WO2023174195A1 - 量子点的无损光刻图案化方法和设备 - Google Patents

量子点的无损光刻图案化方法和设备 Download PDF

Info

Publication number
WO2023174195A1
WO2023174195A1 PCT/CN2023/081001 CN2023081001W WO2023174195A1 WO 2023174195 A1 WO2023174195 A1 WO 2023174195A1 CN 2023081001 W CN2023081001 W CN 2023081001W WO 2023174195 A1 WO2023174195 A1 WO 2023174195A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dots
film
cross
patterning method
destructive
Prior art date
Application number
PCT/CN2023/081001
Other languages
English (en)
French (fr)
Inventor
张昊
李景虹
卢少勇
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2023174195A1 publication Critical patent/WO2023174195A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor

Definitions

  • the present invention relates to the field of display, and more specifically, to a method and equipment for lossless photolithography patterning of quantum dots.
  • quantum dots Based on the quantum confinement effect, quantum dots have excellent luminescent properties such as broadband absorption, narrow-band emission, and continuously adjustable peak positions. At the same time, quantum dots are solution processable, which avoids the use of expensive vacuum equipment, making the large-scale mass production of quantum dots in fields such as display lighting, solar cells, and photoelectric detection practical. Patterning of quantum dots is to pixelate solution quantum dots, which is the only way to turn quantum dots into formed optoelectronic devices and even into commercial products.
  • the object of the present invention is to provide a non-destructive photolithography patterning method and equipment of quantum dots without damaging the luminescent properties of quantum dots, using the photodecomposition reaction of a photosensitive cross-linking agent to cross-link the surface ligands of the quantum dots, Avoid the introduction of complex photoresist and achieve quantum dot photopatterning.
  • a lossless photolithographic patterning method of quantum dots including:
  • a mixed solution of quantum dots and a photosensitive cross-linking agent containing bisaziridine groups is made into a thin film;
  • the film is washed with a preset solvent, and the unexposed areas of the film are removed by elution and developed to obtain a patterned quantum dot film.
  • a lossless photolithography patterning device for quantum dots which is used to implement the above-mentioned lossless photolithography patterning method of quantum dots, including:
  • a film preparation unit used to form a film from a mixed solution of quantum dots and a photosensitive cross-linking agent containing bisaziridine groups;
  • An ultraviolet lithography unit is used to place the film under ultraviolet light and contact the film with the help of a photomask A cross-linking reaction occurs in the exposed area irradiated by the ultraviolet light;
  • a developing unit is used to clean the film using a preset solvent to elute and remove the unexposed areas of the film for development to obtain a patterned quantum dot film.
  • the surface ligands of the quantum dots are cross-linked by the photodecomposition reaction of the photosensitive cross-linking agent containing bisaziridine groups, thereby avoiding the complex photo-sensitive
  • the introduction of resist realizes photopatterning of quantum dots.
  • the non-destructive photolithographic patterning method and equipment of quantum dots can be applied to the patterning of quantum dot films with different compositions, properties and structures, and can achieve different luminescence colors.
  • High-resolution patterning of quantum dots and maintaining their high fluorescence quantum yield can be applied to optoelectronic devices in the field of quantum dot-based display lighting.
  • the cross-linking agent used in the present invention has mild reaction conditions, is significantly better than the photosensitive molecules used in other direct patterning methods, and maintains the original optical properties of the quantum dots and the performance of the LED device.
  • Figure 1 is a flow chart of a non-destructive photolithography patterning method of quantum dots according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of the lossless photolithography patterning process of quantum dots according to an embodiment of the present invention
  • Figure 3 shows the photosensitive cross-linked molecule M570 (3,3'-((perfluorobut-1,4-yl)bis(4,1-phenylene)bis(3-trifluoromethyl)-3H-bis acridine UV-visible absorption spectrum of propidium);
  • Figure 4 is a fluorescence microscope photo of patterned quantum dots under 254nm ultraviolet light in air according to an embodiment of the present invention
  • Figure 5 is a fluorescence microscope photo of patterned quantum dots under nitrogen at 254nm ultraviolet light according to an embodiment of the present invention
  • Figure 6 is a fluorescence microscope photo of patterned quantum dots under 365nm ultraviolet light under nitrogen according to an embodiment of the present invention
  • Figure 7 is a schematic diagram of the material structure and energy levels of a quantum dot electroluminescent light-emitting diode device according to an embodiment of the present invention.
  • Figure 8 is a schematic diagram of the current density-voltage-luminance (J-V-L) curve of QLED according to an embodiment of the present invention.
  • FIG. 9 is a block schematic diagram of a non-destructive photolithography patterning device for quantum dots according to an embodiment of the present invention.
  • the present invention uses a photosensitive cross-linking agent to cross-link the surface ligands of the quantum dots to achieve photo-induced patterning of the quantum dots. Since the photo-crosslinking reaction only occurs on the surface of quantum dots, quantum dot films with different components, properties and structures can be patterned; compared with traditional photoresist methods, this invention does not require the addition of photoresist and can The original optical properties of quantum dots are basically maintained.
