WO2023176766A1 - 樹脂、樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置 - Google Patents

樹脂、樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置 Download PDF

Info

Publication number
WO2023176766A1
WO2023176766A1 PCT/JP2023/009588 JP2023009588W WO2023176766A1 WO 2023176766 A1 WO2023176766 A1 WO 2023176766A1 JP 2023009588 W JP2023009588 W JP 2023009588W WO 2023176766 A1 WO2023176766 A1 WO 2023176766A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
resin
compound
mass
Prior art date
Application number
PCT/JP2023/009588
Other languages
English (en)
French (fr)
Inventor
圭亮 二村
真 宮本
祥一 伊藤
弘晃 田所
直人 青柳
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2023554802A priority Critical patent/JPWO2023176766A1/ja
Publication of WO2023176766A1 publication Critical patent/WO2023176766A1/ja
Priority to JP2024037215A priority patent/JP2024075622A/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to resins, resin compositions, cured products, prepregs, metal foil-clad laminates, resin composite sheets, printed wiring boards, and semiconductor devices.
  • Patent Document 1 discloses a resin having an isopropenylphenyl group at the end and an indane skeleton as a material suitable for semiconductor sealing materials and printed wiring boards.
  • Patent Document 2 states that when the weighted average degree of polymerization of oligomers consisting of 1,3- and 1,4-diisopropenylbenzene is 1.5 to 50, due to low volatility and high excellent crosslinking ability, It is disclosed as being particularly suitable for use in polymer modification at elevated temperatures.
  • Patent Document 3 discloses improving the operability of a composition by lowering its melt viscosity without impairing other properties of the composition containing an indane skeleton.
  • the parameters ⁇ and ⁇ defined by the present invention do not satisfy the range defined by the present invention, as detailed later.
  • the properties for use in semiconductor encapsulants and printed wiring boards are insufficient.
  • the parameters ⁇ and ⁇ of the resin specifically described in Patent Document 2 also do not satisfy the range defined by the present invention, and as a result, the performance required for electronic material applications is insufficient.
  • the resin described in Patent Document 3 also has parameters ⁇ and ⁇ that do not satisfy the provisions of this patent, and the performance required for electronic material applications is insufficient.
  • the present invention aims to solve the above problems, and provides a resin having an indane skeleton that has excellent dielectric properties and excellent heat resistance, as well as a resin composition, a cured product, and a resin composition using the same.
  • the purpose of the present invention is to provide prepregs, metal foil-clad laminates, resin composite sheets, printed wiring boards, and semiconductor devices.
  • R represents formula (Tx) It is a group containing the structural unit represented by.)
  • n, o and p are the average number of repeating units, n represents a number greater than 0 and less than or equal to 20, o and p each independently represent a number from 0 to 20, and 1 .0 ⁇ n+o+p ⁇ 20.0.
  • Ma represents a hydrocarbon group having 1 to 12 carbon atoms which may be independently substituted with a halogen atom.
  • x represents an integer of 0 to 4.
  • Constituent unit ( a), (b), and (c) are each bonded with * to the structural unit (a), (b), (c), or another group, and each structural unit may be bonded randomly.
  • ⁇ 5> The resin according to any one of ⁇ 1> to ⁇ 4>, having a number average molecular weight of 400 to 3,000.
  • ⁇ 6> The resin according to any one of ⁇ 1> to ⁇ 5>, having a weight average molecular weight of 500 to 6,000.
  • ⁇ 7> The resin according to any one of ⁇ 1> to ⁇ 6>, wherein Mw/Mn, which is the ratio of weight average molecular weight to number average molecular weight, is 1.1 to 3.0.
  • ⁇ 8> x1 in formula (T) is 0,
  • the parameter ⁇ calculated from the formula ( ⁇ ) is 0.60 or more and 1.00 or less,
  • the parameter ⁇ calculated from formula ( ⁇ ) is 0.40 or more and 3.00 or less,
  • the number average molecular weight is 400 to 3000,
  • the weight average molecular weight is 500 to 6000,
  • Mw/Mn which is the ratio of weight average molecular weight to number average molecular weight, is 1.1 to 3.0.
  • a resin composition comprising the resin according to any one of ⁇ 1> to ⁇ 8>.
  • Rx is a group represented by formula (Rx-1) or formula (Rx-2).)
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group. *: It is a bonding site with an oxygen atom.
  • Mc each independently represents a hydrocarbon group having 1 to 12 carbon atoms.
  • z represents an integer of 0 to 4.
  • r represents an integer of 1 to 6.
  • X represents an aromatic group
  • -(Y-O)n 2 - represents a polyphenylene ether structure
  • R 1 , R 2 and R 3 are each independently, It represents a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group
  • n 1 represents an integer of 1 to 6
  • n 2 represents an integer of 1 to 100
  • n 3 represents an integer of 1 to 4.
  • R M1 , R M2 , R M3 , and R M4 each independently represent a hydrogen atom or an organic group.
  • R M5 and R M6 each independently represent a hydrogen atom or an alkyl group.
  • Ar M represents a divalent aromatic group.
  • A is a 4- to 6-membered alicyclic group.
  • R M7 and R M8 are each independently an alkyl group.
  • mx is 1 or 2
  • lx is 0 or 1.
  • R M9 and R M10 each independently represent a hydrogen atom or an alkyl group.
  • R M11 , R M12 , R M13 , and R M14 each independently represent a hydrogen atom or represents an organic group.
  • R M15 each independently represents an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
  • px represents an integer of 0 to 3.
  • nx represents an integer of 1 to 20.
  • the content of the resin is 1 to 90 parts by mass based on 100 parts by mass of resin solid content in the resin composition
  • Ar represents an aromatic hydrocarbon linking group. * represents the bonding position.
  • ⁇ 20> A cured product of the resin composition according to any one of ⁇ 9> to ⁇ 19>.
  • ⁇ 21> A prepreg formed from a base material and the resin composition according to any one of ⁇ 9> to ⁇ 20>.
  • ⁇ 22> A metal foil-clad laminate comprising at least one layer formed from the prepreg according to ⁇ 21> and metal foil disposed on one or both sides of the layer formed from the prepreg.
  • ⁇ 23> A resin composite sheet comprising a support and a layer formed from the resin composition according to any one of ⁇ 9> to ⁇ 19>, disposed on the surface of the support.
  • a printed wiring board comprising an insulating layer and a conductor layer disposed on the surface of the insulating layer, wherein the insulating layer is made of the resin composition according to any one of ⁇ 9> to ⁇ 19>.
  • a printed wiring board that includes layers formed from materials.
  • a semiconductor device including the printed wiring board according to ⁇ 24>.
  • the present invention provides a resin with an indane skeleton that has excellent dielectric properties and excellent heat resistance, as well as resin compositions, cured products, prepregs, metal foil-clad laminates, resin composite sheets, and printed wiring using the same. We are now able to provide boards and semiconductor devices.
  • An NMR chart of the resin obtained in Synthesis Example 1-1 is shown.
  • An NMR chart of the resin obtained in Synthesis Example 1-2 is shown.
  • An NMR chart of the resin obtained in Synthesis Example 1-3 is shown.
  • An NMR chart of the resin obtained in Synthesis Example 1-4 is shown.
  • An NMR chart of the resin obtained in Synthesis Comparative Example 1-1 is shown.
  • An NMR chart of the resin obtained in Synthesis Comparative Example 1-2 is shown.
  • An NMR chart of the resin obtained in Synthesis Comparative Example 1-3 is shown.
  • An NMR chart of the resin obtained in Synthesis Comparative Example 1-4 is shown.
  • a GPC chart of the resin obtained in Synthesis Example 1-4 is shown.
  • a GPC chart of the resin obtained in Synthesis Comparative Example 1-2 is shown.
  • An NMR chart of the resin obtained in Synthesis Example 1-5 is shown.
  • An NMR chart of the resin obtained in Synthesis Comparative Example 1-5 is shown.
  • this embodiment a mode for carrying out the present invention (hereinafter simply referred to as "this embodiment") will be described in detail.
  • the present embodiment below is an illustration for explaining the present invention, and the present invention is not limited only to this embodiment.
  • " ⁇ " is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
  • various physical property values and characteristic values are assumed to be at 23° C. unless otherwise stated.
  • the description that does not indicate substituted or unsubstituted includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group).
  • alkyl group includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • substituent unsubstituted alkyl group
  • alkyl group having a substituent substituted alkyl group
  • the (meth)allyl group represents allyl and/or methallyl
  • “(meth)acrylate” represents both acrylate and/or methacrylate
  • “(meth)acrylate” represents acrylate and/or methacrylate
  • “Acrylic” represents both or either of acrylic and methacrylic
  • “(meth)acryloyl” represents both or either of acryloyl and methacryloyl.
  • the term "process” is used not only to refer to an independent process, but also to include a process in which the intended effect of the process is achieved even if the process cannot be clearly distinguished from other processes. . If the measurement methods, etc. explained in the standards shown in this specification differ from year to year, unless otherwise stated, they shall be based on the standards as of January 1, 2022.
  • the resin solid content refers to components excluding fillers and solvents, and includes the resin represented by formula (T), other compounds (C) blended as necessary, and other components.
  • the purpose is to include resin additive components (additives such as flame retardants, etc.).
  • relative dielectric constant and dielectric constant are used interchangeably.
  • the resin in this embodiment (hereinafter sometimes referred to as "resin represented by formula (T)”) is a resin represented by formula (T), and the parameter ⁇ calculated from formula ( ⁇ ) is The parameter ⁇ is 0.55 or more and 1.00, and the parameter ⁇ calculated from the formula ( ⁇ ) is 0.20 or more and 3.00 or less.
  • Mo represents a hydrocarbon group having 1 to 12 carbon atoms which may be independently substituted with a halogen atom
  • x1 represents an integer of 0 to 4.
  • R represents formula (Tx) It is a group containing the structural unit represented by.)
  • n, o and p are the average number of repeating units, n represents a number greater than 0 and less than or equal to 20, o and p each independently represent a number from 0 to 20, and 1 .0 ⁇ n+o+p ⁇ 20.0.
  • Ma represents a hydrocarbon group having 1 to 12 carbon atoms which may be independently substituted with a halogen atom.
  • x represents an integer of 0 to 4.
  • Constituent unit ( a), (b), and (c) are each bonded with * to the structural unit (a), (b), (c), or another group, and each structural unit may be bonded randomly.
  • x1 is preferably an integer of 0 to 3, more preferably an integer of 0 to 2, even more preferably 0 or 1, and even more preferably 0.
  • n, o and p each mean the average number of repeating units in all molecules in the resin represented by formula (T).
  • the sum of n, o and p is preferably 1.1 ⁇ n+o+p, more preferably 1.2 ⁇ n+o+p, and even more preferably 1.5 ⁇ n+o+p, It is more preferable that 2.0 ⁇ n+o+p, even more preferably that 2.5 ⁇ n+o+p, even more preferably that 3.0 ⁇ n+o+p, and even more preferably that 3.3 ⁇ n+o+p. .
  • the sum of n, o, and p is preferably n+o+p ⁇ 20.0, more preferably n+o+p ⁇ 10.0, and furthermore preferably n+o+p ⁇ 8.0.
  • the sum of n, o, and p can be calculated by the method described in the Examples described later.
  • Ma is preferably a hydrocarbon group having 1 to 10 carbon atoms that may be independently substituted with a halogen atom, and may be substituted with a halogen atom. It is more preferably a hydrocarbon group having 1 to 5 carbon atoms, and even more preferably a hydrocarbon group having 1 to 3 carbon atoms which may be substituted with a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom, with a fluorine atom or a chlorine atom being preferred. Each Ma is preferably a hydrocarbon group having 1 to 12 carbon atoms that is not substituted with a halogen atom.
  • the hydrocarbon group is preferably an alkyl group, more preferably a straight-chain alkyl group. As Ma, a methyl group and an ethyl group are particularly preferable.
  • x is preferably an integer of 0 to 3, more preferably an integer of 0 to 2, even more preferably 0 or 1, and even more preferably 0.
  • the resin represented by formula (T) further has a parameter ⁇ calculated from formula ( ⁇ ) of 0.55 or more and 1.00 or less, and a parameter ⁇ calculated from formula ( ⁇ ) of 0.20 or more. It is 3.00 or less.
  • indicates the ratio of the structural unit having an indane skeleton (the structural unit (a) in the formula (Tx)) in the resin represented by the formula (T). More specifically, it is presumed that by adjusting the structural unit having an indane skeleton so as to satisfy the range of the above parameter ⁇ , the resulting resin molecules had high rigidity and the glass transition temperature of the cured product could be raised. Ru. Furthermore, since molecules with high rigidity have lower mobility than molecules with low rigidity, it is presumed that the relaxation time during dielectric relaxation is longer and the dielectric loss tangent (Df) can be lowered.
  • When synthesizing the resin represented by formula (T), ⁇ can be increased by reducing the concentration of raw materials, using a highly polar solvent, increasing the amount of catalyst, and increasing the reaction temperature.
  • defines the terminal double bond ratio in the resin represented by formula (T). More specifically, for example, by adjusting the above parameter ⁇ so as to satisfy the range, the number of crosslinking points with the functional groups of other compounds (C) (especially thermosetting compounds) described below increases, It is presumed that when cured, it became easier to form a network, resulting in a cured product with a high glass transition temperature and low Df.
  • can be increased by reducing the amount of catalyst, lowering the reaction temperature, using a low polar solvent, etc.
  • the parameter ⁇ is 0.55 or more, preferably 0.57 or more, more preferably 0.59 or more, even more preferably 0.60 or more, and 0.62 or more. is even more preferable, and may be 0.65 or more, 0.70 or more, 0.75 or more, or 0.80 or more.
  • the amount is equal to or more than the lower limit, the heat resistance of the resulting cured product tends to be further improved.
  • the parameter ⁇ is substantially 1.00 or less, and since the resulting cured product tends to have excellent low dielectric properties (low dielectric constant and/or low dielectric loss tangent) and excellent heat resistance, the parameter ⁇ is The larger the better, 0.95 or less, 0.90 or less, 0.85 or less, 0.82 or less, 0.80 or less, less than 0.79, 0.78 or less, 0.77 or less, 0.75 or less , 0.74 or less, or 0.70 or less.
  • the parameter ⁇ is 0.20 or more, preferably 0.25 or more, more preferably 0.30 or more, even more preferably 0.35 or more, and 0.40 or more.
  • the parameter ⁇ is 3.00 or less, preferably 2.50 or less, more preferably 2.00 or less, even more preferably 1.50 or less, and 1.30 or less. is more preferably 1.20 or less, even more preferably 1.10 or less, furthermore 1.00 or less, 0.95 or less, 0.90 or less, 0.85 or less , 0.83 or less, or 0.80 or less.
  • the number average molecular weight (Mn) of the resin represented by formula (T) as calculated by GPC (gel permeation chromatography) in terms of polystyrene (details follow the method described in the Examples below) is preferably 400 or more. , more preferably 500 or more, further preferably 550 or more, even more preferably 600 or more, even more preferably 650 or more. By setting it to the above lower limit or more, the heat resistance of the obtained cured product tends to improve and Df tends to decrease.
  • the upper limit of the number average molecular weight (Mn) of the resin represented by formula (T) in terms of polystyrene determined by GPC is preferably 3000 or less, more preferably 2500 or less. It is preferably 2,000 or less, even more preferably 1,500 or less, and even more preferably 1,250 or less.
  • the weight average molecular weight (Mw) of the resin represented by formula (T) in terms of polystyrene by GPC is preferably 500 or more, and preferably 800 or more.
  • the upper limit of the weight average molecular weight (Mw) of the resin represented by formula (T) in terms of polystyrene by GPC is preferably 6000 or less, and 5000 or less. It is more preferably 4,000 or less, even more preferably 3,000 or less, even more preferably 2,900 or less, and even more preferably 2,800 or less. By setting it below the above-mentioned upper limit, the heat resistance of the obtained cured product tends to improve and the Df tends to decrease.
  • the resin represented by formula (T) preferably has a ratio of weight average molecular weight to number average molecular weight, Mw/Mn, of 1.1 to 3.0.
  • Mw/Mn of the resin represented by formula (T) is more preferably 1.2 or more, even more preferably 1.3 or more, even more preferably 1.4 or more, and 1. It is even more preferable that it is 5 or more, and even more preferably that it is 1.6 or more.
  • Mw/Mn of the resin represented by formula (T) is more preferably 2.5 or less, even more preferably less than 2.5, even more preferably 2.4 or less, It may be 2.3 or less, less than 2.3, 2.2 or less, 2.0 or less, or 1.8 or less.
  • the weight average molecular weight and number average molecular weight are measured according to the methods described in the Examples below.
  • the resin represented by formula (T) is a compound having an isopropenylphenyl group at the end, and it is preferable that the main component is one in which the number of isopropenylphenyl groups in one molecule is 2. Specifically, more than 50% by mass of the resin represented by formula (T), preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more.
  • the number of isopropenylphenyl groups in one molecule is 2.
  • the method for producing the resin represented by formula (T) is not particularly limited as long as the resulting resin satisfies the parameters ⁇ and ⁇ described above, and the method includes synthesizing the resin represented by formula (T).
  • the raw materials, reaction temperature, catalyst species, catalyst amount, reaction solvent, raw material concentration, etc. can be adjusted as appropriate.
  • raw materials for synthesizing the resin represented by formula (T) include m-bis( ⁇ -hydroxyisopropyl)benzene, p-bis( ⁇ -hydroxyisopropyl)benzene, 1,3-diisopropenylbenzene, Also, 1,4-diisopropenylbenzene and the like can be used.
  • the reaction temperature when synthesizing the resin represented by formula (T) is preferably 40°C or higher, more preferably 50°C or higher, even more preferably 60°C or higher, and even more preferably 70°C or higher. , 80°C or higher, 90°C or higher, 100°C or higher, 110°C or higher, or 120°C or higher.
  • the reaction rate tends to be improved and the indane skeleton (constituent unit (a) in formula (Tx)) ratio tends to improve, which is preferable.
  • the reaction temperature is preferably 180°C or lower, more preferably 150°C or lower, and even more preferably 140°C or lower.
  • the reaction temperature does not need to be the same from the start to the end of the reaction, and the temperature may be changed. In this case, it is preferable that the average reaction temperature of the entire process is within the above range.
  • the catalyst used when synthesizing the resin represented by formula (T) is not particularly limited, but an acid catalyst is exemplified.
  • acid catalysts include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as oxalic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid, and fluoromethanesulfonic acid, BF3 ether complex, and BF3phenol complex.
  • Lewis acids such as aluminum chloride, zinc chloride, and indium chloride
  • solid acids such as activated clay, acid clay, silica alumina, and zeolite, heteropolyhydrochloric acid, strongly acidic ion exchange resins, and the like
  • T the amount of the above raw material for the resin represented by formula (T).
  • one kind of catalyst is used alone, but two or more kinds may be used in combination.
  • the total amount is preferably within the above range.
  • the reaction solvent for synthesizing the resin represented by formula (T) is not particularly specified, but aromatic hydrocarbon solvents such as toluene, benzene, chlorobenzene, and xylene, and halogenated carbons such as methylene chloride and chloroform are used.
  • aromatic hydrocarbon solvents such as toluene, benzene, chlorobenzene, and xylene
  • halogenated carbons such as methylene chloride and chloroform
  • water can also be added.
  • alcohol solvents include methanol, ethanol, butanol, propanol, methylpropylene diglycol, diethylene glycol ethyl ether, butylpropylene glycol, propylpropylene glycol, and examples of ketone solvents include acetone, methylethylketone, diethylketone, methylbutylketone, Examples include methyl isobutyl ketone, and others include, but are not limited to, tetrahydrofuran and dioxane.
  • An example of the reaction solvent in this embodiment includes an aromatic hydrocarbon solvent.
  • the concentration of the above-mentioned raw materials when synthesizing the resin represented by formula (T) is preferably 5% or more, more preferably 8% or more, preferably 10% or more, and 12% or more. % or more, 15% or more, 17% or more, 20% or more, 22% or more, or 25% or more.
  • the concentration of the above-mentioned raw materials is preferably 49% or less, more preferably 40% or less. By setting it below the upper limit, it tends to be possible to effectively suppress the production of by-products. Further, the concentration does not need to be the same from the start to the end of the reaction, and the concentration may be changed.
  • Patent Document 1 The resin represented by formula (T) is described in Patent Document 1 as a resin having an isopropenylphenyl group at the terminal and an indane skeleton as a material suitable for semiconductor sealing materials and printed wiring boards. is disclosed.
  • the synthesis of the example described in Patent Document 1 and the example of this patent differs mainly in concentration and amount of catalyst, and parameters ⁇ and ⁇ are adjusted by optimizing these conditions.
  • the resin described in the Examples of Patent Document 1 has parameters ⁇ and ⁇ that do not satisfy the range of the present invention, and has insufficient properties for use in semiconductor sealing materials and printed wiring boards.
  • Patent Document 2 describes that when the weighted average degree of polymerization of oligomers consisting of 1,3- and 1,4-diisopropenylbenzene is 1.5 to 50, due to low volatility and high excellent crosslinking ability, It is disclosed as being particularly suitable for use in polymer modification at elevated temperatures.
  • the synthesis of the example described in Patent Document 2 and the example of the present invention differs mainly in the catalyst used and temperature conditions, and the parameters ⁇ and ⁇ are adjusted by optimizing these conditions.
  • the application of the resin described in the example of Patent Document 2 is different from that of this patent, and the parameters ⁇ and ⁇ do not meet the scope of the present invention in terms of properties, so the performance is insufficient for use as an electronic material. It is.
  • Patent Document 3 discloses that the indane skeleton improves the operability of the composition by reducing the melt viscosity of the composition without impairing other properties of the composition.
  • the synthesis of the example described in Patent Document 3 and the example of this patent differs mainly in concentration, catalyst amount, and temperature conditions, and parameters ⁇ and ⁇ are adjusted by optimizing these conditions.
  • Patent Document 3 states that thermoplastic engineering plastics are suitable for use in printed circuit boards due to their excellent electrical properties, but the resin described in the examples of Patent Document 3 has parameters ⁇ and ⁇ . does not satisfy the provisions of this patent, and is insufficient for electronic material applications.
  • a resin composition containing a resin represented by the above formula (T) is also disclosed.
  • a cured product of such a resin composition can have high heat resistance and excellent dielectric properties.
  • the content of the resin represented by formula (T) in the resin composition of the present embodiment is preferably 1 part by mass or more, and 5 parts by mass or more based on 100 parts by mass of resin solids in the resin composition. It is more preferably 10 parts by mass or more, even more preferably 15 parts by mass or more, even more preferably 20 parts by mass or more, and may be 25 parts by mass or more. . By making it equal to or more than the lower limit value, Df tends to be lowered.
  • the upper limit of the content of the resin represented by the formula (T) is preferably 90 parts by mass or less, and 80 parts by mass or less, based on 100 parts by mass of resin solid content in the resin composition. It is even more preferable that it is 70 parts by mass or less, even more preferably that it is 60 parts by mass or less, even more preferably that it is 50 parts by mass or less, and even more preferably that it is 40 parts by mass or less. preferable. By setting it below the above upper limit, heat resistance tends to improve.
  • the resin composition of this embodiment may contain only one type of resin represented by formula (T), or may contain two or more types of resin. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition of this embodiment contains, in addition to the resin of this embodiment (resin represented by formula (T)), another compound (C) (preferably another curable compound and/or plastic compound, etc.). Preferably, it may contain other thermosetting compounds and/or thermoplastic compounds, more preferably other thermosetting compounds).
  • the resin composition of this embodiment includes a maleimide compound, a polyphenylene ether compound, a polymer having a structural unit represented by formula (V), a cyanate ester compound, an epoxy compound, a phenol compound, and a compound containing a (meth)allyl group.
  • Ar represents an aromatic hydrocarbon linking group. * represents the bonding position.
  • a polyphenylene ether compound more preferably a polyphenylene ether compound having a carbon-carbon unsaturated double bond at the terminal, and a compound represented by the formula (OP-1) described below. It is even more preferable to include.
  • a maleimide compound containing two or more maleimide groups is included, and it is more preferable that a compound represented by the formula (M1) described below is included.
  • the resin composition of this embodiment may contain other compounds (C) (preferably other curable compounds and/or plastic compounds, more preferably other thermosetting compounds and/or thermoplastic compounds, even more preferably other thermosetting compounds).
  • curable compound its content (total amount) is preferably 1 part by mass or more, more preferably 10 parts by mass or more, and 15 parts by mass or more based on 100 parts by mass of resin solid content. It is more preferably 20 parts by mass or more, even more preferably 30 parts by mass or more, and furthermore, it may be 40 parts by mass or more, or 50 parts by mass or more. By setting it above the lower limit, heat resistance, plating adhesion, low thermal expansion, etc. tend to be further improved.
  • the content of other compounds (C) (preferably other curable compounds and/or plastic compounds, more preferably other thermosetting compounds and/or thermoplastic compounds, still more preferably other thermosetting compounds)
  • the upper limit of the amount is preferably 99 parts by mass or less, more preferably 95 parts by mass or less, even more preferably 90 parts by mass or less, and 85 parts by mass based on 100 parts by mass of the resin solid content. It is more preferably the following amount, even more preferably 80 parts by weight or less, furthermore, it may be 75 parts by weight or less, 50 parts by weight or less, 45 parts by weight or less, or 40 parts by weight or less. By setting it below the upper limit value, low dielectric properties and low water absorption tend to be further improved.
  • the resin composition of this embodiment may contain only one type of other compound (C), or may contain two or more types. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the maleimide compound may be a compound containing one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, even more preferably 2 or 3, even more preferably) maleimide groups in the molecule.
  • the maleimide compound may be a compound containing one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, even more preferably 2 or 3, even more preferably) maleimide groups in the molecule.
  • the maleimide compound is a compound represented by formula (M0), a compound represented by formula (M1), a compound represented by formula (M2), a compound represented by formula (M3), It is preferable to include one or more selected from the group consisting of a compound represented by formula (M4), a compound represented by formula (M5), and a maleimide compound (M6), and represented by formula (M0).
  • the compound represented by formula (M1) is even more preferable.
  • these maleimide compounds are used in materials for printed wiring boards (for example, metal foil-clad laminates), they can provide excellent heat resistance.
  • R 51 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a phenyl group
  • R 52 each independently represents a hydrogen atom or a methyl group
  • n 1 represents an integer greater than or equal to 1.
  • R 51 is each independently selected from the group consisting of a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, and a phenyl group.
  • R 52 is preferably one selected from the group, more preferably a hydrogen atom and/or a methyl group, and even more preferably a hydrogen atom.
  • R 52 is preferably a methyl group.
  • n 1 is preferably an integer of 1 to 10, more preferably an integer of 1 to 5, even more preferably an integer of 1 to 3, even more preferably 1 or 2, and even more preferably 1.
  • M0 preferred examples of formula (M0).
  • R 8 each independently represents a hydrogen atom, a methyl group or an ethyl group, and a methyl group is preferred.
  • the compound represented by formula (M0) may be one type or a mixture of two or more types.
  • mixtures include mixtures of compounds in which n1 is different, mixtures of compounds in which the types of substituents for R51 and/or R52 are different, and the bonding position of the maleimide group and the oxygen atom to the benzene ring (meta position, para position, Examples include mixtures of compounds having different positions (ortho positions), and mixtures of compounds having two or more of the above-mentioned different points combined.
  • (In formula (M1), R M1 , R M2 , R M3 , and R M4 each independently represent a hydrogen atom or an organic group.
  • R M5 and R M6 each independently represent a hydrogen atom or an alkyl group.
  • Ar M represents a divalent aromatic group.
  • A is a 4- to 6-membered alicyclic group.
  • R M7 and R M8 are each independently an alkyl group.
  • mx is 1 or 2
  • lx is 0 or 1.
  • R M9 and R M10 each independently represent a hydrogen atom or an alkyl group.
  • R M11 , R M12 , R M13 , and R M14 each independently represent a hydrogen atom or represents an organic group.
  • R M15 each independently represents an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms.
  • px represents an integer of 0 to 3.
  • px represents an integer of 0 to 3.
  • nx represents an integer from 1 to 20.
  • R M1 , R M2 , R M3 , and R M4 in the formula each independently represent a hydrogen atom or an organic group.
  • the organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, even more preferably an alkyl group having 1 to 6 carbon atoms, and a methyl group, an ethyl group, a propyl group, or a butyl group. More preferred is a methyl group, especially a methyl group.
  • R M1 and R M3 are each independently preferably an alkyl group, and R M2 and R M4 are preferably a hydrogen atom.
  • R M5 and R M6 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group.
  • the alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and still more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, with a methyl group being particularly preferred. preferable.
  • Ar M represents a divalent aromatic group, preferably a phenylene group, a naphthalenediyl group, a phenanthrenediyl group, an anthracenediyl group, more preferably a phenylene group, still more preferably a m-phenylene group.
  • Ar M may have a substituent, and the substituent is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, even more preferably an alkyl group having 1 to 6 carbon atoms, a methyl group, Ethyl group, propyl group, and butyl group are more preferable, and methyl group is particularly preferable.
  • Ar M is unsubstituted.
  • A is a 4- to 6-membered alicyclic group, and more preferably a 5-membered alicyclic group (preferably a group that forms an indane ring when combined with a benzene ring).
  • R M7 and R M8 each independently represent an alkyl group, preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and particularly preferably a methyl group.
  • mx is 1 or 2, preferably 2.
  • lx is 0 or 1, preferably 1.
  • R M9 and R M10 each independently represent a hydrogen atom or an alkyl group, and an alkyl group is more preferred.
  • the alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and still more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, with a methyl group being particularly preferred.
  • R M11 , R M12 , R M13 , and R M14 each independently represent a hydrogen atom or an organic group.
  • the organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, even more preferably an alkyl group having 1 to 6 carbon atoms, and a methyl group, an ethyl group, a propyl group, or a butyl group. More preferred is a methyl group, especially a methyl group.
  • R M12 and R M13 are each independently preferably an alkyl group, and R M11 and R M14 are preferably a hydrogen atom.
  • R M15 each independently represents an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or a cycloalkyl group having 6 to 10 carbon atoms.
  • aryl group an aryloxy group having 6 to 10 carbon atoms, an arylthio group having 6 to 10 carbon atoms, a halogen atom, a hydroxyl group or a mercapto group, an alkyl group having 1 to 4 carbon atoms, a cyclo group having 3 to 6 carbon atoms, Preferably, it is an alkyl group or an aryl group having 6 to 10 carbon atoms.
  • px represents an integer of 0 to 3, preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • nx represents an integer from 1 to 20. nx may be an integer of 10 or less.
  • the resin composition of the present embodiment may contain only one type of compound represented by formula (M1), or may contain two or more types of compounds having at least different values of nx. .
  • the average value of nx (average number of repeating units) n in the compound represented by formula (M1) in the resin composition has a low melting point (low softening point) and a low melt viscosity, In order to have excellent handling properties, it is preferably 0.92 or more, more preferably 0.95 or more, even more preferably 1.0 or more, and preferably 1.1 or more. More preferred.
  • n is preferably 10.0 or less, more preferably 8.0 or less, even more preferably 7.0 or less, even more preferably 6.0 or less, and 5.
  • the compound represented by formula (M1) is preferably a compound represented by formula (M1-1) below.
  • R M21 , R M22 , R M23 , and R M24 each independently represent a hydrogen atom or an organic group.
  • R M25 and R M26 each independently represent a hydrogen atom or an alkyl
  • R M27 , R M28 , R M29 , and R M30 each independently represent a hydrogen atom or an organic group.
  • R M31 and R M32 each independently represent a hydrogen atom or an alkyl group.
  • R M33 , R M34 , R M35 , and R M36 each independently represent a hydrogen atom or an organic group.
  • R M37 , R M38 , and R M39 each independently represent a hydrogen atom or an alkyl group.
  • nx is Represents an integer between 1 and 20.
  • R M21 , R M22 , R M23 , and R M24 in the formula each independently represent a hydrogen atom or an organic group.
  • the organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, even more preferably an alkyl group having 1 to 6 carbon atoms, and a methyl group, an ethyl group, a propyl group, or a butyl group. More preferred is a methyl group.
  • R M21 and R M23 are preferably alkyl groups, and R M22 and R M24 are preferably hydrogen atoms.
  • R M25 and R M26 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group.
  • the alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and still more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, with a methyl group being particularly preferred.
  • R M27 , R M28 , R M29 , and R M30 each independently represent a hydrogen atom or an organic group, and preferably a hydrogen atom.
  • the organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, even more preferably an alkyl group having 1 to 6 carbon atoms, and a methyl group, an ethyl group, a propyl group, or a butyl group. More preferred is a methyl group.
  • R M31 and R M32 each independently represent a hydrogen atom or an alkyl group, preferably an alkyl group.
  • the alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and still more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, with a methyl group being particularly preferred.
  • R M33 , R M34 , R M35 , and R M36 each independently represent a hydrogen atom or an organic group.
  • the organic group here is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, even more preferably an alkyl group having 1 to 6 carbon atoms, and a methyl group, an ethyl group, a propyl group, or a butyl group. More preferred is a methyl group.
  • R M33 and R M36 are preferably hydrogen atoms, and R M34 and R M35 are preferably alkyl groups.
  • R M37 , R M38 , and R M39 each independently represent a hydrogen atom or an alkyl group, and an alkyl group is preferable.
  • the alkyl group here is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and still more preferably a methyl group, an ethyl group, a propyl group, or a butyl group, with a methyl group being particularly preferred.
  • nx represents an integer from 1 to 20. nx may be an integer of 10 or less.
  • the compound represented by formula (M1-1) is preferably a compound represented by formula (M1-2) below.
  • R M21 , R M22 , R M23 , and R M24 each independently represent a hydrogen atom or an organic group.
  • R M25 and R M26 each independently represent a hydrogen atom or an alkyl
  • R M27 , R M28 , R M29 , and R M30 each independently represent a hydrogen atom or an organic group.
  • R M31 and R M32 each independently represent a hydrogen atom or an alkyl group.
  • R M33 , R M34 , R M35 , and R M36 each independently represent a hydrogen atom or an organic group.
  • R M37 , R M38 , and R M39 each independently represent a hydrogen atom or an alkyl group.
  • nx is Represents an integer between 1 and 20.
  • RM21 , RM22 , RM23 , RM24 , RM25 , RM26, RM27 , RM28 , RM29 , RM30 , RM31 , RM32 , RM33 , RM34 , R M35 , R M36 , R M37 , R M38 , R M39 , and nx are R M21 , R M22 , R M23 , R M24 , R M25 , R M26 , R M27 in formula (M1-1), respectively; It is synonymous with R M28 , R M29 , R M30 , R M31 , R M32 , R M33 , R M34 , R M35 , R M36 , R M37 , R M38 , R M39 , and nx, and the preferred ranges are also the same. .
  • the compound represented by the formula (M1-1) is preferably a compound represented by the following formula (M1-3), and more preferably a compound represented by the following formula (M1-4).
  • M1-3 nx represents an integer from 1 to 20.
  • nx may be an integer of 10 or less.
  • nx represents an integer from 1 to 20.
  • nx may be an integer of 10 or less.
  • the molecular weight of the compound represented by formula (M1) is preferably 500 or more, more preferably 600 or more, and even more preferably 700 or more. When the amount is equal to or more than the lower limit, the resulting cured product tends to have better low dielectric properties (Dk and/or Df) and low water absorption. Further, the molecular weight of the compound represented by formula (M1) is preferably 10,000 or less, more preferably 9,000 or less, even more preferably 7,000 or less, even more preferably 5,000 or less, It is even more preferable that it is 4000 or less. By setting it below the above-mentioned upper limit, the heat resistance and handleability of the obtained cured product tend to be further improved.
  • the compound represented by formula (M1) has a maleimide group equivalent of 50 g/eq. or more, preferably 100g/eq. More preferably, it is 200g/eq. It is more preferable that it is above.
  • the upper limit of the maleimide equivalent is 2000 g/eq. It is preferably less than 1000g/eq. It is more preferably less than 800g/eq. It is more preferable that it is the following.
  • the maleimide group equivalent represents the mass of the maleimide compound per 1 equivalent of maleimide group.
  • the compound represented by formula (M1) preferably has a molecular weight distribution Mw/Mn calculated from gel permeation chromatography (GPC) measurement of 1.0 to 4.0, preferably 1.1 to 3.8. It is more preferably 1.2 to 3.6, even more preferably 1.3 to 3.4.
  • Mw/Mn of the compound represented by formula (M1) is within the above range, the resulting cured product tends to have improved low dielectric properties (Dk and/or Df), low water absorption, heat resistance, and handleability. It is in.
  • R 54 each independently represents a hydrogen atom or a methyl group, and n 4 represents an integer of 1 or more.
  • n 4 is preferably an integer of 1 to 10, more preferably an integer of 1 to 5, even more preferably an integer of 1 to 3, even more preferably 1 or 2, and may be 1.
  • the compound represented by formula (M2) may be a mixture of compounds in which n 4 is different, and is preferably a mixture. Further, as described in the section of the compound represented by formula (M0), it may be a mixture of compounds having different parts.
  • R 55 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a phenyl group, and n 5 represents an integer of 1 to 10.
  • R 55 is each independently a group consisting of a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, and a phenyl group It is preferably one type selected from these, more preferably a hydrogen atom and/or a methyl group, and even more preferably a hydrogen atom.
  • n 5 is preferably an integer of 1 or more and 5 or less, more preferably an integer of 1 to 3, and even more preferably 1 or 2.
  • the compound represented by formula (M3) may be a mixture of compounds having different n 5 values, and is preferably a mixture. Further, as described in the section of the compound represented by formula (M0), it may be a mixture of compounds having different parts.
  • R 56 each independently represents a hydrogen atom, a methyl group, or an ethyl group
  • R 57 each independently represents a hydrogen atom or a methyl group.
  • R 56 is preferably each independently a methyl group or an ethyl group, more preferably a methyl group and an ethyl group in each of the two benzene rings, and R 57 is preferably a methyl group.
  • R 58 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a phenyl group
  • R 59 each independently represents a hydrogen atom or a methyl group
  • n 6 represents an integer greater than or equal to 1.
  • R 58 each independently represents a group consisting of a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, and a phenyl group It is preferably one type selected from these, more preferably a hydrogen atom and/or a methyl group, and even more preferably a hydrogen atom.
  • R 59 is preferably a methyl group.
  • n 6 is preferably an integer of 1 to 10, more preferably an integer of 1 to 5, even more preferably an integer of 1 to 3, even more preferably 1 or 2, and may be 1.
  • the compound represented by formula (M5) may be a mixture of compounds having different n 6 values, and is preferably a mixture. Further, as described in the section of the compound represented by formula (M0), it may be a mixture of compounds having different parts.
  • the maleimide compound (M6) is a compound having a structural unit represented by formula (M6) and maleimide groups at both ends of the molecular chain.
  • R 61 represents a linear or branched alkylene group having 1 to 16 carbon atoms, or a linear or branched alkenylene group having 2 to 16 carbon atoms.
  • R 62 is R 63 represents a linear or branched alkylene group having 1 to 16 carbon atoms, or a linear or branched alkenylene group having 2 to 16 carbon atoms. Represents a chain or branched alkyl group, or a straight or branched alkenyl group having 2 to 16 carbon atoms.
  • n independently represents an integer of 0 to 10.
  • the maleimide compound (M7) is produced by reacting an aromatic amine compound (a1) having 1 to 3 alkyl groups in its aromatic ring, an aromatic divinyl compound (a2) having 2 ethenyl groups, and maleic anhydride as raw materials ( 1) is a maleimide compound.
  • the maleimide compound (M7) is preferably a compound represented by formula (M7).
  • R 1 each independently represents the alkyl group
  • R 2 each independently represents an alkyl group, alkoxy group, or alkylthio group having 1 to 10 carbon atoms
  • a halogen atom a hydroxyl group; or a mercapto group
  • R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a methyl group, and one of R 3 and R 4 is a hydrogen atom and the other is a methyl group
  • R 5 and R 6 are One is a hydrogen atom, the other is a methyl group
  • X 1 is the following formula (x):
  • R 7 and R 8 each independently represent a hydrogen atom or a methyl group, and one of R 7 and R 8 is a hydrogen atom, the other is a methyl group
  • R 9 is the following formula (x):
  • the maleimide compound may be produced by a known method, or a commercially available product may be used.
  • Commercially available products include, for example, "BMI-80” manufactured by K.I. Kasei Co., Ltd. as a compound represented by formula (M0), and “NE-X-9470S” manufactured by DIC Corporation as a compound represented by formula (M1).
  • the compound represented by formula (M2) is “BMI-2300” manufactured by Daiwa Chemical Industries, Ltd.
  • the compound represented by formula (M3) is "MIR-3000-70MT” manufactured by Nippon Kayaku Co., Ltd.
  • formula ( The compound represented by M4) is "BMI-70” manufactured by K.I.
  • the compound represented by formula (M5) is "MIR-5000” manufactured by Nippon Kayaku Co., Ltd.
  • the maleimide compound (M6) is manufactured by Nippon Kayaku Co., Ltd.
  • Examples include "MIZ-001” manufactured by Kayaku Co., Ltd., and "NE-X-9500” manufactured by DIC Corporation as the maleimide compound (M7).
  • maleimide compounds other than those mentioned above include N-phenylmaleimide, N-cyclohexylmaleimide, oligomers of phenylmethanemaleimide, m-phenylenebismaleimide, 4-methyl-1,3-phenylenebismaleimide, 1,6- Bismaleimide-(2,2,4-trimethyl)hexane, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide, 1,3-bis(3-maleimidophenoxy)benzene, 1,3- Examples include bis(4-maleimidophenoxy)benzene, prepolymers thereof, and prepolymers of these maleimides and amines.
  • monofunctional maleimide compounds such as N-phenylmaleimide and N-cyclohexylmaleimide can be used in combination with a polymer having a structural unit represented by the following formula (V) to produce a cured product with excellent low dielectric properties.
  • V structural unit represented by the following formula
  • the lower limit of its content is preferably 1 part by mass or more, and 10 parts by mass or more, based on 100 parts by mass of resin solids in the resin composition.
  • the amount is more preferably 30 parts by mass or more, even more preferably 50 parts by mass or more, and even more preferably 60 parts by mass or more.
  • the content of the maleimide compound is 1 part by mass or more, the resulting cured product tends to have improved low dielectric properties and flame resistance.
  • the upper limit of the content of the maleimide compound is preferably 90 parts by mass or less, more preferably 85 parts by mass or less, based on 100 parts by mass of resin solid content in the resin composition, and further, The amount may be 80 parts by mass or less, or 75 parts by mass or less.
  • the resin composition in this embodiment may contain only one type of maleimide compound, or may contain two or more types of maleimide compounds. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition in this embodiment can also have a structure that does not substantially contain a maleimide compound.
  • Substantially free means that the content of the maleimide compound is less than 1 part by mass, preferably less than 0.1 part by mass, with respect to 100 parts by mass of resin solids in the resin composition. More preferably, it is less than .01 part by mass.
  • the resin composition of the present embodiment may contain a polyphenylene ether compound, and may further contain a polyphenylene ether compound (B) containing two or more carbon-carbon unsaturated double bonds.
  • the polyphenylene ether compound (B) having a carbon-carbon unsaturated double bond at the terminal has a group represented by the formula (Rx-1) such as a vinylbenzyl group, or a group represented by the formula (Rx-1) such as a (meth)acrylic group at the terminal.
  • a polyphenylene ether compound having a group selected from the group consisting of a group represented by -2) and a maleimide group is preferable, and a group represented by formula (Rx-1) such as a vinylbenzyl group and/or ( More preferably, it is a polyphenylene ether compound having a group represented by formula (Rx-2) such as a meth)acrylic group, and a group represented by formula (Rx-1) such as a vinylbenzyl group and/or at the terminal. More preferably, it is a polyphenylene ether compound containing two or more groups represented by formula (Rx-2) such as (meth)acrylic groups.
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group. *: It is a bonding site with an oxygen atom.
  • Mc each independently represents a hydrocarbon group having 1 to 12 carbon atoms.
  • z represents an integer of 0 to 4.
  • r represents an integer of 1 to 6.
  • polyphenylene ether compounds By using these polyphenylene ether compounds, it tends to be possible to more effectively improve the low dielectric properties (Dk and/or Df), low water absorption, etc. of printed wiring boards and the like.
  • a polyphenylene ether compound having a vinylbenzyl group at the end By having a vinylbenzyl group, the compatibility with the resin (A) tends to be significantly improved.
  • the polyphenylene ether compound (B) having a carbon-carbon unsaturated double bond at the terminal is represented by the following formula (X1). Examples include compounds having a phenylene ether skeleton.
  • R 24 , R 25 , R 26 , and R 27 may be the same or different, and represent an alkyl group having 6 or less carbon atoms, an aryl group, a halogen atom, or a hydrogen atom.
  • a polyphenylene ether compound (B) having a carbon-carbon unsaturated double bond at the terminal (preferably a polyphenylene ether compound (B2) containing two or more carbon-carbon unsaturated double bonds) has the formula (X2): (In formula (X2), R 28 , R 29 , R 30 , R 34 , and R 35 may be the same or different and represent an alkyl group or a phenyl group having 6 or less carbon atoms.
  • R 31 , R 32 , and R 33 may be the same or different and are a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
  • -A- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • the polyphenylene ether compound (B) having a carbon-carbon unsaturated double bond at the terminal (preferably the polyphenylene ether compound (B2) containing two or more carbon-carbon unsaturated double bonds) has a part or all of the terminal is preferably a modified polyphenylene ether compound functionalized with an ethylenically unsaturated group (hereinafter sometimes referred to as "modified polyphenylene ether compound (g)"), and has a formula (Rx It is a modified polyphenylene ether compound having two or more groups selected from the group consisting of a group represented by -1), a group represented by formula (Rx-2) such as a (meth)acrylic group, and a maleimide group.
  • the low dielectric properties (Dk and/or Df) of the cured product of the resin composition can be made smaller, and the low water absorption and metal foil peel strength can be improved. becomes possible. These may be used alone or in combination of two or more.
  • Examples of the modified polyphenylene ether compound (g) include polyphenylene ether compounds represented by formula (OP).
  • OP polyphenylene ether compounds represented by formula (OP).
  • X represents an aromatic group
  • -(Y-O) n1 - represents a polyphenylene ether structure
  • n1 represents an integer of 1 to 100
  • n2 represents an integer of 1 to 4.
  • Rx is a group represented by formula (Rx-1) or formula (Rx-2).
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group. *: It is a bonding site with an oxygen atom.
  • Mc each independently represents a hydrocarbon group having 1 to 12 carbon atoms.
  • z represents an integer of 0 to 4.
  • r represents an integer of 1 to 6.
  • n 1 and/or n 2 are integers of 2 or more, the n 1 structural units (YO) and/or the n 2 structural units may be the same or different.
  • n 2 is preferably 2 or more, more preferably 2.
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group.
  • R 1 is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
  • R 2 and R 3 are each independently preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
  • the number of carbon atoms in each of the alkyl group, alkenyl group, or alkynyl group as R 1 , R 2 , and R 3 is preferably 5 or less, more preferably 3 or less.
  • r represents an integer of 1 to 6, preferably an integer of 1 to 5, more preferably an integer of 1 to 4, and preferably an integer of 1 to 3. More preferably, it is 1 or 2, even more preferably 1.
  • Mc each independently represents a hydrocarbon group having 1 to 12 carbon atoms, preferably a hydrocarbon group having 1 to 10 carbon atoms, and a linear chain having 1 to 10 carbon atoms. or a branched alkyl group, more preferably a methyl group, ethyl group, isopropyl group, isobutyl group, t-butyl group, pentyl group, octyl group, or nonyl group, and a methyl group, an ethyl group , isopropyl group, isobutyl group, or t-butyl group are more preferable.
  • z represents an integer of 0 to 4, preferably an integer of 0 to 3, more preferably an integer of 0 to 2, further preferably 0 or 1, and most preferably 0.
  • Rx-1 A specific example of the group represented by formula (Rx-1) is a vinylbenzyl group, and a specific example of the group represented by formula (Rx-2) is a (meth)acryloyl group.
  • Rx is preferably a group represented by formula (Rx-1).
  • Examples of the modified polyphenylene ether compound (g) include a polyphenylene ether compound represented by formula (OP-1).
  • X represents an aromatic group
  • -(Y-O)n 2 - represents a polyphenylene ether structure
  • R 1 , R 2 and R 3 are each independently, Represents a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group
  • n 1 represents an integer of 1 to 6
  • n 2 represents an integer of 1 to 100
  • n 3 represents an integer of 1 to 4.
  • the n 2 structural units (YO) and/or the n 3 structural units may be the same or different.
  • n 3 is preferably 2 or more, more preferably 2.
  • the modified polyphenylene ether compound (g) in this embodiment is also preferably a compound represented by formula (OP-2), more preferably a compound represented by formula (OP-2-2). preferable.
  • -(O-X-O)- is the formula (OP-3): (In formula (OP-3), R 4 , R 5 , R 6 , R 10 , and R 11 may be the same or different and are an alkyl group or a phenyl group having 6 or less carbon atoms.
  • R 7 , R 8 and R 9 may be the same or different and are a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
  • formula (OP-4) (In formula (OP-4), R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , and R 19 may be the same or different, and each has a hydrogen atom and a carbon number of 6 or less. is an alkyl group or phenyl group.
  • -A- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • -(YO)- is the formula (OP-5):
  • R 20 and R 21 may be the same or different and are an alkyl group or a phenyl group having 6 or less carbon atoms.
  • R 22 and R 23 may be the same or different, It is preferably represented by a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
  • R 20 and R 21 each independently to a group having one or more methyl group and/or cyclohexyl group, the resulting resin molecule will have high rigidity, and molecules with high rigidity will have high rigidity.
  • a and b each independently represent an integer of 0 to 100, and at least one of a and b is an integer of 1 to 100.
  • a and b are each independently preferably an integer of 0 to 50, more preferably an integer of 1 to 30, and preferably an integer of 1 to 10.
  • 2 or more -(YO)- may each independently be an array of one type of structure, or two or more types of structures may be a block or They may be arranged randomly.
  • the average value of a is preferably 1 ⁇ a ⁇ 10, and the average value of b is preferably 1 ⁇ b ⁇ 10. .
  • -A- in formula (OP-4) is, for example, a methylene group, ethylidene group, 1-methylethylidene group, 1,1-propylidene group, 1,4-phenylenebis(1-methylethylidene) group, 1, Examples include, but are not limited to, divalent organic groups such as 3-phenylenebis(1-methylethylidene) group, cyclohexylidene group, phenylmethylene group, naphthylmethylene group, and 1-phenylethylidene group.
  • Rx has the same meaning as Rx in formula (OP), and the preferred range is also the same.
  • R 4 , R 5 , R 6 , R 10 , R 11 , R 20 and R 21 are alkyl groups having 3 or less carbon atoms
  • R 7 , R 8 , R 9 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 22 and R 23 are hydrogen atoms or alkyl groups having 3 or less carbon atoms
  • a polyphenylene ether compound is preferable, and in particular, -(O-X-O)- represented by formula (OP-3) or formula (OP-4) is represented by formula (OP-9) or formula (OP-10).
  • formula (OP-11), and -(YO)- represented by formula (OP-5) is preferably formula (OP-12) or formula (OP-13) .
  • a and/or b are integers of 2 or more
  • -(Y-O)- of 2 or more each independently represents a structure in which two or more of formula (OP-12) and/or formula (OP-13) are arranged. Alternatively, it may have a structure in which formula (OP-12) and formula (OP-13) are arranged in blocks or randomly.
  • R 44 , R 45 , R 46 , and R 47 may be the same or different and are a hydrogen atom or a methyl group.
  • -B- is a straight line having 20 or less carbon atoms. It is a chain, branched, or cyclic divalent hydrocarbon group.
  • Specific examples of -B- include the same examples as -A- in formula (OP-4).
  • -B- is a straight chain, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • Specific examples of -B- include the same examples as -A- in formula (OP-4).
  • the modified polyphenylene ether compound (g) used in this embodiment is more preferably a compound represented by formula (OP-14) and/or a compound represented by formula (OP-15).
  • a and b each independently represent an integer of 0 to 100, and at least one of a and b is an integer of 1 to 100.
  • a and b in formula (OP-14) each independently have the same meaning as a and b in formula (OP-2), and the preferred ranges are also the same.
  • a and b each independently represent an integer of 0 to 100, and at least one of a and b is an integer of 1 to 100.
  • a and b in formula (OP-15) each independently have the same meaning as a and b in formula (OP-2), and the preferred ranges are also the same.
  • a polyphenylene ether compound (B) having a carbon-carbon unsaturated double bond at the terminal preferably a polyphenylene ether compound (B2) containing two or more carbon-carbon unsaturated double bonds, more preferably a modified polyphenylene ether
