WO2023176912A1 - 硫酸バリウムとシリカの球状複合粒子及びその製造方法 - Google Patents

硫酸バリウムとシリカの球状複合粒子及びその製造方法 Download PDF

Info

Publication number
WO2023176912A1
WO2023176912A1 PCT/JP2023/010212 JP2023010212W WO2023176912A1 WO 2023176912 A1 WO2023176912 A1 WO 2023176912A1 JP 2023010212 W JP2023010212 W JP 2023010212W WO 2023176912 A1 WO2023176912 A1 WO 2023176912A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium sulfate
silica
barium
soluble
composite particles
Prior art date
Application number
PCT/JP2023/010212
Other languages
English (en)
French (fr)
Inventor
学 末田
恵太 小林
幸浩 国吉
聡 小森
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Publication of WO2023176912A1 publication Critical patent/WO2023176912A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/23Sulfur; Selenium; Tellurium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates

Definitions

  • the present invention relates to spherical composite particles of barium sulfate and silica and a method for producing the same.
  • Inorganic particles come in a variety of shapes; for example, spherical inorganic particles are used in cosmetics and paints to increase the diffusion rate of light and give high haze or mattness to formulations. It is used for various purposes such as Particularly in cosmetics, inorganic particles are spherical and roll easily on the skin, which is why they are incorporated to improve the texture, such as slipperiness, softness, and spreadability. Barium sulfate is used as the spherical particles because it is poorly soluble in acids and alkalis, has low solubility in water and organic solvents, is inexpensive and easy to chemically synthesize. .
  • barium sulfate has also been considered as an alternative material for microplastics, which have become a problem in marine pollution.
  • Composite particles with silica have been proposed as spherical barium sulfate suitable for cosmetic applications, and in Patent Document 1, barium sulfate is prepared from barium hydroxide and sulfuric acid, and a slurry containing the barium sulfate and silica sol is prepared.
  • a spherical composite powder of barium sulfate and silica is obtained by spray-drying the slurry and firing the dried product at 200 to 1100°C.
  • the present invention aims to provide spherical particles that meet the requirements for "hydrochloric acid soluble material” and “soluble barium salt” of “barium sulfate” described in "Quasi-drug raw material standards 2021". purpose.
  • the present inventors studied a method for obtaining spherical particles that meet the requirements for "hydrochloric acid soluble material” and “soluble barium salt” of "barium sulfate” described in "Quasi-drug raw material standards 2021.”
  • Barium sulfate obtained by the reaction of barium sulfide and sulfuric acid is used as a raw material, and the barium sulfate is washed with an aqueous solution of sulfate of a Group 1 or 2 element of the periodic table, or a barium sulfate slurry prepared after washing with sulfuric acid.
  • the hydrochloric acid soluble matter is 15 mg or less
  • the spherical composite particles of barium sulfate and silica are characterized in that the absorbance of a test solution tested for "soluble barium salt” is less than 0.03.
  • the spherical composite particles of barium sulfate and silica meet the standards for "barium sulfate" in the "Quasi-drug raw material standards 2021.”
  • the spherical composite particles of barium sulfate and silica preferably have a sphericity of 1.10 or less.
  • the present invention is also a cosmetic material containing the spherical composite particles of barium sulfate and silica of the present invention.
  • the present invention also provides a method for producing spherical composite particles of barium sulfate and silica, comprising:
  • the manufacturing method includes a first step of washing barium sulfate obtained by the reaction of barium sulfide and sulfuric acid with an aqueous sulfate solution of a Group 1 or 2 element of the periodic table, or with sulfuric acid; a second step of preparing barium sulfate slurry by repulping the washed barium sulfate in a solvent;
  • the barium sulfate slurry and silica are mixed, a part of the mixture is spray-dried, and the mixture is fired at 800 to 1100°C.
  • the third step of mixing the above barium sulfate slurry and silica to obtain a mixture is a step of mixing silica so that the weight ratio of silica to the total weight of barium sulfate and silica in the barium sulfate slurry is 1% or more. It is preferable that
  • the silica preferably has an average particle diameter of 1 to 100 nm.
  • the spherical composite particles of barium sulfate and silica of the present invention are spherical particles that meet the requirements for "hydrochloric acid soluble matter” and “soluble barium salt” of "barium sulfate” described in "Quasi-drug raw material standards 2021". Therefore, it can be suitably used as a raw material for products such as cosmetics that have strict requirements regarding the amount of impurities.
  • Example 1 is a scanning electron micrograph of barium sulfate and silica spherical composite particles produced in Example 1.
  • Spherical composite particles of barium sulfate and silica meet the purity of "hydrochloric acid soluble matter and soluble barium salt" in the "barium sulfate" standard of "Quasi-drug raw material standards 2021". It is characterized in that when tested, the amount of hydrochloric acid soluble matter is 15 mg or less, and the absorbance of the test solution tested for "soluble barium salt” is less than 0.03. Therefore, it can be suitably used as a raw material for products such as cosmetics, which have strict requirements regarding the amount of impurities.
  • the amount of hydrochloric acid soluble matter is 14 mg or less. More preferably, it is 13 mg or less. Further, it is preferable that the absorbance of the test liquid in which the "soluble barium salt" was tested is 0.025 or less. More preferably, it is 0.020 or less.
  • the spherical composite particles of barium sulfate and silica of the present invention preferably conform to the standards for "barium sulfate" in the "Quasi-drug Raw Material Standards 2021.” If the particles meet the standards, the spherical composite particles of barium sulfate and silica can be used not only as raw materials for cosmetics but also for various products classified as quasi-drugs.
  • the spherical composite particles of barium sulfate and silica preferably have a sphericity of 1.10 or less.
  • the cosmetics can have better textures such as smoothness, softness, and spreadability.
  • the sphericity of the spherical composite particles of barium sulfate and silica is more preferably 1.09 or less. More preferably, it is 1.08 or less.
  • the sphericity of the spherical composite particles of barium sulfate and silica can be measured by the method described in Examples below.
  • the content of silica in the spherical composite particles of barium sulfate and silica of the present invention may be 1% by mass or more based on the entire spherical composite particles of barium sulfate and silica, but is preferably 3 to 20% by mass.
  • the composite particles can have higher sphericity and a shape closer to a true sphere without losing the properties of barium sulfate.
  • the content of silica in the spherical composite particles of barium sulfate and silica is more preferably 5 to 14% by mass, and even more preferably 7 to 10% by mass, based on the entire spherical composite particles of barium sulfate and silica. .
  • the spherical composite particles of barium sulfate and silica of the present invention preferably have an average particle diameter of 2.5 to 15 ⁇ m. With such an average particle diameter, it can be suitably used as a raw material for cosmetics and the like.
  • the average particle diameter is more preferably 3.0 to 10 ⁇ m, still more preferably 3.5 to 8 ⁇ m.
  • the average particle diameter of the spherical composite particles of barium sulfate and silica can be measured by the method described in the Examples below.
  • the spherical composite particles further have a surface treatment layer made of a water-repellent organic compound.
  • the surface treatment with a water-repellent organic compound is a water-repellent treatment for reducing the affinity of the surface of the spherical composite particles with water.
  • water-repellent organic compound examples include organic surface treatments with organosilicon compounds, organic aluminum compounds, organic titanium compounds, higher fatty acids, metal soaps, polyhydric alcohols, alkanolamines, and the like.
  • the material may be subjected to a plurality of types of surface treatments.
  • water-repellent organic compounds include silicone oils such as hydrogen dimethicone, triethoxysilylethylpolydimethylsiloxyethylhexyl dimethicone, alkylsilanes such as trialkoxyoctylsilane and trialkoxydecylsilane, vinyltrialkoxysilane, 3- Silane coupling agents such as glycosidoxypropyltrialkoxysilane, 3-methacryloxypropylmethyldialkoxysilane, 3-aminopropyltrialkoxysilane, 3-mercaptopropylmethyldialkoxysilane, stearic acid, isostearic acid, myristic acid, palmitin Examples include acids, fatty acids having 12 to 18 carbon atoms such as palm oil fatty acids, or metal salts thereof.
  • silicone oils such as hydrogen dimethicone, triethoxysilylethylpolydimethylsiloxyethylhexyl dimethi
  • fatty acids having 12 to 18 carbon atoms or metal salts thereof are preferred.
  • metal salts of fatty acids include salts of lithium, sodium, potassium, magnesium, calcium, barium, zinc, aluminum and the like, with calcium and magnesium salts being particularly preferred.
  • a compound that forms some kind of chemical bond with the composite powder is preferable, but a compound that physically adsorbs may also be used. By performing surface treatment with such a water-repellent organic compound, the feel of the resulting particles can be further improved and, for example, when blended into cosmetics, compatibility with oil agents can be improved.
  • the amount of water-repellent organic compound treated is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, based on the spherical composite particles of barium sulfate and silica. If it is less than 0.1% by mass, water repellency will be insufficient. Moreover, if it exceeds 10% by mass, not only will the cost increase, but the effect may reach a plateau.
  • the spherical composite particles of barium sulfate and silica of the present invention have an impurity content that meets the requirements for "hydrochloric acid soluble matter” and “soluble barium salt” of "barium sulfate” described in "Quasi-drug raw material standards 2021". Since it has a spherical shape and easily rolls on the skin, it can be suitably used as an ingredient for improving the smoothness, softness, spreadability, and other textures of cosmetics. Cosmetics containing such spherical composite particles of barium sulfate and silica of the present invention are also one of the present invention.
  • the method for producing spherical composite particles of barium sulfate and silica of the present invention is to use barium sulfate obtained by the reaction of barium sulfide and sulfuric acid with a group 1 or 2 of the periodic table.
  • the first step is washing with an aqueous solution of elemental sulfates or sulfuric acid; a second step of preparing barium sulfate slurry by repulping the washed barium sulfate in a solvent; The barium sulfate slurry and silica are mixed, a part of the mixture is spray-dried, and the mixture is fired at 800 to 1100°C.
  • hydrochloric acid soluble substances are 15 mg or less, and the absorbance of the test solution tested for ⁇ soluble barium salts'' is less than 0.03, or , (b) a third step of obtaining a mixture in which the hydrochloric acid soluble matter is 14 mg or less and the absorbance of the test solution tested for "soluble barium salt” is 0.03 or more;
  • a proportion of Group 1 of the periodic table or a fourth step of adding a salt of a Group 2 element A fifth step of spray drying the mixture to which a salt of a Group 1 or Group 2 element of the periodic table was added or not in the fourth step to obtain a dried product, and It is characterized by including a sixth step of firing the dried product at 800 to 1100°C.
  • Barium sulfate can be produced by reacting barium hydroxide with sulfuric acid, by reacting barium chloride with sodium sulfate, or by reacting barium sulfide with sulfuric acid.
  • barium sulfate used as a raw material for producing spherical composite particles of barium sulfate and silica the inventors have discovered that when barium hydroxide is produced by reacting barium hydroxide with sulfuric acid, part of the barium hydroxide is released into the air during the production process.
  • Barium sulfate is produced by barium carbonate formed by reacting with carbon dioxide, sodium chloride produced by the reaction when barium sulfate is produced by reacting barium chloride with sodium sulfate, and unreacted sodium sulfate.
  • one of the features of the method for producing spherical composite particles of barium sulfate and silica of the present invention is that barium sulfate obtained by reacting barium sulfide with sulfuric acid is used as a raw material.
  • the barium sulfate used as a raw material in the above method for producing spherical composite particles of barium sulfate and silica preferably has a pH of 9.0 or less when dried. If the pH is higher than 9.0, there is a risk that the resulting spherical composite particles of barium sulfate and silica will contain a large amount of hydrochloric acid solubles.
  • the pH of the raw material barium sulfate when drying is more preferably 8.8 or less, still more preferably 8.6 or less.
  • the pH of the raw material barium sulfate during drying can be measured by a method based on JIS K 5101 "Pigment pH boiling method".
  • the barium sulfate used as a raw material in the above method for producing spherical composite particles of barium sulfate and silica preferably has an average particle diameter of 0.005 to 0.25 ⁇ m. By using particles having such a particle size, the resulting spherical composite particles of barium sulfate and silica become more suitable for cosmetic applications.
  • the average particle diameter of barium sulfate used as a raw material is more preferably 0.01 to 0.15 ⁇ m, and still more preferably 0.02 to 0.08 ⁇ m.
  • the average particle diameter of barium sulfate used as a raw material can be measured by the method described in the Examples below.
  • the first step is a step in which barium sulfate, which is a raw material, is washed with an aqueous sulfate solution of a Group 1 or 2 element of the periodic table, or with sulfuric acid.
  • barium salt as a slight impurity produced as a by-product during the production of barium sulfate as a raw material can be converted into barium sulfate, and water-soluble barium salt and acid-soluble barium salt can be removed.
  • any of an aqueous solution of sulfate of a Group 1 element of the periodic table, an aqueous solution of sulfate of an element of Group 2 of the periodic table, or sulfuric acid may be used.
  • washing may be performed only once or multiple times.
  • two or more of the following may be used: an aqueous solution of sulfate of a Group 1 element of the periodic table, an aqueous solution of sulfate of an element of Group 2 of the periodic table, and sulfuric acid.
  • the concentration of the aqueous sulfate solution of Group 1 or Group 2 elements of the periodic table or sulfuric acid used for the above cleaning is not particularly limited as long as impurities are removed from barium sulfate, but it is preferably 0.001 to 0.5 mol/l. . By using such a concentration, impurities can be sufficiently removed from barium sulfate with a small amount of use.
  • the concentration of the sulfuric acid aqueous solution or sulfuric acid of Group 1 or Group 2 elements of the periodic table is more preferably 0.001 to 0.1 mol/l, and even more preferably 0.001 to 0.01 mol/l. .
  • the proportion of the aqueous sulfate solution of Group 1 or Group 2 elements of the periodic table or sulfuric acid used for one cleaning is 0.01 to 10% by mass based on 100% by mass of barium sulfate to be cleaned. It is preferable that the ratio is as follows.
