WO2023171539A1 - 炭化珪素系ハニカムフィルタ - Google Patents

炭化珪素系ハニカムフィルタ Download PDF

Info

Publication number
WO2023171539A1
WO2023171539A1 PCT/JP2023/007925 JP2023007925W WO2023171539A1 WO 2023171539 A1 WO2023171539 A1 WO 2023171539A1 JP 2023007925 W JP2023007925 W JP 2023007925W WO 2023171539 A1 WO2023171539 A1 WO 2023171539A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb
outer peripheral
intersection
silicon carbide
honeycomb filter
Prior art date
Application number
PCT/JP2023/007925
Other languages
English (en)
French (fr)
Inventor
俊二 岡崎
Original Assignee
株式会社プロテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロテリアル filed Critical 株式会社プロテリアル
Publication of WO2023171539A1 publication Critical patent/WO2023171539A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous

Definitions

  • the present invention relates to a silicon carbide-based honeycomb filter that removes particulate matter (PM) and the like from exhaust gas discharged from an internal combustion engine such as a diesel engine and purifies the exhaust gas.
  • PM particulate matter
  • the ceramic honeycomb filter 500 includes a ceramic honeycomb structure 510 consisting of a porous partition wall 52 and an outer circumferential wall 51 forming a large number of channels 53a and 53b, and end faces 55a and outflow sides of the exhaust gas inflow and outflow sides of the channels 53a and 53b. It consists of an inflow side sealing part 56a and an outflow side sealing part 56b that alternately seal the end surface 55b in a checkered pattern.
  • the exhaust gas flows into the outflow side sealed channel 53b that is open at the exhaust gas inflow side end face 55a, and flows through the communication existing on the surface and inside of the partition wall 52.
  • the exhaust gas passes through the hole, flows into the adjacent inflow side sealing channel 53a, and flows out from the exhaust gas outflow side end face 55b.
  • the exhaust gas passes through the communication holes present on the surface and inside of the partition wall 52, PM in the exhaust gas is collected and the exhaust gas is purified. When the collected PM reaches a predetermined amount, it is burned, and the ceramic honeycomb structure is regenerated.
  • the environment in which such ceramic honeycomb structures are used is becoming increasingly harsh, and refractory ceramics such as silicon carbide (SiC), which has excellent thermal shock resistance, are now being used as their constituent materials. .
  • thermal stress due to uneven temperature distribution acts inside the ceramic honeycomb structure, causing cracks, destruction, melting, etc.
  • thermal stress can be dispersed by integrally joining a plurality of honeycomb segments 111 with a rectangular outline as shown in Fig. 8 through a bonding material layer 9 as shown in Fig. 7.
  • a ceramic honeycomb filter 600 has been proposed that has a function of alleviating the noise.
  • Patent Document 1 discloses a ceramic honeycomb structure in which a plurality of honeycomb segments are integrally joined via a bonding material layer consisting of at least inorganic fibers, an inorganic binder, an organic binder, and inorganic particles, and each honeycomb segment has multiple passages arranged in parallel along the longitudinal direction, and each end of the passages is alternately plugged in a checkerboard pattern so that opening and closing are reversed on the gas inflow and outflow sides.
  • Patent Document 2 discloses that a plurality of honeycomb segments having a structure in which a plurality of cells serving as exhaust gas flow paths are arranged parallel to each other in the direction of the central axis are bonded via a bonding material layer.
  • a honeycomb structure comprising a honeycomb segment bonded body integrally bonded with a honeycomb segment bonded body and an outer peripheral coat layer covering the outer peripheral surface of the honeycomb segment bonded body, and the honeycomb segments are bonded via a partial bonding material layer.
  • the bonding material layer is provided only in predetermined portions of the lattice gaps between the honeycomb segments, and the bonding surfaces of the honeycomb segments on which the bonding material layer is not formed have a honeycomb structure. Since it is present almost throughout the body, heat conduction between honeycomb segments is poor. Therefore, when regenerating a ceramic honeycomb structure, local heat generation due to combustion of unevenly deposited PM is difficult to transmit to adjacent honeycomb segments, and the function of dispersing and relaxing thermal stress is insufficient, resulting in cracks. There is a possibility that this may occur.
  • Patent Document 3 includes a plurality of prismatic honeycomb segments arranged in a lattice pattern, a bonding material layer for bonding side surfaces of the honeycomb segments to each other, and an outer peripheral wall disposed to surround the honeycomb segments.
  • a honeycomb structure each honeycomb segment has porous partition walls surrounding a plurality of cells extending in the axial direction from an inflow end face to an outflow end face, and an outer wall surrounding the partition walls, and the cells are arranged on the inflow end face side or Either one end on the outflow end surface side is plugged by a plugging part, and a bottomed hollow cavity extending in the axial direction is formed at some or all of the intersection points of the lattice-shaped bonding material layer.
  • the cross-sectional shape of the cavity described in Patent Document 3 is only circular, and in the example, the cavity is formed using cylindrical wood.
  • the upper limit of the diameter of the cylindrical wood is ⁇ 2 times the thickness of the bonding material layer, which is approximately 140%.
  • the upper limit of the diameter of the wood must be considerably smaller than 140%.
  • the cross-sectional area of the void formed by the cylindrical piece of wood is too small to sufficiently suppress cracks.
  • an object of the present invention is to provide a silicon carbide system that can suppress the occurrence and propagation of cracks caused by local heat generation or thermal shock caused by rapid temperature changes in exhaust gas while maintaining heat conduction between honeycomb segments.
  • An object of the present invention is to provide a honeycomb filter.
  • the shape extends in the shape, it is possible to achieve the maximum effect in dispersing and relaxing thermal stress while maintaining heat conduction between honeycomb segments, and (b) Regarding the intersecting pores, the flow path In a cross section perpendicular to The present invention was completed based on the idea that the greatest effect can be exerted on dispersing and relaxing thermal stress while maintaining conduction.
  • the first silicon carbide honeycomb filter of the present invention includes partition walls forming cells that define a plurality of channels extending in the axial direction between both end faces, and end faces of the cells that are alternately sealed in a checkerboard pattern.
  • a honeycomb segment having a plugging portion and an outer peripheral wall; a bonding material layer filled in a lattice-like gap between the honeycomb segments to join them; and an outer skin surrounding the joined honeycomb segments; has Among the intersections of the lattice-shaped gaps, if the intersection located at or near the central axis of the honeycomb filter is defined as the center intersection, then the lattice-shaped gap extending in all directions from the center intersection to the adjacent intersections. It is characterized in that a region where no bonding material is formed is provided.
  • the second silicon carbide honeycomb filter of the present invention includes partition walls forming cells defining a plurality of channels extending in the axial direction between both end faces, and the end faces of the cells are sealed alternately in a checkerboard pattern.
  • a honeycomb segment having a plugging portion and an outer peripheral wall, a bonding material layer filled in a lattice-like gap between the honeycomb segments for joining the honeycomb segments, and an outer skin surrounding the joined honeycomb segments.
  • each honeycomb segment in a cross section perpendicular to the flow path direction is an octagonal shape with a chamfered portion at each corner of the quadrangle, and the first outer peripheral wall corresponding to the side of the quadrangle and the linear It has an octagonal shape that is alternately formed by second outer peripheral walls corresponding to chamfered parts,
  • intersection voids are formed where there is no bonding material at the intersections whose contours are formed by the second outer peripheral wall.
  • the pore ratio (t 2 /t 1 ) defined by the ratio of the pore diameter t 2 of the intersection pores to the thickness t 1 of the bonding material layer between the first outer peripheral walls is greater than 1.4. It is characterized by
  • a third silicon carbide honeycomb filter of the present invention includes partition walls forming cells defining a plurality of channels extending in the axial direction between both end faces, and end faces of the cells are sealed alternately in a checkerboard pattern.
  • a honeycomb segment having a plugging portion and an outer peripheral wall, a bonding material layer filled in a lattice-like gap between the honeycomb segments for joining the honeycomb segments, and an outer skin surrounding the joined honeycomb segments. death, Among the intersections of the lattice-shaped gaps, if the intersection located at or near the central axis of the honeycomb filter is defined as the center intersection, then the lattice-shaped gap extending in all directions from the center intersection to the adjacent intersections.
  • each honeycomb segment in a cross section perpendicular to the flow path direction is an octagonal shape with a chamfered portion at each corner of the quadrangle, and the first outer peripheral wall corresponding to the side of the quadrangle and the linear It has an octagonal shape that is alternately formed by second outer peripheral walls corresponding to chamfered parts,
  • intersection voids are formed where there is no bonding material at the intersections whose contours are formed by the second outer peripheral wall
  • the pore ratio (t 2 /t 1 ) defined by the ratio of the pore diameter t 2 of the intersection pores to the thickness t 1 of the bonding material layer between the first outer peripheral walls is greater than 1.4. It is characterized by
  • intersection voids account for 30% or more of the total intersections.
  • the void ratio is preferably 1.5 to 5.
  • the outer peripheral wall of the honeycomb segment is thicker than the partition wall.
  • a cross section of the second outer peripheral wall perpendicular to the flow path direction has a triangular shape formed by the two longitudinal and horizontal partition walls closest to the second outer peripheral wall and the outer peripheral surface of the second outer peripheral wall, It is preferable that the maximum thickness in the center direction of the second outer circumferential wall defined by the distance between the center-side apex of the triangle and the outer circumferential surface is thicker than the thickness of the first outer circumferential wall.
  • the cross-sectional area of the inflow cells whose outflow side end faces are plugged is larger than the cross-sectional area of the outflow cells whose inflow side end faces are plugged.
  • the silicon carbide honeycomb filter of the present invention having the above configuration maintains heat conduction between honeycomb segments while suppressing the occurrence and propagation of cracks caused by local heat generation and thermal shock caused by rapid temperature changes in exhaust gas. be able to.
  • FIG. 1 is a perspective view schematically showing an example of a first honeycomb filter of the present invention. It is a perspective view which shows typically an example of the second honeycomb filter of this invention. It is a perspective view which shows typically an example of the third honeycomb filter of this invention.
  • FIG. 2 is a perspective view schematically showing an example of a honeycomb segment used in the honeycomb filter of the present invention.
  • FIG. 4(a) is a partial front view showing in detail the second outer peripheral wall of the honeycomb segment of FIG. 4(a).
  • FIG. 3 is a partial cross-sectional view showing an example of an intersection hole portion.
  • FIG. 7 is a partial cross-sectional view showing another example of the intersection hole portion.
  • FIG. 1 is a perspective view schematically showing an example of a first honeycomb filter of the present invention. It is a perspective view which shows typically an example of the second honeycomb filter of this invention. It is a perspective view which shows typically an example of the third honeycomb filter of this invention.
  • FIG. 2 is
  • FIG. 7 is a partial cross-sectional view showing still another example of an intersection hole portion.
  • FIG. 3 is a perspective view schematically showing another example of a honeycomb segment.
  • FIG. 2 is a perspective view schematically showing a conventional ceramic honeycomb filter having a divided structure.
  • FIG. 2 is a perspective view schematically showing a honeycomb segment.
  • FIG. 8(a) is a sectional view taken along line A-A in FIG. 8(a).
  • FIG. 2 is a front view schematically showing an example of a conventional ceramic honeycomb filter.
  • FIG. 2 is a cross-sectional view parallel to the axial direction that schematically shows an example of a conventional ceramic honeycomb filter. It is a graph showing temperature control in a Drop to Idle test.
  • First silicon carbide honeycomb filter (1-1) Structure
  • the first silicon carbide honeycomb filter 100 shown in FIG. It includes a bonding material layer 9 and an outer skin 11 surrounding bonded honeycomb segments 111.
  • Each honeycomb segment 111 has a plurality of cells 13 extending from one end surface 15a to the other end surface 15b, and the partition wall 12 of each cell 13 extends from one end surface 15a to the other end surface 15b, as shown in FIG. It forms a fluid flow path.
  • Plugged portions 16a are formed at the ends of the cells 13 on the one end surface 15a side, and plugged portions 16b are formed on the end portions on the other end surface 15b side.
  • the plugging parts 16a, 16b are alternately arranged in a checkerboard pattern on each end surface 15a, 15b so that each cell 13 is not sealed by the plugging parts 16a, 16b at both ends.
  • a bonding material non-forming area 10 is provided between the honeycomb segments 111 joined in a lattice shape.
  • the bonded material non-forming region 10 is It extends in a cross shape along a gap extending in all directions from the central intersection 18, and has a shape extending between both end surfaces 15a and 15b in the axial direction.
  • "near the central axis G” means being within the range of a circle from the central axis G whose radius is the length of one side of the honeycomb segment 111.
  • the intersection of the lattice gaps is located on the central axis G of the honeycomb filter 100, there is no problem in setting the intersection on the center axis G as the center intersection 18, but the intersection of the lattice gaps on the central axis G If the central intersection 18 is not located, the question becomes which intersection in the vicinity should be the central intersection 18. In this case, it is preferable to set the intersection closest to the central axis G as the center intersection 18, but as long as the effects of the present invention are not impaired, any intersection other than the closest intersection may be used as the center intersection 18. Generally, when the honeycomb filter 100 is configured by an even number x even number of honeycomb segments 111, the center intersection 18 is usually located on the central axis G or at a position extremely close to it.
