氧氮硅薄膜的制备方法及其在钝化接触电池中的应用
JP2003142483A (ja) 高度に窒素ドープされた超薄オキシ窒化物ゲート誘電体の形成方法
JP3310386B2 (ja) 絶縁酸化膜の形成方法及び半導体装置
CN111785620A (zh) 一种P型SiC欧姆接触电极的制作方法
CN114335237A (zh) 一种晶体硅太阳能电池的制备方法及晶体硅太阳能电池
CN114606478B (zh) 一种管式pecvd制备超薄氧化硅层及钝化接触结构的方法、钝化接触结构
Kakiuchi et al. Significant enhancement of Si oxidation rate at low temperatures by atmospheric pressure Ar∕ O2 plasma
CN106531622A (zh) 一种砷化镓基mosfet栅介质的制备方法
JP3533377B2 (ja) 半導体基板表面の酸化膜の形成方法及び半導体装置の製造方法
JP3571160B2 (ja) 半導体表面の酸化膜の形成方法及び半導体装置の製造方法
CN112599408A (zh) 具有复合氧化层的碳化硅金属氧化物半导体制备方法
Garcia-Hernansanz et al. Deposition of Intrinsic a-Si: H by ECR-CVD to Passivate the Crystalline Silicon Heterointerface in HIT Solar Cells
CN115360089A (zh) 一种碳化硅芯片栅氧化层制备方法及相关设备
WO2022213460A1 (zh) 一种集成隧穿氧化层的非晶硅制备方法
Saito et al. Nitridation of silicon oxide surfaces by fluorination and subsequent exposure to atomic nitrogen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932966

Country of ref document: EP

Kind code of ref document: A1