WO2024013820A1 - 光結合部及び光スイッチ - Google Patents

光結合部及び光スイッチ Download PDF

Info

Publication number
WO2024013820A1
WO2024013820A1 PCT/JP2022/027305 JP2022027305W WO2024013820A1 WO 2024013820 A1 WO2024013820 A1 WO 2024013820A1 JP 2022027305 W JP2022027305 W JP 2022027305W WO 2024013820 A1 WO2024013820 A1 WO 2024013820A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrule
optical
fiber
optical fiber
input
Prior art date
Application number
PCT/JP2022/027305
Other languages
English (en)
French (fr)
Inventor
千里 深井
宜輝 阿部
和典 片山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/027305 priority Critical patent/WO2024013820A1/ja
Publication of WO2024013820A1 publication Critical patent/WO2024013820A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means

Definitions

  • the present invention mainly relates to an optical coupling unit used for switching the route of an optical line using a single mode optical fiber in an optical fiber network, and an optical switch using the same.
  • Non-Patent Document 1 Various systems have been proposed for all-optical switches that switch paths of light as it is, as shown in Non-Patent Document 1, for example.
  • optical fiber mechanical optical switches in which the butt of optical fibers or optical connectors is controlled by robot arms, motors, etc., are inferior to other systems in terms of slow switching speed, but have low loss, low wavelength dependence, It has many advantages over other systems, such as multi-portability and a self-holding function that maintains the switching state when the power goes out.
  • Typical structures include, for example, a method in which a stage using an optical fiber V-groove is moved in parallel, and a mirror or prism is moved in parallel or the angle is changed to selectively move multiple optical fibers output from an input optical fiber. There are two methods: a combination method, and a method that uses a robot arm to connect jumper cables with optical connectors.
  • a method using a multi-core fiber as an optical path for switching has been proposed. For example, by combining a three-dimensional MEMS optical switch with a multi-core fiber (for example, see Non-Patent Document 2), it becomes possible to switch multiple paths at once. Furthermore, by rotating the cylindrical ferrule into which the multi-core fiber is inserted (for example, see Patent Document 1), optical components such as lenses and prisms are not required, and the configuration can be simplified.
  • Non-Patent Document 1 has a problem in that it is difficult to further reduce power consumption, size, and economy.
  • a motor is generally used as the drive source, but since it is a mechanism that moves a heavy object such as a stage in a direct manner, a torque exceeding a certain level is generated by the motor. In order to maintain the required torque, power consumption is required to obtain the corresponding output.
  • a mechanism generally a ball screw is used that converts the rotational motion of a motor into linear motion is required.
  • the optical fiber pitch of a commonly used output side optical fiber array is approximately 125 ⁇ m in optical fiber cladding outer diameter or 250 ⁇ m in optical fiber coating outer diameter
  • the larger the output side optical fiber array the more the motor performance will be reduced.
  • the driving time had to be lengthened, resulting in an increase in power consumption. Therefore, such an optical fiber type mechanical optical switch generally requires a power of several hundred mW or more.
  • the robot arm system using an optical connector has a problem in that the robot arm itself that controls insertion and removal of the optical connector or ferrule requires a large amount of power of several tens of W or more.
  • Non-Patent Document 2 in the process of manufacturing the optical switch, a collimating mechanism for coupling to the output side optical fiber array and external factors such as vibration are required. There was a problem in that a separate vibration isolation mechanism was required to obtain stable optical characteristics, and the assembly process was complicated.
  • Non-Patent Document 3 there is also a method of preventing damage to the fiber end face due to contact by providing a gap in advance in a cylindrical ferrule into which an optical fiber is inserted and using a connection form that does not allow fiber contact.
  • a connection form that does not allow fiber contact
  • Non-Patent Document 4 obliquely polished ferrules have problems in that interference occurs between the ferrule end faces during rotational switching, or that a large gap is required, resulting in increased connection loss.
  • the ferrule is polished into a spherical surface so that the fiber end face is polished diagonally, and the center of the ferrule is polished flat. Since it is possible to minimize the gap created at the fiber end face by doing this, it is possible to prevent reflection and reduce connection loss due to the gap while preventing damage to the fiber end face due to contact.
  • the manufacturing process of the ferrule mold it is difficult to control the fiber hole position with high precision, and there is a problem in that axis misalignment loss due to fiber hole position deviation occurs as excessive loss.
  • the present invention aims to provide an optical coupler and an optical switch that can realize stable optical characteristics against external factors with low power consumption and more economically. do.
  • the optical coupling unit includes: An optical coupling unit that couples single-core optical fibers arranged in two ferrules using a sleeve, In the first ferrule of the two ferrules, a plurality of optical fibers are arranged in a bundle shape in the fiber hole on the same circumference centered on the ferrule central axis, At least one of the two ferrules is rotatable about the ferrule central axis, The abutting ends of the two ferrules have a convex spherical shape with a center point on the ferrule central axis.
  • the optical coupling unit and optical switch of the present disclosure may include two ferrules in which single-core single-mode optical fibers are arranged parallel to the ferrule center axis and at the same distance from the ferrule center axis.
  • the end portions of the two ferrules that are butted against each other have a convex spherical shape, the tips of the end portions of the two ferrules are butted against each other so that their central axes coincide, and one of the ferrules is rotated.
  • the optical coupling unit includes: a first ferrule having a convex spherical end surface, arranged in a bundle so that the core centers of a plurality of single-core single-mode optical fibers are aligned on the same circumference in the center of the ferrule cross-section; A core center of one or more single-core single-mode optical fibers on a circumference having the same diameter as the circumference on which the core center of the single-mode optical fiber in the first ferrule is arranged from the center in the ferrule cross section.
  • a second ferrule having a convex spherical end surface; a hollow portion into which the first ferrule and the second ferrule are inserted so that the central axes of the first ferrule and the second ferrule coincide;
  • a cylindrical sleeve is provided in which a predetermined gap is provided between each outer diameter of the first ferrule and the second ferrule and the inner diameter of the hollow part so that the ferrule can rotate.
  • the ends of two ferrules in which single mode optical fibers are arranged parallel to the ferrule central axis and at the same distance from the ferrule central axis are convex spherical shapes, and the central axis is the tip of the two ferrule ends.
  • the present invention since one of the input side and output side of the optical coupling unit that performs optical switching has a mechanism that can rotate around the axis, it is possible to minimize the energy required by the actuator, that is, the torque output. Yes, it is possible to reduce power consumption. Further, since the amount of optical axis deviation in directions other than the axial rotation of the input side ferrule is guaranteed by the sleeve in the optical coupling portion, it is possible to reduce loss.
  • the present invention does not include a collimator or a special anti-vibration mechanism, and is made up of commonly used optical connection parts such as ferrules and sleeves, so it is small and economical.
  • a dummy fiber is arranged inside the plurality of optical fibers arranged in a bundle on the same circumference centered on the ferrule central axis, and the end face of the dummy fiber partially covers the convex spherical shape. may be configured.
  • the amount of return loss in the convex spherical shape may be greater than or equal to a predetermined value.
  • the angle between the cross section perpendicular to the ferrule center axis and the end face of the single mode optical fiber is 4.5 degrees. It may be more than that. Thereby, the amount of return loss in the convex spherical shape can be increased to 40 dB or more.
  • the optical coupling unit according to the present disclosure includes a gap between an end face of the single mode optical fiber of the first ferrule and an end face of the single mode optical fiber of the second ferrule whose optical axis coincides with the single mode optical fiber. may be 22 ⁇ m or less. Thereby, excess loss TG due to the gap can be suppressed to 0.1 dB or less.
  • the distance between the core center of each single mode optical fiber in the first ferrule and the second ferrule from the ferrule center axis may be 250 ⁇ m or less.
  • excess loss T R due to rotational angle deviation can be reduced to 0.1 dB or less.
  • the plurality of optical fibers are single mode optical fibers, and each of the first ferrule and the second ferrule has a radius of curvature of 0.7 mm in the convex spherical shape. It may be greater than or equal to 3.2 mm.
  • the optical switch according to the present disclosure includes: the optical coupling part; A rotation mechanism that rotates either one of the two ferrules of the optical coupling part about the ferrule center axis is provided.
  • the optical switch according to the present disclosure is an actuator that rotates the rotation mechanism in constant angular steps and stops it in arbitrary angular steps; a bearing that constitutes the rotation mechanism; You may further comprise.
  • an optical coupling unit and an optical switch that can achieve stable optical characteristics against external factors with low power consumption and more economically.
  • FIG. 3 is a front view of the end of the output ferrule.
  • FIG. 3 is a front view of the end of the input ferrule.
  • FIG. 3 is a diagram showing the optical coupling portion in a plane along the longitudinal direction.
  • An example of the relationship between excess loss and the clearance between the ferrule outer diameter and sleeve inner diameter is shown.
  • the vicinity of the end of the ferrule of the optical coupling part of the present invention is shown.
  • An example of the relationship between the angle between a cross section perpendicular to the ferrule center axis and the end face of a single mode optical fiber and the amount of return loss is shown.
  • FIG. 7 shows a cross section of an input side ferrule of an optical coupling section of the present invention according to Embodiment 2.
  • FIG. 7 shows a cross section of an input side ferrule of an optical coupling section of the present invention according to Embodiment 2.
  • FIG. 3 shows a side view of the output side flange of the present invention according to Embodiment 1.
  • FIG. 1 is a diagram showing an example of an embodiment of the present invention. Although this embodiment describes a mode in which light enters from the input optical fiber S01 and exits to the output optical fiber S04, the direction of the light may be reversed.
  • the present invention switches the input side optical fiber S01 connected to the pre-stage optical switch component S00 to a specific port of the inter-optical switch optical fiber S02 in the pre-stage optical switch component S00, and can be switched to a desired output side optical fiber S04 in the downstream optical switch component S03.
  • the present invention is an optical switch corresponding to the front-stage optical switch component S00 and the rear-stage optical switch component S03.
  • the front-stage optical switch component S00 will be abbreviated as an optical switch S00
  • the rear-stage optical switch component S03 will be abbreviated as an optical switch S03. Since the optical switch S00 and the optical switch S03 are in a horizontally reversed relationship and have the same configuration, the detailed configuration will be described below using the optical switch S00.
  • FIG. 2 is a block configuration diagram according to an embodiment of the present invention.
  • the optical coupling section S8 included in the optical switch S00 according to the present embodiment is a first ferrule in which core centers of a plurality of single mode optical fibers are arranged on the same circumference from the center in a cross section of the ferrule; A second ferrule in which the core centers of one or more single mode optical fibers are arranged on a circumference having the same diameter as the circumference in which the core centers of the single mode optical fibers in the first ferrule are arranged from the center in the ferrule cross section.