  • FIG. 1 shows a flow chart of the lossless photolithography patterning method of quantum dots according to the present invention.
  • FIG. 2 is a schematic diagram of the lossless photolithography patterning process of quantum dots according to an embodiment of the present invention.
  • the lossless photolithography patterning method of quantum dots includes the following steps:
  • S120 Place the film under ultraviolet light, and use a photomask to cause a cross-linking reaction in the exposed area of the film that is exposed to the ultraviolet light;
  • S130 Use a preset solvent to clean the film, remove the unexposed areas of the film by elution, and develop to obtain a patterned quantum dot film.
  • the photosensitive cross-linking molecule of the photosensitive cross-linking agent containing a diazirine group contains at least two diazirine groups, and the diazirine group
  • the general formula of the group is as follows:
  • a significant photoresponse means that the molar extinction coefficient of the bisaziridine molecule is greater than the mole required for the photolithography reaction. Extinction coefficient, the higher the molar extinction coefficient, the more light is absorbed and the higher the cross-linking efficiency. In a specific implementation of the present invention, under ultraviolet light of 200 to 500 nm, the molar extinction coefficient of the bisaziridine group in the photosensitive cross-linked molecule is greater than 1 cm -1 M -1 .
  • Diazirine decomposes under ultraviolet light, releasing nitrogen and generating the intermediate singlet carbene.
  • the carbene can undergo an insertion reaction with adjacent carbon and hydrogen to generate a carbon-carbon single bond.
  • bisethylene can be used as a bridging group to cross-link photosensitive molecules with any organic molecules containing carbon-hydrogen bonds. Utilizing the hydrocarbon insertion reaction of bisaziridine photogenerated carbene, research in the fields of protein molecular modification, polymer cross-linking, organic semiconductor patterning, and human skin-like human skin has fully demonstrated the potential of bisazidine as a photo-crosslinking group. feasibility.
  • quantum dots are composed of organic molecules rich in carbon-hydrogen bonds, which provide sufficient prerequisites for the photocrosslinking reaction of bisaziridine. Therefore, quantum dots can be realized through the photodecomposition reaction of bisethylene Cross-linking, changing its solubility, thereby achieving photopatterning.
  • the bisaziridine molecule has the general structural formula:
  • R can be any functional group, for example, it can contain hydrocarbon groups, ester groups, amide bonds, benzene rings, ether bonds, etc., n ⁇ 2, preferably 2, 3 or 4, as long as the photosensitive cross-linked molecule is exposed to ultraviolet light of 200 to 500 nm. It is enough to have a significant light response under the conditions.
  • a significant light response means that the molar extinction coefficient of the bisaziridine molecule is greater than 100cm -1 M -1 , where M represents mol/L.
  • photosensitive cross-linked molecules include but are not limited to the following molecules with two bisaziridine groups:
  • photosensitive cross-linking molecules include, but are not limited to, the following molecules having three bisethylene groups:
  • photosensitive cross-linking molecules include, but are not limited to, the following molecules having four bisethylene groups:
  • the photosensitive cross-linked molecule is preferably a photosensitive cross-linked molecule without an alkyl carbon-hydrogen bond. This can effectively avoid the photo-cross-linking reaction of the molecule itself and improve the cross-linking efficiency with the quantum dot surface ligands.
  • the following photosensitive Cross-linking molecules the following photosensitive Cross-linking molecules:
  • the M570 can be synthesized using existing methods, and its 1 H and 19 F nuclear magnetic information are as follows: 1 H NMR (400MHz, CDCl 3 ): ⁇ 7.60 (d, 4H), 7.31 (d, 4H); 19 F NMR (377MHz , CDCl 3 ): ⁇ -150.61 (m, 4F), -138.06 (m, 4F).
  • the molecular structural formula of M570 is as follows:
  • the UV-visible absorption spectrum of M570 is shown in Figure 3. There are dual absorption peaks at 269nm and 345nm. The molar absorption coefficients at 254nm and 365nm are 6.5 ⁇ 10 2 cm -1 M -1 and 3.2 ⁇ 10 2 cm respectively. -1 M -1 .
  • the surface ligands of the quantum dots may be organic molecules containing hydrocarbon chains, including but not limited to oleic acid, oleylamine, dodecylmercaptan, tetradecylphosphonic acid, tri-n-octylphosphine, hexadecylphosphine, Alkyltrimethylammonium bromide, polyethylene glycol or polyvinylpyrrolidone.
  • the quantum dots may be group II-VI quantum dots, such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe , HgSe, HgTe, HgS, Hg x Cd 1-x Te, Hg x Cd 1-x S, Hg x Cd 1-x Se, Hg x Zn 1-x Te, Cd x Zn 1-x Se, or Cd x Zn 1-x S, where 0 ⁇ x ⁇ 1; or III-V group quantum dots, such as InP, InAs, InSb, GaAs, GaP, GaN, GaSb, InN, InSb, AlP, AlN, AlAs; or IV-VI Family quantum dots, such as PbS, PbSe, PbTe; or, the quantum dots can be quantum dots with a core-shell structure, including CdSe
  • the dielectric constant of the photosensitive cross-linking agent and the preset solvent is less than 10, and the preset solvent
  • the solvent includes but is not limited to toluene, chlorobenzene, n-hexane, n-octane, n-heptane, cyclohexane, methylene chloride, chloroform or tetrahydrofuran.
  • the surface ligands of the quantum dots in the embodiments of the present invention can form stable colloids in the photosensitive cross-linking agent, and the colloid concentration can cover 1–1000mg/mL, and form thin films through solution process.
  • the concentration is 5-200 mg/mL.
  • the light source is selected to be 254nm ultraviolet light, and the optimal light dose is greater than 10mJ/cm 2 ;
  • the specific patterning process is: spin-coating quantum dots (20mg/mL) and M570 in the air at a rotation speed of 2000 rpm (1mg/mL) toluene mixed solution for 30 seconds, and then exposed to 254nm ultraviolet light at a dose of 200mJ/ cm2 . After elution and development with the toluene solution, the red, green and blue fluorescence micrographs shown in Figure 4 were obtained.