  • a sulfate aqueous solution of a Group 1 or 2 element of the periodic table or dilute sulfuric acid in such a proportion, the amount of sulfuric acid or sulfuric acid used can be reduced. Barium sulfate can be thoroughly washed.
  • the ratio of the aqueous sulfate solution of Group 1 or Group 2 elements of the periodic table or sulfuric acid used for one cleaning is more preferably 0.1 to 5% by mass based on 100% by mass of barium sulfate to be cleaned.
  • the ratio is more preferably 0.5 to 1% by mass based on barium sulfate.
  • the temperature at which the raw material barium sulfate is washed with an aqueous sulfate solution of a Group 1 or Group 2 element of the periodic table or with sulfuric acid is preferably 5 to 100°C.
  • water-soluble barium salt as an impurity can be sufficiently removed.
  • the temperature during washing is preferably 10 to 100°C, even more preferably 20 to 100°C.
  • the washing time is preferably 5 to 120 minutes. By setting the washing time in this manner, it is possible to efficiently produce spherical composite particles of barium sulfate and silica while sufficiently removing water-soluble barium salt.
  • the washing time is more preferably 5 to 60 minutes, and even more preferably 10 to 30 minutes. When washing is performed multiple times, it is preferable that the total time of the multiple times of washing is such a period of time.
  • the solid barium sulfate may be washed by adding an aqueous sulfate solution of a Group 1 or 2 element of the periodic table, or sulfuric acid, and the slurry of barium sulfate may be washed with Cleaning may be carried out by adding an aqueous sulfate solution of a Group 1 or Group 2 element, or sulfuric acid; It is preferable to add and wash. By doing so, the cleaning effect of barium sulfate can be enhanced, and impurities such as water-soluble barium salt and acid-soluble barium salt can be more efficiently removed.
  • Examples of the solvent used when preparing the barium sulfate slurry include one or more of water, alcohol, and the like. Among these, water is preferred.
  • the concentration of the barium sulfate slurry is not particularly limited, but is preferably 20 to 200 g/L from the viewpoint of increasing the cleaning effect on barium sulfate while maintaining production efficiency. More preferably, it is 40 to 150 g/L, and still more preferably 60 to 100 g/L.
  • Examples of the aqueous sulfate solution of Group 1 or Group 2 elements of the periodic table used in the first step include sodium sulfate, potassium sulfate, magnesium sulfate, and calcium sulfate, and one or more of these are preferably used. be able to.
  • barium sulfate may be further washed with water.
  • the barium sulfate slurry washed in the first step is filtered, and the filtered cake is washed with water.
  • water-soluble impurities contained in barium sulfate can be sufficiently removed. More preferably, washing with water is performed until the electrical conductivity of the water used for washing becomes 100 ⁇ S/cm or less, and even more preferably, until the electrical conductivity of the water used for washing becomes 50 ⁇ S/cm or less. Wash it with water.
  • the second step is a step of repulping the washed barium sulfate in a solvent to prepare a barium sulfate slurry.
  • the solvent used in the second step include one or more of water, monohydric alcohol, polyhydric alcohol, and the like. Among these, either water or monohydric alcohol is preferred. More preferred is water.
  • the concentration of the barium sulfate slurry obtained by repulping in the second step is not particularly limited, but it is preferably 50 to 1000 g/L. More preferably, it is 200 to 900 g/L, and still more preferably 300 to 800 g/L.
  • the barium sulfate slurry prepared in the second step is mixed with silica, a part of the mixture is spray-dried, and the mixture is fired at 800 to 1100°C.
  • hydrochloric acid soluble matter was 15 mg or less
  • a "soluble barium salt” test was conducted.
  • the absorbance of the test solution is less than 0.03, or (b) This is a step of obtaining a mixture in which the amount of hydrochloric acid soluble matter is 14 mg or less and the absorbance of the test solution tested for "soluble barium salt” is 0.03 or more.
  • barium silicate reacts with hydrochloric acid to produce barium chloride, which falls under the category of "soluble barium salts," so if the amount of barium silicate by-product is large, the standards for "barium sulfate" in the "Quasi-drug raw material standards 2021" Does not meet the standards for "soluble barium salt” in If a part of the mixture obtained in the third step is spray-dried and fired at 800 to 1100°C, and the above falls under (a), spray-drying the mixture and firing at 800 to 1100°C When conducting a purity test for "hydrochloric acid soluble matter and soluble barium salt" in the "barium sulfate” standard of "Quasi-drug raw material standards 2021", it was found that the hydrochloric acid soluble matter was 15 mg or less, and "soluble barium salt" was
  • the drying temperature and time are the same as the drying temperature in the fifth step described later.
  • the firing temperature and time are preferably the same as the temperature and time when firing the dried product obtained in the fifth step in the sixth step described later.
  • the third step is preferably a step of mixing silica so that the weight ratio of silica to the total weight of barium sulfate and silica in the barium sulfate slurry is 1% or more.
  • silica also has the effect of reducing the viscosity of the barium sulfate slurry.
  • the weight ratio of silica to the total weight of barium sulfate and silica in the barium sulfate slurry is 3% or more. More preferably, it is 5% or more, particularly preferably 7% or more.
  • the mixing ratio of silica in the third step is determined in the barium sulfate slurry.
  • the weight ratio of silica to the total weight of barium sulfate and silica is preferably 20% or less. More preferably, it is 14% or less, and still more preferably 10% or less.
  • the silica mixed with the barium sulfate slurry in the third step preferably has an average particle size of 1 to 100 nm.
  • the barium sulfate slurry has a lower viscosity and is more suitable for the fifth step of drying by spray drying.
  • silica with a small particle size is used, the finally obtained composite particles of barium sulfate and silica will be beautiful particles with less unevenness on the surface.
  • the silica used in the third step has an average particle diameter of 1 to 100 nm.
  • the average particle diameter of silica is more preferably 1 to 60 nm, and still more preferably 1 to 20 nm.
  • the average particle diameter of silica can be measured by the method described in Examples below.
  • the silica added to the barium sulfate slurry in the third step may be solid or may be silica sol dispersed in a solvent, but the silica particles are well-dispersed in advance and may be added to the barium sulfate slurry using wet media.
  • Silica sol is preferred because it eliminates the need for operations such as dispersion treatment to break up the agglomeration of silica particles.
  • the solvent for the silica sol the same solvent as used in preparing the barium sulfate slurry described above can be used.
  • the silica to be mixed with the barium sulfate slurry in the third step may be one in which the silica sol obtained by dispersing the silica in water is acidic, alkaline, or neutral. There may be.
  • the mixture corresponding to (b) above is processed to meet the standards for both "hydrochloric acid soluble material" and "soluble barium salt".
  • This is a step of adding a salt of a Group 1 or Group 2 element of the periodic table in a proportion of .05 to 0.40% by mass.
  • the amount of the salt of Group 1 or Group 2 element of the periodic table added in the fourth step is more preferably 100% by mass of the barium sulfate used as a raw material in the method for producing spherical composite particles of barium sulfate and silica of the present invention. On the other hand, it is 0.07 to 0.40% by mass, more preferably 0.10 to 0.35% by mass.
  • Examples of the Group 1 or Group 2 elements of the Periodic Table that form the salt of Group 1 or Group 2 elements in the fourth step include sodium, potassium, magnesium, calcium, and the like. Among these, Group 1 elements of the periodic table are preferred. Furthermore, as the salt of a Group 1 or Group 2 element of the periodic table, a sulfate is preferable.
  • the fifth step is a step of spray drying the mixture to which a salt of Group 1 or Group 2 element of the periodic table was added or not in the fourth step to obtain a dried product.
  • the drying temperature is not particularly limited as long as the mixture is dried, but in consideration of sufficiently drying the mixture and production efficiency, it is preferably 100 to 250°C.
  • the temperature is more preferably 100 to 230°C, and even more preferably 105 to 220°C.
  • the sixth step is a step of firing the dried product obtained in the fifth step at 800 to 1100°C.
  • the firing temperature may be 800 to 1100°C, but preferably 800 to 1000°C. More preferably, the temperature is 850 to 950°C.
  • the firing time time for maintaining the maximum temperature after reaching the maximum temperature is not particularly limited, but from the viewpoint of productivity, it is preferably 10 to 1500 minutes. More preferably, it is 10 to 600 minutes, still more preferably 30 to 300 minutes, particularly preferably 60 to 150 minutes, and most preferably 60 to 120 minutes.
  • the method for producing spherical composite particles of barium sulfate and silica of the present invention includes steps other than the first to sixth steps and the water washing step between the first and second steps. May contain.
  • Other steps include dispersing the slurry in which barium sulfate slurry and silica are mixed in the third step using a wet media dispersion machine or wet medialess dispersion machine, and dispersing the slurry in which barium sulfate slurry and silica are mixed in the third step. Examples include a step of passing the raw material through a sieve with an opening of 20 to 250 ⁇ m.
  • ⁇ Absorbance> Measurement was performed using a U-1900 ratio beam spectrophotometer (manufactured by Hitachi High Technologies) at a wavelength of 500 nm and an optical path length of 20 mm.
  • Average particle diameter ( ⁇ m) 6/(Sg ⁇ ) Sg (m 2 /g): specific surface area, ⁇ (g/cm 3 ): density of particles Density: ⁇ (g/cm 3 ) is 4.5 (g/cm 3 ) in the case of barium sulfate, In the case of silica, 2.2 (g/cm 3 ) was used.
  • ⁇ Average particle diameter of composite particles of barium sulfate and silica> The average particle diameter (D50) was measured using a laser diffraction/scattering particle diameter distribution measuring device Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.). Water was used as the solvent.
  • ⁇ Sphericity> Draw a diagonal line on the image taken with a scanning electron microscope JSM-6510A (manufactured by JEOL Ltd.), measure the major axis and minor axis of 50 particles on the line, and calculate the average value of the major axis/minor axis of each particle. It was made into sphericity.
  • Example 1 After preparing raw material barium sulfate (pigment pH 8.5 when dried) with an average particle size of 0.05 ⁇ m by reacting barium sulfide and sulfuric acid, it was washed with water to make a slurry, and pure water was added to adjust the concentration of the slurry. It was adjusted to 135 g/L. To the slurry of the raw material barium sulfate, sodium sulfate [anhydrous] (manufactured by Kishida Chemical, 99%) was added and dissolved at a concentration of 0.8% based on the barium sulfate, stirred for 30 minutes, filtered, and heated with electricity.
  • sodium sulfate [anhydrous] manufactured by Kishida Chemical, 99%
  • the obtained powder of barium sulfate and silica spherical composite particles was subjected to a purity test of "barium sulfate” as described in the "barium sulfate” standards of "Quasi-drug raw material standards 2021", and as a result, the following standards were found. It was confirmed that all the items were met and that it complied with the "Standards for Quasi-drug Ingredients 2021.” At this time, the amount of "hydrochloric acid soluble matter” was 8.0 mg, and the absorbance of the test solution after analysis of "soluble barium salt” was 0.004.
  • the purity test method for "barium sulfate” described in the “barium sulfate” standard of “Quasi-drug raw material standards 2021" is as follows. Purity test (1) Liquidity When adding 20 mL of water to 1.0 g of this product and shaking for 5 minutes, the liquid is neutral. (2) Phosphate Add 8 mL of diluted nitric acid (3 ⁇ 8) to 1.0 g of this product, boil for 5 minutes, and after cooling, make up the original volume with the evaporated water. Filter this through a filter paper washed with dilute nitric acid, add an equal volume of hexaammonium heptamolybdate test solution to the filtrate, and leave it at 50-60°C for 1 hour.
  • Example 2 By reacting barium sulfide and sulfuric acid, raw material barium sulfate with an average particle size of 0.05 ⁇ m (pigment pH 8.5 when dried) was prepared, and then washed with water to make a slurry, and pure water was added to make the slurry concentration 135 g. /L. To the slurry of the raw material barium sulfate, sodium sulfate [anhydrous] (manufactured by Kishida Chemical, 99%) was added and dissolved at a concentration of 0.8% based on the barium sulfate, stirred for 30 minutes, filtered, and heated with electricity. It was washed with water until the conductivity was 40 ⁇ S/cm or less.
  • the solid content after washing with water was repulped into pure water to prepare a slurry with a concentration of 380 g/L, and silica sol (Snowtex ST-O, manufactured by Nissan Chemical) was added to the slurry at a weight ratio of BaSO 4 and SiO 2 . They were added and mixed at a ratio of 90:10.
  • a part of the obtained mixture was spray-dried and baked at 900°C for 2 hours, and the resulting powder was treated with "barium sulfate" as described in the "barium sulfate" standard of "Quasi-drug raw material standards 2021".
  • the amount of hydrochloric acid soluble matter was 14 mg or less (7.9 mg), and the absorbance of the test solution tested for "soluble barium salt” was 0.03 or more (0.925). Therefore, sodium sulfate (manufactured by Kishida Chemical Co., Ltd.) was added to the obtained mixture at a concentration of 2500 ppm based on the weight of barium sulfate, and the mixture was stirred for 10 minutes. Thereafter, spherical composite particles of barium sulfate and silica with a diameter of 3.5 ⁇ m were prepared by spray drying with a micro mist spray dryer (MDL-050CM, manufactured by GF) and baking the obtained dried product at 900° C.
  • MDL-050CM micro mist spray dryer
  • Example 3 By reacting barium sulfide and sulfuric acid, raw material barium sulfate with an average particle size of 0.05 ⁇ m (pigment pH 8.5 when dried) was prepared, and then washed with water to make a slurry, and pure water was added to make the slurry concentration 135 g. /L. To the slurry of the raw material barium sulfate, sodium sulfate [anhydrous] (manufactured by Kishida Chemical, 99%) was added and dissolved at a concentration of 0.8% based on barium sulfate, and the temperature was raised to 100°C for 30 minutes.
  • sodium sulfate [anhydrous] manufactured by Kishida Chemical, 99%
  • the amount of hydrochloric acid soluble matter was 15 mg or less (7.2 mg), and the absorbance of the test solution tested for "soluble barium salt” was less than 0.03 (0.007). Therefore, the obtained mixture was directly spray-dried using a micro-mist spray dryer (MDL-050CM, manufactured by GF), and the obtained dried product was calcined at 800°C for 2 hours. Spherical composite particles were prepared. The sphericity of the obtained particles was 1.04.