  • the central axis G is located within a region surrounded by four intersections.
  • the straight-line distance between the intersection closest to the central axis G and the central axis G is usually sufficiently shorter than the straight-line distance between the other intersections and the central axis G;
  • the intersection is a central intersection 18.
  • Other intersections may be used as the center intersection 18 as long as the effect is not impaired.
  • each branch 10a, 10a, 10a, 10a of the bonding material non-forming area 10 extends between the center intersection 18 and the intersection 181, 181, 181, 181 adjacent thereto.
  • the length of each branch 10a, 10a, 10a, 10a can be extended from the center intersection 181 to two adjacent intersections 182-1, 182-2, 182. You can also expand it to -3 or 182-4.
  • the thickness of the outer peripheral wall 17 is preferably 1.3 times or more, more preferably 1.6 times or more, and even more preferably 2 times or more the thickness of the partition wall.
  • the thickness of the outer peripheral wall 17 is preferably 10 times or less, more preferably 9 times or less, the thickness of the partition wall.
  • the thickness of the outer peripheral wall 17 is preferably 1.3 to 10 times the thickness of the partition wall, more preferably 1.6 to 9 times, even more preferably 2 to 9 times.
  • the side end face is larger than the cross-sectional area of the plugged cell (exhaust gas outflow cell) 43a. This makes it possible to increase the amount of PM collected until regeneration is started, and to suppress pressure loss when PM is collected.
  • the cross-sectional area of the exhaust gas inflow cell 43b is preferably 1.1 to 2.0 times, more preferably 1.2 to 1.9 times, the cross-sectional area of the exhaust gas outflow cell 43a.
  • one or both of the end surfaces 15a and 15b of the bonding material non-forming area 10 is plugged with a plugging part (not shown). is preferred.
  • (1-2) Manufacturing method (a) Manufacture of honeycomb segments 5 to 15% by mass of an organic binder is mixed with 100% by mass of a forming raw material consisting of silicon carbide particles, alumina particles, and magnesium hydroxide particles.
  • the silicon carbide particles have an average particle size of 30 to 50 ⁇ m. It is preferable that the total amount of alumina particles and magnesium hydroxide particles is 8 to 15% by mass based on 100% by mass of silicon carbide particles.
  • organic binder examples include methylcellulose, ethylcellulose, ethylmethylcellulose, carboxymethylcellulose, hydroxymethylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, hydroxyethylethylcellulose, and the like. Among these, methylcellulose or hydroxypropylmethylcellulose is preferred.
  • Water is added to the resulting mixture and kneaded to form a plastic clay.
  • the amount of water added is preferably 20 to 50% by mass based on 100% by mass of the molding raw material.
  • the clay is extruded from a mold of a screw molding machine to form a honeycomb segment 111 molded body shown in FIG. 8, and then dried.
  • the mold and extrusion molding method may be known ones.
  • the drying method is not particularly limited, for example, methods such as hot air drying, microwave heating drying, high frequency heating drying, etc. can be used.
  • the plugging portion After drying, after processing the end faces, outer periphery, etc. as necessary, the plugging portion alternately plugs each end face 15a, 15b of the cell 13 in a checkered pattern with clay having the same composition as the honeycomb segment 111.
  • Silicon carbide-based honeycomb segments 111 are obtained by firing the plugged honeycomb segments 111 in an oxidizing atmosphere at a temperature of 1100 to 1350°C.
  • the material (laminating material) to which the honeycomb segments 111 are laminated is made of a laminating material raw material consisting of silicon carbide aggregate particles and binder particles, an organic binder, and an inorganic binder and synthetic resin as necessary. Contains a pore material.
  • the binder particles are made of at least one selected from the group consisting of an aluminum source, a magnesium source, a silica source, and compounds thereof.
  • Alumina sources include alumina or aluminum hydroxide
  • magnesium sources include magnesium oxide or magnesium hydroxide.
  • the total amount of alumina source particles and magnesium source particles is preferably 5 to 25% by mass based on 100% by mass of silicon carbide particles.
  • the organic binder may be the same as that used for manufacturing the honeycomb segment.
  • the amount of the organic binder added is preferably 5 to 15% by mass based on 100% by mass of the laminate material raw material.
  • the inorganic binder examples include colloidal silica and colloidal alumina.
  • the amount of the inorganic binder added is preferably 40% by mass or less based on 100% by mass of the laminate material raw material.
  • Pore-forming materials include foamable resins, foamed resins, carbon, water-absorbing resins, fly ash balloons, and the like. Among these, foamable resins or foamed resins with small variations in particle size are preferred.
  • the amount of the pore-forming material added is preferably 2 to 20% by mass based on 100% by mass of the laminating material raw material.
  • Water is added to the resulting mixture and kneaded to produce a laminate slurry.
  • the amount of water added is preferably 20 to 50% by mass based on 100% by mass of the laminating material raw material.
  • a laminated material layer 9 having a shape is formed.
  • a laminate material non-forming region 10 in which no laminate material is formed in the gap between the honeycomb segments 111 in the range from the center intersection 18 to the four nearest intersections 181, 181, 181, 181.
  • the honeycomb segment 111 is bonded. .
  • the plate-shaped spacer prevents the bonding material from entering the gaps between the honeycomb segments 111 within the above range, a cross-shaped area where the bonding material is not formed is formed. It is preferable that the plate-shaped spacer is made of wood, paper, or resin, which are easily burnt out.
  • the bonding material non-forming area 10 is a cross-shaped gap between four intersections 181, 181, 181, 181, but the cross-shaped gap is formed between four intersections 182-1, 182-2, It may be expanded to a range between 182-3 and 182-4.
  • a plate-shaped spacer is arranged in each gap of the honeycomb segment 111 from the intersection 181 to each intersection 182-1, 182-2, 182-3, and 182-4.
  • plugging portions it is preferable to form plugging portions (not shown) on one or both end surfaces 15a and 15b of the bonding material non-forming region 10.
  • the depth of the plugging portion may be 1 to 2 mm.
  • the bonding material layer 9 between the honeycomb segments 111 After drying the bonding material layer 9 between the honeycomb segments 111, it is fired in an oxidizing atmosphere at a temperature of 1100 to 1350°C, the plate-shaped spacers are burned out and a bonding material non-forming area 10 is formed.
  • an outer skin material containing at least silicon carbide particles and an inorganic binder is applied to the circular outer periphery to form an outer skin 11, and by drying, silicon carbide is formed. Obtain a system honeycomb filter.
  • Second silicon carbide honeycomb filter (2-1) Structure
  • the second silicon carbide honeycomb filter 200 shown in FIG. 2 consists of honeycomb segments 211 having the shape shown in FIG. 27, and an outer skin 21 disposed to surround the joined honeycomb segments 211.
  • Each honeycomb segment 211 has a plurality of cells 23 extending in the axial direction from one end surface 25a to the other end surface 25b, and the partition wall 22 of each cell 23 has a flow channel extending in the axial direction from one end surface 25a to the other end surface 25b. is formed.
  • Plugged portions 26a and 26b are formed at one or both ends of the cell 23 on the side of the end faces 25a and 25b.
  • the plugging parts 26a, 26b are alternately arranged in a checkerboard pattern on each end surface 25a, 25b so that each cell 23 is not sealed by the plugging parts 26a, 26b at both ends.
  • each honeycomb segment 211 perpendicular to the flow path direction is an octagonal shape with a chamfered portion provided at each corner of a quadrilateral.
  • each corner of the rectangle forming their outline is preferably 90°, and more preferably all sides are also equal.
  • the chamfered portion is preferably linear, and more preferably linear with an inclination of 45° with respect to the sides of the rectangle.
  • each honeycomb segment 211 is preferably an octagonal shape with a linear chamfered portion having an inclination of 45° at each corner of a rectangle, and each corner of a square More preferably, it has an octagonal shape with a linear chamfered portion having an inclination of 45°.
  • each honeycomb segment 211 consists of a long first outer wall 27a corresponding to the sides of the quadrangle and a short second outer wall 27b corresponding to the chamfered portion.
  • a plurality of honeycomb segments 211 having such octagonal outer walls are bonded vertically and horizontally, grid-like gaps are formed between the honeycomb segments 211, and the four facing second outer peripheral walls 27b have a contour. An intersection is formed.
  • the cross section of the intersection can have various shapes other than the contour of the second outer peripheral wall 27b.
  • the cross-sectional shape of the hole formed at the intersection is determined by the cross-sectional shape of a rod-shaped spacer (described later) placed on the intersection. Therefore, there is no need to define the outline of the intersection up to the lattice-like gap, and here it is only defined as "the shape in which the four facing second outer circumferential walls 27b form the outline.”
  • a bonding material layer 9 having a thickness of t 1 is formed in the grid-like gaps between the facing first outer peripheral walls 27a, but at the intersections of the grid-like gaps.
  • a feature is that an intersection hole 20 is formed without a bonding material.
  • the cross-sectional shape of the intersection hole 20 is determined by the cross-sectional shape of the rod-shaped spacer that can be accommodated in the intersection defined by the second outer peripheral wall 27b. For example, when the rod-shaped spacer has a square or circular cross-sectional shape in contact with the second outer peripheral wall 27b, the cross-sectional shape of the resulting intersection hole 20 will be square or circular.
  • each intersection cavity 20 preferably extends in the axial direction from one end surface 25a to the other end surface 25b.
  • the rod-shaped spacer contacts the two lower second outer peripheral walls 27b during manufacture, but does not necessarily need to contact the two upper second outer peripheral walls 27b.
  • the outline of the intersection hole 20 in order to maximize the cross-sectional area of the intersection hole 20 so as to sufficiently suppress cracks, the outline of the intersection hole 20 must be in contact with all the second outer peripheral walls 27b. preferable. However, since a gap with an error level is allowed, in this specification, it is stated that "it is preferable that the outline of the intersection hole portion 20 is substantially in contact with the second outer circumferential wall 27b.”
  • Figures 5(a), 5(b) and 5(c) respectively show an intersection cavity 20a having a square cross section, an intersection cavity 20b having an octagonal cross section, and an intersection cavity 20b having a circular cross section. Hole 20c is shown.
  • the intersection hole 20a with a square cross section shown in FIG. It has the largest cross-sectional area of t 2 2 among the parts 20a, 20b, and 20c.
  • the ratio of the interval (pore diameter) t 2 between the two facing second outer peripheral walls 27b to the thickness t 1 of the laminated material layer 19 (pore ratio t 2 /t 1 ) is preferably over 1.4. . If the void ratio t 2 /t 1 is less than 1.4, the effect of suppressing the growth of generated cracks is insufficient.
  • the void ratio t 2 /t 1 is preferably 1.5 or more, more preferably 2 or more.
  • the intersection hole portion 20b with an octagonal cross section shown in FIG. 2 2 -t 1 2 From the formula for the cross-sectional area, it can be seen that unless t 2 is sufficiently larger than t 1 , the intersection hole portion 20b cannot secure a sufficient cross-sectional area. Therefore, the pore ratio t 2 /t 1 is preferably 1.7 or more, more preferably 2 or more, and most preferably 2.5 or more. Further, the upper limit of the void ratio t 2 /t 1 is preferably 7, more preferably 5, and most preferably 4, as in the case of a square cross section.
  • the range of the void ratio t 2 /t 1 in the intersection void portion 20b with an octagonal cross section is preferably 1.7 to 7, more preferably 2 to 5, and most preferably 2.5 to 4. be.
  • the octagonal cross-section pores 20b have a sufficiently large cross-sectional area and do not penetrate into the laminated material layer 19, so cracks can be sufficiently prevented. It is possible to achieve both a suppressed cross-sectional area and bonding strength.
  • the intersection hole portion 20c having a circular cross section shown in FIG. 5(c) has a diameter that is in contact with the second outer circumferential wall 27b, and thus has a cross-sectional area of ( ⁇ /4)t 2 2 .
  • the hole ratio t 2 /t 1 is preferably 1.5 or more, more preferably 2 or more, and most preferably 2.5 or more.
  • the upper limit of the void ratio t 2 /t 1 is preferably 7, more preferably 5, and most preferably 4, as in the case of a square cross section.
  • the range of the void ratio t 2 /t 1 in the intersection void portion 20c with a circular cross section is preferably 1.5 to 7, more preferably 2 to 5, and most preferably 2.5 to 4. .
  • the intersection pores 20c with a circular cross section have a sufficiently large cross-sectional area and hardly penetrate into the laminated material layer 19, so that cracks can be sufficiently prevented. It is possible to achieve both a suppressed cross-sectional area and bonding strength.
  • the range of the pore ratio t 2 /t 1 of the intersection pores of all cross-sectional shapes is generally more than 1.4 to 7, preferably 1.5 to 5, and more preferably 2 to 4. .
  • the The ratio is preferably 30% or more, more preferably 50% or more, and most preferably 70% or more.
  • the upper limit of the proportion of the intersection voids 20 is preferably 100% of all intersections, but may be 95% or less.
  • each honeycomb segment 211 thicker than the partition walls 22 because the heat capacity of the honeycomb segment 211 increases and cracks due to thermal shock are less likely to occur.
  • the thickness of the outer peripheral wall 27 is more preferably 1.3 times or more the thickness of the partition wall 22, more preferably 1.6 times or more, and most preferably 2 times or more. Furthermore, in order to suppress pressure loss from increasing, the thickness of the outer peripheral wall 27 is preferably 10 times or less, more preferably 9 times or less, the thickness of the partition wall 22.
  • the honeycomb segment 211 does not have a flow path at the corner where the second outer peripheral wall 27b is located. Therefore, the second outer peripheral wall 27b at each corner preferably has a triangular shape 271 having an apex P on the center side of the honeycomb segment 211, as shown in FIG. 4(b).