  • the light source is selected to be 254nm ultraviolet light, and the preferred light dose is greater than 10mJ/cm 2 .
  • the specific patterning process is: in a glove box, under an inert gas atmosphere, spin-coat a toluene mixed solution of quantum dots (20mg/mL) and M570 (1mg/mL) at 2000 rpm for 30 seconds, and then spin-coat at 254nm Exposed to ultraviolet light at a dose of 200mJ/ cm2 , and eluted and developed with toluene solution, the red, green and blue fluorescence micrographs shown in Figure 5 were obtained.
  • the light source is selected to be 365nm ultraviolet light, and the optimal light dose is greater than 10mJ/cm 2 .
  • the specific patterning process is: in a glove box, under nitrogen atmosphere: spin-coat a toluene mixed solution of quantum dots (20mg/mL) and M570 (1mg/mL) at 2000 rpm for 30 seconds, and then spin-coat the toluene solution at 365nm. Exposure to ultraviolet light at a dose of 200mJ/ cm2 , followed by elution and development with toluene solution, resulted in red, green, and blue fluorescence micrographs as shown in Figure 6.
  • Example 4 365nm cannot be patterned in air (can be used as a comparative example of Example 3 to illustrate that 365nm cannot be patterned when oxygen is present in the air)
  • the light source is selected to be 365nm ultraviolet light, and the preferred light dose is greater than 10mJ/cm 2 , for example, under the following conditions: spin-coat quantum dots (20mg/mL) and M570 (1mg) at 2000 rpm /mL) toluene mixed solution for 30 seconds, and then exposed at 365nm with a dose of 1000mJ/ cm2 . After elution and development with the toluene solution, the quantum dot pattern could not be obtained.
  • Sample preparation was carried out in the glove box: on a quartz square substrate with a side length of 2 cm, spin-coat 100 ⁇ l of a toluene mixed solution of quantum dots (20 mg/mL) and M570 (1 mg/mL) at 2000 rpm 30 seconds, and then again Exposure to 200mJ/cm 2 with light of different wavelengths, and measure the fluorescence quantum yield data in Table 1 below. It can be seen that the quantum dots still maintain a high fluorescence quantum yield under bisazidine patterning conditions, and the relative fluorescence quantum yield is as high as More than 90%, significantly better than other patterning methods.
  • photolithographic patterning of quantum dots can also be achieved by using photogenerated nitrene with azide functional groups and surface ligands of quantum dots to perform a hydrocarbon insertion reaction.
  • the pattern The relative fluorescence quantum yield of the experimental group under the chemical conditions is only maintained at a maximum of about 60%, which is much lower than the 90% of the present invention. Therefore, maintaining the fluorescence quantum yield of the material after patterning is one of the beneficial effects of the present invention.
  • Example 6 Device construction and characterization of quantum dot light-emitting diodes (QLED)
  • FIG 7 is a schematic diagram of the device material structure (A) and energy level (B) of a quantum dot light-emitting diode (QLED) according to an embodiment of the present invention.
  • the QLED is prepared according to the structure shown in A in Figure 7.
  • the obtained QLED The energy level performance of is shown as B in Figure 7.
  • the external quantum efficiency is as high as 12%.
  • the life of T95 at 1000nit exceeds 4000 hours, which is significantly higher than the life of QLED devices prepared by cross-linking using the azide method (less than 2000 hours), showing high device efficiency.
  • the non-destructive photolithographic patterning method of quantum dots provided by the present invention is patterned on the surface of quantum dots through photo-crosslinking reaction. Since the photo-crosslinking reaction only occurs on the surface of quantum dots, therefore It can pattern a variety of quantum dot films with different components, properties and structures, effectively expanding the scope of applications. It is compatible with currently widely used photolithography systems of different UV wavelengths, such as 254nm and 365nm, and is easy to promote and implement; and, The process steps of the present invention are simple.
  • the traditional photoresist method requires 21 steps, but the application of the present invention only requires 9 steps, so it can reduce costs and improve efficiency; compared with traditional photoresist methods, According to the resist method, the present invention does not need to add photoresist and can maintain the original optical properties of the quantum dots to the maximum extent.
  • the present invention also provides a device for lossless photolithography patterning of quantum dots.
  • Figure 9 shows a block diagram of an apparatus 900 for lossless photolithographic patterning of quantum dots according to the present invention.
  • the lossless photolithography patterning apparatus 900 of quantum dots includes a film preparation unit 910 , a UV lithography unit 920 and a developing unit 930 .
  • the film preparation unit 910 is used to form a film from a mixed solution of quantum dots and a photosensitive cross-linking agent containing a bis-aziridine group;
  • the ultraviolet lithography unit 920 is used to place the film under ultraviolet light, and use A cross-linking reaction occurs in the exposed area of the film exposed to the ultraviolet light on the photomask;
  • the developing unit 930 is used to clean the film using a preset solvent to elute and remove the unexposed areas of the film for development. , to obtain patterned quantum dot films.
  • the specific implementation scheme of the lossless photolithography patterning apparatus 900 of quantum dots can be carried out with reference to the embodiments of the lossless photolithography patterning method of quantum dots, which will not be described again here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)