  • Example 4 By reacting barium sulfide and sulfuric acid, raw material barium sulfate with an average particle size of 0.05 ⁇ m (pigment pH 8.5 when dried) was prepared, and then washed with water to make a slurry. Pure water was added to make the slurry concentration 90 g. /L. Sulfuric acid was added to the raw material barium sulfate slurry at a concentration of 0.8% based on barium sulfate, stirred for 30 minutes, filtered, and washed with water until the electrical conductivity became 40 ⁇ S/cm or less.
  • the amount of hydrochloric acid soluble matter was 15 mg or less (10.5 mg), and the absorbance of the test solution tested for "soluble barium salt” was less than 0.03 (0.008). Therefore, the obtained mixture was directly spray-dried using a micro-mist spray dryer (MDL-050CM, manufactured by GF), and the obtained dried product was calcined at 900°C for 2 hours. Spherical composite particles were prepared. The sphericity of the obtained particles was 1.05.
  • Example 5 By reacting barium sulfide and sulfuric acid, raw material barium sulfate with an average particle size of 0.05 ⁇ m (pigment pH 8.5 when dried) was prepared, and then washed with water to make a slurry. Pure water was added to make the slurry concentration 90 g. /L. To the slurry of the raw material barium sulfate, sodium sulfate [anhydrous] (manufactured by Kishida Chemical, 99%) was added and dissolved at a concentration of 0.8% based on barium sulfate, and the temperature was raised to 60°C for 30 minutes.
  • the amount of hydrochloric acid soluble matter was 15 mg or less (14.4 mg), and the absorbance of the test solution tested for "soluble barium salt” was less than 0.03 (0.015). Therefore, the obtained mixture was directly spray-dried using a micro-mist spray dryer (MDL-050CM, manufactured by GF), and the obtained dried product was calcined at 900°C for 2 hours. Spherical composite particles were prepared. The sphericity of the obtained particles was 1.07.
  • Example 6 By reacting barium sulfide and sulfuric acid, raw material barium sulfate with an average particle size of 0.05 ⁇ m (pigment pH 8.5 when dried) was prepared, and then washed with water to make a slurry. Pure water was added to make the slurry concentration 90 g. /L. To the slurry of the raw material barium sulfate, sodium sulfate [anhydrous] (manufactured by Kishida Chemical, 99%) was added and dissolved at a concentration of 0.8% based on barium sulfate, and the temperature was raised to 60°C for 30 minutes.
  • the amount of hydrochloric acid soluble matter was 15 mg or less (3.7 mg), and the absorbance of the test solution tested for "soluble barium salt” was less than 0.03 (0.008). Therefore, the obtained mixture was directly spray-dried using a micro mist spray dryer (MDL-050CM, manufactured by GF), and the obtained dried product was calcined at 900°C for 2 hours. Spherical composite particles were prepared. The sphericity of the obtained particles was 1.08.
  • Example 7 By reacting barium sulfide and sulfuric acid, raw material barium sulfate with an average particle size of 0.05 ⁇ m (pigment pH 8.5 when dried) was prepared, and then washed with water to make a slurry. Pure water was added to make the slurry concentration 90 g. /L. To the slurry of the raw material barium sulfate, sodium sulfate [anhydrous] (manufactured by Kishida Chemical, 99%) was added and dissolved at a concentration of 0.8% based on barium sulfate, and the temperature was raised to 60°C for 30 minutes.
  • the sphericity of the obtained particles was 1.07.
  • the resulting powder of barium sulfate and silica spherical composite particles was tested for "barium sulfate" as described in the "Quasi-drug raw material standards 2021," and as a result, it met all of the standard items below, and was certified as a "pharmaceutical product.” It was confirmed that it complies with the standards for barium sulfate in the External Materials Standards 2021. At this time, the amount of "hydrochloric acid soluble matter” was 6.3 mg, and the absorbance of the test solution after analysis of "soluble barium salt” was 0.014.
  • Example 8 By reacting barium sulfide and sulfuric acid, raw material barium sulfate with an average particle size of 0.05 ⁇ m (pigment pH 8.5 when dried) was prepared, and then washed with water to make a slurry, and pure water was added to make the slurry concentration 135 g. /L. Sulfuric acid was added to the raw material barium sulfate slurry at a concentration of 0.8% based on barium sulfate, stirred for 30 minutes, filtered, and washed with water until the electrical conductivity became 40 ⁇ S/cm or less.
  • the solid content after washing with water was repulped into pure water to prepare a slurry with a concentration of 380 g/L, and silica sol (Snowtex ST-O, manufactured by Nissan Chemical) was added to the slurry at a weight ratio of BaSO 4 and SiO 2 . They were added and mixed at a ratio of 90:10.
  • a part of the obtained mixture was spray-dried and baked at 900°C for 2 hours, and the resulting powder was treated with "barium sulfate" as described in the "barium sulfate" standard of "Quasi-drug raw material standards 2021".
  • the amount of hydrochloric acid soluble matter was 14 mg or less (7.9 mg), and the absorbance of the test solution tested for "soluble barium salt” was 0.03 or more (0.925). Therefore, sodium sulfate (manufactured by Kishida Chemical Co., Ltd.) was added to the obtained mixture at a concentration of 2500 ppm based on the weight of barium sulfate, and the mixture was stirred for 10 minutes. Thereafter, spherical composite particles of barium sulfate and silica with a diameter of 3.5 ⁇ m were prepared by spray drying with a micro mist spray dryer (MDL-050CM, manufactured by GF) and baking the obtained dried product at 900° C.
  • MDL-050CM micro mist spray dryer
  • Comparative example 1 After preparing raw material barium sulfate (pigment pH 9.7 when dried) with an average particle size of 0.02 ⁇ m by reacting barium sulfide and sulfuric acid, it was washed with water to make a slurry, and pure water was added to adjust the concentration of the slurry. It was adjusted to 90g/L. To the slurry of the raw material barium sulfate, sodium sulfate [anhydrous] (manufactured by Kishida Chemical, 99%) was added and dissolved at a concentration of 0.8% based on the barium sulfate, stirred for 30 minutes, filtered, and heated with electricity.
  • the amount of hydrochloric acid soluble matter was more than 15 mg (17.2 mg), and the absorbance of the test solution tested for "soluble barium salt” was 0.03 or more (0.936).
  • the obtained mixture was directly spray-dried using a micro mist spray dryer (MDL-050CM, manufactured by GF), and the obtained dried product was baked at 900°C for 2 hours to form a 3.4 ⁇ m spherical composite of barium sulfate and silica. Particles were prepared. The sphericity of the obtained particles was 1.05.
  • Comparative example 2 By reacting barium sulfide and sulfuric acid, raw material barium sulfate with an average particle size of 0.05 ⁇ m (pigment pH 8.5 when dried) was prepared, and then washed with water to make a slurry. Pure water was added to make the slurry concentration 90 g. /L. To the slurry of the raw material barium sulfate, sodium sulfate [anhydrous] (manufactured by Kishida Chemical, 99%) was added and dissolved at a concentration of 0.8% based on the barium sulfate, stirred for 30 minutes, filtered, and heated with electricity.
  • the amount of hydrochloric acid soluble matter was 14 mg or less (7.8 mg), and the absorbance of the test solution tested for "soluble barium salt” was 0.03 or more (0.853).
  • the obtained mixture was directly spray-dried using a micro mist spray dryer (MDL-050CM, manufactured by GF), and the obtained dried product was calcined at 900°C for 2 hours to obtain 3.3 ⁇ m spherical composite particles of barium sulfate and silica. was prepared. The sphericity of the obtained particles was 1.03.
  • the resulting spherical composite particle powder of barium sulfate and silica was tested for "barium sulfate” as described in "Quasi-drug raw material standards 2021,” and as a result, "soluble barium salt” was detected. It was confirmed that the product did not meet the standards for "barium sulfate” in the "Quasi-drug Ingredient Standards 2021.” At this time, the amount of "hydrochloric acid soluble material” was 7.8 mg, and the absorbance of the test solution after analysis of "soluble barium salt” was 0.853.
  • Comparative example 3 After preparing raw material barium sulfate (pigment pH 8.5 when dried) with an average particle size of 0.05 ⁇ m by reacting barium sulfide and sulfuric acid, it is washed with water to form a slurry and purified without washing with a detergent. Water was added to adjust the slurry concentration to 380 g/L. Silica sol (Snowtex ST-30, manufactured by Nissan Chemical Industries, Ltd.) was added to the slurry and mixed at a weight ratio of BaSO 4 and SiO 2 of 85:15.
  • the obtained mixture was directly spray-dried using a micro mist spray dryer (MDL-050CM, manufactured by GF), and the obtained dried product was calcined at 900°C for 2 hours to obtain 3.4 ⁇ m spherical composite particles of barium sulfate and silica. was prepared.
  • the sphericity of the obtained particles was 1.04.
  • the obtained powder of barium sulfate and silica spherical composite particles was tested for "barium sulfate" as described in "Quasi-drug raw material standards 2021", and as a result, "hydrochloric acid soluble matter" exceeded 15 mg.
  • Comparative example 4 After preparing raw material barium sulfate (pigment pH 8.5 when dried) with an average particle size of 0.05 ⁇ m by reacting barium sulfide and sulfuric acid, it is washed with water to form a slurry and purified without washing with a detergent. Water was added to adjust the slurry concentration to 380 g/L. Silica sol (Snowtex ST-30, manufactured by Nissan Chemical Industries, Ltd.) was added to the slurry and mixed at a weight ratio of BaSO 4 and SiO 2 of 85:15.
  • the obtained mixture was directly spray-dried using a micro mist spray dryer (MDL-050CM, manufactured by GF), and the obtained dried product was calcined at 750°C for 2 hours to obtain 3.4 ⁇ m spherical composite particles of barium sulfate and silica. was prepared. The sphericity of the obtained particles was 1.07.
  • Comparative example 5 After preparing raw material barium sulfate (pigment pH 6.5 when dried) with an average particle size of 0.3 ⁇ m by reacting barium chloride and sodium sulfate, it is washed with water to form a slurry, and pure water is added to adjust the concentration of the slurry. was adjusted to 135 g/L. Sodium sulfate [anhydrous] (manufactured by Kishida Chemical, 99%) was added to the slurry of raw barium sulfate to give a concentration of 0.8% to barium sulfate, and the mixture was stirred for 30 minutes, filtered, and electrically conductive. It was washed with water until the temperature became 40 ⁇ S/cm or less.
  • the amount of hydrochloric acid soluble matter was more than 15 mg (42.3 mg), and the absorbance of the test solution tested for "soluble barium salt” was 0.03 or more (0.032).
  • the obtained mixture was directly spray-dried using a micro mist spray dryer (MDL-050CM, manufactured by GF), and the obtained dried product was calcined at 900°C for 2 hours to obtain 3.4 ⁇ m spherical composite particles of barium sulfate and silica. was prepared. The sphericity of the obtained particles was 1.25.
  • Comparative example 6 After preparing raw material barium sulfate (pigment pH 8.5 when dried) with an average particle size of 0.05 ⁇ m by reacting barium sulfide and sulfuric acid, it was washed with water to make a slurry, and pure water was added to adjust the concentration of the slurry. It was adjusted to 135 g/L. Sodium sulfate [anhydrous] (manufactured by Kishida Chemical, 99%) was added to the slurry of raw barium sulfate to give a concentration of 0.8% to barium sulfate, and the mixture was stirred for 30 minutes, filtered, and electrically conductive.
  • the amount of hydrochloric acid soluble matter was 14 mg or less (7.9 mg), and the absorbance of the test solution tested for "soluble barium salt” was 0.03 or more (0.925).
  • Sodium sulfate (manufactured by Kishida Chemical Co., Ltd.) was added to the resulting mixture at a concentration of 10 ppm based on the weight of barium sulfate, and the mixture was stirred for 10 minutes. Thereafter, it was spray-dried using a micro-mist spray dryer (MDL-050CM, manufactured by GF), and the resulting dried product was calcined at 900° C.
  • Comparative example 7 After preparing raw material barium sulfate (pigment pH 8.5 when dried) with an average particle size of 0.05 ⁇ m by reacting barium sulfide and sulfuric acid, it was washed with water to make a slurry, and pure water was added to adjust the concentration of the slurry. It was adjusted to 135 g/L. Sodium sulfate [anhydrous] (manufactured by Kishida Chemical, 99%) was added to the slurry of raw barium sulfate to give a concentration of 0.8% to barium sulfate, and the mixture was stirred for 30 minutes, filtered, and electrically conductive.
  • the amount of hydrochloric acid soluble matter was 14 mg or less (7.9 mg), and the absorbance of the test solution tested for "soluble barium salt" was 0.03 or more (0.925).
  • Sodium sulfate manufactured by Kishida Chemical Co., Ltd. was added to the resulting mixture at a concentration of 100 ppm based on the weight of barium sulfate, and the mixture was stirred for 10 minutes.
  • the obtained mixture was spray-dried using a micro mist spray dryer (MDL-050CM, manufactured by GF), and the obtained dried product was calcined at 900°C for 2 hours to obtain 3.4 ⁇ m spherical composite particles of barium sulfate and silica. Prepared. The sphericity of the obtained particles was 1.04. The resulting spherical composite particle powder of barium sulfate and silica was tested for "barium sulfate" as described in "Quasi-drug raw material standards 2021,” and as a result, "soluble barium salt” was detected.
  • MDL-050CM micro mist spray dryer
  • Comparative example 8 After preparing raw material barium sulfate (pigment pH 8.5 when dried) with an average particle size of 0.05 ⁇ m by reacting barium sulfide and sulfuric acid, it was washed with water to make a slurry, and pure water was added to adjust the concentration of the slurry. It was adjusted to 135 g/L. Sodium sulfate [anhydrous] (manufactured by Kishida Chemical, 99%) was added to the slurry of raw barium sulfate to give a concentration of 0.8% to barium sulfate, and the mixture was stirred for 30 minutes, filtered, and electrically conductive.
  • the amount of hydrochloric acid soluble matter was 14 mg or less (7.9 mg), and the absorbance of the test solution tested for "soluble barium salt” was 0.03 or more (0.925).
  • Sodium sulfate manufactured by Kishida Chemical Co., Ltd. was added to the resulting mixture at a concentration of 10,000 ppm based on the weight of barium sulfate, and the mixture was stirred for 10 minutes.
  • the obtained mixture was spray-dried using a micro mist spray dryer (MDL-050CM, manufactured by GF), and the obtained dried product was calcined at 900°C for 2 hours to obtain 3.4 ⁇ m spherical composite particles of barium sulfate and silica. Prepared. The sphericity of the obtained particles was 1.07.
  • the obtained powder of barium sulfate and silica spherical composite particles was tested for "barium sulfate" as described in "Quasi-drug raw material standards 2021", and as a result, "hydrochloric acid soluble matter" exceeded 15 mg.
  • Examples 1 to 8 and Comparative Examples 1 to 8 are summarized in Tables 1 and 2.
  • the feel of the spherical composite particles of barium sulfate and silica was evaluated by the following method.
  • Ten panelists evaluated the feel of the obtained powder (sample) when they touched it with the back of their hand and index finger on a five-point scale from 1 to 5 (5 points being the best), and the average value of the evaluations was calculated. and evaluated based on the following criteria.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Geology (AREA)
  • Cosmetics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本発明は、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の「塩酸可溶物」及び「可溶性バリウム塩」の要件に適合する球状粒子を提供することを目的とする。 本発明は、「医薬部外品原料規格2021」の「硫酸バリウム」の規格における「塩酸可溶物及び可溶性バリウム塩」の純度試験を行った場合に、塩酸可溶物が15mg以下となり、かつ、「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03未満となることを特徴とする硫酸バリウムとシリカの球状複合粒子に関する。

