WO2023171435A1 - オレフィン類重合用触媒、オレフィン類重合体の製造方法及びプロピレン単独重合体 - Google Patents

オレフィン類重合用触媒、オレフィン類重合体の製造方法及びプロピレン単独重合体 Download PDF

Info

Publication number
WO2023171435A1
WO2023171435A1 PCT/JP2023/006929 JP2023006929W WO2023171435A1 WO 2023171435 A1 WO2023171435 A1 WO 2023171435A1 JP 2023006929 W JP2023006929 W JP 2023006929W WO 2023171435 A1 WO2023171435 A1 WO 2023171435A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
polymerization
compound
catalyst component
solid catalyst
Prior art date
Application number
PCT/JP2023/006929
Other languages
English (en)
French (fr)
Inventor
雄太 川本
英雄 船橋
浩之 河野
隆晴 酒見
速 小川
圭一 黒崎
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Publication of WO2023171435A1 publication Critical patent/WO2023171435A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof

Definitions

  • the present invention relates to a catalyst for polymerizing olefins, a method for producing an olefin polymer, and a propylene homopolymer.
  • olefin polymers such as polypropylene (PP) have been used in various applications such as containers and films, as well as molded products such as automobile parts and home appliances.
  • PP polypropylene
  • Polypropylene resin compositions are the most important plastic materials because they are lightweight and have excellent moldability, as well as chemical stability such as heat resistance and chemical resistance of molded products, and excellent cost performance. It is used in many fields as one of the
  • polypropylene with high melt flow rate (MFR), excellent moldability, and excellent flexural modulus (FM) is desired, which can be used as an alternative to polystyrene and ABS resin. It has become.
  • Patent Document 1 discloses a solid titanium catalyst component on which an internal electron donating compound such as a phthalate ester is supported, an organoaluminum compound as a promoter component, and an organic material having at least one Si-O-C bond.
  • An internal electron donating compound such as a phthalate ester is supported, an organoaluminum compound as a promoter component, and an organic material having at least one Si-O-C bond.
  • melt flow properties MFR
  • polymers with excellent linear viscoelasticity that exhibit high complex viscosity at low angular frequencies and low complex viscosity at high angular frequencies. It is known that, for example, a polymer with a wide molecular weight distribution is suitable as such a polymer.
  • Patent Document 2 proposes a method of performing multistage polymerization using a plurality of polymerization reactors, but the polymerization method described in Patent Document 2 discloses an example of the use of a solid catalyst component for polymerizing olefins containing a phthalate ester as an internal electron donating compound, and the resulting polymer also has an even better flexural modulus (FM). ) is now required.
  • FM flexural modulus
  • melt flowability which is an index of formability
  • complex viscoelastic ratio is high, which is 5.5 or more
  • flexural modulus A catalyst for polymerizing olefins that can produce polypropylene (propylene homopolymer) with a high FM) of 1900 MPa or more was not known.
  • the present invention provides a solid catalyst component for olefin polymerization that contains a compound other than phthalate ester as an internal electron donating compound, but has excellent melt flowability and moldability. It is an object of the present invention to provide a catalyst for polymerizing olefins that can easily produce a propylene homopolymer having an even better flexural modulus, and also to provide a method for producing an olefin polymer and a propylene homopolymer. It is.
  • the present inventors have made extensive studies, and found that the main component is magnesium, titanium, halogen, and a succinic diester compound, and the main component is the succinic diester compound relative to the titanium content (T).
  • the present inventors have discovered that the above technical problems can be solved by a catalyst for polymerizing olefins containing one or more external electron donating compounds selected from specific aminosilane compounds, and have completed the present invention based on this knowledge. Ta.
  • the present invention (1) Contains magnesium, titanium, halogen, and a succinic diester compound, and is expressed as the total content (S) of internal electron-donating compounds whose main component is the succinic diester compound relative to the titanium content (T).
  • R 2 and R 3 are hydrogen atoms, alkyl groups having 1 to 20 carbon atoms, vinyl groups, alkenyl groups having 3 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • R 2 and R 3 may be the same or different, and may be bonded to each other to form a ring. (If a plurality of NR 2 R 3 groups are present, the plurality of NR 2 R 3 groups may be the same or different from each other.