Abstract

本发明提供了一种量子点的无损光刻图案化方法和设备,包括:将量子点与含有双吖丙啶基团的光敏交联剂的混合溶液制成薄膜;将所述薄膜置于紫外光照下,并借助于光掩膜版使所述薄膜接受所述紫外光照射的曝光区域发生交联反应;采用预设溶剂清洗所述薄膜,以洗脱除去所述薄膜的未曝光区域进行显影,得到图案化的量子点薄膜。本发明利用光敏交联剂的光分解反应对量子点的表面配体进行交联,避免了复杂光刻胶的引入,实现量子点光致图案化,可兼容于目前广泛应用的不同紫外波长的光刻机系统,易于推广实施。

Description

量子点的无损光刻图案化方法和设备 技术领域
本发明涉及显示领域,更为具体地,涉及一种量子点的无损光刻图案化方法和设备。
背景技术
基于量子限域效应,量子点具有宽带吸收、窄带发射且峰位连续可调等优异的发光性质。同时量子点具有溶液可加工性,这样就避免了高昂的真空设备的使用,从而使得量子点在显示照明、太阳能电池以及光电探测等领域的大规模量产具有实际意义。量子点的图案化就是将溶液态的量子点实现像素化,是将量子点变为成型的光电器件乃至变成商业化产品的必经之路。
现有的可以实现量子点的图案化的方案,一般采用传统光刻胶,但是光刻胶的引入会降低量子点本身的发光性质,因此亟需一种新型且无损的量子点图案化方法。
发明内容
鉴于上述问题,本发明的目的是提供一种无损量子点发光性质的量子点的无损光刻图案化方法和设备,利用光敏交联剂的光分解反应对量子点的表面配体进行交联,避免复杂光刻胶的引入,实现量子点光致图案化。
根据本发明的一个方面,提供了一种量子点的无损光刻图案化方法,包括:
将量子点与含有双吖丙啶基团的光敏交联剂的混合溶液制成薄膜;
将所述薄膜置于紫外光照下,并借助于光掩膜版使所述薄膜接受所述紫外光照射的曝光区域发生交联反应;
采用预设溶剂清洗所述薄膜,以洗脱除去所述薄膜的未曝光区域进行显影,得到图案化的量子点薄膜。
根据本发明的另一方面,提供了一种量子点的无损光刻图案化设备,用于实现上述的量子点的无损光刻图案化方法,包括:
薄膜制备单元,用于将量子点与含有双吖丙啶基团的光敏交联剂的混合溶液制成薄膜;
紫外光刻单元,用于将所述薄膜置于紫外光照下,并借助于光掩膜版使所述薄膜接 受所述紫外光照射的曝光区域发生交联反应;
显影单元,用于采用预设溶剂清洗所述薄膜,以洗脱除去所述薄膜的未曝光区域进行显影,得到图案化的量子点薄膜。
利用上述根据本发明的量子点的无损光刻图案化方法及装置,利用含有双吖丙啶基团的光敏交联剂的光分解反应对量子点的表面配体进行交联,避免了复杂光刻胶的引入,实现量子点光致图案化,该量子点的无损光刻图案化方法和设备可应用于多种不同组分、性质和结构的量子点薄膜的图案化,可以实现不同发光颜色的量子点的高分辨图案化并且保持其高荧光量子产率,可应用于基于量子点的显示照明领域的光电器件中。并且,本发明所采用的交联剂反应条件温和,显著优于其他直接图案化方法的所采用的光敏分子,保持了量子点的原有光学性质和LED器件性能。
为了实现上述以及相关目的,本发明的一个或多个方面包括后面将详细说明并在权利要求中特别指出的特征。下面的说明以及附图详细说明了本发明的某些示例性方面。然而,这些方面指示的仅仅是可使用本发明的原理的各种方式中的一些方式。此外,本发明旨在包括所有这些方面以及它们的等同物。
附图说明
通过参考以下结合附图的说明及权利要求书的内容,并且随着对本发明的更全面理解,本发明的其它目的及结果将更加明白及易于理解。在附图中:
图1为根据本发明实施例的量子点的无损光刻图案化方法的流程图;
图2为根据本发明实施例的量子点的无损光刻图案化过程示意图;
图3为光敏交联分子M570(3,3’-((全氟丁-1,4-基)二(4,1-亚苯基)双(3-三氟甲基)-3H-双吖丙啶)的紫外可见吸收光谱图;
图4为根据本发明实施例的空气下254nm紫外光的图案化的量子点荧光显微镜照片;
图5为根据本发明实施例的氮气下254nm紫外光的图案化的量子点荧光显微镜照片;
图6为根据本发明实施例的氮气下365nm紫外光的图案化的量子点荧光显微镜照片;
图7为根据本发明实施例的量子点电致发光发光二极管器件的材料结构与能级示意图;
图8为根据本发明实施例的QLED的电流密度-电压-亮度(J-V-L)曲线示意图;
图9为根据本发明实施例的量子点的无损光刻图案化设备的方框示意图。
在所有附图中相同的标号指示相似或相应的特征或功能。
具体实施方式
在下面的描述中,出于说明的目的,为了提供对一个或多个实施例的全面理解,阐述了许多具体细节。然而,很明显,也可以在没有这些具体细节的情况下实现这些实施例。在其它例子中,为了便于描述一个或多个实施例,公知的结构和设备以方框图的形式示出。
为了克服现有技术中利用光刻胶进行量子点图案化的缺陷,本发明利用光敏交联剂对量子点的表面配体进行交联,实现量子点光致图案化。由于光交联反应只发生在量子点表面,因此针对多种不同组分、性质和结构的量子点薄膜都可以图案化;相比于传统光刻胶方法,本发明无需添加光刻胶,能够使量子点的原有光学性质基本得到保持。
以下将结合附图对本发明的具体实施例进行详细描述。
图1示出了根据本发明的量子点的无损光刻图案化方法的流程图,图2为根据本发明实施例的量子点的无损光刻图案化过程示意图。
如图1和图2共同所示,本发明提供的量子点的无损光刻图案化方法,包括如下步骤:
S110:将量子点与含有双吖丙啶基团的光敏交联剂的混合溶液制成薄膜;
S120:将所述薄膜置于紫外光照下,并借助于光掩膜版使所述薄膜接受所述紫外光照射的曝光区域发生交联反应;