Description

硫酸バリウムとシリカの球状複合粒子及びその製造方法
本発明は、硫酸バリウムとシリカの球状複合粒子及びその製造方法に関する。
無機粒子には様々な形状の粒子があり、例えば球状の無機粒子は、光の拡散率を増加させて配合物に高いヘイズを与えたり、艶を消したりする目的で化粧料や塗料で使用される等、各種用途で使用されている。特に化粧料においては、無機粒子が球状であり肌で転がりやすいことを利用して、滑り感や柔らかさ、伸び等の感触を改良する目的でも配合されている。球状粒子としては、酸及びアルカリに難溶であること、水や有機溶媒への溶解度が低いこと、価格面でも安価で化学合成が容易であること等の観点から、硫酸バリウムが使用されている。また近年では、海洋汚染が問題となっているマイクロプラスチックの代替材料としても硫酸バリウムが検討されている。
化粧料用途に適した球状の硫酸バリウムとしてシリカとの複合粒子が提案されており、特許文献1では、水酸化バリウムと硫酸から硫酸バリウムを調製し、その硫酸バリウムとシリカゾルを含むスラリーを調製し、該スラリーを噴霧乾燥し、得られた乾燥物を200~1100℃で焼成することにより硫酸バリウムとシリカとの球状複合粉末を得ている。
特許第6390756号公報
硫酸バリウムとシリカとの球状複合粉末の製造方法として特許文献1のような方法が提案されている。しかし、この製法で調製した硫酸バリウムとシリカの球状複合粉末は「医薬部外品原料規格2021」における「硫酸バリウム」の「塩酸可溶物」と「可溶性バリウム塩」の要件を満たさず、「医薬部外品原料規格2021」に適合するものではなかった。
本発明は、上記現状に鑑み、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の「塩酸可溶物」及び「可溶性バリウム塩」の要件に適合する球状粒子を提供することを目的とする。
本発明者らは、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の「塩酸可溶物」及び「可溶性バリウム塩」の要件に適合する球状粒子を得る方法について検討した。そして、硫化バリウムと硫酸との反応で得られた硫酸バリウムを原料とし、該硫酸バリウムを周期表第1族若しくは第2族元素の硫酸塩水溶液、または硫酸で洗浄後に調製した硫酸バリウムスラリーにシリカを混合して所定の条件を満たす混合物を得た後、必要に応じて周期表第1族又は第2族元素の塩を添加し、噴霧乾燥、焼成をすることで、「医薬部外品原料規格2021」における「硫酸バリウム」の「塩酸可溶物」及び「可溶性バリウム塩」の要件に適合する硫酸バリウムとシリカの球状複合粒子が得られることを見出し、本発明を完成するに至った。
すなわち本発明は、「医薬部外品原料規格2021」の「硫酸バリウム」の規格における「塩酸可溶物及び可溶性バリウム塩」の純度試験を行った場合に、塩酸可溶物が15mg以下となり、かつ、「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03未満となることを特徴とする硫酸バリウムとシリカの球状複合粒子である。
上記硫酸バリウムとシリカの球状複合粒子は、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合することが好ましい。
上記硫酸バリウムとシリカの球状複合粒子は、真球度が1.10以下であることが好ましい。
本発明はまた、本発明の硫酸バリウムとシリカの球状複合粒子を含むことを特徴とする化粧料でもある。
本発明はまた、硫酸バリウムとシリカの球状複合粒子を製造する方法であって、
該製造方法は、硫化バリウムと硫酸との反応で得られた硫酸バリウムを周期表第1族若しくは第2族元素の硫酸塩水溶液、または硫酸で洗浄する第一工程、
該洗浄後の硫酸バリウムを溶媒にリパルプして硫酸バリウムスラリーを調製する第二工程、
該硫酸バリウムスラリーとシリカとを混合し、該混合物の一部を噴霧乾燥し、800~1100℃で焼成したものに対して「医薬部外品原料規格2021」の「硫酸バリウム」の規格における「塩酸可溶物及び可溶性バリウム塩」の純度試験を行った場合に
(a)塩酸可溶物が15mg以下、かつ、「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03未満、又は、
(b)塩酸可溶物が14mg以下、かつ、「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03以上
のいずれかに該当する混合物を得る第三工程、
該第三工程で得られた混合物が(b)に該当する場合に、該混合物に対し、原料硫酸バリウムの重量に対し0.05~0.40質量%となる割合の周期表第1族又は第2族元素の塩を添加する第四工程、
該第四工程で周期表第1族又は第2族元素の塩が添加され又はされなかった混合物を噴霧乾燥して乾燥物を得る第五工程、及び、
該乾燥物を800~1100℃で焼成する第六工程
を含むことを特徴とする硫酸バリウムとシリカの球状複合粒子の製造方法でもある。
上記硫酸バリウムスラリーとシリカとを混合して混合物を得る第三工程は、硫酸バリウムスラリー中の硫酸バリウムとシリカとの合計重量に対するシリカの重量割合が1%以上となるようにシリカを混合する工程であることが好ましい。
上記シリカは、平均粒子径が1~100nmであることが好ましい。
本発明の硫酸バリウムとシリカの球状複合粒子は、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の「塩酸可溶物」及び「可溶性バリウム塩」の要件に適合する球状粒子であるため、化粧料等の不純物量の要件の厳しい製品の原料として好適に用いることができる。
実施例1で製造された硫酸バリウムとシリカの球状複合粒子の走査型電子顕微鏡写真である。
以下、本発明の好ましい形態について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
1.硫酸バリウムとシリカの球状複合粒子
本発明の硫酸バリウムとシリカの球状複合粒子は、「医薬部外品原料規格2021」の「硫酸バリウム」の規格における「塩酸可溶物及び可溶性バリウム塩」の純度試験を行った場合に、塩酸可溶物が15mg以下となり、かつ、「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03未満となることを特徴とする。このため、不純物量に関する要求が厳しい化粧料等の製品の原料として好適に用いることができる。
「塩酸可溶物及び可溶性バリウム塩」の純度試験を行った場合に、塩酸可溶物は、14mg以下であることが好ましい。より好ましくは、13mg以下である。
また「可溶性バリウム塩」の試験を行った試験液の吸光度は、0.025以下であることが好ましい。より好ましくは、0.020以下である。
本発明の硫酸バリウムとシリカの球状複合粒子は、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合するものであることが好ましい。規格に適合するものであると、硫酸バリウムとシリカの球状複合粒子が化粧料だけでなく、医薬部外品に分類される様々な製品の原料として用いることができる。
上記硫酸バリウムとシリカの球状複合粒子は、真球度が1.10以下であることが好ましい。真球度が1.10以下であると、化粧料の原料として用いた場合に、化粧料を滑り感や柔らかさ、伸び等の感触により優れたものとすることができる。
硫酸バリウムとシリカの球状複合粒子の真球度は、1.09以下であることがより好ましい。更に好ましくは、1.08以下である。
硫酸バリウムとシリカの球状複合粒子の真球度は、後述する実施例に記載の方法で測定することができる。
本発明の硫酸バリウムとシリカの球状複合粒子におけるシリカの含有割合は硫酸バリウムとシリカの球状複合粒子全体に対して1質量%以上であればよいが、3~20質量%であることが好ましい。このような割合でシリカを含むことで、硫酸バリウムの特性を失うことなく、複合粒子を真球度がより高く、より真球に近い形状のものとすることができる。硫酸バリウムとシリカの球状複合粒子におけるシリカの含有割合はより好ましくは、硫酸バリウムとシリカの球状複合粒子全体に対して、5~14質量%であり、更に好ましくは、7~10質量%である。
本発明の硫酸バリウムとシリカの球状複合粒子は、平均粒子径が2.5~15μmであることが好ましい。このような平均粒子径であると、化粧料等の原料として好適に用いることができる。平均粒子径は、より好ましくは、3.0~10μmであり、更に好ましくは、3.5~8μmである。
硫酸バリウムとシリカの球状複合粒子の平均粒子径は、後述する実施例に記載の方法で測定することができる。
上記球状複合粒子はさらに、撥水性有機化合物による表面処理層を有することが好ましい。撥水性有機化合物による表面処理とは、球状複合粒子表面の水との親和性を低下させるための撥水性処理である。
上記撥水性有機化合物としては、例えば、有機ケイ素化合物、有機アルミ化合物、有機チタン化合物、高級脂肪酸、金属石鹸、多価アルコール、アルカノールアミン等による有機表面処理が挙げられる。また、複数種の表面処理を行ったものであってもよい。
撥水性有機化合物の具体例として、例えば、ハイドロゲンジメチコン、トリエトキシシリルエチルポリジメチルシロキシエチルヘキシルジメチコン等のシリコーンオイルや、トリアルコキシオクチルシラン、トリアルコキシデシルシラン等のアルキルシラン、ビニルトリアルコキシシラン、3-グリコシドキシプロピルトリアルコキシシラン、3-メタクリロキシプロピルメチルジアルコキシシラン、3-アミノプロピルトリアルコキシシラン、3-メルカプトプロピルメチルジアルコキシシラン等のシランカップリング剤、ステアリン酸、イソステアリン酸、ミリスチン酸、パルミチン酸、パーム油脂肪酸等の炭素数12~18の脂肪酸又はその金属塩が挙げられる。これらの中でも、炭素数12~18の脂肪酸又はその金属塩が好ましい。
脂肪酸の金属塩としては、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、バリウム、亜鉛、アルミニウム等の塩が挙げられ、特にカルシウム、マグネシウムの塩が好ましい。また、複合粉末と何らかの化学結合をする化合物が好ましいが、物理吸着する化合物であってもよい。
このような撥水性有機化合物による表面処理を施すことによって、得られる粒子の感触をより向上させることができ、また、例えば化粧料に配合する際に油剤との馴染みを良くすることができる。
撥水性有機化合物による処理量は、硫酸バリウムとシリカの球状複合粒子に対して、0.1~10質量%が好ましく、0.5~8質量%がより好ましい。0.1質量%よりも低いと撥水性が不充分となる。また、10質量%を超えると、コストが上昇するだけでなく効果も頭打ちとなるおそれがある。
本発明の硫酸バリウムとシリカの球状複合粒子は、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の「塩酸可溶物」及び「可溶性バリウム塩」の要件に適合する不純物含有量の少ないものであり、球状であり肌で転がりやすいものであることから、化粧料の滑り感や柔らかさ、伸び等の感触を改良する成分として好適に用いることができる。このような本発明の硫酸バリウムとシリカの球状複合粒子を含む化粧料もまた、本発明の1つである。
2.硫酸バリウムとシリカの球状複合粒子の製造方法
本発明の硫酸バリウムとシリカの球状複合粒子の製造方法は、硫化バリウムと硫酸との反応で得られた硫酸バリウムを周期表第1族若しくは第2族元素の硫酸塩水溶液、または硫酸で洗浄する第一工程、
該洗浄後の硫酸バリウムを溶媒にリパルプして硫酸バリウムスラリーを調製する第二工程、
該硫酸バリウムスラリーとシリカとを混合し、該混合物の一部を噴霧乾燥し、800~1100℃で焼成したものに対して「医薬部外品原料規格2021」の「硫酸バリウム」の規格における「塩酸可溶物及び可溶性バリウム塩」の純度試験を行った場合に
(a)塩酸可溶物が15mg以下、かつ「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03未満、又は、
(b)塩酸可溶物が14mg以下、かつ、「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03以上
のいずれかに該当する混合物を得る第三工程、
該第三工程で得られた混合物が(b)に該当する場合に、該混合物に対し、原料硫酸バリウムの重量に対し0.05~0.40質量%となる割合の周期表第1族又は第2族元素の塩を添加する第四工程、
該第四工程で周期表第1族又は第2族元素の塩が添加され又はされなかった混合物を噴霧乾燥して乾燥物を得る第五工程、及び、
該乾燥物を800~1100℃で焼成する第六工程
を含むことを特徴とする。
硫酸バリウムには、水酸化バリウムと硫酸とを反応させて製造する方法、塩化バリウムと硫酸ナトリウムとを反応させて製造する方法、硫化バリウムと硫酸とを反応させて製造する方法等がある。
本発明者は、硫酸バリウムとシリカの球状複合粒子の製造に原料として用いる硫酸バリウムに関し、水酸化バリウムと硫酸とを反応させて製造した場合に製造過程で水酸化バリウムの一部が空気中の二酸化炭素と反応することで形成される炭酸バリウムや、硫酸バリウムを塩化バリウムと硫酸ナトリウムとを反応させて製造した場合に反応で生成する塩化ナトリウム及び未反応の硫酸ナトリウムが、製造される硫酸バリウムとシリカの球状複合粒子が「医薬部外品原料規格2021」の「硫酸バリウム」の規格における「塩酸可溶物」と「可溶性バリウム塩」の要件を満たさないものとなる原因の1つであることを見出した。このため、本発明の硫酸バリウムとシリカの球状複合粒子の製造方法では、硫化バリウムと硫酸との反応で得られた硫酸バリウムを原料として用いることを特徴の1つとする。
上記硫酸バリウムとシリカの球状複合粒子の製造方法に原料として用いる硫酸バリウムとしては、乾燥時のpHが9.0以下であるものが好ましい。pHが9.0より大きいと、得られる硫酸バリウムとシリカの球状複合粒子に含まれる塩酸可溶物が多くなるおそれがある。原料硫酸バリウムの乾燥時のpHは、より好ましくは、8.8以下であり、更に好ましくは、8.6以下である。
原料硫酸バリウムの乾燥時のpHは、JIS K 5101「顔料pH 煮沸法」に準拠する方法により測定することができる。
上記硫酸バリウムとシリカの球状複合粒子の製造方法に原料として用いる硫酸バリウムは、平均粒子径が0.005~0.25μmのものであることが好ましい。このような粒子径のものを用いることで、得られる硫酸バリウムとシリカの球状複合粒子が化粧料用途により適したものとなる。原料として用いる硫酸バリウムの平均粒子径はより好ましくは、0.01~0.15μmであり、更に好ましくは、0.02~0.08μmである。
原料として用いる硫酸バリウムの平均粒子径は、後述する実施例に記載の方法で測定することができる。
上記第一工程は、原料となる硫酸バリウムを周期表第1族若しくは第2族元素の硫酸塩水溶液、または硫酸で洗浄する工程である。これにより、原料となる硫酸バリウムの製造により副生する僅かな不純物としてのバリウム塩を硫酸バリウムに変換し、水可溶性のバリウム塩や酸可溶性のバリウム塩を除去することができる。
洗浄には周期表第1族元素の硫酸塩水溶液、周期表第2族元素の硫酸塩水溶液、硫酸のいずれを用いてもよい。また洗浄は1回のみ行ってもよく、複数回行ってもよい。複数回行う場合、周期表第1族元素の硫酸塩水溶液、周期表第2族元素の硫酸塩水溶液、硫酸のうちの2種類以上を用いてもよい。
上記洗浄に用いる周期表第1族若しくは第2族元素の硫酸塩水溶液や硫酸の濃度は硫酸バリウムから不純物が除かれる限り特に制限されないが、0.001~0.5mol/lであることが好ましい。このような濃度のものを用いることで、少ない使用量で十分に硫酸バリウムから不純物を除くことができる。周期表第1族又は第2族元素の硫酸塩水溶液や硫酸の濃度はより好ましくは、0.001~0.1mol/lであり、更に好ましくは、0.001~0.01mol/lである。
