WO2023178867A1 - 压缩机、空调系统及其控制方法、计算机存储介质 - Google Patents
压缩机、空调系统及其控制方法、计算机存储介质 Download PDFInfo
- Publication number
- WO2023178867A1 WO2023178867A1 PCT/CN2022/101863 CN2022101863W WO2023178867A1 WO 2023178867 A1 WO2023178867 A1 WO 2023178867A1 CN 2022101863 W CN2022101863 W CN 2022101863W WO 2023178867 A1 WO2023178867 A1 WO 2023178867A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compressor
- air
- oil return
- pipe
- interlayer
- Prior art date
Links
- 238000004378 air conditioning Methods 0.000 title claims description 71
- 238000000034 method Methods 0.000 title claims description 24
- 238000003860 storage Methods 0.000 title claims description 11
- 239000011229 interlayer Substances 0.000 claims abstract description 98
- 238000000605 extraction Methods 0.000 claims abstract description 50
- 239000007788 liquid Substances 0.000 claims description 117
- 239000003507 refrigerant Substances 0.000 claims description 59
- 239000011248 coating agent Substances 0.000 claims description 24
- 238000000576 coating method Methods 0.000 claims description 24
- 238000009413 insulation Methods 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 5
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 abstract description 8
- 238000004891 communication Methods 0.000 abstract description 3
- 239000003921 oil Substances 0.000 description 150
- 239000010687 lubricating oil Substances 0.000 description 20
- 230000006835 compression Effects 0.000 description 15
- 238000007906 compression Methods 0.000 description 15
- 238000005057 refrigeration Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000012774 insulation material Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000010726 refrigerant oil Substances 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- WWYNJERNGUHSAO-XUDSTZEESA-N (+)-Norgestrel Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 WWYNJERNGUHSAO-XUDSTZEESA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000010725 compressor oil Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000012720 thermal barrier coating Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
Definitions
- the present application relates to the technical field of air conditioning, and in particular to a compressor, an air conditioning system and a control method thereof, and a computer storage medium.
- air conditioners need to be equipped with compressors to compress refrigerant.
- the market has increasingly strong requirements for product miniaturization, so current compressors generally use integrated compressors.
- the liquid reservoir is located below the main body. This makes the refrigerant in the liquid reservoir easily affected by the temperature of the lubricating oil at the bottom of the main body, causing the compressor suction air to overheat, resulting in a decrease in the cooling capacity of the air conditioner. .
- the liquid reservoir is arranged below the oil pool of the main body, and the temperature of the liquid reservoir is low, resulting in a large heat exchange between the oil pool and the liquid reservoir, which in turn causes the oil temperature in the oil pool to decrease.
- the air conditioner is in extreme operating conditions, affected by the cooling of the low-temperature reservoir, the oil temperature of the compressor oil pool is lower, and the viscosity of the lubricating oil increases, making it unable to lubricate the internal friction pairs of the compressor in time, eventually causing the compressor to fail, thereby affecting Operational reliability of air conditioning systems.
- the main purpose of this application is to propose a compressor that aims to solve the technical problems in the prior art of reducing the refrigeration capacity of the compressor and reducing the risk of compressor failure.
- this application proposes a compressor, including:
- a liquid reservoir is provided below the main body part.
- An interlayer is provided between the liquid reservoir and the main body part.
- the interlayer has a vacuum chamber and an air extraction hole connected to the vacuum chamber.
- the air extraction hole Suitable for vacuuming the vacuum chamber.
- the compressor further includes an air extraction pipe, and the air extraction pipe is installed at the air extraction hole.
- the air extraction pipe is provided with a control valve to control the opening and closing of the air extraction pipe.
- control valve is a one-way valve embedded in the air extraction pipe.
- the exhaust pipe includes a first pipe section and a second pipe section.
- the first pipe section is connected to the vacuum chamber.
- the second pipe section is connected to the first pipe section and extends along the body portion. Extends in height direction.
- the air extraction pipe is a metal pipe.
- the vacuum chamber is provided with thermal insulation material.
- the wall of the vacuum chamber is provided with a thermal insulation coating
- the wall surface of the liquid reservoir is provided with a heat-insulating coating.
- a connecting pipe is provided between the liquid reservoir and the body part, and a wall surface of the connecting pipe is provided with a heat-insulating coating.
- the body part, the interlayer, and the liquid reservoir are provided in one piece.
- the cross-sectional area of the body part is consistent with the cross-sectional area of the liquid reservoir.
- This application also proposes a compressor, including:
- the body part has an oil pool inside
- An interlayer is provided adjacent to the side of the main body where the oil pool is provided.
- the interlayer is provided with an air inlet port and an air outlet port that are connected to each other.
- the air inlet port and the air outlet port are used to communicate with the refrigerant of the air conditioning system.
- a liquid reservoir is provided on the side of the interlayer away from the main body.
- the oil pool is located at the lower end of the interior of the body part
- the interlayer is located on the lower side of the oil pool
- the liquid reservoir is located on the lower side of the interlayer.
- This application also proposes an air conditioning system, including an outdoor heat exchanger, a throttling device, an indoor heat exchanger, and a compressor as described above that are interconnected and form a refrigerant circulation loop.
- the refrigerant circulation loop includes a refrigerant circulation loop with the compressor.
- the exhaust port of the compressor is connected to the exhaust pipe, the air inlet port of the interlayer of the compressor is connected to the exhaust pipe through the first connecting pipe, and the air outlet port of the interlayer is connected to the exhaust pipe through the second connecting pipe.
- the exhaust pipelines are connected, and the first connecting pipeline is provided with a switch valve for controlling the opening and closing of the pipelines.
- the air conditioning system further includes a one-way valve provided in the second connecting pipe, the one-way valve being used to prevent the fluid in the second connecting pipe from flowing back toward the air outlet port. .
- the refrigerant circulation circuit further includes an air return pipe connected to the air return port of the compressor, and the air return pipe is provided with a filter.
- the switch valve When the current operating frequency meets the preset oil return determination condition, the switch valve is controlled to open, and the compressor is controlled to enter the oil return operation mode.
- the compressor operates at a preset oil return operation frequency in the oil return operation mode, and the preset oil return operation frequency is greater than the preset oil return determination frequency threshold.
- the preset oil return determination frequency threshold is less than or equal to 30HZ, and the preset oil return operating frequency is greater than or equal to 50HZ.
- the method further includes the following steps:
- the switch valve is controlled to close, and the compressor is controlled to exit the oil return operation mode.
- This application also proposes a computer storage medium that stores a control program for an air conditioner system.
- the control program for the air conditioner system is executed by a processor, the control method for the air conditioner system as described above is implemented.
- the compressor of the present application includes a body part and a liquid reservoir.
- the liquid reservoir is located below the body part.
- An interlayer is provided between the liquid reservoir and the body part.
- the interlayer has a vacuum chamber and An air extraction hole communicated with the vacuum chamber, the air extraction hole is suitable for evacuating the vacuum chamber; in this way, by arranging the liquid reservoir below the body part, the lateral size of the compressor is reduced, and there is It is beneficial to realize the miniaturization of the compressor and increase the cabinet capacity; at the same time, there is an interlayer between the liquid reservoir and the main body part, the interlayer has a vacuum chamber, and the vacuum chamber is used to increase the distance between the liquid reservoir and the main body part.
- the interlayer has an air extraction hole connected with the vacuum chamber, and the vacuum chamber is evacuated through the air extraction hole, so that the compressor can be evacuated independently, so that there is no need to install a vacuum pump inside the compressor.
- the vacuum chamber can also be evacuated through the whole machine vacuum system before installation and operation.
- the interlayer By setting up an interlayer between the main body and the liquid reservoir, the interlayer is provided with an air inlet port and an air outlet port.
- the air inlet port and the air outlet port can be connected to the refrigerant circulation circuit respectively.
- the exhaust pipe is connected.
- the exhaust pipeline of the refrigerant circulation loop refers to the pipeline leading from the exhaust port of the compressor.
- the exhaust pipeline transports high-temperature and high-pressure gas generated after the compressor performs compression work.
- the exhaust pipeline can be connected to the interlayer of the compressor as needed. The high-temperature gas in the exhaust pipeline can enter the interlayer through the air inlet port, and then return to the exhaust pipeline through the air outlet port.
- the high-temperature gas After the high-temperature gas enters the interlayer, it can synchronously heat the main body, causing the temperature of the lubricating oil in the oil pool of the main body to rise. This can avoid the situation where the oil temperature is too low due to long-term low-frequency operation of the compressor, resulting in excessive lubricating oil viscosity, and ensures lubrication. Oil has good fluidity and can promptly lubricate the friction pairs inside the compressor, thereby reducing the risk of compressor failure and improving the operating reliability of the compressor.
- Figure 1 is a schematic structural diagram of an embodiment of the compressor of the present application
- Figure 2 is a cross-sectional view of the compressor in Figure 1;
- FIG. 3 is an internal detailed view of another embodiment of the compressor of the present application.
- Figure 4 is a schematic structural diagram of another embodiment of the compressor of the present application.
- Figure 5 is a cross-sectional view of the compressor in Figure 4.
- Figure 6 is a partial enlarged view of position A in Figure 5;
- Figure 7 is a schematic structural diagram of another embodiment of the compressor of the present application.
- Figure 8 is a schematic structural diagram of an embodiment of the air conditioning system of the present application.
- FIG. 9 is a schematic structural diagram of an embodiment of the control device of the air conditioning system of the present application.
- FIG. 10 is a schematic structural diagram of another embodiment of the control device of the air conditioning system of the present application.
- Figure 11 is a schematic flow chart of an embodiment of the control method of the air conditioning system of the present application.
- Figure 12 is a schematic flowchart of another embodiment of the control method of the air conditioning system of the present application.
- This application proposes a compressor.
- the compressor 100 includes a body portion 110 and a liquid reservoir 150.
- the liquid reservoir 150 is provided below the body portion 110.
- An interlayer 160 is provided between the liquid reservoir 150 and the body part 110.
- the interlayer 160 has a vacuum chamber 161 and an air extraction hole 170 connected with the vacuum chamber 161.
- the air extraction hole 170 is suitable for cleaning the vacuum chamber. 161 Vacuum.
- the embodiment of the present application by disposing the liquid reservoir 150 below the main body part 110, compared with the solution in the prior art in which the liquid reservoir 150 is disposed on the peripheral side of the main body part 110, the embodiment of the present application
- the structural compactness of the liquid reservoir 150 and the main body 110 can be improved, and the lateral size of the compressor 100 can be reduced, thereby reducing the overall size of the compressor 100, which is beneficial to miniaturization of the compressor 100 and increases the cabinet capacity. .
- the liquid accumulator 150 is directly connected to the lower end of the body part 110 , the liquid accumulator 150 is easily heated by the oil temperature in the bottom oil pool of the body part 110 , causing the suction air of the compressor 100 to overheat, causing the compressor 100 to overheat. cooling capacity is reduced.
- the refrigerant gas in the reservoir 150 is heated by the hot oil in the bottom oil pool of the main body 110 and the temperature rises.
- the specific volume of the refrigerant gas increases, and the density of the refrigerant gas decreases. , thus the flow rate of the refrigerant gas sucked into the main body 110 decreases, which ultimately leads to a decrease in the refrigeration capacity of the compressor 100 .
- a heat exchanger is used between the liquid reservoir 150 and the main body part 110
- An interlayer 160 is provided, and the interlayer 160 has a vacuum chamber 161.
- the vacuum chamber 161 is used to increase the heat exchange resistance between the liquid reservoir 150 and the body part 110, thereby preventing the heat of the body part 110 from flowing to the liquid reservoir 150.
