WO2023176825A1 - 変速機の制御装置、変速機の制御方法及びプログラム - Google Patents

変速機の制御装置、変速機の制御方法及びプログラム Download PDF

Info

Publication number
WO2023176825A1
WO2023176825A1 PCT/JP2023/009830 JP2023009830W WO2023176825A1 WO 2023176825 A1 WO2023176825 A1 WO 2023176825A1 JP 2023009830 W JP2023009830 W JP 2023009830W WO 2023176825 A1 WO2023176825 A1 WO 2023176825A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
continuously variable
rotational
transmission
transmission mechanism
Prior art date
Application number
PCT/JP2023/009830
Other languages
English (en)
French (fr)
Inventor
謙 岡原
吉典 山村
誠一郎 高橋
大輔 長江
厚 嶋田
智 石井
康弘 田中
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Publication of WO2023176825A1 publication Critical patent/WO2023176825A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members

Definitions

  • the present invention relates to transmission control and programming.
  • Patent Document 1 discloses a technology that calculates the natural vibration period of a vehicle according to the loaded weight of the vehicle from changes in the engine rotation speed, and determines the timing of control output for the engine or CVT based on the calculated natural vibration period. Disclosed. The purpose of this technology is to suppress the longitudinal vibration of the vehicle body during gear shifting, and to sufficiently eliminate the longitudinal vibration of the vehicle even when the number of passengers or the load capacity of the vehicle changes, and to perform appropriate vibration suppression.
  • rotational vibrations generated in the power transmission path cause longitudinal vibrations of the vehicle.
  • Such rotational vibrations occur not only during gear shifting, but also due to various factors unrelated to the gear shifting performed by the continuously variable transmission mechanism, such as changes in driving force, in other words, factors outside the continuously variable transmission mechanism in the power transmission path. This may also occur. Therefore, as a further vibration countermeasure, it is desired to suppress the rotational vibration that causes longitudinal vibration of the vehicle, and to reduce the impact on drivability such as deterioration of ride comfort.
  • the present invention was made in view of these problems, and an object of the present invention is to suppress rotational vibration that causes longitudinal vibration of a vehicle as a further vibration countermeasure.
  • a transmission control device includes a primary pulley to which the driving force of a drive source mounted on a vehicle is input, a secondary pulley that transmits the driving force of the drive source to drive wheels, the primary pulley and
  • the control device for a transmission includes a continuously variable transmission mechanism having an endless annular member that is wound around the secondary pulley, wherein after rotational vibration is generated in a rotating member of the continuously variable transmission mechanism, the rotational vibration causes the A controller is provided that performs speed change control to change the speed ratio of the continuously variable transmission mechanism toward a high side when the rotational speed of the rotating member is decreasing.
  • a transmission control device includes a primary pulley to which the driving force of a drive source mounted on a vehicle is input, a secondary pulley that transmits the driving force of the drive source to drive wheels, and a primary pulley that transmits the driving force of the drive source to drive wheels. and an endless annular member that is wound around the secondary pulley.
  • the control device for a transmission includes a continuously variable transmission mechanism having: and an endless annular member that is wound around the secondary pulley; A controller is provided that performs speed change control to change the speed ratio of the continuously variable transmission mechanism toward a low side when the rotational speed of the rotating member is increasing.
  • transmission control methods and programs corresponding to each of the transmission control devices described above are provided.
  • the gear ratio of the continuously variable transmission mechanism is changed toward the high side when the rotational vibration is decreasing the rotational speed of the rotating member, or the rotational vibration is increasing the rotational speed of the rotating member.
  • the gear ratio of the continuously variable transmission mechanism is changed toward the low side when As a result, by suppressing a decrease or increase in the rotational speed by the inertia torque generated by the gear change of the continuously variable transmission mechanism, it is possible to suppress rotational vibrations that cause longitudinal vibrations of the vehicle as a further vibration countermeasure.
  • FIG. 1 is a schematic configuration diagram of a vehicle in an embodiment.
  • FIG. 2 is a flowchart illustrating an example of vibration damping control.
  • FIG. 3 is a diagram showing a subroutine of the vibration damping control execution area detection process.
  • FIG. 4 is a diagram showing a subroutine of rotational vibration detection processing.
  • FIG. 5 is a diagram showing an example of a timing chart in the embodiment.
  • FIG. 1 is a schematic diagram of the vehicle.
  • the vehicle includes an engine ENG, a transmission TM, a brake device BRK_D, and drive wheels DW.
  • Engine ENG constitutes the drive source of the vehicle.
  • the power of the engine ENG is transmitted to the driving wheels DW via the transmission TM.
  • the transmission TM is provided in the power train PT that constitutes a power transmission path connecting the engine ENG and the driving wheels DW.
  • the transmission TM is an automatic transmission and a continuously variable belt transmission.
  • the transmission TM has a drive (D) range, a reverse (R) range, a neutral (N) range, a parking (P) range, etc. as ranges, and any one of them can be set as a set range.
  • the D range and the R range constitute a driving range.
  • the D range constitutes a forward range
  • the R range constitutes a reverse range.
  • the N range and the P range constitute a non-driving range.
  • the transmission TM includes a torque converter TC, a forward/reverse switching mechanism SWM, and a variator VA.
  • Torque converter TC transmits power via fluid.
  • the power transmission efficiency is increased by engaging the lock-up clutch LU.
  • the forward/reverse switching mechanism SWM is provided in the power transmission path connecting the engine ENG and the variator VA.
  • the forward/reverse switching mechanism SWM switches the forward/backward movement of the vehicle by switching the direction of input rotation.
  • the forward/reverse switching mechanism SWM includes a forward clutch FWD/C that is engaged when the D range is selected, and a reverse brake REV/B that is engaged when the R range is selected. When the forward clutch FWD/C and the reverse brake REV/B are released, the transmission TM enters a neutral state, that is, a driving force disconnected state.
  • the variator VA is connected to a primary pulley PRI to which the driving force of the engine ENG mounted on the vehicle is input, a secondary pulley SEC that transmits the driving force of the engine ENG to the driving wheels DW, and the primary pulley PRI and the secondary pulley SEC.
  • a continuously variable transmission mechanism includes a belt BLT which is an endless annular member.
  • a primary pressure Ppri is supplied to the primary pulley PRI, and a secondary pressure Psec is supplied to the secondary pulley SEC from the hydraulic control circuit 11, respectively.
  • the brake device BRK_D includes a brake BRK, a brake actuator ACT, a brake pedal PDL, and a master cylinder MC.
  • Brake BRK is provided on drive wheel DW.
  • the braking force of brake BRK is controlled by brake actuator ACT.
  • the brake actuator ACT controls the braking force based on the brake fluid pressure generated by the master cylinder MC by converting the depression force of the brake pedal PDL.
  • An oil pump 10 is provided in the transmission TM.
  • the oil pump 10 is a mechanical oil pump driven by the power of the engine ENG.
  • power from engine ENG is transmitted to oil pump 10 via a power transmission mechanism that extracts power from an impeller of torque converter TC.
  • the power transmission mechanism may be provided to extract power from the output shaft of the engine ENG, for example.
  • Oil pump 10 pumps oil to hydraulic control circuit 11 .
  • a line pressure PL using the oil pump 10 as a hydraulic source, a primary pressure Ppri using the line pressure PL as a source pressure, a secondary pressure Psec, etc. are generated.
  • the transmission TM may be provided with an electric oil pump together with the oil pump 10 or in place of the oil pump 10.
  • the transmission TM further includes a hydraulic control circuit 11 and a transmission controller 12.
  • the hydraulic control circuit 11 is composed of a plurality of flow paths and a plurality of hydraulic control valves, and regulates the pressure of oil supplied from the oil pump 10 and supplies it to each part of the transmission TM.
  • the transmission controller 12 is a controller for controlling the transmission TM, and is connected to an engine controller 13 for controlling the engine ENG and a brake controller 14 for controlling the brake device BRK_D so as to be able to communicate with each other.
  • an output torque signal representing engine torque Te is input from the engine controller 13 to the transmission controller 12.
  • Information about the brake fluid pressure generated by the brake actuator ACT is input from the brake controller 14 to the transmission controller 12.
  • the transmission controller 12 constitutes a controller included in a control device for the transmission TM.
  • Transmission controller 12, engine controller 13, and brake controller 14 each include one or more central processing units (CPU), read-only memory (ROM), random access memory (RAM), and input/output interfaces (I/O interfaces). It consists of several computers (microcomputers). Each of these controllers 12, 13, and 14 performs control by executing a program stored in the ROM or RAM by the CPU. As the program, for example, one stored in a non-transitory storage medium such as a CD-ROM may be used.
  • a controller 100 is configured together with an engine controller 13 and a brake controller 14. The controller 100 may further include an integrated controller that performs integrated control of the controllers 12, 13, and 14, for example.
  • the sensor/switch group 40 includes, for example, a vehicle speed sensor that detects the vehicle speed VSP, an accelerator opening sensor that detects the accelerator opening APO, an engine rotational speed sensor that detects the rotational speed Ne of the engine ENG, and a brake sensor that detects the brake fluid pressure. including.
  • the sensor switch group 40 further includes, for example, a primary pressure sensor that detects the primary pressure Ppri, a secondary pressure sensor that detects the secondary pressure Psec, a primary rotational speed sensor that detects the rotational speed Npri that is the input side rotational speed of the primary pulley PRI, It includes a secondary rotation speed sensor that detects the rotation speed Nsec that is the output side rotation speed of the secondary pulley SEC, a position sensor that detects the operation position of the gear shift lever, and an oil temperature sensor that detects the oil temperature TOIL of the transmission TM.
  • the rotational speed Npri is, for example, the rotational speed of the input shaft of the primary pulley PRI
  • the rotational speed Nsec is, for example, the rotational speed of the output shaft of the secondary pulley SEC.
  • the transmission controller 12 controls the transmission TM based on these signals. Control of the transmission TM is performed by controlling the hydraulic control circuit 11 based on these signals.
  • the hydraulic control circuit 11 performs hydraulic control of the lock-up clutch LU, forward clutch FWD/C, reverse brake REV/B, primary pulley PRI, secondary pulley SEC, etc. based on instructions from the transmission controller 12.
  • rotational vibrations generated in the power train PT cause longitudinal vibrations of the vehicle.
  • Such rotational vibrations occur not only during speed changes but also due to various factors unrelated to the speed change performed by the variator VA, such as changes in driving force, that is, factors outside the variator VA in the power train PT. Therefore, as a further vibration countermeasure, it is desired to suppress the rotational vibration that causes longitudinal vibration of the vehicle, and to reduce the impact on drivability such as deterioration of ride comfort.
  • the transmission controller 12 performs vibration damping control as described below.