  • Mn number average molecular weight of compound (g)) as calculated by GPC (gel permeation chromatography) in terms of polystyrene (details follow the method described in the Examples below) is, for example, 500 or more, furthermore, 800 or more. It is preferably 3,000 or less, and preferably 3,000 or less. When the number average molecular weight is 500 or more, stickiness tends to be further suppressed when the resin composition of this embodiment is formed into a coating film.
  • a polyphenylene ether compound (B) having a carbon-carbon unsaturated double bond at the terminal preferably a polyphenylene ether compound (B2) containing two or more carbon-carbon unsaturated double bonds, more preferably a modified
  • the polyphenylene ether compound (g)) has a polystyrene-equivalent weight average molecular weight (Mw) determined by GPC (details follow the method described in the Examples below), preferably from 800 to 6,000, and from 800 to 5,000. It is more preferable.
  • the dielectric constant (Dk) and dielectric loss tangent (Df) of the cured product of the resin composition tend to become lower.
  • the varnish etc. described below The solubility, low viscosity, and moldability of the resin composition in the solvent during production tend to be further improved.
  • the terminal carbon-carbon unsaturated double bond equivalent is preferably 400 to 5000 g per carbon-carbon unsaturated double bond, and 400 to 2500 g. It is more preferable that By setting it above the lower limit, the relative dielectric constant (Dk) and dielectric loss tangent (Df) of the cured product of the resin composition tend to become lower. By setting it below the above upper limit, the solubility, low viscosity, and moldability of the resin composition in a solvent tend to be further improved.
  • the lower limit of its content is preferably 1 part by mass or more, and 10 parts by mass, based on 100 parts by mass of resin solids in the resin composition. It is more preferably at least 30 parts by mass, even more preferably at least 50 parts by mass, even more preferably at least 60 parts by mass.
  • the amount is at least the lower limit, the moldability of the resin composition, the heat resistance, low water absorption, and low dielectric properties (Dk and/or Df) of the obtained cured product tend to be further improved.
  • the upper limit of the content of the polyphenylene ether compound is preferably 90 parts by mass or less, more preferably 85 parts by mass or less, and more preferably 85 parts by mass or less, based on 100 parts by mass of resin solid content in the resin composition. , 80 parts by mass or less, or 75 parts by mass or less.
  • the resin composition in this embodiment may contain only one type of polyphenylene ether compound, or may contain two or more types of polyphenylene ether compounds. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition in the present embodiment can also be configured to contain a polyphenylene ether compound containing two or more carbon-carbon unsaturated double bonds, and further, to be substantially free of a polyphenylene ether compound.
  • substantially free means a polyphenylene ether compound containing two or more carbon-carbon unsaturated double bonds, and more specifically, a polyphenylene ether compound containing 0.000 parts by mass based on 100 parts by mass of resin solids in the resin composition. It means less than 1 part by mass, preferably less than 0.01 part by mass, and may even be less than 0.001 part by mass.
  • the resin composition of this embodiment may contain a polymer having a structural unit represented by formula (V).
  • a resin composition having excellent low dielectric properties low dielectric constant, low dielectric loss tangent
  • Ar represents an aromatic hydrocarbon linking group. * represents the bonding position.
  • the aromatic hydrocarbon linking group may be a group consisting only of aromatic hydrocarbons that may have substituents, or may be a group consisting of aromatic hydrocarbons that may have substituents and other linkages.
  • the aromatic hydrocarbon may have a substituent.
  • the substituent that the aromatic hydrocarbon may have is a substituent Z (for example, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, hydroxy groups, amino groups, carboxy groups, halogen atoms, etc.).
  • the aromatic hydrocarbon has no substituent.
  • the aromatic hydrocarbon linking group is usually a divalent linking group.
  • aromatic hydrocarbon linking group examples include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthrenediyl group, a biphenyldiyl group, and a fluorenediyl group, which may have a substituent, Among these, a phenylene group which may have a substituent is preferred.
  • the above-mentioned substituent Z is exemplified as the substituent, but it is preferable that groups such as the above-mentioned phenylene group have no substituent.
  • the structural unit represented by formula (V) is the structural unit represented by the following formula (V1), the structural unit represented by the following formula (V2), and the structural unit represented by the following formula (V3). More preferably, at least one is included. Note that * in the following formula represents the bonding position. Further, hereinafter, the constituent units represented by formulas (V1) to (V3) may be collectively referred to as “constituent unit (a)."
  • L 1 is an aromatic hydrocarbon linking group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, and even more preferably 6 to 10 carbon atoms).
  • examples include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthrenediyl group, a biphenyldiyl group, and a fluorenediyl group, which may have a substituent.
  • a phenylene group is preferred.
  • the above-mentioned substituent Z is exemplified as the substituent, but it is preferable that groups such as the above-mentioned phenylene group have no substituent.
  • the compound forming the structural unit (a) is preferably a divinyl aromatic compound, such as divinylbenzene, bis(1-methylvinyl)benzene, divinylnaphthalene, divinylanthracene, divinylbiphenyl, divinylphenanthrene, etc. It will be done. Among them, divinylbenzene is particularly preferred. One type of these divinyl aromatic compounds may be used, or two or more types may be used as necessary.
  • the polymer having the structural unit represented by formula (V) may be a homopolymer of the structural unit (a), but it may also be a copolymer with a structural unit derived from another monomer. You can.
  • the copolymerization ratio of the structural unit (a) is preferably 3 mol% or more, and 5 mol% or more. It is more preferable that the amount is 10 mol% or more, and it may be 15 mol% or more.
  • the upper limit is preferably 90 mol% or less, more preferably 85 mol% or less, even more preferably 80 mol% or less, even more preferably 70 mol% or less, and 60 mol% or less. % or less, even more preferably 50 mol% or less, even more preferably 40 mol% or less, even more preferably 30 mol% or less, and furthermore, It may be 25 mol% or less, or 20 mol% or less.
  • the structural unit (b) derived from an aromatic compound having one vinyl group (monovinyl aromatic compound) is exemplified.
  • the structural unit (b) derived from the monovinyl aromatic compound is preferably a structural unit represented by the following formula (V4).
  • L 2 is an aromatic hydrocarbon linking group, and a preferred example is the above-mentioned example of L 1 .
  • R V1 is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms (preferably an alkyl group). When R V1 is a hydrocarbon group, its carbon number is preferably 1 to 6, more preferably 1 to 3. R V1 and L 2 may have the above-mentioned substituent Z.
  • the polymer having the structural unit represented by formula (V) is a copolymer containing the structural unit (b) derived from a monovinyl aromatic compound
  • examples of the monovinyl aromatic compound include styrene, vinylnaphthalene, etc.
  • vinyl aromatic compounds such as vinylbiphenyl; o-methylstyrene, m-methylstyrene, p-methylstyrene, o,p-dimethylstyrene, o-ethylvinylbenzene, m-ethylvinylbenzene, p-ethylvinylbenzene, Examples include nuclear alkyl-substituted vinyl aromatic compounds such as methylvinylbiphenyl and ethylvinylbiphenyl.
  • the monovinyl aromatic compound exemplified here may have the above-mentioned substituent Z as appropriate. Further, these monovinyl aromatic compounds may be used alone or in combination of two or more.
  • the copolymerization ratio of the structural unit (b) is preferably 10 mol% or more, It is more preferably 15 mol% or more, more preferably 20 mol% or more, 30 mol% or more, 40 mol% or more, 50 mol% or more, 60 mol% or more, 70 mol% or more, or 75 mol% or more. It's okay.
  • the upper limit is preferably 98 mol% or less, more preferably 90 mol% or less, and even more preferably 85 mol% or less.
  • the polymer having the structural unit represented by formula (V) may have other structural units other than the structural unit (a) and the structural unit (b).
  • Examples of other structural units include a structural unit (c) derived from a cycloolefin compound.
  • the cycloolefin compound include hydrocarbons having a double bond in the ring structure.
  • cycloolefin compounds such as cyclobutene, cyclopentene, cyclohexene, and cyclooctene
  • compounds having a norbornene ring structure such as norbornene and dicyclopentadiene
  • cycloolefin compounds condensed with aromatic rings such as indene and acenaphthylene. etc.
  • norbornene compounds include those described in paragraphs 0037 to 0043 of JP-A-2018-039995, the contents of which are incorporated herein.
  • the cycloolefin compound illustrated here may further have the above-mentioned substituent Z.
  • the copolymerization ratio of the structural unit (c) is preferably 10 mol% or more, It is more preferably 20 mol% or more, and even more preferably 30 mol% or more.
  • the upper limit is preferably 90 mol% or less, more preferably 80 mol% or less, even more preferably 70 mol% or less, may be 50 mol% or less, and may be 30 mol% or less. It may be the following.
  • the polymer having the structural unit represented by formula (V) may further incorporate a structural unit (d) derived from a different polymerizable compound (hereinafter also referred to as other polymerizable compound).
  • a different polymerizable compound hereinafter also referred to as other polymerizable compound.
  • other polymerizable compounds include compounds containing three vinyl groups. Specific examples include 1,3,5-trivinylbenzene, 1,3,5-trivinylnaphthalene, and 1,2,4-trivinylcyclohexane. Alternatively, ethylene glycol diacrylate, butadiene, etc. may be mentioned.
  • the copolymerization ratio of the structural unit (d) derived from another polymerizable compound is preferably 30 mol% or less, more preferably 20 mol% or less, and even more preferably 10 mol% or less. .
  • An example of an embodiment of a polymer having a structural unit represented by formula (V) is a polymer that essentially includes the structural unit (a) and includes at least one of the structural units (b) to (d). . Furthermore, an embodiment in which the total of structural units (a) to (d) accounts for 95 mol% or more, and further 98 mol% or more of the total structural units is exemplified.
  • Another embodiment of the polymer having a structural unit represented by formula (V) is a polymer in which the structural unit (a) is essential and the structural unit containing an aromatic ring is 90 mol among all structural units excluding terminals. % or more, more preferably 95 mol% or more, and may be 100 mol%. In calculating the mol% per total structural unit, one structural unit refers to the monomer used to produce the polymer having the structural unit represented by formula (V) (for example, a divinyl aromatic compound). , monovinyl aromatic compound, etc.).
  • the method for producing a polymer having a structural unit represented by formula (V) is not particularly limited and may be any conventional method.
  • a raw material containing a divinyl aromatic compound if necessary, a monovinyl aromatic compound, a cyclo (olefin compound etc.
  • a Lewis acid catalyst a metal fluoride such as boron trifluoride or a complex thereof can be used.
  • the molecular weight of the polymer having the structural unit represented by formula (V) is preferably 300 or more, more preferably 500 or more, and still more preferably 1,000 or more, in terms of number average molecular weight Mn. It is preferably 1,500 or more, and more preferably 1,500 or more.
  • the upper limit is preferably 130,000 or less, more preferably 120,000 or less, even more preferably 110,000 or less, and even more preferably 100,000 or less.
  • the molecular weight of the polymer having the structural unit represented by formula (V) is preferably 3,000 or more, more preferably 5,000 or more, and 10,000 or more in weight average molecular weight Mw. It is even more preferable that there be.
  • the excellent low dielectric properties of the polymer having the structural unit represented by formula (V), especially the Df and the dielectric properties after moisture absorption, can be effectively applied to the cured product of the resin composition.
  • the upper limit is preferably 130,000 or less, more preferably 100,000 or less, even more preferably 80,000 or less, and even more preferably 50,000 or less.
  • the monodispersity (Mw/Mn) expressed by the ratio of weight average molecular weight Mw to number average molecular weight Mn is preferably 100 or less, more preferably 50 or less, and even more preferably 20 or less. .
  • the lower limit is practically 1.1 or more, preferably 5 or more, more preferably 7 or more, and even more preferably 10 or more.
  • the above Mw and Mn are measured in accordance with the description in the examples below.
  • the resin composition of the present embodiment contains two or more types of polymers having structural units represented by formula (V), it is preferable that Mw, Mn, and Mw/Mn of the mixture satisfy the above ranges.
  • the equivalent weight of the vinyl group of the polymer having the structural unit represented by formula (V) is 200 g/eq. or more, preferably 230g/eq. More preferably, it is 250 g/eq. It is more preferable that it is above. Further, the equivalent weight of the vinyl group is 1200 g/eq. It is preferably less than 1000g/eq. It is more preferable that it is less than 800g/eq. Below, 600g/eq. Below, 400g/eq. Below, 300g/eq. It may be the following. By setting it to the above lower limit or more, the storage stability of the resin composition tends to improve, and the fluidity of the resin composition tends to improve.
  • the lower limit of the content is 1 mass part per 100 parts by mass of resin solid content in the resin composition.
  • the amount is preferably at least 10 parts by mass, more preferably at least 10 parts by mass, even more preferably at least 30 parts by mass, even more preferably at least 50 parts by mass, and even more preferably at least 60 parts by mass. More preferred.
  • the upper limit of the content of the polymer having the structural unit represented by formula (V) is preferably 90 parts by mass or less, and 85 parts by mass or less, based on 100 parts by mass of the resin solid content in the resin composition. It is more preferable that the amount is 80 parts by mass or less, or 75 parts by mass or less. When the content of the polymer having the structural unit represented by formula (V) is 90 parts by mass or less, the metal foil peel strength and low water absorption tend to improve.
  • the resin composition in this embodiment may contain only one kind of polymer having a structural unit represented by formula (V), or may contain two or more kinds. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition in this embodiment can also have a structure that does not substantially contain a polymer having a structural unit represented by formula (V).
  • “Substantially free” means that the content of the polymer having the structural unit represented by formula (V) is less than 1 part by mass per 100 parts by mass of the resin solid content in the resin composition, and 0 It is preferably less than .1 part by weight, more preferably less than 0.01 part by weight.
  • the resin composition of this embodiment may contain a cyanate ester compound.
  • the cyanate ester compound has one or more cyanate groups (cyanato groups) in the molecule (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2)
  • cyanate groups cyanato groups
  • the cyanate ester compound is preferably a cyanate ester compound having two or more aromatic moieties substituted with at least one cyanato group in the molecule, which are commonly used in printed wiring boards.
  • the lower limit of the number of cyanato groups that the cyanate ester compound has is preferably 2 or more, and more preferably 3 or more. When the content is equal to or more than the above lower limit, heat resistance tends to be further improved.
  • the upper limit of the number of cyanato groups is preferably 100 or less, more preferably 50 or less. Further, it is preferable that the cured product of the cyanate ester compound has excellent low dielectric properties (Dk and/or Df).
  • the cured product of the cyanate ester compound preferably has a dielectric constant (Dk) of 4.0 or less, more preferably 3.5 or less, at a frequency of 10 GHz measured according to the cavity resonance perturbation method.
  • the lower limit of the dielectric constant is practically, for example, 2.0 or more.
  • the cured product of the cyanate ester compound (B) preferably has a dielectric loss tangent (Df) of 0.02 or less, more preferably 0.015 or less at a frequency of 10 GHz measured according to the cavity resonance perturbation method.
  • the lower limit value of the dielectric loss tangent is practically, for example, 0.0001 or more.
  • the dielectric constant and dielectric loss tangent can be measured, for example, according to the method described in Examples (curing conditions, measurement conditions).
  • the cured product of the cyanate ester compound has high heat resistance.
  • the cured product of the cyanate ester compound preferably has a glass transition temperature of 150°C or higher, more preferably 180°C or higher, and further preferably 200°C or higher, as measured according to JIS C6481 dynamic viscoelasticity measurement. preferable. By setting the glass transition temperature to the lower limit or higher, a cured product with excellent heat resistance can be obtained.
  • the cyanate ester compound preferably has a weight average molecular weight of 200 or more, more preferably 300 or more, and even more preferably 400 or more, as determined by GPC in terms of polystyrene.
  • the weight average molecular weight of the cyanate ester compound is preferably 1000 or less, more preferably 900 or less, and even more preferably 800 or less. By controlling the weight average molecular weight to be less than or equal to the above upper limit, moldability and handleability tend to be further improved.
  • Preferred cyanate ester compounds include phenol novolak type cyanate ester compounds, naphthol aralkyl type cyanate ester compounds (naphthol aralkyl type cyanate), naphthylene ether type cyanate ester compounds, biphenylaralkyl type cyanate ester compounds, and xylene resin type cyanate ester compounds. At least one selected from the group consisting of a cyanate ester compound, a trisphenolmethane type cyanate ester compound, an adamantane skeleton type cyanate ester compound, a bisphenol M type cyanate ester compound, and a bisphenol A type cyanate ester compound. Can be mentioned.
  • phenol novolak type cyanate ester compounds from the viewpoint of further improving low water absorption, phenol novolak type cyanate ester compounds, naphthol aralkyl type cyanate ester compounds, naphthylene ether type cyanate ester compounds, xylene resin type cyanate ester compounds, and It is preferably at least one selected from the group consisting of bisphenol M-type cyanate ester compounds, bisphenol A-type cyanate ester compounds, phenol novolac-type cyanate ester compounds, naphthol aralkyl-type cyanate ester compounds, and naphthylene ether.
  • the compound is at least one selected from the group consisting of a cyanate ester compound, a bisphenol A cyanate ester compound, and a bisphenol M cyanate ester compound, a phenol novolak cyanate ester compound, a naphthol aralkyl It is more preferable that the compound is at least one selected from the group consisting of a cyanate ester compound and a bisphenol A cyanate ester compound, and a naphthol aralkyl cyanate ester compound and/or a bisphenol A cyanate ester compound. More preferably, it is a naphthol aralkyl cyanate ester compound.
  • a compound represented by formula (N1) is more preferable.
  • Formula (N1) (In formula (N1), R 3 each independently represents a hydrogen atom or a methyl group, and n3 represents an integer of 1 or more.)
  • R 3 each independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferred.
  • n3 is an integer of 1 or more, preferably an integer of 1 to 50, more preferably an integer of 1 to 20, even more preferably an integer of 1 to 10. , more preferably an integer from 1 to 6.
  • the phenol novolac type cyanate ester compound is not particularly limited, but for example, a compound represented by formula (VII) is preferable.
  • R 6 each independently represents a hydrogen atom or a methyl group
  • n 7 represents an integer of 1 or more.
  • R 6 each independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferred.
  • n7 is an integer of 1 or more, preferably an integer of 1 to 20, more preferably an integer of 1 to 10, and even more preferably an integer of 1 to 6.
  • the bisphenol A cyanate ester compound is 1 selected from the group consisting of 2,2-bis(4-cyanatophenyl)propane and a prepolymer of 2,2-bis(4-cyanatophenyl)propane. More than one species may be used.
  • cyanate ester compounds may be prepared by known methods, or commercially available products may be used.
  • cyanate ester compounds having a naphthol aralkyl skeleton, naphthylene ether skeleton, xylene skeleton, trisphenolmethane skeleton, or adamantane skeleton have a relatively large number of functional group equivalents, and the number of unreacted cyanate ester groups is small. Therefore, resin compositions using these materials tend to have even better low water absorption.
  • plating adhesion tends to be further improved.
  • the lower limit of its content is preferably 1 part by mass or more based on 100 parts by mass of resin solids in the resin composition, and 5 parts by mass or more. It is more preferably at least 10 parts by mass, even more preferably at least 10 parts by mass, and may be at least 20 parts by mass.
  • the content of the cyanate ester compound is at least the above lower limit, heat resistance, flame resistance, chemical resistance, low dielectric constant, low dielectric loss tangent, and insulation properties tend to improve.
  • the upper limit of the content of the cyanate ester compound may be 70 parts by mass or less based on 100 parts by mass of the resin solid content in the resin composition. It is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and may be 40 parts by mass or less, or 30 parts by mass or less.
  • the resin composition in this embodiment may contain only one type of cyanate ester compound, or may contain two or more types of cyanate ester compounds. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition in this embodiment can also be configured to substantially not contain a cyanate ester compound.
  • Substantially free means that the content of the cyanate ester compound is less than 1 part by mass, preferably less than 0.1 part by mass, per 100 parts by mass of resin solids in the resin composition. , more preferably less than 0.01 part by mass.
  • the resin composition of this embodiment may contain an epoxy compound.
  • An epoxy compound is a compound having one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2) epoxy groups in one molecule. Alternatively, it is not particularly limited as long as it is a resin, and a wide variety of compounds commonly used in the field of printed wiring boards can be used. Examples of epoxy compounds include bisphenol A epoxy resin, bisphenol E epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, phenol novolac epoxy resin, bisphenol A novolac epoxy resin, glycidyl ester epoxy resin, and aralkyl epoxy resin.
  • Novolac type epoxy resin biphenylaralkyl type epoxy resin, naphthylene ether type epoxy resin, cresol novolac type epoxy resin, multifunctional phenol type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, naphthalene skeleton modified novolac type epoxy resin, phenol Aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, biphenyl type epoxy resin, alicyclic epoxy resin, polyol type epoxy resin, phosphorus-containing epoxy resin, glycidyl amine, glycidyl ester, butadiene, etc.
  • Examples include compounds in which bonds are epoxidized and compounds obtained by reacting hydroxyl group-containing silicone resins with epichlorohydrin. By using these, the moldability and adhesion of the resin composition are improved.
  • biphenylaralkyl epoxy resins, naphthylene ether epoxy resins, polyfunctional phenol epoxy resins, and naphthalene epoxy resins are preferred; More preferably, it is a type epoxy resin.
  • the resin composition of the present embodiment preferably contains an epoxy compound within a range that does not impair the effects of the present invention.
  • the content is 0.1 part by mass or more with respect to 100 parts by mass of resin solid content in the resin composition.
  • the amount is preferably 1 part by mass or more, more preferably 2 parts by mass or more.
  • the upper limit of the content of the epoxy compound is preferably 50 parts by mass or less, and 30 parts by mass or less, based on 100 parts by mass of the resin solid content in the resin composition.
  • the amount is more preferably at most 20 parts by mass, even more preferably at most 10 parts by mass, and may be at most 8 parts by mass, and may be at most 5 parts by mass.
  • the resin composition in this embodiment may contain only one type of epoxy compound, or may contain two or more types of epoxy compounds. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition in this embodiment can also have a structure that does not substantially contain an epoxy compound.
  • Substantially free means that the content of the epoxy compound is less than 0.1 parts by mass, preferably less than 0.01 parts by mass, based on 100 parts by mass of resin solids in the resin composition. , and even less than 0.001 part by mass.
  • the resin composition of this embodiment may contain a phenol compound.
  • phenolic resin the description in paragraph 0049 of International Publication No. 2021/172317 can be referred to, and the contents thereof are incorporated herein.
  • the resin composition of the present embodiment preferably contains a phenol compound within a range that does not impair the effects of the present invention.
  • the content thereof is preferably 0.1 parts by mass or more, and 50 parts by mass based on 100 parts by mass of resin solids in the resin composition. It is preferable that it is below.
  • the resin composition in this embodiment may contain only one type of phenol compound, or may contain two or more types of phenol compounds. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition in this embodiment can also have a structure that does not substantially contain a phenol compound. "Substantially free" means that the content of the phenol compound is less than 0.1 parts by mass based on 100 parts by mass of resin solids in the resin composition.
  • the resin composition of this embodiment preferably contains a compound containing a (meth)allyl group, and more preferably contains a compound containing an allyl group.
  • the compound containing a (meth)allyl group is preferably a compound containing two or more (meth)allyl groups, and more preferably a compound containing two or more allyl groups.
  • Examples of compounds containing a (meth)allyl group include (meth)allyl isocyanurate compounds, tri(meth)allyl cyanurate compounds, (meth)allyl group-substituted nadimide compounds, (meth)allyl compounds having a glycoluril structure, and
  • the group preferably contains at least one selected from the group consisting of diallyl phthalate, and the group consisting of (meth)allyl isocyanurate compounds, (meth)allyl group-substituted nadimide compounds, and (meth)allyl compounds having a glycoluril structure. It is more preferable that at least one selected from It is even more preferable.
  • tri(meth)allyl cyanurate compounds examples include tri(meth)allyl cyanurate compounds (for example, triallyl cyanurate having the structure shown below).
  • a compound containing a (meth)allyl group resins having an allyl group described in International Publication No. 2022/210095 (for example, compounds described in Synthesis Examples 3, 4, 6, 20, and 22 of the same publication) is exemplified, the contents of which are incorporated herein.
  • the resin composition of the present embodiment contains a compound containing a (meth)allyl group
  • its molecular weight is preferably 195 or more, more preferably 300 or more, and even more preferably 400 or more. , more preferably 500 or more.
  • the molecular weight of the compound containing a (meth)allyl group is also preferably 3,000 or less, more preferably 2,000 or less, even more preferably 1,000 or less, and even more preferably 800 or less. By setting it below the upper limit value, the low thermal expansion property tends to be further improved.
  • the content thereof is preferably 1 part by mass or more, and 3 parts by mass or more, based on 100 parts by mass of resin solids in the resin composition. It is more preferably at least 5 parts by mass, even more preferably at least 5 parts by mass, and may be at least 10 parts by mass.
  • the upper limit of the content of the compound containing a (meth)allyl group is preferably 40 parts by mass or less, and preferably 30 parts by mass or less, based on 100 parts by mass of the resin solid content in the resin composition. More preferably, the amount is 20 parts by mass or less.
  • the resin composition of this embodiment may contain only one type of compound containing a (meth)allyl group, or may contain two or more types. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the (meth)allyl isocyanurate compound is not particularly defined as long as it has two or more (meth)allyl groups and an isocyanurate ring (nurate skeleton). Since the (meth)allylisocyanurate compound has a large number of (meth)allyl groups that serve as crosslinking points, it is difficult to combine the resin (A), the polyphenylene ether compound (B), and other resin components (for example, other compounds (C)). There is a tendency to obtain a cured product that is strongly cured and has excellent low dielectric properties (Dk and/or Df) and heat resistance. As the (meth)allylisocyanurate compound, a compound represented by formula (TA) is preferable.
  • Formula (TA) (In formula (TA), RA represents a substituent).
  • R A represents a substituent, and a substituent having a formula weight of 15 to 500 is more preferable.
  • a first example of R A is an alkyl group having 1 to 22 carbon atoms or an alkenyl group having 2 to 22 carbon atoms.
  • a resin composition capable of obtaining a cured product having excellent crosslinkability and high toughness by using an allyl compound having an alkyl group having 1 to 22 carbon atoms or an alkenyl group having 2 to 22 carbon atoms. can be provided. Thereby, even if the resin composition does not include a base material such as glass cloth, it is possible to suppress cracking during etching treatment or the like.
  • the number of carbon atoms in the alkyl group and/or alkenyl group is preferably 3 or more, more preferably 8 or more, and furthermore, may be 12 or more and 18 or less, from the viewpoint of improving handling properties. It is thought that this improves the resin flowability of the resin composition, resulting in better circuit filling properties when creating a multilayer circuit board or the like using the resin composition of this embodiment.
  • R A is a group containing an allyl isocyanurate group.
  • the compound represented by formula (TA) is preferably a compound represented by formula (TA-1).
  • Formula (TA-1) (In formula (TA-1), R A2 is a divalent linking group.)
  • R A2 is preferably a divalent linking group having a formula weight of 54 to 250, and a divalent linking group having a formula weight of 54 to 250 and having carbon atoms at both ends. is more preferable, and an aliphatic hydrocarbon group having 2 to 20 carbon atoms is even more preferable (however, the aliphatic hydrocarbon group may contain an ether group, and may have a hydroxyl group). ). More specifically, R A2 is preferably a group represented by any of the following formulas (i) to (iii). (In the formulas (i) to (iii), p c1 represents the number of repeating units of the methylene group and is an integer from 2 to 18.
  • p c2 represents the number of repeating units of the oxyethylene group and is 0 or 1. .* is the binding site.)
  • the p c1 is preferably an integer of 2 to 10, more preferably an integer of 3 to 8, and still more preferably an integer of 3 to 5.
  • the p c2 may be 0 or 1, but is preferably 1.
  • a third example of R A is a phosphorus-based substituent.
  • R A2 is the first example.
  • the reactive group (allyl group) equivalent of the compound represented by formula (TA) is 1000 g/eq. or less. It is considered that if the equivalent weight is 1000 g/eq. or less, a high Tg can be obtained more reliably.
  • alkyl group having 1 to 22 carbon atoms examples include linear or branched alkyl groups, such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group. group, nonyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, eicosyl group, docosyl group, and the like.
  • alkenyl group having 2 to 22 carbon atoms examples include an allyl group and a decenyl group.
  • Specific examples of the compound represented by formula (TA) include triallylisocyanurate, 5-octyl-1,3-diallylisocyanurate, 5-dodecyl-1,3-diallylisocyanurate, 5-tetradecyl- 1,3-diallylisocyanurate, 5-hexadecyl-1,3-diallylisocyanurate, 5-octadecyl-1,3-diallylisocyanurate, 5-eicosyl-1,3-diallylisocyanurate, 5-docosyl-1, Examples include 3-diallylisocyanurate and 5-decenyl-1,3-diallylisocyanurate. These may be used alone or in combination of two or more, or may be used as a prepolymer.
  • the method for producing the compound represented by formula (TA) is not particularly limited, but for example, diallylisocyanurate and alkyl halide are mixed in an aprotic polar solvent such as N,N'-dimethylformamide, and sodium hydroxide is added. It can be obtained by reacting at a temperature of about 60°C to 150°C in the presence of a basic substance such as , potassium carbonate, or triethylamine.
  • TA commercially available compounds
  • Commercially available products include, but are not particularly limited to, L-DAIC manufactured by Shikoku Kasei Kogyo Co., Ltd. and P-DAIC manufactured by Shikoku Kasei Kogyo Co., Ltd. having a phosphorus substituent.
  • Examples of triallyl isocyanurate include TAIC manufactured by Shinryo Co., Ltd.
  • Examples of the compound represented by formula (TA-1) include DD-1 manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • the molecular weight of the (meth)allylisocyanurate compound (preferably the compound represented by formula (TA)) is preferably 200 or more, more preferably 300 or more, and even more preferably 400 or more. , more preferably 500 or more.
  • the resulting cured product tends to have improved low dielectric properties (Dk and/or Df) and heat resistance.
  • the molecular weight of the (meth)allylisocyanurate compound (preferably the compound represented by formula (TA)) is preferably 3000 or less, more preferably 2000 or less, and preferably 1000 or less. More preferably, it is 800 or less. By controlling the molecular weight to be less than or equal to the upper limit value, the resulting cured product tends to have improved low thermal expansion properties.
  • the content thereof is preferably 1 part by mass or more, and 3 parts by mass based on 100 parts by mass of resin solids in the resin composition. It is more preferably at least 5 parts by mass, even more preferably at least 5 parts by mass, and may be at least 10 parts by mass.
  • the upper limit of the content of the (meth)allylisocyanurate compound is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, based on 100 parts by mass of the resin solid content in the resin composition.
  • the amount may be 20 parts by mass or less.
  • the (meth)allyl-substituted nadimide compound is not particularly limited as long as it is a compound having two or more (meth)allyl-substituted nadimide groups in the molecule.
  • a specific example thereof is a compound represented by the following formula (AN).
  • R 1 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 2 represents an alkylene group having 1 to 6 carbon atoms
  • a phenylene group, a biphenylene group Represents a naphthylene group or a group represented by formula (AN-2) or (AN-3).
  • Formula (AN-3) (In formula (AN-3), R 4 each independently represents an alkylene group having 1 to 4 carbon atoms or a cycloalkylene group having 5 to 8 carbon atoms.)
  • a commercially available compound can also be used as the compound represented by formula (AN).
  • Examples of commercially available compounds include, but are not limited to, a compound represented by the formula (AN-4) (BANI-M (manufactured by Maruzen Petrochemical Co., Ltd.)), a compound represented by the formula (AN-5), Examples include compounds such as BANI-X (manufactured by Maruzen Petrochemical Co., Ltd.). These may be used alone or in combination of two or more.
  • the molecular weight of the (meth)allyl group-substituted nadimide compound is preferably 400 or more, more preferably 500 or more, and may be 550 or more.
  • the molecular weight of the (meth)allyl group-substituted nadimide compound is also preferably 1,500 or less, more preferably 1,000 or less, and preferably 800 or less.
  • the molecular weight of the (meth)allyl group-substituted nadimide compound may be less than or equal to the above upper limit, moldability and peel strength tend to be further improved.
  • the content thereof is based on 100 parts by mass of the resin solid content in the resin composition. On the other hand, it is preferably 1 part by mass or more, more preferably 3 parts by mass or more, even more preferably 5 parts by mass or more, and may be 10 parts by mass or more.
  • the upper limit of the content of the (meth)allyl group-substituted nadimide compound is 40 parts by mass or less based on 100 parts by mass of the resin solid content in the resin composition. It is preferably at most 30 parts by mass, more preferably at most 25 parts by mass, and may be at most 20 parts by mass.
  • the resin composition of the present embodiment may contain only one type of (meth)allyl group-substituted nadimide compound, or may contain two or more types of (meth)allyl group-substituted nadimide compounds. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the (meth)allyl compound having a glycoluril structure is not particularly defined as long as it is a compound containing a glycoluril structure and two or more (meth)allyl groups. Also when a (meth)allyl compound having a glycoluril structure is blended into the resin composition, the number of (meth)allyl groups can be increased, that is, the number of crosslinking points can be increased.
  • the (meth)allyl compound having a glycoluril structure is preferably a compound represented by formula (GU).
  • each R is independently a hydrogen atom or a substituent, and at least two of R are groups containing a (meth)allyl group.
  • each R is preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkenyl group having 2 to 5 carbon atoms, and an alkenyl group having 2 to 5 carbon atoms. It is preferably a (meth)allyl group, more preferably an allyl group.
  • R is preferably a group in which three or four of them contain (meth)allyl groups, and more preferably a group in which four of them contain (meth)allyl groups.
  • a specific example of the compound represented by formula (GU) is 1,3,4,6-tetraallylglycoluril (a compound in which all R's are allyl groups in formula (GU)).
  • GUI a commercially available one can also be used.
  • Commercially available products include, but are not particularly limited to, TA-G manufactured by Shikoku Kasei Kogyo Co., Ltd., for example.
  • the molecular weight of the (meth)allyl compound having a glycoluril structure is preferably 195 or more, more preferably 220 or more, and preferably 250 or more. More preferably, it may be 300 or more, or 400 or more.
  • the molecular weight of the (meth)allyl compound having a glycoluril structure is also preferably 1500 or less, more preferably 1000 or less, and 800 or less.
  • the resulting cured product tends to have improved low dielectric properties (Dk and/or Df) and heat resistance.
  • the content thereof is 100% by weight of the resin solid content in the resin composition. It is preferably 1 part by mass or more, more preferably 3 parts by mass or more, even more preferably 5 parts by mass or more, and may be 10 parts by mass or more.
  • the resin composition tends to have excellent moldability, and the heat resistance and low thermal expansion of the obtained cured product tend to be further improved. .
  • the upper limit of the content of the (meth)allyl compound having a glycoluril structure is 40 parts by mass based on 100 parts by mass of the resin solid content in the resin composition. It is preferably at most 30 parts by mass, more preferably at most 25 parts by mass, and may be at most 20 parts by mass.
  • the resin composition of this embodiment may contain only one kind of (meth)allyl compound having a glycoluril structure, or may contain two or more kinds. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition of this embodiment may contain oxetane resin.
  • the oxetane resin is particularly a compound having one or more oxetanyl groups (preferably 2 to 12, more preferably 2 to 6, even more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2).
  • oxetanyl groups preferably 2 to 12, more preferably 2 to 6, even more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2.
  • oxetane resin examples include oxetane, alkyloxetane (for example, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, 3,3-dimethyloxetane, etc.), 3-methyl-3-methoxymethyloxetane, 3,3-di(trifluoromethyl)oxetane, 2-chloromethyloxetane, 3,3-bis(chloromethyl)oxetane, biphenyl-type oxetane, OXT-101 (manufactured by Toagosei Co., Ltd.), OXT-121 (manufactured by Toagosei Co., Ltd.) (manufactured by), etc.
  • alkyloxetane for example, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, 3,3
  • the resin composition of this embodiment preferably contains an oxetane resin within a range that does not impair the effects of the present invention.
  • the content thereof is preferably 0.1 parts by mass or more, and 1 part by mass or more based on 100 parts by mass of resin solids in the resin composition. More preferably, the amount is 2 parts by mass or more.
  • the content of the oxetane resin is 0.1 part by mass or more, the metal foil peel strength and toughness of the resulting cured product tend to improve.
  • the upper limit of the content of oxetane resin is preferably 50 parts by mass or less, and 30 parts by mass or less, based on 100 parts by mass of resin solid content in the resin composition. It is more preferably at most 20 parts by mass, even more preferably at most 10 parts by mass, even more preferably at most 8 parts by mass.
  • the content of the oxetane resin is 50 parts by mass or less, the electrical properties of the resulting cured product tend to improve.
  • the resin composition in this embodiment may contain only one type of oxetane resin, or may contain two or more types of oxetane resin.
  • the resin composition in this embodiment can also be configured not to substantially contain oxetane resin.
  • substantially free means that the content of oxetane resin is less than 0.1 part by mass based on 100 parts by mass of resin solid content in the resin composition.
  • the resin composition of this embodiment may contain a benzoxazine compound.
  • the benzoxazine compound includes 2 or more (preferably 2 to 12, more preferably 2 to 6, even more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2) dihydrobenzoxazines in one molecule. Any compound having a ring is not particularly limited, and a wide variety of compounds commonly used in the field of printed wiring boards can be used.
  • benzoxazine compounds include bisphenol A-type benzoxazine BA-BXZ (manufactured by Konishi Chemical Co., Ltd.), bisphenol F-type benzoxazine BF-BXZ (manufactured by Konishi Chemical Co., Ltd.), and bisphenol S-type benzoxazine BS-BXZ (manufactured by Konishi Chemical Co., Ltd.). ), etc.
  • the resin composition of the present embodiment preferably contains a benzoxazine compound within a range that does not impair the effects of the present invention.
  • the content thereof is preferably 0.1 parts by mass or more and 50 parts by mass or less based on 100 parts by mass of resin solids in the resin composition.
  • the resin composition in this embodiment may contain only one type of benzoxazine compound, or may contain two or more types of benzoxazine compounds. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition in this embodiment can also be configured to substantially not contain a benzoxazine compound. "Substantially free" means that the content of the benzoxazine compound is less than 0.1 part by mass based on 100 parts by mass of resin solid content in the resin composition.
  • the resin composition of this embodiment may contain an arylcyclobutene resin.
  • the details are exemplified by the arylcyclobutene resin described in paragraph 0042 of JP-A-2019-194312, the contents of which are incorporated herein.
  • the resin composition of this embodiment may contain a polyamide resin or may contain a thermosetting polyamide resin.
  • a polyamide resin or may contain a thermosetting polyamide resin.
  • the resin composition of this embodiment may contain a polyimide resin or may contain a thermosetting polyimide resin.
  • the resin composition of this embodiment may contain a polyimide resin or may contain a thermosetting polyimide resin.
  • a polyimide resin or may contain a thermosetting polyimide resin.
  • the resin composition of this embodiment may contain perfluorovinyl ether resin or may contain perfluorovinyl benzyl ether resin.
  • the details are exemplified by the perfluorovinyl ether resin described in paragraph 0043 of JP-A-2019-194312, the contents of which are incorporated herein.
  • the resin composition of the present embodiment may contain a compound having a styrene group other than the polyphenylene ether compound (B) having a carbon-carbon unsaturated double bond at the terminal. Details of these can be found in the compounds having styrene at the terminal described in International Publication No. 2022/210095 (for example, the compounds described in Synthesis Examples 12 to 16 of the same publication), and paragraphs 0029 to 0038 of JP 2022-85610 Publication. and the vinyl benzyl ether resin described in paragraph 0041 of JP-A No. 2019-194312, the contents of which are incorporated herein.
  • the resin composition of this embodiment may contain a compound having an isopropenyl group other than the resin (A) having an indane skeleton.
  • the details of these are exemplified by the resin having an isopropenyl group described in International Publication No. 2022/210095 (for example, the compounds described in Synthesis Examples 1, 2, 7, and 8 of the same publication), and the contents thereof are included in the present specification. incorporated into the book.
  • the resin composition of the present embodiment may contain a polyfunctional (meth)acrylate compound other than the polyphenylene ether compound (B) having a carbon-carbon unsaturated double bond at the terminal.
  • the polyfunctional (meth)acrylate compound means a compound containing two or more (meth)acryloyloxy groups in one molecule, and may contain three or more (meth)acryloyloxy groups in one molecule. preferable.
  • the polyfunctional (meth)acrylate compound is preferably a compound having three to five (meth)acryloyloxy groups, and preferably a compound having three or four (meth)acryloyloxy groups. More preferably, it is a compound having three (meth)acryloyloxy groups.
  • the (meth)acrylate compound is preferably a compound having a methacryloyloxy group.
  • the polyfunctional (meth)acrylate compound has a large number of (meth)acrylate groups that serve as crosslinking points, the resin (A), the polyphenylene ether compound (B), and other resin components (for example, other compounds (C))
  • a cured product is obtained which is strongly cured and has excellent low dielectric properties (Dk and/or Df) and heat resistance.
  • a compound represented by formula (MA) is preferable.
  • Formula (MA) (In formula (MA), R 1 represents a hydrogen atom or a substituent, and R 2 each independently represents a hydrogen atom or a methyl group.)
  • R 1 represents a hydrogen atom or a substituent, more preferably a substituent with a formula weight of 15 to 500, more preferably a substituent with a formula weight of 15 to 300, A substituent having a formula weight of 15 to 100 is more preferable, and a substituent having a formula weight of 15 to 50 is even more preferable.
  • R 1 is preferably a hydrocarbon group or a (meth)acryloyloxy group, more preferably a hydrocarbon group having 22 or less carbon atoms, and even more preferably an alkyl group having 1 to 22 carbon atoms, or a C 2 ⁇ 22 alkenyl groups.
  • a resin composition can be obtained that has excellent crosslinkability and high toughness. can be provided. Thereby, even if the resin composition does not include a base material such as glass cloth, it is possible to suppress cracking during etching treatment or the like.
  • the number of carbon atoms in the alkyl group and/or alkenyl group is preferably 2 or more, and may be 8 or more, more preferably 12 or more, or 18 or less, from the viewpoint of improving handling properties. good.
  • the resin composition has good resin flowability, and it is considered that the resin composition of the present embodiment has better circuit filling properties when producing a multilayer circuit board or the like.
  • the (meth)acrylic group equivalent of the compound represented by formula (MA) is 1000 g/eq. or less. If the equivalent weight is 1000 g/eq. or less, it tends to be possible to obtain a high Tg more reliably.
  • the lower limit of the (meth)acrylic group equivalent is, for example, 99 g/eq. That's all.
  • the alkyl group having 1 to 22 carbon atoms is preferably a linear alkyl group having 1 to 22 carbon atoms or a branched alkyl group having 3 to 22 carbon atoms, such as methyl group, ethyl group, propyl group, butyl group. group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, eicosyl group, docosyl group, and the like.
  • the alkenyl group having 2 to 22 carbon atoms is preferably an alkenyl group having 2 to 15 carbon atoms, such as an allyl group or a decenyl group.
  • Specific examples of the compound represented by formula (MA) include trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, pentaerythritol tetra(meth)acrylate, and the like. These may be used alone or in combination of two or more, or may be used as a prepolymer.
  • commercially available compounds can also be used as the compound represented by formula (MA).
  • Commercially available products include, but are not particularly limited to, "NK Ester TMPT” manufactured by Shin-Nakamura Chemical Co., Ltd., as trimethylolpropane trimethacrylate.
  • the molecular weight of the polyfunctional (meth)acrylate compound is preferably 300 or more, more preferably 330 or more, may be 400 or more, or may be 500 or more. By setting the molecular weight to the lower limit value or more, the resulting cured product tends to have improved low dielectric properties (Dk and/or Df) and heat resistance. Further, the molecular weight of the (meth)acrylate compound (preferably the compound represented by formula (MA)) is preferably 3000 or less, more preferably 2000 or less, and even more preferably 1000 or less. , more preferably 800 or less. By controlling the molecular weight to be less than or equal to the upper limit value, the resulting cured product tends to have improved low thermal expansion properties.
  • the content thereof is preferably 1 part by mass or more, and 3 parts by mass based on 100 parts by mass of resin solids in the resin composition. It is more preferably at least 5 parts by mass, even more preferably at least 5 parts by mass, and may be at least 10 parts by mass.
  • the upper limit of the content of the (meth)acrylate compound is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, based on 100 parts by mass of the resin solid content in the resin composition. It may be 20 parts by mass or less.
  • the resin composition of this embodiment may contain only one type of polyfunctional (meth)acrylate compound, or may contain two or more types of polyfunctional (meth)acrylate compounds. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition of this embodiment may contain an elastomer.
  • the elastomer may be thermoplastic, thermosetting, or neither thermoplastic nor thermosetting, although thermoplasticity is preferred.
  • the elastomer in this embodiment is not particularly limited, and includes, for example, polyisoprene, polybutadiene, styrene butadiene, butyl rubber, ethylene propylene rubber, styrene butadiene ethylene, styrene butadiene styrene, styrene isoprene styrene, styrene ethylene butylene styrene, styrene propylene styrene, and styrene.
  • At least one selected from the group consisting of ethylene propylene styrene, fluororubber, silicone rubber, hydrogenated compounds thereof, alkyl compounds thereof, and copolymers thereof can be mentioned.
  • examples of the elastomer include oligomers or polymers having a curable vinyl functional group and polybutadiene resins described in paragraphs 0044 and 0045 of JP-A-2019-194312, the contents of which are incorporated herein.
  • the number average molecular weight of the elastomer (preferably a thermoplastic elastomer) used in this embodiment is preferably 1000 or more. By setting the number average molecular weight to 1000 or more, the resulting cured product tends to have better low dielectric properties (Dk and/or Df, particularly low dielectric loss tangent).
  • the number average molecular weight is preferably 1500 or more, more preferably 2000 or more, and may be 600,000 or more, 700,000 or more, or 800,000 or more depending on the application.
  • the upper limit of the number average molecular weight of the elastomer is preferably 400,000 or less, more preferably 350,000 or less, and even more preferably 300,000 or less.
  • the solubility of the elastomer component in the resin composition tends to improve.
  • the resin composition of this embodiment contains two or more types of elastomers, it is preferable that the number average molecular weight of the mixture satisfies the above range.
  • the elastomer used in this embodiment includes a resin containing a polybutadiene structure. Part or all of the polybutadiene structure may be hydrogenated. Specific examples include Nippon Soda Co., Ltd., B-1000, B-2000, B-3000, BI-2000, BI-3000, CRAY VALLEY, Ricon100, Ricon130, Ricon131, Ricon142, Ricon150, Ricon181, Ricon 184th grade can be mentioned.
  • the elastomer used in this embodiment includes a resin containing a poly(meth)acrylate structure.
  • Specific examples include Teisan Resin manufactured by Nagase ChemteX, ME-2000, W-197C, KG-15, and KG-3000 manufactured by Negami Kogyo.
  • Examples of the elastomer used in this embodiment include resins containing a polycarbonate structure.
  • a resin containing a polycarbonate structure is sometimes referred to as a "polycarbonate resin.”
  • Examples of such resins include carbonate resins without reactive groups, carbonate resins containing hydroxy groups, carbonate resins containing phenolic hydroxyl groups, carbonate resins containing carboxy groups, carbonate resins containing acid anhydride groups, carbonate resins containing isocyanate groups, and urethane group-containing carbonate resins.
  • Examples include carbonate resins containing carbonate resins, carbonate resins containing epoxy groups, and the like.
  • the reactive group refers to a functional group that can react with other components, such as a hydroxy group, a phenolic hydroxyl group, a carboxy group, an acid anhydride group, an isocyanate group, a urethane group, and an epoxy group.
  • Specific examples of the polycarbonate resin include FPC0220 and FPC2136 manufactured by Mitsubishi Gas Chemical Co., Ltd., and T6002 and T6001 (polycarbonate diol) manufactured by Asahi Kasei Chemicals.
  • the elastomer used in this embodiment includes a resin containing a polysiloxane structure.
  • Specific examples include SMP-2006, SMP-2003PGMEA, SMP-5005PGMEA, KR-510, and SMP-7014-3S manufactured by Shin-Etsu Silicone.
  • Examples of the elastomer used in this embodiment include resins containing a polyalkylene structure and/or a polyalkyleneoxy structure.
  • the polyalkyleneoxy structure is preferably a polyalkyleneoxy structure having 2 to 15 carbon atoms, more preferably a polyalkyleneoxy structure having 3 to 10 carbon atoms, and particularly preferably a polyalkyleneoxy structure having 5 to 6 carbon atoms.
  • Specific examples of resins containing a polyalkylene structure and/or polyalkyleneoxy structure include PTXG-1000 and PTXG-1800 manufactured by Asahi Kasei Fibers.
  • the elastomer used in this embodiment includes a resin containing a polyisoprene structure.
  • Specific examples include KL-610 and KL613 manufactured by Kuraray.
  • the elastomer used in this embodiment includes a resin containing a polyisobutylene structure.
  • Specific examples include SIBSTAR-073T (styrene-isobutylene-styrene triblock copolymer) and SIBSTAR-042D (styrene-isobutylene diblock copolymer) manufactured by Kaneka.
  • the elastomer is preferably an elastomer containing a styrene monomer unit and a conjugated diene monomer unit (hereinafter referred to as "elastomer (e)").
  • elastomer (e) an elastomer containing a styrene monomer unit and a conjugated diene monomer unit
  • the elastomer (e) contains styrene monomer units. By including the styrene monomer unit, the solubility of the elastomer (e) in the resin composition is improved.
  • Styrene monomers include styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene (vinylstyrene), N,N-dimethyl-p-aminoethylstyrene, N,N-diethyl-p-aminoethylstyrene, etc.
  • styrene ⁇ -methylstyrene, and p-methylstyrene are preferred from the viewpoint of availability and productivity.
  • styrene is particularly preferred.
  • the content of styrene monomer units in the elastomer (e) is preferably in the range of 10 to 50% by mass, more preferably in the range of 13 to 45% by mass, and more preferably in the range of 15 to 40% by mass of the total monomer units. is even more preferable. If the content of styrene monomer units is 50% by mass or less, the adhesiveness and tackiness to the substrate etc. will be better.
  • the elastomer (e) may contain only one type of styrene monomer unit, or may contain two or more types of styrene monomer units. When two or more types are included, it is preferable that the total amount is within the above range.
  • the description in International Publication No. 2017/126469 can be referred to, and the contents thereof are incorporated herein. The same applies to the conjugated diene monomer unit, etc., which will be described later.
  • the elastomer (e) contains conjugated diene monomer units. By including the conjugated diene monomer unit, the solubility of the elastomer (e) in the resin composition is improved.
  • the conjugated diene monomer is not particularly limited as long as it is a diolefin having one pair of conjugated double bonds.
  • Conjugated diene monomers include, for example, 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl- Examples include 1,3-pentadiene, 1,3-hexadiene, and farnesene, with 1,3-butadiene and isoprene being preferred, and 1,3-butadiene being more preferred.
  • the elastomer (e) may contain only one type of conjugated diene monomer unit, or may contain two or more types.