- the transmission causes the refrigerant gas temperature in the accumulator 150 to be too high, which reduces the temperature of the refrigerant gas sucked into the main body 110 , that is, the suction superheat of the main body 110 is reduced, and the refrigeration capacity of the compressor 100 is improved.
- an air extraction hole 170 connected to the vacuum chamber 161 can be provided on the interlayer 160, and the vacuum chamber 161 can be evacuated through the air extraction hole 170. It should be pointed out that by arranging the air extraction hole 170 on the interlayer 160, the interlayer 160 can be evacuated independently, thereby eliminating the need to install a vacuum pump inside the compressor 100. Of course, the vacuum pumping system can also be used to complete the vacuuming of the entire machine before installation and operation. The vacuum chamber 161 is evacuated.
- the main body part 110, the interlayer 160, and the liquid reservoir 150 may be provided in one piece.
- the body part 110 and the interlayer 160 are welded and fixed, and the interlayer 160 and the liquid reservoir 150 are welded and fixed. In this way, the body part 110, the interlayer 160 and the liquid reservoir 150 are integrated into one body through welding.
- the compressor 100 is convenient for transportation, cabinet installation, etc. of the compressor 100 .
- the compressor 100 of the present application includes a body part 110 and a liquid reservoir 150.
- the liquid reservoir 150 is provided below the body part 110.
- An interlayer 160 is provided between the liquid reservoir 150 and the body part 110.
- the interlayer 160 has a vacuum chamber 161 and an air extraction hole 170 connected with the vacuum chamber 161.
- the air extraction hole 170 is suitable for evacuating the vacuum chamber 161; in this way, by placing the liquid reservoir 150 in Below the body part 110, the lateral size of the compressor 100 is reduced, which is conducive to miniaturization of the compressor 100 and increases the cabinet capacity; at the same time, an interlayer is provided between the liquid reservoir 150 and the body part 110 160.
- the interlayer 160 has a vacuum chamber 161.
- the vacuum chamber 161 is used to increase the heat exchange resistance between the liquid reservoir 150 and the body part 110, effectively preventing the heat of the body part 110 from being transferred to the liquid reservoir 150 to avoid
- the refrigerant in the liquid accumulator 150 is heated and overheated, thereby increasing the refrigeration capacity of the compressor 100 .
- the interlayer 160 has an air extraction hole 170 connected with the vacuum chamber 161. By evacuating the vacuum chamber 161 through the air extraction hole 170, the compressor 100 can be evacuated independently, so that there is no need to install a vacuum pump. Inside the compressor 100, the vacuum chamber 161 can also be evacuated through the entire machine vacuuming system before installation and operation.
- the compressor 100 further includes an air extraction pipe 171 , and the air extraction pipe 171 is installed at the air extraction hole 170 .
- one end of the air extraction pipe 171 is connected to the air extraction hole 170, and the other end can be connected to a vacuum pump.
- the vacuum chamber 161 is evacuated by the vacuum pump, so that the vacuum chamber 161 is in a vacuum state.
- the vacuum chamber 161 is evacuated by a vacuum pump, which effectively solves the problem of difficulty in evacuating the interlayer 160 in the production process of the compressor 100.
- the air extraction pipe 171 is arranged in an L shape.
- the air extraction pipe 171 includes a first pipe section 172 and a second pipe section 173.
- the first pipe section 172 is connected to the vacuum chamber 161.
- the second pipe section 173 is connected to the first pipe section 172 and is connected along the The main body part 110 extends in the height direction. In this way, the lateral size of the compressor 100 can be further reduced, thereby reducing the overall volume of the compressor 100 .
- a connecting pipe 130 is provided between the liquid reservoir 150 and the main body 110 , and an air return pipe 120 is provided on the liquid reservoir 150 , wherein the air extraction pipe 171 can be connected to the air exhaust pipe 171 .
- the connecting pipe 130 or the air return pipe 120 is connected. In this way, by connecting the air extraction pipe 171 with the connecting pipe 130 or the air return pipe 120, when the compressor 100 is installed for the first time, the vacuum chamber 161 can be evacuated by using the overall vacuum system of the compressor 100, so that the vacuum chamber 161 is in a vacuum state. state.
- a control valve can be provided on the air extraction pipe 171 to control the opening and closing of the air extraction pipe 171.
- the control valve can be opened; when the vacuum chamber 161 is completed, the control valve can be closed.
- the control valve may be a one-way valve.
- the control valve can be embedded in the air extraction pipe 171, which can provide certain protection for the control valve.
- the control valve can also be provided outside the air extraction pipe 171 .
- the air extraction pipe 171 is a metal pipe. In this way, the control valve can be directly welded to the exhaust pipe 171 .
- a heat insulating material 190 is provided in the vacuum chamber 161 .
- the heat insulation effect of the vacuum chamber 161 can be further improved, the heat exchange resistance between the liquid reservoir 150 and the body part 110 can be increased, and the body part 110 can be more effectively blocked.
- the heat is transferred to the liquid accumulator 150 to prevent the refrigerant in the liquid accumulator 150 from being heated and overheated, thereby improving the refrigeration capacity of the compressor 100.
- the thermal insulation material 190 may be selected from materials such as glass fiber, asbestos, rock wool, silicate, etc. The specific selection should be based on the actual situation and is not limited here.
- the wall surface of the vacuum chamber 161 is provided with a heat-insulating coating; and/or the wall surface of the liquid reservoir 150 is provided with a heat-insulating coating.
- the wall surface of the vacuum chamber 161 is provided with a heat-insulating coating.
- the inner wall surface of the vacuum chamber 161 may be provided with a heat-insulating coating, and/or the outer wall surface of the vacuum chamber 161 is provided with a barrier layer.
- Thermal coating Similarly, the wall surface of the liquid reservoir 150 is provided with a heat-insulating coating.
- the inner wall surface of the liquid reservoir 150 may be provided with a heat-insulating coating, and/or the outer wall surface of the liquid reservoir 150 is provided with a heat-insulating coating.
- Thermal barrier coating wherein, the heat-insulating coating may be coated on the wall surface of the vacuum chamber 161 and the wall surface of the liquid reservoir 150 by applying the heat-insulating coating.
- the heat-insulating coating may be a silicate heat-insulating coating, and the details should be determined according to the actual situation, and are not limited here.
- the wall surface of the connecting pipe 130 is provided with a heat-insulating coating.
- the inner wall surface of the connecting pipe 130 is provided with a heat-insulating coating, and/or the outer wall surface of the connecting pipe 130 is provided with a heat-insulating coating.
- the connecting pipe 130 can be A thermal insulation coating is provided on the wall.
- the temperature of the refrigerant gas entering the main body 110 through the connecting pipe 130 can be further prevented from being too high, and the suction of the main body 110 can be further reduced.
- the superheat of the refrigerant gas is increased, thereby increasing the refrigeration capacity of the compressor 100.
- the suction path of the compressor 100 can be further increased from the liquid reservoir 150 to the connecting pipe 130 to the main body 110
- the thermal insulation effect between the compressor 100 and the environment reduces the heat exchange between the suction path of the compressor 100 and the environment, thereby reducing the suction superheat and improving the refrigeration capacity of the compressor 100; on the other hand, it can also avoid the need for a liquid reservoir 150 and the outer wall of the connecting pipe 130, thereby preventing the condensed water from flowing into the gap on the installation chassis at the bottom of the compressor 100 and gathering, thereby effectively preventing the bottom of the compressor 100 from being immersed in condensed water for a long time and causing corrosion. rust, improving the safety and reliability of the compressor 100.
- the cross-sectional area of the body part 110 is consistent with the cross-sectional area of the liquid reservoir 150 .
- the cross section of the main body part 110 is the radial cross section of the main body part 110
- the cross section of the liquid reservoir 150 is the radial cross section of the liquid reservoir 150 .
- the cross-sectional area of the main body part 110 and the cross-sectional area of the liquid reservoir 150 are consistent. It can be understood that the cross-sectional area of the main body part 110 is equal or substantially equal to the cross-sectional area of the liquid reservoir 150.
- the cross-sectional area of the main body part 110 is slightly larger than the cross-sectional area of the liquid reservoir 150, or the cross-sectional area of the main body part 110 is slightly smaller than the cross-sectional area of the liquid reservoir 150, so that it is convenient to On the premise that the main body 110, the liquid reservoir 150 and the interlayer 160 are welded and fixed, it is ensured that the compressor 100 has the smallest lateral size.
- the vacuum chamber 161 of the interlayer 160 can include at least two sub-cavities, and at least two of the sub-cavities are located along the The main body portion 110 is stacked in the height direction. Specifically, at least one heat-insulating plate is disposed in the vacuum chamber 161, and the heat-insulating plate divides the vacuum chamber 161 into at least two sub-cavities.
- At least two of the sub-cavities may be connected to each other, and of course, may also be isolated from each other. If at least two of the sub-cavities are connected to each other, an air extraction hole 170 can be provided, so that all sub-cavities can be evacuated; if at least two of the sub-cavities are isolated from each other, at least two air extraction holes need to be provided. 170, and each air extraction hole 170 is provided corresponding to a sub-cavity, so that the corresponding sub-cavity can be evacuated through each air extraction hole 170.
- the vacuum chamber 161 is provided with a heat insulation plate.
- the heat insulation plate divides the vacuum chamber 161 into a first sub-cavity and a second sub-cavity.
- the first sub-cavity is located in the second sub-cavity. above the cavity.
- the height of the first sub-cavity and the height of the second sub-cavity may be different.
- the height of the first sub-cavity may be set to be greater than or less than the height of the second sub-cavity.
- the thermal insulation effect is further enhanced by filling the higher height sub-cavity with thermal insulation material 190 .
- the height of the first sub-cavity can also be the same as the height of the second sub-cavity, and is not particularly limited.
- the ratio of the height of the interlayer 160 to the height of the liquid reservoir 150 is greater than or equal to one quarter and less than or equal to one half.
- the interlayer 160 mainly plays a thermal insulation role by blocking the body portion 110 from transferring heat to the liquid reservoir 150, thereby preventing the refrigerant gas in the liquid reservoir 150 from being heated, thereby ensuring the refrigeration performance of the compressor 100. If the height of the interlayer 160 is too high, it will affect the overall height of the compressor 100; if the height of the interlayer 160 is too low, it will affect the heat insulation effect of the interlayer 160. Therefore, in order to avoid the overall height of the compressor 100 being too high, The ratio of the height of the interlayer 160 to the height of the liquid reservoir 150 can be greater than or equal to one quarter and less than or equal to one half.
- the height of the interlayer 160 is greater than or equal to 10 mm and less than or equal to 50 mm. Specifically, if the height of the interlayer 160 is less than 10 mm, the heat insulation effect of the interlayer 160 will be deteriorated. If the height of the interlayer 160 is greater than 50 mm, the overall height of the compressor 100 will be too high. Therefore, , the height of the interlayer 160 is greater than or equal to 10 mm and less than or equal to 50 mm.
- the interlayer 160 is made of metal.
- metal materials have the characteristics of good heat resistance, not easy to burn; good durability, not easy to age; not easy to be damaged, not easy to be contaminated with dust and dirt, etc.; and as the temperature changes, the properties of metal materials change little, and the mechanical strength is high. , good dimensional stability and other advantages.
- the interlayer 160 is made of metal, which facilitates welding and fixing the interlayer 160 to the main body 110 and the liquid reservoir 150 .
