WO2023175865A1 - 円筒多心フェルール及び光コネクタ - Google Patents

円筒多心フェルール及び光コネクタ Download PDF

Info

Publication number
WO2023175865A1
WO2023175865A1 PCT/JP2022/012434 JP2022012434W WO2023175865A1 WO 2023175865 A1 WO2023175865 A1 WO 2023175865A1 JP 2022012434 W JP2022012434 W JP 2022012434W WO 2023175865 A1 WO2023175865 A1 WO 2023175865A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrule
core
optical
cylindrical
optical fiber
Prior art date
Application number
PCT/JP2022/012434
Other languages
English (en)
French (fr)
Inventor
千里 深井
宜輝 阿部
和典 片山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2024507373A priority Critical patent/JPWO2023175865A1/ja
Priority to PCT/JP2022/012434 priority patent/WO2023175865A1/ja
Publication of WO2023175865A1 publication Critical patent/WO2023175865A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/40Mechanical coupling means having fibre bundle mating means

Definitions

  • the present disclosure relates to a cylindrical multi-core ferrule used for collectively connecting a plurality of ports using optical fibers in an optical fiber network, and an optical connector using the same.
  • Non-Patent Document 1 As a technology for connecting multiple single mode optical fibers, there is a multi-core optical connector (for example, Non-Patent Document 1). Optical connectors allow easy attachment and detachment of optical fibers, and are useful for switching wiring within buildings and connecting devices that require replacement every few years.
  • a typical multi-core optical connector two guide holes are provided in a ferrule having a rectangular tip, and a guide pin is inserted into the guide hole for connection. Axis adjustment is performed by this guide hole and guide pin, and connection loss of 1 dB or less is achieved by controlling the clearance between this guide hole and guide pin.
  • Non-Patent Document 2 that improves the reflection characteristics by polishing the tip of the ferrule diagonally, and also improves convenience by attaching a housing and attaching and detaching using a push-pull mechanism. being developed.
  • an optical connector using a cylindrical ferrule which is commonly used as a technology for connecting optical fibers
  • the ferrule is inserted into a sleeve to make the connection.
  • a split sleeve is used, and by making the inner diameter of the split sleeve smaller than the outer diameter of the ferrule, the accuracy of axis adjustment is improved, and a connection loss of 0.5 dB or less is achieved with a single-fiber optical connector.
  • an optical connector using a multi-core fiber for example, Non-Patent Document 3
  • an SC type optical connector for example, Non-Patent Document 4 with improved shaft rotation accuracy is also being considered.
  • Non-Patent Document 2 it is difficult to control the clearance between the guide hole and the guide pin, and there is a problem in that the manufacturing cost of a low-loss optical connector increases.
  • Non-Patent Document 3 and Non-Patent Document 4 it is necessary to use a multi-core fiber to connect multiple ports at once using a cylindrical ferrule, but multi-core fibers are expensive; Further, in wiring between normal transmitting and receiving devices that are assumed to be connected to a single-core optical fiber, it is necessary to use devices such as fan-in and fan-out devices, resulting in a problem that the wiring configuration becomes complicated.
  • An object of the present disclosure is to make it possible to easily connect multiple single-core optical fibers at once.
  • the cylindrical multi-core ferrule of the present disclosure has a cylindrical shape, and a plurality of through holes for holding a single-core optical fiber are formed on the same circle centered on the central axis of the cylindrical shape, One tip on the central axis has a convex spherical shape.
  • cylindrical multi-core ferrules of the present disclosure are arranged facing each other, and the tips of the one of the two opposingly arranged cylindrical multi-core ferrules are butted against each other.
  • FIG. 2 is a schematic diagram showing a cross section of a ferrule according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing a side surface of an optical coupling section according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing the vicinity of a ferrule tip of an optical coupling section according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram showing an example of the relationship between the angle between a plane perpendicular to the ferrule center axis and the fiber end face and the amount of return loss.
  • FIG. 3 is a diagram illustrating an example of the relationship between excess loss and the gap between optical fibers.
  • FIG. 1 is a schematic diagram showing a cross section of a ferrule according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing a side surface of an optical coupling section according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing the vicinity of a ferrule tip of an optical coupling section according
  • FIG. 3 is a diagram showing an example of the relationship between the angle of the fiber end surface and a plane perpendicular to the ferrule center axis with respect to the radius of curvature of the tip of the ferrule having a convex spherical shape.
  • FIG. 3 is a diagram showing an example of the relationship between the distance from the ferrule tip to the fiber end surface and the radius of curvature of the ferrule tip having a convex spherical shape.
  • FIG. 3 is a diagram illustrating an example of the relationship between excess loss due to rotational angle deviation and core arrangement radius.
  • 1 is a schematic diagram showing a mating form of an optical connector according to a first embodiment of the present disclosure.
  • FIG. 3 is a diagram showing an example of a configuration in which a plurality of capillaries are attached inside a flange.
  • FIG. 3 is a diagram showing an example of a configuration in which a flange is attached to a ferrule.
  • FIG. 3 is a schematic diagram showing a mechanism that allows the ferrule according to the first embodiment of the present disclosure to be rotated and fixed inside the plug frame.
  • FIG. 3 is a schematic diagram showing a mechanism that allows the ferrule according to the first embodiment of the present disclosure to be rotated and fixed inside the plug frame.
  • FIG. 7 is a schematic diagram illustrating a mechanism that allows a ferrule according to a second embodiment of the present disclosure to be rotated and fixed inside a plug frame.
  • FIG. 1 is a schematic diagram showing a cross-sectional structure of a ferrule S1 according to an embodiment of the present disclosure.
  • the ferrule S1 is a cylindrical multicore ferrule according to the present disclosure, has a cylindrical shape, and has a plurality of through holes formed therein for holding the optical fiber S2 in parallel to the longitudinal direction of the cylindrical shape.
  • FIG. 1 shows a state in which an optical fiber S2 is held in each through hole.
  • the core centers of the plurality of optical fibers S2 are arranged on the circumference of a circle having a core arrangement radius R core with respect to the central axis of the cylindrical shape of the ferrule S1.
  • the optical fiber S2 in the present disclosure is a single-core optical fiber.
  • FIG. 1 shows an example in which the 8-core optical fibers S2 are arranged at equal intervals, the core centers of the plurality of optical fibers S2 are arranged on the circumference of a circle having a core arrangement radius R core .
  • R core a core arrangement radius