  • a ferrule of It has a hollow part into which the first ferrule and the second ferrule are inserted so that the center axes of the first ferrule and the second ferrule coincide, and the first ferrule and the second ferrule are rotatable. and a cylindrical sleeve S17 in which a predetermined gap is provided between each outer diameter of the first ferrule and the second ferrule and the inner diameter of the hollow part.
  • the input side optical fiber S1 is configured to be a single-core single-mode optical fiber, and the input side ferrule S6 is a second ferrule.
  • the output side optical fiber S9 is configured to include a plurality of single-core single-mode optical fibers, and the output side ferrule S7 is a first ferrule.
  • the input optical fiber S1 corresponds to the input optical fiber S01 in FIG. 1, and the output optical fiber S9 corresponds to the inter-optical switch optical fiber S02 in FIG.
  • the optical switch S00 shown in FIG. 2 has an optical coupling section S8 composed of an input ferrule S6 into which the input optical fiber S1 is inserted and an output ferrule S7 into which the output optical fiber S9 is inserted.
  • the input optical fiber S1 is fixed at a predetermined position in a fiber hole provided in the input ferrule S6 using an adhesive or the like.
  • the output side optical fiber S9 is fixed using an adhesive or the like at a predetermined position in the fiber hole provided in the output side ferrule S7.
  • the input optical fiber S1 When light is input from the input optical fiber S1, by fixing the output ferrule S7 and rotating the input ferrule S6, the input optical fiber S1 is connected to any one of the output optical fibers S9, and the input The optical switch S00 is capable of outputting the light from one of the output side optical fibers S9, and can be used as a 1xN relay type optical switch. Conversely, it is also possible to input light from the output side optical fiber S9. For example, by inputting light into a plurality of single mode optical fibers of the output optical fibers S9, fixing the output ferrule S7, and rotating the input ferrule S6, any one of the output optical fibers S9 can be input.
  • optical switch S00 in which the output side ferrule S7 is fixed and the input side ferrule S6 is rotated will be described.
  • the output side ferrule S7 is fixed by a rotation stopper mechanism (not shown) so as not to rotate.
  • the actuator S3 performs arbitrary angle rotation based on a signal from the control circuit S4.
  • the input-side ferrule S6 rotates as the output of the actuator S3 is transmitted via the rotation mechanism S5.
  • the input ferrule S6 is provided with a certain extra length S2 to allow twisting of the input optical fiber S1.
  • the optical coupling section S8 is configured to suppress the misalignment of the ferrule center axis using an axial misalignment adjustment mechanism (not shown) and avoid excessive loss due to the axial misalignment.
  • the optical coupling section S8 included in the optical switch S00 according to the present embodiment is
  • the input side ferrule S6 and the output side ferrule S7 are each Equipped with a convex spherical end in the direction of the central axis, The tip of the input ferrule S6 and the tip of the output ferrule S7 are brought into contact.
  • FIG. 3 is a schematic front view of the end of the output ferrule S7 according to the embodiment of the present invention.
  • a plurality of optical fibers are bundled into a bundle and placed inside the fiber hole S11 with a diameter S21 provided at the center of the output side ferrule S7, and the core center of each output side optical fiber S9 is output. It is characterized in that it is arranged on the circumference of a circle having a core arrangement radius Rcore with respect to the center of the side ferrule S7.
  • the dummy fiber S10 may be an optical fiber having the same strength and the same outer diameter as the output side optical fiber S9, and may be a fiber without a core, that is, a fiber that does not pass light.
  • FIG. 4 is a schematic diagram showing the end of the input ferrule S6 according to the embodiment of the present invention from the front.
  • a plurality of optical fibers are bundled into a bundle and placed inside the fiber hole S11 provided at the center of the input ferrule S6, so that the core center of the input optical fiber S1 is connected to the input ferrule S6. It is characterized by being arranged on the circumference of a circle having a core arrangement radius Rcore with respect to the center.
  • the core center of the input optical fiber S1 is arranged on the circumference of a circle having a core arrangement radius Rcore, but the present invention is not limited thereto.
  • one or more fiber holes capable of arranging one optical fiber are provided on the circumference of a circle with a core arrangement radius Rcore relative to the central axis of the input ferrule S6, and the input optical fiber is inserted into the fiber hole.
  • S1 may be placed.
  • the dummy fiber S10 may be an optical fiber having the same strength and the same outer diameter as the input side optical fiber S1, and may be a fiber without a core, that is, a fiber that does not pass light.
  • the outer diameter of the dummy fiber S10 placed at the center of the output ferrule S7 and the input ferrule S6 may be different from that of the output optical fiber S9 and the input optical fiber S1.
  • the outer diameter of the dummy fiber S10 placed at the center larger than 125 ⁇ m, it becomes possible to arrange six or more output side optical fibers S9 on the circumference of a circle with a core arrangement radius Rcore. .
  • each core of the output side optical fiber S9 has the same optical characteristics as the core of the input side optical fiber S1 in that it has a mode field diameter of the same order. It is preferable that Furthermore, it is important to minimize excess loss due to axis misalignment, and it is desirable that the ferrule outer diameter S15 of the output side ferrule S7 be approximately the same as the ferrule outer diameter S15 of the input side ferrule S6.
  • the input side ferrule S6 and the output side ferrule S7 are made of zirconia, and the input side optical fiber S1 and the output side optical fiber S9 are made of quartz glass, but they are capable of communicating signal light in the communication wavelength band. It may be an optical fiber, but is not limited to this.
  • FIG. 5 is a schematic diagram showing the optical coupling portion S8 according to the embodiment of the present invention in a plane along the longitudinal direction.
  • the input side ferrule S6 into which the input side optical fiber S1 is inserted and the output side ferrule S7 into which the output side optical fiber S9 is inserted have a hollow part with an inner diameter S16 that is one sub- ⁇ m larger than the outer diameter S15 of these ferrules. It is aligned with a cylindrical sleeve S17, and in order to control the axial misalignment within a certain allowable range and not to interfere with the axial rotation of the input ferrule S6, a slight clearance C of about sub- ⁇ m is provided between the input ferrule S6 and the input ferrule S6. It is provided for the output side ferrule S7.
  • FIG. 6 is a diagram showing an example of the relationship between the excess loss T C and the clearance C between the ferrule outer diameter S15 and the sleeve inner diameter S16 of the input ferrule S6 and the output ferrule S7.
  • misalignment of the fiber cores causes excessive loss. Since the increase in excess loss becomes a factor that limits the total length of the optical path, it is necessary to reduce the axis misalignment of the fiber core.
  • ⁇ 1 and ⁇ 2 are the mode field radii (unit: ⁇ m) of the input-side and output-side optical fiber S9 cores, respectively, and FIG. 6 shows that the mode field diameters of the input-side optical fiber S1 and output-side optical fiber S9 core are , are diagrams showing the loss when both are 9 ⁇ m.
  • the maximum excess loss can be suppressed to about 0.1 dB or less. Further, when the maximum excess loss is set to 0.2 dB, it is necessary to process the ferrule outer diameter S15 and the sleeve inner diameter S16 so that the clearance C becomes 1 ⁇ m or less.
  • FIG. 7 is a schematic diagram showing in more detail the vicinity of the end of the ferrule of the optical coupling portion S8 according to the embodiment of the present invention.
  • the end portions of the input ferrule S6 and the output ferrule S7 have a convex spherical shape having a center point on the ferrule central axis AC .
  • the output ferrule S7 of this embodiment has a dummy fiber S10 arranged at the center of the fiber hole S11, and an output optical fiber S9 arranged around the dummy fiber S10. There is.
  • the end faces of the output optical fiber S9 and the dummy fiber S10 arranged in the output ferrule S7 form the convex spherical shape of the end of the output ferrule S7.
  • a dummy fiber S10 is arranged at the center of the fiber hole S11, and an input side optical fiber S1 and a dummy fiber S10 are arranged around the dummy fiber S10. There is.
  • the end faces of the input optical fiber S1 and the dummy fiber S10 arranged in the output ferrule S6 form the convex spherical shape of the end of the input ferrule S6.
  • the tips of the dummy fibers S10 disposed in the input ferrule S6 and the output ferrule S7 are butted against each other.
  • the input side fiber S1 and the output side fiber S9 are arranged at a position with a core arrangement radius Rcore from the ferrule central axis AC in the ferrule cross section.
  • the end faces of the input fiber S1 and the output fiber S9 are set back from their tips in order to prevent their respective end faces from coming into contact and being damaged during rotational switching.
  • the angle ⁇ between the cross section perpendicular to the ferrule center axis AC and the end face of the single-core optical fiber is controlled in order to suppress deterioration of signal characteristics due to reflection.
  • a convex spherical shape can be manufactured by using a polishing technique used in manufacturing general optical connectors.
  • the end faces of the dummy fibers S10 arranged at the center axis of each ferrule are butted against each other, but it is sufficient that the end faces of the input side fiber S1 and the output side fiber S9 are arranged so that they do not come into contact with each other. , but not limited to this.
  • FIG. 8 is a diagram showing an example of the relationship between the angle ⁇ between a cross section perpendicular to the ferrule center axis and the end face of a single mode optical fiber, and the return loss R.
  • the optical coupling section S8 if there is a region with different refractive index between the end face of the input side optical fiber S1 and the end face of the output side optical fiber S9, signal characteristics will deteriorate due to reflection.
  • Equation 2 The relationship between the angle ⁇ (unit: degrees) between the cross section perpendicular to the ferrule center axis AC and the end face of the single mode optical fiber and the return loss R (unit: dB) can be expressed as Equation 2.
  • n 1 , ⁇ 1 , and ⁇ are the refractive index of the optical fiber, the mode field radius of the optical fiber core (unit: ⁇ m), and the wavelength of propagating light in vacuum (unit: ⁇ m).
  • R 0 is the return loss amount at the flat end face, and can be expressed as Equation 3.
  • n 2 is the refractive index of the light-receiving medium, that is, the refractive index of air.
  • the return loss R 0 at the flat end face is 14.7 dB, and for example, perpendicular to the ferrule center axis AC .
  • the angle ⁇ between the cross section and the end face of the single mode optical fiber is 4.5 degrees or more, a return loss R of 40 dB or more can be maintained.
  • the reflection characteristics can be further improved by applying a reflective coating to the fiber end face.
  • FIG. 9 is a diagram showing an example of the relationship between excess loss TG and gap G.
  • the relationship between the gap G (unit: ⁇ m) and the excess loss T G (unit: dB) can be expressed as Equation 4.
  • ⁇ , n clad , ⁇ 1 , and ⁇ 2 are the wavelength of the propagating light in vacuum (unit: ⁇ m), the refractive index of the optical fiber cladding, that is, pure quartz, and the input optical fiber S1 and the output optical fiber This is the mode field radius (unit: ⁇ m) of the core of S9
  • FIG. 9 is a diagram showing the loss when the mode field diameters of the cores of input side optical fiber S1 and output side optical fiber S9 are both 9 ⁇ m.
  • the excess loss can be suppressed to 0.1 dB or less.
  • FIG. 10 is a diagram showing an example of the relationship between the radius of curvature Rcur of the convex spherical ferrule end face and the angle ⁇ between a cross section perpendicular to the ferrule central axis AC and the single mode optical fiber end face.