- the compressor 100 in order to increase the heat insulation effect between the return air path of the compressor 100, the air return pipe 120 - the liquid reservoir 150 - the connecting pipe 130 - the main body 110 and the environment, the return air of the compressor 100 is reduced. Heat exchange between the air path and the environment, thereby reducing the superheat of the return air and improving the refrigeration capacity of the compressor 100.
- the compressor 100 also includes an insulation jacket 180, The thermal insulation sleeve 180 is placed outside at least one of the air return pipe 120 , the connecting pipe 130 , and the liquid reservoir 150 .
- the insulation cover 180 can be a plastic cover or a rubber cover, which is not specifically limited.
- the thermal insulation sleeve 180 can be connected to the air return pipe 120 and the liquid reservoir 150 .
- the connecting pipe 130 and the liquid reservoir 150 are adhesively connected.
- the insulation sleeve 180, the air return pipe 120, the connecting pipe 130 and the liquid reservoir 150 can also be bundled and fixed with a tie band.
- the thermal insulation sleeve 180 By providing the thermal insulation sleeve 180, the heat insulation effect between the return air path of the compressor 100, the air return pipe 120-the liquid reservoir 150-the connecting pipe 130-the main body 110, and the environment can be increased, and the return air path of the compressor 100 can be reduced. Heat exchange between the environment, thereby reducing the superheat of the return air and improving the refrigeration capacity of the compressor 100; at the same time, it can also avoid the formation of condensed water on the outer walls of the return air pipe 120, the liquid reservoir 150, and the connecting pipe 130, thereby avoiding the condensation water flow.
- the accumulation occurs in the gap on the installation chassis at the bottom of the compressor 100, thereby effectively preventing the bottom of the compressor 100 from being soaked in condensate water for a long time and causing corrosion and rust, thereby improving the safety and reliability of the compressor 100.
- the compressor 100 further includes a compression component and a suction pipe; the compression component is disposed in the body part 110, and has a compression chamber; one end of the suction pipe is connected to the compression component, The other end extends into the liquid reservoir 150 to communicate with the liquid reservoir 150 and the compression chamber.
- the body part 110 has a main body cavity
- the liquid reservoir 150 has a liquid storage cavity
- the compression component is disposed in the main body cavity.
- the compression assembly includes a pump body assembly and a motor assembly.
- the pump body assembly is provided with a compression chamber, and the motor assembly is drivingly connected to the pump body assembly.
- One end of the suction pipe is inserted into the pump body assembly and communicates with the compression chamber.
- the suction pipe The other end extends into the liquid storage chamber; the body part 110 is also provided with an exhaust pipe 140.
- the compressor 100 When the compressor 100 is working, low-temperature and low-pressure refrigerant enters the liquid storage chamber from the return pipe 120, the liquid refrigerant is stored in the liquid storage chamber, and the gaseous refrigerant enters the compression chamber through the connecting pipe 130, and is stored in the compression chamber.
- the refrigerant is compressed into high-temperature and high-pressure refrigerant, and is discharged from the compression chamber into the main body chamber, and finally discharged from the main body 110 through the exhaust pipe 140 .
- This application proposes a compressor 10.
- the compressor 10 includes a body part 11 , an interlayer 12 and a liquid reservoir 13 .
- an oil pool 111 is provided inside the body part 11;
- the interlayer 12 is provided adjacent to the side of the body part 11 where the oil pool 111 is provided, and the interlayer 12 is provided with interconnected air inlet ports 121 and
- the air outlet port 122, the air inlet port 121 and the air outlet port 122 are used to communicate with the exhaust pipeline 60 of the refrigerant circulation circuit of the air conditioning system 1000;
- the liquid reservoir 13 is provided in the interlayer 12 away from the body side of part 11.
- the compressor 10 is an integrated compressor 10 that integrates the body part 11 and the liquid reservoir 13 into one body.
- the overall structure is compact and takes up little space. It is well suited for miniaturization of the compressor 10 and the air-conditioning outdoor unit. develop.
- the main body 11 is the core power component.
- An oil pool 111 is provided inside the main body 11.
- the oil pool 111 is generally located at the bottom of the main body 11.
- the liquid reservoir 13 is located below the main body 11.
- An interlayer 12 is provided between 11 and the liquid reservoir 13.
- the oil pool 111 is used to store lubricating oil
- the liquid reservoir 13 is used to store low-temperature refrigerant and returned lubricating oil.
- the liquid reservoir 13 and the main body 11 are connected through a communication pipe 16.
- the refrigerant and lubricating oil in the liquid reservoir 13 It can be transported into the main body 11 via the communication pipe 16 .
- the interlayer 12 has an air inlet port 121, an air outlet port 122, and a hollow cavity connecting the air inlet port 121 and the air outlet port 122.
- the air inlet port 121 and the air outlet port 122 are respectively provided with joints for connecting to pipelines.
- the compressor 10 can be used in the air conditioning system 1000.
- the air inlet port 121 and the air outlet port 122 of the mezzanine 12 can be used with the exhaust pipe 60 of the refrigerant circulation circuit respectively. Connected.
- the technical solution of the present application provides an interlayer 12 between the main body 11 and the liquid reservoir 13.
- the interlayer 12 is provided with an air inlet port 121 and an air outlet port 122.
- the air inlet port 121 and the air outlet port 122 are respectively connected to the exhaust pipe 60 of the refrigerant circulation circuit.
- the exhaust pipeline 60 of the refrigerant circulation circuit refers to the pipeline leading from the exhaust port of the compressor 10 .
- the exhaust pipeline 60 transports high-temperature and high-pressure gas generated after the compressor 10 performs compression work.
- the exhaust pipeline 60 can be connected to the interlayer 12 of the compressor 10 as needed.
- the high-temperature gas in the exhaust pipeline 60 can enter the interlayer 12 through the air inlet port 121 and then return to the exhaust port 122. Air line 60. After the high-temperature gas enters the interlayer 12, it can synchronously heat the main body 11, causing the temperature of the lubricating oil in the oil pool 111 of the main body 11 to increase, thereby preventing the long-term low-frequency operation of the compressor 10 from cooling the oil temperature too low and causing excessive viscosity of the lubricating oil. In large cases, ensuring that the lubricating oil has good fluidity can promptly lubricate the friction pairs inside the compressor 10, thereby reducing the risk of failure of the compressor 10 and improving the operational reliability of the compressor 10.
- the compressor 10 can be a vertical structure or a horizontal structure.
- the body part 11, the interlayer 12 and the liquid reservoir 13 can be in They can be arranged vertically next to each other, or horizontally next to each other.
- the compressor 10 adopts a vertical structure.
- the oil pool 111 is located at the lower end of the inside of the body part 11.
- the interlayer 12 is located on the lower side of the oil pool 111
- the liquid reservoir 13 is located on the lower side of the interlayer 12 .
- This application also proposes an air conditioning system 1000.
- the air conditioning system 1000 includes an outdoor heat exchanger 20, a throttling device 30, an indoor heat exchanger 40 and a compressor 10 that are interconnected and form a refrigerant circulation loop.
- the specific structure of the compressor 10 may refer to the above embodiment.
- the refrigerant circulation loop includes an exhaust pipe 60 connected to the exhaust port of the compressor 10 .
- the air inlet port 121 of the mezzanine 12 of the compressor 10 is connected to the exhaust pipe through a first connecting pipe 70
- the air outlet port 122 of the interlayer 12 is connected to the exhaust pipe 60 through the second connecting pipe 80.
- the first connecting pipe 70 is provided with a switch valve 71 for controlling the opening and closing of the pipe.
- the air conditioning system 1000 includes an outdoor heat exchanger 20 (such as a condenser), a throttling device 30, an indoor heat exchanger 40 (such as an evaporator), and a compressor 10 that are interconnected and form a refrigerant circulation loop.
- the air conditioning system 1000 When the air conditioning system 1000 is working, the high-temperature gas generated by the compressor 10 is transported to the outdoor heat exchanger 20 or the indoor heat exchanger 40 through the refrigerant circulation circuit, and then returns to the compressor 10 through the refrigerant circulation circuit.
- the air conditioning system 1000 further includes a four-way valve 50 provided on the refrigerant circulation circuit.
- the four-way valve 50 has a first port, a second port, a third port and a fourth port.
- the compressor 10 includes an exhaust port provided in the body part 11 and an air return port provided in the liquid reservoir 13. The first port and the discharge port The air port is connected, the second port is connected with the air return port, the third port is connected with the outdoor heat exchanger 20 , and the fourth port is connected with the indoor heat exchanger 40 .
- the air conditioning system 1000 realizes the cooling function or the dehumidification function; when the first port is connected to the fourth port, and the second port is connected to the third port,
- the air conditioning system 1000 implements a heating function.
- the working principle of the air conditioning system 1000 is well known to those skilled in the art and will not be described in detail here.
- the refrigerant circulation circuit includes an exhaust pipe 60 connected to the exhaust port of the compressor 10 .
- the compressor 10 includes a main body 11 , an interlayer 12 and a liquid reservoir 13 .
- the interlayer 12 is provided with an air inlet port 121 and an air outlet port 122.
- the air inlet port 121 is connected to the exhaust pipe 60 through the first connecting pipe 70, and the air outlet port 122 is connected to the exhaust pipe 60 through the second connecting pipe 80.
- the first connecting pipeline 70 can be connected or blocked by controlling the switching valve 71 .
- the switch valve 71 includes but is not limited to a mechanical valve or a solenoid valve, as long as it can control the conduction and isolation of the pipeline. In one embodiment, in this embodiment, the switch valve 71 uses a solenoid valve.
- the technical solution of the present application is to provide an interlayer 12 on the compressor 10 of the air conditioning system 1000, and the interlayer 12 is connected to the exhaust pipe 60 of the refrigerant circulation circuit through the first connecting pipe 70 and the second connecting pipe 80.
- the switch valve 71 is closed by default after the air conditioner is turned on.
- the switch valve 71 is opened, and the high-temperature gas in the exhaust pipe 60 can pass through the air inlet port. 121 enters the interlayer 12, and then returns to the exhaust pipe 60 through the air outlet port 122.
- the high-temperature gas After the high-temperature gas enters the interlayer 12, it can synchronously heat the main body 11, causing the temperature of the lubricating oil in the oil pool 111 of the main body 11 to increase, thereby preventing the long-term low-frequency operation of the compressor 10 from cooling the oil temperature too low and causing excessive viscosity of the lubricating oil. In most cases, ensuring that the lubricating oil has good fluidity can promptly lubricate the friction pairs inside the compressor 10, thereby improving the operational reliability of the compressor 10, and thereby improving the operational reliability of the air conditioning system 1000.
- the above-mentioned air conditioning system 1000 uses the heat source generated by its own exhaust pipe 60 to heat the interlayer 12, which can fully utilize energy and reduce energy consumption.
- the air conditioning system 1000 further includes a second connecting pipe 80
- the one-way valve 81 is used to prevent the fluid in the second connecting pipe 80 from flowing back toward the air outlet port 122 .
- the switch valve 71 when the switch valve 71 is opened, the gas in the interlayer 12 flows back to the exhaust pipe 60 through the gas outlet port 122 and the one-way valve 81 .
- the switch valve 71 When the switch valve 71 is closed, the high-temperature gas in the exhaust pipe 60 will not enter the interlayer 12 through the second connecting pipe 80 and the gas outlet port 122 .
- the refrigerant circulation circuit further includes a return air pipe 14 connected to the air return port of the compressor 10 , and the return air pipe 14 is provided with a filter 15 .
- the refrigerant and lubricating oil in the refrigerant circulation circuit can be returned to the compressor 10 through the return pipe 14.