  • the maximum thickness L distance between the outer circumferential surface 27b' of the second outer circumferential wall 27b and the apex P) in the center direction of each second outer circumferential wall 27b is thicker than the thickness of the first outer circumferential wall 27a.
  • the triangle 271 is a right-angled isosceles triangle whose base is the outer peripheral surface 27b', and the maximum thickness L is This is half the length of the outer circumferential surface 27b' of the second outer circumferential wall 27b.
  • Such a shape increases the heat capacity of the honeycomb segment 211, and even if a local temperature rise occurs in the honeycomb segment 211 due to combustion of non-uniformly deposited PM, the generation of cracks can be suppressed.
  • the cross-sectional area of the inflow cells 43b whose outflow end faces are plugged is the same as the outflow cells whose inflow end faces are plugged. It may be made larger than the cross-sectional area of 43a. This makes it possible to increase the amount of PM collected until regeneration is started, and to suppress pressure loss when PM is collected.
  • the cross-sectional area of the inflow cell 43b is preferably 1.1 to 2.0 times, more preferably 1.2 to 1.9 times, the cross-sectional area of the outflow cell 43a.
  • honeycomb segments The raw materials for manufacturing honeycomb segments may be the same as those for the first silicon carbide honeycomb filter, and the manufacturing method may be the same as that of the honeycomb segment 211 shown in FIG. 4(a). Everything is the same except for changing the mold.
  • the bonding material slurry may be the same as that used for the first silicon carbide honeycomb filter.
  • a bonding material slurry is applied to the outer wall 27 of each honeycomb segment 211, and as shown in FIG. 2, the honeycomb segments 211 are crimped and bonded together via the bonding material.
  • a rod-shaped spacer having the same dimensions and the same length as the honeycomb segments 211 is placed at each intersection so that the bonding material does not enter the desired intersections of the lattice gaps between the honeycomb segments 211.
  • the rod-shaped spacer is preferably made of wood, paper, resin, etc., which are easily burnt out.
  • the honeycomb segments 211 After drying the bonded material layer to which the honeycomb segments 211 are bonded, it is fired in an oxidizing atmosphere at a temperature of 1100 to 1350°C, thereby burning out the rod-shaped spacers and forming the intersection pores 20.
  • the outer periphery of the obtained sintered body is machined into a circular shape using a lathe.
  • a plugging portion (not shown) with a depth of 1 to 2 mm is formed on one or both of the end surfaces 25a and 25b of the intersection hole 20. Further, an outer skin material containing at least silicon carbide particles and an inorganic binder is applied to the circularly processed outer peripheral surface to form an outer skin 11, and is dried to obtain a second silicon carbide-based honeycomb filter 200.
  • Third silicon carbide honeycomb filter (3-1) Structure
  • the third silicon carbide honeycomb filter 300 joins the honeycomb segments 211 having the shape shown in FIG. As shown in FIG. It has a structure in which a silicon-based honeycomb filter 100 and a second silicon carbide-based honeycomb filter 200 are combined.
  • Each honeycomb segment 211 itself may be the same as that of the second silicon carbide honeycomb filter 200.
  • the third silicon carbide-based honeycomb filter 300 is formed by arranging honeycomb segments 211 having chamfered portions at each corner with lattice-like gaps interposed therebetween. 10, and intersection hole portions 20 located at intersections of the grid-like gaps.
  • the bonding material non-forming area 10 may be the same as that in the first silicon carbide honeycomb filter 100. Similar to the first silicon carbide honeycomb filter 100, the center intersection portion 18 is located at or near the center axis G of the honeycomb filter 100. Each branch 10a, 10a, 10a, 10a of the bonding material non-forming area 10 extends between the central intersection 18 and the adjacent intersection 181, 181, 181, 181, as shown in FIG. However, if necessary, the range of the bonding material non-forming area 10 may be expanded from the center intersection 18 to two adjacent intersections 182-1, 182-2, 182-3, and 182-4. good.
  • intersection pores 20 may be the same as those in the second silicon carbide honeycomb filter 200.
  • the ratio of the intersection pores 20 to the thickness t 1 of the bonding material layer 9 formed on the first outer peripheral wall 27a of the honeycomb segment 211 is more than 1.4. preferable.
  • the cross-sectional area of the exhaust gas inflow cell 43b is preferably 1.1 to 2.0 times, more preferably 1.2 to 1.9 times, the cross-sectional area of the exhaust gas outflow cell 43a.
  • one or both of the end surfaces 25a and 25b of the bonding material non-forming area 10 and the intersection hole 20 are plugged with a plugging part (not shown). Also good.
  • a bonding material slurry is applied to the outer peripheral wall 27 of the honeycomb segments 211, and the honeycomb segments 211 are bonded.
  • the center intersection 18 of the honeycomb segment 211 is set at or near the center axis G of the honeycomb filter.
  • the plate-like spacer and the rod-like spacer are made of wood, paper, resin, etc., which are easily burnt out.
  • the plate spacer may have a size that occupies from the central intersection 18 to two adjacent intersections 182-1, 182-2, 182-3, and 182-4.
  • the plate-like spacers and rod-like spacers are burned out, and the laminated material-free area 10 and the intersections are burned out. Holes 20 are formed.
  • the outer periphery of the obtained sintered body is machined into a circumferential shape using a lathe.
  • a plugging portion (not shown) with a depth of 1 to 2 mm is formed on one or both of the end surfaces 35a and 35b of the bonding material non-formation area 10 and the intersection hole portion 20.
  • a skin material containing at least silicon carbide particles and an inorganic binder is applied to the circumferentially processed outer peripheral surface to form a skin 11, and then dried to produce a third silicon carbide honeycomb filter.
  • Example 1 A molding raw material consisting of 100% by mass of silicon carbide particles, 5.9% by mass of alumina particles, and 4.1% by mass of magnesium hydroxide particles is mixed with 10% by mass of hydroxypropyl methylcellulose as an organic binder, and water is added to the resulting mixture. was added at a ratio of 35% by mass per 100% by mass of the molding raw material and kneaded to produce a plastic clay.
  • the plastic clay was extruded from a mold of a screw molding machine to form a honeycomb segment molded body having a square cross section as shown in FIG. 8, and dried at 120°C for 2 hours in a hot air dryer.
  • plugging portions 16a and 16b were formed by alternately plugging the end faces 15a and 15b of the cells 13 of the honeycomb segment molded body in a checkerboard pattern using a plugging material having the same composition as the clay. After drying the plugged portions 16a and 16b, they were fired in an oxidizing atmosphere at a temperature of 1300° C. to obtain a honeycomb segment 111 having plugged portions.
  • Honeycomb segment 111 had a square cross section of 35 mm on a side and a total length of 203 mm.
  • a wooden spacer with the same thickness and the same length as the lattice gap between the honeycomb segments 111 is installed in the lattice gap.
  • the laminate material slurry is placed on the outer peripheral wall of the honeycomb segment 111 corresponding to the cross-shaped gap between the central intersection 18 and the adjacent intersections 181, 181, 181, 181, and then It was applied to the outer peripheral wall 17, and 6 ⁇ 6 honeycomb segments 111 were pressure-bonded via the bonding material slurry, and joined as shown in FIG. 1.
  • the formed bonding material layer 9 After drying the formed bonding material layer 9, it was fired in an oxidizing atmosphere at a temperature of 1300°C to burn out the wood board spacer.
  • the outer periphery of the obtained sintered body was processed into a circumferential shape using a lathe.
  • a skin material containing silicon carbide particles and colloidal silica was applied to the outer periphery of a honeycomb filter processed into a circumferential shape, and then dried. Plugged portions (not shown) with a depth of 1 mm were formed on one end surface 15a of the bonded material non-formed area 10 of the honeycomb filter.
  • the obtained silicon carbide honeycomb filter 100 having the laminated material-free region 10 has an outer diameter of 190 mm, a total length of 203 mm, an outer peripheral wall thickness of 0.7 mm, a partition wall thickness of 8 mil (0.20 mm), It had a cell density of 300 cpsi (46.5 cells/cm 2 ) and a laminate layer thickness of 2 mm.
  • Example 2 By extruding the clay produced in the same manner as in Example 1 from the mold of a screw molding machine, an octagonal shape with a linear chamfered part with an inclination angle of 45° is provided at each corner of a square, as shown in Figure 6.
  • a honeycomb segment molded body having a cross-section of in which the cross-sectional area of the inflow cell was larger than the cross-sectional area of the outflow cell was formed, and was dried at 120°C for 2 hours in a hot air dryer.
  • the ends of the end faces 45a and 45b of the cells 43 of the honeycomb segment molded body are alternately filled in a checkerboard pattern with a plugging material having the same composition as the clay, and dried to form the inflow side plugging portions 46 and 45b. Outflow side plugging portions 46 were formed.
  • the intersection cavity 20 had a cavity diameter t 2 of 7 mm.
  • the outer periphery of the obtained sintered body was processed into a circular shape using a lathe.
  • a plugging section 46 with a depth of 1 mm is formed at the end of the intersection hole section 20 on the side of one end surface 45a, and an outer skin material containing silicon carbide particles and colloidal silica is formed on the circumferentially processed outer periphery. After coating, it was dried to obtain a silicon carbide honeycomb filter 200 having intersecting pores 20.
  • Silicon carbide honeycomb filter 200 had an outer diameter of 190 mm and a total length of 203 mm.
  • the honeycomb segment 411 has an octagonal cross section of a square with a side of 35 mm and a linear chamfer with an inclination angle of 45° at each corner, and the first outer peripheral wall 47a has a length of 30 mm and a length of 0.7 mm.
  • the second outer peripheral wall 47b had a length of 4 mm and a maximum thickness L of 2 mm.
  • Honeycomb segment 411 also had a partition wall thickness of 8 mils (0.20 mm) and a cell density of 300 cpsi (46.5 cells/cm 2 ).
  • the cross-sectional area of the inflow cells 43b of the honeycomb segment 411 was 1.58 times the cross-sectional area of the outflow cells 43a.
  • the thickness t 1 of the laminated material layer 9 was 2 mm.
  • Example 3 The clay produced in the same manner as in Example 1 was extruded from a mold of a screw molding machine to form a honeycomb segment molded body having the shape shown in FIG. After drying the honeycomb segment molded body at 120° C. for 2 hours in a hot air dryer, plugging portions 46 having the same composition as the clay were alternately formed in a checkerboard pattern on the end faces 45a and 45b of the cells 43, respectively.
  • the honeycomb segment 411 has an octagonal cross-section with a linear chamfer at each corner of a square with a side of 35 mm, and the length of the first outer peripheral wall 47a is 30 mm. The length of the second outer peripheral wall 47b was 4 mm, and the total length was 203 mm.
  • the honeycomb segment 411 had a cell structure in which the cross-sectional area of the inflow cells 43b was 1.58 times the cross-sectional area of the outflow cells 43a.
  • each branch 10a, 10a, 10a, 10a of the bonding material non-forming area 10 has the same length as the first outer peripheral wall 47a in a cross section perpendicular to the flow path, and has one end face in the axial direction. It extended from 45a to the other end surface 45b. Further, the intersection hole portion 20 extended in the axial direction from one end surface 45a to the other end surface 45b, and had a hole diameter t 2 of 7 mm.
  • the outer periphery of the obtained sintered body was processed into a circumferential shape using a lathe.
  • a plugging part 46 with a depth of 1 mm is formed at the end of the bonding material non-forming region 10 and the intersection hole part 20 on the side of one end surface 35a, and silicon carbide particles are formed on the circumferentially processed outer periphery.
  • a skin material containing colloidal silica was applied and dried to obtain a silicon carbide-based honeycomb filter 300 having non-bonded material forming areas 10 and intersecting pores 20.
  • Silicon Carbide Honeycomb Filter 300 has an outer diameter of 190 mm, an overall length of 203 mm, a peripheral wall thickness of 0.7 mm, a partition wall thickness of 8 mil (0.20 mm), and a cell density of 300 cpsi (46.5 cells/cm 2 ). , the cross-sectional area of the inflow cell was larger than the cross-sectional area of the outflow cell, and the thickness t 1 of the laminated material layer 9 was 2 mm.
  • Comparative example 1 The clay produced in the same manner as in Example 1 was extruded from a mold of a screw molding machine to form a honeycomb segment molded body with a square cross section as shown in FIG.
  • the honeycomb segment molded body was dried in a hot air dryer at 120°C for 2 hours.
  • Plugging parts 16a and 16b having the same composition as the clay are formed alternately in a checkerboard pattern on the end faces 15a and 15b of the cell 13, respectively, and after drying, the plugging is performed by firing in an oxidizing atmosphere at a temperature of 1300°C.
  • a honeycomb segment 111 having a section was obtained.
  • Honeycomb segment 111 had a square cross section of 35 mm on a side and a total length of 203 mm.
  • a bonding material slurry prepared in the same manner as in Example 1 was applied to the outer peripheral wall 17 of the honeycomb segments 111, and 6 ⁇ 6 honeycomb segments 111 were pressure-bonded as shown in FIG. After drying the bonded material, it was fired in an oxidizing atmosphere at a temperature of 1300°C, and the outer periphery of the obtained sintered body was processed into a circumferential shape using a lathe.
  • a silicon carbide honeycomb filter was obtained having a partition wall thickness of ), a cell density of 300 cpsi (46.5 cells/cm 2 ), and a bonding material layer thickness of 2 mm.
  • Honeycomb filter 510 Ceramic honeycomb structure 111, 211, 411: Honeycomb segment 9: Laminated material layer 11, 21, 31, 51, 61: Outer skin 12, 22, 52: Partition wall 13a, 23a, 43a, 53a: Inflow side sealed channel (outflow cell) 13b, 23b, 43b, 53b: Outflow side sealed channel (inflow cell) 15a, 25a, 45a, 55a: One end face (inflow side end face) 15b, 25b, 45b, 55b: Other end face (outflow side end face) 16a, 26a, 46a: Plugged part (inflow side sealed part) 16b, 26b, 46b: Plugged part (outflow side sealed part) 17, 27: Outer wall 27a, 47a: First outer wall 27b, 47b: Second outer wall 18: Center intersection 181, 182-1, 182-2, 182-3, 182-4: Intersection 10 : Non-formed area of laminated material 20: Hole at intersection t 1 : Thickness of laminated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)