  • the plurality of optical fibers S2 are arranged on one circumference, but the number of circles in which the plurality of optical fibers S2 are arranged may be two or more.
  • the ferrule S1 is generally made of zirconia and the optical fiber S2 is made of quartz glass, but the ferrule and optical fiber are not limited to these, as long as they are capable of communicating signal light in the communication wavelength band.
  • FIG. 2 is a schematic diagram showing a side surface of the optical coupling section according to the embodiment of the present disclosure.
  • Two ferrules S1 into which optical fibers are inserted are aligned with a sleeve S8, and axis misalignment is controlled within a certain allowable range.
  • the cores of the plurality of optical fibers inserted into the two ferrules S1 have the same optical characteristics in that they have comparable mode field diameters.
  • the cores of the optical fibers inserted into the two ferrules S1 are arranged on a circumference having the same core arrangement radius at the tip of each ferrule, so that connection loss due to axis misalignment and rotational misalignment is minimized. are important, and it is desirable that they be placed in opposing positions. Furthermore, in order to minimize connection loss due to axis misalignment, it is desirable that the ferrule outer diameters of the two ferrules S1 be approximately the same.
  • the tips of the two ferrules S1 are It is important that the two ferrules S10 can make contact with each other, and it is desirable that the length S10 in the axial direction of the sleeve is approximately equal to or shorter than the total length of the two ferrules S1 in the ferrule axial direction.
  • FIG. 3 is a schematic diagram showing in more detail the vicinity of the ferrule tip of the optical coupling section according to the embodiment of the present disclosure.
  • the tips of the two ferrules S1 have a convex spherical shape in the direction of the central axis.
  • the tips of the ferrules S1 are butted against each other.
  • the plurality of optical fibers S2 are each arranged at a position with a core arrangement radius R core in the ferrule cross section.
  • the fiber end faces are set back from the ferrule tip to prevent the respective fiber end faces from contacting each other and being damaged.
  • the angle ⁇ between the fiber end face and a plane perpendicular to the ferrule center axis is controlled.
  • FIG. 4 is a diagram showing an example of the relationship between the angle ⁇ between a plane perpendicular to the ferrule central axis and the fiber end face and the return loss R.
  • the optical coupling part of the present disclosure there is a gap between the end faces of each optical fiber S2 inserted into the two ferrules S1, and silica glass and air have different refractive indexes, so it is necessary to take measures to reduce reflection. It is. In the present disclosure, reflection is reduced by controlling the angle ⁇ .
  • Equation 1 The relationship between the angle ⁇ (unit: degrees) between a plane perpendicular to the ferrule central axis and the fiber end face and the return loss R (unit: dB) can be expressed as shown in Equation 1.
  • n 1 , ⁇ 1 , and ⁇ are the refractive index of the optical fiber S2, the mode field radius of the optical fiber core (unit: ⁇ m), and the wavelength of propagating light in vacuum (unit: ⁇ m).
  • n 2 is the refractive index of the light-receiving medium, that is, the refractive index of air.
  • a return loss R of 40 dB or more can be maintained. be able to.
  • FIG. 5 is a diagram showing an example of the relationship between the excess loss TG and the gap G in the optical fiber.
  • the gap G unit: ⁇ m
  • excess loss T G unit: dB
  • ⁇ , n clad , ⁇ 1 and ⁇ 2 are the wavelength of the propagating light in vacuum (unit: ⁇ m), the refractive index of the cladding of the optical fiber S2, that is, pure silica, and the refractive index of the input and output optical fiber cores. It is the mode field radius (unit: ⁇ m).
  • FIG. 5 is a diagram showing the loss when the mode field radius of each optical fiber core inserted into two ferrules is both 4.5 ⁇ m. For example, by adjusting the gap between the end faces of each optical fiber S2 inserted into two ferrules to be 22 ⁇ m or less, excess loss can be suppressed to 0.1 dB or less.
  • FIG. 6 is a diagram showing an example of the relationship between the radius of curvature Rcur of the tip of the ferrule having a convex spherical shape and the angle ⁇ formed between the fiber end face and a plane perpendicular to the ferrule central axis.
  • the relationship between the radius of curvature Rcur (unit: mm) of the tip of a convex spherical ferrule and the angle ⁇ (unit: degree) between a plane perpendicular to the ferrule center axis and the fiber end face is determined by the core arrangement radius Rcore (unit: : ⁇ m), it can be expressed by the following formula.
  • FIG. 6 is a diagram showing the relationship between the angle ⁇ and the radius of curvature Rcur when the core arrangement radius Rcore is 150, 200, and 250 ⁇ m. From FIG. 4, the angle ⁇ that can maintain the return loss R of 40 dB or more is 4.5 degrees or more. Therefore, from FIG. 6, it can be seen that it is possible to realize a radius of curvature Rcur in which the angle ⁇ is 4.5 degrees or more when the core arrangement radius Rcore is 250 ⁇ m or less.
  • the angle ⁇ becomes 4.5 mm. It is possible to maintain a return loss R of 40 dB or more.
  • FIG. 7 is a diagram showing an example of the relationship between the radius of curvature Rcur of the ferrule tip having a convex spherical shape and the distance D from the ferrule tip to the fiber end surface.
  • the distance D from the ferrule tip to the fiber end surface corresponds to half the gap G between the end surfaces of the two optical fibers S2, and is equal to the radius of curvature Rcur (unit: mm) of the convex spherical ferrule tip and the ferrule central axis. It can be expressed by the following equation using the angle ⁇ (unit: degree) between a plane perpendicular to the fiber end face and the fiber end face.
  • FIG. 7 is a diagram showing the relationship between the radius of curvature Rcur and the distance D from the ferrule tip to the fiber end surface when the core arrangement radius Rcore is 150, 200, and 250 ⁇ m.
  • the core arrangement radius Rcore is 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, and 250 ⁇ m
  • the distance D from the ferrule tip to the fiber end face is 10 ⁇ m or less, that is, the gap G is 20 ⁇ m or less, and as shown in FIG. 5, the excess loss TG due to the gap can be suppressed to 0.1 dB or less.
  • the optical coupling unit In order to obtain a return loss of 40 dB or more and an excess loss due to a gap of 0.1 dB or less, the optical coupling unit according to the present embodiment has the following steps: In each of the two ferrules S1, The radius of curvature of the convex spherical shape may be 0.5 mm or more and 3.2 mm or less.
  • rotational angle deviation during optical connector production becomes a cause of excessive loss.
  • the excess loss due to the rotation angle deviation is T R (unit: dB)
  • the rotation angle deviation is ⁇ (unit: degrees)
  • the core arrangement radius is R core (unit: ⁇ m)
  • the core of the input optical fiber and the output optical fiber is
  • FIG. 8 shows an example of the relationship between the core arrangement radius Rcore and the excess loss TR due to rotational angle deviation.
  • FIG. 8 is a diagram showing the relationship between the core arrangement radius Rcore and the excess loss T R due to the rotation angle deviation when the rotation angle deviation ⁇ is 0.05 degrees, 0.1 degrees, and 0.15 degrees.