  • the vibration damping control is a control in which a variator VA is used to generate torque in the opposite phase to rotational vibration. Therefore, vibration damping control is performed by speed change control of variator VA. In the vibration damping control, the speed of the variator VA is changed so that the inertia torque generated by the speed change of the variator VA becomes a torque with a phase opposite to the rotational vibration.
  • the vibration damping control is a control that suppresses rotational vibrations that occur due to factors outside the variator VA in the power train PT.
  • Factors outside the variator VA include, for example, sudden engagement of the lock-up clutch LU, sudden increase or decrease in the input torque Tin of the variator VA, and ON/OFF of auxiliary equipment for the engine ENG such as an air conditioner. When these factors occur, the load on the power train PT changes suddenly, causing twisting of the drive shaft. As a result, the drive shaft attempting to recover from the twisted state causes so-called rotational vibration in which the rotational speed of the rotating body (for example, the primary pulley, secondary pulley, etc.) repeats acceleration and deceleration over a predetermined period of time.
  • Factors other than the variator VA include, for example, rattling between power transmission members due to brake operation or rattling in the power train PT.
  • FIG. 2 is a flowchart showing an example of vibration damping control performed by the transmission controller 12. As shown in FIG. 2, in step S1, an execution area for damping control is detected. The execution area detection process is performed as shown in a subroutine in FIG.
  • FIG. 3 is a diagram showing a subroutine of the vibration damping control execution area detection process.
  • step S11 it is determined whether the vehicle speed VSP is lower than the predetermined vehicle speed VSP1 (higher than zero and lower than the predetermined vehicle speed VSP1).
  • the predetermined vehicle speed VSP1 is a determination value for determining whether or not ride comfort may deteriorate, for example, from the viewpoint of whether longitudinal vibration is easily detected by the driver, that is, from the viewpoint of whether longitudinal vibration is noticeable or not. It is predetermined from Therefore, in step S11, it is determined whether or not the ride comfort may deteriorate in light of the vehicle speed VSP.
  • the predetermined vehicle speed VSP1 is set, for example, to a medium vehicle speed (for example, 40 km/h) when the vehicle speed VSP is divided into low, middle, and high vehicle speeds.
  • step S11 it is determined that the ride comfort may deteriorate.
  • step S11 it may be determined whether the accelerator opening degree APO is lower than the predetermined opening degree APO1 (whether it is higher than zero and lower than the predetermined opening degree APO1). In this case, it can be determined whether the ride comfort may deteriorate in light of the accelerator opening degree APO.
  • the predetermined opening degree APO1 is set, for example, to a low opening degree (for example, 20 degrees) when the accelerator opening degree APO is divided into low, medium and high opening degrees.
  • a low opening degree for example, 20 degrees
  • the vehicle is being driven slowly, and longitudinal vibrations are likely to be sensed by the driver. Therefore, in this case, it is determined that the ride comfort may deteriorate if the accelerator opening degree APO is lower than the predetermined opening degree APO1.
  • step S11 it may be determined whether the gear ratio IP is larger than the predetermined gear ratio IP1 (whether it is larger than the predetermined gear ratio IP1 and less than or equal to the maximum gear ratio).
  • the gear ratio IP is a value obtained by dividing the input rotation of the variator VA by the output rotation, and in this case, it can be determined whether the ride comfort may deteriorate in light of the gear ratio IP.
  • the predetermined gear ratio IP1 is set to a gear ratio IP larger than 1, for example.
  • the gear ratio IP is larger than the predetermined gear ratio IP1
  • the torque on the output side increases, and a large load is applied, which tends to cause twisting of the drive shaft. Therefore, in this case, the large longitudinal vibration makes it easy for the driver to sense the longitudinal vibration. Therefore, in this case, it is determined that the ride comfort may deteriorate if the gear ratio IP is larger than the predetermined gear ratio IP1.
  • step S11 it may be determined whether the oil temperature TOIL is higher than the predetermined oil temperature TOIL1 (whether it is below the maximum allowable oil temperature and higher than the predetermined oil temperature TOIL1). In this case, it can be determined based on the oil temperature TOIL whether rotational vibrations that cause longitudinal vibrations of the vehicle can be suppressed.
  • the predetermined oil temperature TOIL1 is set in advance in consideration of the viscosity of the oil in the torque converter TC.
  • the predetermined oil temperature TOIL1 can be set, for example, to a low temperature of 10° C. or lower or an extremely low temperature of 0° C. or lower.
  • step S11 it may be determined whether any of the vehicle speed VSP, accelerator opening APO, gear ratio IP, and oil temperature TOIL satisfy the above-described determination. In this case, if any one of them is determined to be affirmative, it can be determined that the ride comfort may deteriorate. If an affirmative determination is made in step S11, the process proceeds to step S12, where it is detected that the vibration damping control is in the execution area. If the determination in step S11 is negative, the process proceeds to step S13, where it is detected that the damping control is not performed. After step S12 or step S13, the subroutine processing ends.
  • step S2 it is determined whether the damping control is in the execution area based on the detection result of the execution area. If the determination in step S2 is negative, the process ends once. If an affirmative determination is made in step S2, the process proceeds to step S3. In step S3, rotational vibration is detected. The rotational vibration detection process is performed as shown in the subroutine shown in FIG.
  • FIG. 4 is a diagram showing a subroutine of rotational vibration detection processing.
  • filter processing is performed on the rotation speed Nsec detected by the secondary rotation speed sensor, and a bandpass filter is used for the filter processing.
  • a rotational vibration component is extracted from the rotational speed Nsec by filtering using a bandpass filter.
  • step S22 the amplitude amount Asec of the rotational speed Nsec and the frequency f are detected based on the extracted components extracted in step S21.
  • step S23 it is determined whether the amplitude amount Asec is larger than the predetermined amplitude amount Asec1.
  • the predetermined amplitude amount Asec1 is a determination value for determining whether the amplitude amount Asec has reached an amplitude amount that deteriorates ride comfort, and is set in advance. If the determination in step S23 is negative, the process proceeds to step S26, where it is detected that there is no rotational vibration.
  • step S24 it is determined whether the frequency f is higher than the first predetermined frequency f1 and lower than the second predetermined frequency f2, that is, whether the frequency f is within a predetermined range. be done. Both the first predetermined frequency f1 and the second predetermined frequency f2 are determination values for determining whether or not the frequency f is in the frequency band of rotational vibration, and are set in advance. If the determination in step S24 is negative, the process proceeds to step S26, where it is detected that there is no rotational vibration. If an affirmative determination is made in step S24, the process proceeds to step S25, where it is detected that there is rotational vibration. Therefore, the rotational vibration is detected based on the amplitude amount Asec and the frequency f. After step S25 or step S26, the subroutine processing ends.
  • step S4 it is determined whether or not there is rotational vibration based on the detection result of rotational vibration. If the determination in step S4 is negative, the process ends once. If an affirmative determination is made in step S4, the process proceeds to step S5, where a command pressure correction value Ppri_i1 is calculated.
  • the command pressure correction value Ppri_i1 is a correction value of the primary command pressure Ppri_i which is the command pressure of the primary pressure Ppri, and is a correction value for reflecting the primary pressure Ppri necessary for suppressing rotational vibration to the primary command pressure Ppri_i. Ru.
  • the command pressure correction value Ppri_i1 is calculated by the following equation 1.
  • Ppri_i1 K1 ⁇ K2 ⁇ sin(ft+ ⁇ _adj)
  • K1 is the vibration amount of the rotational vibration
  • K2 is the oil pressure conversion gain of the vibration amount K1
  • f is the frequency of the rotational vibration
  • ⁇ _adj is a time adjustment term for making the primary pressure Ppri have an opposite phase with respect to the rotational vibration.
  • the command pressure correction value Ppri_i1 is calculated as a sine wave.
  • the command pressure correction value Ppri_i1 may be calculated as a rectangular wave or a triangular wave, for example.
  • the amount of vibration K1 in Equation 1 is the amount of rotational vibration of the rotating member of the variator VA, and in this embodiment, the rotating member is the secondary pulley SEC. Therefore, in this embodiment, the vibration amount K1 is the amplitude amount Asec of the rotational speed Nsec.
  • the command pressure correction value Ppri_i1 is calculated to be higher as the amplitude amount Asec is larger. Therefore, the larger the amplitude amount Asec is, the larger the change in the gear ratio IP will be according to the command pressure correction value Ppri_i1. Therefore, by calculating the command pressure correction value Ppri_i1 in this way, it becomes possible to increase the inertia torque and suppress rotational vibration as the amplitude amount Asec becomes larger.
  • the oil pressure conversion gain K2 in Equation 1 is calculated according to the target rotational speed Npri_t of the primary pulley PRI and the target speed ratio IP_t of the variator VA.
  • the target rotational speed Npri_t and the target gear ratio IP_t correspond to the vehicle speed VSP, and the oil pressure conversion gain K2 is set in advance according to the target rotational speed Npri_t and the target gear ratio IP_t so that it becomes larger as the vehicle speed VSP is lower. This is because the lower the vehicle speed VSP is, the slower the gear shift becomes, resulting in a smaller inertia torque.
  • the oil pressure conversion gain K2 is further calculated according to the frequency f.
  • the hydraulic pressure conversion gain K2 is calculated to be larger as the frequency f is higher.
  • the higher the frequency f is, the higher the speed change speed of the variator VA obtained according to the command pressure correction value Ppri_i1 becomes, so that it changes according to the phase and rotational vibration of the primary pressure Ppri to which the command pressure correction value Ppri_i1 is reflected.
  • the phase of the rotational speed Nsec can be matched.
  • the oil pressure conversion gain K2 can be set in advance according to the frequency f.
  • the frequency f in Equation 1 is a frequency specific to the power train PT, and is set in advance according to the speed ratio IP of the variator VA.
  • the frequency f may also be set depending on the loaded weight of the vehicle, for example.
  • the time adjustment term ⁇ _adj in Equation 1 is an adjustment term for making the primary pressure Ppri have an opposite phase to the rotational vibration.
  • the time adjustment term ⁇ _adj is calculated so that the primary pressure Ppri, which is the actual pressure, has an opposite phase to the rotational vibration by correcting the primary command pressure Ppri_i at the oil pressure command start timing, which will be described next.
  • the time adjustment term ⁇ _adj is calculated according to the target rotational speed Npri_t and the target gear ratio IP_t. This is because the shift speed of the variator VA changes in accordance with the vehicle speed VSP, and as a result, the timing for setting the primary pressure Ppri in phase opposite to the rotational vibration also changes in accordance with the vehicle speed VSP.
  • the time adjustment term ⁇ _adj can be set in advance according to the target rotational speed Npri_t and the target gear ratio IP_t.
  • the oil pressure instruction start timing is the start timing of the oil pressure instruction based on the primary instruction pressure Ppri_i on which the instruction pressure correction value Ppri_i1 is reflected, and is the timing at which the primary pressure Ppri, which is the actual pressure, has an opposite phase to the rotational vibration.
  • the response delay required for the primary pressure Ppri, which is the actual pressure, to change in accordance with the primary command pressure Ppri_i is taken into consideration in advance at the oil pressure command start timing.