  • the relationship between the radius of curvature Rcur (unit: mm) of the convex spherical ferrule end face and the angle ⁇ (unit: degree) between the cross section perpendicular to the ferrule central axis AC and the single mode optical fiber end face is determined by the core arrangement. It can be expressed as Equation 5 using the radius Rcore (unit: ⁇ m).
  • FIG. 10 is a diagram showing the relationship between the angle ⁇ and the radius of curvature Rcur when the core arrangement radius Rcore is 125, 150, 200, and 250 ⁇ m. From FIG. 8, the angle ⁇ that can maintain a return loss R of 40 dB or more is 4.5 degrees or more, and it is possible to realize a radius of curvature Rcur where the angle ⁇ is 4.5 degrees or more with a core arrangement radius Rcore of 250 ⁇ m or less. It can be seen that it is.
  • the core arrangement radius Rcore is 125 ⁇ m, 150 ⁇ m, 200 ⁇ m, and 250 ⁇ m
  • the angle ⁇ is 4.5 degrees or more, and a return loss R of 40 dB or more can be maintained.
  • the outer diameter of a typical single mode optical fiber is 125 ⁇ m, and when the single mode optical fibers are arranged in a bundle as shown in Figure 3, the end face of the ferrule is polished so that the radius of curvature Rcur is 1.5 mm or less.
  • the angle ⁇ between the cross section perpendicular to the ferrule central axis AC and the end face of the single mode optical fiber becomes 4.5 degrees or more, and a return loss R of 40 dB or more can be achieved.
  • FIG. 11 is a diagram showing an example of the relationship between the radius of curvature Rcur of the convex spherical ferrule end face and the distance D from the ferrule tip to the single mode optical fiber end face.
  • the distance D from the tip of the ferrule to the end face of the single mode optical fiber corresponds to half the gap G between the end face of the input optical fiber S1 and the end face of the output optical fiber S9, and is equal to the radius of curvature of the convex spherical ferrule end face. It can be expressed as Equation 6 using Rcur (unit: mm) and the angle ⁇ (unit: degree) between the cross section perpendicular to the ferrule central axis AC and the end face of the single mode optical fiber.
  • FIG. 11 shows the relationship between the radius of curvature Rcur and the distance D from the ferrule tip to the fiber end face when the core arrangement radius Rcore is 125, 150, 200, and 250 ⁇ m.
  • the core arrangement radius Rcore is 125 ⁇ m, 150 ⁇ m, 200 ⁇ m, and 250 ⁇ m
  • by adjusting the radius of curvature Rcur to be 0.7 mm or more, 1.0 mm or more, 1.8 mm or more, and 2.8 mm or more, respectively.
  • the distance D from the ferrule tip to the fiber end face is 11 ⁇ m or less, that is, the gap G is 22 ⁇ m or less, and as shown in FIG.
  • the excess loss T G due to the gap can be suppressed to 0.1 dB or less.
  • the fiber outer diameter of a typical single mode optical fiber is 125 ⁇ m, and when the single mode optical fibers are arranged in a bundle as shown in FIG. By polishing the ferrule end face, it is possible to achieve a return loss R of 40 dB or more and an excess loss TG of 0.1 dB or less.
  • the optical coupling section S8 included in the optical switch S00 according to the present embodiment has the following features in order to obtain a return loss of 40 dB or more and an excess loss due to a gap of 0.1 dB or less.
  • the radius of curvature of the convex spherical shape may be 0.7 mm or more and 3.2 mm or less.
  • the actuator S3 is a drive mechanism that rotates in arbitrary angular steps in response to pulse signals from the control circuit S4 and has a constant static torque for each angular step, and uses a stepping motor, for example. Note that other methods may be used as long as the actuator S3 is a drive mechanism that rotates in arbitrary angular steps according to pulse signals from the control circuit S4 and has a constant static torque for each angular step. .
  • the rotation speed and rotation angle are determined by the period and number of pulses of the pulse signal from the control circuit S4, and the angle step and static torque may be adjusted via a reduction gear.
  • the input ferrule S6 in the optical coupling section S8 is designed to rotate around the ferrule center axis AC , so the static torque required to maintain the rotation angle of the input ferrule S6 is limited to the actuator. It has the characteristic that it is given by S3.
  • This provides a low-power optical switch that has a self-holding function that does not require power when at rest after switching, and can minimize the driving energy when switching optical paths. It is possible to do so.
  • the number of static angular steps is equal to the number of cores with the same core arrangement radius Rcore of the output optical fiber S9. It is characterized by being a natural number multiple.
  • FIG. 12 shows an example of the relationship between the core arrangement radius Rcore and the excess loss TR due to rotational angle deviation.
  • FIG. 12 is a diagram showing the relationship between the core arrangement radius Rcore and the excess loss T R due to the rotation angle deviation when the rotation angle deviation ⁇ is 0.1 degree, 0.15 degree, 0.2 degree, and 0.3 degree. be. The larger the core arrangement radius Rcore, the larger the excess loss.
  • FIG. 13 is a schematic diagram showing an example of the coupling form of the optical coupling portion S8 according to the first embodiment of the present invention.
  • the output side ferrule S7 is attached to an output side flange S19 with a notch, and the output side flange S19 is attached to a fixing jig S27 with fixing screws S25, so that the axial direction and the shaft rotation direction are fixed.
  • the input side ferrule S6 is attached to a rotating flange S29, and a bearing S26 is provided on the rotating flange S29, which is also attached to a fixing jig S27 with a fixing screw S25 and fixed in the axial direction.
  • a sleeve S17 is built inside the fixing jig S27, and the input side ferrule S6 and the output side ferrule S7 are inserted into the sleeve S17 to align the center axes of the ferrules.
  • the output side ferrule S7 is fixed, and the input side ferrule S6 is rotated within the sleeve S17 about the center of the ferrule cylinder by a rotation mechanism S5 of a bearing S26.
  • the core of the input optical fiber S1 inserted into the input ferrule S6 rotates, and the core of the output optical fiber S9 facing the input optical fiber S1 is switched.
  • the bearing S26 although zirconia is used for the bearing S26, for example, other materials may be used as long as they can be manufactured with high dimensional accuracy. Furthermore, by making the fixing jig S27 a frame made of hollow metal with low rigidity, for example, it is possible to reduce the axial displacement of the input side ferrule S6 due to axial wobbling when the actuator S3 rotates. be.
  • FIG. 17 shows a side view of the notched output side flange S19 attached to the output side ferrule S7.
  • the capillary S23 is arranged at a position where the fiber hole S30 of the output ferrule S7 attached to the output flange S19 and the ferrule center axis AC coincide, and the capillary S23 is tapered in the longitudinal direction.
  • an example was shown in which a longitudinally tapered capillary was inserted inside the flange, but the shape inside the flange was such that an optical fiber could be inserted into the fiber hole, and the optical coupling part could be fabricated. It may have any shape as long as it can protect the optical fiber at times, and is not limited to this.
  • the ends of two ferrules in which single-mode optical fibers are arranged parallel to the central axis and at the same distance from the central axis are convex, and the central axes are aligned with the tips of the ends of the two ferrules.
  • one of the input and output sides of the optical coupling unit S8 that performs optical switching is a mechanism that can rotate around an axis, it is possible to minimize the energy required by the actuator S3, that is, the torque output. It is possible to reduce power consumption. Further, since the amount of optical axis deviation in directions other than the axial rotation of the input side ferrule S6 is guaranteed by the sleeve S17 in the optical coupling portion S8, it is possible to reduce the loss.
  • the present invention does not include a collimator or a special anti-vibration mechanism, and is made up of commonly used optical connection parts such as ferrules and sleeves, so it is small and economical.
  • an optical coupling unit and an optical switch that can achieve stable optical characteristics against external factors such as temperature and vibration with low power consumption and more economically.
  • it can be used as an optical switch for switching paths in any equipment, regardless of location, in an optical line using single-mode optical fibers of an optical fiber network.
  • the configuration and operation of the optical switch S00 according to this embodiment will be specifically described below using FIGS. 14 and 15.
  • the optical switch S00 of this embodiment differs from the optical switch S00 of the first embodiment in that the input side ferrule S6 of the optical coupling portion S8 is attached to the input side flange S18 instead of the rotating flange S29, and the position where the bearing S26 is provided.
  • the rotation mechanism of the input ferrule S6 will be described below. Note that the contents other than those described below are the same as those in the first embodiment.
  • FIG. 14 is a schematic diagram showing the coupling form of the optical coupling portion S8 according to the present embodiment. Similar to the first embodiment, the output side ferrule S7 is attached to a notched output side flange S19, and the output side flange S19 is attached to a fixing jig S27 with fixing screws S25, so that the axial direction and shaft rotation direction are fixed. Fixed.
  • the input ferrule S6 is attached to the notched input flange S18.
  • the input side flange S18 is attached to the fixing jig S27 with a removable fixing screw S25, and the axial direction and shaft rotation direction are fixed. By loosening the fixing screw S25, the input side flange S18 can be rotated, and Accordingly, the input ferrule S6 attached to the input flange S18 can rotate.
  • the input side flange S18 may have the structure shown in FIG. 15, as described later.
  • a fixing screw (not shown) for fixing the axial direction may be separately provided.
  • the input side ferrule S6 has a ferrule outer diameter S15 smaller than the output side ferrule S7, is attached with a bearing S26, and is rotated by a rotation mechanism S5 of the bearing S26. That is, by fixing the output ferrule S7 and making the input flange S18 rotatable, the input ferrule S6 is rotated within the sleeve S17 by the rotation mechanism S5 of the bearing S26 about the center of the ferrule cylinder. As a result, the core of the input optical fiber S1 inserted into the input ferrule S6 rotates, and the core of the output optical fiber S9 opposing the input optical fiber S1 is switched.
  • FIG. 15 is a schematic diagram showing a cross section of the input side ferrule S6 of the optical coupling section S8 according to the present embodiment.
  • a bearing S26 is attached around the input ferrule S6, so that the input ferrule S6 can freely rotate within the sleeve S17.
  • FIG. 15 shows an example in which a fixing spring S28 is used as a method of fixing the input side flange S18.
  • a groove as shown in FIG. 15 is previously provided in the input flange S18, and the tip of the fixing spring S28 is held in the groove, thereby fixing the input flange S18 and the input ferrule S6 fixed thereto.
  • the fixing spring S28 releases the fixation of the input ferrule S6 and becomes rotatable.
  • collective control of optical fiber switching becomes possible by interlocking the fixing and releasing of the fixing spring S28 with a control circuit S4 (not shown) that controls the actuator S3.
  • a control circuit S4 (not shown) that controls the actuator S3.
  • FIG. 16 by making the outer periphery of the input flange S18 into a shape in which a plurality of gears are arranged so that the grooves are shifted along the longitudinal direction of the input ferrule S6, a finer rotation angle can be achieved. Control is also possible.
  • a magnet or a solenoid may be used in addition to the fixing spring S28.
  • optical coupling unit and optical switch according to the present disclosure can be applied to the optical communication industry.
  • S00 Front stage optical switch component S00: Optical switch S01: Input side optical fiber S02: Optical fiber between optical switches S03: Back stage optical switch component S03: Optical switch S04: Output side optical fiber S1: Input side optical fiber S2: Extra Long part S3: Actuator S4: Control circuit S5: Rotating mechanism S6: Input side ferrule S7: Output side ferrule S8: Optical coupling section S9: Output side optical fiber S10: Dummy fiber S11: Fiber hole S15: Ferrule outer diameter S16: Sleeve Inner diameter S17: Sleeve S18: Input side flange S19: Output side flange S21: Fiber hole diameter S23: Capillary S25: Fixed screw S26: Bearing S27: Fixing jig S28: Fixed spring S29: Rotating flange S30: Fiber hole

