WO2023174435A1 - 一种三元掺混正极材料及其制备方法与电池 - Google Patents

一种三元掺混正极材料及其制备方法与电池 Download PDF

Info

Publication number
WO2023174435A1
WO2023174435A1 PCT/CN2023/082832 CN2023082832W WO2023174435A1 WO 2023174435 A1 WO2023174435 A1 WO 2023174435A1 CN 2023082832 W CN2023082832 W CN 2023082832W WO 2023174435 A1 WO2023174435 A1 WO 2023174435A1
Authority
WO
WIPO (PCT)
Prior art keywords
ternary
lithium
optionally
preparation
manganese phosphate
Prior art date
Application number
PCT/CN2023/082832
Other languages
English (en)
French (fr)
Inventor
吴婷婷
张�林
苑丁丁
Original Assignee
湖北亿纬动力有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北亿纬动力有限公司 filed Critical 湖北亿纬动力有限公司
Publication of WO2023174435A1 publication Critical patent/WO2023174435A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/10Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls with one or a few disintegrating members arranged in the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of ternary cathode material preparation, and relates to a preparation method of a ternary blended cathode material, for example, to a ternary blended cathode material, a preparation method thereof, and a battery.
  • Lithium-ion batteries have excellent energy density and cycle durability, as well as being lightweight, qualities that could help meet our growing energy needs.
  • the research on lithium batteries is also a hot topic in current physics, chemistry, materials and other disciplines.
  • commonly used lithium battery cathode materials in the market include lithium cobalt oxide, ternary, lithium iron phosphate, lithium iron manganese phosphate, etc.
  • Lithium iron manganese phosphate is a new phosphate lithium ion battery cathode material formed by doping a certain proportion of manganese on the basis of lithium iron phosphate.
  • Lithium iron manganese phosphate maintains the olivine-type stable structure of lithium iron phosphate. The structure is more stable during the charge and discharge process. Even if all lithium ions are embedded during the charging process, the structure will not collapse, so it is safer. , also has lower cost.
  • the application of pure lithium iron manganese phosphate has the advantages of lower cost and higher safety performance compared with ternary materials. The main limitations are low conductivity and low energy density. In order to balance performance and safety, compounding ternary and lithium iron manganese phosphate materials can further integrate the advantages of the materials, complement each other through compounding, achieve an increase in energy density, and provide more comprehensive and comprehensive battery performance.
  • CN 107546379A discloses a lithium iron manganese phosphate-ternary material composite cathode material and its preparation method.
  • the nanoparticles of lithium iron manganese phosphate are fixed on the surface of the ternary material particles through mechanical fusion.
  • the formation of a tight porous coating layer solves the problem of the need to obtain the mixed slurry of the ternary material and the lithium manganese iron phosphate cathode material in the mixing stage due to the different densities of the two.
  • the problem of segregation by achieving a tight coating of the ternary material surface with lithium iron manganese phosphate, a stable core-shell structure is obtained, so that the lithium iron manganese phosphate material can protect the surface of the ternary material and prevent the ternary material from absorbing environmental
  • the moisture in the battery deteriorates, reducing the direct contact between the ternary material and the electrolyte in the battery, and improving the stability and cycleability of the ternary material.
  • CN 111864198A provides a method for preparing a ternary material composite lithium iron manganese phosphate cathode material.
  • S1 mix PVDF and NMP and disperse it with a nanodisperser.
  • the dispersion speed is 1100 ⁇ 1300rpm, the time is 5.5 ⁇ 6.5h, and the temperature is 30 ⁇ 40°C, get material A;
  • the dispersion speed is 1900 ⁇ 2100rpm, the time is 1.5 ⁇ 2.5h, and the temperature is 20 ⁇ 30°C.
  • Material C; S4 is obtained. Mix lithium nickel cobalt manganate and lithium iron manganese phosphate and divide them into 3 parts. portion, add it to material C in 3 times, and disperse it with a nanodisperser after each addition.
  • the dispersion speed is 1400 ⁇ 1600rpm, the time is 5 ⁇ 15min, and the temperature is 20 ⁇ 30°C to obtain material D; S5, use the nanodisperser to disperse material D.
  • Machine dispersion, dispersion speed is 1700 ⁇ 1900rpm, time is 2 ⁇ 3h, temperature is 20 ⁇ 30°C, vacuum degree is greater than 0.085MPa, and material E is obtained. This material has high safety.
  • lithium iron manganese phosphate is compounded with a ternary material.
  • the loose connection between the two materials will affect their conductivity, and the preparation method requires many steps and increases the cost of the process.
  • this application provides a ternary mixed cathode material and its preparation method
  • the ternary material and the lithium manganese iron phosphate material are evenly mixed together through high-energy ball milling. Due to the high ball milling efficiency, the ball milling particle size is finer and the mixing is more uniform, thereby improving the ternary material and the lithium manganese iron phosphate material.
  • the tightness improves the conductivity of the material; at the same time, a polyphosphazene intermediate is used as the coating material to obtain a ternary blended cathode material with an ultra-thin coating layer to isolate the direct contact between the electrolyte and the cathode material during the cycle. contact, providing stability.
  • inventions of the present application provide a method for preparing a ternary blended cathode material.
  • the preparation method includes the following steps:
  • the coating material includes polyphosphazene intermediate.
  • the ternary material and the lithium manganese iron phosphate material are evenly mixed together through high-energy ball milling. Due to the high ball milling efficiency, the ball milling particle size is finer and the mixing is more uniform, thereby improving the quality of the ternary material and the lithium manganese iron phosphate material.
  • the compactness of the material improves the conductivity of the material; at the same time, a polyphosphazene intermediate is used as the coating material to obtain a ternary blended cathode material with an ultra-thin coating layer to isolate the electrolyte from the cathode material during the cycle. direct contact, providing stability.
  • the median particle diameter of the ternary material is 8-20 ⁇ m, for example, it can be 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 18 ⁇ m or 20 ⁇ m, but is not limited to the listed values, and other values within the range are not listed. The same applies to the values of .
  • the particle size distribution of the ternary material is 0.6-1.2, for example, it can be 0.6, 0.8, 1, 1.1 or 1.2, but is not limited to the listed values. Other unlisted values within the numerical range are the same. Same applies.
  • Particle size range Dspan (D90-D10)/D50.
  • the ternary materials include NCM523 (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ), NCM622 (LiNi 0.6 Co 0.2 Mn 0.2 O 2 ), NCM712 (LiNi 0.7 Co 0.1 Mn 0.2 O 2 ), NCM811 ( Any one or a combination of at least two of LiNi 0.8 Co 0.1 Mn 0.1 O 2 ) or NCM90505 (LiNi 0.9 Co 0.05 Mn 0.05 O 2 ).
  • Typical but non-limiting combinations include the combination of NCM523 and NCM622, NCM622 and NCM712
  • the median particle size of the lithium iron manganese phosphate material is 1-2 ⁇ m, for example, it may be 1 ⁇ m, 1.2 ⁇ m, 1.4 ⁇ m, 1.6 ⁇ m, 1.8 ⁇ m or 2 ⁇ m, but is not limited to the listed values. The same applies to other values within the numerical range that are not listed.
  • the particle size distribution of the lithium iron manganese phosphate material is 0.2-0.4, for example, it can be 0.2, 0.25, 0.3, 0.35 or 0.4, but is not limited to the listed values. Other values within the range are not listed. The same applies to numerical values.
  • the polyphosphazene intermediate includes phosphorus oxychloride trimer (P 3 N 3 Cl 6 , PNCL).