Abstract

複数の流路を画成するセルを形成する隔壁、前記セルの端面を市松模様に交互に封止する目封止部、及び外周壁を有するハニカムセグメントと、前記ハニカムセグメントを接合するためにそれらの間の格子状隙間に充填された貼合せ材層と、接合されたハニカムセグメントを囲む外皮とを有し、前記格子状隙間の交差部のうち中心交差部が前記ハニカムフィルタの中心軸又はその近傍に位置しており、前記中心交差部から隣接する交差部まで四方に延在する格子状隙間部分に貼合せ材非形成領域が設けられている炭化珪素系ハニカムフィルタ。

Description

炭化珪素系ハニカムフィルタ
 本発明は、ディーゼルエンジン等の内燃機関から排出される排気ガス中の粒子状物質[Particulate Matter(PM)]等を除去し、排気ガスを浄化する炭化珪素系ハニカムフィルタに関する。
 ディーゼルエンジンの排気ガス中に含まれるNOxやPMが大気中に放出されると人体や環境に悪影響を与えるおそれがあるため、ディーゼルエンジンの排気管の途中に、NOx触媒を担持したハニカム構造体と、PMを捕集するためのセラミックハニカムフィルタとを装着することが従来から行われている。排気ガス中のPMを捕集するためのセラミックハニカムフィルタの一例を図9(a) 及び図9(b) に示す。セラミックハニカムフィルタ500は、多数の流路53a、53bを形成する多孔質の隔壁52と外周壁51とからなるセラミックハニカム構造体510と、流路53a、53bの排気ガス流入側端面55a及び流出側端面55bを市松模様に交互に封止する流入側封止部56a及び流出側封止部56bとからなる。排気ガスは、図9(b) に点線の矢印で示すように、排気ガス流入側端面55aに開口している流出側封止流路53bに流入し、隔壁52の表面及び内部に存在する連通孔を通過して隣接する流入側封止流路53aに流入し、排気ガス流出側端面55bから流出する。排気ガスが隔壁52の表面及び内部に存在する連通孔を通過する間に、排気ガス中のPMは捕集され、排気ガスの浄化が行われる。捕集されたPMは所定の堆積量に達すると燃焼され、セラミックハニカム構造体は再生される。このようなセラミックハニカム構造体の使用環境は益々過酷になってきており、その構成材料として、耐熱衝撃性に優れた炭化珪素(SiC)のような耐火性セラミックスが使用されるようになってきた。
 再生時のPMの不均一な燃焼や排気ガスの急激な温度変化などによる熱衝撃により、セラミックハニカム構造体内部に不均一な温度分布による熱応力が作用し、クラック、破壊、溶損等が発生する問題があった。このような問題に対して、図8に示すような複数の外形四角形状のハニカムセグメント111を図7に示すように貼合せ材層9を介して一体的に接合することにより、熱応力を分散緩和させる機能を持たせたセラミックハニカムフィルタ600が提案されている。
 例えば特許文献1は、複数個のハニカムセグメントが少なくとも無機繊維、無機バインダー、有機バインダー及び無機粒子からなる接合材層を介して一体的に接合されているセラミックハニカム構造体であって、各ハニカムセグメントは長手方向に沿って並列する複数の流路を有し、ガスの流入側と流出側とで開閉が逆になるように流路の各端面が市松模様状に交互に目封止されており、隣接する流路同士が多孔質な隔壁を通じて通気可能であるセラミックハニカム構造体を開示している。
 しかし、このような複数のハニカムセグメントからなる構造のセラミックハニカム構造体は、熱応力を分散させる機能を有しているものの、ハニカム構造体に酸化触媒を担持する際の高温の熱処理や、走行中における排ガスの急激な温度変化により、外周壁側の接合材層にクラックが発生しやすいという問題があった。
 この問題を解決する手段として、特許文献2は、排気ガスの流路となる複数のセルが中心軸方向に互いに並行するように配設された構造を有する複数のハニカムセグメントが接合材層を介して一体的に接合されたハニカムセグメント接合体と、ハニカムセグメント接合体の外周面を被覆する外周コート層とを備え、ハニカムセグメントが部分的な接合材層を介して接合されているハニカム構造体を開示している。
 しかし、特許文献2のセラミックハニカム構造体では、ハニカムセグメント間の格子状隙間の所定部分にのみ接合材層が配設されており、接合材層が形成されていないハニカムセグメントの接合面がハニカム構造体のほぼ全体に存在しているので、ハニカムセグメント間の熱伝導が悪い。そのため、セラミックハニカム構造体を再生する際に、不均一に堆積したPMの燃焼による局部的な発熱が隣接するハニカムセグメントに伝わりにくく、熱応力の分散及び緩和の機能が不十分であり、クラックが発生するおそれがある。
 特許文献3は、格子状に配列した複数個の角柱状のハニカムセグメントと、ハニカムセグメントの側面同士を互いに接合する接合材層と、ハニカムセグメントを囲むように配設された外周壁とを備えたハニカム構造体であって、各ハニカムセグメントは、流入端面から流出端面まで軸方向に延びる複数のセルを取り囲む多孔質の隔壁と、隔壁を取り囲む外壁とを有しており、セルは流入端面側又は流出端面側のいずれか一方の端部が目封止部によって目封止されており、格子状の接合材層の交点部分の一部又は全てに軸方向に延びる有底中空の空隙部が形成されており、ハニカムセグメントの軸方向長さに対する空隙部の軸方向深さの比率が5%以上であり、接合材層の厚さに対する空隙部の開口径の比率が10~140%であるハニカム構造体を開示している。特許文献3は、この構造により接合材層に発生したクラックの伸展を抑制できると記載している。
 特許文献3の実施例では、ハニカムセグメントの長さに対する空隙部の深さの比率が5~20%と小さい場合には空隙部は交点部分の全てに設けられているが、空隙部の深さの比率が50~80%と大きい場合には空隙部は交点部分の一部にしか設けられていない。このように、交点部分の全てに深い空隙部が設けられている例はない。
 また、特許文献3に記載の空隙部の断面形状は円形だけで、実施例では円筒形の木材を用いて空隙部が形成されている。ハニカムセグメント間の格子状隙間の交点部分に円筒形の木材を配置する場合、円筒形の木材の直径の上限は接合材層の厚さの√2倍であるので、ほぼ140%である。しかし、ハニカムセグメントの側面には公差があるので、接合材層の厚さの√2倍の直径の円筒形の木材を格子状隙間の交点部分に配置するのは事実上不可能で、円筒形の木材の直径の上限は140%より相当小さくならざるを得ない。その上、仮に円筒形の木材の直径が接合材層の厚さの140%であるとしても、円筒形の木材により形成される空隙部の断面積はクラックを十分に抑制するのに小さすぎる。
 以上の構造上の問題点から、特許文献3のハニカム構造体では熱応力の分散及び緩和の機能が不十分であり、クラックを十分に抑制することができないことが分った。
特開平8-28246号公報 特開2006-326381号公報 特開2019-171238号公報
発明の目的
 従って、本発明の目的は、ハニカムセグメント間の熱伝導を維持しつつ、局部的な発熱や排気ガスの急激な温度変化による熱衝撃などにより生じるクラックの発生及び進展を抑えることができる炭化珪素系ハニカムフィルタを提供することである。
 上記目的を達成するためには、(a) 熱応力の分散及び緩和が特に重要なハニカムフィルタの中央部に十分な貼合せ材非形成領域を設ける必要があること、及び(b) 格子状貼合せ材層の交差部に空孔部を設ける場合、そのサイズを十分に大きくする必要があることが分った。以上の知見に基づき鋭意検討した結果、本発明者は、(a) の中央部の貼合せ材非形成領域について、ハニカムフィルタの中心軸からハニカムセグメント間の格子状貼合せ材層に沿って十字形状に延在する形状にすると、ハニカムセグメント間の熱伝導を維持しつつ熱応力の分散及び緩和に最大の効果を発揮することができること、及び(b) の交差部空孔部について、流路に垂直な断面において、ハニカムセグメントの各角部に直線状の面取り部を設け、面取り面で形成される四角形状の交差部に貼合せ材のない空孔部を形成すると、ハニカムセグメント間の熱伝導を維持しつつ熱応力の分散及び緩和に最大の効果を発揮できることに想到し、本発明を完成した。
 すなわち、本発明の第一の炭化珪素系ハニカムフィルタは、両端面間に軸線方向に延在する複数の流路を画成するセルを形成する隔壁、前記セルの端面を市松模様に交互に封止する目封止部、及び外周壁を有するハニカムセグメントと、前記ハニカムセグメントを接合するためにそれらの間の格子状隙間に充填された貼合せ材層と、接合されたハニカムセグメントを囲む外皮とを有し、
 前記格子状隙間の交差部のうち前記ハニカムフィルタの中心軸又はその近傍に位置する交差部を中心交差部とすると、前記中心交差部から隣接する交差部まで四方に延在する格子状隙間部分に貼合せ材非形成領域が設けられていることを特徴とする。
 本発明の第二の炭化珪素系ハニカムフィルタは、両端面間に軸線方向に延在する複数の流路を画成するセルを形成する隔壁、前記セルの端面を市松模様に交互に封止する目封止部、及び外周壁を有するハニカムセグメントと、前記ハニカムセグメントを接合するためにそれらの間の格子状隙間に充填された貼合せ材層と、接合されたハニカムセグメントを囲む外皮とを有し、
 各ハニカムセグメントの流路方向に垂直な断面の外形が、四角形の各角部に面取り部を設けてなる八角形状であって、前記四角形の辺に相当する第一の外周壁と前記直線状の面取り部に相当する第二の外周壁により交互に構成される八角形状であり、
 貼合された前記ハニカムセグメント間の格子状隙間のうち、前記第二の外周壁が輪郭を構成する交差部に貼合せ材がない交差部空孔部が形成されており、
 前記第一の外周壁間の貼合せ材層の厚さt1に対する前記交差部空孔部の空孔径t2の比により定義される空孔比(t2/t1)が1.4超であることを特徴とする。
 本発明の第三の炭化珪素系ハニカムフィルタは、両端面間に軸線方向に延在する複数の流路を画成するセルを形成する隔壁、前記セルの端面を市松模様に交互に封止する目封止部、及び外周壁を有するハニカムセグメントと、前記ハニカムセグメントを接合するためにそれらの間の格子状隙間に充填された貼合せ材層と、接合されたハニカムセグメントを囲む外皮とを有し、
 前記格子状隙間の交差部のうち前記ハニカムフィルタの中心軸又はその近傍に位置する交差部を中心交差部とすると、前記中心交差部から隣接する交差部まで四方に延在する格子状隙間部分に貼合せ材非形成領域が設けられており、
 各ハニカムセグメントの流路方向に垂直な断面の外形が、四角形の各角部に面取り部を設けてなる八角形状であって、前記四角形の辺に相当する第一の外周壁と前記直線状の面取り部に相当する第二の外周壁により交互に構成される八角形状であり、
 貼合された前記ハニカムセグメント間の格子状隙間のうち、前記第二の外周壁が輪郭を構成する交差部に貼合せ材がない交差部空孔部が形成されており、
 前記第一の外周壁間の貼合せ材層の厚さt1に対する前記交差部空孔部の空孔径t2の比により定義される空孔比(t2/t1)が1.4超であることを特徴とする。
 前記交差部空孔部は全交差部のうちの30%以上であるのが好ましい。
 前記空孔比は1.5~5であるのが好ましい。
 前記ハニカムセグメントの前記外周壁は前記隔壁より厚いのが好ましい。
 前記第二の外周壁の流路方向に垂直な断面は、前記第二の外周壁に最も近い縦横の2つの隔壁と前記第二の外周壁の外周面とにより形成される三角形状であり、前記三角形の中心側頂点と前記外周面との距離により定義される前記第二の外周壁の中心方向最大厚さは前記第一の外周壁の厚さより厚いのが好ましい。
 流路方向に垂直な断面において、流出側端面が目封止された流入セルの断面積は流入側端面が目封止された流出セルの断面積より大きいのが好ましい。
 上記構成を有する本発明の炭化珪素系ハニカムフィルタは、ハニカムセグメント間の熱伝導を維持しつつ、局部的な発熱や排気ガスの急激な温度変化による熱衝撃などにより生じるクラックの発生や進展を抑えることができる。
本発明の第一のハニカムフィルタの一例を模式的に示す斜視図である。 本発明の第二のハニカムフィルタの一例を模式的に示す斜視図である。 本発明の第三のハニカムフィルタの一例を模式的に示す斜視図である。 本発明のハニカムフィルタに用いられるハニカムセグメントの一例を模式的に示す斜視図である。 図4(a) のハニカムセグメントの第二の外周壁を詳細に示す部分正面図である。 交差部空孔部の一例を示す部分断面図である。 交差部空孔部の別の例を示す部分断面図である。 交差部空孔部のさらに別の例を示す部分断面図である。 ハニカムセグメントの別の例を模式的に示す斜視図である。 従来の分割構造のセラミックハニカムフィルタを模式的に示す斜視図である。 ハニカムセグメントを模式的に示す斜視図である。 図8(a) のA-A断面図である。 従来のセラミックハニカムフィルタの一例を模式的に示す正面図である。 従来のセラミックハニカムフィルタの一例を模式的に示す軸方向に平行な断面図である。 Drop to Idle試験の温度制御を示すグラフである。