  • step S6 it is determined whether or not it is the timing to correct the primary command pressure Ppri_i based on the command pressure correction value Ppri_i1.
  • the determination in step S6 can be made based on the rotational vibration extraction component, which is the extraction component extracted according to the rotational vibration in step S21. If the determination in step S6 is negative, the process ends once, and if the determination in step S6 is affirmative, the process proceeds to step S7.
  • step S7 the primary command pressure Ppri_i is corrected. Correction of the primary command pressure Ppri_i is performed by adding the command pressure correction value Ppri_i1 to the primary command pressure Ppri_i. As a result, the primary pressure Ppri is controlled to the corrected primary command pressure Ppri_i, and the phase is opposite to the rotational vibration. As a result, an inertia torque is generated in a direction that suppresses the rotational vibration, so that the rotational vibration is suppressed. After step S7, the process ends once.
  • FIG. 5 is a diagram showing an example of a timing chart corresponding to the flowchart shown in FIG. 2.
  • the broken line indicates a comparative example in which vibration damping control is not performed.
  • the accelerator opening degree APO begins to increase and becomes approximately constant at timing T2.
  • the primary command pressure Ppri_i increases as the accelerator opening APO increases, and the primary pressure Ppri also increases accordingly.
  • Acceleration, engine torque Te, rotational speed Npri, and rotational speed Nsec begin to increase at timing T2 in accordance with the increase in accelerator opening APO, and acceleration is started.
  • the primary command pressure Ppri_i is corrected by the command pressure correction value Ppri_i1.
  • the damping thrust indicates the piston thrust of the primary pulley PRI according to the command pressure correction value Ppri_i1.
  • the vibration damping thrust changes the speed of the variator VA toward the low side by widening the groove width of the primary pulley PRI and reducing the winding diameter of the belt BLT. This results in negative piston thrust.
  • the primary command pressure Ppri_i does not particularly decrease at timing T3.
  • Timing T5 is the timing at which the rotational vibration extraction component that changes from the negative side to the positive side becomes zero.
  • the oil pressure instruction start timing at timing T3 is brought forward compared to such a timing in consideration of response delay.
  • the primary pressure Ppri does not particularly decrease at timing T5, and the gear ratio IP does not particularly change toward the low side.
  • the rotational vibration extracted component becomes positive between timing T5 and timing T6. Therefore, during this period, the rotational vibration acts in the direction of increasing the rotational speed Nsec, increasing the rotational speed Nsec.
  • the primary pressure Ppri which is the actual pressure
  • the gear ratio IP changes toward the low side.
  • the speed ratio IP is changed toward the low side by vibration damping control at this time, the rotational vibration is suppressed by the inertia torque of the variator VA that is generated accordingly.
  • the command pressure correction value Ppri_i1 is calculated so that the primary pressure Ppri has an opposite phase to the rotational vibration between timing T5 and timing T6.
  • vibration damping control when the rotational vibration extraction component is positive between timing T5 and timing T6, the gear ratio IP is changed toward the low side, so that after the rotational vibration increases the rotational speed Nsec, before decreasing it. The gear ratio IP is changed toward the low side.
  • the gear ratio IP can also be changed toward the high side when the rotational vibration is reducing the rotational speed Nsec. Whether the gear ratio IP is changed toward the low side or toward the high side by vibration damping control depends on whether the rotational vibration extracted component changes from negative to positive or from positive to negative after the oil pressure command start timing. It will be decided accordingly.
  • the vibration damping control can shift the variator VA to the low side or to the high side depending on the relationship between the hydraulic pressure command start timing and the waveform of the rotational vibration extracted component, and this allows the hydraulic pressure command to be started promptly. can do.
  • the transmission controller 12 may be configured to perform speed change control as vibration damping control both when the rotational vibration is decreasing the rotational speed Nsec and when it is increasing the rotational speed Nsec.
  • speed change control as vibration damping control both when the rotational vibration is decreasing the rotational speed Nsec and when it is increasing the rotational speed Nsec.
  • the rotational vibration extraction component is reversed from positive to negative around timing T6, but in damping control, when the rotational vibration extraction component is reversed from positive to negative around timing T6, the gear ratio IP is further changed to the high side. It may be changed.
  • the rotational vibration can be suppressed in a series of vibrations both when the rotational speed Nsec is lowered and when it is increased, so that the rotational vibration can be quickly attenuated.
  • the control device of the transmission TM including the variator VA having the primary pulley PRI, the secondary pulley SEC, and the belt BLT detects rotational vibrations occurring in the secondary pulley SEC, which is an example of a rotating member of the variator VA. Thereafter, a transmission controller 12 is provided which performs speed change control to change the speed ratio IP of the variator VA towards the high side when the rotational vibration reduces the rotational speed Nsec of the secondary pulley SEC.
  • the control device of the transmission TM including the variator VA including the primary pulley PRI, the secondary pulley SEC, and the belt BLT is configured to detect rotational vibrations in the secondary pulley SEC, which is an example of a rotating member of the variator VA.
  • a transmission controller 12 is provided which performs speed change control to change the speed ratio IP of the variator VA towards the low side when the rotational vibration increases the rotational speed Nsec of the secondary pulley SEC.
  • the gear ratio IP of the variator VA when the rotational vibration reduces the rotational speed Nsec of the secondary pulley SEC, the gear ratio IP of the variator VA is changed toward the high side, or when the rotational vibration reduces the rotational speed Nsec of the secondary pulley SEC.
  • the gear ratio IP of the variator VA When the variator VA is being raised, the gear ratio IP of the variator VA is changed toward the low side.
  • the speed change control in (1) above is such that after rotational vibration occurs in the secondary pulley SEC, when the rotational vibration is increasing the rotational speed Nsec of the secondary pulley SEC, the speed ratio IP of the variator VA is set to the low side. It further includes changing towards.
  • the rotational vibration is suppressed in a series of vibrations both when the rotational speed Nsec is lowered and when the rotational speed Nsec is increased, thereby quickly damping the rotational vibration. It also becomes possible.
  • the transmission controller 12 controls the transmission controller 12 when the frequency f of the rotational speed Nsec of the secondary pulley SEC, which varies according to rotational vibration, is higher than the first predetermined frequency f1 and lower than the second predetermined frequency f2, and the amplitude amount Asec is a predetermined
  • the amplitude amount Asec1 is exceeded, after the rotational vibration increases the rotational speed Nsec of the secondary pulley SEC, a speed change control is performed to change the speed ratio IP of the variator VA toward the low side before decreasing it.
  • rotational vibration can be properly detected and suppressed, and the speed change control can be performed to change the gear ratio IP toward the low side while the rotational vibration extraction component is positive. This allows rotational vibration to be appropriately suppressed.
  • Rotational fluctuations occur due to factors outside the variator VA in the power train PT.
  • the shift control in this embodiment is significant in that it can suppress rotational vibrations that cause longitudinal vibrations of the vehicle in such cases.
  • the rotating member is the secondary pulley SEC. According to such a configuration, rotational vibration caused by torsion of the drive shaft can be appropriately detected and suppressed.
  • the transmission controller 12 calculates a command pressure correction value Ppri_i1, which is a command pressure correction value of the primary pressure Ppri, which is the oil pressure supplied to the primary pulley PRI, and is a command pressure correction value according to rotational vibration.
  • the transmission controller 12 performs gear change control by increasing the command pressure correction value Ppri_i1 as the vehicle speed VSP is lower.
  • the lower the vehicle speed VSP the larger the inertia torque can be by increasing the shift speed obtained according to the command pressure correction value Ppri_i1. Therefore, even when the vehicle speed VSP is low, it is possible to generate sufficient inertia torque against the restoring force from twisting of the drive shaft and suppress rotational vibration.
  • the transmission controller 12 performs speed change control by changing the speed ratio IP to a greater extent as the amplitude amount Asec of the rotational speed Nsec of the secondary pulley SEC that fluctuates in accordance with rotational vibration increases. According to such a configuration, it becomes possible to appropriately suppress rotational vibration by increasing the inertia torque as the amplitude amount Asec becomes larger.
  • the transmission controller 12 performs speed change control by increasing the speed change speed of the variator VA as the frequency f of the rotation speed Nsec of the secondary pulley SEC that changes according to rotational vibration is higher. According to such a configuration, it is possible to match the phase of the primary pressure Ppri to which the command pressure correction value Ppri_i1 is reflected and the phase of the varying rotational speed Nsec, and then adjust the primary pressure Ppri to the rotational speed Nsec. Since it becomes possible to have opposite phases, rotational vibration can be appropriately suppressed.
  • the transmission controller 12 performs gear change control when the vehicle speed VSP is lower than the predetermined vehicle speed VSP1. According to such a configuration, by suppressing rotational vibration when the ride comfort may deteriorate in light of the vehicle speed VSP, it is possible to appropriately reduce the deterioration in the ride comfort according to the vehicle speed VSP.
  • the transmission controller 12 performs speed change control when the accelerator opening APO is lower than the predetermined opening APO1. According to such a configuration, by suppressing rotational vibration when ride comfort may deteriorate in light of accelerator opening degree APO, deterioration in ride comfort can be appropriately reduced according to accelerator opening degree APO.
  • the transmission controller 12 performs speed change control when the speed ratio IP of the variator VA is larger than the predetermined speed ratio IP1. According to such a configuration, by suppressing rotational vibration when the ride comfort may deteriorate in light of the speed ratio IP, it is possible to appropriately reduce the deterioration in the ride comfort according to the speed ratio IP.
  • the transmission controller 12 performs speed change control when the oil temperature TOIL of the variator VA is higher than the predetermined oil temperature TOIL1. According to such a configuration, by suppressing rotational vibration when the rotational speed Nsec can be suppressed from decreasing or increasing due to the inertia torque generated by the shift of the variator VA in light of the oil temperature TOIL, the rotational vibration can be controlled according to the oil temperature TOIL. Deterioration in ride comfort can be appropriately reduced.
  • the secondary pulley SEC constitutes a rotating member.
  • the rotating member may also be constituted by a primary pulley PRI.
  • Transmission controller (controller, computer) A: Amount of amplitude BLT: Belt DW: Drive wheel ENG: Engine f: Frequency IP: Gear ratio Ppri: Primary pressure Ppri_i1: Command pressure correction value Psec: Secondary pressure PRI: Primary pulley (rotating member) PT: Power train (power transmission path) SEC: Secondary pulley (rotating member) T/M: Transmission VA: Variator