  • PNCL The melting point of PNCL is about 115°C and the boiling point is 127°C. Under the action of high-energy ball milling, PNCL can easily become a molten state. After stopping the ball milling and cooling, it is evenly coated on the surface of ternary and lithium iron manganese phosphate to form stable and uniform PNCL. Ultra-thin cladding. The high energy of high-energy ball milling enables PNCL to be perfectly and evenly coated on the surface of the main material (ternary material and lithium iron manganese phosphate). During the cycle, the PNCL coating layer isolates the direct contact between the electrolyte and the cathode material, reducing the occurrence of side reactions. , thereby improving the cycle stability of the material sex.
  • the PNCL coating layer can also enhance the structural stability of the ternary blended cathode material and enhance the diffusion of lithium ions at the electrode/electrolyte interface to prevent ternary doping.
  • the pulverization of mixed cathode material particles during the circulation process can also prevent HF generated by decomposition in the electrolyte from corroding the material and improve the material's cycle performance.
  • the mass ratio of the ternary material and lithium iron manganese phosphate is (1.5-4.5): (8.5-5.5), for example, it can be 1.5:8.5, 2:8, 3:7, 4:6 Or 4.5:5.5, but is not limited to the listed values, and other unlisted values within the value range are also applicable.
  • the mass of the coating material is 0.7-1.0wt% of the total mass of the ternary material and lithium iron manganese phosphate, for example, it can be 0.7wt%, 0.8wt%, 0.9wt%, 0.95wt% or 1.0wt%, but is not limited to the listed values, and other unlisted values within the value range are also applicable.
  • the high-energy ball milling time is 1-2h, for example, it can be 1h, 1.2h, 1.4h, 1.6h, 1.8h or 2h, but is not limited to the listed values, and other values within the range are not listed. The same applies to the values of .
  • the ball-to-material ratio of the high-energy ball mill is (8-12):1, for example, it can be 8:1, 9:1, 10:1, 11:1, or 12:1, but is not limited to the above.
  • the ball-to-material ratio of the high-energy ball mill is (8-12):1, for example, it can be 8:1, 9:1, 10:1, 11:1, or 12:1, but is not limited to the above.
  • other non-listed values within the value range are also applicable.
  • the revolution speed of the high-energy ball mill is 800-1200r/min, for example, it can be 800r/min, 900r/min, 1000r/min, 1100r/min or 1200r/min, but is not limited to the listed values. , other unlisted values within the value range are also applicable.
  • the rotation speed of the high-energy ball mill is 2200-2500 r/min, for example It is 2200r/min, 2250r/min, 2300r/min, 2400r/min or 2500r/min, but is not limited to the listed values. Other unlisted values within the numerical range are also applicable.
  • the preparation method of the ternary material includes:
  • the molar ratio of Ni:Co:Mn in the nickel-cobalt-manganese hydroxide precursor is 5:2:3-9.5:0.25:0.25, for example, it can be 5:2:3, 6:2 :2, 7:1:2, 8:1:1 or 9.5:0.25:0.25, but not limited to the listed values, other unlisted values within the value range are also applicable.
  • the lithium source includes any one or a combination of at least two of lithium hydroxide, lithium carbonate, lithium nitrate or lithium acetate.
  • Typical but non-limiting combinations include lithium hydroxide and lithium carbonate.
  • a combination of lithium carbonate and lithium nitrate, a combination of lithium nitrate and lithium acetate, a combination of lithium hydroxide, lithium carbonate and lithium nitrate, a combination of lithium carbonate, lithium nitrate and lithium acetate, or lithium hydroxide, lithium carbonate, nitric acid A combination of lithium and lithium acetate.
  • the additives include strontium carbonate, aluminum oxide, zirconium hydroxide, lanthanum trioxide, zirconium dioxide, lithium nitrate, magnesium dioxide, niobium oxide, yttrium trioxide, aluminum phosphate, tungsten trioxide , any one or a combination of at least two of lithium phosphate or lithium silicate, typical but non-limiting combinations include a combination of strontium carbonate and alumina, a combination of alumina and zirconium hydroxide, zirconium hydroxide and trioxide Combination of lanthanum dioxide, combination of lanthanum trioxide and zirconium dioxide, combination of lithium nitrate, magnesium dioxide and niobium oxide, combination of niobium oxide, yttrium trioxide and aluminum phosphate, aluminum phosphate, tungsten trioxide and lithium phosphate.
  • strontium carbonate aluminum oxide, zirconium hydroxide, lanthanum trioxide, zirconium
  • the added amount of the additive is 1000-1500ppm, for example, it can be 1000ppm, 1100ppm, 1200ppm, 1300ppm, 1400ppm or 1500ppm, but is not limited to the listed values. Other unlisted values within the value range are also applicable. .
  • the temperature of the high-temperature sintering is 750-950°C, for example, it can be 750°C, 780°C, 800°C, 820°C or 850°C, but is not limited to the listed values, and other values within the range are not listed. The same applies to the values of .
  • the high-temperature sintering time is 8-18 hours, for example, it can be 8 hours, 10 hours, 14 hours, 15 hours or 18 hours, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the preparation method of the lithium iron manganese phosphate material includes:
  • the lithium iron manganese phosphate precursor, lithium source and carbon source are mixed by sand grinding in a liquid phase system, spray dried and then sintered to obtain the lithium iron manganese phosphate material.
  • the liquid phase system is deionized water and/or ultrapure water.
  • the carbon source is any one or a combination of at least two of glucose, starch, sucrose, citric acid, lactic acid, succinic acid, ethanol, methanol or oil.
  • Typical but non-limiting combinations include The combination of glucose and starch, the combination of starch and sucrose, the combination of sucrose and citric acid, the combination of citric acid and lactic acid, the combination of lactic acid and succinic acid, the combination of succinic acid and ethanol, the combination of ethanol, methanol and oil, glucose, The combination of starch, sucrose and citric acid, the combination of sucrose, citric acid, lactic acid and succinic acid, the combination of citric acid, lactic acid, succinic acid and ethanol, the combination of succinic acid, ethanol, methanol and oil, glucose, starch, sucrose, A combination of citric acid and lactic acid, a combination of sucrose, citric acid, lactic acid, succinic acid and ethanol, or a combination of lactic acid, succinic acid
  • the sintering temperature is 500-800°C, for example, it can be 500°C, 550°C, 600°C, 700°C or 800°C, but is not limited to the listed values. Other values within the range are not listed. The same applies to numerical values.
  • the sintering time is 10-20h, for example, it can be 10h, 12h, 15h, 18h or 20h, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the sintering is performed under an inert atmosphere.
  • the preparation method includes the following steps:
  • the ternary material is (1.5-4.5): (8.5-5.5)
  • the resulting mixture is subjected to high-energy ball milling with a ball-to-material ratio of (8-12): 1 for 1-2 hours, a revolution speed of 800-1200r/min, and a rotation speed of 2200-2500r/min, to obtain the ternary blended cathode material ;
  • the ternary material is prepared by the following method:
  • the median particle size of the ternary material is 8-20 ⁇ m, and the particle size distribution of the ternary material is 0.6-1.2; the ternary material includes any one of NCM523, NCM622, NCM712, NCM811 or NCM90505 or A combination of at least two;
  • the lithium iron manganese phosphate material is prepared by the following method:
  • the lithium manganese iron phosphate precursor, lithium source and carbon source are mixed by sand grinding in a liquid phase system, spray dried and then sintered at 500-800°C for 10-20 hours to obtain the lithium manganese iron phosphate material;
  • the median particle size of the lithium iron manganese phosphate material is 1-2 ⁇ m, and the particle size distribution of the lithium iron manganese phosphate material is 0.2-0.4.
  • embodiments of the present application provide a ternary mixed cathode material, which is obtained by the preparation method described in the first aspect.
  • embodiments of the present application provide a battery, which contains the ternary mixed cathode material described in the second aspect.