上記第一工程において、1回の洗浄に用いる周期表第1族若しくは第2族元素の硫酸塩水溶液や硫酸の割合は、洗浄される硫酸バリウム100質量%に対して0.01~10質量%となる割合であることが好ましい。このような割合で周期表第1族若しくは第2族元素の硫酸塩水溶液や希硫酸を使用することで周期表第1族若しくは第2族元素の硫酸塩水溶液や硫酸の使用量を抑えつつ、硫酸バリウムを十分に洗浄することができる。1回の洗浄に用いる周期表第1族若しくは第2族元素の硫酸塩水溶液や硫酸の割合は、より好ましくは、洗浄される硫酸バリウム100質量%に対して0.1~5質量%となる割合であり、更に好ましくは、硫酸バリウムに対して0.5~1質量%となる割合である。
上記第一工程において、原料となる硫酸バリウムを周期表第1族若しくは第2族元素の硫酸塩水溶液、または硫酸で洗浄する際の温度は、5~100℃であることが好ましい。このような温度で洗浄することで、不純物である水可溶性のバリウム塩を十分に取り除くことができる。洗浄する際の温度は、より好ましくは、10~100℃であり、更に好ましくは、20~100℃である。
また洗浄する時間は、5~120分であることが好ましい。洗浄時間をこのようにすることで、水可溶性のバリウム塩を十分に除きつつ、硫酸バリウムとシリカの球状複合粒子の製造を効率的に行うことができる。洗浄する時間は、より好ましくは、5~60分であり、更に好ましくは、10~30分である。洗浄を複数回行う場合には、複数回の洗浄の合計時間がこのような時間であることが好ましい。
上記第一工程においては、固体の硫酸バリウムに対して周期表第1族若しくは第2族元素の硫酸塩水溶液、または硫酸を添加して洗浄してもよく、硫酸バリウムのスラリーに対して周期表第1族若しくは第2族元素の硫酸塩水溶液、または硫酸を添加して洗浄してもよいが、硫酸バリウムのスラリーに対して周期表第1族若しくは第2族元素の硫酸塩水溶液、または硫酸を添加して洗浄することが好ましい。このようにすることで、硫酸バリウムの洗浄効果を高め、より効率的に不純物である水可溶性のバリウム塩や酸可溶性のバリウム塩を除去することができる。
上記硫酸バリウムのスラリーを調製する際に使用する溶媒としては、水、アルコール等の1種又は2種以上が挙げられる。これらの中でも水が好ましい。
上記硫酸バリウムのスラリーの濃度は特に制限されないが、生産効率を維持しつつ硫酸バリウムに対する洗浄効果を高める点から、20~200g/Lであることが好ましい。より好ましくは、40~150g/Lであり、更に好ましくは、60~100g/Lである。
上記第一工程において用いる周期表第1族又は第2族元素の硫酸塩水溶液としては、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウムが挙げられ、これらの1種又は2種以上を好適に用いることができる。
上記第一工程の洗浄の後、第二工程の前に更に硫酸バリウムを水で洗浄してもよい。具体的には、上記第一工程で洗浄した硫酸バリウムスラリーをろ過し、そのろ過されたケーキを水で洗浄する。この場合、洗浄に用いた水の電気伝導度が200μS/cm以下となるまで水で洗浄することが好ましい。このようにすることで、硫酸バリウムに含まれる水溶性の不純物を十分に除去することができる。より好ましくは、洗浄に用いた水の電気伝導度が100μS/cm以下となるまで水で洗浄することであり、更に好ましくは、洗浄に用いた水の電気伝導度が50μS/cm以下となるまで水で洗浄することである。
上記第二工程は、洗浄後の硫酸バリウムを溶媒にリパルプして硫酸バリウムスラリーを調製する工程である。
第二工程において使用する溶媒としては、水、1価アルコール、多価アルコール等の1種又は2種以上が挙げられる。
これらの中でも水、1価アルコールのいずれかが好ましい。より好ましくは、水である。
上記第二工程でリパルプして得られる硫酸バリウムスラリーの濃度は特に制限されないが、50~1000g/Lであることが好ましい。より好ましくは、200~900g/Lであり、更に好ましくは、300~800g/Lである。
上記第三工程は、第二工程で調製した硫酸バリウムスラリーとシリカとを混合し、該混合物の一部を噴霧乾燥し、800~1100℃で焼成したものに対して「医薬部外品原料規格2021」の「硫酸バリウム」の規格における「塩酸可溶物及び可溶性バリウム塩」の純度試験を行った場合に
(a)塩酸可溶物が15mg以下、かつ「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03未満、又は、
(b)塩酸可溶物が14mg以下、かつ、「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03以上
のいずれかに該当する混合物を得る工程である。
硫酸バリウムスラリーとシリカとを混合して焼成すると、微量のケイ酸バリウムが副生することがある。ケイ酸バリウムは塩酸と反応して「可溶性バリウム塩」に該当する塩化バリウムを生成するため、ケイ酸バリウムの副生量が多いと「医薬部外品原料規格2021」の「硫酸バリウム」の規格における「可溶性バリウム塩」の規格を満足しない。
第三工程において得られた混合物の一部を噴霧乾燥し、800~1100℃で焼成したものが上記(a)に該当する場合、当該混合物を噴霧乾燥し、800~1100℃で焼成することで「医薬部外品原料規格2021」の「硫酸バリウム」の規格における「塩酸可溶物及び可溶性バリウム塩」の純度試験を行った場合に、塩酸可溶物が15mg以下となり、かつ、「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03未満となる硫酸バリウムとシリカの球状複合粒子を得ることができる。
第三工程において得られた混合物の一部を噴霧乾燥し、800~1100℃で焼成したものが上記(b)に該当する場合、当該混合物を噴霧乾燥、焼成しただけでは求められる硫酸バリウムとシリカの球状複合粒子を得ることはできない。しかし、当該混合物に周期表第1族又は第2族元素の塩を添加することで、不純物として僅かに含まれる可溶性のバリウム塩を予め硫酸バリウムに変換し、800~1100℃で焼成したときに副生されるケイ酸バリウムの量を抑制することにより、医薬部外品原料規格2021の「塩酸可溶物」試験での塩化バリウムの生成量を減らして「可溶性バリウム塩」の規格を満足することができる。周期表第1族又は第2族元素の塩は塩酸可溶物に該当するが、混合物中の塩酸可溶物が14mg以下であれば周期表第1族又は第2族元素の塩を添加しても塩酸可溶物の規格を満足する余裕があるため、周期表第1族又は第2族元素の塩の添加により、「塩酸可溶物」と「可溶性バリウム塩」の両方の規格を満足することができる。
第三工程において得られた混合物が上記(a)、(b)のいずれにも該当しない場合には、使用する原料の種類を変更する等して再度第三工程までを行う。
上記第三工程において、第二工程で調製した硫酸バリウムスラリーとシリカとを混合し、該混合物の一部を噴霧乾燥した後に焼成する際、乾燥温度や時間は後述する第五工程における乾燥温度や時間と同じであることが好ましく、焼成温度や時間は後述する第六工程において第五工程で得られた乾燥物を焼成する際の温度や時間と同じであることが好ましい。第五工程での噴霧乾燥、及び、第六工程での焼成と同じ条件で噴霧乾燥、焼成して上記(a)又は(b)に該当するかを判定することで、より確実に「医薬部外品原料規格2021」の「硫酸バリウム」の規格における「塩酸可溶物及び可溶性バリウム塩」の純度試験を行った場合に、塩酸可溶物が15mg以下となり、かつ、「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03未満となる硫酸バリウムとシリカの球状複合粒子を得ることができる。
上記第三工程は、硫酸バリウムスラリー中の硫酸バリウムとシリカとの合計重量に対するシリカの重量割合が1%以上となるようにシリカを混合する工程であることが好ましい。シリカは硫酸バリウムとシリカの複合粒子の形状を綺麗な球状にする効果に加え、硫酸バリウムスラリーの粘度を低下させる効果も有する。第三工程におけるシリカの混合割合をこのようにすることで、硫酸バリウムスラリーの粘度が低下し、第五工程の乾燥を噴霧乾燥によって行うのに適したものとなる。
第三工程におけるシリカの混合割合は、硫酸バリウムスラリー中の硫酸バリウムとシリカとの合計重量に対するシリカの重量割合は3%以上であることがより好ましい。更に好ましくは、5%以上であり、特に好ましくは、7%以上である。
また「医薬部外品原料規格2021」の「硫酸バリウム」の規格における「塩酸可溶物」の規格を満足した粒子を合成する点から、第三工程におけるシリカの混合割合は、硫酸バリウムスラリー中の硫酸バリウムとシリカとの合計重量に対するシリカの重量割合が20%以下であることが好ましい。より好ましくは、14%以下であり、更に好ましくは、10%以下である。
上記第三工程で硫酸バリウムスラリーと混合するシリカは、平均粒子径が1~100nmであることが好ましい。シリカとして粒子径が小さいものを用いると、硫酸バリウムスラリーがより粘度の低いものとなり、第五工程の乾燥を噴霧乾燥によって行うのにより適したものとなる。また粒子径の小さいシリカを用いたほうが、最終的に得られる硫酸バリウムとシリカの複合粒子がより表面に凹凸の少ない綺麗な粒子となる。一方、シリカとして粒子径の大きいものを用いると、シリカの比表面積が小さいことから硫酸バリウムとの接点が減少し、硫酸バリウムスラリーと混合した際に生成するケイ酸バリウムの量が少なくなる傾向にある。これらを考慮すると、第三工程で使用するシリカとしては平均粒子径が1~100nmのものが好ましい。
シリカの平均粒子径は、より好ましくは、1~60nmであり、更に好ましくは、1~20nmである。
シリカの平均粒子径は、後述する実施例に記載の方法により測定することができる。
上記第三工程で硫酸バリウムスラリーに添加するシリカは、固体のものであってもよく、溶媒に分散させたシリカゾルであってもよいが、シリカ粒子が予め良く分散した状態となっており湿式メディア分散処理のようなシリカ粒子同士の凝集を解す操作が不要となる点からシリカゾルが好ましい。シリカゾルの溶媒としては上述した硫酸バリウムスラリーを調製する際に用いる溶媒と同様のものを用いることができる。
上記第三工程で硫酸バリウムスラリーと混合するシリカは、該シリカを水に分散させたシリカゾルが酸性となるものであってもよく、アルカリ性となるものであってもよく、中性となるものであってもよい。
上記第四工程は、「塩酸可溶物」と「可溶性バリウム塩」の両方の規格を満足するものとなるように、上記(b)に該当する混合物に対し、原料硫酸バリウムの重量に対し0.05~0.40質量%となる割合の周期表第1族又は第2族元素の塩を添加する工程である。
上記(b)に該当する混合物に対してこのような割合で周期表第1族又は第2族元素の塩を添加することで、上述した「塩酸可溶物」と「可溶性バリウム塩」の両方の規格を満足することができる。
第四工程において周期表第1族又は第2族元素の塩を添加する量は、より好ましくは、本発明の硫酸バリウムとシリカの球状複合粒子の製造方法に原料として用いる硫酸バリウム100質量%に対して、0.07~0.40質量%であり、更に好ましくは、0.10~0.35質量%である。
上記第四工程において周期表第1族又は第2族元素の塩を形成する周期表第1族又は第2族元素としては、ナトリウム、カリウム、マグネシウム、カルシウム等が挙げられる。これらの中でも、周期表第1族元素が好ましい。
また周期表第1族又は第2族元素の塩としては、硫酸塩が好ましい。
上記第五工程は、第四工程で周期表第1族又は第2族元素の塩が添加され又はされなかった混合物を噴霧乾燥して乾燥物を得る工程である。
混合物が乾燥される限り、乾燥する温度は特に制限されないが、混合物を十分に乾燥させることと製造の効率とを考慮すると、100~250℃であることが好ましい。より好ましくは、100~230℃であり、更に好ましくは、105~220℃である。
上記第六工程は、第五工程で得られた乾燥物を800~1100℃で焼成する工程である。このような温度で焼成することで、硫酸バリウム中に僅かに含まれる硫化物を十分に除去するとともに、硫酸バリウムの過度な焼結を防ぎつつ、硫酸バリウムとシリカの混合物を十分に焼成することでより強固な粒子にすることができる。
焼成する温度は800~1100℃であればよいが、800~1000℃であることが好ましい。より好ましくは、850~950℃である。
また焼成する時間(最高温度に到達してから最高温度を維持する時間)は特に制限されないが、生産性の観点から、10~1500分であることが好ましい。より好ましくは、10~600分であり、更に好ましくは、30~300分であり、特に好ましくは、60~150分であり、最も好ましくは、60~120分である。
本発明の硫酸バリウムとシリカの球状複合粒子の製造方法は、上記第一工程から第六工程、及び、上述した第一工程と第二工程の間の水による洗浄の工程以外の他の工程を含んでいてもよい。他の工程としては、第三工程における硫酸バリウムスラリーとシリカとを混合したスラリーを湿式メディア分散機や湿式メディアレス分散機で分散する工程、第三工程における硫酸バリウムスラリーとシリカとを混合したスラリーを目開き20~250μmの篩に通す工程等が挙げられる。
本発明を詳細に説明するために以下に具体例を挙げるが、本発明はこれらの例のみに限定されるものではない。特に断りのない限り、「%」とは「質量%(重量%)」を意味する。なお、各物性の測定方法は以下の通りである。
<吸光度>
U-1900形レシオビーム分光光度計(日立ハイテクノロジーズ製)を用い、波長500nm、光路長20mmで測定した。
<原料硫酸バリウム及びシリカゾル(シリカ)の平均粒子径>
原料硫酸バリウム及びシリカの一次粒子径がBET法によって求められる比表面積と同一の表面積を有する球の直径に概ね相当することから、原料硫酸バリウム及びシリカのBET法による比表面積:Sgを全自動BET比表面積測定装置Macsorb(Mountech製)により測定し、その測定値を下記計算に用いることで平均粒子径として求めた。
平均粒子径(μm)=6/(Sg×ρ)
Sg(m/g):比表面積、ρ(g/cm):粒子の密度
密度:ρ(g/cm)としては、硫酸バリウムの場合4.5(g/cm)を用い、シリカの場合2.2(g/cm)を用いた。
<硫酸バリウムとシリカの複合粒子の平均粒子径>
レーザ回折・散乱式粒子径分布測定装置マイクロトラックMT3300EXII(日機装社製)により平均粒子径(D50)を測定した。溶媒には水を用いた。
<真球度>
走査型電子顕微鏡JSM-6510A(日本電子製)にて撮影した画像に対角線を引き、その線上に乗る粒子50個の長径及び短径を測定し、各粒子の長径/短径の平均値を真球度とした。
実施例1
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後、水洗することでスラリーとし、純水を加えてスラリーの濃度を135g/Lに調製した。該原料硫酸バリウムのスラリーに対し、硫酸ナトリウム〔無水〕(キシダ化学製、99%)を硫酸バリウムに対して0.8%になるよう添加して溶解し、30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗した。水洗後の固形分を純水にリパルプしてスラリーの濃度が380g/Lになるよう調製し、該スラリーにシリカゾル(スノーテックスST-30、日産化学製)をBaSOとSiOの重量比が93:7となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は15mg以下(8.0mg)であり、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03未満(0.004)であった。
このため、混合物をそのままマイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより、3.5μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.03であった。得られた硫酸バリウムとシリカの球状複合粒子の走査型電子顕微鏡写真を図1に示す。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の純度試験を行った結果、下記の規格項目に全て適合し、「医薬部外品原料規格2021」に適合することが確認された。このときの「塩酸可溶物」は8.0mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.004であった。