  • the larger the core arrangement radius Rcore the larger the excess loss.
  • the angle ⁇ is set to 4.5 degrees or more in order to achieve a return loss R of 40 dB or more, but the present disclosure is not limited to this.
  • the angle ⁇ may be any angle that can achieve the desired return loss R.
  • Rcur of the convex spherical shape of the present disclosure any numerical value can be adopted depending on the angle ⁇ .
  • the end face of the optical fiber arranged in the cylindrical multi-core ferrule has an oblique shape, good reflection characteristics can be achieved. Furthermore, since axis adjustment is performed using the ferrule and sleeve, it is possible to reduce excessive loss due to axis misalignment. Furthermore, in the optical connector using the cylindrical multi-core ferrule of the present disclosure, by providing one of the ferrules with a mechanism for controlling rotation and fixation, the incident light from the opposing optical fibers is maximized when the connector is manufactured. Since it is possible to fix the shaft rotation at a position where the connection loss is minimized, it is possible to realize an optical connector that reduces excessive loss due to rotational misalignment.
  • FIG. 9 is a schematic diagram illustrating the mating form of the optical coupling portion in the optical connector according to the first embodiment of the present disclosure.
  • the two ferrules S1 are inserted into the sleeve S8 facing each other, and the ferrule tips of the two ferrules S1 are brought into contact with each other by applying pressure by the spring S12.
  • the optical fibers S2 are connected with a gap provided between the end faces of the optical fibers S2.
  • the sleeve S8 is built into the adapter S17, and the two ferrules S1 are built into the plug frames S14 each attached to the housing S15.
  • a flange S9 is attached to each of the two ferrules S1 to protect the optical fiber S2. As shown in FIG. 10, by inserting a plurality of capillaries S23 inside the flange S9 and arranging each capillary at the same position as the through hole for holding the optical fiber, it is easy to insert the optical fiber into the ferrule. become.
  • the optical fiber is inserted into the ferrule S1 by making the capillary S23 tapered in the longitudinal direction so that the diameter of its tip approaches the diameter of the through hole S24 for holding the optical fiber. At the same time, it is possible to prevent the optical fiber from getting caught due to differences in level, and furthermore, to prevent the optical fiber from breaking.
  • an example is shown in which a plurality of capillaries S23 are inserted into the inside of the flange S9, but the shape is such that the optical fiber can be inserted into the through hole of the ferrule S1, and the optical fiber is protected when manufacturing the optical connector. It may be any shape as long as it allows for this, and is not limited to this.
  • the flange S9 attached to one of the two ferrules S1 has a notch (not shown), and the notch of the flange S9 is fixed in its axial rotation by a guide of the notch provided in the plug frame S14. Ru.
  • the other ferrule S1 is attached with a mechanism (not shown) that allows rotation and fixation inside the plug frame S14.
  • a housing (connector plug) containing a built-in ferrule with a notched flange is inserted into one side of the adapter, and the other side is rotated inside the plug frame.
  • FIG. 12 is a diagram showing an example of a mechanism that allows the ferrule according to the first embodiment of the present disclosure to be rotated and fixed inside the plug frame.
  • FIG. 12 is a cross-sectional view of a connector plug equipped with a mechanism that allows the ferrule S1 to be rotated and fixed inside the plug frame S14.
  • a grooved flange S19 is attached to the ferrule S1, and a fixed spring S20 is attached so that its tip is inserted into the groove.
  • the tip of the fixed spring S20 is removed from the groove of the flange S19, and the grooved flange S19 becomes capable of axial rotation.
  • the grooved flange S19 is fixed, that is, the ferrule S1 is fixed, and the axial rotation direction of the inserted optical fiber is fixed. is fixed.
  • finer rotation angle control can be performed.
  • FIG. 14 is a diagram illustrating an example of a mechanism that allows the ferrule according to the second embodiment of the present disclosure to be rotated and fixed inside the plug frame.
  • FIG. 14 is a cross-sectional view of a connector plug equipped with a mechanism that allows the ferrule to be rotated and fixed inside the plug frame.
  • a flange S9 is attached to the ferrule S1, and a fixed magnet S22 is attached to the outside of the flange S9.
  • the flange S9 can be rotated, and by attaching the fixed magnet S22 at the point where the monitored received light power is maximum, the flange S9 is fixed, that is, the ferrule S1 is fixed. , the axial rotation direction of the inserted optical fiber is fixed.
  • the flange S9 may be made of a magnetic material.
  • a plurality of single-core optical fibers are arranged in a cylindrical multi-core ferrule. It is possible to easily realize the connection.
  • the optical fiber used here is a commonly used single-core single-mode fiber, similar to ordinary optical connectors, so devices such as fan-in and fan-out are required in the wiring between the transmitter and receiver. This makes it possible to realize a simple and economical optical connection.
  • the end face of the optical fiber arranged in the cylindrical multi-core ferrule has an oblique shape, good reflection characteristics can be achieved.
  • the ferrule and sleeve since axis adjustment is performed using the ferrule and sleeve, it is effective in reducing excess loss due to axis misalignment. Furthermore, in the optical connector using the cylindrical multi-core ferrule of the present disclosure, since one of the ferrules is equipped with a mechanism for controlling rotation and fixation, the incident light from the opposing optical fiber is maximized when the connector is manufactured. In other words, since it is possible to fix the shaft rotation at a position where the connection loss is minimum, there is an effect of reducing excessive loss due to rotational misalignment.
  • the cylindrical multi-core ferrule and optical connector according to the present disclosure utilize single-core single-mode fibers that are commonly used like normal optical connectors as a connection technology for connecting multiple optical fiber ports at once. Since this method uses devices such as fan-in and fan-out devices in the transmission path configuration, it is possible to realize simple and economical optical connections. Furthermore, since the end face of the optical fiber arranged in the cylindrical multi-core ferrule has an oblique shape, it has good reflection characteristics and realizes excellent optical characteristics with reduced excessive loss due to axis misalignment.
  • one of the ferrules is equipped with a mechanism for controlling rotation and fixation, so it is possible to provide an optical connector that reduces excessive loss due to rotational misalignment. It is. As a result, it is possible to use the technology as a technique for collectively connecting multiple single mode optical fibers in any type of equipment in an optical fiber network.
  • S1 Ferrule S2: Optical fiber S8: Sleeve S9: Flange S10: Sleeve axial length S12: Spring S13: Stop ring S14: Plug frame S15: Housing S16: Boot S17: Adapter S18: Cord coating S19: Grooved flange S20: Fixed spring S21: Annular portion with groove S22: Fixed magnet S23: Capillary S24: Through hole