- impurities can be filtered to prevent impurities from entering the compressor 10 and accumulating for a long time. Damage to the compressor 10 can further improve the operational reliability of the compressor 10 and the air conditioning system 1000 .
- this application also proposes a control device for the air conditioning system 1000.
- the control device of the air conditioning system 1000 includes an acquisition module 1100 , a judgment module 1200 and a control module 1300 .
- the acquisition module 1100 is used to obtain the current operating frequency of the compressor 10
- the judgment module 1200 is used to judge whether the current operating frequency meets the preset oil return judgment condition
- the control module 1300 is used to determine whether the current operating frequency meets the preset oil return judgment condition
- the switch valve 71 is controlled to be opened, and the compressor 10 is controlled to enter the oil return operation mode.
- the on-off valve 71 on the first connecting pipe 70 is closed by default, and the compressor 10 of the air-conditioning system 1000 operates at a preset frequency.
- the operating frequency of the compressor 10 is detected in real time by the acquisition module 1100 to obtain the current operating frequency of the compressor 10.
- the judgment module 1200 has built-in preset oil return judgment conditions. When the acquisition module 1100 feeds back the current operating frequency of the compressor 10 to the judgment module 1200, the judgment module 1200 can judge the operation of the compressor 10 at this time according to the preset oil return judgment conditions.
- the control module 1300 controls to open the switch valve 71 and controls the compressor 10 to enter the oil return operation mode.
- the preset oil return judgment condition is not met, the current operating frequency of the compressor 10 is continued to be detected through the acquisition module 1100, and then the judgment is continued through the judgment module 1200.
- the current operating frequency of the compressor 10 is F
- the preset oil return determination frequency threshold is F0
- the preset oil return determination condition is: F ⁇ F0.
- the control switch valve 71 When F ⁇ F0 is satisfied, the control switch valve 71 is opened, and the compressor 10 operates at the preset oil return operating frequency F1 to realize oil return. It is usually necessary to satisfy the preset oil return operating frequency F1 which is much greater than the oil return determination frequency threshold F0. In one embodiment, F0 ⁇ 30HZ and F1 ⁇ 50HZ.
- the control device of the above-mentioned air conditioning system 1000 can timely determine whether the compressor 10 needs to return oil according to the preset oil return determination conditions, and control the compressor 10 to enter the oil return operation mode when the conditions are met.
- the compressor 10 operates according to the preset oil return operation frequency.
- the preset oil return operation frequency is relatively large, which can accelerate the return of lubricating oil in the refrigerant circulation circuit to the compressor 10.
- the exhaust pipe 60 of the refrigerant circulation circuit is connected to the interlayer 12 of the compressor 10, causing the temperature in the interlayer 12 to rise, and then the high-temperature gas in the interlayer 12 can affect the main body 11 of the compressor 10.
- the oil pool 111 is heated to further increase the fluidity of the lubricating oil, so that the lubricating oil can promptly lubricate the friction pairs inside the compressor 10 , thereby improving the operational reliability of the compressor 10 and thus the operational reliability of the air conditioning system 1000 .
- the determination module 1200 is used to compare the current operating frequency with a preset oil return determination frequency threshold, and is used to compare the current operating frequency with the preset oil return determination frequency when the current operating frequency is greater than or equal to the preset oil return determination frequency.
- a signal is sent to the control module 1300 that satisfies the preset oil return determination condition.
- the judgment module 1200 stores a preset oil return judgment condition, and the preset oil return judgment condition is: the current operating frequency is greater than or equal to the preset oil return judgment frequency threshold.
- the judgment module 1200 compares the current operating frequency of the compressor 10 with the preset oil return judgment frequency threshold, and sends a signal to the control module 1300 when the preset oil return conditions are met.
- the control module 1300 then controls to open the switch valve 71 and controls compression. Machine 10 enters oil return operation mode.
- the compressor 10 operates at a preset oil return operation frequency in the oil return operation mode, and the preset oil return operation frequency is greater than the preset oil return determination frequency threshold.
- the preset oil return operating frequency F1 needs to be much greater than the oil return determination frequency threshold F0.
- the preset oil return determination frequency threshold is less than or equal to 30HZ, and the preset oil return operating frequency is greater than or equal to 50HZ.
- the control device of the air conditioning system 1000 After entering the oil return operation mode, in order to exit the oil return mode in time when the oil return is completed, as shown in Figure 10, in one embodiment, the control device of the air conditioning system 1000 also includes a timing module 1400.
- the timing module 1400 is used to obtain the accumulated operating time of the compressor 10 in the oil return operation mode.
- the control module 1300 is also used to control the closing of the switch valve 71 when the accumulated time reaches a preset time, and The compressor 10 is controlled to exit the oil return operation mode.
- the switch valve 71 is controlled to open and the compressor 10 is switched to the oil return operation mode.
- the timing module 1400 accumulates the operating time of the compressor 10 in the oil return mode.
- the preset time the oil return is completed by default.
- the control module 1300 controls to close the switch valve 71 and controls the compressor 10 to exit the oil return operation mode.
- the preset duration is set according to the actual situation, and generally can be set to a few seconds.
- this application also proposes a control method for the air conditioning system 1000.
- the control method specifically relates to an oil return control method of the air conditioning system 1000 .
- control method of the air conditioning system 1000 includes the following steps:
- the control device of the air conditioning system 1000 includes an acquisition module 1100, a judgment module 1200 and a control module 1300.
- the on-off valve 71 on the first connecting pipe 70 is closed by default, and the compressor 10 of the air-conditioning system 1000 operates according to a preset frequency.
- the operating frequency of the compressor 10 is detected in real time by the acquisition module 1100 to obtain the current operating frequency of the compressor 10.
- the judgment module 1200 has built-in preset oil return judgment conditions. When the acquisition module 1100 feeds back the current operating frequency of the compressor 10 to the judgment module 1200, the judgment module 1200 can judge the operation of the compressor 10 at this time according to the preset oil return judgment conditions.
- the control module 1300 controls to open the switch valve 71 and controls the compressor 10 to enter the oil return operation mode.
- the preset oil return determination condition is not met, the current operating frequency of the compressor 10 is continued to be detected through the acquisition module 1100, and then the determination is continued through the determination module 1200.
- the above control method of the air conditioning system 1000 can timely determine whether the compressor 10 needs to return oil according to the preset oil return determination conditions, and control the compressor 10 to enter the oil return operation mode when the conditions are met.
- the compressor 10 operates according to the preset oil return operation frequency.
- the preset oil return operation frequency is relatively large, which can accelerate the return of lubricating oil in the refrigerant circulation circuit to the compressor 10.
- the exhaust pipe 60 of the refrigerant circulation circuit is connected to the interlayer 12 of the compressor 10, causing the temperature in the interlayer 12 to rise, and then the high-temperature gas in the interlayer 12 can affect the main body 11 of the compressor 10.
- the oil pool 111 is heated to further increase the fluidity of the lubricating oil, so that the lubricating oil can promptly lubricate the friction pairs inside the compressor 10 , thereby improving the operational reliability of the compressor 10 and thus the operational reliability of the air conditioning system 1000 .
- the preset oil return determination condition is set according to the actual situation.
- the preset oil return determination condition is: the current operating frequency is greater than or equal to the preset oil return determination frequency threshold.
- the current operating frequency of the compressor 10 is F
- the preset oil return determination frequency threshold is F0
- the preset oil return determination condition is: F ⁇ F0.
- the compressor 10 operates at a preset oil return operation frequency in the oil return operation mode, and the preset oil return operation frequency is greater than the preset oil return determination frequency threshold.
- the preset oil return operating frequency F1 needs to be much greater than the oil return determination frequency threshold F0.
- the preset oil return determination frequency threshold is less than or equal to 30HZ, and the preset oil return operating frequency is greater than or equal to 50HZ.
- control method of the air conditioning system 1000 also includes the following steps:
- the switch valve 71 when the oil return condition is met, the switch valve 71 is controlled to open and the compressor 10 is switched to the oil return operation mode.
- the timing module 1400 accumulates the operating time of the compressor 10 in the oil return mode. Timing. When the accumulated operating time of the compressor 10 in the oil return mode reaches the preset time, the oil return is completed by default.
- the control module 1300 controls to close the switch valve 71 and controls the compressor 10 to exit the oil return operation mode.
- the preset duration is set according to the actual situation, and generally can be set to a few seconds. After the compressor 10 exits the oil return operation mode, it switches to the normal operation mode, that is, it resumes the remote control setting operation state.
- This application also proposes a computer storage medium that stores a control program for an air conditioner system.
- the control program of the air conditioning system 1000 is executed by a processor, the control method for the air conditioner system as described above is implemented.