  • a catalyst for polymerizing olefins comprising one or more external electron donating compounds selected from aminosilane compounds represented by (2) The above-mentioned (1), wherein the total content (S) of the internal electron donating compound containing the succinic acid diester compound as a main component in the solid catalyst component for polymerizing olefins is 10.0% by mass or more.
  • catalyst for the polymerization of olefins (3) The catalyst for polymerizing olefins according to (1) or (2) above, wherein the content (T) of titanium in the solid catalyst component for polymerizing olefins is 1.0 to 6.0% by mass.
  • the succinic acid diester compound has the following general formula (II); (In the formula, R 4 and R 5 are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other, and R 6 and R 7 are hydrogen atoms or alkyl groups having 1 to 4 carbon atoms.
  • the organoaluminum compound has the following general formula (III); R 8 p AlQ 3-p (III) (In the formula, R 8 is an alkyl group having 1 to 6 carbon atoms, Q is a hydrogen atom or a halogen, p is 0 ⁇ p ⁇ 3, and when there is a plurality of R 8 , each R 8 may be the same or different from each other, and if multiple Qs exist, each Q may be the same or different from each other.)
  • a method for producing an olefin polymer which comprises polymerizing an olefin using the olefin polymerization catalyst according to any
  • the present invention although it contains a solid catalyst component for olefin polymerization that contains a compound other than phthalate ester as an internal electron donating compound, it has excellent melt flowability and moldability, and is even more bendable. It is possible to provide a catalyst for polymerizing olefins that can easily produce a propylene homopolymer having an excellent elastic modulus, and also to provide a method for producing an olefin polymer and a propylene homopolymer.
  • the catalyst for polymerizing olefins according to the present invention contains magnesium, titanium, halogen, and a succinic acid diester compound,
  • the ratio (S/T) represented by the total content (S) of the internal electron donating compound mainly composed of the succinic acid diester compound to the titanium content (T) is 0.60 to 0.60 in molar ratio.
  • R 1 is an alkyl group having 1 to 20 carbon atoms, a vinyl group, an alkenyl group having 3 to 12 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a vinyloxy group, an alkenyloxy group having 3 to 20 carbon atoms) , a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkyloxy group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and when there is a plurality of R 1 , a plurality of R 1 may be the same or different from each other.
  • R 2 and R 3 are hydrogen atoms, alkyl groups having 1 to 20 carbon atoms, vinyl groups, alkenyl groups having 3 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • 20 cycloalkyl group, a cycloalkenyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms R 2 and R 3 may be the same or different, and may be bonded to each other to form a ring. (If a plurality of NR 2 R 3 groups are present, the plurality of NR 2 R 3 groups may be the same or different from each other.
  • n is 1 ⁇ n ⁇ 3. It is characterized by containing one or more external electron donating compounds selected from the aminosilane compounds represented by:
  • raw material components serving as a supply source of magnesium, titanium, and halogen and a succinic acid diester compound, which is an internal electron donating compound are combined in an organic solvent.
  • a magnesium compound and a tetravalent titanium halogen compound are used as raw material components that are a source of supply of magnesium, titanium, and halogen.
  • a contact reaction product obtained by bringing these raw materials and an internal electron donating compound containing a succinic acid diester compound into contact with each other can be mentioned.
  • magnesium compound examples include one or more selected from dialkoxymagnesium, magnesium dihalide, alkoxymagnesium halide, and the like.
  • dialkoxymagnesium or magnesium dihalide is preferable, and specifically, dimethoxymagnesium, diethoxymagnesium, dipropoxymagnesium, dibutoxymagnesium, ethoxymethoxymagnesium, ethoxypropoxymagnesium, butoxyethoxymagnesium, magnesium dichloride , magnesium dibromide, magnesium diiodide, etc., with diethoxymagnesium and magnesium dichloride being particularly preferred.
  • dialkoxymagnesium may be obtained by reacting metallic magnesium with alcohol in the presence of a halogen or a halogen-containing metal compound.