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本開示は、複数の単心光ファイバを簡単に一括で接続可能にすることを目的とする。 本開示は、円筒形を有し、前記円筒形の中心軸を中心とする同一円上に単心光ファイバ(S2)を保持するための複数の貫通孔が形成されている円筒多心フェルール(S1)、及び前記円筒多心フェルール(S1)が対向して配置され、前記円筒多心フェルール(S1)に保持されている単心光ファイバ(S2)の端面の間に間隙(G)を有する、光コネクタである。

Description

円筒多心フェルール及び光コネクタ
 本開示は、光ファイバネットワークにおいて光ファイバを用いた複数のポートを一括で接続するために用いる円筒多心フェルール及びこれを用いた光コネクタに関する。
 複数のシングルモード光ファイバを接続する技術として、多心光コネクタ(例えば、非特許文献1)がある。光コネクタは光ファイバの接続において、容易に着脱を可能とし、建物内における配線切り替えや数年ごとに交換が必要となる装置への接続などに有用である。一般的な多心光コネクタは、矩形の先端部を有するフェルールに2つのガイド穴を設け、ガイド穴にガイドピンを挿入して接続を行う。このガイド穴とガイドピンによって軸調整が行われ、このガイド穴とガイドピンのクリアランスの制御によって、1dB以下の接続損失を実現している。さらに、このフェルール先端部を斜めに研磨して反射特性を向上させて、かつ、ハウジングを取り付けてプッシュプル機構によって着脱を行うことにより利便性を向上した光コネクタ(例えば、非特許文献2)も開発されている。
 一方、光ファイバを接続する技術として一般的に用いられる円筒フェルールを用いた光コネクタでは、フェルールをスリーブに挿入して接続を行う。一般的にはスリーブは割りスリーブを用い、割りスリーブの内径をフェルール外径よりも小さくすることにより軸調整の精度を向上し、単心の光コネクタでは0.5dB以下の接続損失を実現している。この円筒フェルールを用いた光コネクタにおける光ファイバの複数ポートの一括接続技術としては、マルチコアファイバを用いた光コネクタ(例えば、非特許文献3)が検討されている。また、軸回転精度を向上したSCタイプ(例えば、非特許文献4)の光コネクタも検討されている。
 しかしながら、前述の非特許文献1に記載の従来技術においては、製造過程における誤差により、フェルール先端部における各ファイバのファイバ位置が一定にならないため、全心線での物理接触が困難であり、反射特性が劣化する。このため、一般的に屈折率整合材を塗布し、かつ、着脱には専用工具を用いる必要があり、作業工程が煩雑であるという問題があった。
 また、非特許文献2に記載の従来技術においては、ガイド穴とガイドピンのクリアランス制御が困難であり、低損失な光コネクタの製造にはコストが増加するといった問題があった。
 また、非特許文献3や非特許文献4に記載の従来技術においては、円筒フェルールを用いて複数のポートを一括で接続するためにマルチコアファイバを用いる必要があるが、マルチコアファイバは高価であり、また、単心光ファイバとの接続が想定される通常の送受信装置間での配線においては、ファンイン・ファンアウトなどのデバイスを用いる必要があり、配線形態が煩雑になるという問題があった。
M.Kawase,T.Fuchigami,M.Matsumoto,S.Nagasawa,S.Tomita,and S.Takashima,"Subscriber Single-Mode Optical Fiber Ribbon Cable Technologies Suitable for Mdspan Access,"J.Lightwave Technol., vol.7, no.11, pp.1675-1681,1989. M.Kihara,S.Nagasawa,and T.Tanifuji,"Design and Performance of an Angled Physical Contact Type Multifiber Connector," J.Lightwave Technol., vol.14, no.4, pp.542-548,1996. 境目賢義、長瀬亮、渡辺健吾、斉藤恒聡、"MU形MCFコネクタの機械的特性、"信学技報、OCS2013-118,pp.97-100,2014. 小林哲也、遠藤治幸、皆川洋介、"マルチコアファイバ用接続コネクタの検討、"信学技報、OCS2014-33,pp.13-16,2014.
 本開示は、複数の単心光ファイバを簡単に一括で接続可能にすることを目的とする。
 本開示の円筒多心フェルールは、円筒形を有し、前記円筒形の中心軸を中心とする同一円上に単心光ファイバを保持するための複数の貫通孔が形成されており、
 前記中心軸上の一方の先端部が凸球面形状を有する。
 本開示の光コネクタは、本開示の円筒多心フェルールが対向して配置され、前記対向して配置される2つの円筒多心フェルールの前記一方の先端部同士が突き合わされる。
 本開示によれば、複数の単心光ファイバの接続が簡単に一括で可能になるため、経済的な光接続を実現することができる。
本開示の実施形態に係るフェルール断面を示す模式図である。 本開示の実施形態に係る光結合部の側面を示す模式図である。 本開示の実施形態に係る光結合部のフェルール先端部の近傍を示す模式図である。 フェルール中心軸に対して垂直な面とファイバ端面とがなす角度と反射減衰量の関係の一例を示す図である。 光ファイバの間隙に対する過剰損失の関係の一例を示す図である。 凸球面形状のフェルール先端部の曲率半径に対する、フェルール中心軸に対して垂直な面とファイバ端面とがなす角度の関係の一例を示す図である。 凸球面形状のフェルール先端部の曲率半径に対する、フェルール先端部からファイバ端面までの距離の関係の一例を示す図である。 コア配置半径に対する回転角度ずれによる過剰損失の関係の一例を示す図である。 本開示の第1の実施形態に係る光コネクタの篏合形態を表す模式図である。 フランジ内部に複数のキャピラリが取り付けられている構成の一例を示す図である。 フェルールにフランジが取り付けられている構成の一例を示す図である。 本開示の第1の実施形態に係るフェルールをプラグフレームの内部で回転と固定が可能となる機構を表す模式図である。 本開示の第1の実施形態に係るフェルールをプラグフレームの内部で回転と固定が可能となる機構を表す模式図である。 本開示の第2の実施形態に係るフェルールをプラグフレームの内部で回転と固定が可能となる機構を表す模式図である。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