・リン酸塩:検出なし
・硫化物:検出なし
・塩酸可溶物:15mg以下(8.0mg)
・可溶性バリウム塩:検出なし
・液性:中性
・重金属:10ppm以下
・ヒ素:1ppm以下
なお、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の純度試験の方法は以下のとおりである。
純度試験
(1)液性 本品1.0gに水20mLを加えて5分間振り混ぜるとき、液は、中性である。
(2)リン酸塩 本品1.0gに薄めた硝酸(3→8)8mLを加えて5分間煮沸し、冷後、蒸発した水を補いもとの容量とする。これを希硝酸で洗ったろ紙でろ過し、ろ液に等容量の七モリブデン酸六アンモニウム試液を加え、50~60℃で1時間放置するとき、黄色の沈殿を生じない。
(3)硫化物 本品10gに希塩酸10mL及び水を加えて100mLとし、試料溶液とする。試料溶液を10分間煮沸するとき、発生するガスは、潤した酢酸鉛(II)紙を黒変しない。
(4)塩酸可溶物及び可溶性バリウム塩 (3)の試料溶液を冷却し、水を加えて100mLとし、ろ過する。ろ液50mLをとり、水浴上で蒸発乾固する。これに塩酸2滴及び温湯10mLを加え、あらかじめ105℃で1時間乾燥した定量分析用ろ紙でろ過し、残留物を温湯100mLで洗い、洗液をろ液に合わせ、水浴上で蒸発乾固する。残留物を105℃で1時間乾燥するとき、その量は、15mg以下である。また、これに水10mLを加え、振り混ぜてろ過し、ろ液に希硫酸0.5mLを加え、30分間放置するとき、液は、混濁しない。
(5)重金属 本品5.0gに酢酸(100)2.5mL及び水50mLを加え、10分間煮沸し、冷後、アンモニア試液0.5mL及び水を加えて100mLとし、ろ過する。ろ液50mLを試料溶液として試験を行うとき、その限度は、10ppm以下である。ただし、比較液には、鉛標準液2.5mLをとる。
(6)ヒ素 本品2.0gに希硫酸10mLを加えて加温し、これを試料溶液として試験を行うとき、その限度は、1ppm以下である。
実施例2
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後水洗することでスラリーとし、純水を加えてスラリーの濃度を135g/Lに調製した。該原料硫酸バリウムのスラリーに対し、硫酸ナトリウム〔無水〕(キシダ化学製、99%)を硫酸バリウムに対して0.8%になるよう添加して溶解し、30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗した。水洗後の固形分を純水にリパルプしてスラリーの濃度が380g/Lになるよう調製し、該スラリーにシリカゾル(スノーテックスST-O、日産化学製)をBaSOとSiOの重量比が90:10となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は14mg以下(7.9mg)であり、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03以上(0.925)であった。
このため、得られた混合物に硫酸ナトリウム(キシダ化学製)を硫酸バリウムの重量に対して2500ppmになるよう添加し、10分間攪拌した。その後、マイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより、3.5μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.03であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、下記の規格項目に全て適合し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合することが確認された。このときの「塩酸可溶物」は12.5mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.003であった。
・リン酸塩:検出なし
・硫化物:検出なし
・塩酸可溶物:15mg以下(12.5mg)
・可溶性バリウム塩:検出なし
・液性:中性
・重金属:10ppm以下
・ヒ素:1ppm以下
実施例3
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後水洗することでスラリーとし、純水を加えてスラリーの濃度を135g/Lに調製した。該原料硫酸バリウムのスラリーに対し、硫酸ナトリウム〔無水〕(キシダ化学製、99%)を硫酸バリウムに対して0.8%になるよう添加して溶解し、100℃に昇温して30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗した。水洗後の固形分を純水にリパルプしてスラリーの濃度が380g/Lになるよう調製し、上記スラリーにシリカゾル(スノーテックスST-30、日産化学製)をBaSOとSiOの重量比が93:7となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は15mg以下(7.2mg)であり、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03未満(0.007)であった。
このため、得られた混合物をそのままマイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を800℃で2時間焼成することにより、3.5μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.04であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、下記の規格項目に全て適合し、「医薬部外品原料規格2021」に適合することが確認された。このときの「塩酸可溶物」は7.2mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.007であった。
・リン酸塩:検出なし
・硫化物:検出なし
・塩酸可溶物:15mg以下(7.2mg)
・可溶性バリウム塩:検出なし
・液性:中性
・重金属:10ppm以下
・ヒ素:1ppm以下
実施例4
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後水洗することでスラリーとし、純水を加えてスラリーの濃度を90g/Lに調製した。該原料硫酸バリウムのスラリーに対し、硫酸を硫酸バリウムに対して0.8%になるよう添加し、30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗した。水洗後の固形分を純水にリパルプしてスラリーの濃度が380g/Lになるよう調製し、上記スラリーにシリカゾル(スノーテックスST-30、日産化学製)をBaSOとSiOの重量比が93:7となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は15mg以下(10.5mg)であり、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03未満(0.008)であった。
このため、得られた混合物をそのままマイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより、3.5μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.05であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、下記の規格項目に全て適合し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合することが確認された。このときの「塩酸可溶物」は10.5mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.008であった。
・リン酸塩:検出なし
・硫化物:検出なし
・塩酸可溶物:15mg以下(10.5mg)
・可溶性バリウム塩:検出なし
・液性:中性
・重金属:10ppm以下
・ヒ素:1ppm以下
実施例5
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後水洗することでスラリーとし、純水を加えてスラリーの濃度を90g/Lに調製した。該原料硫酸バリウムのスラリーに対し、硫酸ナトリウム〔無水〕(キシダ化学製、99%)を硫酸バリウムに対して0.8%になるよう添加して溶解し、60℃に昇温して30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗した。水洗後の固形分を純水にリパルプしてスラリーの濃度が135g/Lになるよう調製し、上記スラリーにシリカゾル(スノーテックスST-30L、日産化学製)をBaSOとSiOの重量比が85:15となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は15mg以下(14.4mg)であり、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03未満(0.015)であった。
このため、得られた混合物をそのままマイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより、3.4μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.07であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、下記の規格項目に全て適合し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合することが確認された。このときの「塩酸可溶物」は14.4mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.015であった。
・リン酸塩:検出なし
・硫化物:検出なし
・塩酸可溶物:15mg以下(14.4mg)
・可溶性バリウム塩:検出なし
・液性:中性
・重金属:10ppm以下
・ヒ素:1ppm以下
実施例6
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後水洗することでスラリーとし、純水を加えてスラリーの濃度を90g/Lに調製した。該原料硫酸バリウムのスラリーに対し、硫酸ナトリウム〔無水〕(キシダ化学製、99%)を硫酸バリウムに対して0.8%になるよう添加して溶解し、60℃に昇温して30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗した。水洗後の固形分を純水にリパルプしてスラリーの濃度が135g/Lになるよう調製し、上記スラリーにシリカゾル(スノーテックスST-OL、日産化学製)をBaSOとSiOの重量比が85:15となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は15mg以下(3.7mg)であり、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03未満(0.008)であった。
このため、得られた混合物をそのままマイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより、3.6μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.08であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、下記の規格項目に全て適合し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合することが確認された。このときの「塩酸可溶物」は3.7mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.008であった。
・リン酸塩:検出なし
・硫化物:検出なし
・塩酸可溶物:15mg以下(3.7mg)
・可溶性バリウム塩:検出なし
・液性:中性
・重金属:10ppm以下
・ヒ素:1ppm以下
実施例7
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後水洗することでスラリーとし、純水を加えてスラリーの濃度を90g/Lに調製した。該原料硫酸バリウムのスラリーに対し、硫酸ナトリウム〔無水〕(キシダ化学製、99%)を硫酸バリウムに対して0.8%になるよう添加して溶解し、60℃に昇温して30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗した。水洗後の固形分を純水にリパルプしてスラリーの濃度が135g/Lになるよう調製し、上記スラリーにシリカゾル(Sciqas0.05μmの水分散体、堺化学工業製)をBaSOとSiOの重量比が85:15となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は15mg以下(6.3mg)であり、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03未満(0.014)であった。
このため、得られた混合物をそのままマイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより、3.6μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.07であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、下記の規格項目に全て適合し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合することが確認された。このときの「塩酸可溶物」は6.3mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.014であった。
・リン酸塩:検出なし
・硫化物:検出なし
・塩酸可溶物:15mg以下(6.3mg)
・可溶性バリウム塩:検出なし
・液性:中性
・重金属:10ppm以下
・ヒ素:1ppm以下
実施例8
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後水洗することでスラリーとし、純水を加えてスラリーの濃度を135g/Lに調製した。該原料硫酸バリウムのスラリーに対し、硫酸を硫酸バリウムに対して0.8%になるよう添加し、30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗した。水洗後の固形分を純水にリパルプしてスラリーの濃度が380g/Lになるよう調製し、上記スラリーにシリカゾル(スノーテックスST-O、日産化学製)をBaSOとSiOの重量比が90:10となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は14mg以下(7.9mg)であり、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03以上(0.925)であった。
このため、得られた混合物に硫酸ナトリウム(キシダ化学製)を硫酸バリウムの重量に対して2500ppmになるよう添加し、10分間攪拌した。その後、マイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより、3.5μmの硫酸バリウムとシリカの球状複合粒子を調製した。
得られた粒子の真球度は1.05であった。得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、下記の規格項目に全て適合し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合することが確認された。このときの「塩酸可溶物」は12.3mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.005であった。