  • dialkoxymagnesium is preferably in the form of granules or powder, and the shape may be irregular or spherical.
  • spherical dialkoxymagnesium does not necessarily have to be perfectly spherical, and elliptical or potato-shaped ones can also be used.
  • the average particle diameter (average particle diameter D50) of the dialkoxymagnesium is preferably 1.0 to 200.0 ⁇ m, more preferably 5.0 to 150.0 ⁇ m.
  • the average particle diameter D50 means the particle diameter of 50% of the integrated particle size in the volume integrated particle size distribution when measured using a laser light scattering diffraction particle size analyzer.
  • the average particle diameter D50 is preferably 1.0 to 100.0 ⁇ m, more preferably 5.0 to 80.0 ⁇ m, and 10.0 to 70.0 ⁇ m. It is even more preferable that there be.
  • the particle size distribution of the dialkoxymagnesium it is preferable that the particle size distribution is narrow, with few fine particles and coarse particles. Specifically, when dialkoxymagnesium is measured using a laser light scattering diffraction particle size analyzer, the proportion of particles with a particle diameter of 5.0 ⁇ m or less is preferably 20% or less, and preferably 10% or less. is more preferable. On the other hand, when measured using a laser light scattering diffraction particle size analyzer, the proportion of particles having a particle diameter of 100.0 ⁇ m or more is preferably 20% or less, more preferably 10% or less. Furthermore, when expressed as ln(D90/D10), the particle size distribution is preferably 3 or less, more preferably 2 or less.
  • D90 means the particle size of 90% of the integrated particle size in the volume integrated particle size distribution when measured using a laser light scattering diffraction particle size analyzer.
  • D10 means a particle size of 10% of the integrated particle size in the volume integrated particle size distribution when measured using a laser light scattering diffraction method particle size analyzer.
  • the method for producing the above-mentioned spherical dialkoxymagnesium is exemplified in, for example, JP-A-62-51633, JP-A-3-74341, JP-A-4-368391, JP-A-8-73388, etc. .
  • the magnesium compound preferably has a specific surface area of 5 m 2 /g or more, more preferably 5 to 50 m 2 /g, and more preferably 10 to 40 m 2 /g is more preferred.
  • a magnesium compound having a specific surface area within the above range a solid catalyst component for polymerizing olefins having a desired specific surface area can be easily prepared.
  • the specific surface area of a magnesium compound means a value measured by the BET method. Specifically, the specific surface area of a magnesium compound is determined by vacuum drying a measurement sample at 50°C for 2 hours in advance. It means a value measured by the BET method (automatic measurement) using an Automatic Surface Area Analyzer HM model-1230 manufactured by Mountech in the presence of a mixed gas of nitrogen and helium.
  • the above magnesium compound is preferably in the form of a solution or suspension during the reaction, and by being in the form of a solution or suspension, the reaction can proceed suitably.
  • the above magnesium compound When the above magnesium compound is a solid, it can be made into a solution-like magnesium compound by dissolving it in a solvent that has the ability to solubilize the magnesium compound, or it can be dissolved in a solvent that does not have the ability to solubilize the magnesium compound. By clouding, a magnesium compound suspension can be obtained.
  • the magnesium compound when the magnesium compound is a liquid, it may be used as a solution-like magnesium compound as it is, or it may be further dissolved in a solvent capable of solubilizing a magnesium compound and used as a solution-like magnesium compound.
  • Examples of the compound that can solubilize a solid magnesium compound include at least one compound selected from the group consisting of alcohol, ether, and ester, with alcohols such as ethanol, propanol, butanol, and 2-ethylhexanol being preferred; - Ethylhexanol is particularly preferred.
  • examples of the medium that does not have the ability to solubilize solid magnesium compounds include one or more selected from saturated hydrocarbon solvents and unsaturated hydrocarbon solvents that do not dissolve the magnesium compound.
  • the tetravalent titanium halogen compound which is a raw material component serving as a supply source of titanium and halogen is not particularly limited, but may be of the following general formula: (IV) Ti (OR 9 ) r X 4-r (IV) (In the formula, R 9 represents an alkyl group having 1 to 4 carbon atoms, X represents a halogen atom such as a chlorine atom, a bromine atom, an iodine atom, and r represents 0 ⁇ r ⁇ 3.)