 以下、図面を参照して本開示の実施の形態を詳細に説明する。
 図1は本開示の実施形態に係るフェルールS1の断面構造を表した模式図である。フェルールS1は、本開示に係る円筒多心フェルールであり、円筒形状を有し、円筒形状の長手方向と平行に光ファイバS2を保持するための複数の貫通孔が形成されている。図1は、各貫通孔に光ファイバS2が保持されている状態を示す。複数の光ファイバS2のコア中心がフェルールS1の円筒形状の中心軸に対してコア配置半径Rcoreの円の円周上に配置されている。
 ここで、本開示における光ファイバS2は単心光ファイバである。また、図1では8心の光ファイバS2が等間隔に配置された例を挙げているが、複数の光ファイバS2のコア中心がコア配置半径Rcoreを有する円の円周上に配置されていればよく、これに限らない。また、本実施形態では、複数の光ファイバS2が1つの円周上に配置されている例を示すが、複数の光ファイバS2の配置される円は2以上であってもよい。
本実施形態では、一般にフェルールS1はジルコニア、光ファイバS2は石英ガラスから形成されるが、通信波長帯の信号光を通信可能なフェルール及び光ファイバであればよく、これに限らない。
 図2は本開示の実施形態に係る光結合部の側面を示す模式図である。光ファイバを挿入した2つのフェルールS1が、スリーブS8で調心されており、軸ずれを一定許容範囲に制御している。光結合部における接続損失をできるだけ小さくするため、2つのフェルールS1に挿入された複数の光ファイバの各コアは、同程度のモードフィールド径を有する点で同じ光学特性である方が望ましい。また、2つのフェルールS1に挿入された光ファイバは、そのコアがそれぞれのフェルール先端部において同一のコア配置半径を有する円周上に配置され、軸ずれ及び回転ずれによる接続損失をできるだけ小さくすることが重要であり、対向する位置に配置されることが望ましい。また、軸ずれによる接続損失をできるだけ小さくするため、2つのフェルールS1のフェルール外径は、同程度である方が望ましい。また、2つのフェルールS1に挿入された各光ファイバの端面の間隙をなるべく小さくして、間隙による過剰損失を低減するため、2つのフェルールS1の先端部(以下、フェルール先端部と称する場合がある。)が接触できることが重要であり、スリーブ軸方向の長さS10は、2つのフェルールS1のフェルール軸方向の長さの合計と同程度か、またはそれより短いことが望ましい。
 図3は本開示の実施形態に係る光結合部のフェルール先端部近傍をより詳細に示した模式図である。2つのフェルールS1の先端部は、中心軸方向に凸球面形状である。フェルールS1はそれぞれ先端部が突き合わされている。複数の光ファイバS2は、それぞれフェルール断面においてコア配置半径Rcoreの位置に配置されている。光ファイバS2は、それぞれのファイバ端面が接触して傷つくことを防止するため、ファイバ端面がフェルール先端部より後退している。また、光ファイバS2の端面では、反射による信号特性劣化を抑制するため、前記フェルール中心軸に対して垂直な面とファイバ端面とがなす角度θが制御されている。
 図4はフェルール中心軸に対して垂直な面とファイバ端面とがなす角度θと反射減衰量Rの関係の一例を示す図である。光ファイバ間の光結合において、ファイバ端面間に屈折率の異なる領域があると反射によって信号特性が劣化する。本開示の光結合部の構成において、2つのフェルールS1に挿入されたそれぞれの光ファイバS2の端面の間に間隙があり、石英ガラスと空気は屈折率が異なるため、反射を低減する工夫が必要である。本開示では角度θを制御することにより、反射を低減することとしている。フェルール中心軸に対して垂直な面とファイバ端面とがなす角度θ(単位:度)と反射減衰量R(単位:dB)の関係は数1に表すことができる。
Figure JPOXMLDOC01-appb-M000001
ここでn、ω、λはそれぞれ光ファイバS2の屈折率、光ファイバコアのモードフィールド半径(単位:μm)、伝搬光の真空中での波長(単位:μm)である。
 また、Rはθ=0度の場合の反射減衰量(単位:dB)であり、次式に表すことができる。
Figure JPOXMLDOC01-appb-M000002
ここでnは受光媒体の屈折率、つまり空気の屈折率である。本実施形態では、波長λが1310nmでモードフィールド半径ωが4.5μmの場合に、θ=0での反射減衰量Rが14.7dBである場合について説明する。この場合、図4に示す結果より、例えば、フェルール中心軸に対して垂直な面とファイバ端面とがなす角度θを4.5度以上にすることによって、40dB以上の反射減衰量Rを保持することができる。
 図5は光ファイバの間隙Gに対する過剰損失Tの関係の一例を示す図である。光ファイバS2間の光結合において、ファイバ端面間に間隙が存在すると、入力側光ファイバの出射光の分布が広がり、出力側光ファイバのコアとの結合効率が減少するため、過剰損失の要因となる。間隙G(単位:μm)と過剰損失T(単位:dB)の関係は次式に表すことができる。
Figure JPOXMLDOC01-appb-M000003