 本発明を図面を参照して以下詳細に説明するが、本発明はこれらに限定されるものではなく、発明の範囲を逸脱しない限り変更、修正又は改良を加えることができる。  
[1] 第一の炭化珪素系ハニカムフィルタ
(1-1) 構造
 図1に示す第一の炭化珪素系ハニカムフィルタ100は、格子状隙間を介して配置されたハニカムセグメント111と、ハニカムセグメント111を接合するように格子状隙間に形成された貼合せ材層9と、接合されたハニカムセグメント111を囲む外皮11とを備えている。各ハニカムセグメント111は、図8に示すように、一方の端面15aから他方の端面15bに延びる複数のセル13を有し、各セル13の隔壁12は一方の端面15aから他方の端面15bに延びる流体の流路を形成している。セル13の一方の端面15a側の端部には目封止部16aが形成されており、他方の端面15b側の端部には目封止部16bが形成されている。各セル13が両端とも目封止部16a、16bにより封印されないように、目封止部16a、16bは各端面15a、15bにおいて交互に市松模様に配置されている。
 格子状に接合されたハニカムセグメント111の間には、貼合せ材層9の他に、貼合せ材非形成領域10が設けられている。流路に垂直な断面において格子状隙間の交差部のうちハニカムフィルタ100の中心軸G又はその近傍に位置する交差部を中心交差部18と定義すると、貼合せ材非形成領域10は断面方向では中心交差部18から四方に延在する隙間に沿って十字形状に延在するとともに、軸線方向では両端面15a、15b間に延在する形状を有する。ここで、「中心軸Gの近傍」とは、中心軸Gからハニカムセグメント111の一辺の長さを半径とする円の範囲内にあることを意味する。
 ハニカムフィルタ100の中心軸Gに格子状隙間の交差部が位置する場合には中心軸G上の交差部を中心交差部18とすることに問題ないが、中心軸Gに格子状隙間の交差部が位置しない場合には、近傍のどの交差部を中心交差部18とするかが問題となる。この場合、中心軸Gに最も近い交差部を中心交差部18とするのが好ましいが、本発明の効果を損なわない限り最も近い交差部以外の交差部を中心交差部18としても良い。一般に、偶数個×偶数個のハニカムセグメント111によりハニカムフィルタ100を構成する場合には中心交差部18は中心軸G上又はそれに極めて近い位置にくるのが普通であるが、奇数個×奇数個のハニカムセグメント111によりハニカムフィルタ100を構成する場合には4つの交差部で囲まれた領域内に中心軸Gが位置する。前者の場合、中心軸Gに最も近い交差部と中心軸Gとの直線距離は他の交差部と中心軸Gとの直線距離より十分に短いのが普通であるので、中心軸Gに最も近い交差部を中心交差部18とするのが好ましい。後者の場合、4つの交差部と中心軸Gとの直線距離に大きな差があれば中心軸Gに最も近い交差部を中心交差部18とするのが好ましいが、大きな差がなければ本発明の効果を損なわない限り他の交差部を中心交差部18としても良い。
 図1に示す例では、貼合せ材非形成領域10の各枝10a、10a、10a、10aは中心交差部18とそれに隣接する交差部181、181、181、181との間に延在しているが、ハニカムフィルタ100の強度を損なわない限り、必要に応じて各枝10a、10a、10a、10aの長さを中心交差部181から二つ隣の交差部182-1、182-2、182-3、182-4まで拡大しても良い。
 上記構成により、不均一に堆積したPMの燃焼や排気ガスの急激な温度変化などによる熱衝撃が発生した場合でも、最も温度が上がりやすいハニカムフィルタ100の中央部に貼合せ材が存在しないので、ハニカムセグメント間の熱伝導を維持しつつハニカムセグメント111の熱応力を緩和することができ、ハニカムフィルタ100にクラックが生じにくくなる。さらに、クラックが生じた場合でも、貼合せ材非形成領域10によりクラックの進展が抑制される。
 ハニカムセグメント111の外周壁17を隔壁12より厚くすると、ハニカムセグメント111の熱容量が大きくなり、熱衝撃によるクラックがより生じにくくなるので好ましい。外周壁17の厚さは隔壁の厚さの1.3倍以上が好ましく、1.6倍以上がより好ましく、2倍以上がさらに好ましい。圧力損失の増大を避けるため、外周壁17の厚さは隔壁の厚さの10倍以下が好ましく、9倍以下がより好ましい。例えば、外周壁17の厚さの範囲は隔壁の厚さの1.3~10倍が好ましく、1.6~9倍がより好ましく、2~9倍がさらに好ましい。
 ハニカムセグメント111のセル形状の一例では、図6に示すように、セルの流路方向に垂直な断面において、流出側端面が目封止されたセル(排気ガス流入セル)43bの断面積が流入側端面が目封止されたセル(排気ガス流出セル)43aの断面積より大きい。これにより、再生が開始されるまでのPM捕集量を増大させるとともに、PMが捕集された際の圧力損失を抑制することができる。排気ガス流入セル43bの断面積は排気ガス流出セル43aの断面積の1.1~2.0倍であるのが好ましく、1.2~1.9倍であるのがより好ましい。
 排気ガス中のPMが捕集されずに流出するのを防ぐため、貼合せ材非形成領域10の端面15a、15bの一方又は両方を目封止部(図示せず)で目封止するのが好ましい。
(1-2) 製造方法
(a) ハニカムセグメントの製造
 炭化珪素粒子、アルミナ粒子及び水酸化マグネシウム粒子からなる成形原料100質量%に対して、5~15質量%の有機バインダーを混合する。炭化珪素粒子は30~50μmの平均粒径を有するのが好ましい。炭化珪素粒子100質量%に対して、アルミナ粒子及び水酸化マグネシウム粒子は合計で8~15質量%であるのが好ましい。
 有機バインダーは、メチルセルロース、エチルセルロース、エチルメチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルエチルセルロース等を挙げることができる。これらの中でも、メチルセルロース又はヒドロキシプロピルメチルセルロースが好ましい。
 得られた混合物に水を添加し、混練して可塑性の坏土を形成する。成形可能な坏土の硬度とするために、水の添加量を成形原料100質量%に対して20~50質量%とするのが好ましい。
 坏土をスクリュー成形機の金型から押出し、図8に示すハニカムセグメント111の成形体を形成し、乾燥させる。金型及び押出成形法は公知のもので良い。乾燥の方法は特に限定されないが、例えば、熱風乾燥、マイクロ波加熱乾燥、高周波加熱乾燥等の方法を用いることができる。
 乾燥後に必要に応じて端面、外周等の加工を施した後、ハニカムセグメント111と同じ組成の坏土によりセル13の各端面15a、15bを市松模様状に交互に目封止する目封止部16a、16bを形成する。目封止されたハニカムセグメント111を1100~1350℃の温度で酸化雰囲気中で焼成することにより、炭化珪素系ハニカムセグメント111を得る。
(b) ハニカムフィルタの製造
 ハニカムセグメント111を貼合せる材料(貼合せ材)は、炭化珪素骨材粒子及び結合材粒子からなる貼合せ材原料と、有機バインダーと、必要に応じて無機バインダー及び造孔材とを含有する。結合材粒子はアルミニウム源、マグネシウム源、シリカ源及びこれらの化合物からなる群から選ばれた少なくとも一種からなる。アルミナ源としてはアルミナ又は水酸化アルミニウムが挙げられ、マグネシウム源としては酸化マグネシウム又は水酸化マグネシウムが挙げられる。アルミナ源粒子とマグネシウム源粒子の合計は、炭化珪素粒子100質量%に対して5~25質量%であるのが好ましい。
 有機バインダーはハニカムセグメントの製造に用いたものと同じで良い。有機バインダーの添加量は、貼合せ材原料100質量%に対して5~15質量%であるのが好ましい。
 無機バインダーとしてはコロイダルシリカ、コロイダルアルミナ等を挙げることができる。無機バインダーの添加量は貼合せ材原料100質量%に対して40質量%以下とするのが好ましい。
 造孔材としては、発泡性樹脂、発泡済樹脂、カーボン、吸水性樹脂、フライアッシュバルーン等を挙げることができる。これらの中でも粒子径のばらつきが小さい発泡性樹脂又は発泡済樹脂が好ましい。造孔材の添加量は貼合せ材原料100質量%に対して2~20質量%であるのが好ましい。
 得られた混合物に水を添加して混練し、貼合せ材スラリーを生成する。水の添加量は貼合せ材原料100質量%に対して20~50質量%であるのが好ましい。
 貼合せ材スラリーを各ハニカムセグメント111の外周壁17に塗布した後、図1に示すようにハニカムセグメント111同士を貼合せ材を介して圧着し接合すると、ハニカムセグメント111の外周壁17間に格子状の貼合せ材層9が形成される。ここで、中心交差部18から直近の4つの交差部181、181、181、181までの範囲にあるハニカムセグメント111間の隙間に貼合せ材のない貼合せ材非形成領域10を形成するために、その範囲内のハニカムセグメント111の各隙間に、貼合せ材層9と同じ厚さ及びハニカムセグメント111の一辺と同じの長さを有する板状スペーサを配置した後で、ハニカムセグメント111を接合する。板状スペーサにより上記範囲内のハニカムセグメント111の隙間に貼合せ材が侵入しないので、十字形状の貼合せ材非形成領域が形成される。板状スペーサは焼失しやすい木製、紙製又は樹脂製であるのが好ましい。
 図示の例では貼合せ材非形成領域10は4つの交差部181、181、181、181間の十字形状の隙間であるが、十字形状の隙間を4つの交差部182-1、182-2、182-3、182-4間の範囲まで拡大しても良い。その場合、交差部181から各交差部182-1、182-2、182-3、182-4までのハニカムセグメント111の各隙間に板状スペーサを配置する。排気ガス中のPMの流出を防ぐため、貼合せ材非形成領域10の一方又は両方の端面15a、15bに目封止部(図示せず)を形成するのが好ましい。前記目封止部の深さは1~2 mmで良い。
 ハニカムセグメント111間の貼合せ材層9を乾燥後、1100~1350℃の温度で酸化雰囲気中で焼成すると、板状スペーサは焼失し、貼合せ材非形成領域10が形成される。得られた焼結体の外周を旋盤で円状に加工した後、円状外周に少なくとも炭化珪素粒子及び無機バインダーを含有する外皮材を塗布して外皮11を形成し、乾燥させることにより炭化珪素系ハニカムフィルタを得る。
[2] 第二の炭化珪素系ハニカムフィルタ
(2-1) 構造
 図2に示す第二の炭化珪素系ハニカムフィルタ200は、格子状隙間を介して配置された図4(a) に示す形状のハニカムセグメント211と、ハニカムセグメント211の外周壁27を接合するように格子状隙間に形成された貼合せ材層9と、接合されたハニカムセグメント211を囲むように配設された外皮21とを備えている。各ハニカムセグメント211は一方の端面25aから他方の端面25bに軸線方向に延びる複数のセル23を有し、各セル23の隔壁22は一方の端面25aから他方の端面25bに軸線方向に延びる流路を形成している。セル23の一方又は両方の端面25a、25b側の端部には目封止部26a、26bが形成されている。各セル23が両端とも目封止部26a、26bにより封印されないように、目封止部26a、26bは各端面25a、25bにおいて交互に市松模様に配置されている。
 各ハニカムセグメント211の流路方向に垂直な断面形状は、四角形の各角部に面取り部を設けてなる八角形状である。ハニカムセグメント211の貼り合わせを容易にするために、それらの輪郭を形成する四角形の各角は90°であるのが好ましく、全ての辺も等しいのがより好ましい。また、前記面取り部は直線状であるのが好ましく、四角形の辺に対して45°の傾斜を有する直線状であるのがより好ましい。すなわち、各ハニカムセグメント211の流路方向に垂直な断面形状は、長方形の各角部に45°の傾斜を有する直線状の面取り部を設けてなる八角形状であるのが好ましく、正方形の各角部に45°の傾斜を有する直線状の面取り部を設けてなる八角形状であるのがより好ましい。
 各ハニカムセグメント211の八角形状の外壁は、四角形の辺に相当する長い第一の外周壁27aと面取り部に相当する短い第二の外周壁27bとからなる。このような八角形状の外壁を有する複数個のハニカムセグメント211が縦横に貼合されると、ハニカムセグメント211間に格子状隙間が形成されるとともに、対面する4つの第二の外周壁27bが輪郭を構成する交差部が形成される。
 隣接する第二の外周壁27bは格子状隙間の幅の分だけ離隔しているので、交差部の断面は第二の外周壁27bの輪郭以外の部分で種々の形状となり得る。ところが、交差部に形成される空孔部の断面形状は交差部に載置される棒状スペーサ(後述する)の断面形状により決まる。従って、交差部の輪郭を格子状隙間の部分まで規定する必要はなく、ここでは「対面する4つの第二の外周壁27bが輪郭を構成する形状」とだけ規定することにする。
