WO2023176192A1 - 半導体洗浄液および半導体洗浄液の製造方法 - Google Patents

半導体洗浄液および半導体洗浄液の製造方法 Download PDF

Info

Publication number
WO2023176192A1
WO2023176192A1 PCT/JP2023/003901 JP2023003901W WO2023176192A1 WO 2023176192 A1 WO2023176192 A1 WO 2023176192A1 JP 2023003901 W JP2023003901 W JP 2023003901W WO 2023176192 A1 WO2023176192 A1 WO 2023176192A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillation column
isopropyl alcohol
semiconductor cleaning
cleaning liquid
stage
Prior art date
Application number
PCT/JP2023/003901
Other languages
English (en)
French (fr)
Inventor
俊輔 保坂
貴史 徳永
義晶 山下
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2023535854A priority Critical patent/JP7402385B1/ja
Priority to CN202380022672.XA priority patent/CN118742996A/zh
Publication of WO2023176192A1 publication Critical patent/WO2023176192A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/24Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a semiconductor cleaning liquid and a method for manufacturing a semiconductor cleaning liquid.
  • a substrate such as a semiconductor substrate or a glass substrate is cleaned with a semiconductor cleaning liquid and then dried.
  • a semiconductor cleaning liquid For example, isopropyl alcohol is used as the semiconductor cleaning liquid.
  • Patent Document 1 As a method for producing isopropyl alcohol, for example, a direct hydration method of propylene (see Patent Document 1) is known.
  • isopropyl alcohol produced by the direct hydration method of propylene contains t-butyl alcohol as an impurity, so when used as a semiconductor cleaning solution, the t-butyl alcohol residue may have an adverse effect on semiconductor devices. There are concerns. For this reason, it is desired to reduce the content of t-butyl alcohol in the semiconductor cleaning solution, but since t-butyl alcohol has approximately the same boiling point as isopropyl alcohol (82°C) Difficult to separate.
  • An object of the present invention is to provide a semiconductor cleaning liquid with a reduced content of t-butyl alcohol and a method for producing a semiconductor cleaning liquid that can reduce the content of t-butyl alcohol.
  • One aspect of the present invention is a semiconductor cleaning liquid containing isopropyl alcohol, in which the mass ratio of t-butyl alcohol to isopropyl alcohol is 1 ppm or less.
  • the above semiconductor cleaning liquid may have a mass ratio of pentanone to isopropyl alcohol of 1 ppb or more and 50 ppb or less, and a mass ratio of crotonaldehyde to isopropyl alcohol of 0.5 ppb or more and 10 ppb or less.
  • Isopropyl alcohol may be produced by a direct hydration method of propylene.
  • Another aspect of the present invention is a method for producing a semiconductor cleaning solution, in which a crude isopropyl alcohol aqueous solution containing t-butyl alcohol as an impurity is supplied to a raw material supply stage of a first distillation column, and
  • the first distillation step includes extracting a first distillate containing low-boiling impurities having a boiling point lower than that of isopropyl alcohol, and extracting a first bottoms from the bottom of the first distillation column, and the first distillation step includes: , the first distillation is carried out so that the water content in the liquid phase in three or more stages as the theoretical number of stages from the raw material supply stage to the top of the first distillation column is 15% by mass or more.
  • a fluid containing water is supplied from the outside of the first distillation column to a predetermined stage which is two or more theoretical stages above the raw material supply stage of the tower.
  • the method for producing the semiconductor cleaning liquid described above includes supplying the first distillate to a raw material supply stage of a second distillation column, and extracting the second distillate containing the low-boiling point impurities from the top of the second distillation column.
  • the second distillation step further includes a second distillation step of extracting a second bottom liquid from the bottom of the second distillation column, and in the second distillation step, the second distillation column is placed in a predetermined stage of the second distillation column. Water may be supplied from the outside, and the second bottoms may be supplied as the water-containing liquid in the first distillation step.
  • the predetermined stage of the second distillation column may be a stage between the raw material supply stage and the top of the second distillation column.
  • the above method for producing a semiconductor cleaning liquid may further include a reaction step of obtaining the crude isopropyl alcohol aqueous solution by a direct hydration method of propylene.
  • the present invention it is possible to provide a semiconductor cleaning liquid with a reduced content of t-butyl alcohol and a method for producing a semiconductor cleaning liquid that can reduce the content of t-butyl alcohol.
  • FIG. 2 is an xy diagram of t-butyl alcohol/isopropyl alcohol when the water content is 0% by mass.
  • FIG. 2 is an xy diagram of t-butyl alcohol/isopropyl alcohol when the water content is 18% by mass.
  • FIG. 2 is an xy diagram of t-butyl alcohol/isopropyl alcohol when the water content is 36% by mass.
  • FIG. 2 is an xy diagram of t-butyl alcohol/isopropyl alcohol when the water content is 54% by mass.
  • FIG. 2 is an xy diagram of t-butyl alcohol/isopropyl alcohol when the water content is 72% by mass.
  • FIG. 1 is an xy diagram of t-butyl alcohol/isopropyl alcohol when the water content is 0% by mass.
  • FIG. 2 is an xy diagram of t-butyl alcohol/isopropyl alcohol when the water content is 90% by mass.
  • FIG. 2 is an xy diagram of water/isopropyl alcohol. It is a figure showing an example of a low-boiling distillation process in the manufacturing method of the semiconductor cleaning liquid of this embodiment. It is a figure which shows another example of the low-boiling distillation process in the manufacturing method of the semiconductor cleaning liquid of this embodiment.
  • the semiconductor cleaning liquid of this embodiment contains isopropyl alcohol, and the mass ratio of t-butyl alcohol to isopropyl alcohol is 1 ppm or less, more preferably 0.5 ppm or less, and still more preferably 0.3 ppm or less. Therefore, even if the substrate is cleaned using the semiconductor cleaning liquid of this embodiment, the t-butyl alcohol residue will not have an adverse effect on the semiconductor device.
  • the mass ratio of t-butyl alcohol to isopropyl alcohol is not particularly limited, but if it is too low, the cost will increase, so it is preferably 0.01 ppm or more, more preferably 0.1 ppm or more.
  • the mass ratio of t-butyl alcohol to isopropyl alcohol is measured by gas chromatography mass spectrometry (GC-MS method).
  • GC-MS method gas chromatography mass spectrometry
  • Isopropyl alcohol can be produced, for example, by a direct hydration method of propylene.
  • isopropyl alcohol produced by the direct hydration method of propylene inevitably contains impurities such as 2-pentanone and crotonaldehyde.
  • the mass ratio of 2-pentanone to isopropyl alcohol in the semiconductor cleaning solution of the present embodiment is not particularly limited, but is, for example, 1 ppb or more and 50 ppb or less, preferably 2 ppb or more and 30 ppb or less.
  • the mass ratio of crotonaldehyde to isopropyl alcohol in the semiconductor cleaning solution of the present embodiment is not particularly limited, but is, for example, 0.5 ppb or more and 20 ppb or less, preferably 2 ppb or more and 10 ppb or less.
  • the content of isopropyl alcohol in the semiconductor cleaning solution of this embodiment is preferably 99.99% by mass or more, and more preferably 99.999% by mass or more, when expressed as a content excluding water. preferable.
  • the content of water in the semiconductor cleaning liquid of this embodiment is not particularly limited, but is, for example, 0.1 ppm or more and 100 ppm or less, preferably 1 ppm or more and 20 ppm or less.
  • the semiconductor cleaning liquid of this embodiment can be manufactured by a method for manufacturing a semiconductor cleaning liquid of this embodiment that will be described later.
  • a crude isopropyl alcohol aqueous solution containing t-butyl alcohol as an impurity is supplied to the raw material supply stage of the first distillation column, and the boiling point is higher than that of isopropyl alcohol from the top of the first distillation column.
  • the method includes a first distillation step in which a first distillate containing low-boiling impurities is extracted, and a first distillate is extracted from the bottom of the first distillation column.
  • the water content in the liquid phase in 3 or more theoretical stages from the raw material supply stage to the top of the first distillation column is 15% by mass or more.
  • a water-containing fluid is supplied from outside the first distillation column. This reduces the content of t-butyl alcohol in the semiconductor cleaning solution.
  • the content of water in the liquid phase in the theoretical number of stages from the raw material supply stage to the top of the first distillation column is 3 or more stages, more preferably 4 stages or more above the stage. It is preferable that the amount is % by mass or more.
  • Figures 1 to 6 show xy diagrams of t-butyl alcohol/isopropyl alcohol when the water content is 0 to 90% by mass.
  • Figure 7 shows an xy diagram of water/isopropyl alcohol.
  • a water/isopropyl alcohol mixture with a water content of 95% by mass has two theoretical stages, the water content is 20% by mass, and four theoretical stages. It can be seen that the content is 15% by mass, and at 6 theoretical stages, the water content is 13% by mass (the content of water in the azeotropic composition is 12.5% by mass).
  • the first distillation column is adjusted so that the water content in the liquid phase in three or more stages is 15% by mass or more as the theoretical number of stages from the raw material supply stage to the top of the first distillation column.
  • a water-containing fluid can be supplied from outside the first distillation column to a predetermined stage that is two or more theoretical stages above the raw material supply stage of the tower.