  • all of the conjugated diene bonds of the elastomer may be hydrogenated, some of them may be hydrogenated, or there is no need to be hydrogenated.
  • the elastomer (e) may or may not contain other monomer units.
  • other monomer units include aromatic vinyl compound units other than styrene monomer units.
  • the total of styrene monomer units and conjugated diene monomer units is preferably 90% by mass or more, more preferably 95% by mass or more of the total monomer units, and 97% by mass or more. It is more preferably at least 99% by mass, even more preferably at least 99% by mass.
  • the elastomer (e) may contain only one type of styrene monomer unit and conjugated diene monomer unit, or may contain two or more types of each. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the elastomer (e) used in this embodiment may be a block polymer or a random polymer.
  • a hydrogenated elastomer in which the conjugated diene monomer unit is hydrogenated an unhydrogenated elastomer in which the conjugated diene monomer unit is not hydrogenated, or a partially hydrogenated elastomer in which the conjugated diene monomer unit is partially hydrogenated, Often, unhydrogenated or partially hydrogenated elastomers are preferred.
  • the elastomer (e) is a hydrogenated elastomer.
  • the hydrogenated elastomer means, for example, an elastomer in which a double bond based on a conjugated diene monomer unit is hydrogenated, and in addition to one with a hydrogenation rate (hydrogenation rate) of 100%,
  • the purpose is to include 80% or more.
  • the hydrogenation rate in the hydrogenated elastomer is preferably 85% or more, more preferably 90% or more, and even more preferably 95% or more.
  • the hydrogenation rate is calculated from the measurement results of 1 H-NMR spectrum measurement.
  • the elastomer (e) is an unhydrogenated elastomer.
  • unhydrogenated elastomer refers to the proportion of double bonds based on conjugated diene monomer units in the elastomer that are hydrogenated, that is, the hydrogenation rate (hydrogenation rate) is 20% or less. say something The hydrogenation rate is preferably 15% or less, more preferably 10% or less, even more preferably 5% or less.
  • partially hydrogenated elastomer refers to an elastomer in which a portion of the double bonds based on conjugated diene monomer units are hydrogenated, and the hydrogenation rate (hydrogenation rate) is usually less than 80%. , more than 20%.
  • elastomer (e) used in this embodiment examples include SEPTON (registered trademark) 2104, V9461, and S8104 manufactured by Kuraray Co., Ltd., and SEPTON (registered trademark) manufactured by Asahi Kasei Corporation.
  • SEPTON registered trademark
  • the elastomer used in this embodiment may also be a liquid diene.
  • Liquid diene means a liquid elastomer containing a conjugated diene monomer unit.
  • Conjugated diene monomers include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-1 , 3-pentadiene, 1,3-hexadiene, and farnesene, 1,3-butadiene and isoprene are preferred, and 1,3-butadiene is more preferred.
  • liquid diene used in this embodiment examples include liquid polybutadiene, liquid polyisoprene, modified products of liquid polybutadiene, modified products of liquid polyisoprene, liquid acrylonitrile-butadiene copolymers, and liquid styrene-butadiene copolymers.
  • the number average molecular weight of the liquid diene is not particularly limited as long as it is liquid at 20°C, but is preferably 500 or more and 10,000 or less.
  • the content thereof is preferably 1 part by mass or more based on 100 parts by mass of resin solids in the resin composition. , more preferably 5 parts by mass or more, even more preferably 8 parts by mass or more, and may be 10 parts by mass or more, or 12 parts by mass or more depending on the application.
  • the dielectric properties low dielectric loss tangent property
  • the upper limit of the content of the elastomer is preferably 45 parts by mass or less, more preferably 40 parts by mass or less, and 35 parts by mass or less, based on 100 parts by mass of resin solid content in the resin composition. It is more preferably 32 parts by mass or less, even more preferably 28 parts by mass or less. By setting it below the upper limit value, heat resistance tends to be further improved.
  • the resin composition of this embodiment may contain only one type of elastomer, or may contain two or more types of elastomer. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition in this embodiment can also have a structure that does not substantially contain an elastomer.
  • substantially free means that the content of the elastomer is less than 1 part by mass, preferably less than 0.1 part by mass, and preferably less than 0.1 part by mass, based on 100 parts by mass of resin solids in the resin composition. More preferably, it is less than 0.01 parts by mass.
  • the resin composition of this embodiment may contain petroleum resin.
  • Petroleum resin is a resin obtained by thermally decomposing petroleum naphtha, collecting the necessary fractions, and polymerizing the remaining components without isolating unsaturated hydrocarbons, either without a catalyst or in the presence of a catalyst.
  • the remaining fraction is mainly a fraction containing a C5 fraction (isoprene, piperylene, cyclopentadiene, pentenes, pentanes, etc.) or a C9 fraction (vinyltoluene, indene, dicyclopentadiene, etc.).
  • the catalyst used in the production of petroleum resin is preferably an acidic catalyst.
  • boron trifluoride phenol complex boron trifluoride ether complex
  • aluminum chloride aluminum bromide
  • Lewis acids such as iron (III) chloride, iron (III) bromide, zeolite, silica, montmorillonite, alumina.
  • solid acids such as sulfonic acid group-containing fluororesins, ion exchange resins such as sulfonic acid group-containing polystyrene resins, protonic acids such as sulfuric acid, hydrochloric acid, acetic acid, phosphoric acid, oxalic acid, nitric acid, p-toluenesulfonic acid, trifluoroacetic acid, etc. etc.
  • protonic acids such as sulfuric acid, hydrochloric acid, acetic acid, phosphoric acid, oxalic acid, nitric acid, p-toluenesulfonic acid, trifluoroacetic acid, etc. etc.
  • Lewis acids and solid acids which are less likely to cause side reactions and have a fast reaction rate, and various complexes of boron trifluoride and aluminum chloride are more preferable because they are easily available and have high reactivity. .
  • the weight average molecular weight of the petroleum resin is not particularly limited, but is preferably 500 to 10,000, more preferably 500 to 5,000. When the content is below the upper limit, it tends to be more compatible with other resins and also tends to have higher solubility in solvents. When the amount is equal to or more than the lower limit, the heat resistance and mechanical strength of the resulting cured product tend to be further improved.
  • the softening point of the petroleum resin is not particularly limited, but is preferably high, preferably 80°C or higher, and more preferably 100°C or higher. When the amount is at least the lower limit, the heat resistance of the resulting cured product tends to improve.
  • Examples of petroleum resins include aliphatic petroleum resins, aromatic petroleum resins, copolymer petroleum resins, and dicyclopentadiene petroleum resins, with dicyclopentadiene petroleum resins being preferred.
  • Dicyclopentadiene petroleum resins include resins obtained by polymerizing dicyclopentadiene fractions such as dicyclopentadiene, isopropenylnorbornene, dimethyldicyclopentadiene, and tricyclopentadiene, and dicyclopentadiene fractions and other Examples include resins obtained by polymerizing monomers having unsaturated bonds, preferably unsaturated cyclic olefins.
  • Examples of the unsaturated cyclic olefins include cyclopentadiene; 2-norbornene, 5-methyl-2-norbornene, 5-ethylidene-2-norbornene, 5-phenylnorbornene, 5-propenyl-2-norbornene, 5-ethylidene-2 - Norbornene monomers such as norbornene; Furthermore, as tricyclic or higher norbornene monomers, tricyclics other than dicyclopentadiene fractions such as diethyldicyclopentadiene and dihydrodicyclopentadiene, and tetracyclics such as tetracyclododecene Examples include pentacyclic bodies such as tricyclopentadiene, heptacyclic bodies such as tetracyclopentadiene, and alkyl-substituted bodies, alkylidene-substituted bodies, and aryl-substituted
  • alkyl substituent of the polycyclic body examples include methyl, ethyl, propyl, butyl substituents, etc.; examples of the alkylidene substituent of the polycyclic body include ethylidene substituents; Examples of the aryl substituted product of the polycyclic body include phenyl, tolyl, and naphthyl substituted products.
  • olefins having 3 to 12 carbon atoms may be copolymerized, such as propylene, butene-1, pentene-1, pentene-1, 3-pentadiene, hexene-1, heptene-1, octene-1, diisobutene-1, nonene-1, decene-1, 4-phenylbutene-1, 6-phenylhexene-1, 3-methylbutene-1, 4- Methylpentene-1, 3-methylpentene-1, 3-methylhexene-1, 4-methylhexene-1, 5-methylhexene-1, 3,3-dimethylpentene-1, 3,4-dimethylpentene-1 , 4,4-dimethylpentene-1, vinylcyclohexane, vinylcyclohexene, etc.; halogen-substituted ⁇ -olefins such as
  • Examples of monomers having other unsaturated bonds other than those mentioned above include ethylene, tetrafluoroethylene, fluoroethylene, 1,1-difluoroethylene, trifluoroethylene; styrene, p-methylstyrene, o-methylstyrene, m- Alkylstyrenes such as methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,4-dimethylstyrene, 3,5-dimethylstyrene, pt-butylstyrene; p-chlorostyrene, m-chlorostyrene; Halogenated styrenes such as styrene, o-chlorostyrene, p-bromostyrene, m-bromostyrene, o-bromostyrene, p-fluorostyrene, m-fluorostyrene, o
  • the above monomers may be used alone or in combination of two or more.
  • aliphatic petroleum resins include Quinton A100, Quinton B170, Quinton K100, Quinton M100, Quinton R100, Quinton C200S, and Maruzen Petrochemical manufactured by Zeon Corporation. Marukaretsu T-100AS, Marukaretsu R-100AS manufactured by JXTG Energy Corporation, Neopolymer L-90, Neopolymer 120, Neopolymer 130, Neopolymer 140, Neopolymer 150, Neopolymer manufactured by JXTG Energy Corporation as aromatic petroleum resins.
  • Neopolymer 160 Neopolymer E-100, Neopolymer E-130, Neopolymer 130S, Neopolymer S, Tosoh Corporation Petcol LX, Petcol LX-HS, Petcol 100T, Petcol 120, Petcol 120HS, Petcol 130, Petcol 140, Petcol 140HM, Petcol 140HM5, Petcol 150, Petcol 150AS, Copolymerized petroleum resins include Quinton D100, Quinton N180, Quinton P195N, Quinton S100, Quinton S195, Quinton U185, Quinton G100B, Quinton manufactured by Zeon Co., Ltd.
  • the lower limit of its content is preferably 1 part by mass or more, and 5 parts by mass or more, based on 100 parts by mass of resin solids in the resin composition.
  • the amount is more preferably 10 parts by mass or more, even more preferably 20 parts by mass or more, and even more preferably 25 parts by mass or more.
  • the upper limit of the content of petroleum resin is preferably 70 parts by mass or less, more preferably 50 parts by mass or less, and 40 parts by mass based on 100 parts by mass of resin solids in the resin composition. It may be the following. By setting it below the upper limit value, Df tends to decrease.
  • the resin composition in this embodiment may contain only one type of petroleum resin, or may contain two or more types. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition in this embodiment can also be configured not to substantially contain petroleum resin.
  • Substantially free of petroleum resin means that the petroleum resin content is less than 1 part by mass, preferably less than 0.1 part by mass, with respect to 100 parts by mass of resin solids in the resin composition. More preferably, it is less than .01 part by mass.
  • the resin composition of this embodiment contains a filler (D).
  • a filler (D) By including the filler (D), physical properties such as low dielectric properties (Dk and/or Df), flame resistance, and low thermal expansion of the resin composition and its cured product can be further improved.
  • the filler (D) used in this embodiment has excellent low dielectric properties (Dk and/or Df).
  • the filler (D) used in this embodiment preferably has a dielectric constant (Dk) of 8.0 or less, and preferably 6.0 or less, at a frequency of 10 GHz measured according to the cavity resonator perturbation method. More preferably, it is 4.0 or less.
  • the lower limit of the relative permittivity is practically, for example, 2.0 or more.
  • the filler (D) used in this embodiment preferably has a dielectric loss tangent (Df) of 0.05 or less, more preferably 0.01 or less, at a frequency of 10 GHz measured according to the cavity resonator perturbation method. preferable.
  • the lower limit value of the dielectric loss tangent is practically, for example, 0.0001 or more.
  • filler (D) used in this embodiment is not particularly limited, and those commonly used in the industry can be suitably used.
  • silicas such as natural silica, fused silica, synthetic silica, amorphous silica, Aerosil, and hollow silica, metal oxides such as alumina, white carbon, titanium white, titanium oxide, zinc oxide, magnesium oxide, and zirconium oxide.
  • complex oxides such as zinc borate, zinc stannate, forsterite, barium titanate, strontium titanate, calcium titanate, nitrides such as boron nitride, agglomerated boron nitride, silicon nitride, aluminum nitride, aluminum hydroxide, Heat-treated aluminum hydroxide products (aluminum hydroxide heat-treated to reduce some of the crystal water), metal hydroxides (including hydrates) such as boehmite and magnesium hydroxide, molybdenum oxide and molybdic acid Molybdenum compounds such as zinc, barium sulfate, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, E-glass, A-glass, NE-glass, NER-glass, C-glass, L-glass, D-glass, S-glass, M-glass G20, short glass fibers (including fine glass powders such as E glass, T
  • inorganic fillers are preferred and are selected from the group consisting of silica, aluminum hydroxide, aluminum nitride, boron nitride, forsterite, titanium oxide, barium titanate, strontium titanate, and calcium titanate. It is more preferable to include one or more types, and from the viewpoint of low dielectric properties (Dk and/or Df), it is more preferable to include one or more types selected from the group consisting of silica and aluminum hydroxide. It is further preferable that silica is included. By using these inorganic fillers, properties such as heat resistance, low dielectric properties (Dk and/or Df), thermal expansion properties, dimensional stability, flame retardance, etc. of the cured resin composition are further improved. .
  • the content of the filler (D) in the resin composition of the present embodiment can be appropriately set depending on the desired characteristics, and is not particularly limited, but the content is based on 100 parts by mass of the resin solid content in the resin composition. It is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, even more preferably 40 parts by mass or more, even more preferably 60 parts by mass or more, and 80 parts by mass or more. is even more preferable.
  • the heat resistance, low thermal expansion property, and low dielectric loss tangent of the obtained cured product tend to be further improved.
  • the upper limit of the content of the filler (D) is preferably 1000 parts by mass or less, more preferably 500 parts by mass or less, and 300 parts by mass or less based on 100 parts by mass of the resin solid content. It is more preferable that the amount is 250 parts by mass or less, even more preferably 200 parts by mass or less, and may be 120 parts by mass or less. By setting it below the upper limit value, the moldability of the resin composition tends to be further improved.
  • the content of the filler (D) is 30% by mass to 90% by mass of the components excluding the solvent.
  • the resin composition of this embodiment may contain only one type of filler (D), or may contain two or more types of filler (D). When two or more types are included, it is preferable that the total amount falls within the above range.
  • a filler (D) when using a filler (D), especially an inorganic filler, it may further contain a silane coupling agent.
  • a silane coupling agent By including a silane coupling agent, the dispersibility of the filler (D) and the adhesive strength between the resin component and the filler (D) and the substrate described below tend to be further improved.
  • Silane coupling agents are not particularly limited, and include silane coupling agents that are generally used for surface treatment of inorganic materials, such as aminosilane compounds (for example, ⁇ -aminopropyltriethoxysilane, N- ⁇ -(aminoethyl) - ⁇ -aminopropyltrimethoxysilane, etc.), epoxysilane compounds (e.g., ⁇ -glycidoxypropyltrimethoxysilane, etc.), vinylsilane compounds (e.g., vinyltrimethoxysilane, etc.), styrylsilane compounds, acrylic silane type compounds (e.g., ⁇ -acryloxypropyltrimethoxysilane, etc.), cationic silane type compounds (e.g., N- ⁇ -(N-vinylbenzylaminoethyl)- ⁇ -aminopropyltrimethoxysilane hydrochloride, etc.), phenyl Examples include silane compounds.
  • a monomer or oligomer having an ethylenically unsaturated group may be used in combination to enhance thermosetting properties and curability by active energy rays (for example, photocurability by ultraviolet rays). It is.
  • the oligomer or monomer having an ethylenically unsaturated group used in this embodiment is not particularly limited as long as it has one or more ethylenically unsaturated group in one molecule.
  • Examples include monomers or oligomers having a propenyl group, allyl group, (meth)acryloyl group, etc., and monomers or oligomers having a vinyl group are preferred.
  • a compound that corresponds to a monomer or oligomer having an ethylenically unsaturated group and also corresponds to a polyphenylene ether compound containing a carbon-carbon unsaturated double bond at the terminal is defined as A polyphenylene ether compound containing a carbon-carbon unsaturated double bond.
  • a compound (F1) (compound (F1)).
  • the ethylenically unsaturated bond constituting the organic group containing an ethylenically unsaturated bond is not intended to be included as part of an aromatic ring.
  • An example of the ethylenically unsaturated bond included as part of the non-aromatic ring is a cyclohexenyl group in the molecule.
  • the organic group containing an ethylenically unsaturated bond is more preferably one selected from the group consisting of a vinyl group, an allyl group, an acryloyl group, and a methacrylic group, and still more preferably a vinyl group.
  • a compound that corresponds to a monomer or oligomer having an ethylenically unsaturated group and also corresponds to a silane coupling agent is referred to as a silane coupling agent.
  • the compound (F1) used in the present embodiment is preferably composed only of atoms selected from carbon atoms, hydrogen atoms, oxygen atoms, nitrogen atoms, and silicon atoms; More preferably, it is composed only of atoms selected from atoms and silicon atoms, and even more preferably composed only of atoms selected from carbon atoms, hydrogen atoms, oxygen atoms, and oxygen atoms.
  • the compound (F1) used in this embodiment may or may not have a polar group. It is preferable that the compound (F1) used in this embodiment has no polar group. Examples of the polar group include an amino group, a carboxyl group, a hydroxy group, and a nitro group.
  • the molecular weight of compound (F1) is preferably 70 or more, more preferably 80 or more, and even more preferably 90 or more.
  • the upper limit of the molecular weight of the compound (F1) is preferably 500 or less, more preferably 400 or less, even more preferably 300 or less, even more preferably 200 or less, and even more preferably 150 or less. You can. By setting it below the above-mentioned upper limit, the effect of increasing reactivity with other resin components tends to be further improved.
  • the resin composition of the present embodiment contains two or more types of compounds (F1)
  • the average molecular weight value of the compound (F1) is within the above range, and the molecular weight of each compound is within the above preferable range. It is more preferable.
  • the boiling point of compound (F1) is preferably 110°C or higher, more preferably 115°C or higher, and even more preferably 120°C or higher. By setting it to the above lower limit or more, volatilization of the compound (F1) when thermosetting the resin composition is suppressed, and the thermosetting compound and the compound (F1) can be reacted.
  • the boiling point of the compound (F1) is preferably 300°C or lower, more preferably 250°C or lower, and even more preferably 200°C or lower. By setting the amount to be less than or equal to the above upper limit, it is possible to make it difficult for residual solvent to remain in the cured product.
  • Compound (F1) includes (meth)acrylic acid ester compounds, aromatic vinyl compounds (preferably styrene compounds), isopropenyl group-containing compounds, saturated fatty acid vinyl compounds, vinyl cyanide compounds, ethylenically unsaturated carboxylic acids, Unsaturated polyester compounds based on ethylenically unsaturated carboxylic anhydrides, ethylenically unsaturated dicarboxylic acid monoalkyl esters, ethylenically unsaturated carboxylic acid amides, maleic anhydride, fumaric acid, itaconic acid, and citraconic acid; acryloyl or methacryloyl group; unsaturated epoxy compounds containing vinyl or (meth)allyl groups, urethane (meth)
  • compound (F1) examples include methylstyrene (eg, 4-methylstyrene), ethylvinylbenzene, diethyl 4-vinylbenzylphosphonate, 4-vinylbenzylglycidyl ether, ⁇ -methylstyrene, and the like. Further, as a specific example of compound (F1), the descriptions in paragraphs 0046 and 0049 of JP-A-2019-194312 can be referred to, the contents of which are incorporated herein.
  • methylstyrene eg, 4-methylstyrene
  • ethylvinylbenzene diethyl 4-vinylbenzylphosphonate
  • 4-vinylbenzylglycidyl ether ⁇ -methylstyrene
  • the resin composition according to the present embodiment also preferably contains a styrene oligomer (F2) in order to improve the low dielectric properties (Dk and/or Df) of the resulting cured product.
  • the styrene oligomer (F2) according to the present embodiment is preferably formed by polymerizing at least one member selected from the group consisting of styrene, the above-mentioned styrene derivatives, and vinyltoluene.
  • the number average molecular weight of the styrene oligomer (F2) is preferably 178 or more, and preferably 1,600 or less.
  • the styrene oligomer (F2) must be a compound without a branched structure with an average number of aromatic rings of 2 to 14, a total amount of 2 to 14 aromatic rings of 50% by mass or more, and a boiling point of 300°C or higher. preferable.
  • styrene oligomer (F2) used in this embodiment examples include styrene polymer, vinyltoluene polymer, ⁇ -methylstyrene polymer, vinyltoluene- ⁇ -methylstyrene polymer, styrene- ⁇ -styrene polymer, etc. can be mentioned.
  • styrene polymer commercially available products may be used, such as Picolastic A5 (manufactured by Eastman Chemical Company), Picolastic A-75 (manufactured by Eastman Chemical Company), Picotex 75 (manufactured by Eastman Chemical Company), Examples include FTR-8100 (manufactured by Mitsui Chemicals, Inc.) and FTR-8120 (manufactured by Mitsui Chemicals, Inc.). Furthermore, examples of the vinyltoluene- ⁇ -methylstyrene polymer include Picotex LC (manufactured by Eastman Chemical Company).
  • Crystallex 3070 manufactured by Eastman Chemical Company
  • Crystallex 3085 manufactured by Eastman Chemical Company
  • Crystallex 5140 manufactured by Eastman Chemical Company
  • FMR -0100 manufactured by Mitsui Chemicals, Inc.
  • FMR-0150 manufactured by Mitsui Chemicals, Inc.
  • examples of the styrene- ⁇ -styrene polymer include FTR-2120 (manufactured by Mitsui Chemicals, Inc.). These styrene oligomers may be used alone or in combination of two or more.
  • ⁇ -methylstyrene oligomer is preferable because it can be thermally cured well and is excellent in embedding of fine wiring, soldering heat resistance, and low dielectric properties (Dk and/or Df). .
  • the resin composition according to the present embodiment preferably contains a divinyl compound (F3) as a monomer having an ethylenically unsaturated group in order to improve low dielectric constant and low dielectric loss tangent.
  • a divinyl compound is a low molecular compound having two vinyl groups. The presence of two vinyl groups provides a good crosslinking density that does not increase too much, and as a result, the free volume of the molecules becomes large, so that the dielectric loss tangent (Df) of the obtained cured product can be kept small.
  • the divinyl compound (F3) is used as a substitute for the resin (A), the polyphenylene ether compound (B), and a part of other curable compounds, the content of components having polar groups is reduced.
  • the divinyl compound (F3) here refers to one having a molecular weight of less than 600, preferably 300 or less, and more preferably less than 195. Further, a practical lower limit of the molecular weight is 54.
  • divinyl compound (F3) divinylbenzene, 1-ethynyl-4-[2-(4-ethynylphenyl)ethyl]benzene (BVPE) , 1,3-vinyltetramethylsiloxane and the like.
  • 1,3-diisopropenylbenzene and 1,4-diisopropenylbenzene are also preferably used.
  • the description in paragraphs 0069 to 0087 of International Publication No. 2017/135168 and the paragraphs 0065 to 0067 of International Publication No. 2019/230945 can be referred to. The contents are incorporated herein.
  • the content thereof should be 0.5 parts by mass or more based on 100 parts by mass of resin solids in the resin composition. It is preferably 1 part by mass or more, more preferably 2 parts by mass or more, even more preferably 3 parts by mass or more, and even more preferably 5 parts by mass or more.
  • the amount is equal to or more than the lower limit, the low dielectric properties (Dk and/or Df) of the resulting cured product tend to be further improved.
  • the upper limit of the content of the monomer or oligomer having an ethylenically unsaturated group is preferably 30 parts by mass or less, and preferably 25 parts by mass or less, based on 100 parts by mass of the resin solid content in the resin composition.
  • the content is more preferably 20 parts by mass or less, even more preferably 15 parts by mass or less, and even more preferably 10 parts by mass or less.
  • heat resistance tends to be further improved.
  • the resulting cured product tends to have improved low dielectric properties (Dk and/or Df) and chemical resistance.
  • the resin composition of this embodiment may contain only one type of monomer or oligomer having an ethylenically unsaturated group, or may contain two or more types. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition of this embodiment may contain a flame retardant.
  • the flame retardant include phosphorus-based flame retardants, halogen-based flame retardants, inorganic flame retardants, and silicone-based flame retardants, with phosphorus-based flame retardants being preferred.
  • Known flame retardants can be used, such as brominated epoxy resin, brominated polycarbonate, brominated polystyrene, brominated styrene, brominated phthalimide, tetrabromobisphenol A, pentabromobenzyl (meth)acrylate, pentabromo Halogen flame retardants such as toluene, tribromophenol, hexabromobenzene, decabromodiphenyl ether, bis-1,2-pentabromophenylethane, chlorinated polystyrene, chlorinated paraffin, red phosphorus, tricresyl phosphate, triphenyl phosphate , cresyl diphenyl phosphate, trixylenyl phosphate, trialkyl phosphate, dialkyl phosphate, tris(chloroethyl) phosphate, phosphazene, 1,3-phenylenebis(2,6-dixylenyl
  • Examples include flame retardants, silicone-based flame retardants such as silicone rubber, and silicone resin.
  • 1,3-phenylenebis(2,6-dixylenyl phosphate) is preferred because it does not impair the low dielectric properties (Dk and/or Df) of the resulting cured product.
  • the content thereof is preferably 1 part by mass or more, and preferably 5 parts by mass or more, based on 100 parts by mass of resin solids in the resin composition. is more preferable. Further, the lower limit of the flame retardant content is preferably 30 parts by mass or less, more preferably 25 parts by mass or less.
  • One kind of flame retardant can be used alone or two or more kinds can be used in combination. When two or more types are used, the total amount falls within the above range.
  • the resin composition of this embodiment may contain an active ester compound.
  • the active ester compound is not particularly limited, and for example, the description in paragraphs 0064 to 0066 of International Publication No. 2021/172317 can be referred to, the contents of which are incorporated herein.
  • the resin composition of this embodiment contains an active ester compound, it is preferably 1 part by mass or more, and preferably 90 parts by mass or less, based on 100 parts by mass of resin solid content in the resin composition. .
  • the resin composition in this embodiment may contain only one type of active ester compound, or may contain two or more types of active ester compounds. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition in this embodiment can also be configured to substantially not contain an active ester compound. "Substantially free" means that the content of the active ester compound is less than 1 part by mass, preferably less than 0.1 part by mass, based on 100 parts by mass of resin solids in the resin composition. , more preferably less than 0.01 part by mass.
  • the resin composition of this embodiment may contain a dispersant.
  • a dispersant those commonly used for paints can be suitably used, and the type thereof is not particularly limited.
  • a copolymer-based wetting and dispersing agent or a fluorine-based dispersing agent containing fluorine is used.
  • Specific examples of the dispersant include DISPERBYK (registered trademark) -110, 111, 161, 180, 2009, 2152, 2155, BYK (registered trademark) -W996, W9010, W903, W940, manufactured by BYK Chemie Japan Co., Ltd. Examples include Ftargient manufactured by Neos Co., Ltd. and MPT manufactured by Mitsubishi Pencil Co., Ltd.
  • the lower limit of its content is preferably 0.01 parts by mass or more, and 0.01 parts by mass or more, based on 100 parts by mass of resin solids in the resin composition. It is more preferably 1 part by mass or more, and may be 0.3 parts by mass or more.
  • the upper limit of the content of the dispersant is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and 3 parts by mass based on 100 parts by mass of the resin solid content in the resin composition. It is more preferable that it is the following.
  • One type of dispersant can be used alone or two or more types can be used in combination. When two or more types are used, the total amount falls within the above range.
  • the resin composition of this embodiment may further contain a curing accelerator.
  • the curing accelerator include, but are not limited to, imidazoles such as 2-ethyl-4-methylimidazole and triphenylimidazole; benzoyl peroxide, bis(1-methyl-1-phenylethyl) peroxide), and -t-butyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di-perphthalate, ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene, 2, Organic peroxides such as 5-dimethyl-2,5-di(t-butylperoxy)hexane, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexine-3; azobisnitrile (e.g.
  • azo compounds such as azobisisobutyronitrile); N,N-dimethylbenzylamine, N,N-dimethylaniline, N,N-dimethyltoluidine, 2-N-ethylanilinoethanol, tri-n-butylamine, pyridine , quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, N-methylpiperidine, and other tertiary amines; phenols, xylenol, cresol, resorcinol, catechol, and other phenols; 2,3- High-temperature decomposition radical generators such as dimethyl-2,3-diphenylbutane; lead naphthenate, lead stearate, zinc naphthenate, zinc octylate, manganese octylate, tin oleate, dibutyltin malate, manganese naphthenate, naphthene
  • the curing accelerator is preferably at least one selected from the group consisting of imidazoles, organic peroxides, and organic metal salts, more preferably at least one selected from the group consisting of imidazoles and organic metal salts, More preferred are imidazoles.
  • a configuration may be adopted in which substantially no polymerization initiator such as an organic peroxide or an azo compound is contained.
  • substantially free means that the content of the polymerization initiator is less than 0.1 parts by mass, and less than 0.01 parts by mass, based on 100 parts by mass of resin solids in the resin composition. is preferable, and more preferably less than 0.001 parts by mass.
  • the lower limit of its content is preferably 0.005 parts by mass or more, based on 100 parts by mass of resin solids in the resin composition, and 0. It is more preferably .01 part by mass or more, and even more preferably 0.1 part by mass or more.
  • the upper limit of the content of the curing accelerator is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and 2 parts by mass or less, based on 100 parts by mass of the resin solid content in the resin composition. It is more preferable that the amount is less than 1 part.
  • the curing accelerator can be used alone or in combination of two or more. When two or more types are used, the total amount falls within the above range.
  • the resin composition of this embodiment may contain a solvent, and preferably contains an organic solvent.
  • the resin composition of the present embodiment is in a form (solution or varnish) in which at least a portion, preferably all, of the various resin solid components described above are dissolved or compatible with the solvent.
  • the solvent is not particularly limited as long as it is a polar organic solvent or a non-polar organic solvent that can dissolve or be compatible with at least a portion, preferably all, of the various resin solids mentioned above.
  • Examples of the polar organic solvent include ketones, etc.
  • nonpolar organic solvents include aromatic hydrocarbons (e.g., toluene, xylene, etc.).
  • solvent e.g., toluene, xylene, etc.
  • One kind of solvent can be used alone or two or more kinds can be used in combination. When two or more types are used, the total amount falls within the above range.
  • the resin composition of the present embodiment may contain, in addition to the above-mentioned components, various polymeric compounds such as thermoplastic resins other than those mentioned above and oligomers thereof, and various additives.
  • Additives include ultraviolet absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, fluidity regulators, lubricants, antifoaming agents, leveling agents, and gloss. agents, polymerization inhibitors, etc. These additives can be used alone or in combination of two or more.
  • the resin composition of this embodiment can also be configured to substantially not contain a polymerization inhibitor.
  • Substantially free means that the resin composition does not contain a polymerization inhibitor, or the content of the polymerization inhibitor in the resin composition is, for example, less than 0.008 parts by mass based on 100 parts by mass of resin solids. It is preferably 0.007 parts by mass or less, more preferably 0.001 parts by mass or less, and even more preferably 0.0001 parts by mass or less.
  • the resin composition of this embodiment is used as a cured product.
  • the resin composition of this embodiment is suitable as a low dielectric constant material and/or a low dielectric loss tangent material as a resin composition for electronic materials such as insulating layers of printed wiring boards, materials for semiconductor packages, etc. Can be used.
  • the resin composition of this embodiment can be suitably used as a material for prepreg, a metal foil-clad laminate using prepreg, a resin composite sheet, and a printed wiring board.
  • the resin composition of this embodiment is used as a layered material (including film-like, sheet-like, etc.) such as prepreg, resin composite sheet, etc., which becomes an insulating layer of a printed wiring board.
  • the thickness is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the upper limit of the thickness is preferably 200 ⁇ m or less, more preferably 180 ⁇ m or less.
  • the thickness of the above-mentioned layered material means the thickness including the glass cloth, for example, when the resin composition of the present embodiment is impregnated into a glass cloth or the like.
  • the material formed from the resin composition of this embodiment may be used for forming a pattern by exposure and development, or may be used for applications that are not exposed and developed. It is particularly suitable for applications that do not involve exposure and development.
  • the prepreg of this embodiment is formed from a base material (prepreg base material) and the resin composition of this embodiment.
  • the prepreg of the present embodiment can be produced by, for example, applying the resin composition of the present embodiment to a base material (for example, impregnating and/or coating it), and then heating it (for example, drying it at 120 to 220°C for 2 to 15 minutes). etc.) by semi-curing.
  • the amount of the resin composition adhered to the base material that is, the amount of the resin composition (including filler (D)) relative to the total amount of prepreg after semi-curing, is preferably in the range of 20 to 99% by mass, and 20% by mass. More preferably, the content is in the range of 80% by mass.
  • the base material is not particularly limited as long as it is a base material used for various printed wiring board materials.
  • the material of the base material include glass fiber (e.g., E-glass, D-glass, L-glass, S-glass, T-glass, Q-glass, UN-glass, NE-glass, NER-glass, Spherical glass, etc.), inorganic fibers other than glass (eg, quartz, etc.), and organic fibers (eg, polyimide, polyamide, polyester, liquid crystal polyester, polytetrafluoroethylene, etc.).
  • the form of the base material is not particularly limited, and examples thereof include woven fabric, nonwoven fabric, roving, chopped strand mat, surfacing mat, and the like. These base materials may be used alone or in combination of two or more.
  • the base material has a thickness of 200 ⁇ m or less, a mass of 250 g/ A glass woven fabric having a size of m 2 or less is preferable, and from the viewpoint of moisture absorption and heat resistance, a glass woven fabric surface-treated with a silane coupling agent such as epoxy silane or amino silane is preferable.
  • a low dielectric glass cloth made of glass fibers exhibiting low dielectric properties (Dk and/or Df) such as L-glass, NE-glass, NER-glass, Q-glass, etc. is more preferable.
  • Examples of the base material having a low dielectric constant include a base material having a dielectric constant of 5.0 or less (preferably 3.0 to 4.9).
  • Examples of the low dielectric loss tangent base material include base materials with a dielectric loss tangent of 0.006 or less (preferably 0.001 to 0.005).
  • the relative permittivity and dielectric loss tangent are values measured at a frequency of 10 GHz using a perturbation method cavity resonator.
  • the metal foil-clad laminate of this embodiment includes at least one layer formed from the prepreg of this embodiment, and metal foil disposed on one or both sides of the layer formed from the prepreg.
  • a method for producing the metal foil-clad laminate of this embodiment for example, at least one prepreg of this embodiment is arranged (preferably two or more prepregs are stacked), metal foil is arranged on one or both sides of the prepreg, and laminated molding is performed.
  • One method is to do so. More specifically, it can be produced by arranging a metal foil such as copper or aluminum on one or both sides of a prepreg and laminating it.
  • the number of prepreg sheets is preferably 1 to 10 sheets, more preferably 2 to 10 sheets, and even more preferably 2 to 9 sheets.
  • the metal foil is not particularly limited as long as it is used as a material for printed wiring boards, and examples thereof include copper foils such as rolled copper foil and electrolytic copper foil.
  • the thickness of the metal foil (preferably copper foil) is not particularly limited, and may be about 1.5 to 70 ⁇ m. Further, when copper foil is used as the metal foil, it is preferable that the roughness Rz of the surface of the copper foil measured according to JIS B0601:2013 is adjusted to 0.2 to 4.0 ⁇ m.
  • the roughness Rz of the copper foil surface By setting the roughness Rz of the copper foil surface to 0.2 ⁇ m or more, the roughness of the copper foil surface becomes appropriate, and the copper foil peel strength tends to be further improved. On the other hand, by setting the roughness Rz of the copper foil surface to 4.0 ⁇ m or less, the roughness of the copper foil surface becomes appropriate, and conductor loss tends to be further reduced.
  • the roughness Rz of the copper foil surface is more preferably 0.5 ⁇ m or more, still more preferably 0.6 ⁇ m or more, particularly preferably 0.7 ⁇ m or more, from the viewpoint of improving peel strength, and also reduces conductor loss. From the viewpoint of reducing , the thickness is more preferably 3.5 ⁇ m or less, further preferably 3.0 ⁇ m or less, and particularly preferably 2.0 ⁇ m or less.
  • Examples of the lamination molding method include methods normally used when molding laminate boards for printed wiring boards and multilayer boards, and more specifically, multistage press machines, multistage vacuum press machines, continuous molding machines, autoclave molding machines, etc.
  • An example of this is a method of laminated molding at a temperature of about 180 to 350° C., a heating time of about 100 to 300 minutes, and a surface pressure of about 20 to 100 kg/cm 2 .
  • a multilayer board can be obtained by laminating and molding a combination of the prepreg of this embodiment and a separately produced wiring board for an inner layer.
  • a method for manufacturing a multilayer board for example, copper foil of about 35 ⁇ m is placed on both sides of one sheet of prepreg of this embodiment, and after lamination is formed using the above-mentioned forming method, an inner layer circuit is formed, and this circuit is coated with black. After that, the inner layer circuit board and the prepreg of this embodiment are alternately placed one by one, and a copper foil is placed on the outermost layer, and the above conditions are met.
  • a multilayer board can be produced by lamination molding, preferably under vacuum.
  • the metal foil-clad laminate of this embodiment can be suitably used as a printed wiring board.
  • the resin composition for electronic materials obtained using the resin composition of this embodiment has a cured product that has low dielectric properties, heat resistance, It can have excellent moldability, crack resistance, and low thermal expansion properties.
  • the printed wiring board of the present embodiment is a printed wiring board including an insulating layer and a conductor layer disposed on the surface of the insulating layer, the insulating layer being formed from the resin composition of the present embodiment. and a layer formed from the prepreg of this embodiment.
  • a printed wiring board can be manufactured according to a conventional method, and the manufacturing method is not particularly limited. An example of a method for manufacturing a printed wiring board will be shown below. First, a metal foil-clad laminate such as the copper foil-clad laminate described above is prepared. Next, the surface of the metal foil-clad laminate is etched to form an inner layer circuit, thereby producing an inner layer substrate.
  • the surface of the inner layer circuit of this inner layer board is subjected to surface treatment to increase adhesive strength as necessary, and then the required number of sheets of prepreg described above are layered on the surface of the inner layer circuit, and then metal foil for the outer layer circuit is laminated on the outside. Then, heat and press to form an integral mold.
  • a multilayer laminate is produced in which an insulating layer made of a base material and a cured resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit.
  • a plated metal film is formed on the wall of the hole to conduct the inner layer circuit and the metal foil for the outer layer circuit, and then the outer layer circuit is formed.
  • a printed wiring board is manufactured by performing an etching process on metal foil to form an outer layer circuit.
  • the printed wiring board obtained in the above manufacturing example has an insulating layer and a conductor layer formed on the surface of this insulating layer, and the insulating layer is made of the resin composition of the present embodiment described above and/or a cured product thereof.
  • the configuration includes That is, the prepreg of the present embodiment described above (for example, the prepreg formed from the base material and the resin composition of the present embodiment impregnated or applied thereto), the resin composition of the metal foil-clad laminate of the present embodiment described above. The layer formed from the material becomes the insulating layer of this embodiment.
  • the present embodiment also relates to a semiconductor device including the printed wiring board. For details of the semiconductor device, the descriptions in paragraphs 0200 to 0202 of JP-A-2021-021027 can be referred to, and the contents thereof are incorporated into this specification.
  • the insulating layer formed of the cured product of the resin composition of the present embodiment has a reduced surface roughness after the insulating layer is subjected to roughening treatment.
  • the arithmetic mean roughness Ra of the surface of the insulating layer after the roughening treatment is preferably 200 nm or less, more preferably 150 nm or less, particularly preferably 100 nm or less.
  • the lower limit of the arithmetic mean roughness Ra is not particularly limited, but may be, for example, 10 nm or more.
  • the arithmetic mean roughness Ra of the surface of the insulating layer is measured using a non-contact surface roughness meter in VSI mode using a 50x lens.
  • the non-contact surface roughness meter used is WYKONT3300 manufactured by Beaco Instruments.
  • the resin composite sheet of this embodiment includes a support and a layer formed from the resin composition of this embodiment disposed on the surface of the support.
  • the resin composite sheet can be used as a build-up film or a dry film solder resist.
  • the method for producing the resin composite sheet is not particularly limited, but for example, the resin composite sheet may be produced by applying (coating) a solution of the resin composition of the present embodiment described above in a solvent to a support and drying it. There are several ways to obtain it.
  • Examples of the support used here include polyethylene film, polypropylene film, polycarbonate film, polyethylene terephthalate film, ethylenetetrafluoroethylene copolymer film, and release films in which a release agent is applied to the surface of these films.
  • Examples include organic film base materials such as polyimide film, conductive foils such as copper foil and aluminum foil, plate-like materials such as glass plates, SUS (Steel Use Stainless) plates, and FRP (Fiber-Reinforced Plastics). It is not particularly limited.
  • Examples of the coating method include a method in which a solution of the resin composition of the present embodiment dissolved in a solvent is coated onto the support using a bar coater, die coater, doctor blade, Baker applicator, etc. It will be done. Further, after drying, the support can be peeled off or etched from the resin composite sheet in which the support and the resin composition are laminated, thereby forming a single layer sheet. Note that the support can be used by supplying a solution in which the resin composition of the present embodiment described above is dissolved in a solvent into a mold having a sheet-like cavity and drying it to form it into a sheet. It is also possible to obtain a single layer sheet.
  • the drying conditions for removing the solvent are not particularly limited, but if the temperature is low, the solvent tends to remain in the resin composition, and if the temperature is high, Since curing of the resin composition progresses, the temperature is preferably 20° C. to 200° C. for 1 to 90 minutes.
  • the single layer sheet or the resin composite sheet can be used in an uncured state where only the solvent has been dried, or if necessary, it can be used in a semi-cured (B-staged) state.
  • the thickness of the resin layer in the single-layer sheet or resin composite sheet of this embodiment can be adjusted by the concentration of the solution of the resin composition of this embodiment used for application (coating) and the coating thickness, and there are no particular limitations.
  • the thicker the coating, the more likely the solvent will remain during drying so 0.1 to 500 ⁇ m is preferable.
  • the measurement was carried out using a liquid pump (manufactured by Shimadzu Corporation, LC-20AD), a differential refractive index detector (manufactured by Shimadzu Corporation, RID-20A), a GPC column (manufactured by Showa Denko Corporation, GPC KF-801, 802, 803, 804), tetrahydrofuran as the solvent, a flow rate of 1.0 mL/min, a column temperature of 40° C., and a calibration curve using monodisperse polystyrene.
  • a liquid pump manufactured by Shimadzu Corporation, LC-20AD
  • a differential refractive index detector manufactured by Shimadzu Corporation, RID-20A
  • GPC column manufactured by Showa Denko Corporation, GPC KF-801, 802, 803, 804
  • the Mw of the resin (4) expressed by the obtained formula (T1) is 1193, Mn is 693, Mw/Mn is 1.7, and in the formula (Tx), the parameter ⁇ is 0.63.
  • the parameter ⁇ was 1.07, and n+o+p was 3.4. Furthermore, it was confirmed by GPC analysis that the residual monomer content was 1% by mass or less.
  • the Mw of the resin (5) expressed by the obtained formula (T1) is 1424, Mn is 722, Mw/Mn is 2.0, and in formula (Tx), the parameter ⁇ is 0.81.
  • the parameter ⁇ was 0.88, and n+o+p was 3.6. Furthermore, it was confirmed by GPC analysis that the residual monomer content was 1% by mass or less.
  • the activated clay was removed by filtration, and the solvent was distilled off under heating and reduced pressure to obtain 80 parts by weight of a solid resin.
  • the Mw of the obtained resin is 2464, Mn is 1232, Mw/Mn is 2.0, parameter ⁇ in formula (Tx) is 0.51, parameter ⁇ is 0.85, n+o+p was 6.8. Furthermore, it was confirmed by GPC analysis that the residual monomer content was 1% by mass or less.
  • the Mw of the obtained resin is 4318, Mn is 3352, Mw / Mn is 1.3, parameter ⁇ in formula (Tx) is 0.88, parameter ⁇ is 0.03, n+o+p was 20.2. Furthermore, it was confirmed by GPC analysis that the residual monomer content was 1% by mass or less.
  • the Mw of the obtained resin is 3090, Mn is 1350, Mw/Mn is 2.3, parameter ⁇ in formula (Tx) is 0.79, parameter ⁇ is 0.07, n+o+p was 7.5. Furthermore, it was confirmed by GPC analysis that the residual monomer content was 1% by mass or less.
  • the number average molecular weight of the resin "B0" in terms of polystyrene by GPC method was 2,100
  • the weight average molecular weight in terms of polystyrene by GPC method was 3,740
  • the hydroxyl equivalent was 1,070.
  • the polyphenylene ether compound (B1) had a number average molecular weight of 2350, a weight average molecular weight of 3880, and a vinyl group equivalent of 1220 g/vinyl group in terms of polystyrene by GPC.
  • the obtained polymer (va) having a structural unit represented by formula (V) had a number average molecular weight Mn of 2,060, a weight average molecular weight Mw of 30,700, and a monodispersity Mw/Mn of 14.9. there were.
  • the polymer (va) having the structural unit represented by formula (V) had resonance lines derived from each monomer unit used as a raw material. observed.
  • the proportion of each monomer unit (constituent unit derived from each raw material) in the polymer (va) having the structural unit represented by formula (V) is as follows. was calculated.
  • Structural unit derived from divinylbenzene 20.9 mol% (24.3 mass%)
  • the amount of structural units having residual vinyl groups derived from divinylbenzene was 16.7 mol% (18.5% by mass).
  • Example 1 30 parts by mass of the resin (1) represented by formula (T1) obtained in Synthesis Example 1-1 above and 70 parts by mass of the polyphenylene ether compound (B1) obtained in Synthesis Example 2 were dissolved in methyl ethyl ketone and toluene. The mixture was mixed to obtain a varnish. The amount of each component mentioned above indicates the amount of solid content.
  • a resin composition powder was obtained by evaporating the solvent from the obtained varnish.
  • a cured plate was produced as follows using the powder of the obtained resin composition. 4.5 g of resin composition powder was placed in a stainless steel mold frame measuring 100 mm x 30 mm x 1.0 mm high, set in a vacuum press machine (manufactured by Kitagawa Seiki Co., Ltd.), and held at 200°C for 1.5 hours. , Pressing was performed at a surface pressure of 1.9 MPa. Using the obtained cured plate, glass transition temperature, dielectric constant (Dk), and dielectric loss tangent (Df) were evaluated. The evaluation results are shown in Table 1.
  • ⁇ Measurement method and evaluation method> Glass transition temperature A sample obtained by downsizing the cured plate to 12.7 mm x 30 mm was subjected to DMA (dynamic mechanical analysis) using a dynamic viscoelasticity measuring device in accordance with JIS C6481 5.17.2. Dynamic Mechanical Analysis) bending method was used to measure, and the peak temperature of the resulting loss modulus was defined as the glass transition temperature. The unit is shown in °C.
  • the dynamic viscoelasticity analyzer used was DMA Q800, manufactured by TA Instruments Co., Ltd.
  • Example 2 In Example 1, an equivalent amount of the resin (1) represented by the formula (T1) obtained in the above Synthesis Example 1-1 was added to the resin (1) represented by the formula (T1) obtained in the above Synthesis Example 1-2. The same procedure was repeated except that resin (2) was used. The results are shown in Table 1.
  • Example 3 In Example 1, an equivalent amount of the resin (1) represented by the formula (T1) obtained in the above Synthesis Example 1-1 was used as an equivalent amount of the resin (1) represented by the formula (T1) obtained in the above Synthesis Example 1-3. The same procedure was repeated except that resin (3) was used. The results are shown in Table 1.
  • Example 4 In Example 1, an equivalent amount of the resin (1) represented by the formula (T1) obtained in the above Synthesis Example 1-1 was added to the resin (1) represented by the formula (T1) obtained in the above Synthesis Example 1-4. The same procedure was repeated except that resin (4) was used. The results are shown in Table 1.
  • Example 1 an equivalent amount of the resin (1) represented by formula (T1) obtained in the above Synthesis Example 1-1 was added to the resin obtained in the above Synthesis Comparative Example 1-1 (JP-A-2021-143333 The resin was changed to a resin equivalent to Example 1 of the publication, and the other procedures were the same. The results are shown in Table 1.
  • Example 2 In Example 1, an equal amount of the resin (1) represented by formula (T1) obtained in the above Synthesis Example 1-1 was added to the resin obtained in the above Synthesis Comparative Example 1-2 (JP-A-02-219809 The resin was changed to a resin equivalent to co-agent 3 of Example 1 of the publication, and the other procedures were the same. The results are shown in Table 1.
  • Example 5 In Example 1, an equivalent amount of the polyphenylene ether compound (B1) obtained in Synthesis Example 2 was added to an equivalent amount of a maleimide compound (m1a) having the structure shown below (manufactured by DIC Corporation, "NE-X-9470S", formula (M1)) (compound represented by)), and the other procedures were carried out in the same manner. The results are shown in Table 2.
  • Example 5 In Example 5, an equivalent amount of the resin (1) represented by formula (T1) obtained in the above Synthesis Example 1-1 was added to the resin obtained in the above Synthesis Comparative Example 1-3 (JP-A-2021-143333 The resin was changed to a resin equivalent to Example 3 of the publication, and the other procedures were the same. The results are shown in Table 2.
  • Figures 1 to 10 show NMR charts and GPC charts. A total of eight NMR charts are shown in order from FIG. 1 for the resins obtained in Synthesis Examples 1-1 to 1-4 and Synthesis Comparative Examples 1-1 to 1-4. Further, the GPC chart is shown in FIG. 9 for the resin obtained in Synthesis Example 1-4, and in FIG. 10 for the resin obtained in Synthesis Comparative Example 1-2.
  • Example 6 15 parts by mass of the resin (4) represented by formula (T1) obtained in Synthesis Example 1-4 above and polyphenylene ether compound (B2) (Polyphenylene ether compound (B2): Noryl SA9000, a compound having the structure shown below) , manufactured by SABIC Japan LLC, double bond equivalent of vinyl group 1011 g/eq.) 85 parts by mass, and as a curing accelerator, Perbutyl P (1,3-bis(butylperoxyisopropyl)benzene, manufactured by NOF Corporation) ) was dissolved in methyl ethyl ketone and toluene and mixed to obtain a varnish. The amount of each component mentioned above indicates the amount of solid content. The obtained varnish was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 7 30 parts by mass of the resin (4) represented by formula (T1) obtained in Synthesis Example 1-4 above and a polymer (va ) was dissolved in methyl ethyl ketone and toluene and mixed to obtain a varnish. The amount of each component mentioned above indicates the amount of solid content. The obtained varnish was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 8 In Example 4, an equivalent amount of the resin (4) represented by the formula (T1) obtained in the above Synthesis Example 1-4 was added to the resin (4) represented by the formula (T1) obtained in the above Synthesis Example 1-5. The same procedure was repeated except that resin (5) was used. The results are shown in Table 3.
  • Example 9 30 parts by mass of the resin (4) represented by the formula (T1) obtained in Synthesis Example 1-4 above and a polymaleimide compound (manufactured by DIC Corporation, NE-X-9500, represented by the above formula (M7)) 70 parts by mass (corresponding to a polymaleimide compound having a structural unit), and 1.5 parts by mass of Perbutyl P (1,3-bis(butylperoxyisopropyl)benzene, manufactured by NOF Corporation) as a curing accelerator.
  • a varnish was obtained by dissolving and mixing methyl ethyl ketone and toluene. The amount of each component mentioned above indicates the amount of solid content. The obtained varnish was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 4 the resin (4) represented by formula (T1) obtained in Synthesis Example 1-4 was mixed with an equivalent amount of the resin obtained in Synthesis Comparative Example 1-5 (US Pat. No. 4,205,160). (resin equivalent to Example 9), and the other procedures were carried out in the same manner. The results are shown in Table 3.
  • Example 6 the resin (4) represented by formula (T1) obtained in the above Synthesis Example 1-4 was mixed with the resin obtained in the above Synthesis Comparative Example 1-2 (JP-A-02-219809) in an equal amount. The resin was changed to a resin equivalent to co-agent 3 of Example 1 of the publication, and the other procedures were the same.
  • Comparative example 8 100 parts by mass of a maleimide compound (manufactured by DIC Corporation, "NE-X-9500", compound represented by formula (M7)) and perbutyl P (1,3-bis(butylperoxyisopropyl)) as a curing accelerator. 1.5 parts by mass of benzene (manufactured by NOF Corporation) was dissolved and mixed with methyl ethyl ketone and toluene to obtain a varnish. The amount of each component mentioned above indicates the amount of solid content. The obtained varnish was evaluated in the same manner as in Example 1. The results are shown in Table 3. The results are shown in Table 3.
  • FIG. 11 shows an NMR chart of the resin obtained in Synthesis Example 1-5.
  • FIG. 12 shows an NMR chart of the resin obtained in Comparative Synthesis Example 1-5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