 第二の炭化珪素系ハニカムフィルタは、対面する第一の外周壁27aの間の格子状隙間には厚さt1の貼合せ材層9が形成されるが、格子状隙間の交差部には貼合せ材を有しない交差部空孔部20が形成されることを特徴とする。上記の通り、交差部空孔部20の断面形状は、第二の外周壁27bが輪郭を構成する交差部に収容可能な棒状スペーサの断面形状により決まる。例えば、棒状スペーサの断面形状が第二の外周壁27bに接する正方形又は円形である場合、得られる交差部空孔部20の断面形状は正方形又は円形となる。いずれにしても、各交差部空孔部20は一方の端面25aから他方の端面25bまで軸線方向に延在するのが好ましい。
 棒状スペーサは、製作時に下側に位置する2つの第二の外周壁27bに接するが、上側の2つの第二の外周壁27bに対しては必ずしも接している必要はない。しかし、交差部空孔部20の断面積をクラックを十分に抑制できるように最大化するためには、交差部空孔部20の輪郭は全ての第二の外周壁27bに接しているのが好ましい。ただし、誤差程度の隙間は許容されるので、本明細書では「交差部空孔部20の輪郭が第二の外周壁27bにほぼ接しているのが好ましい」ということにする。
 図5(a)、図5(b) 及び図5(c) はそれぞれ正方形断面を有する交差部空孔部20a、八角形断面を有する交差部空孔部20b、及び円形断面を有する交差部空孔部20cを示す。
 図5(a) に示す正方形断面の交差部空孔部20aは、第二の外周壁27bに接する全ての辺が貼合せ材層19内で連結しており、上記3種類の交差部空孔部20a、20b、20cのなかでt2 2と最も大きな断面積を有する。対面する2つの第二の外周壁27bの間隔(空孔径)t2と貼合せ材層19の厚さt1との比(空孔比t2/t1)は1.4超であるのが好ましい。空孔比t2/t1が1.4以下であると、発生したクラックの進展を抑制する効果が不十分である。空孔比t2/t1は好ましくは1.5以上であり、より好ましくは2以上である。一方、空孔比t2/t1が大きすぎると、ハニカムフィルタの強度が低下するので好ましくない。空孔比t2/t1は好ましくは7以下であり、より好ましくは5以下であり、最も好ましくは4以下である。従って、正方形断面の交差部空孔部20aにおける空孔比t2/t1の範囲については、一般に1.4超~7であり、好ましくは1.5~5であり、より好ましくは2~4である。空孔比t2/t1が1.4超であるので、交差部空孔部20aの断面積は1.4 t1×1.4 t1超=1.96 t1 2超である。
 図5(b) に示す八角形断面の交差部空孔部20bは、第二の外周壁27bに接する長さの4つの辺と貼合せ材層19の幅方向の辺とからなり、(t2 2-t1 2)の断面積を有する。前記断面積の式から、t2がt1より十分に大きくなければ交差部空孔部20bは十分な断面積を確保できないことが分かる。そのため、空孔比t2/t1は1.7以上であるのが好ましく、2以上であるのがより好ましく、2.5以上であるのが最も好ましい。また、空孔比t2/t1の上限については、正方形断面の場合と同様に、好ましくは7であり、より好ましくは5であり、最も好ましくは4である。従って、八角形断面の交差部空孔部20bにおける空孔比t2/t1の範囲については、好ましくは1.7~7であり、より好ましくは2~5であり、最も好ましくは2.5~4である。上記範囲内の空孔比t2/t1であると、八角形断面の交差部空孔部20bは十分大きな断面積を有するとともに貼合せ材層19に侵入していないので、クラックを十分に抑制できる断面積の確保と貼合せ強度との両立を達成できる。
 図5(c) に示す円形断面の交差部空孔部20cは、第二の外周壁27bに接する直径を有するので、(π/4)t2 2の断面積を有する。交差部空孔部20cが十分な断面積を確保するために、空孔比t2/t1は1.5以上であるのが好ましく、2以上であるのがより好ましく、2.5以上であるのが最も好ましい。また、空孔比t2/t1の上限については、正方形断面の場合と同様に、好ましくは7であり、より好ましくは5であり、最も好ましくは4である。従って、円形断面の交差部空孔部20cにおける空孔比t2/t1の範囲については、好ましくは1.5~7であり、より好ましくは2~5であり、最も好ましくは2.5~4である。上記範囲内の空孔比t2/t1であると、円形断面の交差部空孔部20cは十分大きな断面積を有するとともに貼合せ材層19にほとんど侵入していないので、クラックを十分に抑制できる断面積の確保と貼合せ強度との両立を達成できる。
 全ての断面形状の交差部空孔部の空孔比t2/t1の範囲についてまとめると、一般に一般に1.4超~7であり、好ましくは1.5~5であり、より好ましくは2~4である。
 不均一に堆積したPMの燃焼による局部的な温度上昇が各ハニカムセグメント211のどの部位で生じてもクラックの発生を抑えるために、各ハニカムセグメント211における交差部空孔部20の全交差部に対する割合は30%以上あるのが好ましく、50%以上であるのがより好ましく、70%以上であるのが最も好ましい。交差部空孔部20の割合の上限は全交差部の100%が好ましいが、95%以下でも良い。
 上記構成により、不均一に堆積したPMの燃焼や排気ガスの急激な温度変化などによる熱衝撃が発生した場合でも、交差部空孔部20に貼合せ材が存在しないので、ハニカムセグメント間の熱伝導を維持しつつ、ハニカムセグメント211の熱応力を緩和することができ、ハニカムフィルタ100にクラックが生じにくくなる。さらに、クラックが生じた場合でも、交差部空孔部20によりクラックの進展が抑制される。
 各ハニカムセグメント211の外周壁27を隔壁22より厚くすると、ハニカムセグメント211の熱容量が大きくなり、熱衝撃によるクラックが生じにくくなるので好ましい。外周壁27の厚さは隔壁22の厚さの1.3倍以上がより好ましく、より好ましくは、1.6倍以上がさらに好ましく、2倍以上が最も好ましい。また、圧力損失が大きくなることを抑制するため、外周壁27の厚さは隔壁22の厚さの10倍以下が好ましく、9倍以下がより好ましい。
 ハニカムセグメント211は、第二の外周壁27bがある角部に流路を有さないのが好ましい。そのため、各角部にある第二の外周壁27bは、図4(b) に示すようにハニカムセグメント211の中心側に頂点Pを有する三角形271の形状を有するのが好ましい。この場合、各第二の外周壁27bの中心方向における最大厚さL(第二の外周壁27bの外周面27b’と頂点Pとの距離)は、第一の外周壁27aの厚さより厚い。特にハニカムセグメント211が各角部に45°の傾斜の直線状の面取り部を有する八角形状である場合、三角形271は外周面27b’を底辺とする直角二等辺三角形であり、最大厚さLは第二の外周壁27bの外周面27b’の長さの半分である。このような形状により、ハニカムセグメント211の熱容量が大きくなり、不均一に堆積したPMの燃焼によりハニカムセグメント211に局部的な温度上昇が発生しても、クラックの発生を抑えることができる。
 図6に示すように、ハニカムセグメント411のセルの流路方向に垂直な断面において、流出側端面が目封止された流入セル43bの断面積が、流入側端面が目封止された流出セル43aの断面積より大きくしても良い。これにより、再生が開始されるまでのPM捕集量を増大させるとともに、PMが捕集された際の圧力損失を抑制することができる。流入セル43bの断面積は流出セル43aの断面積の1.1~2.0倍であるのが好ましく、1.2~1.9倍であるのがより好ましい。
 排気ガス中のPMが捕集されずに流出するのを防ぐため、交差部空孔部20の端面25a、25bの一方又は両方を目封止部(図示せず)で目封止するのが好ましい。
(2-2) 製造方法
(a) ハニカムセグメントの製造
 ハニカムセグメントの製造原料は第一の炭化珪素系ハニカムフィルタの場合と同じで良く、また製造方法も図4(a) に示すハニカムセグメント211の成形体を形成するように金型を変える以外同じで良い。
(b) ハニカムフィルタの製造
 貼合せ材スラリーは第一の炭化珪素系ハニカムフィルタに用いたものと同じで良い。貼合せ材スラリーを各ハニカムセグメント211の外壁27に塗布し、図2に示すように、ハニカムセグメント211同士を貼合せ材を介して圧着し、接合する。この時、ハニカムセグメント211間の格子状隙間の所望の交差部に貼合せ材が侵入しないように、交差部と同じ寸法でハニカムセグメント211と同じ長さの棒状スペーサを各交差部に配置する。棒状スペーサは焼失しやすい木製、紙製、樹脂製等であるのが好ましい。
 ハニカムセグメント211を接合した貼合せ材層を乾燥後、1100~1350℃の温度で酸化雰囲気中で焼成することにより、棒状スペーサは焼失し、交差部空孔部20が形成される。得られた焼結体の外周を旋盤で円状に加工する。
 交差部空孔部20の端面25a、25bの一方又は両方に1~2 mmの深さの目封止部(図示せず)を形成する。また、円状に加工した外周面に、少なくとも炭化珪素粒子及び無機バインダーを含有する外皮材を塗布して外皮11を形成し、乾燥させて、第二の炭化珪素系ハニカムフィルタ200を得る。
[3] 第三の炭化珪素系ハニカムフィルタ
(3-1) 構造
 第三の炭化珪素系ハニカムフィルタ300は、格子状隙間を介して配置された図4(a) に示す形状のハニカムセグメント211と、ハニカムセグメント211の外周壁27を接合するように格子状隙間に形成された貼合せ材層9と、接合されたハニカムセグメント211を囲むように配設された外皮31とを備えているが、図3に示すように、第一の炭化珪素系ハニカムフィルタ100と第二の炭化珪素系ハニカムフィルタ200とを組み合わせた構造を有する。各ハニカムセグメント211自体は第二の炭化珪素系ハニカムフィルタ200のものと同じで良い。
 各角部に面取り部を有するハニカムセグメント211を格子状隙間を介して配置してなる第三の炭化珪素系ハニカムフィルタ300は、中心交差部18から十字形状に延在する貼合せ材非形成領域10と、格子状隙間の交差部に位置する交差部空孔部20とを有する。
 貼合せ材非形成領域10は第一の炭化珪素系ハニカムフィルタ100におけるものと同じで良い。第一の炭化珪素系ハニカムフィルタ100と同様に、中心交差部18はハニカムフィルタ100の中心軸G又はその近傍に位置する。貼合せ材非形成領域10の各枝10a、10a、10a、10aは図3に示すように中心交差部18とそれに隣接する交差部181、181、181、181との間に延在しているのが好ましいが、必要に応じて貼合せ材非形成領域10の範囲を中心交差部18から二つ隣の交差部182-1、182-2、182-3、182-4まで拡大しても良い。
 交差部空孔部20は第二の炭化珪素系ハニカムフィルタ200におけるものと同じで良い。ハニカムセグメント211の第一の外周壁27aに形成される貼合せ材層9の厚さt1に対する交差部空孔部20の比(空孔比t2/t1)は1.4超であるのが好ましい。
 上記構成により最も温度が上がりやすいハニカムフィルタの中央部だけでなく格子状隙間の交差部にも貼合せ材が存在しないので、不均一に堆積したPMの燃焼や排気ガスの急激な温度変化などによる熱衝撃が発生した場合でも、ハニカムセグメント間の熱伝導を維持しつつ、ハニカムセグメント211に発生した熱応力を緩和し易くなり、ハニカムフィルタ300にクラックが生じにくくなる。また、クラックが生じた場合でも、交差部空孔部20によりクラックの進展を抑えることができる。
 第一及び第二の第二の炭化珪素系ハニカムフィルタと同様に、図6に示すように、流路方向に垂直な断面において排気ガス流入セル43bの断面積を排気ガス流出セル43aの断面積より大きくするのが好ましい。これにより、再生が開始されるまでのPM捕集量を増大させるとともに、PMが捕集された際の圧力損失を抑制することができる。排気ガス流入セル43bの断面積は排気ガス流出セル43aの断面積の1.1~2.0倍であるのが好ましく、1.2~1.9倍であるのがより好ましい。
 排気ガス中のPMの流出を防ぐため、貼合せ材非形成領域10と交差部空孔部20の端面25a、25bの一方又は両方を目封止部(図示せず)で目封止しても良い。
(3-2) 製造方法
 中心交差部18とそれに隣接する交差部181、181、181、181との間にある十字形状の隙間と、ハニカムセグメント211の第二の外周壁27bで形成される交差部に貼合せ材が侵入しないように、格子状隙間と同じ厚さでハニカムセグメント211と同じ長さの板状スペーサを中心交差部18とそれに隣接する交差部181、181、181、181との間の十字形状の隙間に配置するとともに、格子状隙間の交差部に交差部と同じ寸法でハニカムセグメント211と同じ長さの棒状スペーサを配置する。それら以外は第一又は第二の炭化珪素系ハニカムフィルタ100、200と同様に、ハニカムセグメント211の外周壁27に貼合せ材スラリーを塗布し、ハニカムセグメント211を接合する。この時、第二の炭化珪素系ハニカムフィルタ200と同様にハニカムセグメント211の中心交差部18を、ハニカムフィルタの中心軸G又はその近傍にする。板状スペーサ及び棒状スペーサは焼失しやすい木製、紙製、樹脂製等であるのが好ましい。板状スペーサを、中心交差部18から二つ隣の交差部182-1、182-2、182-3、182-4まで占める寸法としても良い。