  • the fluid containing water may be a gas or a liquid.
  • the content of water in the water-containing fluid and the amount of water supplied may be adjusted as appropriate.
  • the water content in the water-containing fluid is preferably 50% by mass or more, more preferably 80% by mass or more.
  • the mass ratio of the amount of water supplied to the amount of raw material is preferably 1/10 to 1/1000, more preferably 1/50 to 1/200. It is. If the amount of water supplied is too large, the amount of water in the system will increase, so it is necessary to increase the diameter of the distillation column, and it is necessary to take out excess water from the system of the entire process. If the amount of water supplied is too small, the separation of t-butyl alcohol will be insufficient.
  • the water removed in the azeotropic distillation step and dehydration step described later can be used in the reaction step described later, but water used in the reaction step and as an additional amount of water that is slightly lost during operation. , water fed to the first distillation column can be used.
  • the method for producing a semiconductor cleaning liquid of this embodiment may further include a reaction step of obtaining a crude isopropyl alcohol aqueous solution by a direct hydration method of propylene.
  • the reaction of propylene in the reaction process is as follows: C 3 H 6 +H 2 O ⁇ CH 3 CH(OH)CH 3 It is expressed as By carrying out such a reaction in a reaction tower, a reaction product containing isopropyl alcohol is obtained.
  • the temperature and pressure in the reaction tower are preferably 200°C or more and 300°C or less and 150 atm or more and 250 atm or less, respectively.
  • various polyanion acid catalysts such as molybdenum-based and tungsten-based inorganic ion exchangers can be used.
  • the acid catalyst phosphotungstic acid, silicotungstic acid, and silicomolybdic acid are preferable from the viewpoint of reaction activity.
  • the reaction product dissolved in water is extracted from the reaction tower. Then, by cooling the reaction product and reducing the pressure, unreacted propylene dissolved in water is recovered as a gas, and a crude isopropyl alcohol aqueous solution is obtained. The recovered propylene is reused as raw material.
  • the content of water in the crude isopropyl alcohol aqueous solution is preferably 80% by mass or more, more preferably 90% by mass or more.
  • the method for manufacturing a semiconductor cleaning liquid of this embodiment includes a first distillation step as a low-boiling distillation step of distilling the crude isopropyl alcohol aqueous solution obtained in the reaction step.
  • Figure 8 shows an example of a low-boiling distillation process.
  • the crude isopropyl alcohol aqueous solution is supplied to the raw material supply stage of the low-boiling distillation column (first distillation column) 1 via a conduit and is distilled.
  • a condenser is provided at the top of the first distillation column 1, and part of the liquid condensed in the condenser is refluxed, and the remainder is extracted as a first distillate. Further, the first bottoms are extracted from the bottom of the first distillation column 1 and purified.
  • the reflux ratio of the first distillation column 1 is not particularly limited, but is, for example, 10 or more and 100 or less, preferably 50 or more and 80 or less.
  • the first distillate extracted from the top of the first distillation column 1 is supplied to the raw material supply stage of the recovery distillation column (second distillation column) 2 and distilled.
  • a condenser is provided at the top of the second distillation column 2, and part of the liquid condensed in the condenser is refluxed, and the remainder is extracted as a second distillate and disposed of.
  • water is supplied to a predetermined stage of the second distillation column 2, and it is preferable to supply water to a stage between the raw material supply stage and the top of the second distillation column 2.
  • the second bottoms from the bottom of the second distillation column 2 and supply it to a predetermined stage two or more theoretical stages higher than the raw material supply stage of the first distillation tower 1. It is more preferable to supply the material to a predetermined theoretical stage that is five or more theoretical stages higher than the raw material supply stage of the distillation column 1.
  • the reflux ratio of the second distillation column 2 is not particularly limited, but is, for example, 5 or more and 50 or less, preferably 10 or more and 30 or less.
  • Examples of low-boiling impurities contained in the first distillate and the second distillate include olefins such as ethylene, propylene, butenes, pentenes, and hexene, methane, ethane, propane, butane, pentane, and hexane.
  • Examples include alkanes such as , aldehydes such as acetaldehyde and propylene aldehyde, and ketones such as acetone and butanone.
  • FIG. 9 shows another example of the low-boiling distillation process.
  • the second distillation column 2 is omitted, and water is supplied instead of the second bottoms to a predetermined theoretical stage two or more stages higher than the raw material supply stage of the first distillation tower 1. has the same configuration as FIG. 8.
  • the crude isopropyl alcohol aqueous solution is supplied to the raw material supply stage of the low-boiling distillation column (first distillation column) 1 via a conduit and is distilled.
  • a condenser is provided at the top of the first distillation column 1, and part of the liquid condensed in the condenser is refluxed, and the remainder is extracted as a first distillate and disposed of.
  • water is supplied to a predetermined theoretical stage two or more stages higher than the raw material supply stage of the first distillation column 1. Furthermore, the first bottoms are extracted from the bottom of the first distillation column 1 and purified.
  • the reflux ratio of the first distillation column 1 is not particularly limited, but is, for example, 10 or more and 100 or less, preferably 50 or more and 80 or less.
  • first distillation column 1 and the second distillation column 2 may be either a tray column or a packed column, respectively, but are preferably a tray column.
  • the number of theoretical plates in each distillation column is not particularly limited, but the number of theoretical plates in the first distillation column 1 is preferably 5 to 80 plates, more preferably 10 to 50 plates.
  • the number of theoretical plates in the second distillation column 2 is preferably 3 to 20, more preferably 5 to 15.
  • the actual number of plates may be adjusted as appropriate to achieve the above-mentioned theoretical plate number, but is, for example, 10 or more and 100 or less, preferably 20 or more and 70 or less. It is.
  • the actual number of plates is, for example, 5 or more and 30 or less, preferably 10 or more and 25 or less.
  • the trays in the tray column include cross-flow trays, shower trays, and the like.
  • the packing in the packed column include Raschig rings and Lessing rings.
  • the material for the tower and the packing include iron, stainless steel, Hastelloy, borosilicate glass, quartz glass, and fluororesin (eg, polytetrafluoroethylene).
  • the positions in which the raw material supply stages are provided in the first distillation column 1 and the second distillation column 2 are not particularly limited, but are preferably three or more theoretical stages below the top of the column.
  • the pressures of the first distillation column 1 and the second distillation column 2 are not particularly limited, but are, for example, 0.0 to 0.2 MPa. At this time, the temperatures at the top and bottom of the first distillation column 1 and the second distillation column 2 may be appropriately set depending on the pressure.
  • the method for manufacturing the semiconductor cleaning liquid of this embodiment may further include a purification step of purifying the first bottom liquid to obtain the semiconductor cleaning liquid of this embodiment.
  • the purification process consists of an azeotropic distillation process in which the first bottoms are supplied to the raw material supply stage of the azeotropic distillation column and distilled to obtain an azeotropic mixture of isopropyl alcohol and water; It is preferable to include a dehydration step of dehydrating the azeotropic mixture, and a high-boiling distillation step of supplying the dehydrated azeotropic mixture to a raw material supply stage of a high-boiling distillation column and distilling it to obtain a semiconductor cleaning liquid.
  • azeotropic distillation process In the azeotropic distillation process, the first bottoms are distilled and an azeotropic mixture of isopropyl alcohol and water is taken out as a distillate from the top of the azeotropic distillation column, and at the bottom of the azeotropic distillation column. The bottoms containing high-boiling impurities with a boiling point higher than that of isopropyl alcohol is taken out.
  • the azeotropic temperature of isopropyl alcohol and water is 80.1°C
  • the isopropyl alcohol and water are distilled from the top of the column.
  • An azeotrope is removed.
  • high-boiling impurities are taken out along with water at the bottom of the column.
  • azeotropic distillation step may be carried out according to the conditions described for the low-boiling distillation step.
  • Dehydration methods include, but are not particularly limited to, distillation, adsorption, membrane permeation, and the like.
  • water can be removed by adding diethyl ether, benzene, toluene, trichloroethylene, dichloromethane, hexene, etc. to create a three-component azeotropic composition. I can do it.
  • the semiconductor cleaning liquid obtained in the high-boiling distillation process may be further purified by methods such as adsorption, or metal particles, inorganic particles, organic particles, etc. may be removed by filter filtration, if necessary. However, metal ions and the like may be removed using an ion exchange resin tower.
  • ⁇ Analysis example 1> Measurement of moisture concentration in samples containing high concentration of moisture
  • ⁇ Analysis example 2> Aldehyde/ketone concentration measurement