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本開示では、外的要因に対して安定的な光学特性を低消費電力で、かつ、より経済的に実現できる光結合部及び光スイッチを提供することを目的とする。本開示に係る光結合部は、上記目的を達成するために、スリーブを用いて2つのフェルールに配置されているシングルコアの光ファイバを結合する光結合部であって、前記2つのフェルールのうちの第1のフェルールは、ファイバ孔内に複数の光ファイバがフェルール中心軸を中心とする同一の円周上にバンドル状に配置されており、前記2つのフェルールの少なくとも一方は、前記フェルール中心軸を中心に回転可能であり、前記2つのフェルールの突き合わされている端部が、前記フェルール中心軸上に中心点を有する凸球面形状を有する、光結合部。

Description

光結合部及び光スイッチ
 本発明は、主に光ファイバネットワークにおいてシングルモード光ファイバを用いた光線路の経路を切り替えるために用いる光結合部及びこれを用いた光スイッチに関する。
 光を光のまま経路切替を行う全光スイッチには、例えば非特許文献1に示すように様々な方式が提案されている。このうち、光ファイバあるいは光コネクタ同士の突合せをロボットアームやモータ等で制御する光ファイバ型機械式光スイッチは、切替速度が遅いという点では他方式に劣るものの、低損失、低波長依存性、多ポート性、電源消失時に切替状態を保持する自己保持機能の具備などの点で他方式よりも優れている点を多く有している。この代表的な構造として、例えば光ファイバV溝を用いたステージを並行移動させる方式や、ミラーやプリズムを並行移動または角度変化させて入射光ファイバから出射する複数の光ファイバに対して選択的に結合させる方式、ロボットアームを用いて光コネクタ付きのジャンパーケーブルを接続する方式などがある。
 また、切替を行う光経路として、マルチコアファイバを用いる方法が提案されている。例えば、マルチコアファイバに3次元MEMS光スイッチを組み合わせる(例えば、非特許文献2参照)ことにより、多経路を一括に切り替えることが可能となる。また、マルチコアファイバが挿入された円筒フェルールを回転させることによって切り替えを行う(例えば、特許文献1参照)ことにより、レンズやプリズム等の光学部品を不要とし、構成の簡略化が可能となる。
特開平2-82212号公報
M.Stepanovsky,"A Comparative Review of MEMS-Based Optical Cross-Connects for All-Optical Networks From the Past to the Present Day," IEEE Communications Surveys & Tutorials,vоl.21,nо.3,pp.2928-2946,2019. K.Hiruma,T.Sugawara,K.Tanaka,E.Nomoto, and Y.Lee,"Proposal of High-capacity and High-reliability Optical Switch Equipmet with Multi-core Fibers," 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching(OECC/PS),ThT1-2,2013. B.Jian,"The Non-Contact Connector:A New Category of Optical Fiber Connector," 2015 Optical Fiber  Communications Conference and Exhibition(OFC),W2A.1,2015. 荒生 肇、矢加部 祥、上原 史也、佐々木 大、島津 貴之、"低損失/低嵌合力を特徴とする耐ダスト光多心コネクタFlexAirConnecT," 2018 年7 月・SEIテクニカルレビュー、第193号、pp.26-31、2018. Chisato Fukai,Yoshiteru Abe,and Kazunori Katayama,"Multi-Fiber Cylindrical Ferrule for Remote Rotary Optical Fiber Switching," 2022 Optical Fiber  Communications Conference and Exhibition(OFC),Th2A.11,2022.
 しかしながら、前述の非特許文献1に記載の従来技術においては、さらなる低電力化および小型化、経済化が困難であるという問題がある。具体的には、前述の光ファイバV溝ステージあるいはプリズムを並行移動させる方式では、一般に駆動源にモータが用いられるが、ステージ等の重量物を直動させる機構のため、一定以上のトルクがモータに必要となり、必要トルクを維持するために相応の出力を得るための消費電力を要する。また、シングルモード光ファイバを用いた光軸調心には、1μm以下程度の精度が必要であることから、モータの回転運動を直動運動に変換させる機構(一般にはボールねじが用いられる)において、サブμmステップの直動運動に変換させる必要がある。通常用いられる出力側の光ファイバアレイの光ファイバピッチが光ファイバのクラッド外径125μmあるいは光ファイバの被覆外径250μm程度であることを考えると、出力側の光ファイバアレイが大きくなる程モータの実駆動時間は長くせざるを得ず、消費電力の増大となるという問題があった。このため、一般にこのような光ファイバ型機械式光スイッチは数百mW以上の電力を要する。また、光コネクタを用いたロボットアーム方式は、光コネクタあるいはフェルールを挿抜制御するロボットアームそのものに数十W以上の大きな電力を要してしまうという問題があった。
 また、非特許文献2に記載のマルチコアファイバを用いた光経路切替では、光スイッチを製作する過程において、出力側の光ファイバアレイに結合させるためのコリメート機構や、振動等の外的要因に対して安定的な光学特性を得るための除振機構が別途必要となり、組立工程も複雑になるという問題があった。
 特許文献1に記載のマルチコアファイバが挿入された円筒フェルールを用いた光経路切替では、フェルールがスリーブに密着挿入することにより中心軸を合わせており、フェルールとスリーブ間の摩擦力により、回転の駆動に大きなエネルギーが必要であり大きな電力を要してしまうという問題があった。さらに、フェルールが回転する際に、向かい合うファイバ端面に傷をつけて接続損失などの光学特性の劣化を防ぐ目的で、フェルールが回転するたびにフェルール端面を引き離す機構が必要であり、回転の駆動に余計なエネルギーを要してしまうという問題があった。
 一方、光ファイバを挿入した円筒フェルールにおいて、あらかじめ間隙を設けてファイバ接触を行わない接続形態(例えば、非特許文献3)により接触によるファイバ端面の傷を防止する方法もある。しかし、間隙によりファイバ端面間に生じる空気層を原因とした反射による信号劣化を抑制するため、反射を防止するための特殊コーティングが必要となり、コストが増加するという問題があった。
 また、反射を防止するための別の方法として、フェルール端面を斜めに研磨する方法(例えば、非特許文献4)もある。しかし、斜めに研磨したフェルールでは、回転による切替の際にフェルール端面の干渉が発生する、または、大きな間隙を要するために接続損失が大きくなってしまうという問題があった。
 また、非特許文献5に記載の複数のファイバが挿入された円筒フェルールを用いた光経路切替では、フェルールを球面に研磨してファイバ端面が斜めに研磨され、かつ、フェルール中心部をフラットに研磨してファイバ端面に生じる間隙を最小限に抑えることができるため、接触によるファイバ端面の傷を防止しながら反射の防止と間隙による接続損失を低く抑えることが可能である。しかし、フェルール金型の製造過程において、ファイバ孔位置を高精度に制御することが困難であり、ファイバ孔位置ずれによる軸ずれ損失が過剰損失として生じてしまうという問題があった。さらに、フェルール端面においてファイバ孔を中心に近づけることが困難であり、ファイバ孔がフェルール端面の中心から遠くなることにより、切替を行う際の回転角度ずれ損失が大きくなってしまうという問題があった。
 前記問題を解決するために、本発明は、外的要因に対して安定的な光学特性を低消費電力で、かつ、より経済的に実現できる光結合部及び光スイッチを提供することを目的とする。
 本開示に係る光結合部は、
 スリーブを用いて2つのフェルールに配置されているシングルコアの光ファイバを結合する光結合部であって、
 前記2つのフェルールのうちの第1のフェルールは、ファイバ孔内に複数の光ファイバがフェルール中心軸を中心とする同一の円周上にバンドル状に配置されており、
 前記2つのフェルールの少なくとも一方は、前記フェルール中心軸を中心に回転可能であり、
 前記2つのフェルールの突き合わされている端部が、前記フェルール中心軸上に中心点を有する凸球面形状を有する。
 本開示の光結合部および光スイッチは、フェルール中心軸に平行かつフェルール中心軸から同一距離にシングルコアのシングルモード光ファイバが配置された2つのフェルールを備えていてもよい。この場合、2つのフェルールの突き合わされている端部が凸球面形状であり、2つのフェルールの端部の先端を中心軸が一致するように突き合わせ、いずれか一方のフェルールを回転させる。
 より具体的には、本開示に係る光結合部は、
 フェルール断面において中心部に複数のシングルコアのシングルモード光ファイバのコア中心が同一円周上に並ぶようにバンドル状に配置された、凸球面の端面を有する第1のフェルールと、
 フェルール断面において中心から、前記第1のフェルールにおける前記シングルモード光ファイバのコア中心が配置された前記円周と同じ直径の円周上に1つまたは複数のシングルコアのシングルモード光ファイバのコア中心が配置され、凸球面の端面を有する第2のフェルールと、
 前記第1のフェルール及び前記第2のフェルールの中心軸が一致するように前記第1のフェルール及び前記第2のフェルールが挿入される中空部を有し、前記第1のフェルール及び前記第2のフェルールが回転可能なように、前記第1のフェルール及び前記第2のフェルールの各外径と前記中空部の内径との間に所定の隙間が設けられている円筒のスリーブと、を備える。
 本発明は、フェルール中心軸に平行かつフェルール中心軸から同一距離にシングルモード光ファイバが配置された2つのフェルールの端部が凸球面形状であり、2つのフェルールの端部の先端を中心軸が一致するように突き合わせ、いずれか一方のフェルール中心軸を中心として回転させることにより、対向する光ファイバの端面同士が接触せず、接触によって光ファイバの端面にキズがつくことによる接続損失などの光学特性の劣化を防ぐことができる。また、対向する光ファイバの端面同士が非平行となるため、光の反射量を減らすことができるので、反射コーティングを要せず、より経済的な光結合部および光スイッチを提供することができる。
 さらに、本発明は、光スイッチングを行う光結合部の入力側および出力側の一方を軸回転可能な機構としているため、アクチュエータで必要となるエネルギー、すなわちトルク出力を限りなく小さくすることが可能であり、低消費電力化が可能である。また、入力側フェルールの軸回転以外の方向における光軸ずれ量は、光結合部においてスリーブにより保証されているために、低損失化が可能となる。加えて、本発明にはコリメートや特別な防振機構を具備しておらず、フェルールやスリーブといった一般的に広く用いられている光接続部品から構成されているため小型かつ経済的である。