- the specific implementation of the control method of the air conditioning system 1000 may refer to the above embodiments. Since this computer storage medium adopts all the technical solutions of the above embodiments, it has all the beneficial effects brought by the above embodiments. Herein No longer.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Compressor (AREA)
Abstract
一种压缩机(10、100)和空调器(1000),其中,所述压缩机(10、100)包括本体部(11、110)以及储液器(13、150),所述储液器(13、150)设于所述本体部(11、110)的下方,所述储液器(13、150)与所述本体部(11、110)之间设有夹层(12、160),所述夹层(12、160)具有真空腔(161)及与所述真空腔(161)连通的抽气孔(170),所述抽气孔(170)适用于对所述真空腔(161)抽真空,上述结构能够有效阻止本体部(11、110)的热量传递给储液器(13、150),提升了压缩机(10、100)的制冷能力,还可以实现对压缩机(10、100)的单独抽真空。
Description
优先权信息
本申请要求于2022年3月24日申请的、申请号为202210298718.8、202220660631.6、202210298781.1以及202220660721.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及空调技术领域,特别涉及一种压缩机、空调系统及其控制方法、计算机存储介质。
在相关技术中,空调器需设置有压缩机来压缩冷媒,市场对产品小型化的要求越来越强烈,所以现在的压缩机一般采用集成式压缩机。目前的集成式压缩机,储液器位于本体部的下方,这样使得储液器的冷媒容易受本体部底部的润滑油的温度影响,导致压缩机吸气过热,从而造成空调器的制冷能力下降。
此外,将储液器设置于本体部的油池下方,储液器温度较低,使得油池和储液器之间存在大幅度的热交换,进而导致油池内的油温降低。当空调处于极限运行工况时,受低温储液器降温的影响,导致压缩机油池油温更低,润滑油粘度增加无法及时润滑压缩机内部各摩擦副,最终导致压缩机失效,进而影响空调系统的运行可靠性。
上述内容仅用于辅助理解发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本申请的主要目的是提出一种压缩机,旨在解决现有技术中压缩机的制冷能力下降以及降低压缩机失效风险的技术问题。
为实现上述目的,本申请提出一种压缩机,包括:
本体部;以及
储液器,设于所述本体部的下方,所述储液器与所述本体部之间设有夹层,所述夹层具有真空腔及与所述真空腔连通的抽气孔,所述抽气孔适用于对所述真空腔抽真空。
在一实施例中,所述压缩机还包括抽气管,所述抽气管安装于所述抽气孔处。
所述抽气管上设有控制阀,用以控制所述抽气管的通断。
在一实施例中,所述控制阀为单向阀,所述单向阀嵌设在所述抽气管内。
在一实施例中,所述抽气管包括第一管段和第二管段,所述第一管段与所述真空腔连通,所述第二管段与所述第一管段连通,并沿所述本体部高度方向延伸。
在一实施例中,所述抽气管为金属管。
在一实施例中,所述真空腔内设有隔热材料。
在一实施例中,所述真空腔的壁面设有隔热涂层;
和/或,所述储液器的壁面设有隔热涂层。
在一实施例中,所述储液器与所述本体部之间设有连接管,所述连接管的壁面设有隔热涂层。
在一实施例中,所述本体部、所述夹层、所述储液器为一体式设置。
在一实施例中,所述本体部的横截面面积与所述储液器的横截面面积一致。
本申请还提出一种压缩机,包括:
本体部,内部设有油池;
夹层,邻近所述本体部设有所述油池的一侧设置,所述夹层设有相互连通的进气端口 和出气端口,所述进气端口和所述出气端口用于与空调系统的冷媒循环回路的排气管路连通;以及
储液器,设于所述夹层远离所述本体部的一侧。
在一实施例中,所述油池位于所述本体部的内部的下端,所述夹层位于所述油池的下侧,所述储液器位于所述夹层的下侧。
本申请还提出一种空调系统,包括相互连通并形成冷媒循环回路的室外换热器、节流装置、室内换热器以及如上所述的压缩机,所述冷媒循环回路包括与所述压缩机的排气口连通的排气管路,所述压缩机的夹层的进气端口通过第一连接管路与所述排气管路连通,所述夹层的出气端口通过第二连接管路与所述排气管路连通,所述第一连接管路设有用于控制管路通断的开关阀。
在一实施例中,所述空调系统还包括设于所述第二连接管路的单向阀,所述单向阀用于阻止所述第二连接管路内的流体朝向所述出气端口回流。
在一实施例中,所述冷媒循环回路还包括与所述压缩机的回气口连通的回气管,所述回气管设有过滤器。
在一实施例中,所述开关阀采用电磁阀。
本申请还提出一种空调系统的控制方法,用于如上所述的空调系统,所述空调系统的控制方法包括以下步骤:
获取压缩机的当前运行频率;
判断所述当前运行频率是否满足预设回油判定条件;
当所述当前运行频率满足所述预设回油判定条件,控制打开开关阀,并控制所述压缩机进入回油运行模式。
在一实施例中,所述预设回油判定条件为:所述当前运行频率大于或等于预设回油判定频率阈值。
在一实施例中,所述压缩机在回油运行模式下以预设回油运行频率运行,所述预设回油运行频率大于所述预设回油判定频率阈值。
在一实施例中,所述预设回油判定频率阈值小于或等于30HZ,所述预设回油运行频率大于或等于50HZ。
在一实施例中,该方法还包括以下步骤:
获取所述压缩机在回油运行模式下的累计运行时长;
当所述累计运行时长达到预设时长,控制关闭所述开关阀,并控制所述压缩机退出回油运行模式。
本申请还提出一种计算机存储介质,所述计算机存储介质上存储有空调器系统的控制程序,所述空调系统的控制程序被处理器执行时实现如上所述的空调器系统的控制方法。
本申请的压缩机包括本体部以及储液器,所述储液器设于所述本体部的下方,所述储液器与所述本体部之间设有夹层,所述夹层具有真空腔及与所述真空腔连通的抽气孔,所述抽气孔适用于对所述真空腔抽真空;如此,通过将所述储液器设于本体部的下方,减小了压缩机的横向尺寸,有利于实现压缩机的小型化,提高装柜量;同时,所述储液器与所述本体部之间设有夹层,所述夹层具有真空腔,利用真空腔增加储液器与本体部之间的换热热阻,有效阻止所述本体部的热量传递给储液器,以避免储液器内的冷媒被加热而过热,从而提升了压缩机的制冷能力。此外,所述夹层具有与所述真空腔连通的抽气孔,通过所述抽气孔对所述真空腔抽真空,可以实现对压缩机的单独抽真空,这样无需将真空泵安装在压缩机的内部,也可以在安装运行前通过整机抽真空系统完成对真空腔抽真空。
通过在本体部与储液器之间设置夹层,夹层设有进气端口和出气端口,当压缩机连接至空调系统的冷媒循环回路后,可将进气端口和出气端口分别与冷媒循环回路的排气管路连通。其中,冷媒循环回路的排气管路是指自压缩机的排气口引出的管路,通常排气管路 内输送的是自压缩机压缩做功后产生的高温高压气体。在实际应用时,可根据需要将排气管路与压缩机的夹层连通,排气管路内的高温气体能够经由进气端口进入夹层,再由出气端口返回至排气管路。高温气体进入夹层后能够同步加热本体部,使得本体部的油池内的润滑油温度升高,从而能够避免压缩机长期低频运行油温被冷却过低而导致润滑油粘度过大的情况,保证润滑油具有较好的流动性能够及时润滑压缩机内部各摩擦副,从而能够降低压缩机的失效风险,提升压缩机的运行可靠性。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请压缩机一实施例的结构示意图;
图2为图1中压缩机的剖视图;
图3为本申请压缩机另一实施例的内部细节图;
图4为本申请压缩机又一实施例的结构示意图;
图5为图4中压缩机的剖视图;
图6为图5中A处的局部放大图;
图7为本申请压缩机另一实施例的结构示意图;
图8为本申请空调系统一实施例的结构示意图;
图9为本申请空调系统的控制装置一实施例的结构示意图;
图10为本申请空调系统的控制装置另一实施例的结构示意图;
图11为本申请空调系统的控制方法一实施例的流程示意图;
图12为本申请空调系统的控制方法另一实施例的流程示意图。
附图标号说明:
名称 | 标号 | 名称 | 标号 |
压缩机 | 10、100 | 真空腔 | 161 |
本体部 | 11、110 | 抽气孔 | 170 |
回气管 | 120 | 抽气管 | 171 |
连接管 | 130 | 第一管段 | 172 |
排气管 | 140 | 第二管段 | 173 |
储液器 | 13、150 | 保温套 | 180 |
夹层 | 12、160 | 隔热材料 | 190 |
空调系统 | 1000 | 四通阀 | 50 |
油池 | 111 | 排气管路 | 60 |
进气端口 | 121 | 第一连接管路 | 70 |
出气端口 | 122 | 开关阀 | 71 |
回气管 | 14 | 第二连接管路 | 80 |
过滤器 | 15 | 单向阀 | 81 |
连通管 | 16 | 获取模块 | 1100 |
室外换热器 | 20 | 判断模块 | 1200 |
节流装置 | 30 | 控制模块 | 1300 |
室内换热器 | 40 | 计时模块 | 1400 |
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,若全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种压缩机。
请参阅图1和图2,本申请提出一种压缩机100,所述压缩机100包括本体部110以及储液器150,所述储液器150设于所述本体部110的下方,所述储液器150与所述本体部110之间设有夹层160,所述夹层160具有真空腔161及与所述真空腔161连通的抽气孔170,所述抽气孔170适用于对所述真空腔161抽真空。
在本申请实施例中,通过将储液器150设于所述本体部110的下方,相比于现有技术中储液器150设于所述本体部110周侧的方案,本申请实施例可以提高储液器150与本体部110的结构紧凑性,减小该压缩机100的横向尺寸,从而减小压缩机100的整机尺寸,利于实现压缩机100的小型化,提高了装柜量。考虑到如果储液器150直接与本体部110的下端连接,则储液器150容易受到本体部110的底部油池内油温的加热,从而导致该压缩机100吸气过热,造成该压缩机100的制冷能力下降。具体来说,储液器150内冷媒气体被本体部110的底部油池内热油加热而温度升高,由于冷媒气体的温度升高,冷媒气体的比容增大,则冷媒气体的密度减小,从而本体部110吸入的冷媒气体的流量减小,最终导致该压缩机100的制冷能力下降。
为了避免本体部110的热量向储液器150传递而造成储液器150内冷媒气体温度过高,在本申请本实施例中,采用在所述储液器150与所述本体部110之间设有夹层160,所述夹层160具有真空腔161,如此利用真空腔161来增加储液器150与本体部110之间的换热热阻,从而达到避免本体部110的热量向储液器150传递而造成储液器150内冷媒气体温度过高,降低了本体部110吸入的冷媒气体的温度,也即降低了本体部110的吸气过热度,提升了该压缩机100的制冷能力。
进一步地,在本申请实施例中,为了将夹层160抽真空,可以在所述夹层160上设置与真空腔161连通的抽气孔170,通过该抽气孔170实现对所述真空腔161抽真空。需要指出的是,通过在夹层160上设置抽气孔170,可以单独对夹层160抽真空,从而无需将真空泵安装在压缩机100的内部,当然也可以在安装运行前通过整机抽真空系统完成对真空腔161抽真空。
另外,在本申请实施例中,所述本体部110、所述夹层160、所述储液器150可以为一体式设置。例如,所述本体部110与所述夹层160焊接固定,所述夹层160与所述储液器150焊接固定,如此通过焊接方式实现将本体部110、夹层160及储液器150集成为一体式压缩机100,从而便于对该压缩机100进行搬运、装柜等。