 格子状隙間に形成された貼合せ材層9を乾燥後、1100~1350℃の温度で酸化雰囲気中で焼成すると、板状スペーサ及び棒状スペーサが焼失し、貼合せ材非形成領域10及び交差部空孔部20が形成される。得られた焼結体の外周を旋盤で円周状に加工する。
 貼合せ材非形成領域10と交差部空孔部20の端面35a、35bの一方又は両方に、1~2 mmの深さの目封止部(図示せず)を形成する。円周状に加工された外周面に、少なくとも炭化珪素粒子及び無機バインダーを含有する外皮材を塗布して外皮11を形成した後乾燥させ、第三の炭化珪素系ハニカムフィルタを作製する。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
 100質量%の炭化珪素粒子、5.9質量%のアルミナ粒子及び4.1質量%の水酸化マグネシウム粒子からなる成形原料と、有機バインダーとして10質量%のヒドロキシプロピルメチルセルロースとを混合し、得られた混合物に水を成形原料100質量%当たり35質量%の割合で添加して混練し、可塑性の坏土を生成した。可塑性坏土をスクリュー成形機の金型から押出成形し、図8に示すように正方形状断面を有するハニカムセグメント成形体を成形し、熱風乾燥機により120℃で2時間乾燥させた。その後、坏土と同じ組成の目封止材によりハニカムセグメント成形体のセル13の端面15a、15bをそれぞれ市松模様状に交互に目封止する目封止部16a、16bを形成した。目封止部16a、16bを乾燥後1300℃の温度で酸化雰囲気中で焼成し、目封止部を有するハニカムセグメント111を得た。ハニカムセグメント111は一辺35 mmの正方形断面及び203 mmの全長を有していた。
 炭化珪素粒子100質量%に対して、アルミナ粒子5.9質量%、水酸化マグネシウム粒子4.1質量%、造孔材としての発泡済み樹脂4.0質量%、コロイダルシリカ8.0質量%、有機バインダーとしてのヒドロキシプロピルメチルセルロース10質量%、及び水30質量%を混合して混錬し、貼合せ材スラリーを生成した。
 ハニカムフィルタの中心軸G又はその近傍の隙間に貼合せ材スラリーが侵入しないように、ハニカムセグメント111間の格子状隙間と同じ厚さでハニカムセグメント111と同じ長さの木板スペーサを、格子状隙間の中心交差部18とそれに隣接する交差部181、181、181、181との間の十字形状の隙間に相当するハニカムセグメント111の外周壁に予め配置した後、貼合せ材スラリーをハニカムセグメント111の外周壁17に塗布し、6×6個のハニカムセグメント111を貼合せ材スラリーを介して圧着し、図1に示すように接合した。
 形成された貼合せ材層9を乾燥後、1300℃の温度で酸化雰囲気中で焼成し、木板スペーサを焼失させた。得られた焼結体の外周を旋盤で円周状に加工した。円周状に加工したハニカムフィルタの外周に炭化珪素粒子とコロイダルシリカを含有する外皮材を塗布した後乾燥した。ハニカムフィルタの貼合せ材非形成領域10の一方の端面15aに深さ1 mmの目封止部(図示せず)を形成した。得られた貼合せ材非形成領域10を有する炭化珪素系ハニカムフィルタ100は、190 mmの外径、203 mmの全長、0.7 mmの外周壁厚さ、8 mil (0.20 mm) の隔壁厚さ、300 cpsi (46.5セル/cm2) のセル密度、及び2 mmの貼合せ材層厚さを有していた。
 この炭化珪素系ハニカムフィルタ100を用いて、以下の工程からなるDrop to Idle試験を行った。まず、テストスタンドに固定したハニカムフィルタに、空気流量4.5 Nm3/minで、平均粒径0.11μmの燃焼煤をフィルタ1リットル当たりの煤付着量が6 gとなるように1.57 g/hの速度で投入した。車両が登坂路最頂部で急停車した状態(Drop to Idle)を再現するため、図10に示す温度制御でハニカムフィルタに燃焼ガスを流入させ、ハニカムフィルタ入口温度が600℃となった時に燃焼を停止し、フィルタ内部を最高温度に到達させた。その後、ハニカムフィルタを取り出して、ハニカムフィルタ100に破損が生じていないかを調べた。その結果、実施例1の炭化珪素系ハニカムフィルタ100にクラックが発生していないことが確認された。
実施例2
 実施例1と同様に作製した坏土をスクリュー成形機の金型から押出すことにより、図6に示すように正方形の各角部に45°の傾斜角の直線状面取り部を設けた八角形状の断面を有し、流入セルの断面積が流出セルの断面積より大きいハニカムセグメント成形体を形成し、熱風乾燥機で120℃で2時間乾燥させた。坏土と同じ組成の目封止材によりハニカムセグメント成形体のセル43の端面45a、45b側の端部をそれぞれ市松模様状に交互に充填し、乾燥することにより流入側目封止部46及び流出側目封止部46を形成した。
 実施例1と同様に作製した貼合せ材スラリーをハニカムセグメント411の第一の外周壁47aの外周面に塗布した後、図2に示すように6×6個のハニカムセグメント411を貼合せ材を介して圧着接合した。この時、貼合されたハニカムセグメント411の第二の外周壁47bが輪郭を構成する交差部に貼合せ材が侵入しないように、正方形断面を有しハニカムセグメント411と同じ長さの木棒スペーサを全ての交差部に予め配置しておいた。木棒スペーサの正方形断面の一辺の長さは約7 mm(第二の外周壁47bの長さ+貼合せ材層の厚さt1×√2)とした。
 貼合せ材を乾燥後、1300℃の温度で酸化雰囲気中で焼成して木棒スペーサを焼失させ、正方形状の断面を有し、一方の端面45aから他方の端面45bまで軸線方向に延在する交差部空孔部20を形成した。交差部空孔部20は7 mmの空孔径t2を有していた。
 得られた焼結体の外周を旋盤で円周状に加工した。交差部空孔部20の一方の端面45a側の端部に深さ1 mmの目封止部46を形成し、円周状に加工した外周に炭化珪素粒子とコロイダルシリカを含有する外皮材を塗布した後乾燥し、交差部空孔部20を有する炭化珪素系ハニカムフィルタ200を得た。
 炭化珪素系ハニカムフィルタ200は190 mmの外径及び203 mmの全長を有していた。ハニカムセグメント411は一辺が35 mmの正方形の各角部に45°の傾斜角の直線状面取り部を設けたの八角形状断面を有し、第一の外周壁47aは30 mmの長さ及び0.7 mmの厚さを有し、第二の外周壁47bは4 mmの長さ及び2 mmの最大厚さLを有していた。また、ハニカムセグメント411は8 mil (0.20 mm) の隔壁厚さ及び300 cpsi (46.5セル/cm2) のセル密度を有していた。ハニカムセグメント411の流入セル43bの断面積は流出セル43aの断面積の1.58倍であった。貼合せ材層9の厚さt1は2 mmであった。
 実施例1と同じDrop to Idle試験を行った結果、実施例2の炭化珪素系ハニカムフィルタ200にクラックが発生していないことが確認された。
実施例3
 実施例1と同様に作製した坏土をスクリュー成形機の金型から押出し、図6に示す形状のハニカムセグメント成形体を成形した。ハニカムセグメント成形体を熱風乾燥機で120℃で2時間乾燥させた後、坏土と同じ組成の目封止部46をセル43の端面45a、45bにそれぞれ市松模様状に交互に形成した。ハニカムセグメント411は、一辺が35 mmの正方形の各角部に45°の傾斜角の直線状面取り部を設けた八角形状の断面を有し、第一の外周壁47aの長さは30 mmで、第二の外周壁47bの長さは4 mmであり、かつ全長は203 mmであった。また、第一の外周壁47aの厚さは0.7 mmであり、第二の外周壁47bの最大厚さLは2 mmであった。ハニカムセグメント411は流入セル43bの断面積が流出セル43aの断面積の1.58倍のセル構造を有していた。
 実施例1と同様に作製した貼合せ材スラリーをハニカムセグメント411の第一の外周壁47aの外周面に塗布した後、図3に示すように6×6個のハニカムセグメント411を貼合せ材を介して圧着接合した。この時、(a) ハニカムセグメント411の格子状隙間の中心交差部18とそれに隣接する交差部181、181、181、181との間の十字形状の隙間に、格子状隙間と同じ厚さでハニカムセグメント411と同じ長さの木板スペーサを予め配置するとともに、(b) 貼合されたハニカムセグメント411の第二の外周壁47bが輪郭を構成する全ての交差部に、正方形断面を有しハニカムセグメント411と同じ長さの木棒スペーサを予め配置しておいた。木棒スペーサの正方形断面の一辺の長さは約7 mm(第二の外周壁47bの長さ+貼合せ材層の厚さt1×√2)とした。
 貼合せ材を乾燥後、1300℃の温度で酸化雰囲気中で焼成して木板スペーサ及び木棒スペーサを焼失させ、断面十字形状の貼合せ材非形成領域10及び断面正方形の交差部空孔部20を形成した。貼合せ材非形成領域10の各枝10a、10a、10a、10aは、流路に垂直な断面では第一の外周壁47aの長さと同じ長さを有しており、軸線方向では一方の端面45aから他方の端面45bまで延在していた。また、交差部空孔部20は一方の端面45aから他方の端面45bまで軸線方向に延在し、7 mmの空孔径t2を有していた。得られた焼結体の外周を旋盤で円周状に加工した。
 貼合せ材非形成領域10及び交差部空孔部20の一方の端面35a側の端部に深さ1 mmの目封止部46を形成し、円周状に加工した外周に炭化珪素粒子とコロイダルシリカを含有する外皮材を塗布した後乾燥し、貼合せ材非形成領域10及び交差部空孔部20を有する炭化珪素系ハニカムフィルタ300を得た。炭化珪素系ハニカムフィルタ300は190 mmの外径、203 mmの全長、0.7 mmの外周壁厚さ、8 mil (0.20 mm) の隔壁厚さ、及び300 cpsi (46.5セル/cm2) のセル密度を有し、流入セルの断面積が流出セルの断面積より大きく、貼合せ材層9の厚さt1は2 mmであった。
 実施例1と同じDrop to Idle試験の結果、実施例3の炭化珪素系ハニカムフィルタにクラックが発生していないことが確認された。
比較例1
 実施例1と同様に作製した坏土をスクリュー成形機の金型から押出し、図6に示すように断面正方形状のハニカムセグメント成形体を成形した。ハニカムセグメント成形体を熱風乾燥機で120℃で2時間乾燥させた。坏土と同じ組成の目封止部16a、16bをセル13の端面15a、15bにそれぞれ市松模様状に交互に形成し、乾燥後1300℃の温度で酸化雰囲気中で焼成することにより目封止部を有するハニカムセグメント111を得た。ハニカムセグメント111は一辺35 mmの正方形断面及び203 mmの全長を有していた。
 実施例1と同様に作製した貼合せ材スラリーをハニカムセグメント111の外周壁17に塗布し、図7に示すように6×6個のハニカムセグメント111を圧着接合した。貼合せ材を乾燥後、1300℃の温度で酸化雰囲気中で焼成し、得られた焼結体の外周を旋盤で円周状に加工した。
 円周状に加工した外周に炭化珪素粒子とコロイダルシリカを含有する外皮材を塗布した後乾燥し、190 mmの外径、203 mmの全長、0.2 mmの外周壁厚さ、8 mil (0.20 mm) の隔壁厚さ、300 cpsi (46.5セル/cm2) のセル密度、及び2 mmの貼合せ材層厚さを有する炭化珪素系ハニカムフィルタを得た。
 実施例1と同じDrop to Idle試験の結果、比較例1の炭化珪素系ハニカムフィルタにはクラックが発生していることが確認された。
100、200、300、500、600:ハニカムフィルタ
510:セラミックハニカム構造体
111、211、411:ハニカムセグメント
  9:貼合せ材層
 11、21、31、51、61:外皮
 12、22、52:隔壁
 13a、23a、43a、53a:流入側封止流路(流出セル)
 13b、23b、43b、53b:流出側封止流路(流入セル)
 15a、25a、45a、55a:一方の端面(流入側端面)
 15b、25b、45b、55b:他方の端面(流出側端面)
 16a、26a、46a:目封止部(流入側封止部)
 16b、26b、46b:目封止部(流出側封止部)
 17、27:外周壁
 27a、47a:第一の外周壁
 27b、47b:第二の外周壁
 18:中心交差部
 181、182-1、182-2、182-3、182-4:交差部
 10:貼合せ材非形成領域
 20:交差部空孔部
 t1:貼合せ材層の厚さ
 t2:交差部空孔部の空孔径
 L:第二の外周壁の中心方向最大厚さ
 G:ハニカムフィルタの中心軸