 ここで、フェルール中心軸を中心とする同一の円周上にバンドル状に配置された前記複数の光ファイバの内側にダミーファイバを配置し、前記ダミーファイバの端面が前記凸球面形状の一部を構成してもよい。
 また、前記凸球面形状での反射減衰量は所定値以上であってもよい。例えば、本開示に係る光結合部は、前記第1のフェルール及び前記第2のフェルールのそれぞれにおいて、フェルール中心軸に対して垂直な断面とシングルモード光ファイバ端面とがなす角度が4.5度以上であってもよい。これにより、前記凸球面形状での反射減衰量を40dB以上にすることができる。
 また、前記2つのフェルールの突き合わされている端面の間隙による過剰損失Tを抑制してもよい。例えば、本開示に係る光結合部は、前記第1のフェルールのシングルモード光ファイバの端面と、当該シングルモード光ファイバに光軸が一致する前記第2のフェルールのシングルモード光ファイバの端面の間隙が22μm以下であってもよい。これにより、間隙による過剰損失Tを0.1dB以下に抑制することができる。
 また、前記2つのフェルールの回転角度ずれによる過剰損失Tを抑制してもよい。例えば、本開示に係る光結合部は、前記第1のフェルール及び前記第2のフェルールにおける各シングルモード光ファイバのコア中心の、フェルール中心軸からの距離が250μm以下であってもよい。これにより、回転角度ずれによる過剰損失Tを0.1dB以下にすることができる。
 前記凸球面形状での反射減衰量及び前記2つのフェルールの突き合わされている端面の間隙による過剰損失Tの条件を満たしてもよい。例えば、本開示に係る光結合部は、前記複数の光ファイバはシングルモード光ファイバであり、前記第1のフェルール及び前記第2のフェルールのそれぞれにおいて、前記凸球面形状における曲率半径が0.7mm以上3.2mm以下であってもよい。
 具体的には、本開示に係る光スイッチは、
 前記光結合部と、
 前記光結合部の前記2つのフェルールのどちらか一方を、前記フェルール中心軸を中心に回転させる回転機構と、を具備する。
 例えば、本開示に係る光スイッチは、
 前記回転機構を一定の角度ステップで回転させ、任意の角度ステップで静止させるアクチュエータと、
 前記回転機構を構成するベアリングと、
をさらに具備してもよい。
 なお、上記各発明は、可能な限り組み合わせることができる。
 本開示によれば、外的要因に対して安定的な光学特性を低消費電力で、かつ、より経済的に実現できる光結合部及び光スイッチを提供することができる。
本発明の使用形態の一例を示す。 本発明の概略構成の一例を示す。 出力側フェルールの端部を正面から表した図である。 入力側フェルールの端部を正面から表した図である。 光結合部を長手方向に沿った面で表した図である。 フェルール外径とスリーブ内径のクリアランスに対する過剰損失の関係の一例を示す。 本発明の光結合部のフェルールの端部近傍を示す。 フェルール中心軸に対して垂直な断面とシングルモード光ファイバ端面とがなす角度と反射減衰量の関係の一例を示す。 光ファイバの間隙に対する過剰損失の関係の一例を示す。 凸球面形状のフェルール端面の曲率半径に対する、中心軸に対して垂直な断面とシングルモード光ファイバ端面とがなす角度の関係の一例を示す。 凸球面形状のフェルール端面の曲率半径に対する、フェルール先端からシングルモード光ファイバ端面までの距離の関係の一例を示す。 コア配置半径に対する回転角度ずれによる過剰損失の関係の一例を示す。 実施形態1に係る本発明の光結合部の篏合形態を表す。 実施形態2に係る本発明の光結合部の篏合形態を表す。 実施形態2に係る本発明の光結合部の入力側フェルールの断面を表す。 実施形態2に係る本発明の光結合部の入力側フェルールの断面を表す。 実施形態1に係る本発明の出力側フランジの側面を表す。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態1)
 図1は本発明の実施形態の一例を示す図である。本実施形態は、光が入力側光ファイバS01から入射され、出力側光ファイバS04へ出射する形態を説明するが、光の方向は逆でもよい。本発明は、前段光スイッチ構成部S00に接続された入力側光ファイバS01を、前段光スイッチ構成部S00において光スイッチ間光ファイバS02の特定のポートに切り替えて、光スイッチ間光ファイバS02のポートを、後段光スイッチ構成部S03において所望の出力側光ファイバS04に切り替えることを可能とする。本発明は、前段光スイッチ構成部S00及び後段光スイッチ構成部S03に該当する光スイッチである。以下、前段光スイッチ構成部S00を光スイッチS00と、後段光スイッチ構成部S03を光スイッチS03と略記する。光スイッチS00と光スイッチS03は左右反転の関係にあり、構成が同一であるため、以下、光スイッチS00を用いて詳細な構成を示す。
 図2は本発明の実施形態に係るブロック構成図である。
 本実施形態に係る光スイッチS00が有する光結合部S8は、
 フェルール断面において中心から同一の円周上に複数のシングルモード光ファイバのコア中心が配置された第1のフェルールと、
 フェルール断面において中心から、第1のフェルールにおけるシングルモード光ファイバのコア中心が配置された円周と同じ直径の円周上に1つまたは複数のシングルモード光ファイバのコア中心が配置された第2のフェルールと、
 第1のフェルール及び第2のフェルールの中心軸が一致するように第1のフェルール及び第2のフェルールが挿入される中空部を有し、第1のフェルール及び第2のフェルールが回転可能なように、第1のフェルール及び第2のフェルールの各外径と中空部の内径との間に所定の隙間が設けられている円筒のスリーブS17と、を備える。
 図2において、入力側光ファイバS1を一のシングルコアのシングルモード光ファイバからなる構成とし、入力側フェルールS6を第2のフェルールとする。また、出力側光ファイバS9を複数のシングルコアのシングルモード光ファイバからなる構成とし、出力側フェルールS7を第1のフェルールとする。なお、入力側光ファイバS1は図1の入力側光ファイバS01に対応し、出力側光ファイバS9は図1の光スイッチ間光ファイバS02に対応する。
 図2に示す光スイッチS00は、入力側光ファイバS1が挿入された入力側フェルールS6と、出力側光ファイバS9が挿入された出力側フェルールS7とから構成される光結合部S8を有する。入力側光ファイバS1は、入力側フェルールS6に備わるファイバ孔の予め定められた位置で、接着剤などを用いて固定されている。出力側光ファイバS9は、出力側フェルールS7に備わるファイバ孔の予め定められた位置で、接着剤などを用いて固定されている。
 入力側光ファイバS1から光を入射した場合、出力側フェルールS7を固定し、入力側フェルールS6を回転させることで入力側光ファイバS1を出力側光ファイバS9の任意の1本と接続させ、入射した光を出力側光ファイバS9の1本から出力させることのできる光スイッチS00であり、1xNのリレー型光スイッチとして使用できるものである。逆に、出力側光ファイバS9から光を入射することも可能である。例えば、出力側光ファイバS9のうちの複数のシングルモード光ファイバに光を入射し、出力側フェルールS7を固定し、入力側フェルールS6を回転させることで出力側光ファイバS9の任意の1本を入力側光ファイバS1と接続させ、入射した複数の光の中から選択した1つの光のみを入力側光ファイバS1から出力することができる。また、図1のように、光スイッチを複数組み合わせることにより、N×Nの光スイッチを構成することが可能である。ここで、出力側フェルールS7を固定して、入力側フェルールS6を回転させることとしたが、入力側フェルールS6又は出力側フェルールS7のいずれかを固定し、対向する側を回転させることによって対向するファイバの切り替えを可能とする形態であればよいため、入力側フェルールS6を固定し出力側フェルールS7を回転させてもよい。また、入力側フェルールS6を1本としたが、複数の光ファイバを配置することも可能である。
 以下では、出力側フェルールS7を固定し、入力側フェルールS6を回転させる光スイッチS00について説明する。出力側フェルールS7は回転止め機構(図示せず)により軸回転しないように固定される。アクチュエータS3は制御回路S4からの信号により任意の角度回転を行う。入力側フェルールS6は、アクチュエータS3の出力が回転機構S5を介して伝達されることにより回転する。また、入力側フェルールS6には入力側光ファイバS1のねじれを許容するための一定の余長部S2が設けられている。また、光結合部S8は、軸ずれ調整機構(不図示)によってフェルール中心軸の軸ずれを抑制し、軸ずれによる過剰損失を回避する構成になっている。
 本実施形態に係る光スイッチS00が有する光結合部S8は、
 入力側フェルールS6及び出力側フェルールS7はそれぞれ、
 中心軸方向に凸球面形状の端部を備え、
 入力側フェルールS6の先端と出力側フェルールS7の先端とが突き合わされる。
 図3は本発明の実施形態に係る出力側フェルールS7の端部を正面から表した模式図である。図に示すように複数の光ファイバを束ねてバンドル状にして出力側フェルールS7の中心部に設けた直径S21のファイバ孔S11の内部に配置し、出力側光ファイバS9のそれぞれのコア中心が出力側フェルールS7の中心に対してコア配置半径Rcoreの円の円周上に配置されていることを特徴とする。図3では中心にダミーファイバS10を配置し、合計6つの出力側光ファイバS9が配置された例を挙げているが、コア配置半径Rcoreを有する円の円周上に複数の出力側光ファイバS9のコア中心が配置されていればよく、これに限らない。ダミーファイバS10は、出力側光ファイバS9と同じ強度、かつ同じ外径となる光ファイバであればよく、コアを有しないファイバ、つまり、通光しないファイバであってもよい。
 図4は本発明の実施形態に係る入力側フェルールS6の端部を正面から表した模式図である。図4に示すように複数の光ファイバを束ねてバンドル状にして入力側フェルールS6の中心部に設けたファイバ孔S11の内部に配置し、入力側光ファイバS1のコア中心が入力側フェルールS6の中心に対してコア配置半径Rcoreの円の円周上に配置されていることを特徴とする。図4では1本の入力側光ファイバS1がy軸(x=0)上に配置され、他の6つのダミーファイバS10とともに入力側フェルールS6の中心部に配置された例を挙げているが、入力側光ファイバS1のコア中心がコア配置半径Rcoreを有する円の円周上に配置されていればよく、これに限らない。例えば、入力側フェルールS6の中心軸に対してコア配置半径Rcoreの円の円周上に1本の光ファイバを配置可能なファイバ孔を1つまたは複数設けて、そのファイバ孔に入力側光ファイバS1を配置してもよい。また、ダミーファイバS10は、入力側光ファイバS1と同じ強度、かつ同じ外径となる光ファイバであればよく、コアを有しないファイバ、つまり、通光しないファイバであってもよい。