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Control Of Transmission Device (AREA)

Abstract

[課題]更なる振動対策として車両の前後振動を引き起こす回転振動を抑制する。 [解決手段]変速機の制御装置は、車両に搭載された駆動源の駆動力が入力されるプライマリプーリと、駆動源の駆動力を駆動輪に伝達するセカンダリプーリと、プライマリプーリ及びセカンダリプーリに掛け回される無端環状部材とを有する無段変速機構を備える変速機で用いられる。当該制御装置は、無段変速機構の回転メンバに回転振動が発生した後、回転振動が回転メンバの回転速度を低下させている時に、無段変速機構の変速比をハイ側に向けて変化させる変速制御を行うコントローラを備える。

Description

変速機の制御装置、変速機の制御方法及びプログラム
 本発明は変速機の制御及びプログラムに関する。
 特許文献1には車両の積載重量に応じた車両の固有振動周期をエンジンの回転数の変化から算出して、算出した固有振動周期に基づいてエンジン又はCVTに対する制御出力のタイミングを決定する技術が開示されている。この技術は変速時における車体の前後振動を抑制すること、車両の乗車人数や積載量が変化した場合にも車両の前後振動を十分に排除して適正な振動抑制を行うことを目的としている。
特開2000-233668号公報
 変速機を介して駆動源と駆動輪とを結ぶ動力伝達経路を有する車両では、当該動力伝達経路で発生する回転振動が車両の前後振動を引き起こす。このような回転振動は変速時だけでなく例えば駆動力の変化など、変速機の無段変速機構により行われる変速とは無関係な様々な要因、つまり動力伝達経路における無段変速機構外の要因に伴い発生する場合がある。このため、更なる振動対策として車両の前後振動を引き起こす回転振動を抑制し、乗り心地の悪化など運転性への影響を低減することが望まれる。
 本発明はこのような課題に鑑みてなされたもので、更なる振動対策として車両の前後振動を引き起こす回転振動を抑制することを目的とする。
 本発明のある態様の変速機の制御装置は、車両に搭載された駆動源の駆動力が入力されるプライマリプーリと、駆動源の駆動力を駆動輪に伝達するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに掛け回される無端環状部材とを有する無段変速機構を備える変速機の制御装置であって、前記無段変速機構の回転メンバに回転振動が発生した後、前記回転振動により前記回転メンバの回転速度が低下している時に、前記無段変速機構の変速比をハイ側に向けて変化させる変速制御を行うコントローラを備える。
 本発明の別の態様の変速機の制御装置は、車両に搭載された駆動源の駆動力が入力されるプライマリプーリと、駆動源の駆動力を駆動輪に伝達するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに掛け回される無端環状部材とを有する無段変速機構を備える変速機の制御装置であって、前記無段変速機構の回転メンバに回転振動が発生した後、前記回転振動により前記回転メンバの回転速度が上昇している時に、前記無段変速機構の変速比をロー側に向けて変化させる変速制御を行うコントローラを備える。
 本発明のさらに別の態様によれば、上記変速機の制御装置それぞれに対応する変速機の制御方法それぞれ及びプログラムそれぞれが提供される。
 これらの態様によれば、回転振動が回転メンバの回転速度を低下させている時に無段変速機構の変速比をハイ側に向けて変化させるか、或いは回転振動が回転メンバの回転速度を上昇させている時に無段変速機構の変速比をロー側に向けて変化させる。結果、無段変速機構の変速により生じるイナーシャトルクで回転速度の低下或いは上昇を抑制することで、更なる振動対策として車両の前後振動を引き起こす回転振動を抑制できる。
図1は、実施形態における車両の概略構成図である。 図2は、制振制御の一例をフローチャートで示す図である。 図3は、制振制御の実行領域検出処理をサブルーチンで示す図である。 図4は、回転振動検出処理をサブルーチンで示す図である。 図5は、実施形態におけるタイミングチャートの一例を示す図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は車両の概略構成図である。車両はエンジンENGと、変速機TMと、ブレーキ装置BRK_Dと、駆動輪DWとを備える。エンジンENGは車両の駆動源を構成する。エンジンENGの動力は変速機TMを介して駆動輪DWへと伝達される。換言すれば、変速機TMはエンジンENGと駆動輪DWとを結ぶ動力伝達経路を構成するパワートレインPTに設けられる。
 変速機TMは自動変速機であり、ベルト無段変速機である。変速機TMはレンジとして、ドライブ(D)レンジ、リバース(R)レンジ、ニュートラル(N)レンジ、駐車(P)レンジ等を有し、そのいずれか一つを設定レンジとして設定することができる。DレンジとRレンジとは走行レンジを構成する。Dレンジは前進レンジ、Rレンジは後進レンジを構成する。NレンジとPレンジとは非走行レンジを構成する。
 変速機TMはトルクコンバータTCと、前後進切替機構SWMと、バリエータVAとを有する。トルクコンバータTCは流体を介して動力を伝達する。トルクコンバータTCではロックアップクラッチLUを締結することで、動力伝達効率が高められる。
 前後進切替機構SWMはエンジンENGとバリエータVAとを結ぶ動力伝達経路に設けられる。前後進切替機構SWMは入力される回転の回転方向を切り替えることで、車両の前後進を切り替える。前後進切替機構SWMは、Dレンジ選択の際に係合される前進クラッチFWD/Cと、Rレンジ選択の際に係合される後進ブレーキREV/Bとを備える。前進クラッチFWD/C及び後進ブレーキREV/Bを解放すると、変速機TMがニュートラル状態、つまり駆動力断絶状態になる。
 バリエータVAは車両に搭載されたエンジンENGの駆動力が入力されるプライマリプーリPRIと、エンジンENGの駆動力を駆動輪DWに伝達するセカンダリプーリSECと、プライマリプーリPRI及びセカンダリプーリSECに掛け回される無端環状部材であるベルトBLTとを有する無段変速機構を構成する。プライマリプーリPRIにはプライマリ圧Ppriが、セカンダリプーリSECにはセカンダリ圧Psecが、油圧制御回路11からそれぞれ供給される。
 ブレーキ装置BRK_DはブレーキBRKと、ブレーキアクチュエータACTと、ブレーキペダルPDLと、マスターシリンダMCとを備える。ブレーキBRKは駆動輪DWに設けられる。ブレーキBRKの制動力はブレーキアクチュエータACTにより制御される。ブレーキアクチュエータACTは、マスターシリンダMCがブレーキペダルPDLの踏力を変換して発生させたブレーキ液圧をもとにして制動力を制御する。
 変速機TMにはオイルポンプ10が設けられる。オイルポンプ10はエンジンENGの動力により駆動される機械式のオイルポンプである。オイルポンプ10には例えば、トルクコンバータTCのインペラから動力を取り出す動力伝達機構を介してエンジンENGの動力が伝達される。動力伝達機構は例えばエンジンENGの出力軸から動力を取り出すように設けられてもよい。オイルポンプ10は油圧制御回路11に油を圧送する。油圧制御回路11では、オイルポンプ10を油圧源としたライン圧PL、ライン圧PLを元圧としたプライマリ圧Ppri、セカンダリ圧Psec等が生成される。変速機TMにはオイルポンプ10とともに、或いはオイルポンプ10の代わりに電動オイルポンプが設けられてもよい。
 変速機TMは油圧制御回路11と変速機コントローラ12とをさらに有する。油圧制御回路11は複数の流路、複数の油圧制御弁で構成され、オイルポンプ10から供給される油を調圧して変速機TMの各部位に供給する。変速機コントローラ12は変速機TMを制御するためのコントローラであり、エンジンENGを制御するためのエンジンコントローラ13、及びブレーキ装置BRK_Dを制御するブレーキコントローラ14と相互通信可能に接続される。エンジンコントローラ13から変速機コントローラ12には例えばエンジントルクTeを表す出力トルク信号が入力される。ブレーキコントローラ14から変速機コントローラ12には、ブレーキアクチュエータACTで発生しているブレーキ液圧の情報が入力される。変速機コントローラ12は変速機TMの制御装置が備えるコントローラを構成する。