S130:采用预设溶剂清洗所述薄膜,以洗脱除去所述薄膜的未曝光区域进行显影,得到图案化的量子点薄膜。
其中,在本发明的一个具体实施方式中,含有双吖丙啶基团的光敏交联剂的光敏交联分子中含有至少两个双吖丙啶(diazirine)基团,所述双吖丙啶基团的通式如下:
其中,X为使得含有所述双吖丙啶基团的化合物脱去氮气得到的卡宾中间体稳定且能够实现插入反应的化合物,例如Cl、H、CH3、CF3、PhCF3、F、OCH3中的任意官能团;R为含有烃基、酯基、酰胺键、苯环、醚键的任意官能团;n≥2,优选为n=2、3 或4;并且,对于光敏交联分子,只要其能在200~500nm紫外光下具有显著的光响应即可,显著的光响应表示双吖丙啶分子的摩尔消光系数大于光刻反应需要的摩尔消光系数,摩尔消光系数越高,光吸收越多,交联效率越高。在本发明的一个具体实现方式中,在200~500nm紫外光照下,所述光敏交联分子中的双吖丙啶基团的摩尔消光系数大于1cm-1M-1
双吖丙啶(diazirine)在紫外光照下发生分解,释放出氮气,同时生成中间体单线态卡宾,卡宾可与临近的碳氢进行插入反应,从而生成碳碳单键,当光敏分子含有多个双吖丙啶时,双吖丙啶可作为桥连基团使光敏分子与任意含有碳氢键的有机分子进行交联反应。利用双吖丙啶光生卡宾的碳氢插入反应,在蛋白质分子修饰、聚合物交联、有机半导体图案化以及类人体皮肤等领域的研究,已充分证明双吖丙啶作为光交联基团的可行性。而量子点表面配体是由富含碳氢键的有机分子构成,为双吖丙啶的光交联反应提供了充分的前提条件,因此可通过双吖丙啶的光分解反应实现量子点的交联,改变其溶解度,进而实现光致图案化。
双吖丙啶光分解产生卡宾以及卡宾进行碳氢插入的反应机理如下所示:
进一步,当双吖丙啶中的碳原子有三氟甲基与苯环相连时,可以提高反应活性,提高光生卡宾的碳氢插入反应的效率,因此在本发明的一个具体实现方式中,优选以下结构通式的的双吖丙啶分子:
其中,R可以是任意官能团,例如可以含有烃基,酯基,酰胺键,苯环,醚键等,n≥2,优选为2、3或4,只要该光敏交联分子在200~500nm紫外光下具有显著的光响应即可,显著的光响应表示双吖丙啶分子的摩尔消光系数大于100cm-1M-1,此处的M代表mol/L。
其中,光敏交联分子包含但不限于以下具有两个双吖丙啶基团的分子:
或者,光敏交联分子包含但不限于以下具有三个双吖丙啶基团的分子:
或者,光敏交联分子包含但不限于以下具有四个双吖丙啶基团的分子:
其中,光敏交联分子优选为自身没有烷基碳氢键的光敏交联分子,这样能够有效避免分子本身的光交联反应,提高了与量子点表面配体的交联效率,例如选用以下光敏交联分子:
在本发明一个具体实施方式中,以3,3’-((全氟丁-1,4-基)二(4,1-亚苯基)双(3-三氟甲基)-3H-双吖丙啶(3,3'-((perfluorobutane-1,4-diyl)bis(4,1-phenylene))bis(3-(trifluoromethyl)- 3H-diazirine))分子(根据分子量,该分子简化命名为M570)为例,实现了基于双吖丙啶光生卡宾的光交联反应诱导的量子点光刻图案化。
该M570可采用已有方法合成,其1H、19F核磁信息如下:1H NMR(400MHz,CDCl3):δ7.60(d,4H),7.31(d,4H);19F NMR(377MHz,CDCl3):δ-150.61(m,4F),-138.06(m,4F)。该M570的分子结构式如下所示:
M570的紫外可见吸收光谱测如图3所示,其中在269nm与345nm有双重吸收峰,在254nm与365nm处的摩尔吸光系数分别为6.5×102cm-1M-1和3.2×102cm-1M-1
所述量子点的表面配体可以为含有碳氢链的有机分子,包括但不限于油酸、油胺、十二烷基硫醇、十四烷基膦酸、三正辛基膦、十六烷基三甲基溴化铵、聚乙二醇或聚乙烯基吡咯烷酮。
根据本发明实施例的量子点薄膜的无光刻胶光致图案化方法,在步骤S110中,所述量子点可以为II-VI族量子点,如CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgSe、HgTe、HgS、HgxCd1-xTe、HgxCd1-xS、HgxCd1-xSe、HgxZn1-xTe、CdxZn1-xSe、或CdxZn1-xS,其中0<x<1;或者III-V族量子点,如InP、InAs、InSb、GaAs、GaP、GaN、GaSb、InN、InSb、AlP、AlN、AlAs;或者IV-VI族量子点,如PbS、PbSe、PbTe;或者,所述量子点可以为具备核壳结构的量子点,包括CdSe@ZnS、CdSe@CdS、InP@ZnS、CdTe@CdSe、CdSe@ZnTe、ZnTe@CdSe、ZnSe@CdS或Cd1-xZnxS@ZnS;或者ABX3型钙钛矿量子点或纳米晶体,A为CH3NH3 +(甲胺)、NH2CH=NH2(甲脒)、Cs+中的一种或多种,B为Pb2+、Sn2+中的一种或两种,X为Cl-、Br-、I-中的一种或多种,包括CH3NH3PbBr3、CH3NH3PbCl3、CH3NH3PbI3、CsPbBr3、CsPbCl3、CsPbI3;或其他量子点,如CuInS2、CuInSe2、AgInS2等,只要表面包覆有机配体的量子点均可以适用。
根据本发明实施例的量子点薄膜的无光刻胶光致图案化方法,其中,所述步骤S110和S130中,所述光敏交联剂和预设溶剂的介电常数小于10,所述预设溶剂包括但不限于甲苯、氯苯、正己烷、正辛烷、正庚烷、环己烷、二氯甲烷、氯仿或四氢呋喃。本发明实施例中的量子点的表面配体可以在光敏交联剂中形成稳定的胶体,胶体浓度可涵盖 1–1000mg/mL,并通过溶液工艺形成薄膜。优选地,所述步骤S110中,所述量子点分散在溶剂中后,浓度为5-200mg/mL。