 ここでλ、nclad、ω及びωはそれぞれ伝搬光の真空中での波長(単位:μm)、光ファイバS2のクラッド、つまり純石英の屈折率、入力側及び出力側光ファイバコアのモードフィールド半径(単位:μm)である。図5は2つのフェルールに挿入されたそれぞれの光ファイバコアのモードフィールド半径が、ともに4.5μmの時の損失を示す図である。例えば、2つのフェルールに挿入されたそれぞれの光ファイバS2の端面の間隙が22μm以下となるように調整することによって、過剰損失を0.1dB以下に抑えることができる。
 図6は凸球面形状のフェルール先端部の曲率半径Rcurに対する、フェルール中心軸に対して垂直な面とファイバ端面とがなす角度θの関係の一例を示す図である。凸球面形状のフェルール先端部の曲率半径Rcur(単位:mm)と、フェルール中心軸に対して垂直な面とファイバ端面とがなす角度θ(単位:度)の関係は、コア配置半径Rcore(単位:μm)を用いて、次式に表すことができる。
Figure JPOXMLDOC01-appb-M000004
 図6はコア配置半径Rcoreが150、200、250μmの時の角度θと曲率半径Rcurの関係を示す図である。図4より、40dB以上の反射減衰量Rを保持可能な角度θは4.5度以上である。そのため、図6より、250μm以下のコア配置半径Rcoreにおいて角度θが4.5度以上となる曲率半径Rcurが実現可能であることがわかる。例えば、コア配置半径Rcoreが150μm、200μm、250μmのとき、曲率半径Rcurをそれぞれ1.9mm以下、2.5mm以下、3.2mm以下、となるように調整することにより、角度θが4.5度以上となり、40dB以上の反射減衰量Rを保持することができる。
 また、図7は凸球面形状のフェルール先端部の曲率半径Rcurに対する、フェルール先端部からファイバ端面までの距離Dの関係の一例を示す図である。フェルール先端部からファイバ端面までの距離Dは、2つの光ファイバS2の端面の間隙Gの半分に相当し、凸球面形状のフェルール先端部の曲率半径Rcur(単位:mm)と、フェルール中心軸に対して垂直な面とファイバ端面とがなす角度θ(単位:度)を用いて、次式に表すことができる。
Figure JPOXMLDOC01-appb-M000005
 図7では、コア配置半径Rcoreが150、200、250μmの時の曲率半径Rcurとフェルール先端部からファイバ端面までの距離Dの関係を示す図である。例えば、コア配置半径Rcoreが100μm、150μm、200μm、250μmのとき、曲率半径Rcurがそれぞれ0.5mm以上、1.1mm以上、2.0mm以上、3.1mm以上となるように調整することによって、フェルール先端部からファイバ端面までの距離Dが10μm以下、つまり、間隙Gが20μm以下となり、図5に示したとおり間隙による過剰損失Tを0.1dB以下に抑制することができる。
 本実施形態に係る光結合部は、40dB以上の反射減衰量と0.1dB以下の間隙による過剰損失を得るために、
 2つのフェルールS1のそれぞれにおいて、
 凸球面形状における曲率半径が0.5mm以上3.2mm以下であってもよい。
 本開示の光結合部の構成においては、光コネクタ作製時の回転角度ずれは過剰損失の要因となる。回転角度ずれによる過剰損失をT(単位:dB)、回転角度ずれをΦ(単位:度)、コア配置半径をRcore(単位:μm)、入力側光ファイバ及び出力側光ファイバのコアのモードフィールド半径をそれぞれω及びω(単位:μm)とした場合、これらの関係は次式に表すことができる。
Figure JPOXMLDOC01-appb-M000006
 コア配置半径Rcoreに対する回転角度ずれによる過剰損失Tの関係の一例を図8に示す。図8では、回転角度ずれΦが0.05度、0.1度、0.15度の時のコア配置半径Rcoreと回転角度ずれによる過剰損失Tの関係を示す図である。コア配置半径Rcoreが大きいほど過剰損失が大きくなるが、例えば、モードフィールド半径ω及びωが4.5μm(MFD=9μm)のとき、コア配置半径が250μm以下において、0.15度の回転角度ずれにおいても、回転角度ずれによる過剰損失Tは0.1dB以下を保持することが可能である。
 なお、上述の実施形態では、40dB以上の反射減衰量Rを実現するために、角度θを4.5度以上にする例を示したが、本開示はこれに限定されない。角度θは、所望の反射減衰量Rを実現可能な任意の角度でありうる。また本開示の凸球面形状の曲率半径Rcurについても、角度θに応じた任意の数値を採用することができる。
 本開示によれば、円筒多心フェルールに配置された光ファイバの端面が斜めの形状になっているため、良好な反射特性を実現できる。また、フェルールとスリーブによって軸調整を行うため、軸ずれによる過剰損失を低減することが可能となる。さらに、本開示の円筒多心フェルールを用いた光コネクタでは、片方のフェルールに回転及び固定を制御する機構を具備することで、コネクタ作製時に対向する光ファイバからの入射光が最大となる、つまり、接続損失が最小となる位置で軸回転を固定することが可能であるため、回転ずれによる過剰損失を低減した光コネクタを実現することが可能である。
(実施形態1)
 図9は本開示の第1の実施形態に係る光コネクタにおける光結合部の篏合形態を表す模式図である。2つのフェルールS1はそれぞれ対向してスリーブS8に挿入され、ばねS12によって押圧を加えることにより、2つのフェルールS1のそれぞれのフェルール先端部同士が接触する。これによって、本実施形態では、光ファイバS2の端面の間に間隙を有した状態で光ファイバS2の接続が行われる。なお、接続における着脱を容易にするため、スリーブS8はアダプタS17に内蔵され、2つのフェルールS1はそれぞれハウジングS15に取り付けられたプラグフレームS14に内蔵されている。
 2つのフェルールS1はそれぞれ光ファイバS2を保護するためのフランジS9が取り付けられている。図10のように、フランジS9の内部に複数のキャピラリS23を挿入して、光ファイバを保持するための貫通孔と同じ位置にそれぞれを配置することによって、光ファイバをフェルールに挿入することが容易になる。