  • aldehyde and ketone compounds in isopropyl alcohol containing water were analyzed using this method. Note that even if the sample does not contain water, it can be similarly analyzed using this method.
  • DNPH 2,4-dinitrophenylhydrazine
  • a DNPH hydrochloric acid solution was prepared by mixing 100 mg of DNPH and 100 ml of 2 mol/L hydrochloric acid. 50 ml of isopropyl alcohol and 1 ml of DNPH hydrochloric acid solution were mixed, left to stand for 1 hour, and concentrated 50 times to 1 ml. The obtained concentrated sample was subjected to high performance liquid chromatography (HPLC) analysis under the following conditions. As a result of calculating the lower limit of quantification using standard substances, the lower limit of quantification for acetaldehyde, propionaldehyde, crotonaldehyde, and 2-pentanone was 0.1 ppb.
  • ⁇ Analysis example 3-1> (t-butyl alcohol concentration measurement)
  • the t-butyl alcohol contained in isopropyl alcohol containing water was measured by the headspace method using GC-MS under the measurement conditions shown below.
  • the lower limit of quantification of t-butyl alcohol in a water concentration of 95% and an isopropyl alcohol concentration of 5% was 5 ppb.
  • ⁇ Analysis example 3-2> (t-butyl alcohol concentration measurement)
  • the t-butyl alcohol contained in isopropyl alcohol was measured using GC-MS under the measurement conditions shown below.
  • the lower limit of quantitation for t-butyl alcohol was 10 ppb.
  • the recovered propylene was put into a propylene recovery drum for reuse as raw material.
  • the conversion rate of propylene was 84.0%
  • the selectivity of propylene to isopropyl alcohol was 99.2%
  • the content of water in the crude isopropyl alcohol aqueous solution was 95% by mass.
  • first distillation column An Aldershaw-type low-boiling distillation column (first distillation column) with 60 plates and an Aldershaw-type recovery distillation column (second distillation column) with 20 plates were installed.
  • first distillation column is a container with a 2 L bottom, and the first bottoms are extracted from the bottom of the column.
  • the first distillation column is equipped with a condenser at the top (top of the column), and part of the liquid condensed in the condenser is refluxed to the top of the column, and the remainder is extracted as the first distillate. .
  • the second distillation column is a container with a column bottom of 500 mL, and the second bottom liquid is extracted from the column bottom. Further, the second distillation column is provided with a condenser at the top of the column, and part of the liquid condensed in the condenser is refluxed to the top of the column, and the remainder is extracted as a second distillate.
  • the crude isopropyl alcohol aqueous solution was supplied at 10 L/h to the raw material supply stage (8th stage) located 7 stages below the top (1st stage) of the first distillation column, and the crude isopropyl alcohol aqueous solution was distilled.
  • the temperature at the top of the column was 75 to 85°C
  • the column pressure (gauge pressure) was 0 to 10 kPa.
  • the reflux amount was set to 2.5 L/h
  • the reflux ratio was set to about 62.5
  • the first distillate was extracted from the condenser at a rate of 40 ml/h.
  • the first bottoms were extracted from the bottom of the column at a rate of about 10 L/h so that the liquid volume in the first distillation column was maintained at about 1.5 L.
  • the first distillate was supplied at a rate of 40 ml/h to the raw material supply stage (5 stages) located 4 stages below the top of the second distillation column, and the first distillate was distilled.
  • the temperature at the top of the column was 50 to 80°C, and the column pressure (gauge pressure) was 0 to 10 kPa.
  • the reflux amount was set to 30 mL/h, the reflux ratio was set to about 6, and water was supplied to the top of the second distillation column at 60 ml/h.
  • the second bottoms were extracted from the bottom of the second distillation column at a rate of 95 ml/h and supplied to the top of the first distillation column.
  • the second distillate was extracted from the condenser of the second distillation column at a rate of 5 ml/h and discarded.
  • the first bottoms were supplied to the raw material supply stage of the azeotropic distillation column and distilled to obtain an azeotropic mixture of isopropyl alcohol and water (mass ratio 87.5:12.5).
  • the azeotrope of isopropyl alcohol and water was dehydrated and then distilled using a high-boiling distillation column to obtain a semiconductor cleaning solution.
  • the content of water in the liquid phase 15% by mass or more in 3 or more theoretical stages among the stages from the raw material supply stage to the top of the column, from the top of the first distillation column.
  • the content of water in the liquid phase in the stage three stages below (fourth stage), that is, the stage four stages above the raw material supply stage (eighth stage) of the first distillation column (fourth stage) is 15% by mass or more. That's fine.
  • Example 2 (low-boiling distillation step of crude isopropyl alcohol aqueous solution), water is supplied to the top of the second distillation column at a rate of 120 ml/h, and a second bottoms is extracted from the bottom of the second distillation column at a rate of 155 ml/h.
  • a semiconductor cleaning solution was obtained in the same manner as in Example 1 except that it was supplied to the top of the first distillation column.
  • the semiconductor cleaning liquid had a mass ratio of t-butyl alcohol to isopropyl alcohol of 0.3 ppm. Further, the semiconductor cleaning liquid had a mass ratio of 2-pentanone to isopropyl alcohol of 20 ppb, and a mass ratio of crotonaldehyde to isopropyl alcohol of 8 ppb.
  • Example 3> Low-boiling distillation step of crude isopropyl alcohol aqueous solution is the same as in Example 2 except that the second bottoms were supplied from the bottom of the second distillation column to three stages above the raw material supply stage of the first distillation column. A semiconductor cleaning solution was obtained.
  • the semiconductor cleaning liquid had a mass ratio of t-butyl alcohol to isopropyl alcohol of 0.8 ppm. Further, the semiconductor cleaning liquid had a mass ratio of 2-pentanone to isopropyl alcohol of 20 ppb, and a mass ratio of crotonaldehyde to isopropyl alcohol of 10 ppb.
  • Example 4> low-boiling distillation step of crude isopropyl alcohol aqueous solution
  • water is supplied to the top of the second distillation column at a rate of 360 ml/h
  • the second bottoms are extracted from the bottom of the second distillation column at a rate of 390 ml/h.
  • a semiconductor cleaning solution was obtained in the same manner as in Example 1 except that it was supplied to the top of the first distillation column.
  • the semiconductor cleaning liquid had a mass ratio of t-butyl alcohol to isopropyl alcohol of 0.15 ppm. Further, in the semiconductor cleaning liquid, the mass ratio of 2-pentanone to isopropyl alcohol was 20 ppb, and the mass ratio of crotonaldehyde to isopropyl alcohol was 7 ppb.
  • ⁇ Comparative example 1> (low-boiling distillation process of crude isopropyl alcohol aqueous solution), water is not supplied to the top of the second distillation column, the second bottoms are extracted from the bottom of the second distillation column at a rate of 35 ml/h, and the first distillation A semiconductor cleaning solution was obtained in the same manner as in Example 1 except that it was supplied to the top of the column.
  • the semiconductor cleaning liquid had a mass ratio of t-butyl alcohol to isopropyl alcohol of 2.2 ppm. Further, the semiconductor cleaning liquid had a mass ratio of 2-pentanone to isopropyl alcohol of 20 ppb, and a mass ratio of crotonaldehyde to isopropyl alcohol of 10 ppb.
  • ⁇ Comparative example 2> (Low-boiling distillation step of crude isopropyl alcohol aqueous solution) is the same as in Example 2 except that the second bottoms were supplied from the bottom of the second distillation column to one stage above the raw material supply stage of the first distillation column. A semiconductor cleaning solution was obtained.
  • the semiconductor cleaning liquid had a mass ratio of t-butyl alcohol to isopropyl alcohol of 1.5 ppm. Further, the semiconductor cleaning liquid had a mass ratio of 2-pentanone to isopropyl alcohol of 20 ppb, and a mass ratio of crotonaldehyde to isopropyl alcohol of 10 ppb.
  • ⁇ Comparative example 3> Low-boiling distillation step of crude isopropyl alcohol aqueous solution
  • water is supplied to the top of the second distillation column at a rate of 40 ml/h
  • the second bottoms are extracted from the bottom of the second distillation column at a rate of 75 ml/h.
  • a semiconductor cleaning solution was obtained in the same manner as in Example 3 except that it was supplied to the top of the first distillation column.
  • the semiconductor cleaning liquid had a mass ratio of t-butyl alcohol to isopropyl alcohol of 2.0 ppm. Further, the semiconductor cleaning liquid had a mass ratio of 2-pentanone to isopropyl alcohol of 20 ppb, and a mass ratio of crotonaldehyde to isopropyl alcohol of 10 ppb.
  • Table 1 shows the simulation results of the water content in the liquid phase in each stage of the first distillation column, the number of theoretical plates where the water content in the liquid phase is 15% by mass or more, and the water in the liquid phase in the 4th stage. The measurement results of the content are shown.
  • Table 2 shows the content of the components in the first bottom liquid. Analysis examples 1, 2, and 3-1 were used.
  • Table 3 shows the mass ratio of the components to isopropyl alcohol. Analysis examples 1, 2, and 3-2 were used.
  • Table 3 shows that the semiconductor cleaning solutions of Examples 1 to 4 have a mass ratio of t-butyl alcohol to isopropyl alcohol of 1 ppm or less.
  • the semiconductor cleaning liquids of Comparative Examples 1 to 3 the water content in the liquid phase of the first distillation column was maintained at 15% by mass or more in the stages from the raw material supply stage to the top of the tower. Since the number of theoretical plates is 2.8, the mass ratio of t-butyl alcohol to isopropyl alcohol exceeds 1 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