以下将结合几个具体实施例对本发明的量子点薄膜的无光刻胶光致图案化方法做进一步详细说明。
实施例1:254nm下空气中图案化
根据图案化过程,选择光源为254nm的紫外光,优选光照剂量大于10mJ/cm2;具体的图案化过程为:在空气中,用2000转每分转速旋涂量子点(20mg/mL)与M570(1mg/mL)的甲苯混合溶液30秒,然后在254nm的紫外光下用200mJ/cm2剂量曝光,经过甲苯溶液洗脱显影,得到如图4所示的红绿蓝的荧光显微镜照片。
实施例2:254nm下氮气中图案化
根据图案化过程,在手套箱中,惰性气体氛围条件下,选择光源为254nm的紫外光,优选光照剂量大于10mJ/cm2。具体的图案化过程为:在手套箱中,惰性气体氛围条件下,用2000转每分转速旋涂量子点(20mg/mL)与M570(1mg/mL)的甲苯混合溶液30秒,然后在254nm的紫外光下用200mJ/cm2剂量曝光,经过甲苯溶液洗脱显影,得到如图5所示的红绿蓝的荧光显微镜照片。
实施例3:365nm下氮气中图案化
根据图案化过程,在手套箱中,惰性气体氛围条件下,选择光源为365nm紫外光,优选光照剂量大于10mJ/cm2。具体的图案化过程为:在手套箱中,氮气氛围条件下:用2000转每分转速旋涂量子点(20mg/mL)与M570(1mg/mL)的甲苯混合溶液30秒,然后在365nm的紫外光下用200mJ/cm2剂量曝光,经过甲苯溶液洗脱显影,得到如图6所示的红绿蓝的荧光显微镜照片。
实施例4:空气中365nm无法图案化(可作为实施例3的对比例,对比说明空气中氧气存在时用365nm无法图案化)
根据图案化过程,在空气中,选择光源为365nm的紫外光,优选光照剂量大于10mJ/cm2,例如以下条件下:用2000转每分转速旋涂量子点(20mg/mL)与M570(1mg/mL)的甲苯混合溶液30秒,然后在365nm下用1000mJ/cm2剂量曝光,经过甲苯溶液洗脱显影,无法得到量子点图案。
实施例5:荧光量子产率的测定
在手套箱中进行制样:在边长为2厘米石英正方形的基底上,用2000转每分转速旋涂100微升量子点(20mg/mL)与M570(1mg/mL)的甲苯混合溶液30秒,然后再 用不同波长光照曝光200mJ/cm2,测量下表1中的荧光量子产率数据,可知双吖丙啶图案化条件下量子点依然保持了较高的荧光量子产率,相对荧光量子产率高达90%以上,明显优于其他的图案化方法。例如,在公开号为CN111781803A专利中,采用叠氮官能团的光生氮烯与量子点的表面配体进行碳氢插入反应也可以实现量子点的光刻图案化,但是相比于空白对照组,图案化条件的实验组的相对荧光量子产率最高仅维持在60%左右,大大低于本发明的90%,因此图案化之后仍保持材料的荧光量子产率是本发明的有益效果之一。
表1.荧光量子产率测试结果
实施例6:量子点发光发光二极管(QLED)的器件构建与表征
图7为根据本发明实施例的量子点发光发光二极管(QLED)的器件材料结构(A)与能级(B)示意图,按照如图7中的A所示的结构制备QLED,所获得的QLED的能级表现如图7中的B所示。由图8所示的QLED的电流密度-电压-亮度(J-V-L)曲线示意图可知,混有M570且经过365nm曝光的QLED与空白对照组(未加入M570)的QLED的J-V-L曲线基本一致,且测得外量子效率高达12%,T95在1000nit处的寿命超过4000小时,显著高于利用叠氮方法交联制备的QLED器件寿命(小于2000小时),表现出了较高的器件效率。
通过以上实施例的表述可以看出,本发明提供的量子点的无损光刻图案化方法,通光交联反应在量子点表面进行图案化,由于光交联反应只发生在量子点表面,因此可以图案化多种不同组分、性质和结构的量子点薄膜,有效扩大了应用范围,可兼容于目前广泛应用的不同紫外波长的光刻机系统,例如254nm和365nm,易于推广实施;并且,本发明工艺步骤简单,例如为了构筑红绿蓝三色图案化的像素,传统光刻胶方法需要21步,而应用本发明仅需9步,因此可降低成本和提高效率;相比于传统光刻胶方法,本发明无需添加光刻胶,也能够最大限度地使量子点的原有光学性质得到保持。
如上描述了根据本发明的量子点的无损光刻图案化方法,与该方法相对应,本发明还提供一种量子点的无损光刻图案化设备。
图9示出了根据本发明的量子点的无损光刻图案化设备900的方框示意图。如图9 所示,量子点的无损光刻图案化设备900包括薄膜制备单元910、紫外光刻单元920和显影单元930。
其中,薄膜制备单元910用于将量子点与含有双吖丙啶基团的光敏交联剂的混合溶液制成薄膜;紫外光刻单元920用于将所述薄膜置于紫外光照下,并借助于光掩膜版使所述薄膜接受所述紫外光照射的曝光区域发生交联反应;显影单元930用于采用预设溶剂清洗所述薄膜,以洗脱除去所述薄膜的未曝光区域进行显影,得到图案化的量子点薄膜。
上述量子点的无损光刻图案化设备900的具体实现方案可以参照前述量子点的无损光刻图案化方法的实施例进行,在此不再一一赘述。
如上参照附图以示例的方式描述根据本发明的量子点的无损光刻图案化方法和装置。但是,本领域技术人员应当理解,对于上述本发明所提出的网络安全接入控制方法及装置,还可以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应当由所附的权利要求书的内容确定。