本申请的压缩机100包括本体部110以及储液器150,所述储液器150设于所述本体部110 的下方,所述储液器150与所述本体部110之间设有夹层160,所述夹层160具有真空腔161及与所述真空腔161连通的抽气孔170,所述抽气孔170适用于对所述真空腔161抽真空;如此,通过将所述储液器150设于本体部110的下方,减小了压缩机100的横向尺寸,有利于实现压缩机100的小型化,提高装柜量;同时,所述储液器150与所述本体部110之间设有夹层160,所述夹层160具有真空腔161,利用真空腔161增加储液器150与本体部110之间的换热热阻,有效阻止所述本体部110的热量传递给储液器150,以避免储液器150内的冷媒被加热而过热,从而提升了压缩机100的制冷能力。此外,所述夹层160具有与所述真空腔161连通的抽气孔170,通过所述抽气孔170对所述真空腔161抽真空,可以实现对压缩机100的单独抽真空,这样无需将真空泵安装在压缩机100的内部,也可以在安装运行前通过整机抽真空系统完成对真空腔161抽真空。
在本申请实施例中,所述压缩机100还包括抽气管171,所述抽气管171安装于所述抽气孔170处。
具体地,所述抽气管171的一端连接于所述抽气孔170处,另一端可用以与真空泵连接,如此,通过真空泵对真空腔161进行抽真空,使得真空腔161处于真空状态。此外,通过真空泵对真空腔161进行抽真空,很好的解决了压缩机100生产工艺中难以实现对夹层160抽真空的难题。
关于所述抽气管171的结构有很多,例如但不限于,在一实施例中,所述抽气管171呈L形设置。具体地,所述抽气管171包括第一管段172和第二管段173,所述第一管段172与所述真空腔161连通,所述第二管段173与所述第一管段172连通,并沿所述本体部110高度方向延伸。如此,可以进一步减小所述压缩机100的横向尺寸,进而减小所述压缩机100的整体体积。
在其他实施例中,所述储液器150与所述本体部110之间设有连接管130,所述储液器150上还设有回气管120,其中,所述抽气管171可以与所述连接管130或所述回气管120连通。如此,通过将抽气管171与连接管130或回气管120连通,在首次安装压缩机100时,可利用压缩机100的整机抽真空系统实现对真空腔161抽真空,使得真空腔161处于真空状态。
为了保证真空腔161内保持真空状态,可以在所述抽气管171上设置控制阀,用以控制所述抽气管171的通断。当需要对真空腔161抽真空时,可以将控制阀打开;当完成对真空腔161抽真空后,可以将控制阀关闭。具体地,所述控制阀可以为单向阀。所述控制阀可以嵌设在所述抽气管171内,如此可以对控制阀起到一定的保护作用。当然,所述控制阀也可设置在抽气管171外。
在本实施例中,所述抽气管171为金属管。这样所述控制阀可以直接焊接在所述抽气管171上。
请参阅图3,在一实施例中,所述真空腔161内设有隔热材料190。通过在真空腔161内设置隔热材料190,可以进一步提高所述真空腔161的隔热效果,增加储液器150与本体部110之间的换热热阻,更有效阻止所述本体部110的热量传递给储液器150,以避免储液器150内的冷媒被加热而过热,从而提升了压缩机100的制冷能力。对于隔热材料190的选择,可以是玻璃纤维、石棉、岩棉、硅酸盐等材料,具体应该根据实际的情况进行,在此不做限定。
在另一实施例中,所述真空腔161的壁面设有隔热涂层;和/或,所述储液器150的壁面设有隔热涂层。
具体来说,所述真空腔161的壁面设有隔热涂层,可以是所述真空腔161的内壁面设有隔热涂层,和/或,所述真空腔161的外壁面设有隔热涂层。同样,所述储液器150的壁面设有隔热涂层,可以是所述储液器150的内壁面设有隔热涂层,和/或,所述储液器150的外壁面设有隔热涂层。其中,所述隔热涂层可以是采用涂覆方式将隔热涂料涂覆在所述 真空腔161的壁面和所述储液器150的壁面。所述隔热涂料可以是硅酸盐隔热涂料,具体应该根据实际的情况进行,在此不做限定。
在又一实施例中,所述连接管130的壁面设有隔热涂层。
具体地,所述连接管130的内壁面设置隔热涂层,和/或,所述连接管130的外壁面设置隔热涂层。由于所述本体部110、所述储液器150及连接管130均采用金属材料,为了防止所述本体部110通过所述连接管130向储液器150传递热量,可以在所述连接管130的壁面上设置隔热涂层。另外,通过在所述连接管130的壁面上设置隔热涂层,还可以进一步地防止经由所述连接管130进入所述本体部110的冷媒气体温度过高,进一步降低所述本体部110吸入的冷媒气体的过热度,从而提升压缩机100的制冷能力。
需要指出的是,通过在所述连接管130和所述储液器150上设置隔热涂层,一方面可以进一步增加压缩机100的吸气路径储液器150-连接管130-本体部110与环境之间的隔热作用,减小压缩机100的吸气路径与环境之间的热交换,从而降低吸气过热度,提升压缩机100的制冷能力;另一方面还可以避免储液器150和连接管130的外壁上形成冷凝水,从而可以避免冷凝水流至压缩机100底部的安装底盘上的缝隙中产生聚集,进而有效防止了压缩机100的底部长时间被冷凝水浸泡而发生腐蚀生锈,提高了压缩机100的安全可靠性。
在一实施例中,所述本体部110的横截面面积与所述储液器150的横截面面积一致。
具体来说,所述本体部110的横截面为所述本体部110的径向截面,所述储液器150的横截面为所述储液器150的径向截面。所述本体部110的横截面面积与所述储液器150的横截面面积一致可以理解为,所述本体部110的横截面面积与所述储液器150的横截面面积相等或者大致相等,例如所述本体部110的横截面面积稍大于所述储液器150的横截面面积,或者所述本体部110的横截面面积稍小于所述储液器150的横截面面积,这样在便于将本体部110、储液器150及夹层160进行焊接固定的前提下,确保该压缩机100具有最小的横向尺寸。
在上述各实施例的基础上,为了进一步地增加储液器150与本体部110之间的换热热阻,从而更有效地避免本体部110的热量向储液器150传递而造成储液器150内冷媒气体温度过高,进一步地提升该压缩机100的制冷能力,在一些实施例中,可以使所述夹层160的真空腔161包括至少两个子腔,至少两个所述子腔沿所述本体部110的高度方向层叠设置。具体地,所述真空腔161内设置至少一个隔热板,所述隔热板将所述真空腔161分隔成至少两个子腔。如此,通过在所述真空腔161内设置隔热板,利用隔热板将真空腔161分隔成至少两个子腔,可以最大程度地避免本体部110的热量向储液器150传递而造成储液器150内冷媒气体温度过高,也即最大程度地降低所述本体部110吸入的冷媒气体的过热度,从而提高所述压缩机100的制冷效果。
在该实施例中,至少两个所述子腔可以相互连通,当然,也可以相互隔离。如果至少两个所述子腔相互连通,则可以设置一个抽气孔170,便可以实现对所有的子腔进行抽真空;如果至少两个所述子腔相互隔离,则需要设置至少两个抽气孔170,且每个抽气孔170对应一个子腔设置,这样通过每个抽气孔170实现对对应一个子腔进行抽真空。
下面将以两个子腔为例进行介绍。
例如,所述真空腔161内设有一个隔热板,所述隔热板将所述真空腔161分隔成第一子腔和第二子腔,所述第一子腔位于所述第二子腔的上方。其中,所述第一子腔的高度与所述第二子腔的高度可以不同。具体来说,可以将所述第一子腔的高度设置为大于或者小于所述第二子腔的高度。通过在高度较高的子腔内填充隔热材料190,以此来进一步增强隔热效果。当然,可以理解,所述第一子腔的高度也可以与所述第二子腔的高度相同,不做特殊限定。
在另一些实施例中,所述夹层160的高度与所述储液器150的高度的比值,大于或等 于四分之一且小于或等于二分之一。具体来说,所述夹层160主要起到隔热作用,通过阻隔本体部110向储液器150传递热量,从而防止储液器150中的冷媒气体被加热,进而保证压缩机100的制冷性能。如果夹层160的高度过高,则会影响压缩机100的整体高度;如果夹层160的高度过低,则会影响夹层160的隔热效果,因此为了避免所述压缩机100的整体高度过高,可以使所述夹层160的高度与所述储液器150的高度的比值,大于或等于四分之一且小于或等于二分之一。
在一实施例中,所述夹层160的高度大于或等于10mm,且小于或等于50mm。具体来说,若所述夹层160的高度小于10mm,则会导致夹层160的隔热效果变差,若所述夹层160的高度大于50mm,则会导致该压缩机100的整体高度过高,因此,所述夹层160的高度大于或等于10mm,且小于或等于50mm。
另外,所述夹层160的材质为金属材质。具体地,金属材质具有耐热性好,不易燃烧;耐久性好,不易老化;不易受到损伤,不易沾染灰尘及污物等特点,并且金属材质随着温度的变化,性质变化小,机械强度高,尺寸的稳定性好等优点。同时,所述夹层160采用金属材质,还便于对夹层160与本体部110、储液器150进行焊接固定。
在上述各实施例的基础上,为了增加压缩机100的回气路径回气管120-储液器150-连接管130-本体部110与环境之间的隔热作用,减小压缩机100的回气路径与环境之间的热交换,从而降低回气过热度,提升压缩机100的制冷能力,在一实施例中,请参阅图4至图6,所述压缩机100还包括保温套180,所述保温套180套设于所述回气管120、所述连接管130、所述储液器150中的至少一者外。
具体来说,所述保温套180可以为塑料套或者橡胶套,不做具体限定。为了进一步提高所述保温套180与所述回气管120、所述连接管130及所述储液器150之间的连接可靠性,可以使所述保温套180与所述回气管120、所述连接管130及所述储液器150粘接连接。当然,也可以通过困扎带将所述保温套180与所述回气管120、所述连接管130及所述储液器150捆绑固定。
通过设置保温套180,可以增加压缩机100的回气路径回气管120-储液器150-连接管130-本体部110与环境之间的隔热作用,减小压缩机100的回气路径与环境之间的热交换,从而降低回气过热度,提升压缩机100的制冷能力;同时还可以避免回气管120、储液器150、连接管130的外壁上形成冷凝水,从而可以避免冷凝水流至压缩机100底部的安装底盘上的缝隙中产生聚集,进而有效防止了压缩机100的底部长时间被冷凝水浸泡而发生腐蚀生锈,提高了压缩机100的安全可靠性。
另外,所述压缩机100还包括压缩组件和吸气管;所述压缩组件设置于所述本体部110内,所述压缩组件具有压缩腔;所述吸气管的一端连接所述压缩组件,另一端伸入所述储液器150内,以连通所述储液器150与所述压缩腔。具体说来,所述本体部110具有主体腔,所述储液器150具有储液腔,所述压缩组件设置在主体腔内。所述压缩组件包括泵体组件和电机组件,泵体组件设有压缩腔,电机组件与泵体组件驱动连接;吸气管的一端插设于泵体组件,并与压缩腔连通,吸气管的另一端伸入储液腔中;本体部110还设有排气管140。压缩机100工作时,低温低压的冷媒从回气管120进入至储液腔中,液态的冷媒则储存在储液腔中,气态的冷媒则通过连接管130进入压缩腔,并在压缩腔中被压缩成高温高压的冷媒,冷媒从压缩腔中排出至主体腔内,最后通过排气管140从本体部110中排出。
本申请提出一种压缩机10。
请参照图7和图8,在本申请一实施例中,该压缩机10包括本体部11、夹层12和储液器13。其中,所述本体部11内部设有油池111;所述夹层12邻近所述本体部11设有所述油池111的一侧设置,所述夹层12设有相互连通的进气端口121和出气端口122,所述进气端口121和所述出气端口122用于与空调系统1000的冷媒循环回路的排气管路60连 通;所述储液器13设于所述夹层12远离所述本体部11的一侧。
具体地,该压缩机10为将本体部11与储液器13集成于一体的集成压缩机10,整体结构紧凑,占用空间小,能够很好地适用于压缩机10和空调室外机的小型化发展。其中,本体部11为的核心动力部件,本体部11内部设有油池111,油池111一般设于本体部11的底部,相应地,储液器13设于本体部11的下方,本体部11与储液器13之间设置夹层12。油池111用于存储润滑油,储液器13用于存储低温冷媒和回流的润滑油,储液器13与本体部11之间通过连通管16连接,储液器13内的冷媒和润滑油可经由连通管16输送至本体部11内。通过在储液器13与本体部11之间设置夹层12,能够起到一定的隔热作用。夹层12具有进气端口121、出气端口122,以及将进气端口121与出气端口122连通的中空腔体。在一实施例中,进气端口121和出气端口122处分别设有用于与管路连接的接头。该压缩机10可用于空调系统1000,当压缩机10连接至空调系统1000的冷媒循环回路后,夹层12的进气端口121和出气端口122可分别用于与冷媒循环回路的排气管路60连通。
本申请的技术方案通过在本体部11与储液器13之间设置夹层12,夹层12设有进气端口121和出气端口122,当压缩机10连接至空调系统1000的冷媒循环回路后,可将进气端口121和出气端口122分别与冷媒循环回路的排气管路60连通。其中,冷媒循环回路的排气管路60是指自压缩机10的排气口引出的管路,通常排气管路60内输送的是自压缩机10压缩做功后产生的高温高压气体。在实际应用时,可根据需要将排气管路60与压缩机10的夹层12连通,排气管路60内的高温气体能够经由进气端口121进入夹层12,再由出气端口122返回至排气管路60。高温气体进入夹层12后能够同步加热本体部11,使得本体部11的油池111内的润滑油温度升高,从而能够避免压缩机10长期低频运行油温被冷却过低而导致润滑油粘度过大的情况,保证润滑油具有较好的流动性能够及时润滑压缩机10内部各摩擦副,从而能够降低压缩机10的失效风险,提升压缩机10的运行可靠性。