イソプロピルアルコールを含む半導体洗浄液であって、イソプロピルアルコールに対するt-ブチルアルコールの質量比が1ppm以下である、半導体洗浄液を提供する。また、不純物としてt-ブチルアルコールを含む粗イソプロピルアルコール水溶液を第一蒸留塔の原料供給段に供給し、前記第一蒸留塔の塔頂からイソプロピルアルコールよりも沸点が低い低沸点不純物を含む第一留出液を抜き出すとともに、前記第一蒸留塔の塔底から第一缶出液を抜き出す第一蒸留工程を含み、前記第一蒸留工程では、前記第一蒸留塔の原料供給段から塔頂までの段のうちの理論段数として3段以上の段における液相中の水の含有率が15質量%以上となるように、前記第一蒸留塔の原料供給段よりも理論段として2段以上上の所定の段に、前記第一蒸留塔の外部から、水を含有する流体を供給する、半導体洗浄液の製造方法を提供する。

Description

半導体洗浄液および半導体洗浄液の製造方法
 本発明は、半導体洗浄液および半導体洗浄液の製造方法に関する。
 従来、半導体製造プロセスにおいては、半導体基板、ガラス基板等の基板を半導体洗浄液で洗浄した後、乾燥させる。半導体洗浄液としては、例えば、イソプロピルアルコールが用いられている。
 イソプロピルアルコールの製造方法としては、例えば、プロピレンの直接水和法(特許文献1参照)が知られている。
国際公開第2017/217279号
 しかしながら、プロピレンの直接水和法により製造されているイソプロピルアルコールには、不純物としてt-ブチルアルコールが含まれるため、半導体洗浄液として用いると、t-ブチルアルコールの残渣が半導体デバイスに悪影響を及ぼすことが懸念される。このため、半導体洗浄液中のt-ブチルアルコールの含有率を減少させることが望まれているが、t-ブチルアルコールは、イソプロピルアルコールと沸点が82℃と略同一であるため、t-ブチルアルコールを分離するのが困難である。
 本発明は、t-ブチルアルコールの含有率が減少した半導体洗浄液およびt-ブチルアルコールの含有率を減少させることが可能な半導体洗浄液の製造方法を提供することを目的とする。
 本発明の一態様は、イソプロピルアルコールを含む半導体洗浄液であって、イソプロピルアルコールに対するt-ブチルアルコールの質量比が1ppm以下である。
 上記の半導体洗浄液は、イソプロピルアルコールに対するペンタノンの質量比が1ppb以上50ppb以下であり、イソプロピルアルコールに対するクロトンアルデヒドの質量比が0.5ppb以上10ppb以下であってもよい。
 イソプロピルアルコールは、プロピレンの直接水和法により製造されていてもよい。
 本発明の他の一態様は、半導体洗浄液の製造方法において、不純物としてt-ブチルアルコールを含む粗イソプロピルアルコール水溶液を第一蒸留塔の原料供給段に供給し、前記第一蒸留塔の塔頂からイソプロピルアルコールよりも沸点が低い低沸点不純物を含む第一留出液を抜き出すとともに、前記第一蒸留塔の塔底から第一缶出液を抜き出す第一蒸留工程を含み、前記第一蒸留工程では、前記第一蒸留塔の原料供給段から塔頂までの段のうちの理論段数として3段以上の段における液相中の水の含有率が15質量%以上となるように、前記第一蒸留塔の原料供給段よりも理論段として2段以上上の所定の段に、前記第一蒸留塔の外部から、水を含有する流体を供給する。
 上記の半導体洗浄液の製造方法は、前記第一留出液を第二蒸留塔の原料供給段に供給し、前記第二蒸留塔の塔頂から前記低沸点不純物を含む第二留出液を抜き出すとともに、前記第二蒸留塔の塔底から第二缶出液を抜き出す第二蒸留工程をさらに含み、前記第二蒸留工程では、前記第二蒸留塔の所定の段に、前記第二蒸留塔の外部から、水を供給し、前記第一蒸留工程では、前記水を含有する液体として、前記第二缶出液を供給してもよい。
 前記第二蒸留塔の所定の段は、前記第二蒸留塔の原料供給段と塔頂との間の段であってもよい。
 上記の半導体洗浄液の製造方法は、プロピレンの直接水和法により、前記粗イソプロピルアルコール水溶液を得る反応工程をさらに含んでもよい。
 本発明によれば、t-ブチルアルコールの含有率が減少した半導体洗浄液およびt-ブチルアルコールの含有率を減少させることが可能な半導体洗浄液の製造方法を提供することができる。
水の含有率が0質量%である場合のt-ブチルアルコール/イソプロピルアルコールのx-y線図である。 水の含有率が18質量%である場合のt-ブチルアルコール/イソプロピルアルコールのx-y線図である。 水の含有率が36質量%である場合のt-ブチルアルコール/イソプロピルアルコールのx-y線図である。 水の含有率が54質量%である場合のt-ブチルアルコール/イソプロピルアルコールのx-y線図である。 水の含有率が72質量%である場合のt-ブチルアルコール/イソプロピルアルコールのx-y線図である。 水の含有率が90質量%である場合のt-ブチルアルコール/イソプロピルアルコールのx-y線図である。 水/イソプロピルアルコールのx-y線図である。 本実施形態の半導体洗浄液の製造方法における低沸蒸留工程の一例を示す図である。 本実施形態の半導体洗浄液の製造方法における低沸蒸留工程の他の例を示す図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 <半導体洗浄液>
 本実施形態の半導体洗浄液は、イソプロピルアルコールを含み、イソプロピルアルコールに対するt-ブチルアルコールの質量比は、1ppm以下であり、より好ましくは0.5ppm以下であり、さらに好ましくは0.3ppm以下である。このため、本実施形態の半導体洗浄液を用いて、基板を洗浄しても、t-ブチルアルコールの残渣が半導体デバイスに悪影響を及ぼさない。イソプロピルアルコールに対するt-ブチルアルコールの質量比は、特に制限されないが、低すぎると、コストが増大することから、好ましくは0.01ppm以上であり、より好ましくは0.1ppm以上である。なお、イソプロピルアルコールに対するt-ブチルアルコールの質量比は、ガスクロマトグラフ質量分析法(GC-MS法)により測定する。その測定は、半導体洗浄液の水分濃度が1%未満であるときは、半導体洗浄液を直接装置のインジェクションに導入して分析すれば良いが、半導体洗浄液の水分濃度が1%以上であるときは、ヘッドスペース-GC-MS法により分析することが好ましい。
 イソプロピルアルコールは、例えば、プロピレンの直接水和法により製造することができる。
 この場合、原料のプロピレンが不純物としてイソブテンを含んでいなくても、副生成物としてt-ブチルアルコールが生成するため、イソプロピルアルコールの製造時に、プロピレンの不均化反応によりイソブテンが生成すると推測される(下記反応機構参照)。
Figure JPOXMLDOC01-appb-C000001
 また、プロピレンの直接水和法により製造されているイソプロピルアルコールは、不純物として2-ペンタノン、クロトンアルデヒド等が不可避的に混入する。本実施形態の半導体洗浄液中のイソプロピルアルコールに対する2-ペンタノンの質量比は、特に限定されないが、例えば、1ppb以上50ppb以下であり、好ましくは2ppb以上30ppb以下である。また、本実施形態の半導体洗浄液中のイソプロピルアルコールに対するクロトンアルデヒドの質量比は、特に限定されないが、例えば、0.5ppb以上20ppb以下であり、好ましくは2ppb以上10ppb以下である。
 本実施形態の半導体洗浄液中のイソプロピルアルコールの含有率は、水を除いた含有率で示した場合に、99.99質量%以上であることが好ましく、99.999質量%以上であることがさらに好ましい。
 本実施形態の半導体洗浄液中の水の含有率は、特に限定されないが、例えば、0.1質量ppm以上100質量ppm以下であり、好ましくは1ppm以上20ppm以下である。
 なお、本実施形態の半導体洗浄液は、後述する本実施形態の半導体洗浄液の製造方法により、製造することができる。
 <半導体洗浄液の製造方法>
 本実施形態の半導体洗浄液の製造方法は、不純物としてt-ブチルアルコールを含む粗イソプロピルアルコール水溶液を第一蒸留塔の原料供給段に供給し、第一蒸留塔の塔頂からイソプロピルアルコールよりも沸点が低い低沸点不純物を含む第一留出液を抜き出すとともに、第一蒸留塔の塔底から第一缶出液を抜き出す第一蒸留工程を含む。このとき、第一蒸留工程では、第一蒸留塔の原料供給段から塔頂までの段のうちの理論段数として3段以上の段における液相中の水の含有率が15質量%以上となるように、第一蒸留塔の原料供給段よりも理論段として2段以上上の所定の段、より好ましくは3段以上上の所定の段、さらに好ましくは5段以上上の所定の段に、第一蒸留塔の外部から、水を含有する流体を供給する。これにより、半導体洗浄液中のt-ブチルアルコールの含有率が減少する。このとき、第一蒸留塔の原料供給段から塔頂までの段のうちの理論段数として3段以上上の段、より好ましくは4段以上上の段における液相中の水の含有率が15質量%以上となることが好ましい。
 図1~6に、水の含有率が0~90質量%である場合のt-ブチルアルコール/イソプロピルアルコールのx-y線図を示す。