誘電特性に優れ、かつ、耐熱性に優れた、インダン骨格を有する樹脂、ならびに、これを用いた樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置の提供。式(T)で表される樹脂であって、インダン骨格を有する構成単位の比率を示すパラメーターαが0.55以上1.00であり、末端の二重結合比率を示すパラメーターβが0.20以上3.00以下である、樹脂。式(T)中、Rは、式(Tx)で表される構成単位を含む基である。

Description

樹脂、樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
 本発明は、樹脂、樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置に関する。
 近年、携帯端末をはじめ、電子機器や通信機器等に用いられる半導体素子の高集積化および微細化が加速している。これに伴い、半導体素子の高密度実装を可能とする技術が求められており、その重要な位置をしめるプリント配線板についても改良が求められている。
 一方、電子機器等の用途は多様化し拡大をつづけている。これを受け、プリント配線板やこれに用いる金属箔張積層板、プリプレグなどに求められる諸特性も多様化し、かつ厳しいものとなっている。そうした要求特性を考慮しながら、改善されたプリント配線板を得るために、各種の材料や加工法が提案されている。その1つとして、プリプレグや樹脂複合シートを構成する樹脂材料の改良開発が挙げられる。
 特許文献1には、半導体封止材、および、プリント配線板に好適な材料として、末端にイソプロペニルフェニル基を有し、かつ、インダン骨格を有する樹脂が開示されている。
 特許文献2には、1,3-ならびに1,4-ジイソプロペニルベンゼンからなるオリゴマーの加重平均重合度が1.5~50であるとき、低い揮発性、および、高い優れた架橋能力により、高められた温度でのポリマー変性での使用に特に適していると開示されている。
 特許文献3には、インダン骨格を含有する組成物の他の特性を害することなく、組成物の溶融粘度を低下させることで、その操作性を改善することが開示されている。
特開2021-143333号公報 特開平02-219809号公報 特開平03-252441号公報
 本発明者らが上記特許文献に記載のインダン骨格を有する樹脂について検討したところ、例えば、電子材料に用いる場合には、誘電特性や耐熱性が不十分であることが分かった。
 具体的には、特許文献1に具体的に記載されている樹脂において、本発明で規定するパラメーターα、βは、詳細を後述するとおり、本発明で規定する範囲を満たさないものであり、結果として、半導体封止材、および、プリント配線板に用いるための特性が不十分である。
 また、特許文献2に具体的に記載されている樹脂のパラメーターα、βも、本発明で規定する範囲を満たさないものであり、結果として、電子材料用途に必要な性能が不十分である。
 さらに、特許文献3に記載の樹脂も、パラメーターα、βが本特許の規定を満たさないものであり、電子材料用途に必要な性能が不十分である。
 本発明は上記課題を解決することを目的とするものであって、誘電特性に優れ、かつ、耐熱性に優れた、インダン骨格を有する樹脂、ならびに、これを用いた樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置を提供することを目的とする。
 上記課題のもと、樹脂中のインダン骨格比率と二重結合比率を精密に調整することにより、上記課題を解決しうることを見出した。具体的には、下記手段により、上記課題は解決された。
<1>式(T)で表される樹脂であって、
式(α)から算出されるパラメーターαが0.55以上1.00以下であり、
式(β)から算出されるパラメーターβが0.20以上3.00以下である、樹脂。
(式(T)中、Maはそれぞれ独立にハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表し、x1は0~4の整数を表す。Rは、式(Tx)で表される構成単位を含む基である。)
(式(Tx)中、n、oおよびpは、平均繰り返し単位数であり、nは0超20以下の数を表し、oおよびpは、それぞれ独立して0~20の数を表し、1.0≦n+o+p≦20.0である。Maはそれぞれ独立にハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表す。xは0~4の整数を表す。構成単位(a)、(b)、(c)は、それぞれ*で構成単位(a)、(b)、(c)、または他の基と結合しており、各構成単位はランダムに結合していてもよい。)
(式(α)および式(β)における括弧内は、H-NMRにおける該当する化学シフト値間の積分値を示す。)
<2>式(T)におけるx1が0である、<1>に記載の樹脂。
<3>式(α)から算出されるパラメーターαが0.60以上1.00以下であり、
式(β)から算出されるパラメーターβが0.40以上3.00以下である、<1>または<2>に記載の樹脂。
<4>前記式(Tx)で表される構成単位において、1.1≦n+o+p≦20.0である、<1>~<3>のいずれか1つに記載の樹脂。
<5>数平均分子量が、400~3000である、<1>~<4>のいずれか1つに記載の樹脂。
<6>重量平均分子量が、500~6000である、<1>~<5>のいずれか1つに記載の樹脂。
<7>重量平均分子量と数平均分子量の比である、Mw/Mnが、1.1~3.0である、<1>~<6>のいずれか1つに記載の樹脂。
<8>式(T)におけるx1が0であり、
式(α)から算出されるパラメーターαが0.60以上1.00以下であり、
式(β)から算出されるパラメーターβが0.40以上3.00以下であり、
前記式(Tx)で表される構成単位において、1.1≦n+o+p≦20.0であり、
数平均分子量が、400~3000であり、
重量平均分子量が、500~6000であり、
重量平均分子量と数平均分子量の比である、Mw/Mnが、1.1~3.0である、<1>~<7>のいずれか1つに記載の樹脂。
<9><1>~<8>のいずれか1つに記載の樹脂を含む、樹脂組成物。
<10>前記樹脂の含有量が、樹脂組成物中の樹脂固形分100質量部に対して、1~90質量部である、<9>に記載の樹脂組成物。
<11>さらに、マレイミド化合物、ポリフェニレンエーテル化合物、式(V)で表される構成単位を有する重合体、シアン酸エステル化合物、エポキシ化合物、フェノール化合物、(メタ)アリル基を含む化合物(例えば、アルケニルナジイミド化合物)、オキセタン樹脂、ベンゾオキサジン化合物、アリールシクロブテン樹脂、ポリアミド樹脂、ポリイミド樹脂、ペルフルオロビニルエーテル樹脂、前記ポリフェニレンエーテル化合物以外のスチレン基を有する化合物、前記式(T)で表される樹脂以外のイソプロペニル基を有する化合物、前記ポリフェニレンエーテル化合物以外の多官能(メタ)アクリレート化合物、エラストマー、ならびに、石油樹脂からなる群より選択される少なくとも1種の他の化合物(C)を含む、<9>または<10>に記載の樹脂組成物。
(式(V)中、Arは芳香族炭化水素連結基を表す。*は、結合位置を表す。)
<12>前記ポリフェニレンエーテル化合物が、末端に炭素-炭素不飽和二重結合を有するポリフェニレンエーテル化合物を含む、<11>に記載の樹脂組成物。
<13>前記ポリフェニレンエーテル化合物が、下記式(OP)で表される化合物を含む、<11>または<12>に記載の樹脂組成物。
(式(OP)中、Xは芳香族基を表し、-(Y-O)n1-はポリフェニレンエーテル構造を表し、n1は1~100の整数を表し、n2は1~4の整数を表す。Rxは、式(Rx-1)または式(Rx-2)で表される基である。)
(式(Rx-1)および式(Rx-2)中、R、R、および、Rは、それぞれ独立に、水素原子、アルキル基、アルケニル基、またはアルキニル基を表す。*は、酸素原子との結合部位である。Mcは、それぞれ独立に炭素数1~12の炭化水素基を表す。zは0~4の整数を表す。rは1~6の整数を表す。)
<14>前記ポリフェニレンエーテル化合物が、下記式(OP-1)で表される化合物を含む、<11>に記載の樹脂組成物。
(式(OP-1)中、Xは芳香族基を表し、-(Y-О)n-はポリフェニレンエーテル構造を表し、R、R、および、Rは、それぞれ独立して、水素原子、アルキル基、アルケニル基またはアルキニル基を表し、nは1~6の整数を表し、nは1~100の整数を表し、nは1~4の整数を表す。)
<15>前記他の化合物(C)が式(V)で表される構成単位を有する重合体を含む、<11>~<14>のいずれか1つに記載の樹脂組成物。
(式(V)中、Arは芳香族炭化水素連結基を表す。*は、結合位置を表す。)
<16>前記マレイミド化合物が、式(M1)で表される化合物を含む、<11>~<15>のいずれか1つに記載の樹脂組成物。
(式(M1)中、RM1、RM2、RM3、およびRM4は、それぞれ独立に、水素原子または有機基を表す。RM5およびRM6は、それぞれ独立に、水素原子またはアルキル基を表す。Arは2価の芳香族基を表す。Aは、4~6員環の脂環基である。RM7およびRM8は、それぞれ独立に、アルキル基である。mxは1または2であり、lxは0または1である。RM9およびRM10は、それぞれ独立に、水素原子またはアルキル基を表す。RM11、RM12、RM13、およびRM14は、それぞれ独立に、水素原子または有機基を表す。RM15は、それぞれ独立に、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数1~10のアルキルチオ基、炭素数6~10のアリール基、炭素数1~10のアリールオキシ基、炭素数1~10のアリールチオ基、ハロゲン原子、水酸基またはメルカプト基を表す。pxは0~3の整数を表す。nxは1~20の整数を表す。)
<17>さらに、充填材(D)を含む、<9>~<16>のいずれか1つに記載の樹脂組成物。
<18>前記樹脂組成物中の樹脂固形分100質量部に対する、前記充填材(D)の含有量が、10~1000質量部である、<17>に記載の樹脂組成物。
<19>前記樹脂の含有量が、樹脂組成物中の樹脂固形分100質量部に対して、1~90質量部であり、
さらに、マレイミド化合物、ポリフェニレンエーテル化合物、式(V)で表される構成単位を有する重合体、シアン酸エステル化合物、エポキシ化合物、フェノール化合物、(メタ)アリル基を含む化合物(例えば、アルケニルナジイミド化合物)、オキセタン樹脂、ベンゾオキサジン化合物、アリールシクロブテン樹脂、ポリアミド樹脂、ポリイミド樹脂、ペルフルオロビニルエーテル樹脂、前記ポリフェニレンエーテル化合物以外のスチレン基を有する化合物、前記式(T)で表される樹脂以外のイソプロペニル基を有する化合物、前記ポリフェニレンエーテル化合物以外の多官能(メタ)アクリレート化合物、エラストマー、ならびに、石油樹脂からなる群より選択される少なくとも1種の他の化合物(C)を含む、<9>~<18>のいずれか1つに記載の樹脂組成物。
(式(V)中、Arは芳香族炭化水素連結基を表す。*は、結合位置を表す。)
<20><9>~<19>のいずれか1つに記載の樹脂組成物の硬化物。
<21>基材と、<9>~<20>のいずれか1つに記載の樹脂組成物とから形成された、プリプレグ。
<22><21>に記載のプリプレグから形成された少なくとも1つの層と、前記プリプレグから形成された層の片面または両面に配置された金属箔とを含む、金属箔張積層板。
<23>支持体と、前記支持体の表面に配置された<9>~<19>のいずれか1つに記載の樹脂組成物から形成された層とを含む、樹脂複合シート。
<24>絶縁層と、前記絶縁層の表面に配置された導体層とを含むプリント配線板であって、前記絶縁層が、<9>~<19>のいずれか1つに記載の樹脂組成物から形成された層を含む、プリント配線板。
<25><24>に記載のプリント配線板を含む半導体装置。
 本発明により、誘電特性に優れ、かつ、耐熱性に優れた、インダン骨格を有する樹脂、ならびに、これを用いた樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置を提供可能になった。
合成実施例1-1で得られた樹脂のNMRチャートを示す。 合成実施例1-2で得られた樹脂のNMRチャートを示す。 合成実施例1-3で得られた樹脂のNMRチャートを示す。 合成実施例1-4で得られた樹脂のNMRチャートを示す。 合成比較例1-1で得られた樹脂のNMRチャートを示す。 合成比較例1-2で得られた樹脂のNMRチャートを示す。 合成比較例1-3で得られた樹脂のNMRチャートを示す。 合成比較例1-4で得られた樹脂のNMRチャートを示す。 合成実施例1-4で得られた樹脂のGPCチャートを示す。 合成比較例1-2で得られた樹脂のGPCチャートを示す。 合成実施例1-5で得られた樹脂のNMRチャートを示す。 合成比較例1-5で得られた樹脂のNMRチャートを示す。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。本明細書では、置換および無置換を記していない表記は、無置換の方が好ましい。
 本明細書において、(メタ)アリル基は、アリルおよびメタリルの双方、または、いずれかを表し、「(メタ)アクリレート」は、アクリレートおよびメタクリレートの双方、または、いずれかを表し、「(メタ)アクリル」は、アクリルおよびメタクリルの双方、または、いずれかを表し、「(メタ)アクリロイル」は、アクリロイルおよびメタクリロイルの双方、または、いずれかを表す。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書で示す規格で説明される測定方法等が年度によって異なる場合、特に述べない限り、2022年1月1日時点における規格に基づくものとする。
 本明細書において、樹脂固形分とは、充填材および溶剤を除く成分をいい、式(T)で表される樹脂、ならびに、必要に応じて配合される他の化合物(C)、およびその他の樹脂添加剤成分(難燃剤等の添加剤等)を含む趣旨である。
 本明細書において、比誘電率と誘電率は同じ意味として用いられる。
 本実施形態における樹脂(以下、「式(T)で表される樹脂」ということがある)は、式(T)で表される樹脂であって、式(α)から算出されるパラメーターαが0.55以上1.00であり、式(β)から算出されるパラメーターβが0.20以上3.00以下である。
(式(T)中、Maはそれぞれ独立にハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表し、x1は0~4の整数を表す。Rは、式(Tx)で表される構成単位を含む基である。)
(式(Tx)中、n、oおよびpは、平均繰り返し単位数であり、nは0超20以下の数を表し、oおよびpは、それぞれ独立して0~20の数を表し、1.0≦n+o+p≦20.0である。Maはそれぞれ独立にハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表す。xは0~4の整数を表す。構成単位(a)、(b)、(c)は、それぞれ*で構成単位(a)、(b)、(c)、または他の基と結合しており、各構成単位はランダムに結合していてもよい。)
(式(α)および式(β)における括弧内は、H-NMRにおける該当する化学シフト値間の積分値を示す。)
 このような式(T)で表される樹脂を用いることにより、誘電特性に優れ、かつ、耐熱性に優れた樹脂組成物が得られる。
 式(T)中、x1は0~3の整数であることが好ましく、0~2の整数であることがより好ましく、0または1であることがさらに好ましく、0であることが一層好ましい。
 式(Tx)中、n、oおよびpは、それぞれ、式(T)で表される樹脂中の全分子における平均繰り返し単位数を意味する。
 式(Tx)中、n、oおよびpの総和は、1.1≦n+o+pであることが好ましく、1.2≦n+o+pであることがより好ましく、1.5≦n+o+pであることがさらに好ましく、2.0≦n+o+pであることが一層好ましく、2.5≦n+o+pであることがより一層好ましく、3.0≦n+o+pであることがさらに一層好ましく、3.3≦n+o+pであることが特に一層好ましい。また、式(Tx)中、n、oおよびpの総和は、n+o+p≦20.0であることが好ましく、n+o+p≦10.0であることがより好ましく、n+o+p≦8.0であることがさらに好ましく、n+o+p≦7.4であることが一層好ましく、n+o+p≦7.0であることがより一層好ましく、n+o+p≦6.4であることがさらに一層好ましい。n、oおよびpの総和は、後述する実施例に記載の方法で算出できる。
 式(T)および式(Tx)中、Maは、それぞれ独立にハロゲン原子で置換されていてもよい炭素数1~10の炭化水素基であることが好ましく、ハロゲン原子で置換されていてもよい炭素数1~5の炭化水素基であることがより好ましく、ハロゲン原子で置換されていてもよい炭素数1~3の炭化水素基であることがさらに好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子が例示され、フッ素原子または塩素原子が好ましい。Maは、それぞれ独立にハロゲン原子で置換されていない炭素数1~12の炭化水素基であることが好ましい。前記炭化水素基は、アルキル基であることが好ましく、直鎖のアルキル基であることがより好ましい。
 Maとしては、メチル基、エチル基が特に好ましい。
 式(Tx)中、xは0~3の整数であることが好ましく、0~2の整数であることがより好ましく、0または1であることがさらに好ましく、0であることが一層好ましい。
 式(T)で表される樹脂は、さらに、式(α)から算出されるパラメーターαが0.55以上1.00以下であり、式(β)から算出されるパラメーターβが0.20以上3.00以下である。
 ここで、αは、式(T)で表される樹脂中のインダン骨格を有する構成単位(式(Tx)における構成単位(a))の比率を示している。より具体的には、インダン骨格を有する構成単位を、上記パラメーターαの範囲を満たすように調整することにより、得られる樹脂分子の剛直性が高く、硬化物のガラス転移温度を高くできたと推測される。さらに、剛直性が高い分子は剛直性が低い分子に比べて運動性が低いため、誘電緩和の際の緩和時間が長くなり、誘電正接(Df)を低くできたと推測される。αは、式(T)で表される樹脂を合成する際、原料の濃度を薄くする、高極性溶媒を使用する、触媒量を増やす、反応温度を高める等の条件によって高めることができる。
 一方、βは、式(T)で表される樹脂中の末端の二重結合比率を規定している。より具体的には、例えば、上記パラメーターβの範囲を満たすように調整することにより、後述する他の化合物(C)(特に、熱硬化性化合物)が有する官能基との架橋点が多くなり、硬化した際にネットワークを形成しやすくなり、ガラス転移温度が高く、Dfが低い硬化物が得られたと推測される。βは、式(T)で表される樹脂を合成する際、触媒量を少なくする、反応温度を低くする、低極性溶媒を使用する等の条件によって高めることができる。
 上記記載のパラメーターα、βを高める方法を用いて、合成する際に、式(T)で表される樹脂のパラメーターα、βを調整する。もちろん、上記以外の方法によってパラメーターα、βを調整してもよい。
 パラメーターαは、0.55以上であり、0.57以上であることが好ましく、0.59以上であることがさらに好ましく、0.60以上であることが一層好ましく、0.62以上であることがより一層好ましく、0.65以上、0.70以上、0.75以上、0.80以上であってもよい。前記下限値以上とすることにより、得られる硬化物の耐熱性がより向上する傾向にある。パラメーターαは、実質的には、1.00以下であり、得られる硬化物の低誘電特性(低比誘電率および/または低誘電正接)および耐熱性が優れる傾向にあることから、パラメーターαは大きい方がよいが、0.95以下、0.90以下、0.85以下、0.82以下、0.80以下、0.79未満、0.78以下、0.77以下、0.75以下、0.74以下、0.70以下であってもよい。
 パラメーターβは、0.20以上であり、0.25以上であることが好ましく、0.30以上であることがより好ましく、0.35以上であることがさらに好ましく、0.40以上であることが一層好ましく、0.43以上であることがより一層好ましく、0.50以上であることがさらに一層好ましく、0.60以上、0.65以上、0.70以上、0.77以上、0.80以上、0.90以上、0.95以上であってもよい。前記下限値以上とすることにより、得られる硬化物の耐熱性が向上し、かつ、Dfが低くなる傾向にある。パラメーターβは、3.00以下であり、2.50以下であることが好ましく、2.00以下であることがより好ましく、1.50以下であることがさらに好ましく、1.30以下であることが一層好ましく、1.20以下であることがより一層好ましく、1.10以下であることがさらに一層好ましく、さらには、1.00以下、0.95以下、0.90以下、0.85以下、0.83以下、0.80以下であってもよい。前記上限値以下とすることにより、得られる硬化物の耐熱性が向上し、かつDfが低くなる傾向にある。
 式(T)で表される樹脂のGPC(ゲルパーミエーションクロマトグラフィ)法によるポリスチレン換算の数平均分子量(Mn)(詳細は後述する実施例に記載の方法に従う)は、400以上であることが好ましく、500以上であることがより好ましく、550以上であることがさらに好ましく、600以上であることが一層好ましく、650以上であることがより一層好ましい。前記下限値以上とすることにより、得られる硬化物の耐熱性が向上し、かつDfが低くなる傾向にある。また、式(T)で表される樹脂のGPC(ゲルパーミエーションクロマトグラフィ)法によるポリスチレン換算の数平均分子量(Mn)の上限値は、3000以下であることが好ましく、2500以下であることがより好ましく、2000以下であることがさらに好ましく、1500以下であることが一層好ましく、1250以下であることがより一層好ましい。前記上限値以下とすることにより、得られる硬化物の耐熱性が向上し、かつ、Dfが低くなる傾向にある。
 また、式(T)で表される樹脂のGPCによるポリスチレン換算の重量平均分子量(Mw)(詳細は後述する実施例に記載の方法に従う)は、500以上であることが好ましく、800以上であることがより好ましく、900以上であることがさらに好ましく、1000以上であることが一層好ましい。前記下限値以上とすることにより、得られる硬化物の耐熱性が向上し、かつ、Dfが低くなる傾向にある。式(T)で表される樹脂のGPCによるポリスチレン換算の重量平均分子量(Mw)(詳細は後述する実施例に記載の方法に従う)の上限値は、6000以下であることが好ましく、5000以下であることがより好ましく、4000以下であることがさらに好ましく、3000以下であることが一層好ましく、2900以下であることがより一層好ましく、2800以下であることがさらに一層好ましい。前記上限値以下とすることにより、得られる硬化物の耐熱性が向上し、かつDfが低くなる傾向にある。
 式(T)で表される樹脂は、重量平均分子量と数平均分子量の比である、Mw/Mnが、1.1~3.0であることが好ましい。式(T)で表される樹脂のMw/Mnは、1.2以上であることがより好ましく、1.3以上であることがさらに好ましく、1.4以上であることが一層好ましく、1.5以上であることがより一層好ましく、1.6以上であることがさらに一層好ましい。また、式(T)で表される樹脂のMw/Mnは、2.5以下であることがより好ましく、2.5未満であることがさらに好ましく、2.4以下であることが一層好ましく、2.3以下であってもよく、2.3未満であってもよく、2.2以下であってもよく、2.0以下であってもよく、1.8以下であってもよい。
 重量平均分子量および数平均分子量は後述する実施例に記載の方法に従って測定される。
 式(T)で表される樹脂は、末端にイソプロペニルフェニル基を有する化合物であるが、一分子中のイソプロペニルフェニル基の数が2であるものが主成分であることが好ましい。具体的には、式(T)で表される樹脂の50質量%超、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、一層好ましくは90質量%以上が一分子中のイソプロペニルフェニル基の数が2である。
 式(T)で表される樹脂の製造方法は、得られる樹脂が上述したパラメーターαおよびパラメーターβを満たす限りにおいて、特に限定されるものではなく、式(T)で表される樹脂を合成する際の、原料、反応温度、触媒種、触媒量、反応溶媒、原料濃度等を、適宜調整することができる。
 式(T)で表される樹脂を合成する際の原料の一例として、m-ビス(α-ヒドロキシイソプロピル)ベンゼン、p-ビス(α-ヒドロキシイソプロピル)ベンゼン、1,3-ジイソプロペニルベンゼン、および、1,4-ジイソプロペニルベンゼンなどを使用することができる。
 式(T)で表される樹脂を合成するときの反応温度は、40℃以上であることが好ましく、50℃以上であることがより好ましく、60℃以上であることがさらに好ましく、70℃以上、80℃以上、90℃以上、100℃以上、110℃以上、120℃以上であってもよい。前記下限値以上とすることにより、反応速度の向上およびインダン骨格(式(Tx)における構成単位(a))比率が向上する傾向にあり、好ましい。また、反応温度は、180℃以下であることが好ましく、150℃以下であることがより好ましく、140℃以下であることがさらに好ましい。前記上限値以下とすることにより、副生成物の生成を効果的に抑制できる傾向にある。
 また、反応の開始から終了まで同じ反応温度である必要はなく、温度を変化させてもよい。この場合、全行程の反応温度の平均温度が上記範囲であることが好ましい。
 式(T)で表される樹脂を合成するときに使用する触媒は、特に定めるものでは無いが、酸触媒が例示される。酸触媒としては、塩酸、硫酸、リン酸のような無機酸、シュウ酸、ベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸、フルオロメタンスルホン酸等の有機酸、BFエーテル錯体、BFフェノール錯体、塩化アルミニウム、塩化亜鉛、塩化インジウムなどのルイス酸、活性白土、酸性白土、シリカアルミナ、ゼオライト等の固体酸、ヘテロポリ塩酸、強酸性イオン交換樹脂等を用いることができる。
 触媒を用いる場合、その量は、式(T)で表される樹脂の上記原料100質量部に対し、0.01~20.0質量部であることが挙げられる。
 触媒は、通常、1種単独であるが、2種以上を併用してもよい。併用する場合、合計量が上記範囲となることが好ましい。
 式(T)で表される樹脂を合成するときの反応溶媒は、特に定めるものでは無いが、トルエン、ベンゼン、クロロベンゼン、キシレン等の芳香族炭化水素系溶剤、メチレンクロライド、クロロホルム等のハロゲン化炭化水素系溶剤、ヘキサン、ヘプタン等の脂肪族炭化水素系溶剤、酢酸エチル、酢酸プロピル等のエステル系溶剤、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶剤、アルコール溶剤あるいはケトン溶剤などと併用することができ、水を添加することもできる。アルコール溶剤としては、メタノール、エタノール、ブタノール、プロパノール、メチルプロピレンジグリコール、ジエチレングリコールエチルエーテル、ブチルプロピレングリコール、プロピルプロピレングリコール等が挙げられ、ケトン溶剤としては、アセトン、メチルエチルケトン、ジエチルケトン、メチルブチルケトン、メチルイソブチルケトン等が挙げられ、その他には テトラヒドロフラン、ジオキサン等が挙げられるが、これらに限定されるものではない。
 本実施形態における反応溶媒の一例は、芳香族炭化水素系溶剤を含むことである。
 式(T)で表される樹脂を合成するときの上述の原料の濃度は、5%以上であることが好ましく、8%以上であることがより好ましく、10%以上であることが好ましく、12%以上、15%以上、17%以上、20%以上、22%以上、25%以上であってもよい。前記下限値以上とすることにより、反応速度の向上およびインダン骨格(式(Tx)における構成単位(a))比率が向上する傾向にあり、好ましい。また、上述の原料の濃度は、49%以下であることが好ましく、40%以下であることがより好ましい。前記上限値以下とすることにより、副生成物の生成を効果的に抑制できる傾向にある。
 また、反応の開始から終了まで同じ濃度である必要はなく、濃度を変化させてもよい。
 式(T)で表される樹脂は、特許文献1には、半導体封止材、および、プリント配線板に好適な材料として、末端にイソプロペニルフェニル基を有し、かつ、インダン骨格を有する樹脂が開示されている。特許文献1に記載の実施例と本特許の実施例の合成においては、主に濃度および触媒量が異なり、これらの条件を最適化することにより、パラメーターα、βを調整している。特許文献1の実施例に記載の樹脂はパラメーターα、βが本発明の範囲を満たさないものであり、半導体封止材、および、プリント配線板に用いる特性としては不十分である。
 特許文献2には、1,3-ならびに1,4-ジイソプロペニルベンゼンからなるオリゴマーの加重平均重合度が1.5~50であるとき、低い揮発性、および、高い優れた架橋能力により、高められた温度でのポリマー変性での使用に特に適していると開示されている。特許文献2に記載の実施例と本発明の実施例の合成においては、主に使用触媒や温度条件が異なり、これらの条件を最適化することにより、パラメーターα、βを調整している。特許文献2の実施例に記載の樹脂の用途は本特許のものとは異なり、また特性においてもパラメーターα、βが本発明の範囲を満たさないものであり、電子材料用途としては性能が不十分である。
 特許文献3には、インダン骨格は含有する組成物の他の特性を害することなく、組成物の溶融粘度を低下させることで、その操作性を改善することが開示されている。特許文献3に記載の実施例と本特許の実施例の合成においては、主に濃度、触媒量および温度条件が異なり、これらの条件を最適化することにより、パラメーターα、βを調整している。特許文献3には熱可塑性エンジニアリング・プラスティックスはすぐれた電気特性からプリント回線基板への利用にも適しているとの記載があるが、特許文献3の実施例に記載の樹脂はパラメーターα、βが本特許の規定を満たさないものであり、電子材料用途には不十分である。
 本実施形態においては、上記式(T)で表される樹脂を含む樹脂組成物についても開示する。このような樹脂組成物の硬化物は、耐熱性が高く、誘電特性に優れたものとすることができる。
 本実施形態の樹脂組成物における式(T)で表される樹脂の含有量は、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、10質量部以上であることがさらに好ましく、15質量部以上であることが一層好ましく、20質量部以上であることがより一層好ましく、25質量部以上であってもよい。前記下限値以上とすることにより、Dfを低くすることができる傾向にある。また、前記式(T)で表される樹脂の含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、90質量部以下であることが好ましく、80質量部以下であることがさらに好ましく、70質量部以下であることが一層好ましく、60質量部以下であることがより一層好ましく、50質量部以下であることがより一層好ましく、40質量部以下であることがさらに一層好ましい。前記上限値以下とすることにより、耐熱性が向上する傾向にある。
 本実施形態の樹脂組成物は、式(T)で表される樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<他の化合物(C)>
 本実施形態の樹脂組成物は、本実施形態の樹脂(式(T)で表される樹脂)に加えて、他の化合物(C)(好ましくは他の硬化性化合物および/または可塑性化合物、より好ましくは他の熱硬化性化合物および/または熱可塑性化合物、さらに好ましくは他の熱硬化性化合物)を含んでいてもよい。
 本実施形態の樹脂組成物は、マレイミド化合物、ポリフェニレンエーテル化合物、式(V)で表される構成単位を有する重合体、シアン酸エステル化合物、エポキシ化合物、フェノール化合物、(メタ)アリル基を含む化合物(例えば、アルケニルナジイミド化合物)、オキセタン樹脂、ベンゾオキサジン化合物、アリールシクロブテン樹脂、ポリアミド樹脂、ポリイミド樹脂、ペルフルオロビニルエーテル樹脂、前記ポリフェニレンエーテル化合物以外のスチレン基を有する化合物、前記式(T)で表される樹脂以外のイソプロペニル基を有する化合物、前記ポリフェニレンエーテル化合物以外の多官能(メタ)アクリレート化合物、エラストマー、ならびに、石油樹脂からなる群より選択される少なくとも1種の他の化合物(C)を含むことが好ましく、マレイミド化合物、ポリフェニレンエーテル化合物、式(V)で表される構成単位を有する重合体、シアン酸エステル化合物、エポキシ化合物、フェノール化合物、アルケニルナジイミド化合物、オキセタン樹脂、および、ベンゾオキサジン化合物からなる群より選ばれる少なくとも1種の他の化合物(C)を含むことがより好ましい。
(式(V)中、Arは芳香族炭化水素連結基を表す。*は、結合位置を表す。)
 このような他の化合物(C)を含むことにより、プリント配線板に求められる所望の性能をより効果的に発揮させることができる。
 本実施形態では、ポリフェニレンエーテル化合物を含むことが好ましく、末端に炭素-炭素不飽和二重結合を有するポリフェニレンエーテル化合物を含むことがより好ましく、後述する式(OP-1)で表される化合物を含むことがさらに好ましい。
 また、本実施形態では、マレイミド基を2つ以上含むマレイミド化合物を含むことが好ましく、後述する式(M1)で表される化合物を含むことがより好ましい。
 本実施形態の樹脂組成物が他の化合物(C)(好ましくは他の硬化性化合物および/または可塑性化合物、より好ましくは他の熱硬化性化合物および/または熱可塑性化合物、さらに好ましくは他の熱硬化性化合物)を含む場合、その含有量(総量)は、樹脂固形分100質量部に対し、1質量部以上であることが好ましく、10質量部以上であることがより好ましく、15質量部以上であることがさらに好ましく、20質量部以上であることがより好ましく、30質量部以上であることがさらに好ましく、さらには、40質量部以上、50質量部以上であってもよい。前記下限値以上とすることにより、耐熱性、めっき密着性、低熱膨張性等がより向上する傾向にある。また、他の化合物(C)(好ましくは他の硬化性化合物および/または可塑性化合物、より好ましくは他の熱硬化性化合物および/または熱可塑性化合物、さらに好ましくは他の熱硬化性化合物)の含有量の上限値は、樹脂固形分100質量部に対し、99質量部以下であることが好ましく、95質量部以下であることがより好ましく、90質量部以下であることがさらに好ましく、85質量部以下であることが一層好ましく、80質量部以下であることがより一層好ましく、さらには、75質量部以下、50質量部以下、45質量部以下、40質量部以下であってもよい。前記上限値以下とすることにより、低誘電特性、低吸水性がより向上する傾向にある。
 本実施形態の樹脂組成物は、他の化合物(C)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<<マレイミド化合物>>
 マレイミド化合物は、分子中に1以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは)のマレイミド基を含む化合物であれば特に限定されず、プリント配線板の分野で通常用いられる化合物を広く用いることができる。
 本実施形態においては、マレイミド化合物は、式(M0)で表される化合物、式(M1)で表される化合物、式(M2)で表される化合物、式(M3)で表される化合物、式(M4)で表される化合物、式(M5)で表される化合物、および、マレイミド化合物(M6)からなる群より選択される1種以上を含むことが好ましく、式(M0)で表される化合物、式(M1)で表される化合物、式(M3)で表される化合物、式(M4)で表される化合物、式(M5)で表される化合物、マレイミド化合物(M6)、および、マレイミド化合物(M7)からなる群より選択される1種以上を含むことがより好ましく、式(M1)で表される化合物、式(M3)で表される化合物、式(M4)で表される化合物、および、式(M5)で表される化合物からなる群より選択される1種以上を含むことがさらに好ましく、式(M1)で表される化合物、式(M3)で表される化合物、および、式(M5)で表される化合物からなる群より選択される1種以上を含むことが一層好ましく、式(M1)で表される化合物および/または式(M3)で表される化合物を含むことがより一層好ましく、式(M1)で表される化合物がさらに一層好ましい。これらのマレイミド化合物を、プリント配線板用材料(例えば、金属箔張積層板)等に用いると、優れた耐熱性を付与できる。
(式(M0)中、R51は、それぞれ独立に、水素原子、炭素数1~8のアルキル基またはフェニル基を表し、R52は、それぞれ独立に、水素原子またはメチル基を表し、nは1以上の整数を表す。)
 R51は、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、およびフェニル基からなる群より選択される1種であることが好ましく、水素原子および/またはメチル基あることがより好ましく、水素原子であることがさらに好ましい。
 R52は、メチル基であることが好ましい。
 nは1~10の整数が好ましく、1~5の整数がより好ましく、1~3の整数がさらに好ましく、1または2であることが一層好ましく、1であることがより一層好ましい。
 具体的には、以下の化合物が式(M0)の好ましい例として挙げられる。
 上記式中、Rは各々独立に水素原子、メチル基またはエチル基を表し、メチル基が好ましい。
 式(M0)で表される化合物は、1種のみの他、2種以上の混合物であってもよい。混合物の例としては、nが異なる化合物の混合物、R51および/またはR52の置換基の種類が異なる化合物の混合物、ベンゼン環に対するマレイミド基と酸素原子の結合位置(メタ位、パラ位、オルト位)が異なる化合物の混合物、ならびに、前記の2つ以上の異なる点が組み合わされた化合物の混合物などが挙げられる。以下、式(M1)~(M6)で表される化合物についても同様である。
(式(M1)中、RM1、RM2、RM3、およびRM4は、それぞれ独立に、水素原子または有機基を表す。RM5およびRM6は、それぞれ独立に、水素原子またはアルキル基を表す。Arは2価の芳香族基を表す。Aは、4~6員環の脂環基である。RM7およびRM8は、それぞれ独立に、アルキル基である。mxは1または2であり、lxは0または1である。RM9およびRM10は、それぞれ独立に、水素原子またはアルキル基を表す。RM11、RM12、RM13、およびRM14は、それぞれ独立に、水素原子または有機基を表す。RM15は、それぞれ独立に、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数1~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~10のアリール基、炭素数6~10のアリールオキシ基、炭素数6~10のアリールチオ基、ハロゲン原子、水酸基またはメルカプト基を表す。pxは0~3の整数を表す。nxは1~20の整数を表す。)
 式中のRM1、RM2、RM3、およびRM4は、それぞれ独立に、水素原子または有機基を表す。ここでの有機基はアルキル基であることが好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましく、メチル基、エチル基、プロピル基、ブチル基が一層好ましく、中でもメチル基が特に好ましい。RM1およびRM3は、それぞれ独立に、アルキル基が好ましく、RM2およびRM4は、水素原子が好ましい。
 RM5およびRM6は、それぞれ独立に、水素原子またはアルキル基を表し、アルキル基が好ましい。ここでのアルキル基は、炭素数1~12のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、中でもメチル基が特に好ましい。
 Arは2価の芳香族基を表し、好ましくはフェニレン基、ナフタレンジイル基、フェナントレンジイル基、アントラセンジイル基であり、より好ましくはフェニレン基であり、さらに好ましくはm-フェニレン基である。Arは置換基を有していてもよく、置換基としては、アルキル基が好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましく、メチル基、エチル基、プロピル基、ブチル基が一層好ましく、メチル基が特に好ましい。しかしながら、Arは無置換であることが好ましい。
 Aは、4~6員環の脂環基であり、5員環の脂環基(好ましくはベンゼン環と合せてインダン環となる基)がより好ましい。RM7およびRM8は、それぞれ独立に、アルキル基であり、炭素数1~6のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基が特に好ましい。
 mxは1または2であり、2であることが好ましい。
 lxは0または1であり、1であることが好ましい。
 RM9およびRM10は、それぞれ独立に、水素原子またはアルキル基を表し、アルキル基がより好ましい。ここでのアルキル基は、炭素数1~12のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、中でもメチル基が特に好ましい。
 RM11、RM12、RM13、およびRM14は、それぞれ独立に、水素原子または有機基を表す。ここでの有機基はアルキル基であることが好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましく、メチル基、エチル基、プロピル基、ブチル基が一層好ましく、中でもメチル基が特に好ましい。RM12およびRM13は、それぞれ独立に、アルキル基が好ましく、RM11およびRM14は、水素原子が好ましい。
 RM15は、それぞれ独立に、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数1~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~10のアリール基、炭素数6~10のアリールオキシ基、炭素数6~10のアリールチオ基、ハロゲン原子、水酸基またはメルカプト基を表し、炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、または、炭素数6~10のアリール基であることが好ましい。
 pxは0~3の整数を表し、0~2の整数が好ましく、0または1がより好ましく、0がさらに好ましい。
 nxは1~20の整数を表す。nxは10以下の整数であってもよい。
 尚、本実施形態の樹脂組成物は、式(M1)で表される化合物であって、少なくともnxの値が異なる化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、樹脂組成物中の式(M1)で表される化合物におけるnxの平均値(平均繰返単位数)nは、低い融点(低軟化点)で、かつ溶融粘度が低く、ハンドリング性に優れたものとするため、0.92以上であることが好ましく、0.95以上であることがより好ましく、1.0以上であることがさらに好ましく、1.1以上であることが一層好ましい。また、nは、10.0以下であることが好ましく、8.0以下であることがより好ましく、7.0以下であることがさらに好ましく、6.0以下であることが一層好ましく、5.0以下であってもよい。後述する式(M1-2)および式(M1-3)で表される化合物についても同様である。
 式(M1)で表される化合物は、下記の式(M1-1)で表される化合物であることが好ましい。
(式(M1-1)中、RM21、RM22、RM23、およびRM24は、それぞれ独立に、水素原子または有機基を表す。RM25およびRM26は、それぞれ独立に、水素原子またはアルキル基を表す。RM27、RM28、RM29、およびRM30は、それぞれ独立に、水素原子または有機基を表す。RM31およびRM32は、それぞれ独立に、水素原子またはアルキル基を表す。RM33、RM34、RM35、およびRM36は、それぞれ独立に、水素原子または有機基を表す。RM37、RM38、およびRM39は、それぞれ独立に、水素原子またはアルキル基を表す。nxは1以上20以下の整数を表す。)
 式中のRM21、RM22、RM23、およびRM24は、それぞれ独立に、水素原子または有機基を表す。ここでの有機基はアルキル基であることが好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましく、メチル基、エチル基、プロピル基、ブチル基が一層好ましく、メチル基が特に好ましい。RM21およびRM23は、アルキル基が好ましく、RM22およびRM24は、水素原子が好ましい。
 RM25およびRM26は、それぞれ独立に、水素原子またはアルキル基を表し、アルキル基が好ましい。ここでのアルキル基は、炭素数1~12のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、中でもメチル基が特に好ましい。
 RM27、RM28、RM29、およびRM30は、それぞれ独立に、水素原子または有機基を表し、水素原子が好ましい。ここでの有機基はアルキル基であることが好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましく、メチル基、エチル基、プロピル基、ブチル基が一層好ましく、メチル基が特に好ましい。
 RM31およびRM32は、それぞれ独立に、水素原子またはアルキル基を表し、アルキル基が好ましい。ここでのアルキル基は、炭素数1~12のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、中でもメチル基が特に好ましい。
 RM33、RM34、RM35、およびRM36は、それぞれ独立に、水素原子または有機基を表す。ここでの有機基はアルキル基であることが好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましく、メチル基、エチル基、プロピル基、ブチル基が一層好ましく、メチル基が特に好ましい。
 RM33およびRM36は、水素原子が好ましく、RM34およびRM35はアルキル基が好ましい。
 RM37、RM38、およびRM39は、それぞれ独立に、水素原子またはアルキル基を表し、アルキル基が好ましい。ここでのアルキル基は、炭素数1~12のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、メチル基、エチル基、プロピル基、ブチル基がさらに好ましく、中でもメチル基が特に好ましい。
 nxは1以上20以下の整数を表す。nxは10以下の整数であってもよい。
 式(M1-1)で表される化合物は、下記式(M1-2)で表される化合物であることが好ましい。
(式(M1-2)中、RM21、RM22、RM23、およびRM24は、それぞれ独立に、水素原子または有機基を表す。RM25およびRM26は、それぞれ独立に、水素原子またはアルキル基を表す。RM27、RM28、RM29、およびRM30は、それぞれ独立に、水素原子または有機基を表す。RM31およびRM32は、それぞれ独立に、水素原子またはアルキル基を表す。RM33、RM34、RM35、およびRM36は、それぞれ独立に、水素原子または有機基を表す。RM37、RM38、およびRM39は、それぞれ独立に、水素原子またはアルキル基を表す。nxは1以上20以下の整数を表す。)
 式(M1-2)中、RM21、RM22、RM23、RM24、RM25、RM26、RM27、RM28、RM29、RM30、RM31、RM32、RM33、RM34、RM35、RM36、RM37、RM38、RM39、および、nxは、それぞれ、式(M1-1)におけるRM21、RM22、RM23、RM24、RM25、RM26、RM27、RM28、RM29、RM30、RM31、RM32、RM33、RM34、RM35、RM36、RM37、RM38、RM39、および、nxと同義であり、好ましい範囲も同様である。
 式(M1-1)で表される化合物は、下記式(M1-3)で表される化合物であることが好ましく、下記式(M1-4)で表される化合物であることがより好ましい。
(式(M1-3)中、nxは1以上20以下の整数を表す。)
 nxは10以下の整数であってもよい。
(式(M1-4)中、nxは1以上20以下の整数を表す。)
 nxは10以下の整数であってもよい。
 式(M1)で表される化合物の分子量は、500以上であることが好ましく、600以上であることがより好ましく、700以上であることがさらに好ましい。前記下限値以上とすることにより、得られる硬化物の低誘電特性(Dkおよび/またはDf)および低吸水性がより向上する傾向にある。また、式(M1)で表される化合物の分子量は、10000以下であることが好ましく、9000以下であることがより好ましく、7000以下であることがさらに好ましく、5000以下であることが一層好ましく、4000以下であることがより一層好ましい。前記上限値以下とすることにより、得られる硬化物の耐熱性および取り扱い性がより向上する傾向にある。
 式(M1)で表される化合物は、マレイミド基当量が、50g/eq.以上であることが好ましく、100g/eq.以上であることがより好ましく、200g/eq.以上であることがさらに好ましい。前記マレイミド当量の上限値は、2000g/eq.以下であることが好ましく、1000g/eq.以下であることがより好ましく、800g/eq.以下であることがさらに好ましい。ここで、マレイミド基当量は、マレイミド基1 当量あたりのマレイミド化合物の質量を表す。式(M1)で表される化合物のマレイミド基当量が上記範囲にある場合、得られる硬化物の低誘電特性(Dkおよび/またはDf)、低吸水性、耐熱性および取り扱い性がより向上する傾向にある。
 式(M1)で表される化合物は、ゲルパーミエーションクロマトグラフィ(GPC) 測定から算出される分子量分布Mw/Mnが、1.0~4.0であることが好ましく、1.1~3.8であることがより好ましく、1.2~3.6であることがさらに好ましく、1.3~3.4であることが一層このましい。式(M1)で表される化合物のMw/Mnが上記範囲にある場合、得られる硬化物の低誘電特性(Dkおよび/またはDf)、低吸水性、耐熱性および取り扱い性がより向上する傾向にある。
 その他、式(M1)で表される化合物の詳細は、国際公開第2020-217679号の記載を参酌でき、これらの内容は本明細書に組み込まれる。
(式(M2)中、R54は、それぞれ独立に、水素原子またはメチル基を表し、nは1以上の整数を表す。)
 nは1~10の整数が好ましく、1~5の整数がより好ましく、1~3の整数がさらに好ましく、1または2であることが一層好ましく、1であってもよい。
 式(M2)で表される化合物は、nが異なる化合物の混合物であってもよく、混合物であることが好ましい。また、式(M0)で表される化合物の所で述べたように、他の部分が異なる化合物の混合物であってもよい。
(式(M3)中、R55は、それぞれ独立に、水素原子、炭素数1~8のアルキル基またはフェニル基を表し、nは1以上10以下の整数を表す。)
 R55は、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、および、フェニル基からなる群より選択される1種であることが好ましく、水素原子および/またはメチル基であることがより好ましく、水素原子であることがさらに好ましい。
 nは1以上5以下の整数であることが好ましく、1~3の整数がさらに好ましく、1または2であることが一層好ましい。
 式(M3)で表される化合物は、nが異なる化合物の混合物であってもよく、混合物であることが好ましい。また、式(M0)で表される化合物の所で述べたように、他の部分が異なる化合物の混合物であってもよい。
(式(M4)中、R56は、それぞれ独立に、水素原子、メチル基またはエチル基を表し、R57はそれぞれ独立に水素原子またはメチル基を表す。)
 R56は、それぞれ独立にメチル基またはエチル基であることが好ましく、2つあるベンゼン環のそれぞれにおいてメチル基およびエチル基であることがより好ましく、R57は、メチル基が好ましい。
(式(M5)中、R58は、それぞれ独立に、水素原子、炭素数1~8のアルキル基またはフェニル基を表し、R59は、それぞれ独立に、水素原子またはメチル基を表し、nは1以上の整数を表す。)
 R58は、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、および、フェニル基からなる群より選択される1種であることが好ましく、水素原子および/またはメチル基であることがより好ましく、水素原子であることがさらに好ましい。
 R59は、メチル基であることが好ましい。
 nは1~10の整数が好ましく、1~5の整数がより好ましく、1~3の整数がさらに好ましく、1または2であることが一層好ましく、1であってもよい。
 式(M5)で表される化合物は、nが異なる化合物の混合物あってもよく、混合物であることが好ましい。また、式(M0)で表される化合物の所で述べたように、他の部分が異なる化合物の混合物であってもよい。
 マレイミド化合物(M6)は、式(M6)表される構成単位と、分子鎖の両末端にマレイミド基とを有する化合物である。
(式(M6)中、R61は、炭素数1~16の直鎖状もしくは分岐状のアルキレン基、または炭素数2~16の直鎖状もしくは分岐状のアルケニレン基を表す。R62は、炭素数1~16の直鎖状もしくは分岐状のアルキレン基、または炭素数2~16の直鎖状もしくは分岐状のアルケニレン基を表す。R63は、それぞれ独立に、炭素数1~16の直鎖状もしくは分岐状のアルキル基、または炭素数2~16の直鎖状もしくは分岐状のアルケニル基を表す。nは、それぞれ独立に、0~10の整数を表す。)