  • the ternary material and the lithium iron manganese phosphate material are uniformly mixed together through high-energy ball milling. Due to the high ball milling efficiency, the ball milling particle size is finer and the mixing is more uniform, thereby improving the quality of the ternary material and the ferromanganese phosphate material.
  • the compactness of the lithium material improves the conductivity of the material; at the same time, a polyphosphazene intermediate is used as the coating material to obtain a ternary mixed cathode material with an ultra-thin coating layer to isolate the electrolyte from the cathode during the cycle. Direct contact of materials provides stability.
  • the preparation method provided in this application is simple and easy to realize industrialization.
  • the cathode material of PNCL ultra-thin coating ternary material mixed with lithium manganese iron phosphate can be obtained by only one high-energy ball milling method.
  • This embodiment provides a method for preparing a ternary blended cathode material.
  • the preparation method includes the following steps:
  • the resulting mixture is subjected to high-energy ball milling with a ball-to-material ratio of 10:1 for 1 hour.
  • the rotation speed is 1000r/min, the rotation speed is 2300r/min, and the ternary blended cathode material is obtained;
  • the NCM523 ternary material is prepared by the following method:
  • Ni:Co:Mn 5:2:3, lithium carbonate and strontium carbonate in an amount of 1200 ppm, and sinter it at a high temperature of 900°C for 12 hours to obtain the ternary material.
  • the value particle size is 12 ⁇ m and the particle size distribution is 0.8;
  • the lithium iron manganese phosphate material is prepared by the following method:
  • the lithium iron manganese phosphate precursor, lithium carbonate and citric acid are mixed in a liquid phase system by sand grinding, spray-dried at 220°C and then sintered at 750°C for 10 hours under nitrogen conditions.
  • the lithium iron manganese phosphate material is obtained by airflow crushing and screening.
  • the median value The particle size is 1.5 ⁇ m and the particle size distribution is 0.3.
  • This embodiment provides a method for preparing a ternary blended cathode material.
  • the preparation method includes the following steps:
  • the resulting mixture is subjected to high-energy ball milling with a ball-to-material ratio of 8:1 for 2 hours.
  • the revolution speed is 800r/min and the rotation speed is 800r/min. is 2200r/min, and the ternary mixed cathode material is obtained;
  • the ternary material is prepared by the following method:
  • the lithium iron manganese phosphate material is prepared by the following method:
  • the lithium iron manganese phosphate precursor, lithium hydroxide and starch are mixed in a liquid phase system by sand grinding, and spray dried at 200°C. Afterwards, the material is sintered at 500°C for 20 hours, pulverized by airflow mill, and sieved to obtain the lithium iron manganese phosphate material, with a median particle size of 1 ⁇ m and a particle size distribution of 0.4.
  • This embodiment provides a method for preparing a ternary blended cathode material.
  • the preparation method includes the following steps:
  • the resulting mixture is subjected to high-energy ball milling with a ball-to-material ratio of 12:1 for 1 hour.
  • the revolution speed is 1200r/min and the rotation speed is 1200r/min.
  • the ternary blended cathode material is obtained;
  • the ternary material is prepared by the following method:
  • the median particle size is 20 ⁇ m, and the particle size distribution is 0.6;
  • the lithium iron manganese phosphate material is prepared by the following method:
  • the lithium iron manganese phosphate precursor, lithium nitrate and lactic acid are mixed by sand grinding in a liquid phase system, spray dried and then sintered at 800°C for 10 hours to obtain the lithium iron manganese phosphate material with a median particle size of 2 ⁇ m and a particle size distribution of 0.2.
  • This embodiment provides a method for preparing a ternary mixed cathode material.
  • the difference from Example 1 is that the NCM523 ternary material is replaced by NCM811.
  • the NCM811 ternary material is prepared by the following method:
  • the nickel cobalt manganese hydroxide precursor of Ni:Co:Mn 8:1:1, lithium carbonate and strontium carbonate, and sinter it at a high temperature of 900°C for 12 hours to obtain the ternary material with a median particle size of 12 ⁇ m. , the particle size distribution is 0.8.
  • This embodiment provides a method for preparing a ternary mixed cathode material.
  • the difference from Example 1 is that the NCM90505 ternary material is replaced with NCM811.
  • the NCM90505 ternary material is prepared by the following method:
  • the nickel cobalt manganese hydroxide precursor of Ni:Co:Mn 9:0.5:0.5, lithium carbonate and strontium carbonate, and sinter it at a high temperature of 900°C for 12 hours to obtain the ternary material with a median particle size of 12 ⁇ m. , the particle size distribution is 0.8.
  • This embodiment provides a method for preparing a ternary blended cathode material.
  • the difference from Example 1 is that the added amount of phosphorus oxychloride trimer is 0.5 wt%.
  • This embodiment provides a method for preparing a ternary blended cathode material.
  • the difference from Example 1 is that the added amount of phosphorus oxychloride trimer is 1.2 wt%.
  • This embodiment provides a method for preparing a ternary mixed cathode material.
  • the difference from Example 1 is that the mass ratio of the NCM523 ternary material and the lithium iron manganese phosphate material is 5:5.
  • This embodiment provides a method for preparing a ternary mixed cathode material.
  • the difference from Example 1 is that the mass ratio of the NCM523 ternary material and the lithium iron manganese phosphate material is 1:9.
  • This comparative example provides a method for preparing a ternary mixed cathode material.
  • the difference from Example 1 is that High energy ball milling is replaced by mechanical fusion.
  • This comparative example provides a method for preparing a ternary blended cathode material.
  • the difference from Example 1 is that high-energy ball milling is replaced by a disperser for mixing and dispersing.
  • the above obtained ternary blended cathode material, binder, conductive agent and dispersant were mixed and stirred evenly at a mass ratio of 97.5:0.3:2:0.2 to obtain a cathode slurry.
  • the cathode slurry was coated on a 12 ⁇ m layer through a coating process.
  • the positive electrode sheet is obtained after drying and cold pressing process;
  • Test conditions 25°C, 2.5-4.2V, 1C/1C cycle.
  • the ternary material and the lithium manganese iron phosphate material are uniformly mixed together through high-energy ball milling. Due to the high ball milling efficiency, the ball milling particle size is finer and the mixing is more uniform, thereby improving the The compactness of the ternary material and the lithium iron manganese phosphate material is improved, and the conductivity of the material is improved; at the same time, a polyphosphazene intermediate is used as the coating material to obtain a ternary mixed cathode material with an ultra-thin coating layer for isolation Direct contact of the electrolyte with the cathode material during cycling provides stability.
  • the ternary material and the lithium iron manganese phosphate material are uniformly mixed together through high-energy ball milling. Due to the high ball milling efficiency, the ball milling particle size is finer and the mixing is more uniform, thereby improving the efficiency of the ternary material and phosphoric acid.
  • the compactness of the lithium iron manganese material improves the conductivity of the material; at the same time, a polyphosphazene intermediate is used as the coating material to obtain a ternary mixed cathode material with an ultra-thin coating layer to isolate the electrolyte during the cycle Direct contact with the cathode material provides stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请涉及一种三元掺混正极材料及其制备方法与电池,所述制备方法包括如下步骤:混合三元材料、磷酸锰铁锂材料和包覆材料,对所得混合物进行高能球磨,得到所述三元掺混正极材料;所述包覆材料包括聚磷腈中间体。通过高能球磨将三元材料和磷酸锰铁锂材料均匀混合在一起,由于高的球磨效率,使得球磨粒度更细,混合更均匀,从而提高了三元材料和磷酸锰铁锂材料的紧密度,提高了材料的导电性;同时,采用聚磷腈中间体作为包覆材料,得到带有超薄包覆层的三元掺混正极材料隔绝在循环过程中电解液与正极材料的直接接触,提供了稳定性。