  • the compound is one or more compounds selected from the group of titanium halides and alkoxytitanium halides shown below.
  • r is 0 ⁇ r ⁇ 3, and specific examples of r include 0, 1, 2, or 3.
  • titanium halide represented by the above general formula (IV) examples include one or more titanium tetrahalides selected from titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, and the like. Further, as the alkoxytitanium halide represented by the above general formula (IV), methoxytitanium trichloride, ethoxytitanium trichloride, propoxytitanium trichloride, n-butoxytitanium trichloride, dimethoxytitanium dichloride, diethoxytitanium dichloride, di Examples include one or more selected from propoxytitanium dichloride, di-n-butoxytitanium dichloride, trimethoxytitanium chloride, triethoxytitanium chloride, tripropoxytitanium chloride, tri-n-butoxytitanium chloride, and the like. As the tetravalent titanium halide compound,
  • the succinic acid diester compound is represented by the following general formula (II); (In the formula, R 4 and R 5 are hydrogen atoms or alkyl groups having 1 to 4 carbon atoms, and may be the same or different, and R 6 and R 7 are hydrogen atoms or alkyl groups having 2 to 4 carbon atoms. A straight-chain alkyl group or a branched alkyl group, which may be the same or different.) One or more types selected from the compounds represented by can be mentioned.
  • R 4 and R 5 are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different.
  • R 4 or R 5 is an alkyl group having 1 to 4 carbon atoms
  • specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
  • R 6 and R 7 are straight-chain alkyl groups or branched alkyl groups having 2 to 4 carbon atoms, and may be the same or different.
  • R 6 and R 7 are straight chain alkyl groups or branched alkyl groups having 2 to 4 carbon atoms
  • specific examples include ethyl group, n-propyl group, isopropyl group, n-butyl group or isobutyl group. I can do it.
  • the succinic acid diester compound is not particularly limited as long as it is a succinic acid dialkyl ester represented by the general formula (II), such as , Diethyl succinate, diethyl 2,3-dimethylsuccinate, diethyl 2,3-diethylsuccinate, diethyl 2,3-di-n-propylsuccinate, diethyl 2,3-diisopropylsuccinate, 2,3-di- Diethyl n-butylsuccinate, diethyl 2,3-diisobutylsuccinate; Di-n-propyl succinate, di-n-propyl 2,3-dimethylsuccinate, di-n-propyl 2,3-diethylsuccinate, di-n-propyl 2,3-di-n-propyl succinate , di-n-propyl 2,3-di-n-propyl succinate , di-n-propyl 2,3-di-
  • dialkyl succinates diethyl succinate, di-n-propyl succinate, di-n-butyl succinate, diisobutyl succinate, 2,3-di-n-propyl diethyl succinate, 2,3-di-n-propyl succinate, Diethyl diisopropylsuccinate, di-n-propyl 2,3-di-n-propylsuccinate, di-n-propyl 2,3-diisopropylsuccinate, diisopropyl 2,3-di-n-propylsuccinate, 2, Diisopropyl 3-diisopropylsuccinate, di-n-butyl 2,3-di-n-propylsuccinate, di-n-butyl 2,3-diisopropylsuccinate, diisobutyl 2,3-di-n-propylsuccinate, Diisobutyl 2,3-diisopropylsuccinate
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention contains a succinic acid diester compound as an essential component as an internal electron donating compound, but in addition to these internal electron donating compounds, Other internal electron donating compounds (hereinafter referred to as “other internal electron donating compounds" as appropriate) may be included.
  • Examples of such other internal electron-donating compounds include one or more selected from carbonates, acid halides, acid amides, nitriles, acid anhydrides, diether compounds, carboxylic acid esters, and the like.
  • Examples of such other internal electron donating compounds include ether carbonate compounds, cycloalkanedicarboxylic acid diesters, cycloalkenedicarboxylic acid diesters, malonic acid diesters, alkyl-substituted malonic acid diesters, and maleic acid diesters.