 図1~6から、水の含有率が18~90質量%である場合は、水の含有率が0質量%である場合と対比して、イソプロピルアルコールとt-ブチルアルコールの分離が促進されていることがわかる。このため、第一蒸留塔の原料供給段から塔頂までの段のうちの理論段数として3段以上の段における液相中の水の含有率が15質量%以上となることで、半導体洗浄液中のt-ブチルアルコールの含有率が減少する。
 図7に、水/イソプロピルアルコールのx-y線図を示す。
 図7から、例えば、水の含有率が95質量%である水/イソプロピルアルコール混合液は、理論段として2段で、水の含有率が20質量%となり、理論段として4段で、水の含有率が15質量%となり、理論段として6段で、水の含有率が13質量%(共沸組成における水の含有率12.5質量%)となることがわかる。このため、第一蒸留塔の原料供給段から塔頂までの段のうちの理論段数として3段以上の段における液相中の水の含有率が15質量%以上となるように、第一蒸留塔の原料供給段よりも理論段として2段以上上の所定の段に、第一蒸留塔の外部から、水を含有する流体を供給することができる。
 なお、水を含有する流体は、気体であってもよいし、液体であってもよい。水を含有する流体中の水の含有率および水の供給量は、適宜調整すればよい。水を含有する流体中の水の含有率は、好ましくは50質量%以上であり、さらに好ましくは80質量%以上である。原料(不純物としてt-ブチルアルコールを含む粗イソプロピルアルコール水溶液)の供給量に対する水の供給量の質量比は、好ましくは1/10~1/1000であり、さらに好ましくは1/50~1/200である。水の供給量が多すぎると、系内の水量が多くなるため、蒸留塔の塔径を大きくする必要があり、工程全体の系より余分となった水を取り出す必要がある。水の供給量が少なすぎると、t-ブチルアルコールの分離が不十分になる。
 好ましい形態として、後述する共沸蒸留工程および脱水工程で除去された水を後述する反応工程に使用することができるが、反応工程に使用される水、運転上わずかに失われる水の追加分として、第一蒸留塔に供給される水を用いることができる。
 [反応工程]
 本実施形態の半導体洗浄液の製造方法は、プロピレンの直接水和法により、粗イソプロピルアルコール水溶液を得る反応工程をさらに含んでいてもよい。反応工程におけるプロピレンの反応は、反応式
 C+HO→CHCH(OH)CH
で表される。このような反応を反応塔で実施することで、イソプロピルアルコールを含む反応生成物が得られる。
 反応工程では、反応塔内における温度および圧力を、それぞれ200℃以上300℃以下および150atm以上250atm以下とすることが好ましい。また、反応工程では、例えば、モリブデン系、タングステン系無機イオン交換体等の各種のポリアニオンの酸触媒を使用することができる。酸触媒としては、反応活性の点から、リンタングステン酸、ケイタングステン酸およびケイモリブデン酸が好ましい。
 水に溶解している状態の反応生成物を、反応塔から抜き出す。そして、反応生成物を冷却するとともに、減圧することで、水に溶解している未反応のプロピレンを気体として回収し、粗イソプロピルアルコール水溶液が得られる。回収されるプロピレンは、原料として再使用される。粗イソプロピルアルコール水溶液中の水の含有率は、好ましくは80質量%以上であり、より好ましくは90質量%以上である。
 (低沸蒸留工程)
 本実施形態の半導体洗浄液の製造方法は、反応工程で得られた粗イソプロピルアルコール水溶液を蒸留する低沸蒸留工程として、第一蒸留工程を含む。
 図8に、低沸蒸留工程の一例を示す。
 粗イソプロピルアルコール水溶液は、導管を介して、低沸蒸留塔(第一蒸留塔)1の原料供給段に供給され、蒸留される。このとき、第一蒸留塔1の塔頂にはコンデンサーが設けられており、コンデンサーで凝縮した液の一部を還流し、残部を第一留出液として抜き出す。また、第一蒸留塔1の塔底から第一缶出液を抜き出し、精製する。
 ここで、第一蒸留塔1の還流比は、特に限定されないが、例えば、10以上100以下であり、好ましくは50以上80以下である。
 また、第一蒸留塔1の塔頂から抜き出された第一留出液は、回収蒸留塔(第二蒸留塔)2の原料供給段に供給され、蒸留される。このとき、第二蒸留塔2の塔頂にはコンデンサーが設けられており、コンデンサーで凝縮した液の一部を還流し、残部を第二留出液として抜き出し、廃棄する。また、第二蒸留塔2の所定の段に水を供給するが、第二蒸留塔2の原料供給段と塔頂との間の段に水を供給することが好ましい。さらに、第二蒸留塔2の塔底から第二缶出液を抜き出し、第一蒸留塔1の原料供給段よりも理論段として2段以上上の所定の段に供給することが好ましく、第一蒸留塔1の原料供給段よりも理論段として5段以上上の所定の段に供給することがさらに好ましい。
 ここで、第二蒸留塔2の還流比は、特に限定されないが、例えば、5以上50以下であり、好ましくは10以上30以下である。
 第一留出液および第二留出液に含まれる低沸点不純物としては、例えば、エチレン、プロピレン、ブテン類、ペンテン類、ヘキセン類等のオレフィン類、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサンなどのアルカン類、アセトアルデヒド、プロピレンアルデヒド等のアルデヒド類、アセトン、ブタノン等のケトン類等が挙げられる。
 図9に、低沸蒸留工程の他の例を示す。図9は、第二蒸留塔2を省略し、第一蒸留塔1の原料供給段よりも理論段として2段以上上の所定の段に、第二缶出液の代わりに水を供給した以外は、図8と同様の構成である。
 粗イソプロピルアルコール水溶液は、導管を介して、低沸蒸留塔(第一蒸留塔)1の原料供給段に供給され、蒸留される。このとき、第一蒸留塔1の塔頂にはコンデンサーが設けられており、コンデンサーで凝縮した液の一部を還流し、残部を第一留出液として抜き出し、廃棄する。また、第一蒸留塔1の原料供給段よりも理論段として2段以上上の所定の段に水を供給する。さらに、第一蒸留塔1の塔底から第一缶出液を抜き出し、精製する。
 ここで、第一蒸留塔1の還流比は、特に限定されないが、例えば、10以上100以下であり、好ましくは50以上80以下である。
 なお、第一蒸留塔1および第二蒸留塔2は、それぞれ棚段塔および充填塔のいずれであってもよいが、棚段塔であることが好ましい。それぞれの蒸留塔の理論段数は、特に限定されないが、第一蒸留塔1の理論段数は、好ましくは5~80段であり、より好ましくは10~50段である。第二蒸留塔2の理論段数は、好ましくは3~20段であり、より好ましくは5~15段である。第一蒸留塔1が棚段塔である場合の実段数は、上記理論段数になるように適宜調節すればよいが、例えば、10段以上100段以下であり、好ましくは20段以上70段以下である。第二蒸留塔2が棚段塔である場合の実段数は、例えば、5段以上30段以下であり、好ましくは10段以上25段以下である。棚段塔における棚段としては、例えば、十字流トレイ、シャワートレイ等が挙げられる。充填塔における充填物としては、例えば、ラシヒリング、レッシングリング等が挙げられる。塔および充填物の材質としては、例えば、鉄、ステンレス鋼、ハステロイ、ホウケイ酸ガラス、石英ガラス、フッ素樹脂(例えば、ポリテトラフルオロエチレン)等が挙げられる。
 また、第一蒸留塔1および第二蒸留塔2における原料供給段を設ける位置は、特に限定されないが、塔頂より理論段として3段以上下であることが好ましい。
 さらに、第一蒸留塔1および第二蒸留塔2の圧力は、特に限定されないが、例えば、0.0~0.2MPaである。このとき、第一蒸留塔1および第二蒸留塔2の塔頂および塔底の温度は、圧力に応じて、適宜設定すればよい。
 [精製工程]
 本実施形態の半導体洗浄液の製造方法は、第一缶出液を精製して、本実施形態の半導体洗浄液を得る精製工程をさらに含んでいてもよい。
 精製工程は、第一缶出液を共沸蒸留塔の原料供給段に供給して、蒸留し、イソプロピルアルコールと水との共沸混合物を得る共沸蒸留工程と、イソプロピルアルコールと水との共沸混合物を脱水する脱水工程と、脱水された共沸混合物を高沸蒸留塔の原料供給段に供給して、蒸留し、半導体洗浄液を得る高沸蒸留工程を含むことが好ましい。
 (共沸蒸留工程)
 共沸蒸留工程では、第一缶出液を蒸留して、共沸蒸留塔の塔頂から、イソプロピルアルコールと水との共沸混合物を、留出液として取り出すとともに、共沸蒸留塔の塔底から、イソプロピルアルコールよりも沸点が高い高沸点不純物を含む缶出液を取り出す。
 具体的には、イソプロピルアルコールと水との共沸温度は、80.1℃であるため、第一缶出液を80.1℃で蒸留することにより、塔頂から、イソプロピルアルコールと水との共沸混合物が取り出される。一方、塔底では、水と共に高沸点不純物が取り出される。
 その他、共沸蒸留工程は、低沸蒸留工程で説明した諸条件に準じて実施すればよい。
 (脱水工程)
 脱水工程では、共沸蒸留工程で得られたイソプロピルアルコールと水との共沸混合物を脱水する。
 脱水方法としては、特に限定されないが、蒸留、吸着、膜透過等が挙げられる。なお、イソプロピルアルコールと水との共沸混合物を蒸留する場合は、ジエチルエーテル、ベンゼン、トルエン、トリクロロエチレン、ジクロロメタン、ヘキセン類等を加えて、三成分共沸組成とすることで、水を除去することができる。