 変速機コントローラ12、エンジンコントローラ13及びブレーキコントローラ14それぞれは中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えた1又は複数のコンピュータ(マイクロコンピュータ)で構成される。これらのコントローラ12、13及び14それぞれはROM又はRAMに格納されたプログラムをCPUによって実行することで制御を行う。プログラムとしては、例えばCD-ROM等の非一過性の記憶媒体に記憶されたものが用いられてもよい。エンジンコントローラ13及びブレーキコントローラ14とともにコントローラ100を構成する。コントローラ100は例えばコントローラ12、13及び14等の統合制御を司る統合コントローラをさらに有した構成とされてもよい。
 コントローラ100には各種センサ・スイッチを示すセンサ・スイッチ群40からの信号が入力される。センサ・スイッチ群40は例えば、車速VSPを検出する車速センサ、アクセル開度APOを検出するアクセル開度センサ、エンジンENGの回転速度Neを検出するエンジン回転速度センサ、ブレーキ液圧を検出するブレーキセンサを含む。
 センサ・スイッチ群40はさらに例えば、プライマリ圧Ppriを検出するプライマリ圧センサ、セカンダリ圧Psecを検出するセカンダリ圧センサ、プライマリプーリPRIの入力側回転速度である回転速度Npriを検出するプライマリ回転速度センサ、セカンダリプーリSECの出力側回転速度である回転速度Nsecを検出するセカンダリ回転速度センサ、変速レバーの操作位置を検出する位置センサ、変速機TMの油温TOILを検出する油温センサを含む。回転速度Npriは例えばプライマリプーリPRIの入力軸、回転速度Nsecは例えばセカンダリプーリSECの出力軸の回転速度である。
 変速機コントローラ12にはこれらの信号が直接入力されるか、エンジンコントローラ13等を介して入力される。変速機コントローラ12はこれらの信号に基づき変速機TMの制御を行う。変速機TMの制御はこれらの信号に基づき油圧制御回路11を制御することで行われる。油圧制御回路11は変速機コントローラ12からの指示に基づき、ロックアップクラッチLU、前進クラッチFWD/C、後進ブレーキREV/B、プライマリプーリPRI、セカンダリプーリSEC等の油圧制御を行う。
 変速機TMを介してエンジンENGと駆動輪DWとを結ぶパワートレインPTを有する車両では、パワートレインPTで発生する回転振動が車両の前後振動を引き起こす。このような回転振動は変速時だけでなく例えば駆動力の変化など、バリエータVAにより行われる変速とは無関係な様々な要因、つまりパワートレインPTにおけるバリエータVA外の要因に伴い発生する。このため、更なる振動対策として車両の前後振動を引き起こす回転振動を抑制し、乗り心地の悪化など運転性への影響を低減することが望まれる。
 このような事情に鑑み、本実施形態では変速機コントローラ12が次に説明する制振制御を行う。
 制振制御はバリエータVAを用いて回転振動に対し逆位相のトルクを発生させる制御とされる。このため、制振制御はバリエータVAの変速制御により行われる。制振制御では、バリエータVAの変速により生じるイナーシャトルクが回転振動に対して逆位相のトルクになるようにバリエータVAの変速が行われる。
 制振制御はパワートレインPTにおけるバリエータVA外の要因に伴い発生する回転振動を抑制する制御とされる。バリエータVA外の要因は例えばロックアップクラッチLUの急締結や、バリエータVAの入力トルクTinの急増、急減や、エアコンなどエンジンENGの補機のON、OFFである。これらの要因が発生すると、パワートレインPTで負荷が急変するのでドライブシャフトに捩じれが生じる。結果、捩じれ状態から復帰しようとするドライブシャフトによって、回転体(例えば、プライマリプーリやセカンダリプーリ等)の回転速度が加減速を所定期間に繰り返す、いわゆる回転振動が引き起こされる。バリエータVA外の要因はこのほかにも例えば、ブレーキ操作やパワートレインPTが有するがたに起因する動力伝達部材同士のがた打ちなどを含む。
 図2は変速機コントローラ12が行う制振制御の一例をフローチャートで示す図である。図2に示すように、ステップS1では制振制御の実行領域の検出が行われる。実行領域の検出処理は図3にサブルーチンで示すように行われる。
 図3は制振制御の実行領域検出処理をサブルーチンで示す図である。ステップS11では車速VSPが所定車速VSP1より低いか否か(ゼロより高く且つ所定車速VSP1より低いか否か)が判定される。所定車速VSP1は乗り心地が悪化し得るか否かを判定するための判定値であり、例えば前後振動が運転者に感知され易いか否かといった観点から、つまり前後振動が目立つか否かといった観点から予め定められる。このため、ステップS11では車速VSPに照らして乗り心地が悪化し得るか否かが判定される。後述する所定開度APO1、所定変速比IP1、所定油温TOIL1についても同様である。所定車速VSP1は例えば、車速VSPを低中高車速に区分した場合の中車速(例えば40km/h)に設定される。
 車速VSPが所定車速VSP1より低い場合、運転者の運転に余裕がある場合や運転者の運転が緩やかな場合が多い傾向があり、前後振動が運転者に感知され易くなる。このため、ステップS11で肯定判定であれば乗り心地が悪化し得ると判断される。
 ステップS11ではアクセル開度APOが所定開度APO1より低いか否か(ゼロより高く且つ所定開度APO1より低いか否か)が判定されてもよい。この場合、アクセル開度APOに照らして乗り心地が悪化し得るか否かを判定できる。所定開度APO1は例えば、アクセル開度APOを低中高開度に区分した場合の低開度(例えば20deg)に設定される。アクセル開度APOが所定開度APO1より低い場合、緩やかな運転が行われている場合が多い傾向があり、前後振動が運転者に感知され易くなる。このためこの場合は、アクセル開度APOが所定開度APO1より低い場合に乗り心地が悪化し得ると判断される。
 ステップS11では変速比IPが所定変速比IP1より大きいか否か(所定変速比IP1より大きく且つ最大変速比以下か否か)が判定されてもよい。変速比IPはバリエータVAの入力回転を出力回転で割って得られる値であり、この場合、変速比IPに照らして乗り心地が悪化し得るか否かを判定できる。所定変速比IP1は例えば1より大きい変速比IPに設定される。変速比IPが所定変速比IP1より大きい場合、出力側のトルクが大きくなり、大きな負荷がかかることによりドライブシャフトに捩じれが発生し易い傾向がある。このためこの場合は、大きな前後振動によって前後振動が運転者に感知され易くなる。従って、この場合は変速比IPが所定変速比IP1より大きい場合に乗り心地が悪化し得ると判断される。
 ステップS11では油温TOILが所定油温TOIL1より高いか否か(許容される最高油温以下で且つ所定油温TOIL1より高いか否か)が判定されてもよい。この場合、油温TOILに照らして車両の前後振動を引き起こす回転振動を抑制できる否かを判定できる。所定油温TOIL1はトルクコンバータTCの油の粘度を考慮して予め設定される。所定油温TOIL1は例えば10℃以下の低温や0℃以下の極低温に設定できる。油温TOILが所定油温TOIL1より低い場合、油温TOILが低い分油の粘度が高まる結果、変速の応答性が低下し、制振制御としての変速制御を行うことができないと判断される。
 ステップS11では車速VSP、アクセル開度APO、変速比IP及び油温TOILのいずれかが上述の判定を満たすか否かが判定されてもよい。この場合、いずれかが肯定判定であれば乗り心地が悪化し得ると判断できる。ステップS11で肯定判定であれば処理はステップS12に進み、制振制御の実行領域であることが検出される。ステップS11で否定判定であれば処理はステップS13に進み、制振制御の非実行領域であることが検出される。ステップS12又はステップS13の後にはサブルーチンの処理は終了する。
 図2に戻り、ステップS2では実行領域の検出結果に基づき制振制御の実行領域か否かが判定される。ステップS2で否定判定であれば処理は一旦終了する。ステップS2で肯定判定であれば、処理はステップS3に進む。ステップS3では回転振動の検出が行われる。回転振動の検出処理は図4にサブルーチンで示すように行われる。
 図4は回転振動検出処理をサブルーチンで示す図である。ステップS21ではセカンダリ回転速度センサにより検出された回転速度Nsecのフィルタ処理が行われ、フィルタ処理にはバンドパスフィルタが用いられる。ステップS21ではバンドパスフィルタを用いたフィルタ処理により、回転速度Nsecからの回転振動成分の抽出が行われる。
 ステップS22では、ステップS21で抽出された抽出成分に基づき、回転速度Nsecの振幅量Asec及び周波数fの検出が行われる。ステップS23では振幅量Asecが所定振幅量Asec1より大きいか否かが判定される。所定振幅量Asec1は振幅量Asecが乗り心地を悪化させる振幅量に達しているか否かを判定するための判定値であり予め設定される。ステップS23で否定判定であれば処理はステップS26に進み、回転振動がないことが検出される。