・リン酸塩:検出なし
・硫化物:検出なし
・塩酸可溶物:15mg以下(12.3mg)
・可溶性バリウム塩:検出なし
・液性:中性
・重金属:10ppm以下
・ヒ素:1ppm以下
比較例1
硫化バリウムと硫酸とを反応させることで平均粒子径0.02μmの原料硫酸バリウム(乾燥時の顔料pH9.7)を調製した後、水洗することでスラリーとし、純水を加えてスラリーの濃度を90g/Lに調製した。該原料硫酸バリウムのスラリーに対し、硫酸ナトリウム〔無水〕(キシダ化学製、99%)を硫酸バリウムに対して0.8%になるよう添加して溶解し、30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗した。水洗後の固形分を純水にリパルプしてスラリーの濃度が380g/Lになるよう調製し、該スラリーにシリカゾル(スノーテックスST-O、日産化学製)をBaSOとSiOの重量比が85:15となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は15mgより多く(17.2mg)、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03以上(0.936)であった。
得られた混合物をそのままマイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより、3.4μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.05であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、「塩酸可溶物」が15mgを超え、「可溶性バリウム塩」が検出されたことから、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合しないことが確認された。このときの「塩酸可溶物」は17.2mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.936であった。
比較例2
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後水洗することでスラリーとし、純水を加えてスラリーの濃度を90g/Lに調製した。該原料硫酸バリウムのスラリーに対し、硫酸ナトリウム〔無水〕(キシダ化学製、99%)を硫酸バリウムに対して0.8%になるよう添加して溶解し、30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗し、水洗後の固形分を純水にリパルプしてスラリーの濃度が380g/Lになるよう調製した。該スラリーにシリカゾル(スノーテックスST-O、日産化学製)をBaSOとSiOの重量比が93:7となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は14mg以下(7.8mg)であり、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03以上(0.853)であった。
得られた混合物をそのままマイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより3.3μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.03であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、「可溶性バリウム塩」が検出されたことから、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合しないことが確認された。このときの「塩酸可溶物」は7.8mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.853であった。
比較例3
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後、水洗することでスラリーとし、洗浄剤による洗浄を行わずに純水を加えてスラリーの濃度が380g/Lになるよう調製した。該スラリーにシリカゾル(スノーテックスST-30、日産化学製)をBaSOとSiOの重量比が85:15となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は15mgより多く(19.4mg)、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03未満(0.016)であった。
得られた混合物をそのままマイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより3.4μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.04であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、「塩酸可溶物」が15mgを超えたことから、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合しないことが確認された。このときの「塩酸可溶物」は19.4mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.016であった。
比較例4
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後、水洗することでスラリーとし、洗浄剤による洗浄を行わずに純水を加えてスラリーの濃度が380g/Lになるよう調製した。該スラリーにシリカゾル(スノーテックスST-30、日産化学製)をBaSOとSiOの重量比が85:15となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は15mgより多く(21.3mg)、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03未満(0.015)であった。
得られた混合物をそのままマイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を750℃で2時間焼成することにより3.4μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.07であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、「硫化物」が検出され、「塩酸可溶物」が15mgを超えたことから、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合しないことが確認された。このときの「塩酸可溶物」は21.3mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.015であった。
比較例5
塩化バリウムと硫酸ナトリウムとを反応させることで平均粒子径0.3μmの原料硫酸バリウム(乾燥時の顔料pH6.5)を調製した後、水洗することでスラリーとし、純水を加えてスラリーの濃度を135g/Lに調製した。該原料硫酸バリウムのスラリーに対し硫酸ナトリウム〔無水〕(キシダ化学製、99%)を硫酸バリウムに対して0.8%になるよう添加して溶解し、30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗した。水洗後の固形分を純水にリパルプしてスラリーの濃度が380g/Lになるよう調製した。該スラリーにシリカゾル(スノーテックスST-30、日産化学製)をBaSOとSiOの重量比が85:15となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は15mgより多く(42.3mg)、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03以上(0.032)であった。
得られた混合物をそのままマイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより3.4μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.25であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、「塩酸可溶物」が15mgを超え、「可溶性バリウム塩」が検出されたことから、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合しないことが確認された。このときの「塩酸可溶物」は42.3mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.032であった。
比較例6
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後、水洗することでスラリーとし、純水を加えてスラリーの濃度を135g/Lに調製した。該原料硫酸バリウムのスラリーに対し硫酸ナトリウム〔無水〕(キシダ化学製、99%)を硫酸バリウムに対して0.8%になるよう添加して溶解し、30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗した。水洗後の固形分を純水にリパルプしてスラリーの濃度が380g/Lになるよう調製した。該スラリーにシリカゾル(スノーテックスST-O、日産化学製)をBaSOとSiOの重量比が90:10となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は14mg以下(7.9mg)、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03以上(0.925)であった。
得られた混合物に硫酸ナトリウム(キシダ化学製)を硫酸バリウムの重量に対して10ppmになるよう添加し、10分間攪拌した。その後、マイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより3.4μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.05であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、「可溶性バリウム塩」が検出されたことから、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合しないことが確認された。このときの「塩酸可溶物」は8.0mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.916であった。
比較例7
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後、水洗することでスラリーとし、純水を加えてスラリーの濃度を135g/Lに調製した。該原料硫酸バリウムのスラリーに対し硫酸ナトリウム〔無水〕(キシダ化学製、99%)を硫酸バリウムに対して0.8%になるよう添加して溶解し、30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗した。水洗後の固形分を純水にリパルプしてスラリーの濃度が380g/Lになるよう調製した。該スラリーにシリカゾル(スノーテックスST-O、日産化学製)をBaSOとSiOの重量比が90:10となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は14mg以下(7.9mg)、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03以上(0.925)であった。
得られた混合物に硫酸ナトリウム(キシダ化学製)を硫酸バリウムの重量に対して100ppmになるよう添加し、10分間攪拌した。得られた混合物をマイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより3.4μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.04であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、「可溶性バリウム塩」が検出されたことから、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合しないことが確認された。このときの「塩酸可溶物」は8.1mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.425であった。
比較例8
硫化バリウムと硫酸とを反応させることで平均粒子径0.05μmの原料硫酸バリウム(乾燥時の顔料pH8.5)を調製した後、水洗することでスラリーとし、純水を加えてスラリーの濃度を135g/Lに調製した。該原料硫酸バリウムのスラリーに対し硫酸ナトリウム〔無水〕(キシダ化学製、99%)を硫酸バリウムに対して0.8%になるよう添加して溶解し、30分間攪拌し、ろ過し、電気伝導度が40μS/cm以下となるまで水洗した。水洗後の固形分を純水にリパルプしてスラリーの濃度が380g/Lになるよう調製した。該スラリーにシリカゾル(スノーテックスST-O、日産化学製)をBaSOとSiOの重量比が90:10となる割合で添加、混合した。
得られた混合物の一部を噴霧乾燥し、900℃で2時間焼成して得られた粉末に対し、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に記載の「硫酸バリウム」の試験を行った結果、塩酸可溶物は14mg以下(7.9mg)、「可溶性バリウム塩」の試験を行った試験液の吸光度は0.03以上(0.925)であった。
得られた混合物に硫酸ナトリウム(キシダ化学製)を硫酸バリウムの重量に対して10000ppmになるよう添加し、10分間攪拌した。得られた混合物をマイクロミストスプレードライヤ(MDL-050CM、GF製)で噴霧乾燥し、得られた乾燥物を900℃で2時間焼成することにより3.4μmの硫酸バリウムとシリカの球状複合粒子を調製した。得られた粒子の真球度は1.07であった。
得られた硫酸バリウムとシリカの球状複合粒子の粉末に対し、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の試験を行った結果、「塩酸可溶物」が15mgを超えたことから、「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合しないことが確認された。このときの「塩酸可溶物」は27.5mg、「可溶性バリウム塩」の分析後の試験液の吸光度は0.007であった。
実施例1~8、比較例1~8をまとめたものを表1、2に示す。表中、硫酸バリウムとシリカの球状複合粒子の感触は、以下の方法により評価したものである。
<硫酸バリウムとシリカの球状複合粒子の感触>
10人のパネラーに対し、得られた粉末(試料)を手の甲と人差し指で触ったときの感触を1点~5点の5段階(5点が最も良い)で点数評価し、評価の平均値を求め、以下の基準で評価した。なお、「肌の上で転がりやすく、滑りが良く、さらさらしている」場合を5点とし、「転がらず、滑らない」を1点とした。
〇:平均値が3点以上
△:平均値が3点未満、2点以上
×:平均値が2点未満
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
実施例1~8、比較例1~8の結果から、本発明の製造方法を用いることで、「医薬部外品原料規格2021」に記載の「硫酸バリウム」の「塩酸可溶物」及び「可溶性バリウム塩」の要件に適合する硫酸バリウムとシリカの球状複合粒子を得ることができることが確認された。また、得られた硫酸バリウムとシリカの球状複合粒子は、いずれも良好な粉体物性を有することが確認された。