 なお、出力側フェルールS7及び入力側フェルールS6の中心に配置されるダミーファイバS10の外径は、出力側光ファイバS9及び入力側光ファイバS1と異なっていてもよい。例えば、中心に配置されるダミーファイバS10の外径を125μmよりも大きくすることで、6本以上の出力側光ファイバS9をコア配置半径Rcoreの円の円周上に配置することが可能になる。
 ただし、光結合部S8の透過損失をできるだけ小さくすることが重要であり、出力側光ファイバS9の各コアは、入力側光ファイバS1のコアと同程度のモードフィールド径を有する点で同じ光学特性である方が望ましい。また、軸ずれによる過剰損失をできるだけ小さくすることが重要であり、出力側フェルールS7のフェルール外径S15は、入力側フェルールS6のフェルール外径S15と同程度である方が望ましい。
 本実施形態では、入力側フェルールS6及び出力側フェルールS7はジルコニア、入力側光ファイバS1及び出力側光ファイバS9は石英ガラスで形成されることとするが、通信波長帯の信号光を通信可能な光ファイバであればよく、これに限らない。
 図5は本発明の実施形態に係る光結合部S8を長手方向に沿った面で表した模式図である。入力側光ファイバS1を挿入した入力側フェルールS6と、出力側光ファイバS9を挿入した出力側フェルールS7が、それらのフェルール外径S15に対してサブμm程度一回り大きい内径S16の中空部を有する円筒のスリーブS17で調心されており、軸ずれを一定許容範囲に制御し、入力側フェルールS6の軸回転を妨げないようにするためにサブμm程度の僅かなクリアランスCを入力側フェルールS6及び出力側フェルールS7に対して設けている。
 図6は入力側フェルールS6及び出力側フェルールS7のフェルール外径S15とスリーブ内径S16のクリアランスCに対する過剰損失Tの関係の一例を示す図である。光ファイバ間の光結合において、ファイバコアの軸ずれは過剰損失の要因となる。過剰損失の増大は光経路の全長を制限する要因となるため、ファイバコアの軸ずれを小さくすることが必要となる。ここで、フェルール外径S15とスリーブ内径S16のクリアランスCはファイバコアの軸ずれに相当するため、フェルール外径S15とスリーブ内径S16のクリアランスC(単位:μm)と過剰損失T(単位:dB)の関係は数1に表すことができる。
Figure JPOXMLDOC01-appb-M000001
ここでω及びωはそれぞれ入力側及び出力側光ファイバS9コアのモードフィールド半径(単位:μm)であり、図6は入力側光ファイバS1及び出力側光ファイバS9コアのモードフィールド径が、ともに9μmの時の損失を示す図である。例えば、クリアランスCが0.7μm以下となるように、フェルール外径S15及びスリーブ内径S16を加工した場合、最大過剰損失を約0.1dB以下に抑えることができる。また、最大過剰損失を0.2dBに設定するとクリアランスCが1μm以下になるようにフェルール外径S15とスリーブ内径S16を加工する必要がある。
 図7は本発明の実施形態に係る光結合部S8のフェルールの端部近傍をより詳細に示した模式図である。入力側フェルールS6及び出力側フェルールS7の端部は、フェルール中心軸A上に中心点を有する凸球面形状である。具体的には、本実施形態の出力側フェルールS7は、図3に示すように、ファイバ孔S11の中心にダミーファイバS10が配置され、ダミーファイバS10の周囲に出力側光ファイバS9が配置されている。出力側フェルールS7に配置されている出力側光ファイバS9及びダミーファイバS10の端面が、出力側フェルールS7の端部の前記凸球面形状を構成する。また本実施形態の出力側フェルールS6は、図4に示すように、ファイバ孔S11の中心にダミーファイバS10が配置され、ダミーファイバS10の周囲に入力側光ファイバS1及びダミーファイバS10が配置されている。出力側フェルールS6に配置されているに入力側光ファイバS1及びダミーファイバS10の端面が、入力側フェルールS6の端部の前記凸球面形状を構成する。
 入力側フェルールS6及び出力側フェルールS7に配置されているダミーファイバS10は、それぞれの先端が突き合わされている。入力側ファイバS1及び出力側ファイバS9は、前述したように、フェルール断面においてフェルール中心軸Aからコア配置半径Rcoreの位置に配置されている。入力側ファイバS1及び出力側ファイバS9は、回転による切り替えの際にそれぞれの端面が接触して傷つくことを防止するため、端面が先端より後退している。また、入力側ファイバS1及び出力側ファイバS9の端面では、反射による信号特性劣化を抑制するため、フェルール中心軸Aに対して垂直な断面とシングルコア光ファイバ端面とがなす角度θが制御されている。例えば、一般的な光コネクタの作製で用いられる研磨技術を使用することにより、凸球面形状を作製することができる。図7では、それぞれのフェルール中心軸に配置されたダミーファイバS10の端面同士が突き合わされているが、入力側ファイバS1と出力側ファイバS9のそれぞれの端面同士が接触しない配置になっていればよく、これに限らない。例えば、フェルール端面を研磨する際に、ファイバ引込量を多くすることによって、入力側フェルールS6と出力側フェルールS7を突合せた際に入力側ファイバS1と出力側ファイバS9の端面同士が接触しない構造としてもよい。
 図8はフェルール中心軸に対して垂直な断面とシングルモード光ファイバ端面とがなす角度θと反射減衰量Rの関係の一例を示す図である。光結合部S8において、入力側光ファイバS1の端面と出力側光ファイバS9の端面との間に屈折率の異なる領域があると反射によって信号特性が劣化する。図7に示す本発明の構成において、入力側光ファイバS1の端面と出力側光ファイバS9の端面の間に間隙Gがあり、石英ガラスと空気は屈折率が異なるため、反射を低減する工夫が必要である。本発明では角度θを制御することにより、反射を低減することとしている。フェルール中心軸Aに対して垂直な断面とシングルモード光ファイバ端面とがなす角度θ(単位:度)と反射減衰量R(単位:dB)の関係は数2に表すことができる。
Figure JPOXMLDOC01-appb-M000002
ここでn、ω、λはそれぞれ光ファイバの屈折率、光ファイバコアのモードフィールド半径(単位:μm)、伝搬光の真空中での波長(単位:μm)である。また、Rはフラット端面での反射減衰量であり、数3に表すことができる。
Figure JPOXMLDOC01-appb-M000003
ここでnは受光媒体の屈折率、つまり空気の屈折率である。本実施形態では、波長λが1310nmでモードフィールド半径ωが4.5μmの場合に、フラット端面での反射減衰量Rが14.7dBであり、例えば、フェルール中心軸Aに対して垂直な断面とシングルモード光ファイバ端面とがなす角度θを4.5度以上にすることによって、40dB以上の反射減衰量Rを保持することができる。さらに、ファイバ端面に反射コーティングを加工することにより、反射特性をさらに改善することも可能である。
 図9は間隙Gに対する過剰損失Tの関係の一例を示す図である。入力側光ファイバS1と出力側光ファイバS9との間の光結合において、入力側光ファイバS1の端面と出力側光ファイバS9の端面との間に間隙Gが存在すると、入力側光ファイバS1の出射光の分布が広がり、出力側光ファイバS9のコアとの結合効率が減少するため、過剰損失の要因となる。間隙G(単位:μm)と過剰損失T(単位:dB)の関係は数4に表すことができる。
Figure JPOXMLDOC01-appb-M000004
ここでλ、nclad、ω、ωはそれぞれ伝搬光の真空中での波長(単位:μm)、光ファイバのクラッド、つまり純石英の屈折率、入力側光ファイバS1及び出力側光ファイバS9のコアのモードフィールド半径(単位:μm)であり、図9は入力側光ファイバS1及び出力側光ファイバS9のコアのモードフィールド径が、ともに9μmの時の損失を示す図である。例えば、入力側光ファイバS1の端面と出力側光ファイバS9の端面との間の間隙Gが22μm以下となるように調整することによって、過剰損失を0.1dB以下に抑えることができる。
 図10は凸球面形状のフェルール端面の曲率半径Rcurに対する、フェルール中心軸Aに対して垂直な断面とシングルモード光ファイバ端面とがなす角度θの関係の一例を示す図である。凸球面形状のフェルール端面の曲率半径Rcur(単位:mm)と、フェルール中心軸Aに対して垂直な断面とシングルモード光ファイバ端面とがなす角度θ(単位:度)の関係は、コア配置半径Rcore(単位:μm)を用いて、数5に表すことができる。
Figure JPOXMLDOC01-appb-M000005
 図10はコア配置半径Rcoreが125、150、200、250μmの時の角度θと曲率半径Rcurの関係を示す図である。図8より、40dB以上の反射減衰量Rを保持可能な角度θは4.5度以上であり、250μm以下のコア配置半径Rcoreにおいて角度θが4.5度以上となる曲率半径Rcurが実現可能であることがわかる。例えば、コア配置半径Rcoreが125μm、150μm、200μm、250μmのとき、曲率半径Rcurをそれぞれ1.5mm以下、1.9mm以下、2.5mm以下、3.2mm以下、となるように調整することにより、角度θが4.5度以上となり、40dB以上の反射減衰量Rを保持することができる。一般的なシングルモード光ファイバのファイバ外径は125μmであり、前記シングルモード光ファイバを図3のようにバンドル状に配置する場合、1.5mm以下の曲率半径Rcurとなるようにフェルール端面を研磨することによって、フェルール中心軸Aに対して垂直な断面とシングルモード光ファイバ端面とがなす角度θが4.5度以上となり、40dB以上の反射減衰量Rを実現することができる。
 また、図11は凸球面形状のフェルール端面の曲率半径Rcurに対する、フェルール先端からシングルモード光ファイバ端面までの距離Dの関係の一例を示す図である。フェルール先端からシングルモード光ファイバ端面までの距離Dは、入力側光ファイバS1の端面と出力側光ファイバS9の端面との間の間隙Gの半分に相当し、凸球面形状のフェルール端面の曲率半径Rcur(単位:mm)と、フェルール中心軸Aに対して垂直な断面とシングルモード光ファイバ端面とがなす角度θ(単位:度)を用いて、数6に表すことができる。
Figure JPOXMLDOC01-appb-M000006
 図11では、コア配置半径Rcoreが125、150、200、250μmの時の曲率半径Rcurとフェルール先端からファイバ端面までの距離Dの関係を示す。例えば、コア配置半径Rcoreが125μm、150μm、200μm、250μmのとき、曲率半径Rcurがそれぞれ0.7mm以上、1.0mm以上、1.8mm以上、2.8mm以上となるように調整することによって、フェルール先端からファイバ端面までの距離Dが11μm以下、つまり、間隙Gが22μm以下となり、図9に示したとおり間隙による過剰損失Tを0.1dB以下に抑制することができる。一般的なシングルモード光ファイバのファイバ外径は125μmであり、前記シングルモード光ファイバを図3のようにバンドル状に配置する場合、曲率半径Rcurを0.7mm以上1.5mm以下となるようにフェルール端面を研磨することによって、40dB以上の反射減衰量Rと0.1dB以下の過剰損失Tを実現することができる。
 本実施形態に係る光スイッチS00が有する光結合部S8は、40dB以上の反射減衰量と0.1dB以下の間隙による過剰損失を得るために、