Description

一种三元掺混正极材料及其制备方法与电池
本申请要求在2022年12月21日提交中国专利局、申请号为202211652221.8的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于三元正极材料制备技术领域,涉及一种三元掺混正极材料的制备方法,例如涉及一种三元掺混正极材料及其制备方法与电池。
背景技术
先进的储能材料是未来发展的趋势。锂离子电池具有出色的能量密度和循环持久性,并且重量轻,这些品质可以满足我们不断增长的能源需求。而对锂电池的研究也是当前物理,化学,材料等学科研究的热点课题。目前市场常用的锂电池正极材料有钴酸锂、三元、磷酸铁锂、磷酸锰铁锂等。
磷酸锰铁锂是在磷酸铁锂的基础上掺杂一定比例的锰而形成的新型磷酸盐类锂离子电池正极材料。磷酸锰铁锂保持了磷酸铁锂所具有的橄榄石型的稳定结构,在充放电过程中结构更加稳定,即便充电过程中锂离子全部嵌出,也不会发生结构崩塌,故而安全性更好,也具有更低的成本。纯磷酸锰铁锂的应用,与三元材料相比优势在于成本更低、安全性能更高,主要限制在于低导电率及能量密度低。为了兼顾性能与安全,将三元与磷酸锰铁锂材料来进行复合,可以进一步综合材料的优势,通过复合来实现短板互补,实现能量密度的提高,具有更全面、综合的电池性能。
CN 107546379A公开了一种磷酸锰铁锂-三元材料复合正极材料及其制备方法,将磷酸锰铁锂的纳米颗粒通过机械融合的方法固定在三元材料颗粒表面, 形成紧密的多孔包覆层,解决了三元材料与磷酸锰锂正极材料混合使用过程中需要在混浆阶段获得三元材料与磷酸锰铁锂正极材料的混合浆料时两者由于密度不同容易偏析的问题;通过实现磷酸锰铁锂对三元材料表面的紧密包覆,获得稳定的核壳结构,使磷酸锰铁锂材料可以对三元材料的表面进行保护,防止三元材料吸收环境中的水分发生变质,在电池中降低三元材料与电解液的直接接触,提高三元材料的稳定性与循环性。
CN 111864198A提供了一种三元材料复合磷酸锰铁锂正极材料的制备方法,S1,将PVDF和NMP混合,用纳米分散机分散,分散速度为1100~1300rpm,时间5.5~6.5h,温度30~40℃,得物料A;S2,加入SP,用纳米分散机分散,分散速度为1900~2100rpm,时间1~2h,温度20~30℃,得物料B;S3,将物料A和物料B混合,加入CNT,用纳米分散机分散,分散速度为1900~2100rpm,时间1.5~2.5h,温度20~30℃,得物料C;S4,将镍钴锰酸锂、磷酸锰铁锂混匀平均分成3份,分3次加入物料C中,每次加入后用纳米分散机分散,分散速度为1400~1600rpm,时间5~15min,温度20~30℃,得物料D;S5,将物料D用纳米分散机分散,分散速度为1700~1900rpm,时间2~3h,温度20~30℃,真空度大于0.085MPa,得物料E,该材料安全性高。
以上技术方案中将磷酸锰铁锂和三元材料进行复合,但是两种材料之间的结合不紧密会影响其导电性,并且制备方法步骤繁多增加工艺制备成本。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
为解决上述技术问题,本申请提供了一种三元掺混正极材料及其制备方法 与电池,通过高能球磨将三元材料和磷酸锰铁锂材料均匀混合在一起,由于高的球磨效率,使得球磨粒度更细,混合更均匀,从而提高了三元材料和磷酸锰铁锂材料的紧密度,提高了材料的导电性;同时,采用聚磷腈中间体作为包覆材料,得到带有超薄包覆层的三元掺混正极材料隔绝在循环过程中电解液与正极材料的直接接触,提供了稳定性。
为达此目的,本申请采用以下技术方案:
第一方面,本申请实施例提供了一种三元掺混正极材料的制备方法,所述制备方法包括如下步骤:
混合三元材料、磷酸锰铁锂材料和包覆材料,对所得混合物进行高能球磨,得到所述三元掺混正极材料;
所述包覆材料包括聚磷腈中间体。
本申请实施例中通过高能球磨将三元材料和磷酸锰铁锂材料均匀混合在一起,由于高的球磨效率,使得球磨粒度更细,混合更均匀,从而提高了三元材料和磷酸锰铁锂材料的紧密度,提高了材料的导电性;同时,采用聚磷腈中间体作为包覆材料,得到带有超薄包覆层的三元掺混正极材料隔绝在循环过程中电解液与正极材料的直接接触,提供了稳定性。
在一个实施例中,所述三元材料的中值粒径为8-20μm,例如可以是8μm、10μm、12μm、15μm、18μm或20μm,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述三元材料的粒径分布为0.6-1.2,例如可以是0.6、0.8、1、1.1或1.2,但不限于所列举的数值,数值范围内其它未列举的数值同 样适用。
粒径范围Dspan=(D90-D10)/D50。
在一个实施例中,所述三元材料包括NCM523(LiNi0.5Co0.2Mn0.3O2)、NCM622(LiNi0.6Co0.2Mn0.2O2)、NCM712(LiNi0.7Co0.1Mn0.2O2)、NCM811(LiNi0.8Co0.1Mn0.1O2)或NCM90505(LiNi0.9Co0.05Mn0.05O2)中的任意一种或至少两种的组合,典型但非限制性的组合包括NCM523和NCM622的组合,NCM622和NCM712的组合,NCM712和NCM811的组合,NCM811和NCM90505的组合,NCM523、NCM622和NCM712的组合,NCM622、NCM712和NCM811的组合,NCM712、NCM811和NCM90505的组合,NCM523、NCM622、NCM712和NCM811的组合,NCM622、NCM712、NCM811和NCM90505的组合,或NCM523、NCM622、NCM712、NCM811和NCM90505的组合。
在一个实施例中,所述磷酸锰铁锂材料的中值粒径为1-2μm,例如可以是1μm、1.2μm、1.4μm、1.6μm、1.8μm或2μm,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述磷酸锰铁锂材料的粒径分布为0.2-0.4,例如可以是0.2、0.25、0.3、0.35或0.4,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述聚磷腈中间体包括磷酰氯三聚体(P3N3Cl6,PNCL)。
PNCL的熔点大约为115℃,沸点为127℃,在高能球磨的作用下,PNCL很容易成为熔融状态,在停止球磨冷却后均匀包覆在三元和磷酸锰铁锂表面,形成稳定均匀的PNCL超薄包覆层。高能球磨的高能量,使得PNCL完美均匀包覆在主体材料(三元材料和磷酸锰铁锂)表面,循环过程中PNCL包覆层隔绝电解液与正极材料的直接接触,减少了副反应的发生,从而提高了材料的循环稳定 性。
PNCL包覆层除了隔绝循环过程中正极与电解液界面上的副反应外,还可以增强三元掺混正极材料的结构稳定性,并且增强锂离子在电极/电解质界面的扩散,防止三元掺混正极材料颗粒在循环过程中的粉化,同时又可以阻止电解液中分解产生的HF侵蚀材料,提升材料的循环性能。
在一个实施例中,所述三元材料和磷酸锰铁锂的质量比为(1.5-4.5):(8.5-5.5),例如可以是1.5:8.5、2:8、3:7、4:6或4.5:5.5,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述包覆材料的质量为三元材料和磷酸锰铁锂总质量的0.7-1.0wt%,例如可以是0.7wt%、0.8wt%、0.9wt%、0.95wt%或1.0wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述高能球磨的时间为1-2h,例如可以是1h、1.2h、1.4h、1.6h、1.8h或2h,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述高能球磨的球料比为(8-12):1,例如可以是8:1、9:1、10:1、11:1、12:1,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述高能球磨的公转转速为800-1200r/min,例如可以是800r/min、900r/min、1000r/min、1100r/min或1200r/min,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述高能球磨的自转转速为2200-2500r/min,例如可以 是2200r/min、2250r/min、2300r/min、2400r/min或2500r/min,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述三元材料的制备方法包括:
混合镍钴锰氢氧化物前驱体、锂源和添加剂,高温烧结,得到所述三元材料;
在一个实施例中,所述镍钴锰氢氧化物前驱体中Ni:Co:Mn的摩尔比为5:2:3-9.5:0.25:0.25,例如可以是5:2:3、6:2:2、7:1:2、8:1:1或9.5:0.25:0.25,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述锂源包括氢氧化锂、碳酸锂、硝酸锂或醋酸锂中的任意一种或至少两种的组合,典型但非限制性的组合包括氢氧化锂和碳酸锂的组合,碳酸锂和硝酸锂的组合,硝酸锂和醋酸锂的组合,氢氧化锂、碳酸锂和硝酸锂的组合,碳酸锂、硝酸锂和醋酸锂的组合,或氢氧化锂、碳酸锂、硝酸锂和醋酸锂的组合。