需要说明的是,在实际应用中,根据压缩机10的应用场景不同,压缩机10可为立式结构或卧式结构,相应地,本体部11、夹层12及储液器13三者可以在竖向上紧邻并排布置,也可以在横向上紧邻并排布置。通常在空调系统1000中,压缩机10采用立式结构,为了能够更好地适应空调系统1000,在其中一个实施例中,所述油池111位于所述本体部11的内部的下端,所述夹层12位于所述油池111的下侧,所述储液器13位于所述夹层12的下侧。
本申请还提出一种空调系统1000。
请参照图8,在本申请一实施例中,该空调系统1000包括相互连通并形成冷媒循环回路的室外换热器20、节流装置30、室内换热器40和压缩机10。其中,所述压缩机10的具体结构可参照上述实施例。所述冷媒循环回路包括与所述压缩机10的排气口连通的排气管路60,所述压缩机10的夹层12的进气端口121通过第一连接管路70与所述排气管路60连通,所述夹层12的出气端口122通过第二连接管路80与所述排气管路60连通,所述第一连接管路70设有用于控制管路通断的开关阀71。
具体地,该空调系统1000包括相互连通并形成冷媒循环回路的室外换热器20(例如冷凝器)、节流装置30、室内换热器40(例如蒸发器)和压缩机10。空调系统1000在工作时,压缩机10产生的高温气体经由冷媒循环回路输送至室外换热器20或室内换热器40,再经由冷媒循环回路返回至压缩机10内。为了能够使冷媒循环回路内的冷媒流动方向进行改变,空调系统1000还包括设于冷媒循环回路上的四通阀50。四通阀50具有第一端口、第二端口、第三端口和第四端口,压缩机10包括设于本体部11的排气口和设于储液器13的回气口,第一端口与排气口连通,第二端口与回气口连通,第三端口与室外换热器20连通,第四端口与室内换热器40连通。当第一端口与第三端口连通,第二端口与第四端 口连通时,空调系统1000实现制冷功能或除湿功能;当第一端口与第四端口连通,第二端口与第三端口连通时,空调系统1000实现制热功能。关于空调系统1000的工作原理为本领域技术人员所熟知,在此不再详述。
冷媒循环回路包括与压缩机10的排气口连通的排气管路60。压缩机10包括本体部11、夹层12和储液器13。夹层12设有进气端口121和出气端口122,进气端口121通过第一连接管路70与排气管路60连通,出气端口122通过第二连接管路80与排气管路60连通,通过控制开关阀71可将第一连接管路70导通或者隔断。其中,开关阀71包括但不限于采用机械阀或者电磁阀,只要能够控制管路的导通和隔断即可。在一实施例中,在本实施例中,开关阀71采用电磁阀。
本申请的技术方案通过在空调系统1000的压缩机10上设有夹层12,夹层12通过第一连接管路70和第二连接管路80与冷媒循环回路的排气管路60连通。在通常情况下,空调开机后开关阀71默认是关闭状态,当需要对压缩机10内的油池111进行加热时,开关阀71打开,排气管路60内的高温气体能够经由进气端口121进入夹层12,再由出气端口122返回至排气管路60。高温气体进入夹层12后能够同步加热本体部11,使得本体部11的油池111内的润滑油温度升高,从而能够避免压缩机10长期低频运行油温被冷却过低而导致润滑油粘度过大的情况,保证润滑油具有较好的流动性能够及时润滑压缩机10内部各摩擦副,从而能够提升压缩机10的运行可靠性,进而提升空调系统1000的运行可靠性。并且,上述空调系统1000采用自身排气管路60产生的热源对夹层12进行加热,能够充分利用能源,降低能耗。
为了避免在不需要加热油池111的情况下,排气管路60内的高温气体进入夹层12,在其中一个实施例中,所述空调系统1000还包括设于所述第二连接管路80的单向阀81,所述单向阀81用于阻止所述第二连接管路80内的流体朝向所述出气端口122回流。具体地,通过在第二连接管路80上设置单向阀81,当开关阀71打开后,夹层12内的气体经由出气端口122及单向阀81后流回至排气管路60。当开关阀71关闭后,排气管路60内的高温气体不会经由第二连接管路80及出气端口122进入夹层12。
在其中一个实施例中,所述冷媒循环回路还包括与所述压缩机10的回气口连通的回气管14,所述回气管14设有过滤器15。具体地,冷媒循环回路内的冷媒和润滑油可经由回气管14返回到压缩机10内,通过在回气管14设置过滤器15,能够对杂质进行过滤,避免杂质进入压缩机10内长时间累积而造成压缩机10损坏,可进一步提升压缩机10和空调系统1000的运行可靠性。
基于上述的空调系统1000,本申请还提出一种空调系统1000的控制装置。
请参照图9,在本申请的一个实施例中,该空调系统1000的控制装置包括获取模块1100、判断模块1200和控制模块1300。其中,所述获取模块1100用于获取压缩机10的当前运行频率;所述判断模块1200用于判断所述当前运行频率是否满足预设回油判定条件;所述控制模块1300用于在所述当前运行频率满足所述预设回油判定条件时,控制打开开关阀71,并控制所述压缩机10进入回油运行模式。
具体地,在本实施例中,空调系统1000开机后第一连接管路70上的开关阀71默认为关闭状态,空调系统1000的压缩机10按照预设的频率运行。在空调系统1000运行的过程中,通过获取模块1100对压缩机10的运行频率进行实时检测以获取压缩机10的当前运行频率。判断模块1200内置有预设回油判定条件,当获取模块1100将压缩机10的当前运行频率反馈至判断模块1200后,判断模块1200能够根据预设回油判定条件判断此时的压缩机10运行状态是否需要进行回油,若满足预设回油判定条件则表明压缩机10需要进行回油,若不满足预设回油判定条件则表明压缩机10目前还不需要进行回油。当满足预设回油判定条件时,控制模块1300控制打开开关阀71,并控制压缩机10进入回油运行模式。当不满足预设回油判定条件时,通过获取模块1100继续检测压缩机10的当前运行频 率,再通过判断模块1200继续判断。例如,当前压缩机10运行频率为F,预设回油判定频率阈值为F0,预设回油判定条件为:F≥F0。当满足F≥F0时,控制开关阀71打开,压缩机10以预设回油运行频率F1运行,实现回油。通常需要满足预设回油运行频率F1远大于回油判定频率阈值为F0,在一实施例中,F0≤30HZ,F1≥50HZ。
上述空调系统1000的控制装置能够根据预设回油判定条件及时判断压缩机10是否需要进行回油,并在满足条件时控制压缩机10进入回油运行模式。在回油运行模式下,压缩机10按照预设回油运行频率运行,通常预设回油运行频率较大,能够使得冷媒循环回路内的润滑油加速回流至压缩机10内,与此同时,开关阀71打开后,冷媒循环回路的排气管路60与压缩机10的夹层12连通,使得夹层12内的温度升高,进而通过夹层12内的高温气体可对压缩机10的本体部11油池111进行加热,进一步增加润滑油的流动性,使润滑油能够及时润滑压缩机10内部各摩擦副,从而能够提升压缩机10的运行可靠性,进而提升空调系统1000的运行可靠性。
在其中一个实施例中,所述判断模块1200用于将所述当前运行频率与预设回油判定频率阈值进行比较,并用于在所述当前运行频率大于或等于所述预设回油判定频率阈值时向所述控制模块1300发出满足预设回油判定条件的信号。
具体地,判断模块1200内存储有预设回油判定条件,预设回油判定条件为:所述当前运行频率大于或等于所述预设回油判定频率阈值。判断模块1200将压缩机10的当前运行频率与预设回油判定频率阈值进行比较,当满足预设回油条件时向控制模块1300发出信号,进而控制模块1300控制打开开关阀71,并控制压缩机10进入回油运行模式。
在其中一个实施例中,所述压缩机10在回油运行模式下以预设回油运行频率运行,所述预设回油运行频率大于所述预设回油判定频率阈值。通常,需要满足预设回油运行频率F1远大于回油判定频率阈值为F0。
为了能够达到较好的回油效果,在其中一个实施例中,所述预设回油判定频率阈值小于或等于30HZ,所述预设回油运行频率大于或等于50HZ。
当进入回油运行模式后,为了能够在回油完成时及时退出回油模式,如图10所示,在其中一个实施例中,所述空调系统1000的控制装置还包括计时模块1400,所述计时模块1400用于获取所述压缩机10在回油运行模式下的累计运行时长,所述控制模块1300还用于在所述累计时长达到预设时长时,控制关闭所述开关阀71,并控制所述压缩机10退出回油运行模式。
具体地,当满足回油条件后,控制打开开关阀71,并将压缩机10切换至回油运行模式,此时计时模块1400对压缩机10在回油模式下的运行时长进行累计计时。当压缩机10在回油模式下的累计运行时长达到预设时长时,则默认回油完成,此时控制模块1300控制关闭开关阀71,并控制压缩机10退出回油运行模式。其中,预设时长根据实际情况进行设置,一般可设置为几秒钟。压缩机10退出回油运行模式后便切换至正常运行模式,也即恢复遥控设定运行状态。
基于上述的空调系统1000,本申请还提出一种空调系统1000的控制方法。该控制方法具体涉及一种空调系统1000的回油控制方法。
请参照图11,在本申请的一个实施例中,该空调系统1000的控制方法包括以下步骤:
S1、获取压缩机10的当前运行频率;
S2、判断所述当前运行频率是否满足预设回油判定条件;
S3、当所述当前运行频率满足所述预设回油判定条件,控制打开开关阀71,并控制所述压缩机10进入回油运行模式。
在本实施例中,空调系统1000的控制装置包括获取模块1100、判断模块1200和控制模块1300。空调系统1000开机后第一连接管路70上的开关阀71默认为关闭状态,空调系统1000的压缩机10按照预设的频率运行。在空调系统1000运行的过程中,通过获取 模块1100对压缩机10的运行频率进行实时检测以获取压缩机10的当前运行频率。判断模块1200内置有预设回油判定条件,当获取模块1100将压缩机10的当前运行频率反馈至判断模块1200后,判断模块1200能够根据预设回油判定条件判断此时的压缩机10运行状态是否需要进行回油,若满足预设回油判定条件则表明压缩机10需要进行回油,若不满足预设回油判定条件则表明压缩机10目前还不需要进行回油。当满足预设回油判定条件时,控制模块1300控制打开开关阀71,并控制压缩机10进入回油运行模式。当不满足预设回油判定条件时,通过获取模块1100继续检测压缩机10的当前运行频率,再通过判断模块1200继续判断。
上述空调系统1000的控制方法能够根据预设回油判定条件及时判断压缩机10是否需要进行回油,并在满足条件时控制压缩机10进入回油运行模式。在回油运行模式下,压缩机10按照预设回油运行频率运行,通常预设回油运行频率较大,能够使得冷媒循环回路内的润滑油加速回流至压缩机10内,与此同时,开关阀71打开后,冷媒循环回路的排气管路60与压缩机10的夹层12连通,使得夹层12内的温度升高,进而通过夹层12内的高温气体可对压缩机10的本体部11油池111进行加热,进一步增加润滑油的流动性,使润滑油能够及时润滑压缩机10内部各摩擦副,从而能够提升压缩机10的运行可靠性,进而提升空调系统1000的运行可靠性。
其中,预设回油判定条件根据实际情况进行设置,例如,在一实施例中,所述预设回油判定条件为:所述当前运行频率大于或等于预设回油判定频率阈值。具体地,当前压缩机10运行频率为F,预设回油判定频率阈值为F0,预设回油判定条件为:F≥F0。当满足F≥F0时,控制开关阀71打开,压缩机10以预设回油运行频率F1运行,实现回油。
在其中一个实施例中,所述压缩机10在回油运行模式下以预设回油运行频率运行,所述预设回油运行频率大于所述预设回油判定频率阈值。通常,需要满足预设回油运行频率F1远大于回油判定频率阈值为F0。
为了能够达到较好的回油效果,在其中一个实施例中,所述预设回油判定频率阈值小于或等于30HZ,所述预设回油运行频率大于或等于50HZ。
当进入回油运行模式后,为了能够在回油完成时及时退出回油模式,请参照图12,在上述实施例的基础上,所述空调系统1000的控制方法还包括以下步骤:
S4、获取所述压缩机10在回油运行模式下的累计运行时长;
S5、当所述累计运行时长达到预设时长,控制关闭所述开关阀71,并控制所述压缩机10退出回油运行模式。
在本实施例中,当满足回油条件后,控制打开开关阀71,并将压缩机10切换至回油运行模式,此时计时模块1400对压缩机10在回油模式下的运行时长进行累计计时。当压缩机10在回油模式下的累计运行时长达到预设时长时,则默认回油完成,此时控制模块1300控制关闭开关阀71,并控制压缩机10退出回油运行模式。其中,预设时长根据实际情况进行设置,一般可设置为几秒钟。压缩机10退出回油运行模式后便切换至正常运行模式,也即恢复遥控设定运行状态。