Claims (13)

  1. 両端面間に軸線方向に延在する複数の流路を画成するセルを形成する隔壁、前記セルの端面を市松模様に交互に封止する目封止部、及び外周壁を有するハニカムセグメントと、前記ハニカムセグメントを接合するためにそれらの間の格子状隙間に充填された貼合せ材層と、接合されたハニカムセグメントを囲む外皮とを有する炭化珪素系ハニカムフィルタにおいて、
     前記格子状隙間の交差部のうち前記ハニカムフィルタの中心軸又はその近傍に位置する交差部を中心交差部とすると、前記中心交差部から隣接する交差部まで四方に延在する格子状隙間部分に貼合せ材非形成領域が設けられている
    ことを特徴とする炭化珪素系ハニカムフィルタ。
  2. 両端面間に軸線方向に延在する複数の流路を画成するセルを形成する隔壁、前記セルの端面を市松模様に交互に封止する目封止部、及び外周壁を有するハニカムセグメントと、前記ハニカムセグメントを接合するためにそれらの間の格子状隙間に充填された貼合せ材層と、接合されたハニカムセグメントを囲む外皮とを有する炭化珪素系ハニカムフィルタにおいて、
     各ハニカムセグメントの流路方向に垂直な断面の外形が、四角形の各角部に面取り部を設けてなる八角形状であって、前記四角形の辺に相当する第一の外周壁と前記直線状の面取り部に相当する第二の外周壁により交互に構成される八角形状であり、
     貼合された前記ハニカムセグメント間の格子状隙間のうち、前記第二の外周壁が輪郭を構成する交差部に貼合せ材がない交差部空孔部が形成されており、
     前記第一の外周壁間の貼合せ材層の厚さt1に対する前記交差部空孔部の空孔径t2の比により定義される空孔比(t2/t1)が1.4超である
    ことを特徴とする炭化珪素系ハニカムフィルタ。
  3. 両端面間に軸線方向に延在する複数の流路を画成するセルを形成する隔壁、前記セルの端面を市松模様に交互に封止する目封止部、及び外周壁を有するハニカムセグメントと、前記ハニカムセグメントを接合するためにそれらの間の格子状隙間に充填された貼合せ材層と、接合されたハニカムセグメントを囲む外皮とを有する炭化珪素系ハニカムフィルタにおいて、
     前記格子状隙間の交差部のうち中心交差部が前記ハニカムフィルタの中心軸又はその近傍に位置しており、
     前記中心交差部から隣接する交差部まで四方に延在する格子状隙間部分に貼合せ材非形成領域が設けられており、
     各ハニカムセグメントの流路方向に垂直な断面の外形が、四角形の各角部に面取り部を設けてなる八角形状であって、前記四角形の辺に相当する第一の外周壁と前記直線状の面取り部に相当する第二の外周壁により交互に構成される八角形状であり、
     貼合された前記ハニカムセグメント間の格子状隙間のうち、前記第二の外周壁が輪郭を構成する交差部に貼合せ材がない交差部空孔部が形成されており、
     前記第一の外周壁間の貼合せ材層の厚さt1に対する前記交差部空孔部の空孔径t2の比により定義される空孔比(t2/t1)が1.4超である
    ことを特徴とする炭化珪素系ハニカムフィルタ。
  4. 前記交差部空孔部が全交差部のうちの30%以上であることを特徴とする請求項2に記載の炭化珪素系ハニカムフィルタ。
  5. 前記交差部空孔部が全交差部のうちの30%以上であることを特徴とする請求項3に記載の炭化珪素系ハニカムフィルタ。
  6. 前記空孔比が1.5~5であることを特徴とする請求項2に記載の炭化珪素系ハニカムフィルタ。
  7. 前記空孔比が1.5~5であることを特徴とする請求項3に記載の炭化珪素系ハニカムフィルタ。
  8. 前記ハニカムセグメントの外周壁が前記隔壁より厚いことを特徴とする請求項1に記載の炭化珪素系ハニカムフィルタ。
  9. 前記ハニカムセグメントの外周壁が前記隔壁より厚いことを特徴とする請求項2に記載の炭化珪素系ハニカムフィルタ。
  10. 前記ハニカムセグメントの外周壁が前記隔壁より厚いことを特徴とする請求項3に記載の炭化珪素系ハニカムフィルタ。
  11. 前記第二の外周壁の流路方向に垂直な断面が、前記第二の外周壁に最も近い縦横の2つの隔壁と前記第二の外周壁の外周面とにより形成される三角形状であり、前記三角形の中心側頂点と前記外周面との距離により定義される前記第二の外周壁の中心方向最大厚さが前記第一の外周壁の厚さより厚いことを特徴とする請求項2に記載の炭化珪素系ハニカムフィルタ。
  12. 前記第二の外周壁の流路方向に垂直な断面が、前記第二の外周壁に最も近い縦横の2つの隔壁と前記第二の外周壁の外周面とにより形成される三角形状であり、前記三角形の中心側頂点と前記外周面との距離により定義される前記第二の外周壁の中心方向最大厚さが前記第一の外周壁の厚さより厚いことを特徴とする請求項3に記載の炭化珪素系ハニカムフィルタ。
  13. 流路方向に垂直な断面において、流出側端面が目封止された流入セルの断面積が流入側端面が目封止された流出セルの断面積より大きいことを特徴とする請求項1~12のいずれかに記載の炭化珪素系ハニカムフィルタ。
PCT/JP2023/007925 2022-03-10 2023-03-02 炭化珪素系ハニカムフィルタ WO2023171539A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-037608 2022-03-10
JP2022037608 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023171539A1 true WO2023171539A1 (ja) 2023-09-14

Family

ID=87935357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007925 WO2023171539A1 (ja) 2022-03-10 2023-03-02 炭化珪素系ハニカムフィルタ

Country Status (1)

Country Link
WO (1) WO2023171539A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281306A (ja) * 2009-06-08 2010-12-16 Tokyo Yogyo Co Ltd ガス浄化フィルタ
JP2011240332A (ja) * 2010-04-22 2011-12-01 Ibiden Co Ltd ハニカム構造体
JP2013198884A (ja) * 2012-03-26 2013-10-03 Kubota Corp ハニカムセグメント体およびそれを備えたセラミックフィルター
JP2019171238A (ja) * 2018-03-27 2019-10-10 日本碍子株式会社 ハニカム構造体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281306A (ja) * 2009-06-08 2010-12-16 Tokyo Yogyo Co Ltd ガス浄化フィルタ
JP2011240332A (ja) * 2010-04-22 2011-12-01 Ibiden Co Ltd ハニカム構造体
JP2013198884A (ja) * 2012-03-26 2013-10-03 Kubota Corp ハニカムセグメント体およびそれを備えたセラミックフィルター
JP2019171238A (ja) * 2018-03-27 2019-10-10 日本碍子株式会社 ハニカム構造体

Similar Documents

Publication Publication Date Title
KR100602867B1 (ko) 벌집형 필터
KR100595758B1 (ko) 하니컴 구조체 및 그 제조 방법
EP1484483B1 (en) Honeycomb filter
KR100604116B1 (ko) 벌집형 필터
US7384442B2 (en) Ceramic wall-flow filter including heat absorbing elements and methods of manufacturing same
JP5894577B2 (ja) 目封止ハニカム構造体
JP5188433B2 (ja) ハニカムフィルタ
WO2009084567A1 (ja) 部分目封止レスdpf
US20070231535A1 (en) Honeycomb structure
KR101025849B1 (ko) 허니컴 구조체
US20100247852A1 (en) Honeycomb structure and bonded type honeycomb structure
JP2004270569A (ja) ハニカム構造体
WO2012133846A1 (ja) 目封止ハニカム構造体
KR20080092411A (ko) 허니컴 구조체
KR20130137673A (ko) 밀봉된 하니컴 구조체 및 배기 가스 정화 장치
JP7061491B2 (ja) ハニカム構造体
WO2023171539A1 (ja) 炭化珪素系ハニカムフィルタ
JP6581934B2 (ja) ハニカムフィルタ
EP2221099B1 (en) Honeycomb structure
JP6193162B2 (ja) ハニカムセグメント、ハニカム連結体、およびハニカム構造体
JP2018065091A (ja) 目封止ハニカム構造体
WO2023171540A1 (ja) 炭化珪素系ハニカムフィルタ
JP2004331485A (ja) ハニカム構造体及びその製造方法
EP2108435B1 (en) Honeycomb structure
JP2011190740A (ja) ハニカム構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766715

Country of ref document: EP

Kind code of ref document: A1