在一个实施例中,所述添加剂包括碳酸锶、氧化铝、氢氧化锆、三氧化二镧、二氧化锆、硝酸锂、二氧化镁、氧化铌、三氧化二钇、磷酸铝、三氧化钨、磷酸锂或硅酸锂中的任意一种或至少两种的组合,典型但非限制性的组合包括碳酸锶和氧化铝的组合,氧化铝和氢氧化锆的组合,氢氧化锆和三氧化二镧的组合,三氧化二镧和二氧化锆的组合,硝酸锂、二氧化镁和氧化铌的组合,氧化铌、三氧化二钇和磷酸铝的组合,磷酸铝、三氧化钨和磷酸锂的组合,三氧化钨、磷酸锂和硅酸锂的组合,碳酸锶、氧化铝、氢氧化锆和三氧化二镧的组合,三氧化二镧、二氧化锆、硝酸锂、二氧化镁和氧化铌的组合,硝酸锂、二氧化镁、氧化铌、三氧化二钇和磷酸铝的组合,或氧化铌、三氧化二钇、磷酸 铝、三氧化钨、磷酸锂和硅酸锂的组合。
在一个实施例中,所述添加剂的添加量为1000-1500ppm,例如可以是1000ppm、1100ppm、1200ppm、1300ppm、1400ppm或1500ppm,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述高温烧结的温度为750-950℃,例如可以是750℃、780℃、800℃、820℃或850℃,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述高温烧结的时间为8-18h,例如可以是8h、10h、14h、15h或18h,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述磷酸锰铁锂材料的制备方法包括:
液相体系中砂磨混合磷酸锰铁锂前驱体、锂源和碳源,喷雾干燥后进行烧结,得到所述磷酸锰铁锂材料。
在一个实施例中,所述液相体系为去离子水和/或超纯水。
在一个实施例中,所述碳源为葡萄糖、淀粉、蔗糖、柠檬酸、乳酸、琥珀酸、乙醇、甲醇或油脂中的任意一种或至少两种的组合,典型但非限制性的组合包括葡萄糖和淀粉的组合,淀粉和蔗糖的组合,蔗糖和柠檬酸的组合,柠檬酸和乳酸的组合,乳酸和琥珀酸的组合,琥珀酸和乙醇的组合,乙醇、甲醇和油脂的组合,葡萄糖、淀粉、蔗糖和柠檬酸的组合,蔗糖、柠檬酸、乳酸和琥珀酸的组合,柠檬酸、乳酸、琥珀酸和乙醇的组合,琥珀酸、乙醇、甲醇和油脂的组合,葡萄糖、淀粉、蔗糖、柠檬酸和乳酸的组合,蔗糖、柠檬酸、乳酸、琥珀酸和乙醇的组合,或乳酸、琥珀酸、乙醇、甲醇和油脂的组合。
在一个实施例中,所述烧结的温度为500-800℃,例如可以是500℃、550℃、600℃、700℃或800℃,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述烧结的时间为10-20h,例如可以是10h、12h、15h、18h或20h,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述烧结在惰性气氛下进行。
作为本申请实施例第一方面所述制备方法的一种优选技术方案,所述制备方法包括如下步骤:
混合三元材料、磷酸锰铁锂材料和添加量为0.7-1.0wt%的磷酰氯三聚体,其中三元材料和磷酸锰铁锂的质量比为(1.5-4.5):(8.5-5.5),对所得混合物进行球料比为(8-12):1的高能球磨1-2h,公转转速为800-1200r/min,自转转速为2200-2500r/min,得到所述三元掺混正极材料;
所述三元材料由如下方法制备得到:
混合镍钴锰氢氧化物前驱体、锂源和添加量为1000-1500ppm的添加剂,750-950℃高温烧结8-18h,得到所述三元材料;
所述三元材料的中值粒径为8-20μm,所述三元材料的粒径分布为0.6-1.2;所述三元材料包括NCM523、NCM622、NCM712、NCM811或NCM90505中的任意一种或至少两种的组合;
所述磷酸锰铁锂材料由如下方法制备得到:
液相体系中砂磨混合磷酸锰铁锂前驱体、锂源和碳源,喷雾干燥后进行500-800℃烧结10-20h,得到所述磷酸锰铁锂材料;
所述磷酸锰铁锂材料的中值粒径为1-2μm,所述磷酸锰铁锂材料的粒径分布为0.2-0.4。
第二方面,本申请实施例提供了一种三元掺混正极材料,所述三元掺混正极材料由如第一方面所述制备方法得到。
第三方面,本申请实施例提供了一种电池,所述电池含有第二方面所述的三元掺混正极材料。
与相关技术相比,本申请至少具有以下有益效果:
(1)本申请中通过高能球磨将三元材料和磷酸锰铁锂材料均匀混合在一起,由于高的球磨效率,使得球磨粒度更细,混合更均匀,从而提高了三元材料和磷酸锰铁锂材料的紧密度,提高了材料的导电性;同时,采用聚磷腈中间体作为包覆材料,得到带有超薄包覆层的三元掺混正极材料隔绝在循环过程中电解液与正极材料的直接接触,提供了稳定性。
(2)本申请提供的制备方法简单易实现工业化,仅通过一次高能球磨法就能得到PNCL超薄包覆的三元材料掺混磷酸锰铁锂的正极材料。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
实施例1
本实施例提供了三元掺混正极材料的制备方法,所述制备方法包括如下步骤:
混合质量比为3:7的NCM523三元材料和磷酸锰铁锂材料,以及添加量为0.85wt%的磷酰氯三聚体,对所得混合物进行球料比为10:1的高能球磨1h,公 转转速为1000r/min,自转转速为2300r/min,得到所述三元掺混正极材料;
所述NCM523三元材料由如下方法制备得到:
混合Ni:Co:Mn=5:2:3的镍钴锰氢氧化物前驱体、碳酸锂和添加量为1200ppm的碳酸锶,900℃的温度下高温烧结12h,得到所述三元材料,中值粒径为12μm,粒径分布为0.8;
所述磷酸锰铁锂材料由如下方法制备得到:
液相体系中砂磨混合磷酸锰铁锂前驱体、碳酸锂和柠檬酸,220℃喷雾干燥后在氮气条件下进行750℃烧结10h,气流粉碎筛分得到所述磷酸锰铁锂材料,中值粒径为1.5μm,粒径分布为0.3。
实施例2
本实施例提供了三元掺混正极材料的制备方法,所述制备方法包括如下步骤:
混合NCM523三元材料、磷酸锰铁锂材料和添加量为0.7wt%的磷酰氯三聚体,对所得混合物进行球料比为8:1的高能球磨2h,公转转速为800r/min,自转转速为2200r/min,得到所述三元掺混正极材料;
所述三元材料由如下方法制备得到:
混合Ni:Co:Mn=5:2:3的镍钴锰氢氧化物前驱体、氢氧化锂和添加量为1000ppm的三氧化二镧,750℃高温烧结10h,机械粉碎、筛分得到所述三元材料,中值粒径为8μm,粒径分布为1.2;
所述磷酸锰铁锂材料由如下方法制备得到:
液相体系中砂磨混合磷酸锰铁锂前驱体、氢氧化锂和淀粉,200℃喷雾干燥 后进行500℃烧结20h,气流磨粉碎、筛分得到所述磷酸锰铁锂材料,中值粒径为1μm,粒径分布为0.4。
实施例3
本实施例提供了三元掺混正极材料的制备方法,所述制备方法包括如下步骤:
混合NCM523三元材料、磷酸锰铁锂材料和添加量为1.0wt%的磷酰氯三聚体,对所得混合物进行球料比为12:1的高能球磨1h,公转转速为1200r/min,自转转速为2500r/min,得到所述三元掺混正极材料;
所述三元材料由如下方法制备得到:
混合Ni:Co:Mn=5:2:3的镍钴锰氢氧化物前驱体、硝酸锂和添加量为1500ppm的磷酸铝,950℃高温烧结8h,机械粉碎、筛分得到所述三元材料,中值粒径为20μm,粒径分布为0.6;
所述磷酸锰铁锂材料由如下方法制备得到:
液相体系中砂磨混合磷酸锰铁锂前驱体、硝酸锂和乳酸,喷雾干燥后进行800℃烧结10h,得到所述磷酸锰铁锂材料,中值粒径为2μm,粒径分布为0.2。
实施例4
本实施例提供了三元掺混正极材料的制备方法,与实施例1的区别在于NCM523三元材料替换为NCM811。
所述NCM811三元材料由如下方法制备得到:
混合Ni:Co:Mn=8:1:1的镍钴锰氢氧化物前驱体、碳酸锂和碳酸锶,900℃的温度下高温烧结12h,得到所述三元材料,中值粒径为12μm,粒径分布为0.8。
实施例5
本实施例提供了三元掺混正极材料的制备方法,与实施例1的区别在于NCM90505三元材料替换为NCM811。
所述NCM90505三元材料由如下方法制备得到:
混合Ni:Co:Mn=9:0.5:0.5的镍钴锰氢氧化物前驱体、碳酸锂和碳酸锶,900℃的温度下高温烧结12h,得到所述三元材料,中值粒径为12μm,粒径分布为0.8。
实施例6
本实施例提供了三元掺混正极材料的制备方法,与实施例1的区别在于磷酰氯三聚体的添加量为0.5wt%。
实施例7
本实施例提供了三元掺混正极材料的制备方法,与实施例1的区别在于磷酰氯三聚体的添加量为1.2wt%。
实施例8
本实施例提供了三元掺混正极材料的制备方法,与实施例1的区别在于NCM523三元材料和磷酸锰铁锂材料的质量比为5:5。
实施例9
本实施例提供了三元掺混正极材料的制备方法,与实施例1的区别在于NCM523三元材料和磷酸锰铁锂材料的质量比为1:9。
对比例1
本对比例提供了一种三元掺混正极材料的制备方法,与实施例1的区别在 于高能球磨替换为机械融合。
对比例2
本对比例提供了一种三元掺混正极材料的制备方法,与实施例1的区别在于高能球磨替换为分散机混合分散。
将上述所得三元掺混正极材料和粘结剂、导电剂和分散剂以质量比为97.5:0.3:2:0.2混合搅拌均匀得到正极浆料,将正极浆料经过涂布工序涂敷在12μm铝箔上,干燥、冷压工序后得到正极片;按照石墨:SP:CMC:SBR=97:0.7:1.25:1.05制作负极浆料,涂布在8μm的铜箔上;隔膜采用PP隔膜,电解液为:EC:DEC:EMC=4:3:3,添加剂质量占比为总质量的10%,其中VC:PS:FEC:CHB=3:2:1:1,电解液中六氟磷酸锂的浓度为1mol/L;将相应的正、负极极片、隔膜以卷绕或者叠片得到裸电芯,将裸电芯置于外包装铝塑膜组装成2Ah软包电芯,注入电解液,经过老化、化成、整形、封装等工序得到软包锂离子电池,进行电化学测试。
测试条件:25℃下,2.5-4.2V,1C/1C循环。
测试结果如表1所示。
表1