 ステップS23で肯定判定であれば処理はステップS24に進み、周波数fが第1所定周波数f1より高く且つ第2所定周波数f2より低いか否か、つまり周波数fが所定範囲にあるか否かが判定される。第1所定周波数f1及び第2所定周波数f2はともに周波数fが回転振動の周波数帯にあるか否かを判定するための判定値であり予め設定される。ステップS24で否定判定であれば処理はステップS26に進み、回転振動がないことが検出される。ステップS24で肯定判定であれば処理はステップS25に進み、回転振動があることが検出される。従って、回転振動は振幅量Asecと周波数fとに基づき検出される。ステップS25又はステップS26の後にはサブルーチンの処理は終了する。
 図2に戻り、ステップS4では回転振動の検出結果に基づき、回転振動があるか否かが判定される。ステップS4で否定判定であれば処理は一旦終了する。ステップS4で肯定判定であれば処理はステップS5に進み、指示圧補正値Ppri_i1が演算される。指示圧補正値Ppri_i1はプライマリ圧Ppriの指示圧であるプライマリ指示圧Ppri_iの補正値であり、回転振動の抑制に必要な分のプライマリ圧Ppriをプライマリ指示圧Ppri_iに反映するための補正値とされる。指示圧補正値Ppri_i1は次の数1により演算される。
[数1]
 Ppri_i1=K1×K2×sin(ft+θ_adj)
 ここで、K1は回転振動の振動量、K2は振動量K1の油圧換算ゲイン、fは回転振動の周波数、θ_adjは回転振動に対してプライマリ圧Ppriを逆位相とするための時間調整項である。数1によれば、指示圧補正値Ppri_i1が正弦波として演算される。指示圧補正値Ppri_i1は例えば矩形波や三角波として演算されてもよい。
 数1の振動量K1はバリエータVAの回転メンバについての回転振動の振動量であり、本実施形態では回転メンバはセカンダリプーリSECとされる。従って、本実施形態では振動量K1は回転速度Nsecの振幅量Asecとされる。数1からわかるように、指示圧補正値Ppri_i1は振幅量Asecが大きいほど高く演算される。このため、振幅量Asecが大きいほど指示圧補正値Ppri_i1に応じて変速比IPがより大きく変化することになる。従って、このように指示圧補正値Ppri_i1を演算することで、振幅量Asecが大きいほどイナーシャトルクを大きくして回転振動を抑制することが可能になる。
 数1の油圧換算ゲインK2はプライマリプーリPRIの目標回転速度Npri_tとバリエータVAの目標変速比IP_tとに応じて演算される。目標回転速度Npri_t及び目標変速比IP_tは車速VSPに対応し、油圧換算ゲインK2は目標回転速度Npri_tと目標変速比IP_tとに応じて車速VSPが低いほど大きくなるように予め設定される。これは、車速VSPが低いほど変速が遅くなる結果、イナーシャトルクが小さくなるためである。このため、本実施形態では車速VSPが低いほど油圧換算ゲインK2を大きく設定することで、指示圧補正値Ppri_i1に応じて得られる変速速度を上げてイナーシャトルクを大きくする。これにより、車速VSPに照らし回転振動を適切に抑制することが可能になる。
 油圧換算ゲインK2はさらに周波数fに応じて演算される。油圧換算ゲインK2は周波数fが高いほど大きく演算される。これにより、周波数fが高いほど指示圧補正値Ppri_i1に応じて得られるバリエータVAの変速速度が高くなるので、指示圧補正値Ppri_i1が反映されるプライマリ圧Ppriの位相と回転振動に応じて変動する回転速度Nsecの位相とを合わせることができる。油圧換算ゲインK2は周波数fに応じて予め設定できる。
 数1の周波数fはパワートレインPTに固有の周波数であり、バリエータVAの変速比IPに応じて予め設定される。周波数fはさらに例えば車両の積載重量に応じて設定されてもよい。
 数1の時間調整項θ_adjはプライマリ圧Ppriを回転振動に対して逆位相にするための調整項である。時間調整項θ_adjは次に説明する油圧指示開始タイミングでプライマリ指示圧Ppri_iを補正することで、実圧であるプライマリ圧Ppriが回転振動に対して逆位相になるように演算される。時間調整項θ_adjは目標回転速度Npri_t及び目標変速比IP_tに応じて演算される。これは、バリエータVAの変速速度が車速VSPに応じて変化する結果、プライマリ圧Ppriを回転振動に対して逆位相にするためのタイミングも車速VSPに応じて変化するためである。時間調整項θ_adjは目標回転速度Npri_t及び目標変速比IP_tに応じて予め設定できる。
 指示圧補正値Ppri_i1の演算後には処理はステップS6に進み、油圧指示開始タイミングであるか否かが判定される。油圧指示開始タイミングは指示圧補正値Ppri_i1が反映されたプライマリ指示圧Ppri_iによる油圧指示の開始タイミングであり、実圧であるプライマリ圧Ppriが回転振動に対して逆位相になるタイミングとされる。油圧指示開始タイミングには実圧であるプライマリ圧Ppriがプライマリ指示圧Ppri_iに応じて変化するのに要する応答遅れが予め考慮される。
 指示圧補正値Ppri_i1が反映されたプライマリ指示圧Ppri_iによる油圧指示は、指示圧補正値Ppri_i1によりプライマリ指示圧Ppri_iを補正することで行うことができる。従って、ステップS6では換言すれば、指示圧補正値Ppri_i1によりプライマリ指示圧Ppri_iを補正するタイミングか否かが判定される。ステップS6の判定は、ステップS21で回転振動に応じて抽出された抽出成分である回転振動抽出成分に基づき行うことができる。ステップS6で否定判定であれば処理は一旦終了し、ステップS6で肯定判定であれば処理はステップS7に進む。
 ステップS7ではプライマリ指示圧Ppri_iの補正が行われる。プライマリ指示圧Ppri_iの補正はプライマリ指示圧Ppri_iに指示圧補正値Ppri_i1を加算することにより行われる。これにより、プライマリ圧Ppriが補正後のプライマリ指示圧Ppri_iに制御され、回転振動に対して逆位相になる結果、回転振動を抑制する方向にイナーシャトルクが発生するので、回転振動が抑制される。ステップS7の後には処理は一旦終了する。
 図5は図2に示すフローチャートに対応するタイミングチャートの一例を示す図である。破線は制振制御を行わない比較例の場合を示す。タイミングT1ではアクセル開度APOが増加し始め、タイミングT2で概ね一定になる。プライマリ指示圧Ppri_iはアクセル開度APOの増加に伴い上昇し、これに応じてプライマリ圧Ppriも上昇する。加速度、エンジントルクTe、回転速度Npri、回転速度Nsecはアクセル開度APOの増加に応じてタイミングT2で上昇し始め、加速が開始される。
 加速開始の際には、ドライブシャフトに捩じれが発生するとともにドライブシャフトが捩じれから復帰しようとする。このため、パワートレインPTに回転振動が発生し、回転速度Nsecからの回転振動抽出成分の振幅が増大する。結果、タイミングT3では所定振幅量Asec1より大きく、且つ回転振動の周波数帯にある回転振動抽出成分が検出され、回転振動検出フラグがONになる。このため、指示圧補正値Ppri_i1が演算され、タイミングT4で油圧指示開始タイミングが到来すると油圧指示開始フラグがONになる。
 タイミングT4では、プライマリ指示圧Ppri_iが指示圧補正値Ppri_i1により補正される。制振推力は指示圧補正値Ppri_i1に応じたプライマリプーリPRIのピストン推力を示す。この例ではプライマリ指示圧Ppri_iが補正により低下される結果、制振推力はプライマリプーリPRIの溝幅を広げてベルトBLTの巻き掛け径を小さくすることで、ロー側に向けてバリエータVAを変速させる負のピストン推力となる。比較例では制振制御を行わないので、プライマリ指示圧Ppri_iはタイミングT3で特段低下しない。
 タイミングT5では、プライマリ指示圧Ppri_iの低下に応じて実圧であるプライマリ圧Ppriが低下する。結果、変速比IPがロー側に向かって変化する。タイミングT4は負側から正側に向かって変化する回転振動抽出成分がゼロになるタイミングとなっている。タイミングT3の油圧指示開始タイミングはこのようなタイミングに対し、応答遅れを考慮して前倒しされたタイミングとなっている。比較例ではタイミングT5でプライマリ圧Ppriは特段低下せず、変速比IPもロー側に向かって特段変化しない。
 回転振動抽出成分はタイミングT5及びタイミングT6間で正になる。従ってこの間、回転振動は回転速度Nsecを上昇させる方向に作用し、回転速度Nsecを上昇させている。実圧であるプライマリ圧Ppriはこの時に補正後のプライマリ指示圧Ppri_iに応じて低下し、この結果、変速比IPがロー側に向かって変化している。本実施形態ではこの時に制振制御により変速比IPをロー側に向かって変化させるので、これに応じて発生するバリエータVAのイナーシャトルクにより回転振動の抑制が図られる。