 さらに、図11のように、キャピラリS23を長手方向にテーパー形状にして、その先端の直径を、光ファイバを保持するための貫通孔S24の直径に近づけることによって、光ファイバをフェルールS1へ挿入する際に段差による引っ掛かりを防ぎ、さらには光ファイバの折れを予防することが可能になる。
 本実施形態ではフランジS9の内部に複数のキャピラリS23を挿入する例を示したが、光ファイバをフェルールS1の貫通孔に挿入可能な形状であり、かつ、光コネクタ作製時に光ファイバを保護することが可能な形状であればよく、この限りではない。
 2つフェルールS1のうち一方のフェルールに取り付けられたフランジS9は切り欠き(図示せず)付きとし、前記フランジS9の切り欠きはプラグフレームS14に設けられた切り欠きのガイドによって軸回転が固定される。もう一方のフェルールS1はプラグフレームS14の内部で回転と固定を可能とする機構(図示せず)が取り付けられている。
 光コネクタ作製、つまり、光ファイバを接続する際に、アダプタの片側に、切り欠き付きのフランジが取り付けられたフェルールを内蔵したハウジング(コネクタプラグ)を挿入し、もう片側にプラグフレームの内部で回転と固定が可能とされるフェルールが取り付けられたハウジング(コネクタプラグ)を挿入し、それぞれの光ファイバに送信および受信を可能とする装置(例えば、光源と受光器)を取り付けて光信号をモニタリングしながらフェルールを回転し、受光パワーが最大となるところでフェルールの軸回転を固定することによって、低損失な光コネクタを作製することができる。
 図12は、本開示の第1の実施形態に係るフェルールをプラグフレームの内部で回転と固定が可能となる機構の一例を示す図である。図12は、フェルールS1をプラグフレームS14の内部で回転と固定が可能となる機構が取り付けられたコネクタプラグを断面から見た図である。フェルールS1には溝付きフランジS19が取り付けられ、この溝に先端が挟み込む形状で固定ばねS20が取り付けられている。固定ばねS20を図中の矢印の方向に押すことによって、固定ばねS20の先端がフランジS19の溝から外れ、溝付きフランジS19は軸回転が可能となる。モニタリングしている受光パワーが最大となるところで前記固定ばねS20の押す力を開放することによって、溝付きフランジS19が固定され、つまり、フェルールS1が固定され、挿入されている光ファイバの軸回転方向が固定される。例えば、図13のように、溝が設けられた円環部S21を複数重ねてフランジに取り付けることによって、より細かい回転角度制御を行うことができる。
(実施形態2)
 図14は、本開示の第2の実施形態に係るフェルールをプラグフレームの内部で回転と固定が可能となる機構の一例を示す図である。図14は、フェルールをプラグフレームの内部で回転と固定が可能となる機構が取り付けられたコネクタプラグを断面から見た図である。フェルールS1にはフランジS9が取り付けられ、このフランジS9の外側に固定磁石S22が取り付けられている。固定磁石S22を取り外すことによって、フランジS9は軸回転が可能となり、モニタリングしている受光パワーが最大となるところで前記固定磁石S22を取り付けることによって、フランジS9が固定され、つまり、フェルールS1が固定され、挿入されている光ファイバの軸回転方向が固定される。ここで、フランジS9を、磁性を有する材料によって作製してもよい。
(本開示の効果)
 本開示によれば、シングルモード光ファイバを用いた複数のポートを一括接続するために用いる光結合部において、円筒多心フェルールに複数の単心光ファイバを配置することにより、複数の光ファイバの接続を容易に実現することが可能である。ここで、使用する光ファイバは通常の光コネクタと同様に、一般的に用いられている単心のシングルモードファイバを用いるため、送受信装置間での配線において、ファンイン・ファンアウトなどのデバイスを不要とし、簡易で経済的な光接続を実現することができる。
 また、円筒多心フェルールに配置された光ファイバの端面が斜めの形状になっているため、良好な反射特性を実現できる。
 また、フェルールとスリーブによって軸調整を行うため、軸ずれによる過剰損失を低減する効果を奏する。さらに、本開示の円筒多心フェルールを用いた光コネクタにおいて、片方のフェルールに回転及び固定を制御する機構を具備しているため、コネクタ作製時に対向する光ファイバからの入射光が最大となる、つまり、接続損失が最小となる位置で軸回転を固定することが可能であるため、回転ずれによる過剰損失を低減する効果を奏する。
 本開示に係る円筒多心フェルールおよび光コネクタは、光ファイバによる複数のポートを一括で接続するための接続技術として、通常の光コネクタと同様に一般的に用いられている単心のシングルモードファイバを用いるため、伝送路構成としてファンイン・ファンアウトなどのデバイスを不要とし、簡易で経済的な光接続を実現することができる。また、円筒多心フェルールに配置された光ファイバの端面が斜めの形状になっているため、良好な反射特性を有するとともに、軸ずれによる過剰損失を低減した優れた光学特性を実現する。さらに、本開示の円筒多心フェルールを用いた光コネクタでは、片方のフェルールに回転及び固定を制御する機構を具備しているため、回転ずれによる過剰損失を低減した光コネクタを提供することが可能である。その結果、光ファイバネットワークにおいて複数のシングルモード光ファイバを、あらゆる設備において、一括で接続する技術として利用することが可能である。
S1:フェルール
S2:光ファイバ
S8:スリーブ
S9:フランジ
S10:スリーブ軸方向の長さ
S12:ばね
S13:ストップリング
S14:プラグフレーム
S15:ハウジング
S16:ブーツ
S17:アダプタ
S18:コード被覆
S19:溝付きフランジ
S20:固定ばね
S21:溝が設けられた円環部
S22:固定磁石
S23:キャピラリ
S24:貫通孔