从表1中可以得出如下结论:
(1)由实施例1-5可知,本申请中通过高能球磨将三元材料和磷酸锰铁锂材料均匀混合在一起,由于高的球磨效率,使得球磨粒度更细,混合更均匀,从而提高了三元材料和磷酸锰铁锂材料的紧密度,提高了材料的导电性;同时,采用聚磷腈中间体作为包覆材料,得到带有超薄包覆层的三元掺混正极材料隔绝在循环过程中电解液与正极材料的直接接触,提供了稳定性。
(2)由实施例6-7与实施例1的比较可知,当包覆材料的添加量不在本申请的优选范围内时,制备得到的三元掺混正极材料电化学性能会变差;
(3)由实施例8、9与实施例1的比较可知,三元材料与磷酸锰铁锂材料掺混的比例在本申请提供的优选范围内时,可以得到结构紧密均匀的三元掺混正极材料,当掺混中三元材料的比例过大,优于三元材料本身结构稳定性就差,导致掺混材料循环性能变差;当掺混中三元比例过小,会有大量的磷酸锰铁锂 不能很好的和三元材料接触,而磷酸锰铁锂自身导电性差,因此掺混材料电性能会变差。
(4)由对比例1、2与实施例1的比较可知,本申请提供的高能球磨相比较于相关技术中的传统混合,提高了三元材料和磷酸锰铁锂材料的紧密度,提高了材料的导电性,同时,有利于实现磷酰氯三聚体的均匀包覆。
综上所述,本申请中通过高能球磨将三元材料和磷酸锰铁锂材料均匀混合在一起,由于高的球磨效率,使得球磨粒度更细,混合更均匀,从而提高了三元材料和磷酸锰铁锂材料的紧密度,提高了材料的导电性;同时,采用聚磷腈中间体作为包覆材料,得到带有超薄包覆层的三元掺混正极材料隔绝在循环过程中电解液与正极材料的直接接触,提供了稳定性。