 指示圧補正値Ppri_i1はこのようにタイミングT5、タイミングT6間でプライマリ圧Ppriが回転振動に対して逆位相になるように演算される。制振制御ではタイミングT5、タイミングT6間で回転振動抽出成分が正の場合に変速比IPをロー側に向かって変化させることで、回転振動が回転速度Nsecを上昇させた後、低下させる前に変速比IPをロー側に向かって変化させる。
 制振制御では回転振動が回転速度Nsecを低下させている時に変速比IPをハイ側に向かって変化させることもできる。制振制御により変速比IPをロー側に向かって変化させるかハイ側に向かって変化させるかは、油圧指示開始タイミング後に回転振動抽出成分が負から正になるか、正から負になるかに応じて決まってくる。つまり、制振制御は油圧指示開始タイミングと回転振動抽出成分の波形との関係次第で、バリエータVAをロー側に変速させることもハイ側に変速させることもでき、これにより速やかに油圧指示を開始することができる。
 変速機コントローラ12は、回転振動が回転速度Nsecを低下させている時と上昇させている時とでともに制振制御としての変速制御を行うように構成されてもよい。例えば、この例ではタイミングT6前後で回転振動抽出成分の正負の逆転するところ、制振制御ではタイミングT6前後で回転振動抽出成分が正から負に逆転した場合に、さらに変速比IPをハイ側に変化させてもよい。これにより、回転振動が一連の振動で回転速度Nsecを低下させている時と上昇させている時とでともに回転振動を抑制できるので、回転振動を速やかに減衰させることもできる。
 次に本実施形態の主な作用効果について説明する。
 (1)本実施形態ではプライマリプーリPRIとセカンダリプーリSECとベルトBLTとを有するバリエータVAを備える変速機TMの制御装置が、バリエータVAの回転メンバの一例としてのセカンダリプーリSECに回転振動が発生した後、回転振動がセカンダリプーリSECの回転速度Nsecを低下させている時に、バリエータVAの変速比IPをハイ側に向けて変化させる変速制御を行う変速機コントローラ12を備える。
 (2)本実施形態ではプライマリプーリPRIとセカンダリプーリSECとベルトBLTとを有するバリエータVAを備える変速機TMの制御装置が、バリエータVAの回転メンバの一例としてのセカンダリプーリSECに回転振動が発生した後、回転振動がセカンダリプーリSECの回転速度Nsecを上昇させている時に、バリエータVAの変速比IPをロー側に向けて変化させる変速制御を行う変速機コントローラ12を備える。
 これらの構成によれば、回転振動がセカンダリプーリSECの回転速度Nsecを低下させている時にバリエータVAの変速比IPをハイ側に向けて変化させるか、或いは回転振動がセカンダリプーリSECの回転速度Nsecを上昇させている時にバリエータVAの変速比IPをロー側に向けて変化させる。結果、バリエータVAの変速により生じるイナーシャトルクで回転速度Nsecの低下或いは上昇を抑制することで、車両の前後振動を引き起こす回転振動を抑制できる。
 (3)上述の(1)における変速制御は、セカンダリプーリSECに回転振動が発生した後、回転振動がセカンダリプーリSECの回転速度Nsecを上昇させている時に、バリエータVAの変速比IPをロー側に向けて変化させることをさらに含む。
 このような構成によれば、油圧指示開始タイミングと回転振動抽出成分の波形との関係次第で、バリエータVAをロー側に変速させることもハイ側に変速させることも可能になるので、速やかに油圧指示を開始して回転振動を抑制することが可能になる。またこのような構成によれば、回転振動が一連の振動で回転速度Nsecを低下させている時と上昇させている時とでともに回転振動を抑制することで、回転振動を速やかに減衰させることも可能になる。
 (4)変速機コントローラ12は、回転振動に応じて変動するセカンダリプーリSECの回転速度Nsecの周波数fが第1所定周波数f1より高く第2所定周波数f2より低い場合で、且つ振幅量Asecが所定振幅量Asec1を超えた場合に、回転振動がセカンダリプーリSECの回転速度Nsecを上昇させた後、低下させる前にバリエータVAの変速比IPをロー側に向けて変化させる変速制御を行う。
 このような構成によれば、回転振動を適切に検出した上で抑制することができ、また、回転振動抽出成分が正のうちに変速比IPをロー側に向けて変化させる変速制御を行うことで、回転振動を適切に抑制できる。
 (5)回転変動はパワートレインPTにおけるバリエータVA外の要因に伴い発生する。本実施形態における変速制御はこのような場合に車両の前後振動を引き起こす回転振動を抑制できる点で意義が大きい。
 (6)本実施形態では回転メンバはセカンダリプーリSECとされる。このような構成によれば、ドライブシャフトの捩じれに起因する回転振動を適切に検出して抑制できる。
 (7)変速機コントローラ12は、プライマリプーリPRIに供給する油圧であるプライマリ圧Ppriの指示圧補正値であって回転振動に応じた指示圧補正値である指示圧補正値Ppri_i1を演算する。変速機コントローラ12は、車速VSPが低いほど指示圧補正値Ppri_i1を高くして変速制御を行う。
 このような構成によれば、車速VSPが低いほど指示圧補正値Ppri_i1に応じて得られる変速速度を上げることで、イナーシャトルクを大きくすることができる。このため、車速VSPが低い場合でもドライブシャフトの捩じれからの復元力に対して十分なイナーシャトルクを発生させて回転振動を抑制することが可能になる。
 (8)変速機コントローラ12は、回転振動に応じて変動するセカンダリプーリSECの回転速度Nsecの振幅量Asecが大きいほど、変速比IPを大きく変化させて変速制御を行う。このような構成によれば、振幅量Asecが大きいほどイナーシャトルクを大きくすることで、回転振動を適切に抑制することが可能になる。
 (9)変速機コントローラ12は、回転振動に応じて変動するセカンダリプーリSECの回転速度Nsecの周波数fが高いほど、バリエータVAの変速速度を高くして変速制御を行う。このような構成によれば、指示圧補正値Ppri_i1が反映されるプライマリ圧Ppriの位相と変動する回転速度Nsecの位相とを合わせることができ、その上で回転速度Nsecに対してプライマリ圧Ppriを逆位相にすることが可能になるので、回転振動を適切に抑制できる。
 (10)変速機コントローラ12は、車速VSPが所定車速VSP1より低い場合に変速制御を行う。このような構成によれば、車速VSPに照らして乗り心地が悪化し得る場合に回転振動を抑制することで、車速VSPに応じて乗り心地の悪化を適切に低減できる。
 (11)変速機コントローラ12は、アクセル開度APOが所定開度APO1より低い場合に変速制御を行う。このような構成によれば、アクセル開度APOに照らして乗り心地が悪化し得る場合に回転振動を抑制することで、アクセル開度APOに応じて乗り心地の悪化を適切に低減できる。
 (12)変速機コントローラ12は、バリエータVAの変速比IPが所定変速比IP1より大きい場合に変速制御を行う。このような構成によれば、変速比IPに照らして乗り心地が悪化し得る場合に回転振動を抑制することで、変速比IPに応じて乗り心地の悪化を適切に低減できる。
 (13)変速機コントローラ12は、バリエータVAの油温TOILが所定油温TOIL1より高い場合に変速制御を行う。このような構成によれば、油温TOILに照らして、バリエータVAの変速により生じるイナーシャトルクで回転速度Nsecの低下或いは上昇を抑制できる場合に回転振動を抑制することで、油温TOILに応じて乗り心地の悪化を適切に低減できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上述した実施形態ではセカンダリプーリSECが回転メンバを構成する場合について説明した。しかしながら、回転メンバはプライマリプーリPRIにより構成されてもよい。この場合、例えばブレーキ操作に応じたバリエータVAの出力トルクToutの急増、急減に伴い発生する回転振動を適切に検出して抑制できる。
 12:変速機コントローラ(コントローラ、コンピュータ)
 A:振幅量
 BLT:ベルト
 DW:駆動輪
 ENG:エンジン
 f:周波数
 IP:変速比
 Ppri:プライマリ圧
 Ppri_i1:指示圧補正値
 Psec:セカンダリ圧
 PRI:プライマリプーリ(回転メンバ)
 PT:パワートレイン(動力伝達経路)
 SEC:セカンダリプーリ(回転メンバ)
 T/M:変速機
 VA:バリエータ