Claims (7)

  1.  円筒形を有し、前記円筒形の中心軸を中心とする同一円上に単心光ファイバを保持するための複数の貫通孔が形成されており、
     前記中心軸上の一方のフェルール先端部が凸球面形状を有する
     ことを特徴とする円筒多心フェルール。
  2.  前記中心軸に対して垂直な面と前記フェルール先端部における前記貫通孔とがなす角度が4.5度以上である
     ことを特徴とする請求項1に記載の円筒多心フェルール。
  3.  前記凸球面形状の曲率半径が0.5mm以上3.2mm以下である
    ことを特徴とする請求項2に記載の円筒多心フェルール。
  4.  前記円筒多心フェルールの前記中心軸から前記貫通孔の中心軸までの距離が250μm以下である
    ことを特徴とする請求項3に記載の円筒多心フェルール。
  5.  請求項1から4のいずれかに記載の円筒多心フェルールが対向して配置され、
     前記対向して配置される2つの円筒多心フェルールの前記フェルール先端部同士が突き合わされる
     ことを特徴とする光コネクタ。
  6.  前記対向して配置される2つの円筒多心フェルールの前記貫通孔にはそれぞれ単心光ファイバが保持されており、
     異なる前記円筒多心フェルールに保持されている前記単心光ファイバ同士の端面間の間隙が22μm以下である
    ことを特徴とする請求項5に記載の光コネクタ。
  7.  前記中心軸に対して垂直な面と前記フェルール先端部における前記単心光ファイバの端面との角度が4.5度以上である
    ことを特徴とする請求項5に記載の光コネクタ。
PCT/JP2022/012434 2022-03-17 2022-03-17 円筒多心フェルール及び光コネクタ WO2023175865A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024507373A JPWO2023175865A1 (ja) 2022-03-17 2022-03-17
PCT/JP2022/012434 WO2023175865A1 (ja) 2022-03-17 2022-03-17 円筒多心フェルール及び光コネクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012434 WO2023175865A1 (ja) 2022-03-17 2022-03-17 円筒多心フェルール及び光コネクタ

Publications (1)

Publication Number Publication Date
WO2023175865A1 true WO2023175865A1 (ja) 2023-09-21

Family

ID=88022640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012434 WO2023175865A1 (ja) 2022-03-17 2022-03-17 円筒多心フェルール及び光コネクタ

Country Status (2)

Country Link
JP (1) JPWO2023175865A1 (ja)
WO (1) WO2023175865A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748820A (en) * 1994-03-24 1998-05-05 France Telecom Component for connection to a multi-core fiber, and a method of manufacture
JP2001343554A (ja) * 2000-05-31 2001-12-14 Totoku Electric Co Ltd 多心光ファイバフェルール
JP2002116344A (ja) * 2000-10-05 2002-04-19 Totoku Electric Co Ltd 多芯フェルールアセンブリ用チューブ及び多芯フェルールアセンブリ
JP2003014982A (ja) * 2001-06-28 2003-01-15 Kyocera Corp 光通信用フェルール
JP2003107285A (ja) * 2001-09-27 2003-04-09 Kyocera Corp 多芯フェルールとその製造方法及びそれを用いた多芯光コネクタ
JP2015219424A (ja) * 2014-05-20 2015-12-07 株式会社 オプトクエスト 光コネクタ
JP2019113596A (ja) * 2017-12-21 2019-07-11 日本電信電話株式会社 光接続構造

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748820A (en) * 1994-03-24 1998-05-05 France Telecom Component for connection to a multi-core fiber, and a method of manufacture
JP2001343554A (ja) * 2000-05-31 2001-12-14 Totoku Electric Co Ltd 多心光ファイバフェルール
JP2002116344A (ja) * 2000-10-05 2002-04-19 Totoku Electric Co Ltd 多芯フェルールアセンブリ用チューブ及び多芯フェルールアセンブリ
JP2003014982A (ja) * 2001-06-28 2003-01-15 Kyocera Corp 光通信用フェルール
JP2003107285A (ja) * 2001-09-27 2003-04-09 Kyocera Corp 多芯フェルールとその製造方法及びそれを用いた多芯光コネクタ
JP2015219424A (ja) * 2014-05-20 2015-12-07 株式会社 オプトクエスト 光コネクタ
JP2019113596A (ja) * 2017-12-21 2019-07-11 日本電信電話株式会社 光接続構造

Also Published As

Publication number Publication date
JPWO2023175865A1 (ja) 2023-09-21

Similar Documents

Publication Publication Date Title
US6705765B2 (en) Polarization maintaining optical fiber connector plug
US7031567B2 (en) Expanded beam connector system
US6744939B2 (en) Polarization maintaining optical fiber connector and method of tuning (PM connector)
US6619856B1 (en) Polarization maintaining optical fiber connector adapter
US8858089B2 (en) Single-fiber connectors for optical fiber cables
CN112255740B (zh) 一种多芯光纤连接器及其制造方法
JP2012208236A (ja) マルチコアファイバ用ファンナウト部品
KR100211408B1 (ko) 편광 유지 광섬유의 기계적인 접속장치 및 방법
WO2022044891A1 (ja) 光ファイバ終端構造、光接続部品および中空コア光ファイバ
CN112305678B (zh) 光学连接器
US20210389528A1 (en) Optical connector ferrule, sleeve, and method for manufacturing ferrule member
Shikama et al. Multicore fiber connector with physical-contact connection
CA2491722A1 (en) Optical fiber component
Nagase Optical Fiber Connector Technology
WO2023175865A1 (ja) 円筒多心フェルール及び光コネクタ
WO2022157845A1 (ja) 円筒多心フェルール及び光コネクタ
Morishima et al. Simple-structure LC-type multi-core fiber connector with low insertion loss
WO2022259471A1 (ja) 円筒多心フェルール及びその研磨方法
Abe et al. 84-fiber MPO connector employing solid refractive index matching material formed on perpendicular polished MT ferrule end
WO2024013820A1 (ja) 光結合部及び光スイッチ
WO2023017574A1 (ja) フェルール回転かん合部および光スイッチ
US20230086950A1 (en) Splice-on optical connectors for multicore fibers
WO2023181164A1 (ja) 光結合部および光スイッチ
JP7513124B2 (ja) 光結合部および光スイッチ
CN218446077U (zh) 一种非接触式多芯光纤连接器及连接装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507373

Country of ref document: JP

Kind code of ref document: A