 (高沸蒸留工程)
 高沸蒸留工程では、脱水工程で脱水された共沸混合物を蒸留して、高沸蒸留塔の塔頂から、半導体洗浄液を、留出液として取り出すとともに、高沸蒸留塔の塔底から、イソプロピルアルコールよりも沸点が高い高沸点不純物を含む缶出液を取り出す。
 (その他の工程)
 高沸蒸留工程で得られた半導体洗浄液は、必要に応じて、吸着等の方法により、さらに精製してもよいし、フィルター濾過により、金属粒子、無機粒子、有機粒子等を除去してもよいし、イオン交換樹脂塔により、金属イオン等を除去してもよい。
 以上、本発明の実施形態について説明したが、本発明は、上記の実施形態に限定されず、本発明の趣旨の範囲内で、上記の実施形態を適宜変更してもよい。
 以下、本発明の実施例を説明するが、本発明は、実施例に限定されるものではない。なお、本実施例中、%およびppmは、特に記載が無い場合、質量基準である。
 <分析例1>
 (高濃度水分を含有するサンプル中の水分濃度測定)
 機器:カールフィッシャー水分計 CA-200(三菱ケミカルアナリティック製)
 サンプル中の水分濃度が数%を超えると思われるサンプルはIPAで希釈した後、測定した。希釈に用いるIPA中の水分濃度は事前に測定し、100ppm以下であることを確認した。水分濃度が数%以下と思われるサンプルは希釈せずに分析した。想定したより水分が多い場合、測定に時間がかかるだけで測定値には影響はない。100ppm以下の水分を測定する場合、露点-60℃以下のグローボックス中で測定サンプル5g以上をテルモシリンジで採取し、カールフィッシャー水分計にて測定するのが好ましく、本分析法は1ppm以上の水分があれば定量可能である。
 <分析例2>
 (アルデヒド・ケトン濃度測定)
 特に水を含有するイソプロピルアルコール中のアルデヒド・ケトン化合物は、本方法で分析した。なお、水を含有しない場合でも本方法で同様に分析可能である。アルデヒド・ケトン化合物の2、4-ジニトロフェニルヒドラジン(DNPH)誘導体化、続いて濃縮を行った後、アルデヒド・ケトン化合物の定量を行った。
 DNPH100mgと2mоl/Lの塩酸100mlを混合し、DNPH塩酸溶液を調製した。イソプロピルアルコール50mlとDNPH塩酸溶液1mlを混合し1時間静置し、50倍濃縮を行い1mlとした。得られた濃縮サンプルに対して、以下の条件で高速液体クロマトグラフィー(HPLC)分析を行った。標準物質を用い、定量下限を算出した結果、アセトアルデヒド、プロピオンアルデヒド、クロトンアルデヒド、2-ペンタノンの定量下限は0.1ppbであった。
 -測定条件-
 装置:Ultimate3000(サーモフィッシャーサイエンティフィック製)
 カラム:Inertsil ODS-2(ジーエルサイエンス製)
 カラム充填物の粒子径:5μm
 カラム径:2.1mm
 カラム長さ:250mm
 流量:0.2ml/min
 カラム温度:40℃
 検出器:UV(360nm)
 サンプル注入量:10μl
 移動相比:0→14分:アセトニトリル/1mM酢酸+2mM酢酸アンモニウム:48/52(一定)、14分→25分:アセトニトリル/1mM酢酸+2mM酢酸アンモニウム:48/52→100/0(勾配)、25分→45分:アセトニトリル/1mM酢酸+2mM酢酸アンモニウム:100/0(一定)
 <分析例3-1>
 (t-ブチルアルコール濃度測定)
 水を含有するイソプロピルアルコール中に含まれるt-ブチルアルコールは、ヘッドスペース法にて、GC-MSを使用し、以下に示した測定条件で測定した。標準物質を用い、定量下限を算出した結果、水分濃度95%、イソプロピルアルコール濃度5%中のt-ブチルアルコールの定量下限は5ppbであった。
 -測定条件-
 装置:7890A/5975C(アジレント・テクノロジー製)
 分析カラム:J&W DB-1(60m×0.32mm、5μm)
 カラム温度:35℃(2分間保持)→10℃/分で昇温→250℃(6分間保持)
 キャリアガス:ヘリウム
 注入時圧力:20psi
 線速度:31cm/秒
 注入口温度:200℃
 試料注入法:スプリット法
 スプリット比:1対5
 注入量:1ml
 ヘッドスペース加熱温度:60℃
 ヘッドスペース加熱時間:20分
 トランスファーライン温度:240℃
 イオン源、四重極の温度:230℃、150℃
 スキャンイオン:m/z=25~250
 SIMモニターイオン:31、59
 <分析例3-2>
 (t-ブチルアルコール濃度測定)
 イソプロピルアルコール中に含まれるt-ブチルアルコールは、GC-MSを使用し、以下に示した測定条件で測定した。標準物質を用い、定量下限を算出した結果、t-ブチルアルコールの定量下限は10ppbであった。
 -測定条件-
 装置:7890A/5975C(アジレント・テクノロジー製)
 分析カラム:J&W DB-1(60m×0.32mm、5μm)
 カラム温度:35℃(2分間保持)→10℃/分で昇温→250℃(6分間保持)
 キャリアガス:ヘリウム
 注入時圧力:20psi
 線速度:31cm/秒
 注入口温度:200℃
 試料注入法:スプリットレス法
 注入量:2μl
 ヘッドスペース加熱温度:60℃
 ヘッドスペース加熱時間:20分
 トランスファーライン温度:240℃
 イオン源、四重極の温度:230℃、150℃
 スキャンイオン:m/z=25~250
 SIMモニターイオン:31、59
 <実施例1>
 (反応工程)
 原料のプロピレンとしては、不純物として、プロパン(40000ppm)、エタン(20ppm)、2-ブテン(5ppm)、イソブテン(0.1ppm以下)ペンテン(0.1ppm以下)、ヘキセン(0.1ppm以下)が含まれているものを準備した。また、原料の水としては、酸触媒としての、リンタングステン酸を添加して、pHを3.0に調整したものを準備した。
 内容積10Lの反応塔に、110℃に加温した水(密度0.92kg/L)を18.4kg/h(20L/h)の供給量で投入するとともに、プロピレンを1.2kg/hの供給量で投入した。このとき、反応塔内における温度および圧力を、それぞれ280℃および250atmとして、プロピレンと水とを反応させて、イソプロピルアルコールを含む反応生成物を得た。次に、プロピレン回収塔内における温度および圧力を、それぞれ140℃および18atmとすることで、反応生成物に含まれる水に溶解しているプロピレンを気体として回収し、粗イソプロピルアルコール水溶液を得た。回収したプロピレンは、原料として再利用するために、プロピレンの回収ドラムに投入した。このとき、プロピレンの転化率が84.0%であり、プロピレンのイソプロピルアルコールへの選択率が99.2%であった。また、粗イソプロピルアルコール水溶液中の水の含有率が95質量%であった。
 (低沸蒸留工程(第一蒸留工程および第二蒸留工程))
 段数が60のオルダーショウ型低沸蒸留塔(第一蒸留塔)と、段数が20のオルダーショウ型回収蒸留塔(第二蒸留塔)とを設置した。ここで、第一蒸留塔は、塔底が2Lの容器であり、塔底から第一缶出液を抜き出す。また、第一蒸留塔は、塔頂(塔の最上段)にコンデンサーが設けられており、コンデンサーで凝縮した液の一部を塔頂に還流し、残部を、第一留出液として、抜き出す。一方、第二蒸留塔は、塔底が500mLの容器であり、塔底から第二缶出液を抜き出す。また、第二蒸留塔は、塔頂にコンデンサーが設けられており、コンデンサーで凝縮した液の一部を塔頂に還流し、残部を第二留出液として、抜き出す。
 第一蒸留塔の塔頂(1段)よりも7段下の原料供給段(8段)に、粗イソプロピルアルコール水溶液を10L/hで供給して、粗イソプロピルアルコール水溶液を蒸留した。このとき、塔頂の温度を75~85℃とし、塔圧(ゲージ圧)を0~10kPaとした。また、還流量を2.5L/hとし、還流比を約62.5とし、コンデンサーから第一留出液を40ml/hで抜き出した。さらに、第一蒸留塔内の液量が約1.5Lを維持するように、塔底から第一缶出液を約10L/hで抜き出した。
 また、第二蒸留塔の塔頂よりも4段下の原料供給段(5段)に第一留出液を40ml/hで供給して、第一留出液を蒸留した。このとき、塔頂の温度を50~80℃とし、塔圧(ゲージ圧)を0~10kPaとした。また、還流量を30mL/hとし、還流比を約6とし、第二蒸留塔の塔頂に水を60ml/hで供給した。また、第二蒸留塔の塔底から第二缶出液を95ml/hで抜き出し、第一蒸留塔の塔頂に供給した。さらに、第二蒸留塔のコンデンサーから第二留出液を5ml/hで抜き出し、廃棄した。
 (精製工程)
 共沸蒸留塔の原料供給段に第一缶出液を供給して、蒸留し、イソプロピルアルコールと水との共沸混合物(質量比87.5:12.5)を得た。次に、イソプロピルアルコールと水との共沸混合物を脱水した後、高沸蒸留塔を用いて、蒸留し、半導体洗浄液を得た。
 (第一蒸留塔の各段における液相中の水の含有率のシミュレーション)