 マレイミド化合物(M6)の詳細およびその製造方法は、国際公開第2020/262577号の段落0061~0066の記載を参酌でき、この内容は本明細書に組み込まれる。
 マレイミド化合物(M7)は、芳香環にアルキル基を1以上3以下有する芳香族アミン化合物(a1)と、エテニル基を2つ有する芳香族ジビニル化合物(a2)と、無水マレイン酸とを反応原料(1)とする、マレイミド化合物である。
 マレイミド化合物(M7)は、好ましくは、式(M7)で表される化合物である。
(上記式(M7)中、Rはそれぞれ独立して、前記アルキル基を表し、Rはそれぞれ独立して、炭素数1~10のアルキル基、アルコキシ基若しくはアルキルチオ基;炭素数6~10のアリール基、アリールオキシ基若しくはアリールチオ基;炭素数3~10のシクロアルキル基;ハロゲン原子;水酸基;またはメルカプト基を表し、
、R、RおよびRはそれぞれ独立して、水素原子またはメチル基を表し、かつRおよびRの一方が水素原子、他方がメチル基であり、RおよびRの一方が水素原子、他方がメチル基であり、
は、以下の式(x):
(式(x)中、RおよびRはそれぞれ独立して、水素原子またはメチル基を表し、かつRおよびRの一方が水素原子、他方がメチル基であり、Rはそれぞれ独立して、炭素数1~10のアルキル基、アルコキシ基若しくはアルキルチオ基;炭素数6~10のアリール基、アリールオキシ基若しくはアリールチオ基;炭素数3~10のシクロアルキル基;ハロゲン原子;水酸基;またはメルカプト基を表し、tは0~4の整数を表す。)
で表される置換基を表し、rは、Xが結合されたベンゼン環1つ当たりのXの置換数の平均値であり、0~4の数を表し、pは1~3の整数を表し、qは0~4の整数を表し、kは1~100の整数を表す。)
 本実施形態で用いるポリマレイミド化合物(M7)の詳細は、特許第7160151号の記載を参酌でき、この内容は本明細書に組み込まれる。
 マレイミド化合物は、公知の方法で製造してもよく、市販品を用いてもよい。市販品としては、例えば、式(M0)で表される化合物として、ケイ・アイ化成社製「BMI-80」、式(M1)で表される化合物として、DIC社製「NE-X-9470S」、式(M2)で表される化合物として大和化成工業社製「BMI-2300」、式(M3)で表される化合物として、日本化薬株式会社製「MIR-3000-70MT」、式(M4)で表される化合物としてケイ・アイ化成社製「BMI-70」、式(M5)で表される化合物として、日本化薬社製「MIR-5000」、マレイミド化合物(M6)として、日本化薬社製「MIZ-001」、マレイミド化合物(M7)として、DIC社製「NE-X-9500」が挙げられる。
 また、上記以外のマレイミド化合物としては、例えば、N-フェニルマレイミド、N-シクロヘキシルマレイミド、フェニルメタンマレイミドのオリゴマー、m-フェニレンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、およびこれらのプレポリマー、これらのマレイミドとアミンのプレポリマー等が挙げられる。
 中でも、N-フェニルマレイミド、N-シクロヘキシルマレイミド等の単官能のマレイミド化合物は、下記式(V)で表される構造単位を有する重合体と併用することにより、より低誘電特性に優れた硬化物を提供可能な樹脂組成物が得られる傾向にある。
 本実施形態の樹脂組成物がマレイミド化合物を含む場合、その含有量の下限値は、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、10質量部以上であることがより好ましく、30質量部以上であることがさらに好ましく、50質量部以上であることが一層好ましく、60質量部以上であることがより一層好ましい。マレイミド化合物の含有量が1質量部以上であることにより、得られる硬化物の低誘電特性、耐燃性が向上する傾向にある。また、マレイミド化合物の含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、90質量部以下であることが好ましく、85質量部以下であることがより好ましく、さらには、80質量部以下、75質量部以下であってもよい。マレイミド化合物の含有量が90質量部以下であることにより、金属箔ピール強度および低吸水性が向上する傾向にある。
 本実施形態における樹脂組成物は、マレイミド化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本実施形態における樹脂組成物は、マレイミド化合物を実質的に含まない構成とすることもできる。実質的に含まないとはマレイミド化合物の含有量が樹脂組成物中の樹脂固形分100質量部に対し、1質量部未満であることをいい、0.1質量部未満であることが好ましく、0.01質量部未満であることがより好ましい。
<<ポリフェニレンエーテル化合物>>
 本実施形態の樹脂組成物は、ポリフェニレンエーテル化合物を含んでいてもよく、さらには、炭素-炭素不飽和二重結合を2以上含むポリフェニレンエーテル化合物(B)を含んでいてもよい。
 末端に炭素-炭素不飽和二重結合を有するポリフェニレンエーテル化合物(B)は、末端に、ビニルベンジル基等の式(Rx-1)で表される基、(メタ)アクリル基等の式(Rx-2)で表される基、マレイミド基からなる群から選択される基を有するポリフェニレンエーテル化合物であることが好ましく、ビニルベンジル基等の式(Rx-1)で表される基および/または(メタ)アクリル基等の式(Rx-2)で表される基を有するポリフェニレンエーテル化合物であることがより好ましく、末端に、ビニルベンジル基等の式(Rx-1)で表される基および/または(メタ)アクリル基等の式(Rx-2)で表される基を2以上含むポリフェニレンエーテル化合物であることがさらに好ましい。
(式(Rx-1)および式(Rx-2)中、R、R、および、Rは、それぞれ独立に、水素原子、アルキル基、アルケニル基、またはアルキニル基を表す。*は、酸素原子との結合部位である。Mcは、それぞれ独立に炭素数1~12の炭化水素基を表す。zは0~4の整数を表す。rは1~6の整数を表す。)
 これらのポリフェニレンエーテル化合物を用いることにより、プリント配線板等の低誘電特性(Dkおよび/またはDf)と低吸水性等をより効果的に向上させることができる傾向がある。本実施形態では、特に、末端に、ビニルベンジル基を有するポリフェニレンエーテル化合物であることが好ましい。ビニルベンジル基を有することにより、樹脂(A)との相溶性が顕著に向上する傾向にある。
 以下、これらの詳細を説明する。
 末端に炭素-炭素不飽和二重結合を有するポリフェニレンエーテル化合物(B)(好ましくは、炭素-炭素不飽和二重結合を2以上含むポリフェニレンエーテル化合物(B2))は、下記式(X1)で表されるフェニレンエーテル骨格を有する化合物が例示される。
(式(X1)中、R24、R25、R26、および、R27は、同一または異なってもよく、炭素数6以下のアルキル基、アリール基、ハロゲン原子、または、水素原子を表す。)
 末端に炭素-炭素不飽和二重結合を有するポリフェニレンエーテル化合物(B)(好ましくは、炭素-炭素不飽和二重結合を2以上含むポリフェニレンエーテル化合物(B2))は、式(X2):
(式(X2)中、R28、R29、R30、R34、および、R35は、同一または異なってもよく、炭素数6以下のアルキル基またはフェニル基を表す。R31、R32、および、R33は、同一または異なってもよく、水素原子、炭素数6以下のアルキル基またはフェニル基である。)
で表される繰り返し単位、および/または、式(X3):
(式(X3)中、R36、R37、R38、R39、R40、R41、R42、および、R43は、同一または異なってもよく、水素原子、炭素数6以下のアルキル基またはフェニル基である。-A-は、炭素数20以下の直鎖、分岐または環状の2価の炭化水素基である。)で表される繰り返し単位をさらに含んでもよい。
 末端に炭素-炭素不飽和二重結合を有するポリフェニレンエーテル化合物(B)(好ましくは、炭素-炭素不飽和二重結合を2以上含むポリフェニレンエーテル化合物(B2))は、末端の一部または全部を、エチレン性不飽和基で官能基化された変性ポリフェニレンエーテル化合物(以下、「変性ポリフェニレンエーテル化合物(g)」ということがある)であることが好ましく、末端に、ビニルベンジル基等の式(Rx-1)で表される基、(メタ)アクリル基等の式(Rx-2)で表される基、マレイミド基からなる群から選択される基を2以上有する変性ポリフェニレンエーテル化合物であることがより好ましく、ビニルベンジル基等の式(Rx-1)で表される基および/または(メタ)アクリル基等の式(Rx-2)で表される基であることがさらに好ましい。このような変性ポリフェニレンエーテル化合物(g)を採用することにより、樹脂組成物の硬化物の低誘電特性(Dkおよび/またはDf)をより小さくし、かつ、低吸水性、金属箔ピール強度を高めることが可能になる。これらは1種または2種以上を組み合わせて用いてもよい。
 変性ポリフェニレンエーテル化合物(g)は、式(OP)で表されるポリフェニレンエーテル化合物が挙げられる。
(式(OP)中、Xは芳香族基を表し、-(Y-O)n1-はポリフェニレンエーテル構造を表し、n1は1~100の整数を表し、n2は1~4の整数を表す。Rxは、式(Rx-1)または式(Rx-2)で表される基である。)
(式(Rx-1)および式(Rx-2)中、R、R、および、Rは、それぞれ独立に、水素原子、アルキル基、アルケニル基、またはアルキニル基を表す。*は、酸素原子との結合部位である。Mcは、それぞれ独立に炭素数1~12の炭化水素基を表す。zは0~4の整数を表す。rは1~6の整数を表す。)
 nおよび/またはnが2以上の整数の場合、n個の構成単位(Y-O)および/またはn個の構成単位は、それぞれ同一であっても異なっていてもよい。nは、2以上が好ましく、より好ましくは2である。
 式(Rx-1)および式(Rx-2)中、R、R、および、Rは、それぞれ独立に、水素原子、アルキル基、アルケニル基、またはアルキニル基を表す。
 Rは、水素原子またはアルキル基が好ましく、水素原子またはメチル基がより好ましく、水素原子がさらに好ましい。
 RおよびRは、それぞれ独立に、水素原子またはアルキル基が好ましく、水素原子またはメチル基がより好ましく、水素原子がさらに好ましい。
 R、R、および、Rとしての、アルキル基、アルケニル基、またはアルキニル基の炭素数は、それぞれ、5以下であることが好ましく、3以下であることがより好ましい。
 式(Rx-1)における、rは1~6の整数を表し、1~5の整数であることが好ましく、1~4の整数であることがより好ましく、1~3の整数であることがさらに好ましく、1または2であることが一層好ましく、1であることがより一層好ましい。
 式(Rx-1)における、Mcは、それぞれ独立に、炭素数1~12の炭化水素基を表し、炭素数1~10の炭化水素基であることが好ましく、炭素数1~10の直鎖または分岐のアルキル基であることがより好ましく、メチル基、エチル基、イソプロピル基、イソブチル基、t-ブチル基、ペンチル基、オクチル基、またはノニル基であることがさらに好ましく、メチル基、エチル基、イソプロピル基、イソブチル基、またはt-ブチル基であることが一層好ましい。
 式(Rx-1)における、zは0~4の整数を表し、0~3の整数が好ましく、0~2の整数がより好ましく、0または1がさらに好ましく、0が一層好ましい。
 式(Rx-1)で表される基の具体例は、ビニルベンジル基であり、式(Rx-2)で表される基の具体例は、(メタ)アクリロイル基である。
 Rxは、式(Rx-1)で表される基であることが好ましい。
 変性ポリフェニレンエーテル化合物(g)としては、式(OP-1)で表されるポリフェニレンエーテル化合物が挙げられる。
(式(OP-1)中、Xは芳香族基を表し、-(Y-O)n-はポリフェニレンエーテル構造を表し、R、R、および、Rは、それぞれ独立して、水素原子、アルキル基、アルケニル基またはアルキニル基を表し、nは1~6の整数を表し、nは1~100の整数を表し、nは1~4の整数を表す。)
 nおよび/またはnが2以上の整数の場合、n個の構成単位(Y-O)および/またはn個の構成単位は、それぞれ同一であっても異なっていてもよい。nは、2以上が好ましく、より好ましくは2である。
 本実施形態における変性ポリフェニレンエーテル化合物(g)は、また、式(OP-2)で表される化合物であることが好ましく、式(OP-2-2)で表される化合物であることがより好ましい。
 ここで、-(O-X-O)-は、式(OP-3):
(式(OP-3)中、R、R、R、R10、および、R11は、同一または異なってもよく、炭素数6以下のアルキル基またはフェニル基である。R、R、および、Rは、同一または異なってもよく、水素原子、炭素数6以下のアルキル基またはフェニル基である。)
および/または式(OP-4):
(式(OP-4)中、R12、R13、R14、R15、R16、R17、R18、および、R19は、同一または異なってもよく、水素原子、炭素数6以下のアルキル基またはフェニル基である。-A-は、炭素数20以下の直鎖、分岐または環状の2価の炭化水素基である。)で表されることが好ましい。
 また、-(Y-O)-は、式(OP-5):
(式(OP-5)中、R20、R21は、同一または異なってもよく、炭素数6以下のアルキル基またはフェニル基である。R22、R23は、同一または異なってもよく、水素原子、炭素数6以下のアルキル基またはフェニル基である。)で表されることが好ましい。
特にR20およびR21は、それぞれ独立に、メチル基および/またはシクロヘキシル基を1つ以上有する基とすることで、得られる樹脂分子の剛直性が高くなり、剛直性が高い分子は剛直性が低い分子に比べて運動性が低いため、誘電緩和の際の緩和時間が長くなり、低誘電特性(Dkおよび/またはDf)が向上するために好ましい。
 式(OP-5)の一例は、下記構造である。
 上記構造を有するポリフェニレン化合物については、特開2019-194312号公報の記載を参酌でき、この内容は本明細書に組み込まれる。
 式(OP-2)において、aおよびbは、それぞれ独立に、0~100の整数を表し、aおよびbの少なくとも一方は、1~100の整数である。aおよびbは、それぞれ独立に、0~50の整数であることが好ましく、1~30の整数であることがより好ましく、1~10の整数であることが好ましい。aおよび/またはbが2以上の整数の場合、2以上の-(Y-O)-は、それぞれ独立に、1種の構造が配列したものであってよく、2種以上の構造がブロックまたはランダムに配列していてもよい。
 また、式(OP-2)で表される化合物を複数種含む場合、aの平均値は1<a<10であることが好ましく、bの平均値は1<b<10であることが好ましい。
 式(OP-4)における-A-としては、例えば、メチレン基、エチリデン基、1-メチルエチリデン基、1,1-プロピリデン基、1,4-フェニレンビス(1-メチルエチリデン)基、1,3-フェニレンビス(1-メチルエチリデン)基、シクロヘキシリデン基、フェニルメチレン基、ナフチルメチレン基、1-フェニルエチリデン基等の2価の有機基が挙げられるが、これらに限定されるものではない。
 Rxは、式(OP)におけるRxと同義であり、好ましい範囲も同様である。
 上記式(OP-2)で表される化合物のなかでは、R、R、R、R10、R11、R20、および、R21が炭素数3以下のアルキル基であり、R、R、R、R12、R13、R14、R15、R16、R17、R18、R19、R22、および、R23が水素原子または炭素数3以下のアルキル基であるポリフェニレンエーテル化合物が好ましく、特に式(OP-3)または式(OP-4)で表される-(O-X-O)-が、式(OP-9)、式(OP-10)、および/または式(OP-11)であり、式(OP-5)で表される-(Y-O)-が、式(OP-12)または式(OP-13)であることが好ましい。aおよび/またはbが2以上の整数の場合、2以上の-(Y-O)-は、それぞれ独立に、式(OP-12)および/または式(OP-13)が2以上配列した構造であるか、あるいは式(OP-12)と式(OP-13)がブロックまたはランダムに配列した構造であってよい。
(式(OP-10)中、R44、R45、R46、および、R47は、同一または異なってもよく、水素原子またはメチル基である。-B-は、炭素数20以下の直鎖、分岐または環状の2価の炭化水素基である。)
 -B-は、式(OP-4)における-A-の具体例と同じものが具体例として挙げられる。
(式(OP-11)中、-B-は、炭素数20以下の直鎖、分岐または環状の2価の炭化水素基である。)
 -B-は、式(OP-4)における-A-の具体例と同じものが具体例として挙げられる。
 本実施形態で用いる変性ポリフェニレンエーテル化合物(g)は、式(OP-14)で表される化合物および/または式(OP-15)で表される化合物であることがさらに好ましい。
(式(OP-14)中、aおよびbは、それぞれ独立に、0~100の整数を表し、aおよびbの少なくとも一方は、1~100の整数である。)
 式(OP-14)におけるaおよびbは、それぞれ独立に、式(OP-2)におけるaおよびbと同義であり、好ましい範囲も同様である。
(式(OP-15)中、aおよびbは、それぞれ独立に、0~100の整数を表し、aおよびbの少なくとも一方は、1~100の整数である。)
 式(OP-15)におけるaおよびbは、それぞれ独立に、式(OP-2)におけるaおよびbと同義であり、好ましい範囲も同様である。
 末端に炭素-炭素不飽和二重結合を有するポリフェニレンエーテル化合物(B)(好ましくは、炭素-炭素不飽和二重結合を2以上含むポリフェニレンエーテル化合物(B2)であり、より好ましくは、変性ポリフェニレンエーテル化合物(g))のGPC(ゲルパーミエーションクロマトグラフィ)法によるポリスチレン換算の数平均分子量(Mn)(詳細は後述する実施例に記載の方法に従う)は、例えば、500以上、さらには、800以上であることが好ましく、また、3,000以下であることが好ましい。数平均分子量が500以上であることにより、本実施形態の樹脂組成物を塗膜状にする際にべたつきがより一層抑制される傾向にある。数平均分子量が3,000以下であることにより、溶剤への溶解性がより一層向上する傾向にある。
 また、末端に炭素-炭素不飽和二重結合を有するポリフェニレンエーテル化合物(B)(好ましくは、炭素-炭素不飽和二重結合を2以上含むポリフェニレンエーテル化合物(B2)であり、より好ましくは、変性ポリフェニレンエーテル化合物(g))のGPCによるポリスチレン換算の重量平均分子量(Mw)(詳細は後述する実施例に記載の方法に従う)は、800以上6000以下であることが好ましく、800以上5000以下であることがより好ましい。前記下限値以上とすることにより、樹脂組成物の硬化物の比誘電率(Dk)および誘電正接(Df)がより低くなる傾向にあり、上記上限値以下とすることにより、後述するワニス等を作製する際の溶剤への樹脂組成物の溶解性、低粘度性および成形性がより向上する傾向にある。
 さらに、変性ポリフェニレンエーテル化合物(g)である場合の、末端の炭素-炭素不飽和二重結合当量は、炭素-炭素不飽和二重結合1つあたり400~5000gであることが好ましく、400~2500gであることがより好ましい。前記下限値以上とすることにより、樹脂組成物の硬化物の比誘電率(Dk)および誘電正接(Df)がより低くなる傾向にある。上記上限値以下とすることにより、溶剤への樹脂組成物の溶解性、低粘度性および成形性がより向上する傾向にある。
 本実施形態の樹脂組成物が、ポリフェニレンエーテル化合物を含む場合、その含有量の下限値は、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、10質量部以上であることがより好ましく、30質量部以上であることがさらに好ましく、50質量部以上であることが一層好ましく、60質量部以上であることがより一層好ましい。前記下限値以上とすることにより、樹脂組成物の成形性、得られる硬化物の耐熱性、低吸水性、低誘電特性(Dkおよび/またはDf)がより向上する傾向にある。また、ポリフェニレンエーテル化合物の含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、90質量部以下であることが好ましく、85質量部以下であることがより好ましく、さらには、80質量部以下、75質量部以下であってもよい。前記上限値以下とすることにより、得られる硬化物の低誘電特性(特に低誘電正接性)、耐薬品性が向上する傾向にある。
 本実施形態における樹脂組成物は、ポリフェニレンエーテル化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本実施形態における樹脂組成物は、炭素-炭素不飽和二重結合を2以上含むポリフェニレンエーテル化合物、さらには、ポリフェニレンエーテル化合物を実質的に含まない構成とすることもできる。実質的に含まないとは、炭素-炭素不飽和二重結合を2以上含むポリフェニレンエーテル化合物、さらには、ポリフェニレンエーテル化合物の含有量が樹脂組成物中の樹脂固形分100質量部に対し、0.1質量部未満であることをいい、好ましくは0.01質量部未満であり、さらには0.001質量部未満であってもよい。
<<式(V)で表される構成単位を有する重合体>>
 本実施形態の樹脂組成物は、式(V)で表される構成単位を有する重合体を含んでいてもよい。式(V)で表される構成単位を有する重合体を含むことにより、低誘電特性(低比誘電率、低誘電正接)に優れた樹脂組成物が得られる。
(式(V)中、Arは芳香族炭化水素連結基を表す。*は、結合位置を表す。)
 芳香族炭化水素連結基とは、置換基を有していてもよい芳香族炭化水素のみからなる基であってもよいし、置換基を有していてもよい芳香族炭化水素と他の連結基の組み合わせからなる基であってもよく、置換基を有していてもよい芳香族炭化水素のみからなる基であることが好ましい。なお、芳香族炭化水素が有していてもよい置換基は、置換基Z(例えば、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数1~6のアルコキシ基、ヒドロキシ基、アミノ基、カルボキシ基、ハロゲン原子等)が挙げられる。また、上記芳香族炭化水素は、置換基を有さない方が好ましい。
 芳香族炭化水素連結基は、通常、2価の連結基である。
 芳香族炭化水素連結基は、具体的には、置換基を有していてもよい、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ビフェニルジイル基、フルオレンジイル基が挙げられ、中でも置換基を有していてもよいフェニレン基が好ましい。置換基は、上述の置換基Zが例示されるが、上述したフェニレン基等の基は置換基を有さない方が好ましい。
 式(V)で表される構成単位は、下記式(V1)で表される構成単位、下記式(V2)で表される構成単位、および、下記式(V3)で表される構成単位の少なくとも1つを含むことがより好ましい。なお、下記式中の*は結合位置を表す。また、以下、式(V1)~(V3)で表される構成単位をまとめて、「構成単位(a)」ということがある。
 式(V1)~(V3)中、Lは芳香族炭化水素連結基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)である。具体的には、置換基を有していてもよい、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ビフェニルジイル基、フルオレンジイル基が挙げられ、中でも置換基を有していてもよいフェニレン基が好ましい。置換基は、上述の置換基Zが例示されるが、上述したフェニレン基等の基は置換基を有さない方が好ましい。
 構成単位(a)を形成する化合物としては、ジビニル芳香族化合物であることが好ましく、例えば、ジビニルベンゼン、ビス(1-メチルビニル)ベンゼン、ジビニルナフタレン、ジビニルアントラセン、ジビニルビフェニル、ジビニルフェナントレンなどが挙げられる。中でもジビニルベンゼンが特に好ましい。これらのジビニル芳香族化合物は、1種を用いてもよく、必要に応じて2種以上を用いてもよい。
 式(V)で表される構成単位を有する重合体は、上述のとおり、構成単位(a)の単独重合体であってもよいが、他のモノマー由来の構成単位との共重合体であってもよい。
 式(V)で表される構成単位を有する重合体は、共重合体であるとき、その共重合比は、構成単位(a)が3モル%以上であることが好ましく、5モル%以上であることがより好ましく、10モル%以上であることがさらに好ましく、15モル%以上であってもよい。上限値としては、90モル%以下であることが好ましく、85モル%以下であることがより好ましく、80モル%以下であることがさらに好ましく、70モル%以下であることが一層好ましく、60モル%以下であることがより好ましく、50モル%以下であることがさらに一層好ましく、40モル%以下であることがさらによりさらに一層好ましく、30モル%以下であることが特に一層好ましく、さらには、25モル%以下、20モル%以下であってもよい。
 他のモノマー由来の構成単位としては、1つのビニル基を有する芳香族化合物(モノビニル芳香族化合物)に由来する構成単位(b)が例示される。
 モノビニル芳香族化合物に由来する構成単位(b)は、下記式(V4)で表される構成単位であることが好ましい。
 式(V4)中、Lは芳香族炭化水素連結基であり、好ましいものの具体例としては、上記Lの例が挙げられる。
 RV1は水素原子または炭素数1~12の炭化水素基(好ましくはアルキル基)である。RV1が炭化水素基であるとき、その炭素数は1~6が好ましく、1~3がより好ましい。RV1およびLは上述の置換基Zを有していてもよい。
 式(V)で表される構成単位を有する重合体が、モノビニル芳香族化合物に由来する構成単位(b)を含む共重合体であるとき、モノビニル芳香族化合物の例としては、スチレン、ビニルナフタレン、ビニルビフェニルなどのビニル芳香族化合物;o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルビニルベンゼン、m-エチルビニルベンゼン、p-エチルビニルベンゼン、メチルビニルビフェニル、エチルビニルビフェニルなどの核アルキル置換ビニル芳香族化合物などが挙げられる。ここで例示したモノビニル芳香族化合物は適宜上述の置換基Zを有していてもよい。また、これらのモノビニル芳香族化合物は、1種を用いても2種以上を用いてもよい。
 式(V)で表される構成単位を有する重合体が構成単位(b)を含む共重合体であるとき、構成単位(b)の共重合比は、10モル%以上であることが好ましく、15モル%以上であることがさらに好ましく、さらには、20モル%以上、30モル%以上、40モル%以上、50モル%以上、60モル%以上、70モル%以上、75モル%以上であってもよい。上限値としては、98モル%以下であることが好ましく、90モル%以下であることがより好ましく、85モル%以下であることがさらに好ましい。
 式(V)で表される構成単位を有する重合体は、構成単位(a)および構成単位(b)以外のその他の構成単位を有していてもよい。その他の構成単位としては、例えば、シクロオレフィン化合物に由来する構成単位(c)などが挙げられる。シクロオレフィン化合物としては、環構造内に二重結合を有する炭化水素類が挙げられる。具体的に、シクロブテン、シクロペンテン、シクロヘキセン、シクロオクテンなどの単環の環状オレフィンの他、ノルボルネン、ジシクロペンタジエンなどのノルボルネン環構造を有する化合物、インデン、アセナフチレンなどの芳香族環が縮合したシクロオレフィン化合物などを挙げることができる。ノルボルネン化合物の例としては、特開2018-039995号公報の段落0037~0043に記載のものが挙げられ、これの内容は本明細書に組み込まれる。なお、ここで例示したシクロオレフィン化合物はさらに上述の置換基Zを有していてもよい。
 式(V)で表される構成単位を有する重合体が構成単位(c)を含む共重合体であるとき、構成単位(c)の共重合比は、10モル%以上であることが好ましく、20モル%以上であることがより好ましく、30モル%以上であることがさらに好ましい。上限値としては、90モル%以下であることが好ましく、80モル%以下であることがより好ましく、70モル%以下であることがさらに好ましく、50モル%以下であってもよく、30モル%以下であってもよい。
 式(V)で表される構成単位を有する重合体にはさらに異なる重合性化合物(以下、他の重合性化合物ともいう)に由来する構成単位(d)が組み込まれていてもよい。他の重合性化合物(単量体)としては、例えば、ビニル基を3つ含む化合物が挙げられる。具体的には、1,3,5-トリビニルベンゼン、1,3,5-トリビニルナフタレン、1,2,4-トリビニルシクロへキサンが挙げられる。あるいは、エチレングリコールジアクリレート、ブタジエン等が挙げられる。他の重合性化合物に由来する構成単位(d)の共重合比は、30モル%以下であることが好ましく、20モル%以下であることがより好ましく、10モル%以下であることがさらに好ましい。
 式(V)で表される構成単位を有する重合体の一実施形態として、構成単位(a)を必須とし、構成単位(b)~(d)の少なくとも1種を含む重合体が例示される。さらには、構成単位(a)~(d)の合計が、全構成単位の95モル%以上、さらには98モル%以上を占める態様が例示される。
 式(V)で表される構成単位を有する重合体の他の一実施形態として、構成単位(a)を必須とし、末端を除く全構成単位のうち、芳香族環を含む構成単位が90モル%以上のものであることが好ましく、95モル%以上のものであることがより好ましく、100モル%のものであってもよい。
 なお、全構成単位当たりのモル%を算出するにあたり、1つの構成単位とは、式(V)で表される構成単位を有する重合体の製造に使用する単量体(例えば、ジビニル芳香族化合物、モノビニル芳香族化合物など)1分子に由来するものとする。
 式(V)で表される構成単位を有する重合体の製造方法は特に限定されず常法によればよいが、例えば、ジビニル芳香族化合物を含む原料を(必要により、モノビニル芳香族化合物、シクロオレフィン化合物等を共存させ)、ルイス酸触媒の存在下で重合させることが挙げられる。ルイス酸触媒としては、三フッ化ホウ素等の金属フッ化物またはその錯体を用いることができる。
 式(V)で表される構成単位を有する重合体の鎖末端の構造は特に限定されないが、上記ジビニル芳香族化合物に由来する基について言うと、以下の式(E1)の構造を取ることが挙げられる。なお、式(E1)中のLは上記式(V1)で規定したものと同じである。*は結合位置を表す。
  *-CH=CH-L-CH=CH   (E1)
 モノビニル芳香族化合物に由来する基が鎖末端となったときには、下記式(E2)の構造を取ることが挙げられる。式中のLおよびRV1はそれぞれ前記の式(V4)で定義したものと同じ意味である。*は結合位置を表す。
  *-CH=CH-L-RV1   (E2)
 式(V)で表される構成単位を有する重合体の分子量は、数平均分子量Mnで、300以上であることが好ましく、500以上であることがより好ましく、1,000以上であることがさらに好ましく、1,500以上であることがより好ましい。上限としては、130,000以下であることが好ましく、120,000以下であることがより好ましく、110,000以下であることがさらに好ましく、100,000以下であることがさらに好ましい。
 式(V)で表される構成単位を有する重合体の分子量は、重量平均分子量Mwで、3,000以上であることが好ましく、5,000以上であることがより好ましく、10,000以上であることがさらに好ましい。前記下限値以上とすることにより、式(V)で表される構成単位を有する重合体が持つ優れた低誘電特性、特にDfや吸湿後の誘電特性を、樹脂組成物の硬化物に効果的に発揮させることができる。上限としては130,000以下であることが好ましく、100,000以下であることがより好ましく、80,000以下であることがさらに好ましく、50,000以下であることが一層好ましい。前記上限値以下とすることにより、プリプレグもしくは樹脂シートを回路形成基板に積層した際、埋め込み不良が起こりにくい傾向にある。
 重量平均分子量Mwと数平均分子量Mnの比で表される単分散度(Mw/Mn)は、100以下であることが好ましく、50以下であることがより好ましく、20以下であることがさらに好ましい。下限値としては、1.1以上であることが実際的であり、5以上であることが好ましく、7以上であることがより好ましく、10以上であることがさらに好ましい。
 上記MwおよびMnは後述する実施例の記載に従って測定される。
 本実施形態の樹脂組成物が式(V)で表される構成単位を有する重合体を2種以上含む場合、混合物のMw、MnならびにMw/Mnが上記範囲を満たすことが好ましい。
 式(V)で表される構成単位を有する重合体のビニル基の当量は、200g/eq.以上であることが好ましく、230g/eq.以上であることがより好ましく、250g/eq.以上であることがさらに好ましい。また、ビニル基の当量は、1200g/eq.以下であることが好ましく、1000g/eq.以下であることがより好ましく、さらには、800g/eq.以下、600g/eq.以下、400g/eq.以下、300g/eq.以下であってもよい。前記下限値以上とすることにより、樹脂組成物の保存安定性が向上し、樹脂組成物の流動性が向上する傾向にある。そのため、成形性が向上し、プリプレグ等の形成時にボイドが発生しにくくなり、より信頼性の高いプリント配線板が得られる傾向にある。一方、上記上限値以下とすることにより、得られる硬化物の耐熱性が向上する傾向にある。
 本明細書において式(V)で表される構成単位を有する重合体については、国際公開第2017/115813号の段落0029~0058に記載の化合物およびその合成反応条件等、特開2018-039995号公報の段落0013~0058に記載の化合物およびその合成反応条件等、特開2018-168347号公報の段落0008~0043に記載の化合物およびその合成反応条件等、特開2006-070136号公報の段落0014~0042に記載の化合物およびその合成反応条件等、特開2006-089683号公報の段落0014~0061に記載の化合物およびその合成反応条件等、特開2008-248001号公報の段落0008~0036に記載の化合物およびその合成反応条件等を参照することができ、本明細書に組み込まれる。
 本実施形態の樹脂組成物が式(V)で表される構成単位を有する重合体を含む場合、その含有量の下限値は、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、10質量部以上であることがより好ましく、30質量部以上であることがさらに好ましく、50質量部以上であることが一層好ましく、60質量部以上であることがより一層好ましい。式(V)で表される構成単位を有する重合体の含有量が1質量部以上であることにより、上記下限値以上とすることで、低誘電特性、特に、低比誘電率を効果的に達成できる傾向にある。また、式(V)で表される構成単位を有する重合体の含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、90質量部以下であることが好ましく、85質量部以下であることがより好ましく、さらには、80質量部以下、75質量部以下であってもよい。式(V)で表される構成単位を有する重合体の含有量が90質量部以下であることにより、金属箔ピール強度および低吸水性が向上する傾向にある。
 本実施形態における樹脂組成物は、式(V)で表される構成単位を有する重合体を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本実施形態における樹脂組成物は、式(V)で表される構成単位を有する重合体を実質的に含まない構成とすることもできる。実質的に含まないとは式(V)で表される構成単位を有する重合体の含有量が樹脂組成物中の樹脂固形分100質量部に対し、1質量部未満であることをいい、0.1質量部未満であることが好ましく、0.01質量部未満であることがより好ましい。
<<シアン酸エステル化合物>>
 本実施形態の樹脂組成物は、シアン酸エステル化合物を含んでいてもよい。
 シアン酸エステル化合物は、シアネート基(シアナト基)を分子内に1以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)含む化合物であれば特に限定されず、プリント配線板の分野で通常用いられる化合物を広く用いることができる。
 シアン酸エステル化合物は、プリント配線板に通常用いられる少なくとも1つのシアナト基により置換された芳香族部分を分子内に2つ以上有するシアン酸エステル化合物が好ましい。
 具体的には、シアン酸エステル化合物が有するシアナト基の数の下限は、2以上であることが好ましく、3以上であることがより好ましい。上記下限値以上とすることにより、耐熱性がより向上する傾向にある。また、シアナト基の数の上限は、100以下であることが好ましく、50以下であることがより好ましい。
 また、シアン酸エステル化合物は、その硬化物が低誘電特性(Dkおよび/またはDf)に優れることが好ましい。例えば、シアン酸エステル化合物の硬化物は、空洞共振摂動法に従って測定した周波数10GHzにおける誘電率(Dk)が4.0以下であることが好ましく、3.5以下であることがより好ましい。また、前記誘電率の下限値は、例えば、2.0以上が実際的である。また、シアン酸エステル化合物(B)の硬化物は、空洞共振摂動法に従って測定した周波数10GHzにおける誘電正接(Df)が0.02以下であることが好ましく、0.015以下であることがより好ましい。また、前記誘電正接の下限値は、例えば、0.0001以上が実際的である。誘電率、誘電正接は、例えば、実施例に記載の方法(硬化条件、測定条件)に準じて測定することができる。
 また、シアン酸エステル化合物は、その硬化物の耐熱性が高いことが好ましい。シアン酸エステル化合物の硬化物は、JIS C6481動的粘弾性測定に従って測定したガラス転移温度が150℃以上であることが好ましく、180℃以上であることがより好ましく、200℃以上であることがさらに好ましい。ガラス転移温度を前記下限値以上とすることにより、耐熱性に優れた硬化物が得られる。
 シアン酸エステル化合物は、GPC法によるポリスチレン換算の重量平均分子量が、200以上であることが好ましく、300以上であることがより好ましく、400以上であることがさらに好ましい。重量平均分子量を前記下限値以上とすることにより、耐熱性がより向上する傾向にある。また、シアン酸エステル化合物の重量平均分子量は、1000以下であることが好ましく、900以下であることがより好ましく、800以下であることがさらに好ましい。重量平均分子量を前記上限値以下とすることにより、成形性および取り扱い性がより向上する傾向にある。
 シアン酸エステル化合物の好ましい範囲としては、国際公開第2021/172317号の段落0028~0033の記載を参酌でき、この内容は本明細書に組み込まれる。
 好ましいシアン酸エステル化合物としては、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物(ナフトールアラルキル型シアネート)、ナフチレンエーテル型シアン酸エステル化合物、ビフェニルアラルキル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、トリスフェノールメタン型シアン酸エステル化合物、アダマンタン骨格型シアン酸エステル化合物、ビスフェノールM型シアン酸エステル化合物、および、ビスフェノールA型シアン酸エステル化合物からなる群より選択される少なくとも1種が挙げられる。これらの中でも、低吸水性をより一層向上させる観点から、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、および、ビスフェノールM型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物からなる群より選択される少なくとも1種であることが好ましく、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、および、ビスフェノールM型シアン酸エステル化合物からなる群より選択される少なくとも1種であることがより好ましく、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、および、ビスフェノールA型シアン酸エステル化合物からなる群より選択される少なくとも1種であることがさらに好ましく、ナフトールアラルキル型シアン酸エステル化合物および/またはビスフェノールA型シアン酸エステル化合物であることが一層好ましく、ナフトールアラルキル型シアン酸エステル化合物であることがより一層好ましい。
 ナフトールアラルキル型シアン酸エステル化合物としては、式(N1)で表される化合物がより好ましい。
式(N1)
(式(N1)中、R3は、それぞれ独立して、水素原子またはメチル基を表し、n3は、1以上の整数を表す。)
 式(N1)中、R3は、それぞれ独立して、水素原子またはメチル基を表し、この中でも水素原子が好ましい。
 式(N1)中、n3は、1以上の整数であり、1~50の整数であることが好ましく、1~20の整数であることがより好ましく、1~10の整数であることがさらに好ましく、1~6の整数であることが一層好ましい。
 また、フェノールノボラック型シアン酸エステル化合物としては、特に限定されないが、例えば、式(VII)で表される化合物が好ましい。
(式(VII)中、Rは、それぞれ独立して、水素原子またはメチル基を表し、n7は1以上の整数を表す。)
 式(VII)中、Rは、それぞれ独立して、水素原子またはメチル基を表し、この中でも水素原子が好ましい。
 式(VII)中、n7は1以上の整数であり、1~20の整数であることが好ましく、1~10の整数であることがより好ましく、1~6の整数であることがさらに好ましい。
 ビスフェノールA型シアン酸エステル化合物としては、2、2-ビス(4-シアナトフェニル)プロパン、および、2、2-ビス(4-シアナトフェニル)プロパンのプレポリマーからなる群より選択される1種以上を用いてもよい。
 これらのシアン酸エステル化合物は、公知の方法により調製してもよく、市販品を用いてもよい。なお、ナフトールアラルキル骨格、ナフチレンエーテル骨格、キシレン骨格、トリスフェノールメタン骨格、またはアダマンタン骨格を有するシアン酸エステル化合物は、比較的、官能基当量数が大きく、未反応のシアン酸エステル基が少なくなるため、これらを用いた樹脂組成物は低吸水性がより一層優れる傾向にある。また、芳香族骨格またはアダマンタン骨格を有することに主に起因して、めっき密着性がより一層向上する傾向にある。
 本実施形態の樹脂組成物が、シアン酸エステル化合物を含む場合、その含有量の下限値は、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、10質量部以上であることがさらに好ましく、20質量部以上であってもよい。シアン酸エステル化合物の含有量が上記下限値以上であることにより、耐熱性、耐燃焼性、耐薬品性、低誘電率、低誘電正接、絶縁性が向上する傾向にある。シアン酸エステル化合物の含有量の上限値は、本実施形態の樹脂組成物がシアン酸エステル化合物を含む場合、樹脂組成物中の樹脂固形分100質量部に対し、70質量部以下であることが好ましく、60質量部以下であることがより好ましく、50質量部以下であることがさらに好ましく、40質量部以下、30質量部以下であってもよい。
 本実施形態における樹脂組成物は、シアン酸エステル化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本実施形態における樹脂組成物は、シアン酸エステル化合物を実質的に含まない構成とすることもできる。実質的に含まないとはシアン酸エステル化合物の含有量が樹脂組成物中の樹脂固形分100質量部に対し、1質量部未満であることをいい、0.1質量部未満であることが好ましく、0.01質量部未満であることがより好ましい。
<<エポキシ化合物>>
 本実施形態の樹脂組成物は、エポキシ化合物を含んでいてもよい。
 エポキシ化合物は、1分子中に1以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のエポキシ基を有する化合物または樹脂であれば特に限定されず、プリント配線板の分野で通常用いられる化合物を広く用いることができる。
 エポキシ化合物は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエン等の二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロロヒドリンとの反応により得られる化合物等が挙げられる。これらを用いることで、樹脂組成物の成形性、密着性が向上する。これらの中でも、難燃性および耐熱性をより一層向上させる観点から、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂であることが好ましく、ビフェニルアラルキル型エポキシ樹脂であることがより好ましい。
 本実施形態の樹脂組成物は、エポキシ化合物を本発明の効果を損なわない範囲で含むことが好ましい。成形性、密着性の観点から、本実施形態の樹脂組成物がエポキシ化合物を含む場合、その含有量は、樹脂組成物中の樹脂固形分100質量部に対し、0.1質量部以上であることが好ましく、1質量部以上であることがより好ましく、2質量部以上であることがさらに好ましい。エポキシ化合物の含有量が0.1質量部以上であることにより、金属箔ピール強度、靭性が向上する傾向にある。エポキシ化合物の含有量の上限値は、本実施形態の樹脂組成物がエポキシ化合物を含む場合、樹脂組成物中の樹脂固形分100質量部に対し、50質量部以下であることが好ましく、30質量部以下であることがより好ましく、20質量部以下であることがさらに好ましく、10質量部以下であることが一層好ましく、8質量部以下、5質量部以下であってもよい。エポキシ化合物の含有量が50質量部以下であることにより、得られる硬化物の電気特性が向上する傾向にある。
 本実施形態における樹脂組成物は、エポキシ化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本実施形態における樹脂組成物は、エポキシ化合物を実質的に含まない構成とすることもできる。実質的に含まないとは、エポキシ化合物の含有量が樹脂組成物中の樹脂固形分100質量部に対し、0.1質量部未満であることをいい、好ましくは0.01質量部未満であり、さらには0.001質量部未満であってもよい。
<<フェノール化合物>>
 本実施形態の樹脂組成物は、フェノール化合物を含んでいてもよい。
 フェノール樹脂の詳細は、国際公開第2021/172317号の段落0049の記載を参酌でき、この内容は本明細書に組み込まれる。
 本実施形態の樹脂組成物は、フェノール化合物を本発明の効果を損なわない範囲で含むことが好ましい。本実施形態の樹脂組成物がフェノール化合物を含む場合、その含有量は、樹脂組成物中の樹脂固形分100質量部に対し、0.1質量部以上であることが好ましく、また、50質量部以下であることが好ましい。
 本実施形態における樹脂組成物は、フェノール化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本実施形態における樹脂組成物は、フェノール化合物を実質的に含まない構成とすることもできる。実質的に含まないとは、フェノール化合物の含有量が樹脂組成物中の樹脂固形分100質量部に対し、0.1質量部未満であることをいう。
<<(メタ)アリル基を含む化合物>>
 本実施形態の樹脂組成物は、(メタ)アリル基を含む化合物を含むことが好ましく、アリル基を含む化合物を含むことがより好ましい。
 また、(メタ)アリル基を含む化合物は、(メタ)アリル基を2以上含む化合物であることが好ましく、アリル基を2以上含む化合物であることがより好ましい。
 (メタ)アリル基を含む化合物としては、(メタ)アリルイソシアヌレート化合物、シアヌル酸トリ(メタ)アリル化合物、(メタ)アリル基置換ナジイミド化合物、グリコールウリル構造を有する(メタ)アリル化合物、および、ジアリルフタレートからなる群より選択される少なくとも1種を含むことが好ましく、(メタ)アリルイソシアヌレート化合物、(メタ)アリル基置換ナジイミド化合物、および、グリコールウリル構造を有する(メタ)アリル化合物からなる群より選択される少なくとも1種を含むことがより好ましく、(メタ)アリルイソシアヌレート化合物、および/または(メタ)アリル基置換ナジイミド化合物を含むことがさらに好ましく、(メタ)アリル基置換ナジイミド化合物を含むことが一層好ましい。
 シアヌル酸トリ(メタ)アリル化合物としては、シアヌル酸トリ(メタ)アリル化合物(例えば、下記に構造を示すシアヌル酸トリアリル)などが例示される。
 また、(メタ)アリル基を含む化合物としては、国際公開第2022/210095号に記載のアリル基を有する樹脂(例えば、同公報の合成例3、4、6、20、22に記載の化合物)が例示され、この内容は本明細書に組み込まれる。
 本実施形態の樹脂組成物が、(メタ)アリル基を含む化合物を含む場合、その分子量は、195以上であることが好ましく、300以上であることがより好ましく、400以上であることがさらに好ましく、500以上であることが一層好ましい。前記下限値以上とすることにより、低誘電性、耐熱性がより向上する傾向にある。(メタ)アリル基を含む化合物の分子量は、また、3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることが一層好ましい。前記上限値以下とすることにより、低熱膨張性がより向上する傾向にある。
 本実施形態の樹脂組成物が(メタ)アリル基を含む化合物を含む場合、その含有量は、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましく、10質量部以上であってもよい。(メタ)アリル基を含む化合物の含有量を上記下限値以上とすることにより、成形性に優れ、耐熱性がより向上する傾向にある。また、(メタ)アリル基を含む化合物の含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、40質量部以下であることが好ましく、30質量部以下であることがより好ましく、20質量部以下であることがさらに好ましい。(メタ)アリル基を含む化合物の含有量を上記上限値以下とすることにより、低熱膨張性がより向上する傾向にある。
 本実施形態の樹脂組成物は、(メタ)アリル基を含む化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<<<(メタ)アリルイソシアヌレート化合物>>>
 (メタ)アリルイソシアヌレート化合物としては、(メタ)アリル基を2つ以上有し、かつ、イソシアヌレート環(ヌレート骨格)を有する化合物である限り、特に定めるものではない。(メタ)アリルイソシアヌレート化合物は、架橋点となる(メタ)アリル基の数が多いため、樹脂(A)およびポリフェニレンエーテル化合物(B)ならびに他の樹脂成分(例えば、他の化合物(C))と強固に硬化し、低誘電特性(Dkおよび/またはDf)、および、耐熱性に優れる硬化物が得られる傾向にある。(メタ)アリルイソシアヌレート化合物としては、式(TA)で表される化合物が好ましい。
式(TA)
(式(TA)中、Rは、置換基を表す)。
 式(TA)中、Rは、置換基を表し、式量15~500の置換基であることがより好ましい。
 Rの第一の例は、炭素数1~22のアルキル基、または、炭素数2~22のアルケニル基である。炭素数1~22のアルキル基、または、炭素数2~22のアルケニル基を有するアリル化合物を使用することによって、架橋性に優れ、かつ、高靱性を有する硬化物を得ることができる樹脂組成物を提供することができる。それにより、樹脂組成物にガラスクロスなどの基材を含めない場合であっても、エッチング処理などの際に割れたりすることを抑制できる。
 前記アルキル基および/またはアルケニル基の炭素数は、ハンドリング性向上の観点から、3以上が好ましく、8以上がより好ましく、さらには、12以上であってもよく、18以下であってもよい。それにより樹脂組成物の樹脂流れ性が良好となり、本実施形態の樹脂組成物を用いて多層回路基板などを作成する際の回路充填性などにより優れるようになると考えられる。
 Rの第二の例は、アリルイソシアヌレート基を含む基である。Rがアリルイソシアヌレート基を含む場合、式(TA)で表される化合物は、式(TA-1)で表される化合物であることが好ましい。
式(TA-1)
(式(TA-1)中、RA2は、2価の連結基である。)
 式(TA-1)中、RA2は、式量が54~250の2価の連結基であることが好ましく、式量が54~250で、両末端が炭素原子である2価の連結基であることがより好ましく、炭素数2~20の脂肪族炭化水素基であることがさらに好ましい(但し、脂肪族炭化水素基中にエーテル基を含んでいてもよく、また、水酸基を有していてもよい)。より具体的には、RA2は、下記式(i)~(iii)のいずれかで表される基であることが好ましい。
(式中(i)~(iii)中、pc1はメチレン基の繰り返し単位数を表し、2~18の整数である。pc2はオキシエチレン基の繰り返し単位数を表し、0または1である。*は結合部位である。)
 前記pc1は、好ましくは2~10の整数、より好ましくは3~8の整数、さらに好ましくは3~5の整数である。
 前記pc2は、0であってもよいし、1であってもよいが、好ましくは1である。
 Rの第三の例は、リン系置換基である。
 RA2は第一の例であることが好ましい。