 入力側フェルールS6及び出力側フェルールS7のそれぞれにおいて、
 凸球面形状における曲率半径が0.7mm以上3.2mm以下であってもよい。
 次に、図2におけるアクチュエータS3と図3で述べた出力側フェルールS7、並びに図4で述べた入力側フェルールS6に係る要件について説明する。アクチュエータS3には、制御回路S4からのパルス信号により任意の角度ステップで回転を行い、角度ステップ毎で一定の静止トルクを有する駆動機構となっており、例えば、ステッピングモータが用いられる。なお、アクチュエータS3は、制御回路S4からのパルス信号により任意の角度ステップで回転を行い、角度ステップ毎で一定の静止トルクを有する駆動機構となっていれば、これ以外の方法を用いてもよい。回転速度や回転角度は制御回路S4からのパルス信号の周期とパルス数で決定され、角度ステップや静止トルクは減速ギヤを介して調整されたものでもよい。なお、前述のとおり、光結合部S8における入力側フェルールS6はフェルール中心軸Aを中心に回転するように設計されているため、入力側フェルールS6の回転角度の保持に必要な静止トルクはアクチュエータS3によって付与されるものであるという特徴を有する。
 これにより、切り替え後の静止時において電力を必要としない自己保持機能を有し、かつ、光経路を切り替える際の駆動エネルギーを限りなく小さくすることが可能であり、低消費電力な光スイッチを提供することが可能である。
 ここで、ステッピングモータにおいて、電源供給停止時に角度位置が保持される角度ステップ数を静止角度ステップ数と定義すると、静止角度ステップ数は出力側光ファイバS9の同じコア配置半径Rcoreを有するコア数の自然数倍であることを特徴とする。
 また、光結合部S8における回転角度ずれによる過剰損失をT(単位:dB)、ステッピングモータの静止角度精度に係る回転角度ずれをΦ(単位:°)、コア配置半径Rcore(単位:μm)とした場合、これらの関係は数7に表すことができる。
Figure JPOXMLDOC01-appb-M000007
コア配置半径Rcoreに対する回転角度ずれによる過剰損失Tの関係の一例を図12に示す。図12では、回転角度ずれΦが0.1度、0.15度、0.2度、0.3度の時のコア配置半径Rcoreと回転角度ずれによる過剰損失Tの関係を示す図である。コア配置半径Rcoreが大きいほど過剰損失が大きくなるが、例えば、モードフィールド半径ω及びωが4.5μm(MFD=9μm)のとき、コア配置半径が250μm以下において、0.15度の回転角度ずれにおいても、回転角度ずれによる過剰損失Tは0.1dB以下を保持することが可能である。ファイバ外径125μmのシングルモード光ファイバを図3のようにバンドル状に配置する場合、コア配置半径Rcoreは125μmになるため、図12により、0.3度の回転角度ずれにおいても、回転角度ずれによる過剰損失Tは0.1dB以下を保持することが可能である。
 図13は本発明の第1の実施形態に係る光結合部S8の篏合形態の一例を表す模式図である。出力側フェルールS7は切り欠き付きの出力側フランジS19に取り付けられ、出力側フランジS19は固定ネジS25で固定治具S27に取り付けられ、軸方向および軸回転方向が固定されている。入力側フェルールS6は回転フランジS29に取り付けられ、回転フランジS29にベアリングS26が設けられており、これも同様に固定ネジS25で固定治具S27に取り付けられ、軸方向が固定されている。固定治具S27の内側にスリーブS17が内蔵されており、入力側フェルールS6及び出力側フェルールS7がスリーブS17に挿入されることによってフェルール中心軸の軸合わせが行われる。出力側フェルールS7が固定され、入力側フェルールS6がスリーブS17内でフェルール円筒の中心を軸としてベアリングS26の回転機構S5により回転する。これにより、入力側フェルールS6に挿入された入力側光ファイバS1のコアが回転し、入力側光ファイバS1に対向する出力側光ファイバS9のコアが切り替わる。なお、ベアリングS26には、例えばジルコニアが用いられるが、高い寸法精度で作製することが可能であれば、これ以外の材質を用いることも可能である。また、固定治具S27を、例えば剛性の低い、中空形状の金属で構成されたフレームにすることにより、アクチュエータS3の回転時の軸ブレによる入力側フェルールS6の軸ずれを低減することが可能である。
 出力側フェルールS7に取り付けられた切り欠き付きの出力側フランジS19の側面図を図17に示す。キャピラリS23は、図17に示すように、出力側フランジS19に取り付けられた出力側フェルールS7のファイバ孔S30とフェルール中心軸Aが一致する位置に配置し、キャピラリS23を長手方向にテーパー形状にして、その先端の直径を出力側フェルールS7のファイバ孔S30の直径に近づけることによって、出力側光ファイバS9を出力側フェルールS7へ挿入する際に段差による引っ掛かりを防ぎ、さらには光ファイバの折れを予防することが可能になる。入力側フェルールS6に取り付けられた回転フランジS29も同様である。本実施例ではフランジの内部に長手方向にテーパー形状であるキャピラリを挿入する例を示したが、フランジ内部の形状は、光ファイバをファイバ孔に挿入可能な形状であり、かつ、光結合部作製時に光ファイバを保護することが可能な形状であればよく、この限りではない。
 本発明は、中心軸に平行かつ中心軸から同一距離にシングルモード光ファイバが配置された2つのフェルールの端部が凸形状であり、2つのフェルールの端部の先端を中心軸が一致するように突き合わせ、いずれか一方のフェルールを中心軸を中心として回転させることにより、対向する光ファイバの端面同士が接触せず、接触によって光ファイバの端面にキズがつくことによる接続損失などの光学特性の劣化を防ぐことができる。また、対向する光ファイバの端面同士を非平行とすることで光の反射量を減らすことができるので、反射コーティングを要せず、より経済的な光結合部および光スイッチを提供することができる。
 さらに、本発明は、光スイッチングを行う光結合部S8の入力側および出力側の一方を軸回転可能な機構としているため、アクチュエータS3で必要となるエネルギー、すなわちトルク出力を限りなく小さくすることが可能であり、低消費電力化が可能である。また、入力側フェルールS6の軸回転以外の方向における光軸ずれ量は、光結合部S8においてスリーブS17により保証されているために、低損失化が可能となる。加えて、本発明にはコリメートや特別な防振機構を具備しておらず、フェルールやスリーブといった一般的に広く用いられている光接続部品から構成されているため小型かつ経済的である。
 従って、本発明により、温度や振動等の外的要因に対して安定的な光学特性を低消費電力で、かつ、より経済的に実現できる光結合部及び光スイッチを提供することが可能である。その結果、光ファイバネットワークのシングルモード光ファイバを用いた光線路において、場所を問わず、あらゆる設備において、経路を切り替える光スイッチに利用することが可能である。
(実施形態2)
 以下、本実施形態に係る光スイッチS00の構成と動作について図14及び図15を用いて具体的に示す。本実施形態の光スイッチS00は、光結合部S8の入力側フェルールS6が回転フランジS29ではなく、入力側フランジS18に取り付けられ、ベアリングS26の設けられる位置が実施形態1の光スイッチS00と異なる。以下、入力側フェルールS6の回転機構について説明する。なお、以下に説明する内容以外は、実施形態1と同様とする。
 図14は、本実施形態に係る光結合部S8の篏合形態を表す模式図である。第1の実施形態と同様に、出力側フェルールS7は切り欠き付きの出力側フランジS19に取り付けられ、出力側フランジS19は固定ネジS25で固定治具S27に取り付けられ、軸方向および軸回転方向が固定されている。
 入力側フェルールS6は切り欠き付きの入力側フランジS18に取り付けられる。入力側フランジS18は取り外し可能な固定ネジS25で固定治具S27に取り付けられ、軸方向および軸回転方向が固定されており、固定ネジS25をゆるめることにより、入力側フランジS18が回転可能となり、それに伴い入力側フランジS18に取り付けられている入力側フェルールS6が回転できる。また、入力側フランジS18は後述するように、図15に示す構造であってもよい。この時、軸方向を固定する固定ネジ(不図示)を別途設けてもよい。入力側フェルールS6は出力側フェルールS7よりもフェルール外径S15を小さくし、ベアリングS26が取り付けられており、ベアリングS26の回転機構S5により回転する。つまり、出力側フェルールS7が固定され、入力側フランジS18が回転可能になることにより、入力側フェルールS6がスリーブS17内でフェルール円筒の中心を軸としてベアリングS26の回転機構S5により回転する。これにより、入力側フェルールS6に挿入された入力側光ファイバS1のコアが回転し、入力側光ファイバS1に対抗する出力側光ファイバS9のコアが切り替わる。
 図15は、本実施形態に係る光結合部S8の入力側フェルールS6の断面を表した模式図である。入力側フェルールS6の周囲にベアリングS26が取り付けられ、入力側フェルールS6がスリーブS17内で自由に回転できる構造となっている。また、図15では、入力側フランジS18の固定方法として、固定ばねS28を用いた例を示す。入力側フランジS18に図15に示すような溝をあらかじめ設けておき、その溝に固定ばねS28の先端を挟むことによって入力側フランジS18とそれに固定された入力側フェルールS6が固定されている。固定ばねS28は矢印の方向Dに力を加えることにより入力側フェルールS6の固定が解放されて回転可能となる。例えば、この固定ばねS28の固定と解放をアクチュエータS3を制御する制御回路S4(不図示)と連動させることによって、光ファイバ切り替えの一括制御が可能となる。また、図16のように入力側フランジS18の外周の形状を、入力側フェルールS6の長手方向に沿って溝がずれるように複数の歯車を配置したような形状にすることによって、より細かい回転角度制御を行うことも可能である。また、入力側フランジS18の固定と解放の方法として、固定ばねS28以外に磁石やソレノイドを用いてもよい。
 以上説明したように、本発明によれば、外的要因に対して安定的な光学特性を低消費電力で、かつ、より経済的に実現できる光結合部及び光スイッチを提供することができる。
 なお、上記各発明は、可能な限り組み合わせることができる。
 本開示に係る光結合部および光スイッチは、光通信産業に適用することができる。
S00:前段光スイッチ構成部
S00:光スイッチ
S01:入力側光ファイバ
S02:光スイッチ間光ファイバ
S03:後段光スイッチ構成部
S03:光スイッチ
S04:出力側光ファイバ
S1:入力側光ファイバ
S2:余長部
S3:アクチュエータ
S4:制御回路
S5:回転機構
S6:入力側フェルール
S7:出力側フェルール
S8:光結合部
S9:出力側光ファイバ
S10:ダミーファイバ
S11:ファイバ孔
S15:フェルール外径
S16:スリーブ内径
S17:スリーブ
S18:入力側フランジ
S19:出力側フランジ
S21:ファイバ孔直径
S23:キャピラリ
S25:固定ネジ
S26:ベアリング
S27:固定治具
S28:固定ばね
S29:回転フランジ
S30:ファイバ孔