 プロセスシミュレーションソフトウェアAspenPlus(アスペンテクノロジー製)を用いて、第一蒸留塔の各段における液相中の水の含有率のシミュレーションを実施した。その結果、原料供給段(8段)から2段まで液相中の水の含有率が15質量%以上に維持されていた(表1参照)。このとき、塔効率を70%とすると、液相中の水の含有率が15質量%以上に維持されているのは、原料供給段から塔頂までの段のうちの理論段数として4.9段であった。なお、原料供給段から塔頂までの段のうちの理論段数として3段以上の段における液相中の水の含有率を15質量%以上とするためには、第一蒸留塔の塔頂よりも3段下の段(4段)、すなわち、第一蒸留塔の原料供給段(8段)よりも4段上の段(4段)における液相中の水の含有率が15質量%以上であればよい。
 (第一蒸留塔の4段における液相中の水の含有率の測定)
 分析例1を用いて、第一蒸留塔の4段から抜き出した液相中の水の含有率を分析した(表1参照)。
 (第一缶出液中の成分の含有率の測定)
 分析例2、4を用いて、第一缶出液中の成分(t-ブチルアルコール、水、2-ペンタノン、クロトンアルデヒド、アセトアルデヒド、プロピオンアルデヒド)の含有率を分析した(表2参照)。
 (半導体洗浄液中の成分の含有率の測定)
 分析例2、4を用いて、半導体洗浄液中の成分(t-ブチルアルコール、2-ペンタノン、クロトンアルデヒド、アセトアルデヒド、プロピオンアルデヒド)の含有率を分析した。半導体洗浄液は、イソプロピルアルコールに対するt-ブチルアルコールの質量比が0.6ppmであった(表3参照)。また、半導体洗浄液は、イソプロピルアルコールに対する2-ペンタノンの質量比が20ppbであり、イソプロピルアルコールに対するクロトンアルデヒドの質量比が10ppbであった。
 <実施例2>
 (粗イソプロピルアルコール水溶液の低沸蒸留工程)において、第二蒸留塔の塔頂に水を120ml/hで供給し、第二蒸留塔の塔底から第二缶出液を155ml/hで抜き出し、第一蒸留塔の塔頂に供給した以外は、実施例1と同様にして、半導体洗浄液を得た。半導体洗浄液は、イソプロピルアルコールに対するt-ブチルアルコールの質量比が0.3ppmであった。また、半導体洗浄液は、イソプロピルアルコールに対する2-ペンタノンの質量比が20ppbであり、イソプロピルアルコールに対するクロトンアルデヒドの質量比が8ppbであった。
 (第一蒸留塔の各段における液相中の水の含有率のシミュレーション)
 プロセスシミュレーションソフトウェアAspenPlus(アスペンテクノロジー製)を用いて、第一蒸留塔の各段における液相中の水の含有率のシミュレーションを実施した。その結果、原料供給段(8段)から1段まで液相中の水の含有率が15質量%以上に維持されていた。このとき、塔効率を70%とすると、液相中の水の含有率が15質量%以上に維持されているのは、原料供給段から塔頂までの段のうちの理論段数として5.6段であった。
 <実施例3>
 (粗イソプロピルアルコール水溶液の低沸蒸留工程)において、第一蒸留塔の原料供給段の3段上に第二蒸留塔の塔底から第二缶出液を供給した以外は、実施例2と同様にして、半導体洗浄液を得た。半導体洗浄液は、イソプロピルアルコールに対するt-ブチルアルコールの質量比が0.8ppmであった。また、半導体洗浄液は、イソプロピルアルコールに対する2-ペンタノンの質量比が20ppbであり、イソプロピルアルコールに対するクロトンアルデヒドの質量比が10ppbであった。
 (第一蒸留塔の各段における液相中の水の含有率のシミュレーション)
 プロセスシミュレーションソフトウェアAspenPlus(アスペンテクノロジー製)を用いて、第一蒸留塔の各段における液相中の水の含有率のシミュレーションを実施した。その結果、原料供給段(8段)から1段まで液相中の水の含有率が15質量%以上に維持されていた。このとき、塔効率を70%とすると、液相中の水の含有率が15質量%以上に維持されているのは、原料供給段から塔頂までの段のうちの理論段数として5.6段であった。
 <実施例4>
 (粗イソプロピルアルコール水溶液の低沸蒸留工程)において、第二蒸留塔の塔頂に水を360ml/hで供給し、第二蒸留塔の塔底から第二缶出液を390ml/hで抜き出し、第一蒸留塔の塔頂に供給した以外は、実施例1と同様にして、半導体洗浄液を得た。半導体洗浄液は、イソプロピルアルコールに対するt-ブチルアルコールの質量比が0.15ppmであった。また、半導体洗浄液は、イソプロピルアルコールに対する2-ペンタノンの質量比が20ppbであり、イソプロピルアルコールに対するクロトンアルデヒドの質量比が7ppbであった。
 (第一蒸留塔の各段における液相中の水の含有率のシミュレーション)
 プロセスシミュレーションソフトウェアAspenPlus(アスペンテクノロジー製)を用いて、第一蒸留塔の各段における液相中の水の含有率のシミュレーションを実施した。その結果、原料供給段(8段)から4段まで液相中の水の含有率が15質量%以上に維持されていた。このとき、塔効率を70%とすると、液相中の水の含有率が15質量%以上に維持されているのは、原料供給段から塔頂までの段のうちの理論段数として3.5段であった。
 <比較例1>
 (粗イソプロピルアルコール水溶液の低沸蒸留工程)において、第二蒸留塔の塔頂に水を供給せず、第二蒸留塔の塔底から第二缶出液を35ml/hで抜き出し、第一蒸留塔の塔頂に供給した以外は、実施例1と同様にして、半導体洗浄液を得た。半導体洗浄液は、イソプロピルアルコールに対するt-ブチルアルコールの質量比が2.2ppmであった。また、半導体洗浄液は、イソプロピルアルコールに対する2-ペンタノンの質量比が20ppbであり、イソプロピルアルコールに対するクロトンアルデヒドの質量比が10ppbであった。
 また、第一蒸留塔の各段における液相中の水の含有率のシミュレーションを実施した結果、原料供給段(8段)から5段まで液相中の水の含有率が15質量%以上に維持されていた。このとき、塔効率を70%とすると、液相中の水の含有率が15質量%以上に維持されているのは、原料供給段から塔頂までの段のうちの理論段数として2.8段であった。
 <比較例2>
 (粗イソプロピルアルコール水溶液の低沸蒸留工程)において、第一蒸留塔の原料供給段の1段上に第二蒸留塔の塔底から第二缶出液を供給した以外は、実施例2と同様にして、半導体洗浄液を得た。半導体洗浄液は、イソプロピルアルコールに対するt-ブチルアルコールの質量比が1.5ppmであった。また、半導体洗浄液は、イソプロピルアルコールに対する2-ペンタノンの質量比が20ppbであり、イソプロピルアルコールに対するクロトンアルデヒドの質量比が10ppbであった。
 (第一蒸留塔の各段における液相中の水の含有率のシミュレーション)
 プロセスシミュレーションソフトウェアAspenPlus(アスペンテクノロジー製)を用いて、第一蒸留塔の各段における液相中の水の含有率のシミュレーションを実施した。その結果、原料供給段(8段)から5段まで液相中の水の含有率が15質量%以上に維持されていた。このとき、塔効率を70%とすると、液相中の水の含有率が15質量%以上に維持されているのは、原料供給段から塔頂までの段のうちの理論段数として2.8段であった。
 <比較例3>
 (粗イソプロピルアルコール水溶液の低沸蒸留工程)において、第二蒸留塔の塔頂に水を40ml/hで供給し、第二蒸留塔の塔底から第二缶出液を75ml/hで抜き出し、第一蒸留塔の塔頂に供給した以外は、実施例3と同様にして、半導体洗浄液を得た。半導体洗浄液は、イソプロピルアルコールに対するt-ブチルアルコールの質量比が2.0ppmであった。また、半導体洗浄液は、イソプロピルアルコールに対する2-ペンタノンの質量比が20ppbであり、イソプロピルアルコールに対するクロトンアルデヒドの質量比が10ppbであった。
 (第一蒸留塔の各段における液相中の水の含有率のシミュレーション)
 プロセスシミュレーションソフトウェアAspenPlus(アスペンテクノロジー製)を用いて、第一蒸留塔の各段における液相中の水の含有率のシミュレーションを実施した。その結果、原料供給段(8段)から5段まで液相中の水の含有率が15質量%以上に維持されていた。このとき、塔効率を70%とすると、液相中の水の含有率が15質量%以上に維持されているのは、原料供給段から塔頂までの段のうちの理論段数として2.8段であった。
 表1に、第一蒸留塔の各段における液相中の水の含有率のシミュレーション結果、液相中の水の含有率が15質量%以上である理論段数、4段における液相中の水の含有率の測定結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に、第一缶出液中の成分の含有率を示す。分析例1、2、3-1を用いた。
Figure JPOXMLDOC01-appb-T000003
 表3に、イソプロピルアルコールに対する成分の質量比を示す。分析例1、2、3-2を用いた。
Figure JPOXMLDOC01-appb-T000004
 表3から、実施例1~4の半導体洗浄液は、イソプロピルアルコールに対するt-ブチルアルコールの質量比が1ppm以下であることがわかる。これに対して、比較例1~3の半導体洗浄液は、第一蒸留塔の液相中の水の含有率が15質量%以上に維持されているのは、原料供給段から塔頂までの段のうちの理論段数として2.8段であるため、イソプロピルアルコールに対するt-ブチルアルコールの質量比が1ppmを超える。
 1  低沸蒸留塔(第一蒸留塔)
 2  回収蒸留塔(第二蒸留塔)