 本実施形態では、式(TA)で表される化合物の反応基(アリル基)当量が1000g/eq.以下であることが好ましい。前記当量が1000g/eq.以下であれば、高いTgをより確実に得ることができると考えられる。
 前記炭素数1~22のアルキル基としては、直鎖状または分岐鎖状のアルキル基が挙げられ、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、ドコシル基等が挙げられる。また、前記炭素数2~22のアルケニル基としては、例えば、アリル基、デセニル基等が挙げられる。
 式(TA)で表される化合物の具体例としては、例えば、トリアリルイソシアヌレート、5-オクチル-1,3-ジアリルイソシアヌレート、5-ドデシル-1,3-ジアリルイソシアヌレート、5-テトラデシル-1,3-ジアリルイソシアヌレート、5-ヘキサデシル-1,3-ジアリルイソシアヌレート、5-オクタデシル-1,3-ジアリルイソシアヌレート、5-エイコシル-1,3-ジアリルイソシアヌレート、5-ドコシル-1,3-ジアリルイソシアヌレート、5-デセニル-1,3-ジアリルイソシアヌレートなどが挙げられる。これらは1種または2種以上を組み合わせて使用してもよく、プレポリマーとして使用してもよい。
 式(TA)で表される化合物の製造方法は、特に限定はされないが、例えば、ジアリルイソシアヌレートとアルキルハライドとをN,N’-ジメチルホルムアミド等の非プロトン性極性溶剤中において、水酸化ナトリウム、炭酸カリウム、トリエチルアミンなどの塩基性物質の存在下で、60℃~150℃程度の温度で反応させることにより、得ることができる。
 また、式(TA)で表される化合物は、市販のものを用いることもできる。市販されているものとしては、特に限定されないが、例えば、四国化成工業(株)製L-DAIC、リン系置換基を有する四国化成工業(株)P-DAIC、が挙げられる。トリアリルイソシアヌレートとしては、例えば、(株)新菱製TAICが挙げられる。式(TA-1)で表される化合物としては、例えば、四国化成工業(株)製DD-1が挙げられる。
 (メタ)アリルイソシアヌレート化合物(好ましくは、式(TA)で表される化合物)の分子量は、200以上であることが好ましく、300以上であることがより好ましく、400以上であることがさらに好ましく、500以上であることが一層好ましい。前記分子量を上記下限値以上とすることにより、得られる硬化物の低誘電特性(Dkおよび/またはDf)、耐熱性がより向上する傾向にある。また、(メタ)アリルイソシアヌレート化合物(好ましくは、式(TA)で表される化合物)の分子量は、3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることが一層好ましい。前記分子量を上記上限値以下とすることにより、得られる硬化物の低熱膨張性がより向上する傾向にある。
 本実施形態の樹脂組成物が(メタ)アリルイソシアヌレート化合物を含む場合、その含有量は、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましく、10質量部以上であってもよい。(メタ)アリルイソシアヌレート化合物の含有量を上記下限値以上とすることにより、樹脂組成物が成形性に優れ、得られる硬化物の耐熱性、低熱膨張性がより向上する傾向にある。また、(メタ)アリルイソシアヌレート化合物の含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、40質量部以下であることが好ましく、30質量部以下であることがより好ましく、20質量部以下であってもよい。(メタ)アリルイソシアヌレート化合物の含有量を上記上限値以下とすることにより、得られる硬化物の耐熱性、低誘電特性(Dkおよび/またはDf)がより向上する傾向にある。
 本実施形態の樹脂組成物は、(メタ)アリルイソシアヌレート化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<<<(メタ)アリル基置換ナジイミド化合物>>>
 (メタ)アリル基置換ナジイミド化合物としては、分子中に2個以上の(メタ)アリル基置換ナジイミド基を有する化合物であれば、特に限定されるものではない。その具体例としては下記式(AN)で表される化合物が挙げられる。
式(AN)
(式(AN)中、Rは、それぞれ独立に、水素原子、または、炭素数1~6のアルキル基を表し、Rは、炭素数1~6のアルキレン基、フェニレン基、ビフェニレン基、ナフチレン基、または、式(AN-2)または(AN-3)で表される基を表す。
式(AN-2)
(式(AN-2)中、Rは、メチレン基、イソプロピリデン基、-C(=O)-、-O-、-S-、または、-S(=O)-で表される基を表す。)
式(AN-3)
(式(AN-3)中、Rは、それぞれ独立に、炭素数1~4のアルキレン基、または、炭素数5~8のシクロアルキレン基を表す。)
 また、式(AN)で表される化合物は、市販のものを用いることもできる。市販されているものとしては、特に限定されないが、例えば、式(AN-4)で表される化合物(BANI-M(丸善石油化学(株)製))、式(AN-5)で表される化合物(BANI-X(丸善石油化学(株)製))などが挙げられる。これらは1種または2種以上を組み合わせて使用してもよい。
式(AN-4)
式(AN-5)
 (メタ)アリル基置換ナジイミド化合物(好ましくは式(AN)で表される化合物)の分子量は、400以上であることが好ましく、500以上であることがより好ましく、550以上であってもよい。(メタ)アリル基置換ナジイミド化合物の分子量を上記下限値以上とすることにより、低誘電性、低熱膨張性、耐熱性がより向上する傾向にある。(メタ)アリル基置換ナジイミド化合物(好ましくは式(AN)で表される化合物)の分子量は、また、1500以下であることが好ましく、1000以下であることがより好ましく、800以下であることがさらに好ましく、700以下、600以下であってもよい。(メタ)アリル基置換ナジイミド化合物の分子量を上記上限値以下とすることにより、成形性、ピール強度がより向上する傾向にある。
 本実施形態の樹脂組成物が(メタ)アリル基置換ナジイミド化合物(好ましくは式(AN)で表される化合物)を含む場合、その含有量は、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましく、10質量部以上であってもよい。(メタ)アリル基置換ナジイミド化合物の含有量を上記下限値以上とすることにより、成形性に優れ、低誘電性、低熱膨張性、耐熱性がより向上する傾向にある。また、(メタ)アリル基置換ナジイミド化合物(好ましくは式(AN)で表される化合物)の含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、40質量部以下であることが好ましく、30質量部以下であることがより好ましく、25質量部以下であることがさらに好ましく、20質量部以下であってもよい。(メタ)アリル基置換ナジイミド化合物の含有量を上記上限値以下とすることにより、成形性、ピール強度がより向上する傾向にある。
 本実施形態の樹脂組成物は、(メタ)アリル基置換ナジイミド化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<<<グリコールウリル構造を有する(メタ)アリル化合物>>>
 グリコールウリル構造を有する(メタ)アリル化合物としては、グリコールウリル構造と(メタ)アリル基を2つ以上含む化合物であれば、特に定めるものではない。樹脂組成物にグリコールウリル構造を有する(メタ)アリル化合物を配合した場合も、(メタ)アリル基の数を多くすることができ、すなわち、架橋点を多くすることができる。そのため、(メタ)アリルイソシアヌレート化合物と同様に、樹脂(A)およびポリフェニレンエーテル化合物(B)ならびに他の樹脂成分(例えば、他の化合物(C))と強固に硬化し、低誘電特性(Dkおよび/またはDf)、および、耐熱性に優れる硬化物が得られる傾向にある。
 本実施形態において、グリコールウリル構造を有する(メタ)アリル化合物は、式(GU)で表される化合物が好ましい。
 式(GU)
(式(GU)中、Rは、それぞれ独立に、水素原子または置換基であり、Rの少なくとも2つは、(メタ)アリル基を含む基である。)
 式(GU)中、Rは、それぞれ独立に、水素原子、炭素数1~5のアルキル基、または、炭素数2~5のアルケニル基であることが好ましく、炭素数2~5のアルケニル基であることが好ましく、(メタ)アリル基であることがより好ましく、アリル基であることがさらに好ましい。
 式(GU)中、Rは、3つまたは4つが(メタ)アリル基を含む基であることが好ましく、4つが(メタ)アリル基を含む基であることがより好ましい。
 式(GU)で表される化合物の具体例としては、1,3,4,6-テトラアリルグリコールウリル(式(GU)において、Rが全てアリル基である化合物)が挙げられる。
 また、式(GU)で表される化合物は、市販のものを用いることもできる。市販されているものとしては、特に限定されないが、例えば、四国化成工業社製TA-Gが挙げられる。
 グリコールウリル構造を有する(メタ)アリル化合物(好ましくは式(GU)で表される化合物)の分子量は、195以上であることが好ましく、220以上であることがより好ましく、250以上であることがさらに好ましく、300以上、400以上であってもよい。グリコールウリル構造を有する(メタ)アリル化合物の分子量を上記下限値以上とすることにより、得られる硬化物の耐熱性、低熱膨張性がより向上する傾向にある。グリコールウリル構造を有する(メタ)アリル化合物(好ましくは式(GU)で表される化合物)の分子量は、また、1500以下であることが好ましく、1000以下であることがより好ましく、800以下であることがさらに好ましく、700以下、600以下であってもよい。グリコールウリル構造を有する(メタ)アリル化合物の分子量を上記上限値以下とすることにより、得られる硬化物の低誘電特性(Dkおよび/またはDf)、耐熱性がより向上する傾向にある。
 本実施形態の樹脂組成物がグリコールウリル構造を有する(メタ)アリル化合物(好ましくは式(GU)で表される化合物)を含む場合、その含有量は、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましく、10質量部以上であってもよい。グリコールウリル構造を有する(メタ)アリル化合物の含有量を上記下限値以上とすることにより、樹脂組成物が成形性に優れ、得られる硬化物の耐熱性および低熱膨張性がより向上する傾向にある。また、グリコールウリル構造を有する(メタ)アリル化合物(好ましくは式(GU)で表される化合物)の含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、40質量部以下であることが好ましく、30質量部以下であることがより好ましく、25質量部以下であることがさらに好ましく、20質量部以下であってもよい。グリコールウリル構造を有する(メタ)アリル化合物の含有量を上記上限値以下とすることにより、得られる硬化物の低誘電特性(Dkおよび/またはDf)がより向上する傾向にある。
 本実施形態の樹脂組成物は、グリコールウリル構造を有する(メタ)アリル化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<<オキセタン樹脂>>
 本実施形態の樹脂組成物は、オキセタン樹脂を含んでいてもよい。
 オキセタン樹脂は、オキセタニル基を1以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)有する化合物であれば、特に限定されず、プリント配線板の分野で通常用いられる化合物を広く用いることができる。
 オキセタン樹脂としては、例えば、オキセタン、アルキルオキセタン(例えば、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン等)、3-メチル-3-メトキシメチルオキセタン、3,3-ジ(トリフルオロメチル)オキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT-101(東亞合成社製)、OXT-121(東亞合成社製)等が挙げられる。
 本実施形態の樹脂組成物は、オキセタン樹脂を本発明の効果を損なわない範囲で含むことが好ましい。本実施形態の樹脂組成物が、オキセタン樹脂を含む場合、その含有量は、樹脂組成物中の樹脂固形分100質量部に対し、0.1質量部以上であることが好ましく、1質量部以上であることがより好ましく、2質量部以上であることがさらに好ましい。オキセタン樹脂の含有量が0.1質量部以上であることにより、得られる硬化物の金属箔ピール強度および靭性が向上する傾向にある。オキセタン樹脂の含有量の上限値は、本実施形態の樹脂組成物が、オキセタン樹脂を含む場合、樹脂組成物中の樹脂固形分100質量部に対し、50質量部以下であることが好ましく、30質量部以下であることがより好ましく、20質量部以下であることがさらに好ましく、10質量部以下であることが一層好ましく、8質量部以下であることがより一層好ましい。オキセタン樹脂の含有量が50質量部以下であることにより、得られる硬化物の電気特性が向上する傾向にある。
 本実施形態における樹脂組成物は、オキセタン樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本実施形態における樹脂組成物は、オキセタン樹脂を実質的に含まない構成とすることもできる。実質的に含まないとは、オキセタン樹脂の含有量が樹脂組成物中の樹脂固形分100質量部に対し、0.1質量部未満であることをいう。
<<ベンゾオキサジン化合物>>
 本実施形態の樹脂組成物は、ベンゾオキサジン化合物を含んでいてもよい。
 ベンゾオキサジン化合物としては、1分子中に2以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のジヒドロベンゾオキサジン環を有する化合物であれば特に限定されず、プリント配線板の分野で通常用いられる化合物を広く用いることができる。
 ベンゾオキサジン化合物としては、例えば、ビスフェノールA型ベンゾオキサジンBA-BXZ(小西化学社製)、ビスフェノールF型ベンゾオキサジンBF-BXZ(小西化学社製)、ビスフェノールS型ベンゾオキサジンBS-BXZ(小西化学社製)等が挙げられる。
 本実施形態の樹脂組成物は、ベンゾオキサジン化合物を本発明の効果を損なわない範囲で含むことが好ましい。本実施形態の樹脂組成物がベンゾオキサジン化合物を含む場合、その含有量は、樹脂組成物中の樹脂固形分100質量部に対し、0.1質量部以上であることが好ましく、50質量部以下であることが好ましい。
 本実施形態における樹脂組成物は、ベンゾオキサジン化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本実施形態における樹脂組成物は、ベンゾオキサジン化合物を実質的に含まない構成とすることもできる。実質的に含まないとは、ベンゾオキサジン化合物の含有量が樹脂組成物中の樹脂固形分100質量部に対し、0.1質量部未満であることをいう。
<<アリールシクロブテン樹脂>>
 本実施形態の樹脂組成物は、アリールシクロブテン樹脂を含んでいてもよい。
 この詳細は、特開2019-194312号公報の段落0042に記載のアリールシクロブテン樹脂等が例示され、この内容は本明細書に組み込まれる。
<<ポリアミド樹脂>>
 本実施形態の樹脂組成物は、ポリアミド樹脂を含んでいてもよく、熱硬化性ポリアミド樹脂を含んでいてもよい。
 この詳細は、特開2019-194312号公報の段落0065に記載のポリアミドおよび特許第6951829号公報の段落0063に記載のポリアミド等を参照することができ、この内容は本明細書に組み込まれる。
<<ポリイミド樹脂>>
 本実施形態の樹脂組成物は、ポリイミド樹脂を含んでいてもよく、熱硬化性ポリイミド樹脂を含んでいてもよい。
 この詳細は、特許第6951829号の段落0063~0064に記載のポリイミド等を参照することができ、この内容は本明細書に組み込まれる。
<<ペルフルオロビニルエーテル樹脂>>
 本実施形態の樹脂組成物は、ペルフルオロビニルエーテル樹脂を含んでいてもよく、ペルフルオロビニルベンジルエーテル樹脂を含んでいてもよい。
 この詳細は、特開2019-194312号公報の段落0043に記載のペルフルオロビニルエーテル樹脂等が例示され、この内容は本明細書に組み込まれる。
<<末端に炭素-炭素不飽和二重結合を有するポリフェニレンエーテル化合物(B)以外のスチレン基を有する化合物>>
 本実施形態の樹脂組成物は、末端に炭素-炭素不飽和二重結合を有するポリフェニレンエーテル化合物(B)以外のスチレン基を有する化合物を含んでいてもよい。
 これらの詳細は、国際公開第2022/210095号に記載の末端にスチレンを有する化合物(例えば、同公報の合成例12~16に記載の化合物)、特開2022-85610号公報の段落0029~0038の記載、特開2019-194312号公報の段落0041に記載のビニルベンジルエーテル樹脂等が例示され、これらの内容は本明細書に組み込まれる。
<<インダン骨格を有する樹脂(A)以外のイソプロペニル基を有する化合物>>
 本実施形態の樹脂組成物は、インダン骨格を有する樹脂(A)以外のイソプロペニル基を有する化合物を含んでいてもよい。
 これらの詳細は、国際公開第2022/210095号に記載のイソプロペニル基を有する樹脂(例えば、同公報の合成例1、2、7、8に記載の化合物)が例示され、この内容は本明細書に組み込まれる。
<<前記末端に炭素-炭素不飽和二重結合を有するポリフェニレンエーテル化合物(B)以外の多官能(メタ)アクリレート化合物>>
 本実施形態の樹脂組成物は、前記末端に炭素-炭素不飽和二重結合を有するポリフェニレンエーテル化合物(B)以外の多官能(メタ)アクリレート化合物を含んでいてもよい。ここで、多官能(メタ)アクリレート化合物とは、一分子内に(メタ)アクリロイルオキシ基を2つ以上含む化合物を意味し、一分子内に(メタ)アクリロイルオキシ基を3つ以上含むことが好ましい。
 多官能(メタ)アクリレート化合物は、(メタ)アクリロイルオキシ基を3つから5つ有している化合物であることが好ましく、(メタ)アクリロイルオキシ基を3つまたは4つ有している化合物であることがより好ましく、(メタ)アクリロイルオキシ基を3つ有している化合物であることがさらに好ましい。(メタ)アクリレート化合物は、メタアクリロイルオキシ基を有する化合物であることが好ましい。
 多官能(メタ)アクリレート化合物は、架橋点となる(メタ)アクリレート基の数が多いため、樹脂(A)およびポリフェニレンエーテル化合物(B)ならびに他の樹脂成分(例えば、他の化合物(C))と強固に硬化し、低誘電特性(Dkおよび/またはDf)、および、耐熱性に優れる硬化物が得られる。多官能(メタ)アクリレート化合物としては、式(MA)で表される化合物が好ましい。
式(MA)
(式(MA)中、Rは、水素原子または置換基を表し、Rは、それぞれ独立に水素原子またはメチル基を表す。)
 式(MA)中、Rは、水素原子または置換基を表し、式量15~500の置換基であることがより好ましく、式量15~300の置換基であることがより好ましく、式量15~100の置換基であることがさらに好ましく、式量15~50の置換基であることが一層好ましい。
 Rは、好ましくは炭化水素基または(メタ)アクリロイルオキシ基であり、より好ましくは炭素数22以下の炭化水素基であり、さらに好ましくは炭素数1~22のアルキル基、または、炭素数2~22のアルケニル基である。炭素数1~22のアルキル基、または、炭素数2~22のアルケニル基を有する化合物を使用することによって、架橋性に優れ、かつ、高靱性を有する硬化物を得ることができる樹脂組成物を提供することができる。それにより、樹脂組成物にガラスクロスなどの基材を含めない場合であっても、エッチング処理などの際に割れたりすることを抑制できる。
 前記アルキル基および/またはアルケニル基の炭素数は、ハンドリング性向上の観点から、2以上が好ましく、8以上であってもよく、さらには、12以上であってもよく、18以下であってもよい。それにより樹脂組成物の樹脂流れ性が良好となり、本実施形態の樹脂組成物を用いて多層回路基板などを作成する際の回路充填性などにより優れるようになると考えられる。
 本実施形態では、式(MA)で表される化合物の(メタ)アクリル基当量が1000g/eq.以下であることが好ましい。前記当量が1000g/eq.以下であれば、高いTgをより確実に得ることができる傾向にある。(メタ)アクリル基当量の下限値は、例えば、99g/eq.以上である。
 前記炭素数1~22のアルキル基としては、炭素数1~22の直鎖状、または、炭素数3~22分岐鎖状のアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、ドコシル基等が挙げられる。また、前記炭素数2~22のアルケニル基としては、炭素数2~15のアルケニル基が好ましく、例えば、アリル基、デセニル基等が挙げられる。
 式(MA)で表される化合物の具体例としては、例えば、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどが挙げられる。これらは1種または2種以上を組み合わせて使用してもよく、プレポリマーとして使用してもよい。
 また、式(MA)で表される化合物は、市販のものを用いることもできる。市販されているものとしては、特に限定されないが、例えば、トリメチロールプロパントリメタクリレートとして、新中村化学工業株式会社製「NKエステルTMPT」が挙げられる。
 多官能(メタ)アクリレート化合物の分子量は、300以上であることが好ましく、330以上であることがより好ましく、400以上であってもよく、500以上であってもよい。前記分子量を上記下限値以上とすることにより、得られる硬化物の低誘電特性(Dkおよび/またはDf)、耐熱性がより向上する傾向にある。また、(メタ)アクリレート化合物(好ましくは、式(MA)で表される化合物)の分子量は、3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることが一層好ましい。前記分子量を上記上限値以下とすることにより、得られる硬化物の低熱膨張性がより向上する傾向にある。
 これらの詳細は、国際公開第2022/210095号に記載の(メタ)アクリル基を有する樹脂(例えば、同公報の合成例5、21に記載の化合物)および特許第6962507号の(メタ)アクリル基を有する樹脂(例えば、実施例1~9に記載の化合物)が例示され、この内容は本明細書に組み込まれる。
 本実施形態の樹脂組成物が多官能(メタ)アクリレート化合物を含む場合、その含有量は、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましく、10質量部以上であってもよい。多官能(メタ)アクリレート化合物の含有量を上記下限値以上とすることにより、樹脂組成物が成形性に優れ、得られる硬化物の耐熱性、低熱膨張性がより向上する傾向にある。また、(メタ)アクリレート化合物の含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、40質量部以下であることが好ましく、30質量部以下であることがより好ましく、20質量部以下であってもよい。多官能(メタ)アクリレート化合物の含有量を上記上限値以下とすることにより、得られる硬化物の耐熱性、低誘電特性(Dkおよび/またはDf)がより向上する傾向にある。
 本実施形態の樹脂組成物は、多官能(メタ)アクリレート化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<<エラストマー>>
 本実施形態の樹脂組成物は、エラストマーを含んでいてもよい。エラストマーは熱可塑性であっても、熱硬化性であっても、熱可塑性および熱硬化性のいずれも示さなくてもよいが、熱可塑性が好ましい。
 本実施形態におけるエラストマーは、特に限定されず、例えば、ポリイソプレン、ポリブタジエン、スチレンブタジエン、ブチルゴム、エチレンプロピレンゴム、スチレンブタジエンエチレン、スチレンブタジエンスチレン、スチレンイソプレンスチレン、スチレンエチレンブチレンスチレン、スチレンプロピレンスチレン、スチレンエチレンプロピレンスチレン、フッ素ゴム、シリコーンゴム、それらの水添化合物、それらのアルキル化合物、およびそれらの共重合体からなる群より選択される少なくとも1種が挙げられる。
 また、エラストマーとしては、特開2019-194312号公報の段落0044および0045に記載の硬化性ビニル官能基を有するオリゴマーまたはポリマー、ポリブタジエン樹脂も例示され、これらの内容は本明細書に組み込まれる。
 本実施形態で用いるエラストマー(好ましくは熱可塑性エラストマー)の数平均分子量は、1000以上であることが好ましい。数平均分子量を、1000以上とすることにより、得られる硬化物の低誘電特性(Dkおよび/またはDf、特に、低誘電正接性)がより優れる傾向にある。数平均分子量は、1500以上であることが好ましく、2000以上であることがより好ましく、用途等に応じて、600,000以上、700,000以上、800,000以上であってもよい。エラストマーの数平均分子量の上限は、400,000以下であることが好ましく、350,000以下であることがより好ましく、300,000以下であることがさらに好ましい。前記上限値以下とすることにより、エラストマー成分の樹脂組成物への溶解性が向上する傾向にある。
 本実施形態の樹脂組成物が2種以上のエラストマーを含む場合、それらの混合物の数平均分子量が上記範囲を満たすことが好ましい。
 本実施形態で用いるエラストマーは、ポリブタジエン構造を含む樹脂が挙げられる。ポリブタジエン構造は、一部または全てが、水素添加されていてもよい。具体例としては、日本曹達株式会社製、B-1000、B-2000、B-3000、BI-2000、BI-3000、CRAY VALLEY社製、Ricon100、Ricon130、Ricon131、Ricon142、Ricon150、Ricon181、Ricon184等が挙げられる。
 本実施形態で用いるエラストマーは、ポリ(メタ)アクリレート構造を含有する樹脂が挙げられる。具体例としては、ナガセケムテックス社製テイサンレジン、根上工業社製のME-2000 、W-197C、KG-15、KG-3000等が挙げられる。
 本実施形態で用いるエラストマーは、ポリカーボネート構造を含有する樹脂が挙げられる。ポリカーボネート構造を含有する樹脂を「ポリカーボネート樹脂」ということがある。このような樹脂としては、反応基を持たないカーボネート樹脂、ヒドロキシ基含有カーボネート樹脂、フェノール性水酸基含有カーボネート樹脂、カルボキシ基含有カーボネート樹脂、酸無水物基含有カーボネート樹脂、イソシアネート基含有カーボネート樹脂、ウレタン基含有カーボネート樹脂、エポキシ基含有カーボネート樹脂等が挙げられる。ここで反応基とは、ヒドロキシ基、フェノール性水酸基、カルボキシ基、酸無水物基、イソシアネート基、ウレタン基、およびエポキシ基等他の成分と反応し得る官能基のことをいう。
 ポリカーボネート樹脂の具体例としては、三菱ガス化学社製のFPC0220、FPC2136、旭化成ケミカルズ社製のT6002、T6001(ポリカーボネートジオール)等が挙げられる。
 本実施形態で用いるエラストマーは、ポリシロキサン構造を含有する樹脂が挙げられる。具体例としては、信越シリコーン社製のSMP-2006、SMP-2003PGMEA、SMP-5005PGMEA、KR-510、SMP-7014-3S等が挙げられる。
 本実施形態で用いるエラストマーは、ポリアルキレン構造および/またはポリアルキレンオキシ構造を含有する樹脂が挙げられる。ポリアルキレンオキシ構造は、炭素数2~15のポリアルキレンオキシ構造が好ましく、炭素数3~10のポリアルキレンオキシ構造がより好ましく、炭素数5~6のポリアルキレンオキシ構造が特に好ましい。ポリアルキレン構造および/またはポリアルキレンオキシ構造を含有する樹脂の具体例としては、旭化成せんい社製のPTXG-1000、PTXG-1800等が挙げられる。
 本実施形態で用いるエラストマーは、ポリイソプレン構造を含有する樹脂が挙げられる。具体例としては、クラレ社製のKL-610、KL613等が挙げられる。
 本実施形態で用いるエラストマーは、ポリイソブチレン構造を含有する樹脂が挙げられる。具体例としては、カネカ社製のSIBSTAR-073T(スチレン-イソブチレン- スチレントリブロック共重合体)、SIBSTAR -042D( スチレン-イソブチレンジブロック共重合体)等が挙げられる。
 本実施形態において、エラストマーは、スチレン単量体単位と、共役ジエン単量体単位を含むエラストマー(以下、「エラストマー(e)」と称する)が好ましい。このようなエラストマー(e)を用いることにより、得られる硬化物の低誘電特性(Dkおよび/またはDf、特に、低誘電正接性)がより優れる。
 上記エラストマー(e)は、スチレン単量体単位を含む。スチレン単量体単位を含むことにより、エラストマー(e)の樹脂組成物への溶解性が向上する。スチレン単量体としては、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン(ビニルスチレン)、N,N-ジメチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノエチルスチレン等が例示され、これらの中でも、入手性および生産性の観点から、スチレン、α-メチルスチレン、p-メチルスチレンが好ましい。これらの中でもスチレンが特に好ましい。
 上記エラストマー(e)におけるスチレン単量体単位の含有量は、全単量体単位の10~50質量%の範囲が好ましく、13~45質量%の範囲がより好ましく、15~40質量%の範囲がさらに好ましい。スチレン単量体単位の含有量が50質量%以下であれば、基材等との密着性、粘着性がより良好になる。また、10質量%以上であれば、粘着昂進を抑制でき、糊残りやストップマークが生じにくく、粘着面同士の易剥離性が良好になる傾向にあるため好ましい。
 エラストマー(e)はスチレン単量体単位を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲であることが好ましい。
 本実施形態のエラストマー(e)中のスチレン単量体単位の含有量の測定方法は、国際公開第2017/126469号の記載を参酌でき、この内容は本明細書に組み込まれる。後述する、共役ジエン単量体単位等についても同様である。
 上記エラストマー(e)は、共役ジエン単量体単位を含む。共役ジエン単量体単位を含むことにより、エラストマー(e)の樹脂組成物への溶解性が向上する。共役ジエン単量体としては、1対の共役二重結合を有するジオレフィンである限り、特に限定されない。共役ジエン単量体は、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、および、ファルネセンが挙げられ、1,3-ブタジエン、および、イソプレンが好ましく、1,3-ブタジエンがより好ましい。
 エラストマー(e)は共役ジエン単量体単位を1種のみ含んでいてもよいし、2種以上含んでいてもよい。
 上記エラストマー(e)においては、スチレン単量体単位と共役ジエン単量体単位との質量比率が、スチレン単量体単位/共役ジエン単量体単位=5/95~80/20の範囲であることが好ましく、7/93~77/23の範囲であることがより好ましく、10/90~70/30の範囲であることがさらに好ましい。スチレン重合体単位と共役ジエン単量体単位の質量比率が、5/95~80/20の範囲であれば、粘着昂進を抑制し粘着力を高く維持でき、粘着面同士の易剥離性が良好になる。
 上記エラストマー(e)は、エラストマーの共役ジエン結合の全部が水素添加されていてもよいし、一部水素添加されていてもよいし、水素添加されていなくてもよい。
 上記エラストマー(e)は、スチレン単量体単位および共役ジエン単量体単位に加え、他の単量体単位を含んでいてもよいし、含んでいなくてもよい。他の単量体単位としては、スチレン単量体単位以外の芳香族ビニル化合物単位などが例示される。
 上記エラストマー(e)は、スチレン単量体単位および共役ジエン単量体単位の合計が全単量体単位の90質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることがさらに好ましく、99質量%以上であることが一層好ましい。
 上述の通り、エラストマー(e)は、スチレン単量体単位および共役ジエン単量体単位を、それぞれ、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 本実施形態で用いるエラストマー(e)は、ブロック重合体であっても、ランダム重合体であってもよい。また、共役ジエン単量体単位が水素添加された水添エラストマーであっても、水素添加されていない未水添エラストマーであっても、部分的に水素添加された部分水添エラストマーであってもよく、未水添エラストマーまたは部分水添エラストマーであることが好ましい。
 本実施形態の一実施形態においては、エラストマー(e)は、水添エラストマーである。ここで、水添エラストマーは、例えば、エラストマー中の共役ジエン単量体単位に基づく二重結合が水素添加されているものを意味し、水素添加率(水添率)が100%のもののほか、80%以上のものを含む趣旨である。水添エラストマーにおける水添率は、85%以上が好ましく、90%以上がより好ましく、95%以上がさらに好ましい。本実施形態において、水添率は1H-NMRスペクトル測定の測定結果から算出される。
 本実施形態の一実施形態においては、エラストマー(e)は、未水添エラストマーである。ここで、未水添エラストマーとは、エラストマー中の共役ジエン単量体単位に基づく二重結合のうち、水素添加されているものの割合、すなわち、水素添加率(水添率)が20%以下のものをいう。水添率は、15%以下が好ましく、10%以下がより好ましく、5%以下がさらに好ましい。
 一方、部分水添エラストマーは、エラストマー中の共役ジエン単量体単位に基づく二重結合の一部が水素添加されているものを意味し、通常、水素添加率(水添率)が80%未満、20%超であるものをいう。
 本実施形態で用いるエラストマー(e)の市販品としては、株式会社クラレ製のSEPTON(登録商標)2104、V9461、S8104、旭化成株式会社製のS.O.E.(登録商標)S1606、S1613、S1609、S1605、旭化成株式会社製のタフテック(登録商標)のH1041、H1043、P2000、MP10、JSR株式会社製、DYNARON(登録商標)9901P、TR2250、等が例示される。
 本実施形態で用いるエラストマーは、また、液状ジエンであってもよい。液状ジエンとは、共役ジエン単量体単位を含む液状のエラストマーを意味する。共役ジエン単量体としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、および、ファルネセンが挙げられ、1,3-ブタジエン、および、イソプレンが好ましく、1,3-ブタジエンがより好ましい。
 本実施形態で用いる液状ジエンとしては、液状ポリブタジエン、液状ポリイソプレン、液状ポリブタジエンの変性物、液状ポリイソプレンの変性物、液状アクリルニトリル-ブタジエンの共重合体、液状スチレン-ブタジエン共重合体が挙げられる。
 また、液状ジエンの数平均分子量については、20℃において液状である限り、特に限定されないが、好ましくは500以上10,000以下である。
 本実施形態の樹脂組成物がエラストマー(好ましくは、エラストマー(e))を含む場合、その含有量は、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、8質量部以上であることがさらに好ましく、用途等に応じて、10質量部以上、12質量部以上であってもよい。前記下限値以上とすることにより、誘電特性(低誘電正接性)がより向上する傾向にある。また、エラストマーの含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、45質量部以下であることが好ましく、40質量部以下であることがより好ましく、35質量部以下であることがさらに好ましく、32質量部以下であることが一層好ましく、28質量部以下であることがより一層好ましい。前記上限値以下とすることにより、耐熱性がより向上する傾向にある。
 本実施形態の樹脂組成物は、エラストマーを1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本実施形態における樹脂組成物は、エラストマーを実質的に含まない構成とすることもできる。実質的に含まないとはエラストマーの含有量が樹脂組成物中の樹脂固形分100質量部に対し、1質量部未満であることをいい、0.1質量部未満であることが好ましく、0.01質量部未満であることがより好ましい。
<<石油樹脂>>
 本実施形態の樹脂組成物は、石油樹脂を含んでいてもよい。石油樹脂を含むことにより、溶融粘度を低くすることができる。
 石油樹脂は、石油ナフサを熱分解して必要な留分を採取した残りの成分を、不飽和炭化水素を単離することなく無触媒、もしくは、触媒存在下に重合して得られる樹脂である。前記残りの留分としては、主として、C5留分(イソプレン、ピペリレン、シクロペンタジエン、ペンテン類、ペンタン類等)またはC9留分(ビニルトルエン、インデン、ジシクロペンタジエン等)を含む留分である。
 石油樹脂の製造に用いられる触媒は、酸性触媒が好ましい。具体的には、三フッ化ホウ素フェノール錯体、三フッ化ホウ素エーテル錯体、塩化アルミニウム、臭化アルミニウム、塩化鉄(III)、臭化鉄(III)などのルイス酸、ゼオライト、シリカ、モンモリロナイト、アルミナ等の固体酸、スルホン酸基含有フッ素樹脂、スルホン酸基含有ポリスチレン樹脂等のイオン交換樹脂、硫酸、塩酸、酢酸、リン酸、シュウ酸、硝酸、パラトルエンスルホン酸、トリフルオロ酢酸等のプロトン酸等を用いることができる。これらの中でも、副反応が起こりにくく、反応速度が速い、ルイス酸や固体酸を用いることが好ましく、三フッ化ホウ素の各種錯体、塩化アルミニウムが入手のし易さや反応性が高い点でより好ましい。
 石油樹脂の重量平均分子量は特に制限されないが、好ましくは500~10000であり、より好ましくは500~5000である。前記上限値以下とすることにより、他の樹脂と相溶しやすくなり、かつ、溶剤への溶解性も高くなる傾向にある。前記下限値以上とすることにより、得られる硬化物の耐熱性や機械的強度がより向上する傾向にある。
 石油樹脂の軟化点は特に制限されないが、高いことが好ましく、80℃以上であることが好ましく、100℃以上であることがより好ましい。前記下限値以上とすることにより、得られる硬化物の耐熱性が向上する傾向にある。
 石油樹脂は、脂肪族系石油樹脂、芳香族系石油樹脂、共重合系石油樹脂、ジシクロペンタジエン系石油樹脂が例示され、ジシクロペンタジエン系石油樹脂が好ましい。
 ジシクロペンタジエン系石油樹脂としては、ジシクロペンタジエン、イソプロペニルノルボルネン、ジメチルジシクロペンタジエン、トリシクロペンタジエン等のジシクロペンタジエン系留分を重合して得られる樹脂、ジシクロペンタジエン系留分とその他の不飽和結合を有するモノマー、好ましくは不飽和環状オレフィン類を重合して得られる樹脂等が挙げられる。
 前記不飽和環状オレフィン類としては、シクロペンタジエン;2-ノルボルネン、5-メチル-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-フェニルノルボルネン、5-プロペニル-2-ノルボルネン,5-エチリデン-2-ノルボルネン等のノルボルネン系モノマー;さらに三環体以上のノルボルネン系モノマーとして、ジエチルジシクロペンタジエン,ジヒドロジシクロペンタジエン等のジシクロペンタジエン系留分以外の三環体、テトラシクロドデセン等の四環体、トリシクロペンタジエン等の五環体、テトラシクオロペンタジエン等の七環体およびこれらの多環体のアルキル置換体、アルキリデン置換体、アリール置換体等が挙げられる。前記多環体のアルキル置換体としては、例えば、メチル、エチル、プロピル、ブチル置換体等が挙げられ、また前記多環体のアルキリデン置換体としては、例えば、エチリデン置換体等が挙げられ、さらに前記多環体のアリール置換体としては、例えば、フェニル、トリル、ナフチル置換体等が挙げられる。
 さらに、不飽和環状オレフィン類以外の、その他の不飽和結合を有するモノマーとしては、炭素数3~12のオレフィンを共重合してもよく、例えば、プロピレン、ブテン-1、ペンテン-1、1,3-ペンタジエン、ヘキセン-1、ヘプテン-1、オクテン-1、ジイソブチンレン、ノネン-1、デセン-1、4-フェニルブテン-1、6-フェニルヘキセン-1、3-メチルブテン-1、4-メチルペンテン-1、3-メチルペンテン-1、3-メチルヘキセン-1、4-メチルヘキセン-1、5-メチルヘキセン-1、3,3-ジメチルペンテン-1、3,4-ジメチルペンテン-1、4,4-ジメチルペンテン-1、ビニルシクロヘキサン、ビニルシクロヘキセンなどのα-オレフィン;ヘキサフルオロプロペン、2-フルオロプロペン、3-フルオロプロペン、3,4-ジクロロブテン-1などのハロゲン置換α-オレフィン等が挙げられる。
 前記以外のその他の不飽和結合を有するモノマーとしては、例えば、エチレン、テトラフルオロエチレン、フルオロエチレン、1,1-ジフルオロエチレン、トリフルオロエチレン;スチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,4-ジメチルスチレン、3,5-ジメチルスチレン、p-t-ブチルスチレンなどのアルキルスチレン;p-クロロスチレン、m-クロロスチレン、o-クロロスチレン、p-ブロモスチレン、m-ブロモスチレン、o-ブロモスチレン、p-フルオロスチレン、m-フルオロスチレン、o-フルオロスチレン、o-メチル-p-フルオロスチレンなどのハロゲン化スチレン;無水マレイン酸、マレイン酸、フマル酸、アリルアルコール、3-ブテン-2-オール、メチルブテン-1-オール、酢酸ビニル、塩化ビニルなどが挙げられる。
 前記モノマーは、単独で用いられてもよく、2種以上を併用してもよい。
 石油樹脂は市販のものを適宜使用することが可能であり、脂肪族系石油樹脂としては、日本ゼオン株式会社製クイントンA100、クイントンB170、クイントンK100、クイントンM100、クイントンR100、クイントンC200S、丸善石油化学株式会社製マルカレッツT-100AS、マルカレッツR-100AS、芳香族系石油樹脂としては、JXTGエネルギー株式会社製ネオポリマーL-90、ネオポリマー120、ネオポリマー130、ネオポリマー140、ネオポリマー150、ネオポリマー170S、ネオポリマー160、ネオポリマーE-100、ネオポリマーE-130、ネオポリマー130S、ネオポリマーS、東ソー株式会社製ペトコールLX、ペトコールLX-HS、ペトコール100T、ペトコール120、ペトコール120HS、ペトコール130、ペトコール140、ペトコール140HM、ペトコール140HM5、ペトコール150、ペトコール150AS、共重合系石油樹脂としては、日本ゼオン株式会社製クイントンD100、クイントンN180、クイントンP195N、クイントンS100、クイントンS195、クイントンU185、クイントンG100B、クイントンG115、クイントンD200、クイントンE200SN、クイントンN295、東ソー株式会社製ペトロタック60、ペトロタック70、ペトロタック90、ペトロタック90V、ペトロタック100、ペトロタック100V、ペトロタック90HM、DCPD(ジシクロペンタジエン)系石油樹脂としては、丸善石油化学株式会社製マルカレッツM-890A、マルカレッツM-845A、日本ゼオン株式会社製クイントン1325、クイントン1345、クイントン1500、クイントン1525L、クイントン1700、ENEOS株式会社製HA085、HA103、HA105、HA125、HB103、HB125等が挙げられる。
 また、石油樹脂としては、有機合成化学 第25巻第6号(1967)に記載のものも採用することができる。
 本実施形態の樹脂組成物が石油樹脂を含む場合、その含有量の下限値は、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、10質量部以上であることがさらに好ましく、20質量部以上であることが一層好ましく、25質量部以上であることがより一層好ましい。前記下限値以上とすることにより、溶融粘度が低下する傾向にある。また、石油樹脂の含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、70質量部以下であることが好ましく、50質量部以下であることがより好ましく、40質量部以下であってもよい。前記上限値以下とすることにより、Dfが低下する傾向にある。
 本実施形態における樹脂組成物は、石油樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本実施形態における樹脂組成物は、石油樹脂を実質的に含まない構成とすることもできる。実質的に含まないとは石油樹脂の含有量が樹脂組成物中の樹脂固形分100質量部に対し、1質量部未満であることをいい、0.1質量部未満であることが好ましく、0.01質量部未満であることがより好ましい。
<充填材(D)>
 本実施形態の樹脂組成物は、充填材(D)を含むことが好ましい。充填材(D)を含むことにより、樹脂組成物やその硬化物の低誘電特性(Dkおよび/またはDf)、耐燃性、低熱膨張性等の物性をより向上させることができる。
 また、本実施形態で用いる充填材(D)は、低誘電特性(Dkおよび/またはDf)に優れることがより好ましい。例えば、本実施形態で用いる充填材(D)は、空洞共振器摂動法に従って測定した周波数10GHzにおける比誘電率(Dk)が8.0以下であることが好ましく、6.0以下であることがより好ましく、4.0以下であることがさらに好ましい。また、比誘電率の下限値は、例えば、2.0以上が実際的である。また、本実施形態で用いる充填材(D)は、空洞共振器摂動法に従って測定した周波数10GHzにおける誘電正接(Df)が0.05以下であることが好ましく、0.01以下であることがより好ましい。また、誘電正接の下限値は、例えば、0.0001以上が実際的である。
 本実施形態で使用される充填材(D)としては、その種類は特に限定されず、当業界において一般に使用されているものを好適に用いることができる。具体的には、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカ等のシリカ類、アルミナ、ホワイトカーボン、チタンホワイト、酸化チタン、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム等の金属酸化物、ホウ酸亜鉛、錫酸亜鉛、フォルステライト、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム等の複合酸化物、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウム等の窒化物、水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水酸化物(水和物を含む)、酸化モリブデンやモリブデン酸亜鉛等のモリブデン化合物、硫酸バリウム、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、E-ガラス、A-ガラス、NE-ガラス、NER-ガラス、C-ガラス、L-ガラス、D-ガラス、S-ガラス、M-ガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、Qガラス等のガラス微粉末類を含む。)、中空ガラス、球状ガラスなど無機系の充填材の他、スチレン型、ブタジエン型、アクリル型などのゴムパウダー、コアシェル型のゴムパウダー、シリコーンレジンパウダー、シリコーンゴムパウダー、シリコーン複合パウダーなど有機系の充填材などが挙げられる。
 本実施形態においては、無機充填材が好ましく、シリカ、水酸化アルミニウム、窒化アルミニウム、窒化ホウ素、フォルステライト、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、および、チタン酸カルシウムからなる群より選択される1種以上を含むことがより好ましく、低誘電特性(Dkおよび/またはDf)の観点からは、シリカ、および、水酸化アルミニウム、からなる群より選択される1種以上を含むことがより好ましく、シリカを含むことがさらに好ましい。これらの無機充填材を使用することで、樹脂組成物の硬化物の耐熱性、低誘電特性(Dkおよび/またはDf)、熱膨張特性、寸法安定性、難燃性などの特性がより向上する。
 本実施形態の樹脂組成物における充填材(D)の含有量は、所望する特性に応じて適宜設定することができ、特に限定されないが、樹脂組成物中の樹脂固形分100質量部に対し、10質量部以上であることが好ましく、20質量部以上であることがより好ましく、40質量部以上であることがさらに好ましく、60質量部以上であることが一層好ましく、80質量部以上であることがより一層好ましい。前記下限値以上とすることにより、得られる硬化物の耐熱性、低熱膨張性、低誘電正接性がより向上する傾向にある。また、充填材(D)の含有量の上限値は、樹脂固形分100質量部に対し、1000質量部以下であることが好ましく、500質量部以下であることがより好ましく、300質量部以下であることがさらに好ましく、250質量部以下であることが一層好ましく、200質量部以下、120質量部以下であってもよい。前記上限値以下とすることにより、樹脂組成物の成形性がより向上する傾向にある。
 本実施形態の樹脂組成物において、好ましい実施形態の一例として、充填材(D)の含有量が溶剤を除く成分の30質量%~90質量%である態様が例示される。
 本実施形態の樹脂組成物は、充填材(D)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 本実施形態の樹脂組成物において、充填材(D)、特に無機充填材を用いる際、シランカップリング剤をさらに含んでもよい。シランカップリング剤を含むことにより、充填材(D)の分散性、樹脂成分と、充填材(D)および後述する基材との接着強度がより向上する傾向にある。
 シランカップリング剤としては特に限定されず、一般に無機物の表面処理に使用されるシランカップリング剤が挙げられ、アミノシラン系化合物(例えば、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等)、エポキシシラン系化合物(例えば、γ-グリシドキシプロピルトリメトキシシラン等)、ビニルシラン系化合物(例えば、ビニルトリメトキシシラン等)、スチリルシラン系化合物、アクリルシラン系化合物(例えば、γ-アクリロキシプロピルトリメトキシシラン等)、カチオニックシラン系化合物(例えば、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩等)、フェニルシラン系化合物等が挙げられる。シランカップリング剤は、1種を単独で、または2種以上を組み合わせて用いられる。
 シランカップリング剤の含有量は、特に限定されないが、樹脂固形分100質量部に対して、0.1~5.0質量部であってよい。
<エチレン性不飽和基を有するモノマーまたはオリゴマー>
 本実施形態の樹脂組成物には、熱硬化性および活性エネルギー線による硬化性(例えば紫外線による光硬化性等)を高めるために、エチレン性不飽和基を有するモノマーまたはオリゴマーを併用することも可能である。本実施形態に用いるエチレン性不飽和基を有するオリゴマーまたはモノマーは、1分子中に1個以上のエチレン性不飽和基を有するオリゴマーまたはモノマーであれば、特に限定されないが、例えば、ビニル基、イソプロペニル基、アリル基、(メタ)アクリロイル基等を有するモノマーまたはオリゴマーが挙げられ、ビニル基を有するモノマーまたはオリゴマーが好ましい。
 尚、本明細書においては、エチレン性不飽和基を有するモノマーまたはオリゴマーに該当する化合物であって、末端に炭素-炭素不飽和二重結合を含むポリフェニレンエーテル化合物にも該当する化合物は、末端に炭素-炭素不飽和二重結合を含むポリフェニレンエーテル化合物とする。
 より具体的には、エチレン性不飽和基を有するモノマーとしては、分子量が1,000未満であり、かつ、分子内にエチレン性不飽和結合を含む有機基を1つ含む化合物(F1)(化合物(F1))が挙げられる。
 前記エチレン性不飽和結合を含む有機基を構成するエチレン性不飽和結合は、芳香環の一部として含まれるものは含まない趣旨である。一方、非芳香環の一部として含まれるエチレン性不飽和結合は含む趣旨である。非芳香環の一部として含まれるエチレン性不飽和結合の例としては、分子中のシクロヘキセニル基などが挙げられる。また、直鎖または分岐鎖の有機基の末端以外の部分、すなわち、直鎖または分岐鎖中に含まれるエチレン性不飽和結合も含む趣旨である。
 前記エチレン性不飽和結合を含む有機基は、ビニル基、アリル基、アクリロイル基、および、メタクリル基からなる群より選択される1つであることがより好ましく、ビニル基であることがさらに好ましい。
 また、本明細書においては、エチレン性不飽和基を有するモノマーまたはオリゴマーに該当する化合物であって、シランカップリング剤にも該当する化合物は、シランカップリング剤とする。
 本実施形態で用いる化合物(F1)は、また、炭素原子、水素原子、酸素原子、窒素原子、およびケイ素原子から選択される原子のみで構成されていることが好ましく、炭素原子、水素原子、酸素原子、およびケイ素原子から選択される原子のみで構成されていることがより好ましく、炭素原子、水素原子、酸素原子、および酸素原子から選択される原子のみで構成されていることがさらに好ましい。