Claims (12)

  1. 一种量子点的无损光刻图案化方法,包括:
    将量子点与含有双吖丙啶基团的光敏交联剂的混合溶液制成薄膜;
    将所述薄膜置于紫外光照下,并借助于光掩膜版使所述薄膜接受所述紫外光照射的曝光区域发生交联反应;
    采用预设溶剂清洗所述薄膜,以洗脱除去所述薄膜的未曝光区域进行显影,得到图案化的量子点薄膜。
  2. 如权利要求1所述的量子点的无损光刻图案化方法,其中,所述光敏交联剂的光敏交联分子中含有至少两个双吖丙啶基团,所述双吖丙啶基团的通式如下:
    其中,X为使得含有所述双吖丙啶基团的化合物脱去氮气得到的卡宾中间体稳定且能够实现插入反应的化合物;R为含有烃基、酯基、酰胺键、苯环、醚键的任意官能团;n≥2;并且,
    在200nm至500nm紫外光照下,所述光敏交联分子中的双吖丙啶基团的摩尔消光系数大于1cm-1M-1
  3. 如权利要求2所述的量子点的无损光刻图案化方法,其中,X为Cl、H、CH3、CF3、PhCF3、F、OCH3中的任意官能团,n=2、3或4。
  4. 如权利要求2所述的量子点的无损光刻图案化方法,其中,
    所述光敏交联分子中的双吖丙啶基团的摩尔消光系数大于100cm-1M-1
  5. 如权利要求2所述的量子点的无损光刻图案化方法,其中,含有所述双吖丙啶基团的光敏交联分子的结构通式为:
    其中,R为含有烃基、酯基、酰胺键、苯环、醚键的任意官能团,n≥2。
  6. 如权利要求5所述的量子点的无损光刻图案化方法,其中,所述光敏交联分子包含以下具有两个双吖丙啶基团的分子:
    或者,所述光敏交联分子包含以下具有三个双吖丙啶基团的分子:
    或者,所述光敏交联分子包含以下具有四个双吖丙啶基团的分子:
  7. 如权利要求4所述的量子点的无损光刻图案化方法,其中,所述光敏交联分子为自身没有烷基碳氢键的光敏交联分子。
  8. 如权利要求5所述的量子点的无损光刻图案化方法,其中,所述量子点的表面配体为含有碳氢链的有机分子。
  9. 如权利要求8所述的量子点的无损光刻图案化方法,其中,所述量子点为表面包覆有机配体的量子点,包括II-VI族量子点、III-V族量子点、具备核壳结构的量子点;以及,ABX3型钙钛矿量子点或纳米晶体;其中,A为CH3NH3 +、NH2CH=NH2、Cs+中的一种或多种,B为Pb2+、Sn2+中的一种或两种,X为Cl-、Br-、I-中的一种或多种。
  10. 如权利要求9所述的量子点的无损光刻图案化方法,其中,所述光敏交联剂和所述预设溶剂的介电常数小于10,所述预设溶剂包括但不限于甲苯、氯苯、正己烷、正 辛烷、正庚烷、环己烷、二氯甲烷、氯仿或四氢呋喃。
  11. 如权利要求1所述的量子点的无损光刻图案化方法,其中,所述量子点的表面包覆的有机配体在所述光敏交联剂中形成的胶体的浓度为1mg/mL至1000mg/mL,所述胶体通过溶液工艺形成所述薄膜。
  12. 一种量子点的无损光刻图案化设备,所述设备通过权利要求1~11中任一项所述的量子点的无损光刻图案化方法进行量子点的无损光刻图案化,所述设备包括:
    薄膜制备单元,用于将量子点与含有双吖丙啶基团的光敏交联剂的混合溶液制成薄膜;
    紫外光刻单元,用于将所述薄膜置于紫外光照下,并借助于光掩膜版使所述薄膜接受所述紫外光照射的曝光区域发生交联反应;
    显影单元,用于采用预设溶剂清洗所述薄膜,以洗脱除去所述薄膜的未曝光区域进行显影,得到图案化的量子点薄膜。
PCT/CN2023/081001 2022-03-18 2023-03-13 量子点的无损光刻图案化方法和设备 WO2023174195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210268605.3 2022-03-18
CN202210268605.3A CN114839835A (zh) 2022-03-18 2022-03-18 量子点的无损光刻图案化方法和设备