本申请还提出一种计算机存储介质,所述计算机存储介质上存储有空调器系统的控制程序,所述空调系统1000的控制程序被处理器执行时实现如上所述的空调器系统的控制方法。其中,所述空调系统1000的控制方法的具体实施方式可参照上述实施例,由于本计算机存储介质采用了上述实施例的所有技术方案,因此具有上述实施例所带来的所有有益效果,在此不再赘述。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。
Claims (23)
- 一种压缩机,其中,包括:本体部;以及储液器,设于所述本体部的下方,所述储液器与所述本体部之间设有夹层,所述夹层具有真空腔及与所述真空腔连通的抽气孔,所述抽气孔适用于对所述真空腔抽真空。
- 如权利要求1所述的压缩机,其中,所述压缩机还包括抽气管,所述抽气管安装于所述抽气孔处。
- 如权利要求2所述的压缩机,其中,所述抽气管上设有控制阀,用以控制所述抽气管的通断。
- 如权利要求3所述的压缩机,其中,所述控制阀为单向阀,所述单向阀嵌设在所述抽气管内。
- 如权利要求2所述的压缩机,其中,所述抽气管包括第一管段和第二管段,所述第一管段与所述真空腔连通,所述第二管段与所述第一管段连通,并沿所述本体部高度方向延伸。
- 如权利要求2所述的压缩机,其中,所述抽气管为金属管。
- 如权利要求1至6中任意一项所述的压缩机,其中,所述真空腔内设有隔热材料。
- 如权利要求1至6中任意一项所述的压缩机,其中,所述真空腔的壁面设有隔热涂层;和/或,所述储液器的壁面设有隔热涂层。
- 如权利要求1至6中任意一项所述的压缩机,其中,所述储液器与所述本体部之间设有连接管,所述连接管的壁面设有隔热涂层。
- 如权利要求1至6中任意一项所述的压缩机,其中,所述本体部、所述夹层、所述储液器为一体式设置。
- 如权利要求1至6中任意一项所述的压缩机,其中,所述本体部的横截面面积与所述储液器的横截面面积一致。
- 一种压缩机,其中,包括:本体部,内部设有油池;夹层,邻近所述本体部设有所述油池的一侧设置,所述夹层设有相互连通的进气端口和出气端口,所述进气端口和所述出气端口用于与空调系统的冷媒循环回路的排气管路连通;以及储液器,设于所述夹层远离所述本体部的一侧。
- 如权利要求12所述的压缩机,其中,所述油池位于所述本体部的内部的下端,所述夹层位于所述油池的下侧,所述储液器位于所述夹层的下侧。
- 一种空调系统,其中,包括相互连通并形成冷媒循环回路的室外换热器、节流装置、室内换热器以及如权利要求12或13所述的压缩机,所述冷媒循环回路包括与所述压缩机的排气口连通的排气管路,所述压缩机的夹层的进气端口通过第一连接管路与所述排气管路连通,所述夹层的出气端口通过第二连接管路与所述排气管路连通,所述第一连接管路设有用于控制管路通断的开关阀。
- 如权利要求14所述的空调系统,其中,还包括设于所述第二连接管路的单向阀,所述单向阀用于阻止所述第二连接管路内的流体朝向所述出气端口回流。
- 如权利要求14所述的空调系统,其中,所述冷媒循环回路还包括与所述压缩机的回气口连通的回气管,所述回气管设有过滤器。
- 如权利要求14至16任意一项所述的空调系统,其中,所述开关阀采用电磁阀。
- 一种空调系统的控制方法,用于如权利要求14至17任意一项所述的空调系统,其中,所述空调系统的控制方法包括以下步骤:获取压缩机的当前运行频率;判断所述当前运行频率是否满足预设回油判定条件;当所述当前运行频率满足所述预设回油判定条件,控制打开开关阀,并控制所述压缩机进入回油运行模式。
- 如权利要求18所述的空调系统的控制方法,其中,所述预设回油判定条件为:所述当前运行频率大于或等于预设回油判定频率阈值。
- 如权利要求19所述的空调系统的控制方法,其中,所述压缩机在回油运行模式下以预设回油运行频率运行,所述预设回油运行频率大于所述预设回油判定频率阈值。
- 如权利要求20所述的空调系统的控制方法,其中,所述预设回油判定频率阈值小于或等于30HZ,所述预设回油运行频率大于或等于50HZ。
- 如权利要求18至21任意一项所述的空调系统的控制方法,其中,还包括以下步骤:获取所述压缩机在回油运行模式下的累计运行时长;当所述累计运行时长达到预设时长,控制关闭所述开关阀,并控制所述压缩机退出回油运行模式。
- 一种计算机存储介质,其中,所述计算机存储介质上存储有空调器系统的控制程序,所述空调系统的控制程序被处理器执行时实现如权利要求18至22任意一项所述的空调器系统的控制方法。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210298781.1A CN116839253A (zh) | 2022-03-24 | 2022-03-24 | 压缩机、空调系统及其控制装置和方法、计算机存储介质 |
CN202220660721.5 | 2022-03-24 | ||
CN202210298718.8A CN116839252A (zh) | 2022-03-24 | 2022-03-24 | 压缩机和空调器 |
CN202210298781.1 | 2022-03-24 | ||
CN202210298718.8 | 2022-03-24 | ||
CN202220660721.5U CN217031672U (zh) | 2022-03-24 | 2022-03-24 | 压缩机和空调器 |
CN202220660631.6U CN217031671U (zh) | 2022-03-24 | 2022-03-24 | 压缩机和空调系统 |
CN202220660631.6 | 2022-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023178867A1 true WO2023178867A1 (zh) | 2023-09-28 |
Family
ID=88099732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/101863 WO2023178867A1 (zh) | 2022-03-24 | 2022-06-28 | 压缩机、空调系统及其控制方法、计算机存储介质 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023178867A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1418338A2 (en) * | 2002-11-07 | 2004-05-12 | Sanyo Electric Co., Ltd. | Multistage compression type rotary compressor and cooling device |
JP2015017574A (ja) * | 2013-07-12 | 2015-01-29 | パナソニック株式会社 | ロータリ圧縮機 |
CN106091479A (zh) * | 2016-06-16 | 2016-11-09 | 珠海格力电器股份有限公司 | 空调器及其回油控制方法和装置 |
CN106839523A (zh) * | 2017-01-16 | 2017-06-13 | 珠海格力电器股份有限公司 | 空调器的回油控制方法和装置 |
CN206695426U (zh) * | 2017-04-27 | 2017-12-01 | 广东美的制冷设备有限公司 | 空调系统 |
CN113550903A (zh) * | 2021-08-23 | 2021-10-26 | 广东美芝制冷设备有限公司 | 压缩机及制冷设备 |
CN215719317U (zh) * | 2021-08-23 | 2022-02-01 | 广东美芝制冷设备有限公司 | 压缩机及制冷设备 |
CN217058015U (zh) * | 2022-03-24 | 2022-07-26 | 广东美的制冷设备有限公司 | 压缩机及空调室外机 |
CN217057999U (zh) * | 2022-03-24 | 2022-07-26 | 广东美的制冷设备有限公司 | 空调系统 |
-
2022
- 2022-06-28 WO PCT/CN2022/101863 patent/WO2023178867A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1418338A2 (en) * | 2002-11-07 | 2004-05-12 | Sanyo Electric Co., Ltd. | Multistage compression type rotary compressor and cooling device |
JP2015017574A (ja) * | 2013-07-12 | 2015-01-29 | パナソニック株式会社 | ロータリ圧縮機 |
CN106091479A (zh) * | 2016-06-16 | 2016-11-09 | 珠海格力电器股份有限公司 | 空调器及其回油控制方法和装置 |
CN106839523A (zh) * | 2017-01-16 | 2017-06-13 | 珠海格力电器股份有限公司 | 空调器的回油控制方法和装置 |
CN206695426U (zh) * | 2017-04-27 | 2017-12-01 | 广东美的制冷设备有限公司 | 空调系统 |
CN113550903A (zh) * | 2021-08-23 | 2021-10-26 | 广东美芝制冷设备有限公司 | 压缩机及制冷设备 |
CN215719317U (zh) * | 2021-08-23 | 2022-02-01 | 广东美芝制冷设备有限公司 | 压缩机及制冷设备 |
CN217058015U (zh) * | 2022-03-24 | 2022-07-26 | 广东美的制冷设备有限公司 | 压缩机及空调室外机 |
CN217057999U (zh) * | 2022-03-24 | 2022-07-26 | 广东美的制冷设备有限公司 | 空调系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113007830A (zh) | 一种三管制多联机系统及其控制方法 | |
CN204176983U (zh) | 空调的储液罐和空调 | |
CN101545689A (zh) | 空气调节装置 | |
CN107525174A (zh) | 一种多联机空调系统及其控制方法 | |
CN217031672U (zh) | 压缩机和空调器 | |
WO2023178867A1 (zh) | 压缩机、空调系统及其控制方法、计算机存储介质 | |
JP2000346502A (ja) | 冷凍装置 | |
CN102128476B (zh) | 无水输热型超高层楼房冷暖空调系统 | |
CN102654297B (zh) | 无水介质输能的超高层楼房冷暖空调系统及其调控方法 | |
WO2021008331A1 (zh) | 热泵机组 | |
CN110207273B (zh) | 室外换热器、制冷系统、空调器、运行控制方法及装置 | |
CN217031671U (zh) | 压缩机和空调系统 | |
WO2013114461A1 (ja) | 空気調和装置及び鉄道車両用空気調和装置 | |
CN217057999U (zh) | 空调系统 | |
CN217058015U (zh) | 压缩机及空调室外机 | |
CN206683156U (zh) | 新型制冷系统 | |
CN213119316U (zh) | 采用节流阀的空调机组 | |
CN205536030U (zh) | 抽油烟机 | |
US7624590B2 (en) | Multi-type air conditioner | |
CN210070309U (zh) | 一种过冷器蒸发侧气体流向换向机构 | |
CN209726564U (zh) | 一种相变储能除霜多功能冷暖系统 | |
CN209926509U (zh) | 一种利用高低压转换的空调温度调控机组 | |
CN112594956A (zh) | 一种降低回液风险的控制系统以及空调器、运行方法 | |
CN100526756C (zh) | 用于转换空调的制冷剂管的设备 | |
CN216812097U (zh) | 压缩机和制冷设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22932919 Country of ref document: EP Kind code of ref document: A1 |