 本実施形態で用いる化合物(F1)は、また、極性基を有していてもよいし、有していなくてもよい。本実施形態で用いる化合物(F1)は、極性基を有していない方が好ましい。極性基としては、アミノ基、カルボキシル基、ヒドロキシ基、ニトロ基が例示される。
 本実施形態において、化合物(F1)の分子量は70以上であることが好ましく、80以上であることがより好ましく、90以上であることがさらに好ましい。前記下限値以上とすることにより、本実施形態の樹脂組成物やその硬化物等からの化合物(F1)の揮発を抑制できる傾向にある。前記化合物(F1)の分子量の上限は、500以下であることが好ましく、400以下であることがより好ましく、300以下であることがさらに好ましく、200以下であることが一層好ましく、150以下であってもよい。前記上限値以下とすることにより、他の樹脂成分との反応性を高める効果がより向上する傾向にある。
 本実施形態の樹脂組成物が、化合物(F1)を2種以上含む場合、化合物(F1)の平均分子量値が上記範囲に含まれることが好ましく、それぞれの化合物の分子量が上記好ましい範囲に含まれることがより好ましい。
 本実施形態において、化合物(F1)は沸点が110℃以上であることが好ましく、115℃以上であることがより好ましく、120℃以上であることがさらに好ましい。前記下限値以上とすることにより、樹脂組成物を熱硬化させる際の化合物(F1)の揮発が抑制され、熱硬化性化合物と化合物(F1)とを反応させることができる。前記化合物(F1)の沸点は、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。前記上限値以下とすることにより、硬化物中に残溶剤として残りにくくすることができる。
 本実施形態の樹脂組成物が、化合物(F1)を2種以上含む場合、沸点の平均値が上記範囲に入ればよいが、それぞれの化合物の沸点が上記好ましい範囲に含まれることが好ましい。
 化合物(F1)としては、(メタ)アクリル酸エステル化合物、芳香族ビニル化合物(好ましくはスチレン系化合物)、イソプロペニル基含有化合物、飽和脂肪酸ビニル化合物、シアン化ビニル化合物、エチレン性不飽和カルボン酸、エチレン性不飽和カルボン酸無水物、エチレン性不飽和ジカルボン酸モノアルキルエステル、エチレン性不飽和カルボン酸アミド、無水マレイン酸、フマル酸、イタコン酸、およびシトラコン酸をベースにした不飽和ポリエステル化合物;アクリロイル基またはメタクリロイル基を含有する不飽和エポキシ(メタ)アクリレート化合物;ビニル基または(メタ)アリル基を含有する不飽和エポキシ化合物、ウレタン(メタ)アクリレート化合物、ポリエーテル(メタ)アクリレート化合物、ポリアルコール(メタ)アクリレート化合物、アルキドアクリレート化合物、ポリエステルアクリレート化合物、スピロアセタールアクリレート化合物、ジアリルフタレート化合物、ジアリルテトラブロモフタレート化合物、ジエチレングリコールビスアリルカーボネートおよびポリエチレンポリチオールなどが例示され、(メタ)アクリル酸エステル化合物、芳香族ビニル化合物、および飽和脂肪酸ビニル化合物、からなる群より選択される少なくとも1種が好ましく、芳香族ビニル化合物がより好ましい。
 化合物(F1)の具体例としては、メチルスチレン(例えば、4-メチルスチレン)、エチルビニルベンゼン、ジエチル4-ビニルベンジルホスホネート、4-ビニルベンジルグリシジルエーテル、α―メチルスチレン、等が例示される。また、化合物(F1)の具体例として、特開2019-194312号公報の段落0046および段落0049の記載を参酌でき、この内容は本明細書に組み込まれる。
 一方、本実施形態に係る樹脂組成物は、得られる硬化物の低誘電特性(Dkおよび/またはDf)向上のために、スチレンオリゴマー(F2)を含むことも好ましい。本実施形態に係るスチレンオリゴマー(F2)とは、スチレンおよび上記スチレン誘導体、ビニルトルエンからなる群より選択される少なくとも1種を重合してなることが好ましい。スチレンオリゴマー(F2)の数平均分子量は、178以上であることが好ましく、また、1600以下であることが好ましい。また、スチレンオリゴマー(F2)は、平均の芳香環数が2~14、芳香環数の2~14の総量が50質量%以上、沸点が300℃以上である分岐構造のない化合物であることが好ましい。
 本実施形態に用いられるスチレンオリゴマー(F2)としては、例えば、スチレン重合体、ビニルトルエン重合体、α-メチルスチレン重合体、ビニルトルエン-α-メチルスチレン重合体、スチレン-α-スチレン重合体等が挙げられる。スチレン重合体としては、市販品を用いてもよく、例えばピコラスチックA5(イーストマンケミカル社製)、ピコラスチックA-75(イーストマンケミカル社製)、ピコテックス75(イーストマンケミカル社製)、FTR-8100(三井化学(株)製)、FTR-8120(三井化学(株)製)が挙げられる。また、ビニルトルエン-α-メチルスチレン重合体としては、ピコテックスLC(イーストマンケミカル社製)が挙げられる。また、α-メチルスチレン重合体としてはクリスタレックス3070(イーストマンケミカル社製)、クリスタレックス3085(イーストマンケミカル社製)、クリスタレックス(3100)、クリスタレックス5140(イーストマンケミカル社製)、FMR-0100(三井化学(株)製)、FMR-0150(三井化学(株)製)が挙げられる。また、スチレン-α-スチレン重合体としてはFTR-2120(三井化学(株)製)が挙げられる。これらのスチレンオリゴマーは単独で用いても、2種以上を併用してもよい。
 本実施形態の樹脂組成物においては、α-メチルスチレンオリゴマーが、良好に熱硬化し、良好な微細配線の埋め込み性および半田耐熱性、低誘電特性(Dkおよび/またはDf)に優れることから好ましい。
 また、本実施形態に係る樹脂組成物は、低誘電率性および低誘電正接性向上のために、エチレン性不飽和基を有するモノマーとして、ジビニル化合物(F3)を含むことも好ましい。
 ジビニル化合物は、ビニル基を2つ有する低分子化合物である。ビニル基が2つであることにより、高まり過ぎない程度の良好な架橋密度となり、その結果、分子の自由体積が大きくなるため、得られる硬化物の誘電正接(Df)を小さく抑えることができる。さらに、ジビニル化合物(F3)は、樹脂(A)およびポリフェニレンエーテル化合物(B)、ならびに、他の硬化性化合物の一部の代わりとして使用されるため、極性基を有する成分の含有量が低減されること自体も誘電正接(Df)の低減に寄与すると考えられる。また、ジビニル化合物が有する官能基2つがいずれもビニル基であることによって、樹脂(A)およびポリフェニレンエーテル化合物(B)との反応性が良好なものとなり、その結果、耐熱性が向上し易くなる傾向があると考えられる。
 なお、ここでのジビニル化合物(F3)は、分子量が600未満のものをいい、300以下であることが好ましく、195未満であることがより好ましい。また、分子量の下限値は54が実際的である。ジビニル化合物(F3)としては、ジビニルベンゼン、1-エチニルー4-[2―(4-エチニルフェニル)エチル]ベンゼン(BVPE)
、1,3-ビニルテトラメチルシロキサン等が挙げられる。
 その他、エチレン性不飽和基を有するモノマーまたはオリゴマーとしては、1,3-ジイソプロペニルベンゼン、および、1,4-ジイソプロペニルベンゼンも好ましく用いられる。
 その他、エチレン性不飽和基を有するモノマーまたはオリゴマーの詳細は、国際公開第2017/135168号の段落0069~0087の記載、および、国際公開第2019/230945号の段落0065~0067を参酌でき、この内容は本明細書に組み込まれる。
 本実施形態の樹脂組成物がエチレン性不飽和基を有するモノマーまたはオリゴマーを含む場合、その含有量は、樹脂組成物中の樹脂固形分100質量部に対し、0.5質量部以上であることが好ましく、1質量部以上であることがより好ましく、2質量部以上であることがさらに好ましく、3質量部以上であることが一層好ましく、さらには、5質量部以上であってもよい。前記下限値以上とすることにより、得られる硬化物の低誘電特性(Dkおよび/またはDf)がより向上する傾向にある。また、エチレン性不飽和基を有するモノマーまたはオリゴマーの含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、30質量部以下であることが好ましく、25質量部以下であることがより好ましく、20質量部以下であることがさらに好ましく、15質量部以下であることが一層好ましく、10質量部以下であることがより一層好ましい。前記上限値以下とすることにより、耐熱性がより向上する傾向にある。また、得られる硬化物の低誘電特性(Dkおよび/またはDf)および耐薬品性がより向上する傾向にある。
 本実施形態の樹脂組成物は、エチレン性不飽和基を有するモノマーまたはオリゴマーを1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<難燃剤>
 本実施形態の樹脂組成物は、難燃剤を含んでいてもよい。難燃剤としては、リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤およびシリコーン系難燃剤が例示され、リン系難燃剤が好ましい。
 難燃剤としては、公知のものが使用でき、例えば、臭素化エポキシ樹脂、臭素化ポリカーボネート、臭素化ポリスチレン、臭素化スチレン、臭素化フタルイミド、テトラブロモビスフェノールA、ペンタブロモベンジル(メタ)アクリレート、ペンタブロモトルエン、トリブロモフェノール、ヘキサブロモベンゼン、デカブロモジフェニルエーテル、ビス-1,2-ペンタブロモフェニルエタン、塩素化ポリスチレン、塩素化パラフィン等のハロゲン系難燃剤、赤リン、トリクレジルホスフェート、トリフェニルホスフェート、クレジルジフェニルホスフェート、トリキシレニルホスフェート、トリアルキルホスフェート、ジアルキルホスフェート、トリス(クロロエチル)ホスフェート、ホスファゼン、1,3-フェニレンビス(2,6-ジキシレニルホスフェート)、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のリン系難燃剤、水酸化アルミニウム、水酸化マグネシウム、部分ベーマイト、ベーマイト、ホウ酸亜鉛、三酸化アンチモン等の無機系難燃剤、シリコーンゴム、シリコーンレジン等のシリコーン系難燃剤が挙げられる。
 本実施形態においては、これらの中でも、1,3-フェニレンビス(2,6-ジキシレニルホスフェート)が得られる硬化物の低誘電特性(Dkおよび/またはDf)を損なわないことから好ましい。
 本実施形態の樹脂組成物が難燃剤を含む場合、その含有量は、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、5質量部以上であることがより好ましい。また、難燃剤の含有量の下限値は、30質量部以下であることが好ましく、25質量部以下であることがより好ましい。
 難燃剤は、1種を単独で、または2種以上を組み合わせて用いることができる。2種以上用いる場合は、合計量が上記範囲となる。
<活性エステル化合物>
 本実施形態の樹脂組成物は、活性エステル化合物を含んでいてもよい。活性エステル化合物としては、特に限定されず、例えば、国際公開第2021/172317号の段落0064~0066の記載を参酌でき、この内容は本明細書に組み込まれる。
 本実施形態の樹脂組成物が活性エステル化合物を含む場合、樹脂組成物中の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、また、90質量部以下であることが好ましい。
 本実施形態における樹脂組成物は、活性エステル化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本実施形態における樹脂組成物は、活性エステル化合物を実質的に含まない構成とすることもできる。実質的に含まないとは、活性エステル化合物の含有量が樹脂組成物中の樹脂固形分100質量部に対し、1質量部未満であることをいい、0.1質量部未満であることが好ましく、0.01質量部未満であることがさらに好ましい。
<分散剤>
 本実施形態の樹脂組成物は、分散剤を含んでいてもよい。分散剤としては、一般に塗料用に使用されているものを好適に用いることができ、その種類は特に限定されない。分散剤は、好ましくは、共重合体ベースの湿潤分散剤、フッ素を含有するフッ素系分散剤が使用される。
 分散剤の具体例としては、ビックケミー・ジャパン(株)製のDISPERBYK(登録商標)-110、111、161、180、2009、2152、2155、BYK(登録商標)-W996、W9010、W903、W940、株式会社ネオス製のフタージエント、三菱鉛筆株式会社製MPTなどが挙げられる。
 本実施形態の樹脂組成物が分散剤を含む場合、その含有量の下限値は、樹脂組成物中の樹脂固形分100質量部に対し、0.01質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、0.3質量部以上であってもよい。また、分散剤の含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることがさらに好ましい。
 分散剤は、1種を単独で、または2種以上を組み合わせて用いることができる。2種以上用いる場合は、合計量が上記範囲となる。
<硬化促進剤>
 本実施形態の樹脂組成物は、硬化促進剤をさらに含んでもよい。硬化促進剤としては、特に限定されないが、例えば、2-エチル-4-メチルイミダゾール、トリフェニルイミダゾール等のイミダゾール類;過酸化ベンゾイル、ビス(1-メチル-1-フェニルエチル)パーオキサイド)、ジ-t-ブチルパーオキサイド、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パ-フタレート、α,α’-ジ(t-ブチルペルオキシ)ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキシン-3などの有機過酸化物;アゾビスニトリル(例えば、アゾビスイソブチロニトリル)などのアゾ化合物;N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、2-N-エチルアニリノエタノール、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジンなどの第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコールなどのフェノール類;2,3-ジメチル-2,3-ジフェニルブタンなどの高温分解型ラジカル発生剤;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オクチル酸マンガン、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄などの有機金属塩;これら有機金属塩をフェノール、ビスフェノールなどの水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウムなどの無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイドなどの有機錫化合物などが挙げられる。
 硬化促進剤は、イミダゾール類、有機過酸化物、および有機金属塩からなる群より選択される少なくとも1種が好ましく、イミダゾール類および有機金属塩からなる群より選択される少なくとも1種がより好ましく、イミダゾール類がさらに好ましい。
 また、本実施形態においては、有機過酸化物、アゾ化合物などの重合開始剤を実質的に含まない構成とすることもできる。実質的に含まないとは、重合開始剤の含有量が樹脂組成物中の樹脂固形分100質量部に対し、0.1質量部未満であることをいい、0.01質量部未満であることが好ましく、0.001質量部未満であることがより好ましい。
 本実施形態の樹脂組成物が硬化促進剤を含む場合、その含有量の下限値は、樹脂組成物中の樹脂固形分100質量部に対し、0.005質量部以上であることが好ましく、0.01質量部以上であることがより好ましく、0.1質量部以上であることがさらに好ましい。また、硬化促進剤の含有量の上限値は、樹脂組成物中の樹脂固形分100質量部に対し、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、2質量部以下であることがさらに好ましい。
 硬化促進剤は、1種を単独で、または2種以上を組み合わせて用いることができる。2種以上用いる場合は、合計量が上記範囲となる。
<溶剤>
 本実施形態の樹脂組成物は、溶剤を含有してもよく、有機溶剤を含むことが好ましい。溶剤を含有する場合、本実施形態の樹脂組成物は、上述した各種樹脂固形分の少なくとも一部、好ましくは全部が溶剤に溶解または相溶した形態(溶液またはワニス)である。溶剤としては、上述した各種樹脂固形分の少なくとも一部、好ましくは全部を溶解または相溶可能な極性有機溶剤または無極性有機溶剤であれば特に限定されず、極性有機溶剤としては、例えば、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等)、セロソルブ類(例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等)、エステル類(例えば、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等)、アミド類(例えば、ジメトキシアセトアミド、ジメチルホルムアミド類等)が挙げられ、無極性有機溶剤としては、芳香族炭化水素(例えば、トルエン、キシレン等)が挙げられる。
 溶剤は、1種を単独で、または2種以上を組み合わせて用いることができる。2種以上用いる場合は、合計量が上記範囲となる。
<その他の成分>
 本実施形態の樹脂組成物は、上記の成分以外に、上記以外の熱可塑性樹脂およびそのオリゴマー等の種々の高分子化合物、各種添加剤を含有してもよい。添加剤としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、流動調整剤、滑剤、消泡剤、レベリング剤、光沢剤、重合禁止剤等が挙げられる。これらの添加剤は、1種を単独で、または2種以上を組み合わせて用いることができる。
 また、本実施形態の樹脂組成物は、重合禁止剤を実質的に含まない構成とすることもできる。実質的に含まないとは、樹脂組成物が重合禁止剤を含まないか、樹脂組成物中の重合禁止剤の含有量が、樹脂固形分100質量部に対し、例えば、0.008質量部未満であることであり、0.007質量部以下であることが好ましく、0.001質量部以下であることがさらに好ましく、0.0001質量部以下であることが一層好ましい。
<用途>
 本実施形態の樹脂組成物は、硬化物として用いられる。具体的には、本実施形態の樹脂組成物は、低比誘電率材料および/または低誘電正接材料として、プリント配線板の絶縁層、半導体パッケージ用材料等、電子材料用樹脂組成物として好適に用いることができる。本実施形態の樹脂組成物は、プリプレグ、プリプレグを用いた金属箔張積層板、樹脂複合シート、およびプリント配線板用の材料として好適に用いることができる。
 本実施形態の樹脂組成物は、プリント配線板の絶縁層となる、プリプレグ、樹脂複合シート等の層状(フィルム状、シート状等を含む趣旨である)の材料として用いられるが、かかる層状の材料としたとき、その厚さは、5μm以上であることが好ましく、10μm以上であることがより好ましい。厚さの上限値としては、200μm以下であることが好ましく、180μm以下であることがより好ましい。尚、上記層状の材料の厚さは、例えば、本実施形態の樹脂組成物をガラスクロス等に含浸させたものである場合、ガラスクロスを含む厚さを意味する。
 本実施形態の樹脂組成物から形成される材料は、露光現像してパターンを形成する用途に用いてもよいし、露光現像しない用途に用いてもよい。特に、露光現像しない用途に適している。
<<プリプレグ>>
 本実施形態のプリプレグは、基材(プリプレグ基材)と、本実施形態の樹脂組成物とから形成される。本実施形態のプリプレグは、例えば、本実施形態の樹脂組成物を基材に適用(例えば、含浸および/または塗布)させた後、加熱(例えば、120~220℃で2~15分乾燥させる方法等)によって半硬化させることにより得られる。この場合、基材に対する樹脂組成物の付着量、すなわち半硬化後のプリプレグの総量に対する樹脂組成物量(充填材(D)を含む)は、20~99質量%の範囲であることが好ましく、20~80質量%の範囲であることがより好ましい。
 基材としては、各種プリント配線板材料に用いられている基材であれば特に限定されない。基材の材質としては、例えば、ガラス繊維(例えば、E-ガラス、D-ガラス、L-ガラス、S-ガラス、T-ガラス、Q-ガラス、UN-ガラス、NE-ガラス、NER-ガラス、球状ガラス等)、ガラス以外の無機繊維(例えば、クォーツ等)、有機繊維(例えば、ポリイミド、ポリアミド、ポリエステル、液晶ポリエステル、ポリテトラフルオロエチレン等)が挙げられる。基材の形態としては、特に限定されず、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマット等が挙げられる。これらの基材は、単独で用いても、2種以上を併用してもよい。これらの基材の中でも、寸法安定性の観点から、超開繊処理、目詰め処理を施した織布が好ましく、強度と低吸水性の観点から、基材は、厚み200μm以下、質量250g/m以下のガラス織布が好ましく、吸湿耐熱性の観点から、エポキシシラン、アミノシランなどのシランカップリング剤等により表面処理されたガラス織布が好ましい。電気特性の観点から、L-ガラス、NE-ガラス、NER-ガラス、Q-ガラス等の低誘電特性(Dkおよび/またはDf)を示すガラス繊維からなる、低誘電ガラスクロスがより好ましい。
 低比誘電率性の基材とは、例えば、比誘電率が5.0以下(好ましくは、3.0~4.9)の基材が例示される。低誘電正接性の基材とは、例えば、誘電正接が0.006以下(好ましくは、0.001~0.005)の基材が例示される。比誘電率および誘電正接は、摂動法空洞共振器により、周波数10GHzで測定した値とする。
<<金属箔張積層板>>
 本実施形態の金属箔張積層板は、本実施形態のプリプレグから形成された少なくとも1つの層と、前記プリプレグから形成された層の片面または両面に配置された金属箔とを含む。本実施形態の金属箔張積層板の作製方法としては、例えば、本実施形態のプリプレグを少なくとも1枚配置し(好ましくは2枚以上重ね)、その片面または両面に金属箔を配置して積層成形する方法が挙げられる。より詳細には、プリプレグの片面または両面に銅、アルミニウム等の金属箔を配置して積層成形することにより作製できる。プリプレグの枚数としては、1~10枚が好ましく、2~10枚がより好ましく、2~9枚がさらに好ましい。金属箔としては、プリント配線板用材料に用いられるものであれば特に限定されないが、例えば、圧延銅箔、電解銅箔等の銅箔が挙げられる。金属箔(好ましくは、銅箔)の厚さは、特に限定されず、1.5~70μm程度であってもよい。また、金属箔として銅箔を用いる場合、銅箔としては、JIS B0601:2013に従って測定した銅箔表面の粗度Rzが、0.2~4.0μmに調整されていることが好ましい。銅箔表面の粗度Rzを0.2μm以上とすることにより、銅箔表面の粗度が適度な大きさとなり、銅箔ピール強度がより向上する傾向にある。一方、銅箔表面の粗度Rzを4.0μm以下とすることにより、銅箔表面の粗度が適度な大きさとなり、導体損失がより低減する傾向にある。銅箔表面の粗度Rzは、ピール強度向上の観点から、より好ましくは0.5μm以上であり、さらに好ましくは0.6μm以上であり、特に好ましくは0.7μm以上であり、また、導体損失を低減する観点から、より好ましくは3.5μm以下であり、さらに好ましくは3.0μm以下であり、特に好ましくは2.0μm以下である。
 積層成形の方法としては、プリント配線板用積層板および多層板を成形する際に通常用いられる方法が挙げられ、より詳細には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機等を使用して、温度180~350℃程度、加熱時間100~300分程度、面圧20~100kg/cm程度で積層成形する方法が挙げられる。また、本実施形態のプリプレグと、別途作製した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることもできる。多層板の製造方法としては、例えば、本実施形態のプリプレグ1枚の両面に35μm程度の銅箔を配置し、上記の成形方法にて積層形成した後、内層回路を形成し、この回路に黒化処理を実施して内層回路板を形成し、この後、この内層回路板と本実施形態のプリプレグとを交互に1枚ずつ配置し、さらに最外層に銅箔を配置して、上記条件にて好ましくは真空下で積層成形することにより、多層板を作製することができる。本実施形態の金属箔張積層板は、プリント配線板として好適に使用することができる。
 以上のように、本実施形態の樹脂組成物(特定成分の組合せからなる樹脂組成物)を用いて得られる電子材料用樹脂組成物は、その硬化物が、低誘電特性、耐熱性のほか、成形性、耐クラック性、低熱膨張性に優れる特性を有するものとすることができる。
<<プリント配線板>>
 本実施形態のプリント配線板は、絶縁層と、前記絶縁層の表面に配置された導体層とを含むプリント配線板であって、前記絶縁層が、本実施形態の樹脂組成物から形成された層および本実施形態のプリプレグから形成された層の少なくとも一方を含む。このようなプリント配線板は、常法に従って製造でき、その製造方法は特に限定されない。以下、プリント配線板の製造方法の一例を示す。まず上述した銅箔張積層板等の金属箔張積層板を用意する。次に、金属箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作製する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその内層回路表面に上述したプリプレグを所要枚数重ね、さらにその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材および樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、さらに外層回路用の金属箔にエッチング処理を施して外層回路を形成することで、プリント配線板が製造される。
 上記の製造例で得られるプリント配線板は、絶縁層と、この絶縁層の表面に形成された導体層とを有し、絶縁層が上述した本実施形態の樹脂組成物および/またはその硬化物を含む構成となる。すなわち、上述した本実施形態のプリプレグ(例えば、基材およびこれに含浸または塗布された本実施形態の樹脂組成物から形成されたプリプレグ)、上述した本実施形態の金属箔張積層板の樹脂組成物から形成された層が、本実施形態の絶縁層となる。
 また、本実施形態は、前記プリント配線板を含む半導体装置にも関する。半導体装置の詳細は、特開2021-021027号公報の段落0200~0202の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 また、本実施形態の樹脂組成物の硬化物で形成された絶縁層は、その絶縁層の粗化処理後の表面粗さを小さくすることが好ましい。具体的には、粗化処理後の絶縁層の表面の算術平均粗さRaは、好ましくは200nm以下、より好ましくは150nm以下、特に好ましくは100nm以下である。算術平均粗さRaの下限値は、特に限定されないが、例えば、10nm以上でありうる。絶縁層の表面の算術平均粗さRaの測定は、非接触型表面粗さ計を用いて、VSIモード、50倍レンズを用いて測定して求める。
 非接触型表面粗さ計は、ビーコインスツルメンツ社製WYKONT3300を用いる。
<<樹脂複合シート>>
 本実施形態の樹脂複合シートは、支持体と、前記支持体の表面に配置された本実施形態の樹脂組成物から形成された層を含む。樹脂複合シートは、ビルドアップ用フィルムまたはドライフィルムソルダーレジストとして使用することができる。樹脂複合シートの製造方法としては、特に限定されないが、例えば、上記の本実施形態の樹脂組成物を溶剤に溶解させた溶液を支持体に塗布(塗工)し乾燥することで樹脂複合シートを得る方法が挙げられる。
 ここで用いる支持体としては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ポリエチレンテレフタレートフィルム、エチレンテトラフルオロエチレン共重合体フィルム、ならびに、これらのフィルムの表面に離型剤を塗布した離型フィルム、ポリイミドフィルム等の有機系のフィルム基材、銅箔、アルミ箔等の導体箔、ガラス板、SUS(Steel Use Stainless)板、FRP(Fiber-Reinforced Plastics)等の板状のものが挙げられるが、特に限定されるものではない。
 塗布方法(塗工方法)としては、例えば、本実施形態の樹脂組成物を溶剤に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、ベーカーアプリケーター等で支持体上に塗布する方法が挙げられる。また、乾燥後に、支持体と樹脂組成物が積層された樹脂複合シートから支持体を剥離またはエッチングすることで、単層シートとすることもできる。なお、上記の本実施形態の樹脂組成物を溶剤に溶解させた溶液を、シート状のキャビティを有する金型内に供給し乾燥する等してシート状に成形することで、支持体を用いることなく単層シートを得ることもできる。
 なお、本実施形態の単層シートまたは樹脂複合シートの作製において、溶剤を除去する際の乾燥条件は、特に限定されないが、低温であると樹脂組成物中に溶剤が残り易く、高温であると樹脂組成物の硬化が進行することから、20℃~200℃の温度で1~90分間が好ましい。また、単層シートまたは樹脂複合シートは溶剤を乾燥しただけの未硬化の状態で使用することもできるし、必要に応じて半硬化(Bステージ化)の状態にして使用することもできる。さらに、本実施形態の単層シートまたは樹脂複合シートにおける樹脂層の厚みは、塗布(塗工)に用いる本実施形態の樹脂組成物の溶液の濃度と塗布厚みにより調整することができ、特に限定されないが、一般的には塗布厚みが厚くなると乾燥時に溶剤が残り易くなることから、0.1~500μmが好ましい。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
<重量平均分子量および数平均分子量の測定>
 式(T)で表される樹脂、ポリフェニレンエーテル化合物の重量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィ(GPC)法によって測定した。測定は、送液ポンプ(島津製作所社製、LC-20AD)、示差屈折率検出器(島津製作所社製、RID-20A)、GPCカラム(昭和電工社製、GPC KF-801、802、803、804)を使用し、溶媒にテトラヒドロフラン、流量1.0mL/分、カラム温度40℃、単分散ポリスチレンによる検量線を用いて行った。
<パラメーターα、βの測定>
 式(T)で表される樹脂のパラメーターα、βは、H-NMR測定により算出した。合成した樹脂をヘプタンとメタノールの混合溶媒に溶解し、乾固させる操作を繰り返し行うことで回収した固体に含まれる残存溶媒を除去した。その後、回収した固体をCDClに溶解し、H-NMR測定を行った。測定したH-NMRにおいて下記に示す式を用いて各樹脂のパラメーターα、βを算出した。
(式(α)および式(β)における括弧内は、H-NMRにおける該当する化学シフト値間の積分値を示す。)
<合成実施例1-1 式(T1)で表される樹脂(1)の合成>
 温度計、冷却管を取り付けた三口フラスコに、トルエン520g、活性白土3g、攪拌子を入れ、攪拌しながら内温70℃まで加熱した。その後、1,3-ジイソプロペニルベンゼン(東京化成社製)150gを内温が80℃を超えないように滴下速度を制御して滴下した。滴下後内温が70℃に下がるまで撹拌した。その後、1,3-ジイソプロペニルベンゼン(東京化成社製)150gを同様に滴下し、滴下終了後さらに2時間反応させた。反応終了時にトルエン433gを添加し、濾過により活性白土を取り除いた。濾液を加熱減圧下にて溶剤を留去することにより、231gの固形樹脂を得た。
 得られた式(T1)で表される樹脂(1)のMwは2674であり、Mnは1153であり、Mw/Mnは2.3であり、式(Tx)において、パラメーターαは0.71であり、パラメーターβは0.50であり、n+o+pは6.3であった。構成単位(a)、(b)、(c)で示される括弧内の構造はすべて同一の分子量であり、合成された樹脂のMnを平均分子量と仮定してn+o+pを算出した(以下の合成実施例・合成比較例について同じ)。また、GPC分析により、残存モノマーが1質量%以下であることを確認した。
<合成実施例1-2 式(T1)で表される樹脂(2)の合成>
 温度計、冷却管を取り付けた三口フラスコに、トルエン520g、活性白土3g、攪拌子を入れ、攪拌しながら内温70℃まで加熱した。その後、1,3-ジイソプロペニルベンゼン(東京化成社製)150gを内温が90℃を超えないように滴下速度を制御して滴下した。滴下後内温が70℃に下がるまで撹拌した。その後、1,3-ジイソプロペニルベンゼン(東京化成社製)150gを同様に滴下し、滴下終了後さらに1.5時間反応させた。反応終了時にトルエン433gを添加し、濾過により活性白土を取り除いた。濾液を加熱減圧下にて溶剤を留去することにより、233gの固形樹脂を得た。
 得られた式(T1)で表される樹脂(2)のMwは2587であり、Mnは1105であり、Mw/Mnは2.3であり、式(Tx)において、パラメーターαは0.75であり、パラメーターβは0.42であり、n+o+pは6.0であった。また、GPC分析により、残存モノマーが1質量%以下であることを確認した。
<合成実施例1-3 式(T1)で表される樹脂(3)の合成>
 温度計、冷却管を取り付けた三口フラスコに、トルエン520g、活性白土3g、攪拌子を入れ、攪拌しながら内温70℃まで加熱した。その後、1,3-ジイソプロペニルベンゼン(東京化成社製)150gを内温が80℃を超えないように滴下速度を制御して滴下した。滴下後内温が70℃に下がるまで撹拌した。その後、1,3-ジイソプロペニルベンゼン(東京化成社製)150gを同様に滴下し、滴下終了後さらに1.5時間反応させた。反応終了時にトルエン433gを添加し、濾過により活性白土を取り除いた。濾液を加熱減圧下にて溶剤を留去することにより、246gの固形樹脂を得た。
 得られた式(T1)で表される樹脂(3)のMwは2026であり、Mnは916であり、Mw/Mnは2.2であり、式(Tx)において、パラメーターαは0.66であり、パラメーターβは0.78であり、n+o+pは4.8であった。また、GPC分析により、残存モノマーが1質量%以下であることを確認した。
<合成実施例1-4 式(T1)で表される樹脂(4)の合成>
 温度計、冷却管を取り付けたフラスコに、トルエン520g、活性白土0.75g、1,3-ジイソプロペニルベンゼン(東京化成社製)150g、撹拌子を入れ、攪拌しながら内温50℃まで加熱した。その後、5時間かけて内温70℃まで徐々に加熱し、内温70℃で更に1時間反応させた。放冷後、濾過により活性白土を取り除き、加熱減圧下において溶剤を留去することにより、129gの固形樹脂を得た。
 得られた式(T1)で表される樹脂(4)のMwは1193であり、Mnは693であり、Mw/Mnは1.7であり、式(Tx)において、パラメーターαは0.63であり、パラメーターβは1.07であり、n+o+pは3.4であった。また、GPC分析により、残存モノマーが1質量%以下であることを確認した。
<合成実施例1-5>
温度計、冷却管を取り付けたフラスコに、トルエン520g、活性白土0.3g、1,3-ジイソプロペニルベンゼン(東京化成社製)150g、撹拌子を入れ、攪拌しながら内温50℃まで加熱した。その後、5時間かけて内温80℃まで徐々に加熱し、内温80℃で更に1時間反応させた。放冷後、濾過により活性白土を取り除き、加熱減圧下において溶剤を留去することにより、129gの固形樹脂を得た。
 得られた式(T1)で表される樹脂(5)のMwは1424であり、Mnは722であり、Mw/Mnは2.0であり、式(Tx)において、パラメーターαは0.81であり、パラメーターβは0.88であり、n+o+pは3.6であった。また、GPC分析により、残存モノマーが1質量%以下であることを確認した。
<合成比較例1-1>
 特開2021-143333号公報の実施例1にならい、以下の通り合成した。
 温度計、冷却管、撹拌機を取り付けたフラスコに、1,3-ジイソプロペニルベンゼン(東京化成社製)125重量部、トルエン125重量部、活性白土12.5重量部を仕込み、内温を30℃まで昇温し、2時間反応させた後、45℃で1時間、60℃で1時間、70℃で1時間、80℃で10時間、反応させた。放冷後、濾過により活性白土を取り除き、加熱減圧下において溶剤を留去することにより、80重量部の固形樹脂を得た。
 得られた樹脂のMwは2464であり、Mnは1232であり、Mw/Mnは2.0であり、式(Tx)におけるパラメーターαは0.51であり、パラメーターβは0.85であり、n+o+pは6.8であった。また、GPC分析により、残存モノマーが1質量%以下であることを確認した。
<合成比較例1-2>
 特開平02-219809号公報の実施例1のコエージェント3の調製例にならい、以下の通り合成した。
 78gの1,3-ビス(α-ヒドロキシイソプロピル)ベンゼン(東京化成社製)に、330mLのトルエンおよび0.633gのp-トルエンスルホン酸を加え、次にその全体を90℃にて撹拌した。この工程において、ヒドロキシイソプロピル基は脱水された。遊離した水は、温度を徐々に114℃に上昇させることにより、留去された。全ての水を除去した後、全体を114℃でさらに3時間撹拌した。白色固体72gが得られ、GPCにより以下の組成(質量%)が測定された。
  モノマー            0.1% 
  ダイマー            2.9% 
  トリマー-ペンタマー     13.8% 
  ≧ヘキサマー         83.2% 
 得られた樹脂のMwは2972であり、Mnは1181であり、Mw/Mnは2.5であり、式(Tx)におけるパラメーターαは0.27であり、パラメーターβは5.15であり、n+o+pは6.5であった。また、GPC分析により、残存モノマーが1質量%以下であることを確認した。
<合成比較例1-3>
 特開2021-143333号公報の実施例3にならい、以下の通り合成した。
 温度計、冷却管、撹拌機を取り付けたフラスコに、1,3-ビス(α-ヒドロキシイソプロピル)ベンゼン(東京化成社製)160重量部、トルエン80重量部、p-トルエンスルホン酸0.08重量部、水0.19重量部を仕込み、内温を120℃まで昇温し、3時間反応させ、脱水反応により系中で1,3-ジイソプロペニルベンゼンを発生させた(脱水量は29.7重量部であり、ほぼ理論量通りであった。)。放冷後、p-トルエンスルホン酸6.4重量部、水3.6重量部を仕込み、内温を60℃まで昇温し、16時間反応させた。放冷後、トルエン150重量部、水100重量部を加え、廃液が中性になるまで水100重量部で繰り返し洗浄した。加熱減圧下において溶剤を留去することにより樹脂122重量部を白色固体として得た。
 得られた樹脂のMwは400であり、Mnは360であり、Mw/Mnは1.1であり、式(Tx)におけるパラメーターαは0.33であり、パラメーターβは11.32であり、n+o+pは1.3であった。また、GPC分析により、残存モノマーが1質量%以下であることを確認した。
<合成比較例1-4>
 特開平3-252441号公報の例1にならい、以下の通り合成した。
 クロロベンゼン50gおよび酸性白土(モンモリロナイトK10)5gを三口フラスコに入れ、100℃で攪拌保持した。温度を100℃に保ったまま、1,3-ジイソプロペニルベンゼン(東京化成社製)50gを滴下して添加した。100℃で1時間かけて重合を行い、その後、酸性白土(モンモリロナイトK10)を濾過によって除去し、過剰のメタノール中でポリマーを沈殿させた。ポリマーを濾別し、真空炉内で乾燥させた。
 得られた樹脂のMwは4318であり、Mnは3352であり、Mw/Mnは1.3であり、式(Tx)におけるパラメーターαは0.88であり、パラメーターβは0.03であり、n+o+pは20.2であった。また、GPC分析により、残存モノマーが1質量%以下であることを確認した。
<合成比較例1-5>
 米国特許第4205160号のExample9にならい、以下の通り合成した。
 1,3-ジイソプロペニルベンゼン(東京化成社製)10g(0.063mol)とトルエン115mLと予め100℃で乾燥を行った酸性白土(モンモリロナイトK10)1.5gを三口フラスコに入れ、加熱を行い、1.5時間リフラックスさせた後、酸性白土(モンモリロナイトK10)を濾過によって除去し、加熱減圧下において溶剤を留去することにより、8.5gの固形樹脂を得た。
 得られた樹脂のMwは3090であり、Mnは1350であり、Mw/Mnは2.3であり、式(Tx)におけるパラメーターαは0.79であり、パラメーターβは0.07であり、n+o+pは7.5であった。また、GPC分析により、残存モノマーが1質量%以下であることを確認した。
<合成例2 ポリフェニレンエーテル化合物(B1)>
<<2官能フェニレンエーテルオリゴマーの合成>>
 撹拌装置、温度計、空気導入管、および、じゃま板のついた12Lの縦長反応器に、CuBr9.64g(43.2mmol)、N,N’-ジ-t-ブチルエチレンジアミン1.86g(10.8mmol)、n-ブチルジメチルアミン69.83g(690.1mmol)、トルエン2,600gを仕込み、反応温度40℃にて撹拌を行い、予め2,300gのメタノールに溶解させた2,2’,3,3’,5,5’-ヘキサメチル-(1,1’-ビフェノール)-4,4’-ジオール129.3g(0.48mol)、2,6-ジメチルフェノール878.4g(7.2mol)、N,N’-ジ-t-ブチルエチレンジアミン1.26g(7.3mmol)、n-ブチルジメチルアミン27.19g(268.7mmol)の混合溶液を、窒素と空気とを混合して酸素濃度8体積%に調整した混合ガスを5.2L/分の流速でバブリングを行いながら、230分かけて滴下し、撹拌を行った。滴下終了後、エチレンジアミン四酢酸四ナトリウム48.06g(126.4mmol)を溶解した水溶液1,500gを加え、反応を停止した。水層と有機層を分液し、有機層を1Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで50質量%に濃縮し、2官能性フェニレンエーテルオリゴマー体(樹脂「B0」)のトルエン溶液を1980g得た。樹脂「B0」のGPC法によるポリスチレン換算の数平均分子量は2100、GPC法によるポリスチレン換算の重量平均分子量は3740、水酸基当量は1070であった。
<<ポリフェニレンエーテル化合物の合成>>
 2官能性フェニレンエーテルオリゴマー体(B0)の50質量%トルエン溶液792gをエバポレーターで乾固後、N,N-ジメチルアセトアミド2772gを加え、固形分が20質量%になるまで濃縮を行い、2官能フェニレンエーテルオリゴマー体のN,N-ジメチルアセトアミド79.80質量%、トルエン0.20質量%溶液(B0)1980gを得た。次に、攪拌装置、温度計、還流管を備えた反応器に、2官能フェニレンエーテルオリゴマー体溶液(B0)1980g(OH当量で0.37mol)、クロロメチルスチレン(CMS-P)67.78g(0.44mol)を仕込み、50℃に加熱攪拌した。反応温度を50℃に保ちながらナトリウムメトキシドのメタノール溶液(濃度:28.4質量%)84.48g(0.44mol)を滴下し、1時間攪拌した。さらにナトリウムメトキシドのメタノール溶液(濃度:28.4質量%)9.75g(0.05mol)を滴下し、2時間攪拌した。その後、85質量%のリン酸水溶液を5.91g(0.05mol)加え、生成した無機塩を除去した後、反応溶液を1975gの水に滴下することで固形化し、遠心分離機で、固液分離を行った後、純水およびメタノールで洗浄した後、減圧乾燥して目的とするポリフェニレンエーテル化合物(B1)381.87gを得た。ポリフェニレンエーテル化合物(B1)のGPC法によるポリスチレン換算の数平均分子量は2350、重量平均分子量は3880、ビニル基当量は1220g/ビニル基であった。
<合成例3 式(V)で表される構成単位を有する重合体(va)の合成>
 ジビニルベンゼン2.25モル(292.9g)、エチルビニルベンゼン1.32モル(172.0g)、スチレン11.43モル(1190.3g)、酢酸n-プロピル15.0モル(1532.0g)を反応器内に投入し、70℃で600ミリモルの三フッ化ホウ素のジエチルエーテル錯体を添加し、4時間反応させた。重合反応を炭酸水素ナトリウム水溶液で停止させた後、純水で3回油層を洗浄し、60℃で減圧脱揮し、式(V)で表される構成単位を有する重合体(va)を回収した。得られた式(V)で表される構成単位を有する重合体(va)を秤量して、式(V)で表される構成単位を有する重合体(va)860.8gが得られたことを確認した。
 得られた式(V)で表される構成単位を有する重合体(va)の数平均分子量Mnは2,060、重量平均分子量Mwは30,700、単分散度Mw/Mnは14.9であった。13C-NMRおよびH-NMR分析を行うことにより、式(V)で表される構成単位を有する重合体(va)には、原料として用いた各単量体単位に由来する共鳴線が観察された。NMR測定結果、および、GC分析結果に基づき、式(V)で表される構成単位を有する重合体(va)における各単量体単位(各原料に由来する構成単位)の割合は以下のように算出された。
ジビニルベンゼン由来の構成単位:20.9モル%(24.3質量%)
エチルビニルベンゼン由来の構成単位:9.1モル%(10.7質量%)
スチレンに由来する構成単位:70.0モル%(65.0質量%)
 また、ジビニルベンゼン由来の残存ビニル基をもつ構成単位は、16.7モル%(18.5質量%)であった。
実施例1
 上記合成実施例1-1で得られた式(T1)で表される樹脂(1)30質量部と合成例2で得られたポリフェニレンエーテル化合物(B1)70質量部を、メチルエチルケトンおよびトルエンで溶解させて混合し、ワニスを得た。上述の各成分の配合量は固形分量を示す。
<厚さ1.0mmの硬化板の試験片の製造>
 得られたワニスから溶剤を蒸発留去することで樹脂組成物粉末を得た。得られた樹脂組成物の粉末を用いて、以下のようにして硬化板を作製した。ステンレス製の金型100mm×30mm×1.0mm高の枠に樹脂組成物の粉末を4.5g敷き詰め、真空プレス機(北川精機株式会社製)にセットして、200℃で1.5時間保持、面圧1.9MPaでプレスを行った。
 得られた硬化板を用いて、ガラス転移温度、比誘電率(Dk)、誘電正接(Df)の評価を行った。評価結果を表1に示す。
<測定方法および評価方法>
(1)ガラス転移温度
 前記硬化板を12.7mm×30mmにダウンサイジングしたサンプルについて、動的粘弾性測定装置を用い、JIS C6481 5.17.2に準拠して、DMA(動的機械分析:Dynamic Mechanical Analysis)曲げ法により測定を行い、得られた損失弾性率のピーク温度をガラス転移温度とした。単位は、℃で示した。
 動的粘弾性分析装置は、DMA Q800、TAインスツルメント株式会社製を用いた。
(2)比誘電率(Dk)および誘電正接(Df)
 前記硬化板を幅1.0mmにダウンサイジングした後に、120℃で、60分間乾燥させた後、摂動法空洞共振器を用いて、周波数10GHzにおける乾燥後の比誘電率(Dk)および誘電正接(Df)を測定した。測定温度は23℃とした。
 摂動法空洞共振器は、アジレントテクノロジー社製、Agilent8722ESを用いた。
実施例2
 実施例1において、上記合成実施例1-1で得られた式(T1)で表される樹脂(1)を等量の上記合成実施例1-2で得られた式(T1)で表される樹脂(2)に変更し、他は同様に行った。結果を表1に示した。
実施例3
 実施例1において、上記合成実施例1-1で得られた式(T1)で表される樹脂(1)を等量の上記合成実施例1-3で得られた式(T1)で表される樹脂(3)に変更し、他は同様に行った。結果を表1に示した。
実施例4
 実施例1において、上記合成実施例1-1で得られた式(T1)で表される樹脂(1)を等量の上記合成実施例1-4で得られた式(T1)で表される樹脂(4)に変更し、他は同様に行った。結果を表1に示した。
比較例1
 実施例1において、上記合成実施例1-1で得られた式(T1)で表される樹脂(1)を等量の上記合成比較例1-1で得られた樹脂(特開2021-143333号公報の実施例1相当の樹脂)に変更し、他は同様に行った。結果を表1に示した。
比較例2
 実施例1において、上記合成実施例1-1で得られた式(T1)で表される樹脂(1)を等量の上記合成比較例1-2で得られた樹脂(特開平02-219809号公報の実施例1のコエージェント3相当の樹脂)に変更し、他は同様に行った。結果を表1に示した。
実施例5
 実施例1において、上記合成例2で得られたポリフェニレンエーテル化合物(B1)を等量の下記に構造を示すマレイミド化合物(m1a)(DIC社製、「NE-X-9470S」、式(M1)で表される化合物)に変更し、他は同様に行った。結果を表2に示した。
マレイミド化合物(m1a)
比較例3
 実施例5において、上記合成実施例1-1で得られた式(T1)で表される樹脂(1)を等量の上記合成比較例1-3で得られた樹脂(特開2021-143333号公報の実施例3相当の樹脂)に変更し、他は同様に行った。結果を表2に示した。
比較例4
 実施例5において、上記合成実施例1-1で得られた式(T1)で表される樹脂(1)を等量の上記合成比較例1-4で得られた樹脂(特開平3-252441号公報の例1相当の樹脂)に変更し、他は同様に行った。結果を表2に示した。
 図1~10にNMRチャートおよびGPCチャートを示す。NMRチャートは、合成実施例1-1~1-4、合成比較例1-1~1-4で得られた樹脂について、計8個を図1から順に示した。また、GPCチャートは、合成実施例1-4で得られた樹脂について図9に、合成比較例1-2で得られた樹脂について図10に示した。
実施例6
 上記合成実施例1-4で得られた式(T1)で表される樹脂(4)15質量部とポリフェニレンエーテル化合物(B2)(ポリフェニレンエーテル化合物(B2):Noryl SA9000、下記に構造を示す化合物、SABICジャパン合同会社製、ビニル基の二重結合当量1011g/eq.)85質量部、および、硬化促進剤として、パーブチルP(1,3-ビス(ブチルパーオキシイソプロピル)ベンゼン、日油社製)1.5質量部を、メチルエチルケトンおよびトルエンで溶解させて混合し、ワニスを得た。上述の各成分の配合量は固形分量を示す。得られたワニスを用いて実施例1と同様に評価した。結果を表3に示した。
実施例7
 上記合成実施例1-4で得られた式(T1)で表される樹脂(4)30質量部と合成例3で得られた式(V)で表される構成単位を有する重合体(va)70質量部を、メチルエチルケトンおよびトルエンで溶解させて混合し、ワニスを得た。上述の各成分の配合量は固形分量を示す。
 得られたワニスを用いて実施例1と同様に評価した。結果を表3に示した。
実施例8
 実施例4において、上記合成実施例1-4で得られた式(T1)で表される樹脂(4)を等量の上記合成実施例1-5で得られた式(T1)で表される樹脂(5)に変更し、他は同様に行った。結果を表3に示した。
実施例9
 上記合成実施例1-4で得られた式(T1)で表される樹脂(4)30質量部とポリマレイミド化合物(DIC社製、NE-X-9500、上記式(M7)で表される構造単位を有するポリマレイミド化合物に相当する)70質量部、および、硬化促進剤として、パーブチルP(1,3-ビス(ブチルパーオキシイソプロピル)ベンゼン、日油社製)1.5質量部を、メチルエチルケトンおよびトルエンで溶解させて混合し、ワニスを得た。上述の各成分の配合量は固形分量を示す。
 得られたワニスを用いて実施例1と同様に評価した。結果を表3に示した。
比較例5
 実施例4において、上記合成実施例1-4で得られた式(T1)で表される樹脂(4)を等量の上記合成比較例1-5で得られた樹脂(米国特許第4205160号のExample9相当の樹脂)に変更し、他は同様に行った。
 結果を表3に示した。
比較例6
 実施例6において、上記合成実施例1-4で得られた式(T1)で表される樹脂(4)を等量の上記合成比較例1-2で得られた樹脂(特開平02-219809号公報の実施例1のコエージェント3相当の樹脂)に変更し、他は同様に行った。
比較例7
 実施例9において、合成実施例1-4で得られた式(T1)で表される樹脂(4)を上記合成比較例1-2で得られた樹脂(特開平02-219809号公報の実施例1のコエージェント3相当の樹脂)30質量部に変更し、他は同様に行った。
比較例8
 マレイミド化合物(DIC社製、「NE-X-9500」、式(M7)で表される化合物)100質量部、および、硬化促進剤として、パーブチルP(1,3-ビス(ブチルパーオキシイソプロピル)ベンゼン、日油社製)1.5質量部を、メチルエチルケトンおよびトルエンで溶解させて混合し、ワニスを得た。上述の各成分の配合量は固形分量を示す。得られたワニスを用いて実施例1と同様に評価した。結果を表3に示した。
 結果を表3に示した。
 図11に合成実施例1-5で得られた樹脂のNMRチャートを示す。
 図12に合成比較例1-5で得られた樹脂のNMRチャートを示す。