Publications (1)

Publication Number Publication Date
WO2023174195A1 true WO2023174195A1 (zh) 2023-09-21

Family

ID=82562495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081001 WO2023174195A1 (zh) 2022-03-18 2023-03-13 量子点的无损光刻图案化方法和设备

Country Status (2)

Country Link
CN (1) CN114839835A (zh)
WO (1) WO2023174195A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117148688A (zh) * 2023-11-01 2023-12-01 长春理工大学 用于直接光刻的量子点的加工方法以及双通道成像芯片
CN117949424A (zh) * 2024-03-26 2024-04-30 之江实验室 一种荧光显微仿体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114839835A (zh) * 2022-03-18 2022-08-02 清华大学 量子点的无损光刻图案化方法和设备
CN115312971A (zh) * 2022-08-18 2022-11-08 江阴纳力新材料科技有限公司 聚合物膜及其制备方法、复合集流体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156478A (en) * 1998-10-30 2000-12-05 3M Innovative Properties Company Photocurable and photopatternable hydrogel matrix based on azlactone copolymers
CN106715399A (zh) * 2014-09-23 2017-05-24 普罗米鲁斯有限责任公司 作为光交联剂的二氮杂环丙烯化合物以及包含二氮杂环丙烯化合物的可光成像组合物
US20200259110A1 (en) * 2019-02-13 2020-08-13 Sharp Kabushiki Kaisha Quantum dots with salt ligands with charge transporting properties
CN111781803A (zh) * 2020-06-24 2020-10-16 清华大学 量子点薄膜的无光刻胶光致图案化方法
CN114839835A (zh) * 2022-03-18 2022-08-02 清华大学 量子点的无损光刻图案化方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156478A (en) * 1998-10-30 2000-12-05 3M Innovative Properties Company Photocurable and photopatternable hydrogel matrix based on azlactone copolymers
CN106715399A (zh) * 2014-09-23 2017-05-24 普罗米鲁斯有限责任公司 作为光交联剂的二氮杂环丙烯化合物以及包含二氮杂环丙烯化合物的可光成像组合物
US20200259110A1 (en) * 2019-02-13 2020-08-13 Sharp Kabushiki Kaisha Quantum dots with salt ligands with charge transporting properties
CN111781803A (zh) * 2020-06-24 2020-10-16 清华大学 量子点薄膜的无光刻胶光致图案化方法
CN114839835A (zh) * 2022-03-18 2022-08-02 清华大学 量子点的无损光刻图案化方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117148688A (zh) * 2023-11-01 2023-12-01 长春理工大学 用于直接光刻的量子点的加工方法以及双通道成像芯片
CN117949424A (zh) * 2024-03-26 2024-04-30 之江实验室 一种荧光显微仿体

Also Published As

Publication number Publication date
CN114839835A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2023174195A1 (zh) 量子点的无损光刻图案化方法和设备
KR102087299B1 (ko) 양자점 박막, 이의 패터닝 방법 및 이를 적용한 양자점 발광소자
Liu et al. Direct optical patterning of perovskite nanocrystals with ligand cross-linkers
KR100697511B1 (ko) 광경화성 반도체 나노결정, 반도체 나노결정 패턴형성용 조성물 및 이들을 이용한 반도체 나노결정의 패턴 형성 방법
CN111781803B (zh) 量子点薄膜的无光刻胶光致图案化方法
WO2017121163A1 (zh) 可交联量子点及其制备方法、阵列基板及其制备方法
TWI824082B (zh) 量子點、量子點分散體、量子點光轉換組合物、自發光感光性樹脂組合物、量子點發光二極體、量子點膜、濾色器、光轉換層疊基材及影像顯示裝置
WO2017008442A1 (zh) 发光复合物、发光材料、显示用基板及制备方法、显示装置
TW200813490A (en) Colored masking for forming transparent structures
JPWO2006103908A1 (ja) 半導体ナノクリスタル用有機配位子
CN114958072B (zh) 量子点墨水、量子点层图案化方法和量子点光电器件
CN112952014B (zh) 发光二极管及其制备方法、显示面板及其制备方法
WO2024045525A1 (zh) 一种绿色溶剂中胶体纳米晶的无胶光学图案化方法
CN108026444B (zh) 添加剂稳定的复合纳米粒子
JP2002056973A (ja) 有機電界発光素子および感光性高分子
KR102602107B1 (ko) 발광 나노입자 및 이를 포함하는 발광층
KR20210123203A (ko) 광가교성 양자점 리간드용 화합물, 광가교성 양자점, 이를 포함하는 포토레지스트 조성물 및 이를 이용한 전자 소자
TW201835295A (zh) 光學介質及光學裝置
CN113820923A (zh) 纳米晶薄膜的无交联剂、无光刻胶的直接光致图案化方法
CN109976089B (zh) 一种量子点光刻胶及其制备方法、量子点彩膜的制备方法
CN117311091A (zh) 反应位点可控的光诱导量子点光刻图案化方法及其应用
US20240114709A1 (en) Quantum dots, display apparatus including the same, and method for manufacturing the display apparatus
TWI839726B (zh) 發光組成物及圖案化發光組成物之方法
CN114574187B (zh) 纳米粒子、纳米粒子层图案化的方法及相关应用
CN113589593B (zh) 配向层的材料及其制备方法和显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769698

Country of ref document: EP

Kind code of ref document: A1