Claims (17)

  1.  車両に搭載された駆動源の駆動力が入力されるプライマリプーリと、前記駆動源の駆動力を駆動輪に伝達するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに掛け回される無端環状部材とを有する無段変速機構を備える変速機の制御装置であって、
     前記無段変速機構の回転メンバに回転振動が発生した後、前記回転振動が前記回転メンバの回転速度を低下させている時に、前記無段変速機構の変速比をハイ側に向けて変化させる変速制御を行うコントローラ、
    を備える変速機の制御装置。
  2.  車両に搭載された駆動源の駆動力が入力されるプライマリプーリと、前記駆動源の駆動力を駆動輪に伝達するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに掛け回される無端環状部材とを有する無段変速機構を備える変速機の制御装置であって、
     前記無段変速機構の回転メンバに回転振動が発生した後、前記回転振動が前記回転メンバの回転速度を上昇させている時に、前記無段変速機構の変速比をロー側に向けて変化させる変速制御を行うコントローラ、
    を備える変速機の制御装置。
  3.  請求項1に記載の変速機の制御装置であって、
     前記変速制御は、前記回転振動が発生した後、前記回転振動が前記回転メンバの回転速度を上昇させている時に、前記無段変速機構の変速比をロー側に向けて変化させることをさらに含む、
    変速機の制御装置。
  4.  請求項2又は3に記載の変速機の制御装置であって、
     前記コントローラは、前記回転振動に応じて変動する前記回転メンバの回転速度の周波数が所定範囲にあり且つ振幅量が所定振幅量を超えた場合に、前記回転振動が前記回転メンバの回転速度を上昇させた後、低下させる前に、前記無段変速機構の変速比をロー側に向けて変化させる前記変速制御を行う、
    変速機の制御装置。
  5.  請求項1から4いずれか1項に記載の変速機の制御装置であって、
     前記回転変動は、前記変速機を介して前記駆動源と前記駆動輪とを結ぶ動力伝達経路における前記無段変速機構外の要因に伴い発生する、
    変速機の制御装置。
  6.  請求項1から4いずれか1項に記載の変速機の制御装置であって、
     前記回転メンバは、前記セカンダリプーリである、
    変速機の制御装置。
  7.  請求項1から4いずれか1項に記載の変速機の制御装置であって、
     前記コントローラは、前記プライマリプーリに供給する油圧の指示圧補正値であって前記回転振動に応じた指示圧補正値を演算し、
     前記コントローラは、車速が低いほど前記指示圧補正値を高くして前記変速制御を行う、
    変速機の制御装置。
  8.  請求項1から4いずれか1項に記載の変速機の制御装置であって、
     前記コントローラは、前記回転振動に応じて変動する前記回転メンバの回転速度の振幅量が大きいほど、前記変速比を大きく変化させて前記変速制御を行う、
    変速機の制御装置。
  9.  請求項1から4いずれか1項に記載の変速機の制御装置であって、
     前記コントローラは、前記回転振動に応じて変動する前記回転メンバの回転速度の周波数が高いほど、前記無段変速機構の変速速度を高くして前記変速制御を行う、
    変速機の制御装置。
  10.  請求項1から4いずれか1項に記載の変速機の制御装置であって、
     前記コントローラは、車速が所定車速より低い場合に前記変速制御を行う、
    変速機の制御装置。
  11.  請求項1から4いずれか1項に記載の変速機の制御装置であって、
     前記コントローラは、アクセル開度が所定開度より低い場合に前記変速制御を行う、
    変速機の制御装置。
  12.  請求項1から4いずれか1項に記載の変速機の制御装置であって、
     前記コントローラは、前記無段変速機構の変速比が所定変速比より大きい場合に前記変速制御を行う、
    変速機の制御装置。
  13.  請求項1から4いずれか1項に記載の変速機の制御装置であって、
     前記コントローラは、前記無段変速機構の油温が所定油温より高い場合に前記変速制御を行う、
    変速機の制御装置。
  14.  車両に搭載された駆動源の駆動力が入力されるプライマリプーリと、前記駆動源の駆動力を駆動輪に伝達するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに掛け回される無端環状部材とを有する無段変速機構を備える変速機の制御方法であって、
     前記無段変速機構の回転メンバに回転振動が発生した後、前記回転振動により前記回転メンバの回転速度が低下している時に、前記無段変速機構の変速比をハイ側に向けて変化させる変速制御を行うこと、
    を含む変速機の制御方法。
  15.  車両に搭載された駆動源の駆動力が入力されるプライマリプーリと、前記駆動源の駆動力を駆動輪に伝達するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに掛け回される無端環状部材とを有する無段変速機構を備える変速機の制御方法であって、
     前記無段変速機構の回転メンバに回転振動が発生した後、前記回転振動により前記回転メンバの回転速度が上昇している時に、前記無段変速機構の変速比をロー側に向けて変化させる変速制御を行うこと、
    を含む変速機の制御方法。
  16.  車両に搭載された駆動源の駆動力が入力されるプライマリプーリと、前記駆動源の駆動力を駆動輪に伝達するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに掛け回される無端環状部材とを有する無段変速機構を備える変速機のコンピュータが実行可能なプログラムであって、
     前記無段変速機構の回転メンバに回転振動が発生した後、前記回転振動により前記回転メンバの回転速度が低下している時に、前記無段変速機構の変速比をハイ側に向けて変化させる変速制御を行う手順を前記コンピュータに実行させる、
    プログラム。
  17.  車両に搭載された駆動源の駆動力が入力されるプライマリプーリと、前記駆動源の駆動力を駆動輪に伝達するセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリに掛け回される無端環状部材とを有する無段変速機構を備える変速機のコンピュータが実行可能なプログラムであって、
     前記無段変速機構の回転メンバに回転振動が発生した後、前記回転振動により前記回転メンバの回転速度が上昇している時に、前記無段変速機構の変速比をロー側に向けて変化させる変速制御を行う手順を前記コンピュータに実行させる、
    プログラム。
PCT/JP2023/009830 2022-03-18 2023-03-14 変速機の制御装置、変速機の制御方法及びプログラム WO2023176825A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-044002 2022-03-18
JP2022044002 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176825A1 true WO2023176825A1 (ja) 2023-09-21

Family

ID=88023827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009830 WO2023176825A1 (ja) 2022-03-18 2023-03-14 変速機の制御装置、変速機の制御方法及びプログラム

Country Status (1)

Country Link
WO (1) WO2023176825A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151661A1 (ja) * 2015-03-20 2016-09-29 日産自動車株式会社 電動車両の制振制御装置
JP2020186799A (ja) * 2019-05-16 2020-11-19 トヨタ自動車株式会社 車両の制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151661A1 (ja) * 2015-03-20 2016-09-29 日産自動車株式会社 電動車両の制振制御装置
JP2020186799A (ja) * 2019-05-16 2020-11-19 トヨタ自動車株式会社 車両の制御装置

Similar Documents

Publication Publication Date Title
US7331900B2 (en) Shift control apparatus and method for continuously variable transmission
JP2005291111A (ja) 車両用ベルト式無段変速機の入力トルク制御装置
US10837551B2 (en) Control method of continuously variable transmissions
WO2023176825A1 (ja) 変速機の制御装置、変速機の制御方法及びプログラム
JP2005291395A (ja) 車両用ベルト式無段変速機の油圧制御装置
WO2017159270A1 (ja) 無段変速機の制御装置及び無段変速機の制御方法
US11137071B2 (en) Control device and control method for continuously variable transmission
WO2017159269A1 (ja) 無段変速機の制御装置及び無段変速機の制御方法
US11067172B2 (en) Control device and control method for continuously variable transmission
US11162581B2 (en) Device and method for controlling continuously variable transmission
JP2017211008A (ja) 無段変速機の制御方法
JP2006336796A (ja) ベルト式無段変速機の制御装置
JP6742530B2 (ja) 無段変速機の制御装置および制御方法
JP4432436B2 (ja) 無段変速機の変速制御装置
JP6896343B2 (ja) 無段変速機の制御装置
JP6887734B2 (ja) 無段変速機の制御装置
WO2017159268A1 (ja) 無段変速機の制御装置及び無段変速機の制御方法
WO2019176417A1 (ja) 無段変速機の制御装置および制御方法
JP4419491B2 (ja) 車両用の変速制御装置
JP4474880B2 (ja) 変速機の制御装置
JP2006242250A (ja) ベルト式無段変速機の変速制御装置
JP2019052729A (ja) 無段変速機の制御装置
JP2005164004A (ja) 無段変速機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770780

Country of ref document: EP

Kind code of ref document: A1