Claims (25)

  1. 式(T)で表される樹脂であって、
    式(α)から算出されるパラメーターαが0.55以上1.00以下であり、
    式(β)から算出されるパラメーターβが0.20以上3.00以下である、樹脂。
    (式(T)中、Maはそれぞれ独立にハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表し、x1は0~4の整数を表す。Rは、式(Tx)で表される構成単位を含む基である。)
    (式(Tx)中、n、oおよびpは、平均繰り返し単位数であり、nは0超20以下の数を表し、oおよびpは、それぞれ独立して0~20の数を表し、1.0≦n+o+p≦20.0である。Maはそれぞれ独立にハロゲン原子で置換されていてもよい炭素数1~12の炭化水素基を表す。xは0~4の整数を表す。構成単位(a)、(b)、(c)は、それぞれ*で構成単位(a)、(b)、(c)、または他の基と結合しており、各構成単位はランダムに結合していてもよい。)
    (式(α)および式(β)における括弧内は、H-NMRにおける該当する化学シフト値間の積分値を示す。)
  2. 式(T)におけるx1が0である、請求項1に記載の樹脂。
  3. 式(α)から算出されるパラメーターαが0.60以上1.00以下であり、
    式(β)から算出されるパラメーターβが0.40以上3.00以下である、請求項1または2に記載の樹脂。
  4. 前記式(Tx)で表される構成単位において、1.1≦n+o+p≦20.0である、請求項1または2に記載の樹脂。
  5. 数平均分子量が、400~3000である、請求項1または2に記載の樹脂。
  6. 重量平均分子量が、500~6000である、請求項1または2に記載の樹脂。
  7. 重量平均分子量と数平均分子量の比である、Mw/Mnが、1.1~3.0である、請求項1または2に記載の樹脂。
  8. 式(T)におけるx1が0であり、
    式(α)から算出されるパラメーターαが0.60以上1.00以下であり、
    式(β)から算出されるパラメーターβが0.40以上3.00以下であり、
    前記式(Tx)で表される構成単位において、1.1≦n+o+p≦20.0であり、
    数平均分子量が、400~3000であり、
    重量平均分子量が、500~6000であり、
    重量平均分子量と数平均分子量の比である、Mw/Mnが、1.1~3.0である、請求項1に記載の樹脂。
  9. 他の化合物(C)請求項1または8に記載の樹脂を含む、樹脂組成物。
  10. 前記樹脂の含有量が、樹脂組成物中の樹脂固形分100質量部に対して、1~90質量部である、請求項9に記載の樹脂組成物。
  11. さらに、マレイミド化合物、ポリフェニレンエーテル化合物、式(V)で表される構成単位を有する重合体、シアン酸エステル化合物、エポキシ化合物、フェノール化合物、(メタ)アリル基を含む化合物、オキセタン樹脂、ベンゾオキサジン化合物、アリールシクロブテン樹脂、ポリアミド樹脂、ポリイミド樹脂、ペルフルオロビニルエーテル樹脂、前記ポリフェニレンエーテル化合物以外のスチレン基を有する化合物、前記式(T)で表される樹脂以外のイソプロペニル基を有する化合物、前記ポリフェニレンエーテル化合物以外の多官能(メタ)アクリレート化合物、エラストマー、ならびに、石油樹脂からなる群より選択される少なくとも1種の他の化合物(C)を含む、請求項9に記載の樹脂組成物。
    (式(V)中、Arは芳香族炭化水素連結基を表す。*は、結合位置を表す。)
  12. 前記ポリフェニレンエーテル化合物が、末端に炭素-炭素不飽和二重結合を有するポリフェニレンエーテル化合物を含む、請求項11に記載の樹脂組成物。
  13. 前記ポリフェニレンエーテル化合物が、下記式(OP)で表される化合物を含む、請求項11に記載の樹脂組成物。
    (式(OP)中、Xは芳香族基を表し、-(Y-O)n1-はポリフェニレンエーテル構造を表し、n1は1~100の整数を表し、n2は1~4の整数を表す。Rxは、式(Rx-1)または式(Rx-2)で表される基である。)
    (式(Rx-1)および式(Rx-2)中、R、R、および、Rは、それぞれ独立に、水素原子、アルキル基、アルケニル基、またはアルキニル基を表す。*は、酸素原子との結合部位である。Mcは、それぞれ独立に炭素数1~12の炭化水素基を表す。zは0~4の整数を表す。rは1~6の整数を表す。)
  14. 前記ポリフェニレンエーテル化合物が、下記式(OP-1)で表される化合物を含む、請求項11に記載の樹脂組成物。
    (式(OP-1)中、Xは芳香族基を表し、-(Y-О)n-はポリフェニレンエーテル構造を表し、R、R、および、Rは、それぞれ独立して、水素原子、アルキル基、アルケニル基またはアルキニル基を表し、nは1~6の整数を表し、nは1~100の整数を表し、nは1~4の整数を表す。)
  15. 前記他の化合物(C)が式(V)で表される構成単位を有する重合体を含む、請求項11に記載の樹脂組成物。
    (式(V)中、Arは芳香族炭化水素連結基を表す。*は、結合位置を表す。)
  16. 前記マレイミド化合物が、式(M1)で表される化合物を含む、請求項11に記載の樹脂組成物。
    (式(M1)中、RM1、RM2、RM3、およびRM4は、それぞれ独立に、水素原子または有機基を表す。RM5およびRM6は、それぞれ独立に、水素原子またはアルキル基を表す。Arは2価の芳香族基を表す。Aは、4~6員環の脂環基である。RM7およびRM8は、それぞれ独立に、アルキル基である。mxは1または2であり、lxは0または1である。RM9およびRM10は、それぞれ独立に、水素原子またはアルキル基を表す。RM11、RM12、RM13、およびRM14は、それぞれ独立に、水素原子または有機基を表す。RM15は、それぞれ独立に、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数1~10のアルキルチオ基、炭素数6~10のアリール基、炭素数1~10のアリールオキシ基、炭素数1~10のアリールチオ基、ハロゲン原子、水酸基またはメルカプト基を表す。pxは0~3の整数を表す。nxは1~20の整数を表す。)
  17. さらに、充填材(D)を含む、請求項9に記載の樹脂組成物。
  18. 前記樹脂組成物中の樹脂固形分100質量部に対する、前記充填材(D)の含有量が、10~1000質量部である、請求項17に記載の樹脂組成物。
  19. 前記樹脂の含有量が、樹脂組成物中の樹脂固形分100質量部に対して、1~90質量部であり、
    さらに、マレイミド化合物、ポリフェニレンエーテル化合物、式(V)で表される構成単位を有する重合体、シアン酸エステル化合物、エポキシ化合物、フェノール化合物、(メタ)アリル基を含む化合物、オキセタン樹脂、ベンゾオキサジン化合物、アリールシクロブテン樹脂、ポリアミド樹脂、ポリイミド樹脂、ペルフルオロビニルエーテル樹脂、前記ポリフェニレンエーテル化合物以外のスチレン基を有する化合物、前記式(T)で表される樹脂以外のイソプロペニル基を有する化合物、前記ポリフェニレンエーテル化合物以外の多官能(メタ)アクリレート化合物、エラストマー、ならびに、石油樹脂からなる群より選択される少なくとも1種の他の化合物(C)を含む、請求項9に記載の樹脂組成物。
    (式(V)中、Arは芳香族炭化水素連結基を表す。*は、結合位置を表す。)
  20. 請求項9に記載の樹脂組成物の硬化物。
  21. 基材と、請求項9に記載の樹脂組成物とから形成された、プリプレグ。
  22. 請求項21に記載のプリプレグから形成された少なくとも1つの層と、前記プリプレグから形成された層の片面または両面に配置された金属箔とを含む、金属箔張積層板。
  23. 支持体と、前記支持体の表面に配置された請求項9に記載の樹脂組成物から形成された層とを含む、樹脂複合シート。
  24. 絶縁層と、前記絶縁層の表面に配置された導体層とを含むプリント配線板であって、前記絶縁層が、請求項9に記載の樹脂組成物から形成された層を含む、プリント配線板。
  25. 請求項24に記載のプリント配線板を含む半導体装置。
PCT/JP2023/009588 2022-03-14 2023-03-13 樹脂、樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置 WO2023176766A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023554802A JPWO2023176766A1 (ja) 2022-03-14 2023-03-13
JP2024037215A JP2024075622A (ja) 2022-03-14 2024-03-11 樹脂、樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-039679 2022-03-14
JP2022039679 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023176766A1 true WO2023176766A1 (ja) 2023-09-21

Family

ID=88023758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009588 WO2023176766A1 (ja) 2022-03-14 2023-03-13 樹脂、樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置

Country Status (3)

Country Link
JP (2) JPWO2023176766A1 (ja)
TW (1) TW202346398A (ja)
WO (1) WO2023176766A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090410A1 (ja) * 2022-10-26 2024-05-02 三菱瓦斯化学株式会社 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、および、プリント配線板
WO2024090408A1 (ja) * 2022-10-26 2024-05-02 三菱瓦斯化学株式会社 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、および、プリント配線板
JP7501811B2 (ja) 2022-03-14 2024-06-18 三菱瓦斯化学株式会社 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205160A (en) 1976-03-11 1980-05-27 The Goodyear Tire & Rubber Company Indane containing polymers
JPS61145223A (ja) * 1984-12-19 1986-07-02 Hitachi Chem Co Ltd フエノ−ル重合体の製造法
JPH02219809A (ja) 1988-12-06 1990-09-03 Akzo Nv アルケニル基で置換された芳香族化合物のオリゴマーをコエージェントとして用いる方法
JPH03252441A (ja) 1989-12-11 1991-11-11 Hercules Inc ポリインダン樹脂を操作助剤として含有するエンジニアリング・サーモプラスティック
JPH06172242A (ja) * 1992-12-04 1994-06-21 Sumitomo Chem Co Ltd ポリヒドロキシ化合物とそれから誘導される熱硬化性化合物およびその組成物
JP2006070136A (ja) 2004-09-01 2006-03-16 Nippon Steel Chem Co Ltd 硬化性樹脂組成物
JP2006089683A (ja) 2004-09-27 2006-04-06 Nippon Steel Chem Co Ltd 難燃性樹脂組成物
JP2007311732A (ja) * 2006-04-17 2007-11-29 Idemitsu Kosan Co Ltd 低誘電材料
JP2008248001A (ja) 2007-03-29 2008-10-16 Nippon Steel Chem Co Ltd 硬化性樹脂組成物
WO2017115813A1 (ja) 2015-12-28 2017-07-06 新日鉄住金化学株式会社 可溶性多官能ビニル芳香族共重合体、その製造方法及び硬化性組成物
WO2017126469A1 (ja) 2016-01-19 2017-07-27 旭化成株式会社 水添共重合体、組成物及び成形体
WO2017135168A1 (ja) 2016-02-02 2017-08-10 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置
JP2018039995A (ja) 2016-08-31 2018-03-15 新日鉄住金化学株式会社 可溶性多官能ビニル芳香族共重合体、その製造方法、硬化性樹脂組成物及びその硬化物
JP2018168347A (ja) 2017-08-25 2018-11-01 新日鉄住金化学株式会社 硬化性樹脂組成物、その硬化物、硬化性複合材料、樹脂付き金属箔、及び回路基板材料用ワニス
JP2019194312A (ja) 2018-04-30 2019-11-07 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ フェニレンエーテルオリゴマー、フェニレンエーテルオリゴマーを含む硬化性組成物、およびそれか得られる熱硬化組成物
WO2019230945A1 (ja) 2018-06-01 2019-12-05 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
WO2020217679A1 (ja) 2019-04-26 2020-10-29 Dic株式会社 マレイミド、硬化性樹脂組成物、及び、硬化物
WO2020262577A1 (ja) 2019-06-28 2020-12-30 三菱瓦斯化学株式会社 樹脂組成物、樹脂シート、多層プリント配線板、及び半導体装置
JP2021021027A (ja) 2019-07-29 2021-02-18 三菱瓦斯化学株式会社 マレイミド化合物及びその製造方法、アミド酸化合物及びその製造方法、樹脂組成物、硬化物、樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料、接着剤、並びに半導体装置
WO2021172317A1 (ja) 2020-02-25 2021-09-02 三菱瓦斯化学株式会社 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂シート、および、プリント配線板
JP2021130741A (ja) * 2020-02-18 2021-09-09 Dic株式会社 インダンビスフェノール化合物、硬化性樹脂組成物、及び、硬化物
JP2021143333A (ja) 2020-03-12 2021-09-24 日本化薬株式会社 オレフィン樹脂、硬化性樹脂組成物およびその硬化物
JP6951829B1 (ja) 2019-11-19 2021-10-20 日本化薬株式会社 化合物、混合物、硬化性樹脂組成物およびその硬化物、並びに化合物の製造方法
JP6962507B1 (ja) 2020-04-06 2021-11-05 Dic株式会社 硬化性樹脂、硬化性樹脂組成物、及び、硬化物
JP2022085610A (ja) 2020-11-27 2022-06-08 デンカ株式会社 組成物及びその硬化物
WO2022210095A1 (ja) 2021-04-02 2022-10-06 Jsr株式会社 重合体、組成物、硬化物、積層体及び電子部品
JP7160151B1 (ja) 2021-07-01 2022-10-25 Dic株式会社 ポリマレイミド化合物、硬化性組成物、硬化物、プリプレグ、回路基板、ビルドアップフィルム、半導体封止材及び半導体装置。

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205160A (en) 1976-03-11 1980-05-27 The Goodyear Tire & Rubber Company Indane containing polymers
JPS61145223A (ja) * 1984-12-19 1986-07-02 Hitachi Chem Co Ltd フエノ−ル重合体の製造法
JPH02219809A (ja) 1988-12-06 1990-09-03 Akzo Nv アルケニル基で置換された芳香族化合物のオリゴマーをコエージェントとして用いる方法
JPH03252441A (ja) 1989-12-11 1991-11-11 Hercules Inc ポリインダン樹脂を操作助剤として含有するエンジニアリング・サーモプラスティック
JPH06172242A (ja) * 1992-12-04 1994-06-21 Sumitomo Chem Co Ltd ポリヒドロキシ化合物とそれから誘導される熱硬化性化合物およびその組成物
JP2006070136A (ja) 2004-09-01 2006-03-16 Nippon Steel Chem Co Ltd 硬化性樹脂組成物
JP2006089683A (ja) 2004-09-27 2006-04-06 Nippon Steel Chem Co Ltd 難燃性樹脂組成物
JP2007311732A (ja) * 2006-04-17 2007-11-29 Idemitsu Kosan Co Ltd 低誘電材料
JP2008248001A (ja) 2007-03-29 2008-10-16 Nippon Steel Chem Co Ltd 硬化性樹脂組成物
WO2017115813A1 (ja) 2015-12-28 2017-07-06 新日鉄住金化学株式会社 可溶性多官能ビニル芳香族共重合体、その製造方法及び硬化性組成物
WO2017126469A1 (ja) 2016-01-19 2017-07-27 旭化成株式会社 水添共重合体、組成物及び成形体
WO2017135168A1 (ja) 2016-02-02 2017-08-10 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置
JP2018039995A (ja) 2016-08-31 2018-03-15 新日鉄住金化学株式会社 可溶性多官能ビニル芳香族共重合体、その製造方法、硬化性樹脂組成物及びその硬化物
JP2018168347A (ja) 2017-08-25 2018-11-01 新日鉄住金化学株式会社 硬化性樹脂組成物、その硬化物、硬化性複合材料、樹脂付き金属箔、及び回路基板材料用ワニス
JP2019194312A (ja) 2018-04-30 2019-11-07 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ フェニレンエーテルオリゴマー、フェニレンエーテルオリゴマーを含む硬化性組成物、およびそれか得られる熱硬化組成物
WO2019230945A1 (ja) 2018-06-01 2019-12-05 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
WO2020217679A1 (ja) 2019-04-26 2020-10-29 Dic株式会社 マレイミド、硬化性樹脂組成物、及び、硬化物
WO2020262577A1 (ja) 2019-06-28 2020-12-30 三菱瓦斯化学株式会社 樹脂組成物、樹脂シート、多層プリント配線板、及び半導体装置
JP2021021027A (ja) 2019-07-29 2021-02-18 三菱瓦斯化学株式会社 マレイミド化合物及びその製造方法、アミド酸化合物及びその製造方法、樹脂組成物、硬化物、樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料、接着剤、並びに半導体装置
JP6951829B1 (ja) 2019-11-19 2021-10-20 日本化薬株式会社 化合物、混合物、硬化性樹脂組成物およびその硬化物、並びに化合物の製造方法
JP2021130741A (ja) * 2020-02-18 2021-09-09 Dic株式会社 インダンビスフェノール化合物、硬化性樹脂組成物、及び、硬化物
WO2021172317A1 (ja) 2020-02-25 2021-09-02 三菱瓦斯化学株式会社 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂シート、および、プリント配線板
JP2021143333A (ja) 2020-03-12 2021-09-24 日本化薬株式会社 オレフィン樹脂、硬化性樹脂組成物およびその硬化物
JP6962507B1 (ja) 2020-04-06 2021-11-05 Dic株式会社 硬化性樹脂、硬化性樹脂組成物、及び、硬化物
JP2022085610A (ja) 2020-11-27 2022-06-08 デンカ株式会社 組成物及びその硬化物
WO2022210095A1 (ja) 2021-04-02 2022-10-06 Jsr株式会社 重合体、組成物、硬化物、積層体及び電子部品
JP7160151B1 (ja) 2021-07-01 2022-10-25 Dic株式会社 ポリマレイミド化合物、硬化性組成物、硬化物、プリプレグ、回路基板、ビルドアップフィルム、半導体封止材及び半導体装置。

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ORGANIC SYNTHETIC CHEMISTRY, vol. 25, no. 6, 1967

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501811B2 (ja) 2022-03-14 2024-06-18 三菱瓦斯化学株式会社 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
JP7521707B2 (ja) 2022-03-14 2024-07-24 三菱瓦斯化学株式会社 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
WO2024090410A1 (ja) * 2022-10-26 2024-05-02 三菱瓦斯化学株式会社 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、および、プリント配線板
WO2024090408A1 (ja) * 2022-10-26 2024-05-02 三菱瓦斯化学株式会社 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、および、プリント配線板

Also Published As

Publication number Publication date
TW202346398A (zh) 2023-12-01
JPWO2023176766A1 (ja) 2023-09-21
JP2024075622A (ja) 2024-06-04

Similar Documents

Publication Publication Date Title
WO2023176766A1 (ja) 樹脂、樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
JP7459394B2 (ja) 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
WO2023176763A1 (ja) 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
CN113490715A (zh) 树脂组合物、预浸料、覆金属箔层叠板、树脂复合片及印刷电路板
WO2023171553A1 (ja) 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
WO2023171554A1 (ja) 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
WO2023176765A1 (ja) ヒドロキシ樹脂、スチレン樹脂、ヒドロキシ樹脂の製造方法、スチレン樹脂の製造方法、および、その応用
JP2024003007A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
KR102634507B1 (ko) 수지 조성물, 경화물, 프리프레그, 금속박 피복 적층판, 수지 시트, 및 프린트 배선판
WO2024101237A1 (ja) 樹脂、樹脂組成物、および、その応用
WO2024101238A1 (ja) 樹脂、樹脂組成物、および、その応用
WO2024190725A1 (ja) 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
JP7380944B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
WO2024090410A1 (ja) 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、および、プリント配線板
TW202432611A (zh) 樹脂、樹脂組成物、及其應用
WO2024090408A1 (ja) 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、および、プリント配線板
WO2024090409A1 (ja) 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、および、プリント配線板
WO2023048025A1 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
WO2024024664A1 (ja) 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
KR20240065287A (ko) 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 복합 시트, 프린트 배선판, 및 반도체 장치
KR20240065289A (ko) 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 복합 시트, 프린트 배선판, 및 반도체 장치
WO2023210567A1 (ja) 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、半導体装置、および、プリント配線板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023554802

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770721

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401005929

Country of ref document: TH