Claims (9)

  1. 一种三元掺混正极材料的制备方法,所述制备方法包括如下步骤:
    混合三元材料、磷酸锰铁锂材料和包覆材料,对所得混合物进行高能球磨,得到所述三元掺混正极材料;
    所述包覆材料包括聚磷腈中间体。
  2. 根据权利要求1所述的制备方法,其中,所述三元材料的中值粒径为8-20μm;
    可选地,所述三元材料的粒径分布为0.6-1.2;
    可选地,所述三元材料包括NCM523、NCM622、NCM712、NCM811或NCM90505中的任意一种或至少两种的组合;
    可选地,所述磷酸锰铁锂材料的中值粒径为1-2μm;
    可选地,所述磷酸锰铁锂材料的粒径分布为0.2-0.4;
    可选地,所述聚磷腈中间体包括磷酰氯三聚体。
  3. 根据权利要求1或2所述的制备方法,其中,所述三元材料和磷酸锰铁锂的质量比为(1.5-4.5):(8.5-5.5);
    可选地,所述包覆材料的质量为三元材料和磷酸锰铁锂总质量的0.7-1.0wt%。
  4. 根据权利要求1-3任一项所述的制备方法,其中,所述高能球磨的时间为1-2h;
    可选地,所述高能球磨的球料比为(8-12):1;
    可选地,所述高能球磨的公转转速为800-1200r/min;
    可选地,所述高能球磨的自转转速为2200-2500r/min。
  5. 根据权利要求1-4任一项所述的制备方法,其中,所述三元材料的制备方法包括:
    混合镍钴锰氢氧化物前驱体、锂源和添加剂,高温烧结,得到所述三元材料;
    可选地,所述镍钴锰氢氧化物前驱体中Ni:Co:Mn的摩尔比为5:2:3-9.5:0.25:0.25;
    可选地,所述锂源包括氢氧化锂、碳酸锂、硝酸锂或醋酸锂中的任意一种或至少两种的组合;
    可选地,所述添加剂包括碳酸锶、氧化铝、氢氧化锆、三氧化二镧、二氧化锆、硝酸锂、二氧化镁、氧化铌、三氧化二钇、磷酸铝、三氧化钨、磷酸锂或硅酸锂中的任意一种或至少两种的组合;
    可选地,所述添加剂的添加量为1000-1500ppm;
    可选地,所述高温烧结的温度为750-950℃;
    可选地,所述高温烧结的时间为8-18h。
  6. 根据权利要求1-5任一项所述的制备方法,其中,所述磷酸锰铁锂材料的制备方法包括:
    液相体系中砂磨混合磷酸锰铁锂前驱体、锂源和碳源,喷雾干燥后进行烧结,得到所述磷酸锰铁锂材料。
  7. 根据权利要求6所述的制备方法,其中,所述碳源为葡萄糖、淀粉、蔗糖、柠檬酸、乳酸、琥珀酸、乙醇、甲醇或油脂中的任意一种或至少两种的组 合;
    可选地,所述烧结的温度为500-800℃;
    可选地,所述烧结的时间为10-20h;
    可选地,所述烧结在惰性气氛下进行。
  8. 根据权利要求1-7任一项所述的制备方法,其中,所述制备方法包括如下步骤:
    混合三元材料、磷酸锰铁锂材料和添加量为0.7-1.0wt%的磷酰氯三聚体,其中三元材料和磷酸锰铁锂的质量比为(1.5-4.5):(8.5-5.5),对所得混合物进行球料比为(8-12):1的高能球磨1-2h,公转转速为800-1200r/min,自转转速为2200-2500r/min,得到所述三元掺混正极材料;
    所述三元材料由如下方法制备得到:
    混合镍钴锰氢氧化物前驱体、锂源和添加量为1000-1500ppm的添加剂,750-950℃高温烧结8-18h,得到所述三元材料;
    所述三元材料的中值粒径为8-20μm,所述三元材料的粒径分布为0.6-1.2;所述三元材料包括NCM523、NCM622、NCM712、NCM811或NCM90505中的任意一种或至少两种的组合;
    所述磷酸锰铁锂材料由如下方法制备得到:
    液相体系中砂磨混合磷酸锰铁锂前驱体、锂源和碳源,喷雾干燥后进行500-800℃烧结10-20h,得到所述磷酸锰铁锂材料;
    所述磷酸锰铁锂材料的中值粒径为1-2μm,所述磷酸锰铁锂材料的粒径分布为0.2-0.4。
  9. 一种三元掺混正极材料,所述三元掺混正极材料由如权利要求1-8任一项所述制备方法得到。
PCT/CN2023/082832 2022-12-21 2023-03-21 一种三元掺混正极材料及其制备方法与电池 WO2023174435A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211652221.8 2022-12-21
CN202211652221.8A CN115939396A (zh) 2022-12-21 2022-12-21 一种三元掺混正极材及其制备方法与电池