Claims (4)

  1.  スリーブを用いて2つのフェルールに配置されているシングルコアの光ファイバを結合する光結合部であって、
     前記2つのフェルールのうちの第1のフェルールは、ファイバ孔内に複数の光ファイバがフェルール中心軸を中心とする同一の円周上にバンドル状に配置されており、
     前記2つのフェルールの少なくとも一方は、前記フェルール中心軸を中心に回転可能であり、
     前記2つのフェルールの突き合わされている端部が、前記フェルール中心軸上に中心点を有する凸球面形状を有する、
     光結合部。
  2.  前記第1のフェルールは、前記フェルール中心軸を中心とする同一の円周上にバンドル状に配置された前記複数の光ファイバの内側にダミーファイバを備え、
     前記ダミーファイバの端面が前記凸球面形状の一部を構成する、
     請求項1に記載の光結合部。
  3.  請求項1又は2に記載の光結合部と、
     前記光結合部の前記2つのフェルールのどちらか一方を、前記フェルール中心軸を中心に回転させる回転機構と、
     を具備する光スイッチ。
  4.  前記回転機構を一定の角度ステップで回転させ、任意の角度ステップで静止させるアクチュエータと、
     前記回転機構を構成するベアリングと、
     をさらに具備することを特徴とする請求項3に記載の光スイッチ。
PCT/JP2022/027305 2022-07-11 2022-07-11 光結合部及び光スイッチ WO2024013820A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027305 WO2024013820A1 (ja) 2022-07-11 2022-07-11 光結合部及び光スイッチ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027305 WO2024013820A1 (ja) 2022-07-11 2022-07-11 光結合部及び光スイッチ

Publications (1)

Publication Number Publication Date
WO2024013820A1 true WO2024013820A1 (ja) 2024-01-18

Family

ID=89536313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027305 WO2024013820A1 (ja) 2022-07-11 2022-07-11 光結合部及び光スイッチ

Country Status (1)

Country Link
WO (1) WO2024013820A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484793A (en) * 1981-06-05 1984-11-27 Instruments S. A. Switching device between optical fibers
JPS61267708A (ja) * 1985-05-22 1986-11-27 Nec Corp 光フアイバ端末構造
JPH0213919A (ja) * 1988-05-06 1990-01-18 Adc Telecommun Inc 光ファイバ用スイッチ
JPH063604A (ja) * 1990-01-19 1994-01-14 Adc Telecommun Inc 減少反射の光スイッチ
JPH0894947A (ja) * 1994-09-27 1996-04-12 Furukawa Electric Co Ltd:The 光スイッチ
CN104678495A (zh) * 2013-12-03 2015-06-03 方笑尘 大功率光纤功率合束器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484793A (en) * 1981-06-05 1984-11-27 Instruments S. A. Switching device between optical fibers
JPS61267708A (ja) * 1985-05-22 1986-11-27 Nec Corp 光フアイバ端末構造
JPH0213919A (ja) * 1988-05-06 1990-01-18 Adc Telecommun Inc 光ファイバ用スイッチ
JPH063604A (ja) * 1990-01-19 1994-01-14 Adc Telecommun Inc 減少反射の光スイッチ
JPH0894947A (ja) * 1994-09-27 1996-04-12 Furukawa Electric Co Ltd:The 光スイッチ
CN104678495A (zh) * 2013-12-03 2015-06-03 方笑尘 大功率光纤功率合束器

Similar Documents

Publication Publication Date Title
US5742712A (en) Efficient electromechanical optical switches
EP0738909B1 (en) Optical coupler with optical fibre ferrules
EP0533847B1 (en) Miniature fiberoptic bend device and method
US4239330A (en) Multiple optical switch
JP2996602B2 (ja) 定偏波光ファイバ用光分岐結合器
US20180128992A1 (en) Optical fiber connector ferrule assembly having single reflective surface for beam expansion and expanded beam connector incorporating same
JPH08248266A (ja) 光ファイバフェルールおよび前記光ファイバフェルールを用いた光カプラ
JP3888942B2 (ja) 光ファイバ部品
WO2024013820A1 (ja) 光結合部及び光スイッチ
JP7524952B2 (ja) 光スイッチ
JP7400981B2 (ja) 光スイッチ
WO2023181164A1 (ja) 光結合部および光スイッチ
WO2022162756A1 (ja) 光結合部および光スイッチ
US20030202737A1 (en) Optical switch
WO2023067772A1 (ja) 光接続モジュール
WO2013153037A1 (en) Multi-mode multi-fiber connection with expanded beam
WO2023067677A1 (ja) 光接続装置及びこれを用いた光スイッチ
US11525960B2 (en) Optical fiber module and optical switch
Morishima et al. Simple-structure LC-type multi-core fiber connector with low insertion loss
WO2023017574A1 (ja) フェルール回転かん合部および光スイッチ
WO2022168205A1 (ja) 光スイッチ
US20030095742A1 (en) Optical switch
JP3295053B2 (ja) 定偏波光ファイバ用4心フェルール
WO2023175865A1 (ja) 円筒多心フェルール及び光コネクタ
JP7529053B2 (ja) 円筒多心フェルール及び光コネクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951037

Country of ref document: EP

Kind code of ref document: A1