 

Claims (7)

  1. 「医薬部外品原料規格2021」の「硫酸バリウム」の規格における「塩酸可溶物及び可溶性バリウム塩」の純度試験を行った場合に、塩酸可溶物が15mg以下となり、かつ、「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03未満となることを特徴とする硫酸バリウムとシリカの球状複合粒子。
  2. 「医薬部外品原料規格2021」の「硫酸バリウム」の規格に適合することを特徴とする請求項1に記載の硫酸バリウムとシリカの球状複合粒子。
  3. 真球度が1.10以下であることを特徴とする請求項1又は2に記載の硫酸バリウムとシリカの球状複合粒子。
  4. 請求項1~3のいずれかに記載の硫酸バリウムとシリカの球状複合粒子を含むことを特徴とする化粧料。
  5. 硫酸バリウムとシリカの球状複合粒子を製造する方法であって、
    該製造方法は、硫化バリウムと硫酸との反応で得られた硫酸バリウムを周期表第1族若しくは第2族元素の硫酸塩水溶液、または硫酸で洗浄する第一工程、
    該洗浄後の硫酸バリウムを溶媒にリパルプして硫酸バリウムスラリーを調製する第二工程、
    該硫酸バリウムスラリーとシリカとを混合し、該混合物の一部を噴霧乾燥し、800~1100℃で焼成したものに対して「医薬部外品原料規格2021」の「硫酸バリウム」の規格における「塩酸可溶物及び可溶性バリウム塩」の純度試験を行った場合に
    (a)塩酸可溶物が15mg以下、かつ「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03未満、又は、
    (b)塩酸可溶物が14mg以下、かつ、「可溶性バリウム塩」の試験を行った試験液の吸光度が0.03以上
    のいずれかに該当する混合物を得る第三工程、
    該第三工程で得られた混合物が(b)に該当する場合に、該混合物に対し、原料硫酸バリウムの重量に対し0.05~0.40質量%となる割合の周期表第1族又は第2族元素の塩を添加する第四工程、
    該第四工程で周期表第1族又は第2族元素の塩が添加され又はされなかった混合物を噴霧乾燥して乾燥物を得る第五工程、及び、
    該乾燥物を800~1100℃で焼成する第六工程
    を含むことを特徴とする硫酸バリウムとシリカの球状複合粒子の製造方法。
  6. 前記硫酸バリウムスラリーとシリカとを混合して混合物を得る第三工程は、硫酸バリウムスラリー中の硫酸バリウムとシリカとの合計重量に対するシリカの重量割合が1%以上となるようにシリカを混合する工程であることを特徴とする請求項5に記載の硫酸バリウムとシリカの球状複合粒子の製造方法。
  7. 前記シリカは、平均粒子径が1~100nmであることを特徴とする請求項5又は6に記載の硫酸バリウムとシリカの球状複合粒子の製造方法。


     
PCT/JP2023/010212 2022-03-17 2023-03-16 硫酸バリウムとシリカの球状複合粒子及びその製造方法 WO2023176912A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022043020 2022-03-17
JP2022-043020 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023176912A1 true WO2023176912A1 (ja) 2023-09-21

Family

ID=88023368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010212 WO2023176912A1 (ja) 2022-03-17 2023-03-16 硫酸バリウムとシリカの球状複合粒子及びその製造方法

Country Status (1)

Country Link
WO (1) WO2023176912A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122554A (ja) * 1982-12-28 1984-07-16 Onahama Sakai Kagaku Kk 表面処理球状硫酸バリウムの製造方法
JPH04309566A (ja) * 1991-04-08 1992-11-02 Kao Corp シリカ被着硫酸バリウム
JP2016199454A (ja) * 2015-02-05 2016-12-01 堺化学工業株式会社 球状硫酸バリウム及びその製造方法
JP2018140921A (ja) * 2017-02-24 2018-09-13 堺化学工業株式会社 硫酸バリウム球状複合粉末及びその製造方法
JP2020002099A (ja) * 2018-06-29 2020-01-09 株式会社マツモト交商 水中油型化粧料組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122554A (ja) * 1982-12-28 1984-07-16 Onahama Sakai Kagaku Kk 表面処理球状硫酸バリウムの製造方法
JPH04309566A (ja) * 1991-04-08 1992-11-02 Kao Corp シリカ被着硫酸バリウム
JP2016199454A (ja) * 2015-02-05 2016-12-01 堺化学工業株式会社 球状硫酸バリウム及びその製造方法
JP2018140921A (ja) * 2017-02-24 2018-09-13 堺化学工業株式会社 硫酸バリウム球状複合粉末及びその製造方法
JP2020002099A (ja) * 2018-06-29 2020-01-09 株式会社マツモト交商 水中油型化粧料組成物

Similar Documents

Publication Publication Date Title
TWI713729B (zh) 中空二氧化矽粒子及其製造方法
JP3611303B2 (ja) 中空状微粉末、該中空状微粉末を粉砕してなる薄片状酸化チタン微粉末およびそれらの製造方法
DE69016057T2 (de) Verfahren zur Herstellung von Magnesiumoxyd.
Tabatabaei et al. Experimental study of the synthesis and characterisation of silica nanoparticles via the sol-gel method
US10759672B2 (en) Barium sulfate spherical composite powder and method for producing same
JP2008115370A (ja) コアシェル型酸化セリウム微粒子又はそれを含有する分散液及びそれらの製造方法
CN1951868B (zh) 钛酸钡微颗粒
JP6451912B1 (ja) 六角板状酸化亜鉛の製造方法
JP5794852B2 (ja) 化粧料用二酸化チタン顔料及びその製造方法
CN112552710A (zh) 化妆品用高疏水、高分散性二氧化钛颜料表面处理方法
JPWO2008062871A1 (ja) 微粒子酸化亜鉛粉体の製造方法及びこれを配合した化粧料
JP5876979B2 (ja) 二酸化チタン顔料及びその製造方法並びに印刷インキ組成物
JP5173245B2 (ja) 表面被覆した酸化亜鉛の製造方法
WO2023176912A1 (ja) 硫酸バリウムとシリカの球状複合粒子及びその製造方法
JP2009013029A (ja) 酸化ジルコニウム水和物粒子及びその製造方法
JP4088721B2 (ja) 導電性酸化スズ微粉末及び導電性酸化スズゾルの製造方法
JP4834365B2 (ja) 非晶質リン酸カルシウム被覆粒子の製造方法ならびにその粒子
JP4811723B2 (ja) 金属酸化物微粒子粉末の製造方法
JP4976052B2 (ja) コバルト含有黒色顔料
JP3651017B2 (ja) 球状マグネタイト粒子およびその製造方法
JPWO2008004694A1 (ja) 酸化チタン−酸化亜鉛凝集粉体及びその製造方法
JP4193036B2 (ja) 導電性酸化スズの製造方法
JP2010168254A (ja) 紫外線遮蔽剤、化粧料及び微細針状酸化亜鉛
JP3806790B2 (ja) 紡錘状二酸化チタンの製造方法
WO2018230473A1 (ja) 3価金属ドープ六角板状酸化亜鉛及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770865

Country of ref document: EP

Kind code of ref document: A1