Claims (7)

  1.  イソプロピルアルコールを含む半導体洗浄液であって、
     イソプロピルアルコールに対するt-ブチルアルコールの質量比が1ppm以下である、半導体洗浄液。
  2.  イソプロピルアルコールに対する2-ペンタノンの質量比が1ppb以上50ppb以下であり、
     イソプロピルアルコールに対するクロトンアルデヒドの質量比が0.5ppb以上10ppb以下である、請求項1に記載の半導体洗浄液。
  3.  イソプロピルアルコールは、プロピレンの直接水和法により製造されている、請求項1または2に記載の半導体洗浄液。
  4.  不純物としてt-ブチルアルコールを含む粗イソプロピルアルコール水溶液を第一蒸留塔の原料供給段に供給し、前記第一蒸留塔の塔頂からイソプロピルアルコールよりも沸点が低い低沸点不純物を含む第一留出液を抜き出すとともに、前記第一蒸留塔の塔底から第一缶出液を抜き出す第一蒸留工程を含み、
     前記第一蒸留工程では、前記第一蒸留塔の原料供給段から塔頂までの段のうちの理論段数として3段以上の段における液相中の水の含有率が15質量%以上となるように、前記第一蒸留塔の原料供給段よりも理論段として2段以上上の所定の段に、前記第一蒸留塔の外部から、水を含有する流体を供給する、半導体洗浄液の製造方法。
  5.  前記第一留出液を第二蒸留塔の原料供給段に供給し、前記第二蒸留塔の塔頂から前記低沸点不純物を含む第二留出液を抜き出すとともに、前記第二蒸留塔の塔底から第二缶出液を抜き出す第二蒸留工程をさらに含み、
     前記第二蒸留工程では、前記第二蒸留塔の所定の段に、前記第二蒸留塔の外部から、水を供給し、
     前記第一蒸留工程では、前記水を含有する液体として、前記第二缶出液を供給する、請求項4に記載の半導体洗浄液の製造方法。
  6.  前記第二蒸留塔の所定の段は、前記第二蒸留塔の原料供給段と塔頂との間の段である、請求項5に記載の半導体洗浄液の製造方法。
  7.  プロピレンの直接水和法により、前記粗イソプロピルアルコール水溶液を得る反応工程をさらに含む、請求項4から6のいずれか一項に記載の半導体洗浄液の製造方法。
PCT/JP2023/003901 2022-03-16 2023-02-07 半導体洗浄液および半導体洗浄液の製造方法 WO2023176192A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023535854A JP7402385B1 (ja) 2022-03-16 2023-02-07 半導体洗浄液および半導体洗浄液の製造方法
CN202380022672.XA CN118742996A (zh) 2022-03-16 2023-02-07 半导体清洗液及半导体清洗液的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041318 2022-03-16
JP2022-041318 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176192A1 true WO2023176192A1 (ja) 2023-09-21

Family

ID=88022808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003901 WO2023176192A1 (ja) 2022-03-16 2023-02-07 半導体洗浄液および半導体洗浄液の製造方法

Country Status (4)

Country Link
JP (1) JP7402385B1 (ja)
CN (1) CN118742996A (ja)
TW (1) TW202344677A (ja)
WO (1) WO2023176192A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121160A (ja) * 2000-10-16 2002-04-23 Mitsui Chemicals Inc イソプロピルアルコールの製造方法
WO2009037953A1 (ja) * 2007-09-19 2009-03-26 Mitsui Chemicals, Inc. アルコールの製造方法および酸処理ラネー触媒
WO2017217279A1 (ja) * 2016-06-17 2017-12-21 株式会社トクヤマ イソプロピルアルコールの製造方法及び不純物が低減されたイソプロピルアルコール
WO2018135408A1 (ja) * 2017-01-23 2018-07-26 株式会社トクヤマ イソプロピルアルコール組成物及びイソプロピルアルコールの製造方法
WO2020071307A1 (ja) * 2018-10-03 2020-04-09 株式会社トクヤマ 高純度イソプロピルアルコール及びその製造方法
WO2021200936A1 (ja) * 2020-04-02 2021-10-07 株式会社トクヤマ 半導体処理液及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121160A (ja) * 2000-10-16 2002-04-23 Mitsui Chemicals Inc イソプロピルアルコールの製造方法
WO2009037953A1 (ja) * 2007-09-19 2009-03-26 Mitsui Chemicals, Inc. アルコールの製造方法および酸処理ラネー触媒
WO2017217279A1 (ja) * 2016-06-17 2017-12-21 株式会社トクヤマ イソプロピルアルコールの製造方法及び不純物が低減されたイソプロピルアルコール
WO2018135408A1 (ja) * 2017-01-23 2018-07-26 株式会社トクヤマ イソプロピルアルコール組成物及びイソプロピルアルコールの製造方法
WO2020071307A1 (ja) * 2018-10-03 2020-04-09 株式会社トクヤマ 高純度イソプロピルアルコール及びその製造方法
WO2021200936A1 (ja) * 2020-04-02 2021-10-07 株式会社トクヤマ 半導体処理液及びその製造方法

Also Published As

Publication number Publication date
JP7402385B1 (ja) 2023-12-20
JPWO2023176192A1 (ja) 2023-09-21
TW202344677A (zh) 2023-11-16
CN118742996A (zh) 2024-10-01

Similar Documents

Publication Publication Date Title
JP4559625B2 (ja) 高純度1,3−ブチレングリコール及びその製造方法
CN115335966B (zh) 半导体处理液及其制造方法
JP6810304B2 (ja) 洗浄液及び高純度イソプロピルアルコールの製造方法
CN103467475A (zh) 1,8-桉叶素的纯化方法
KR20010075294A (ko) 고순도 모노에틸렌 글리콜의 제조 방법
JP7402385B1 (ja) 半導体洗浄液および半導体洗浄液の製造方法
CN104768902B (zh) 从醇组合物中除去含氮杂质
JP2008308500A (ja) 高純度酢酸ブチルの製造方法
US10479751B2 (en) Process for preparing acrylic acid
CN106588597A (zh) 提纯聚甲醛二甲基醚的方法
JP6553084B2 (ja) エタノールの酸触媒脱水方法
EP3464233B1 (en) Process for recovering byproducts from mma
JP6794940B2 (ja) テトラヒドロピランおよびテトラヒドロピランの精製方法
JP4259815B2 (ja) 高純度酢酸ブチルの製造方法
TWI422565B (zh) 自粗製甲醇之二甲醚的製造
CN206033625U (zh) 一种用于包装印刷行业乙酸乙酯废液脱水去醇的精制装置
CN106187771B (zh) 一种醋酸乙烯酯中微量苯的分离方法及其分离系统
JP7441357B1 (ja) 3,5,5-トリメチルヘキサン酸組成物及びその製造方法
WO2024219139A1 (ja) 3,5,5-トリメチルヘキサン酸組成物、該組成物の製造方法及び該組成物の硫酸着色の改善方法
RU2128635C1 (ru) Способ получения изопрена
RU2599790C2 (ru) Способ разделения монохлоруксусной кислоты и дихлоруксусной кислоты экстрактивной перегонкой
KR20240090137A (ko) 고순도 1,3-부틸렌 글리콜의 제조 방법
JP2022508281A (ja) アクリル酸製品製造におけるホルムアルデヒド含有水溶液の精製及び精製された水溶液の使用
MX2014011878A (es) Proceso para separar acido monocloroacetico y acido dicloroacetico a traves de destilacion extractiva utilizando un solvente organico.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023535854

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11202405393Q

Country of ref document: SG