Publications (1)

Publication Number Publication Date
WO2023174435A1 true WO2023174435A1 (zh) 2023-09-21

Family

ID=86552127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082832 WO2023174435A1 (zh) 2022-12-21 2023-03-21 一种三元掺混正极材料及其制备方法与电池

Country Status (2)

Country Link
CN (1) CN115939396A (zh)
WO (1) WO2023174435A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352709A (zh) * 2023-12-05 2024-01-05 天津容百斯科兰德科技有限公司 一种正极材料及其制备方法、正极极片和电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199233A (zh) * 2012-01-06 2013-07-10 三星Sdi株式会社 锂电池正极物质、由其制备的正极和含该正极的锂电池
CN107546379A (zh) * 2017-08-18 2018-01-05 宁波知能新材料有限公司 磷酸锰铁锂‑三元材料复合正极材料及其制备方法
CN110380051A (zh) * 2019-07-05 2019-10-25 合肥国轩高科动力能源有限公司 一种锂离子电池正极浆料及制备方法和锂离子电池正极片
DE102018218616A1 (de) * 2018-10-31 2020-04-30 Robert Bosch Gmbh Verfahren zur Herstellung von Elektrodenmaterialien

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199233A (zh) * 2012-01-06 2013-07-10 三星Sdi株式会社 锂电池正极物质、由其制备的正极和含该正极的锂电池
CN107546379A (zh) * 2017-08-18 2018-01-05 宁波知能新材料有限公司 磷酸锰铁锂‑三元材料复合正极材料及其制备方法
DE102018218616A1 (de) * 2018-10-31 2020-04-30 Robert Bosch Gmbh Verfahren zur Herstellung von Elektrodenmaterialien
CN110380051A (zh) * 2019-07-05 2019-10-25 合肥国轩高科动力能源有限公司 一种锂离子电池正极浆料及制备方法和锂离子电池正极片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352709A (zh) * 2023-12-05 2024-01-05 天津容百斯科兰德科技有限公司 一种正极材料及其制备方法、正极极片和电池
CN117352709B (zh) * 2023-12-05 2024-04-16 天津容百斯科兰德科技有限公司 一种正极材料及其制备方法、正极极片和电池

Also Published As

Publication number Publication date
CN115939396A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN111628157B (zh) 正极材料、其制备方法及锂离子电池
EP4057390A1 (en) Carbon-coated lithium-rich oxide composite material and preparation method therefor
CN107256968A (zh) 一种高压实密度磷酸铁锂及其制备方法
EP4024519A1 (en) Positive electrode material, preparation method therefor and lithium ion battery
CN107910498B (zh) 改性钛酸锂负极材料、制备方法及钛酸锂电池
CN110690436A (zh) 一种负极材料、其制备方法及制得的负极极片和锂离子电池
CN102237517B (zh) 一种锂离子电池、正极复合材料及其制备方法
CN113903918B (zh) 一种正极材料及其制备方法和锂离子电池
CN110556538B (zh) 正极片及锂离子电池
CN110391407A (zh) 一种核壳结构的动力电池正极材料及其制备方法和用途
CN112151889A (zh) 一种锂离子电池的正极极片及其制备方法和用途
CN113611838A (zh) 一种新型双掺杂混合无钴体系正极片,锂离子电池
CN109428051A (zh) 锂离子电池及其正极片
CN113611839A (zh) 一种新型混合体系富锂锰基正极片及其制备方法,锂离子电池
CN115911610A (zh) 一种正极补锂材料、制备方法及其应用
CN115020678A (zh) 正极活性材料、电化学装置和电子设备
WO2024040830A1 (zh) 正极活性材料及电化学装置
CN116014104A (zh) 富锂镍系正极材料及其制备方法、正极片与二次电池
WO2023174435A1 (zh) 一种三元掺混正极材料及其制备方法与电池
CN109192980B (zh) 一种正极浆料及其制备方法、一种极片及其制备方法和锂离子电池
CN110676455A (zh) 一种镍钴锰酸锂正极材料匀浆工艺
CN116682951A (zh) 正极活性材料、正极片及其制备方法和锂离子电池
WO2023185548A1 (zh) 一种改性磷酸锰铁锂正极材料及其制备方法和应用
CN114566717B (zh) 一种适合宽温区使用的磷酸铁锂电池的制备方法
CN114122406B (zh) 石墨烯改性磷酸铁锂的制备方法及磷酸铁锂电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769937

Country of ref document: EP

Kind code of ref document: A1