  • ether carbonate compounds include ether carbonate compounds, cycloalkanedicarboxylic acid diesters, cycloalkenedicarboxylic acid diesters, malonic acid diesters, alkyl-substituted malonic acid diesters, and maleic acid diesters.
  • ether carbonate compounds such as (2-ethoxyethyl)methyl carbonate, (2-ethoxyethyl)ethyl carbonate, and (2-ethoxyethyl)phenyl carbonate; dialkyl compounds such as dimethyl diisobutylmalonate and diethyl diisobutylmalonate; cycloalkanedicarboxylic acid diesters such as malonic acid diesters and dimethyl cyclohexane-1,2-dicarboxylate; More preferred is one or more selected from 3-diethers.
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention has a phthalate ester content of 0.2% by mass or less (0.0 to 0.2% by mass). It is suitable that the content is 0.1% by mass or less (0.0 to 0.1% by mass), more suitably 0.0% by mass (substantially free of phthalate esters). It is further suitable that the detection limit is below the detection limit)).
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention contains a succinic acid diester compound and other internal electron donating compounds, thereby improving hydrogen responsiveness during polymerization, Physical properties such as stereoregularity and molecular weight distribution of the olefin polymer obtained during polymerization can be easily controlled to the same range as conventional polymers produced using solid catalysts containing phthalate esters as internal electron donating compounds. can do.
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention preferably has a succinic acid diester compound content of 7.0% by mass or more when converted to solid content, and 15% by mass or more.
  • the amount is more preferably .0 to 25.0% by weight, and even more preferably 20.0 to 23.0% by weight.
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention has a content of succinic acid diester compound of 7.0% by mass or more when converted to solid content, so that olefin polymerization is possible. It is possible to easily produce a propylene homopolymer which has excellent melt flowability and even better flexural modulus when subjected to polymerization.
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention contains a succinic acid diester compound as a main component and other internal electron donating compounds as an internal electron donating compound.
  • the total content (S) of internal electron donating compounds mainly composed of succinic acid diester compounds is preferably 10.0% by mass or more, and 15.0 to 25.0% by mass. It is more preferable that the amount is 20.0 to 24.0% by mass.
  • succinic diester compound as the main component means that the content ratio of the succinic diester compound in all internal electron donating compounds constituting the solid catalyst component for olefin polymerization is 60.0 to 100. .0% by mass.
  • the total content (S) of internal electron donating compounds mainly composed of diester succinate compounds relative to the content (T) of titanium in the solid catalyst component for polymerizing olefins is 0.60 to 1.30, preferably 0.60 to 1.20, and preferably 0.65 to 1.20. More preferred.
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention has a ratio (S/T) expressed by the content (S) of the succinic acid diester compound to the content (T) of titanium. ), that is, the ratio expressed by the total content of the internal electron donating compound containing the succinic acid diester compound as a main component/the content of the titanium in the solid catalyst component for polymerizing olefins according to the present invention is:
  • a molar ratio of 0.60 to 1.30 it is possible to more effectively produce a propylene homopolymer that has excellent melt flowability and flexural modulus when subjected to the polymerization of olefins. can.
  • succinic acid diester compounds are expensive when used as internal electron donating compounds in solid catalyst components for olefin polymerization, and when used in olefin polymerization, the olefin polymers obtained It was thought that this compound would be difficult to improve the stereoregularity of the coalescence. For this reason, no attempt has been made to employ it as an internal electron donating compound in a solid catalyst component for polymerizing olefins, and to include it in large amounts; however, according to the studies of the present inventors, Quite surprisingly, the molar ratio of the total content of internal electron donating compounds mainly composed of succinic acid diester compounds/the content of titanium in the solid catalyst component for polymerizing olefins was 0.60.
  • the solid catalyst component for polymerizing olefins constituting the catalyst for polymerizing olefins in the present invention contains magnesium, titanium, halogen, and a succinic acid diester compound, and if necessary, other internal electron donating compounds, and further contains polyester. It may also contain siloxane.
  • the solid catalyst component for olefin polymerization that constitutes the catalyst for olefin polymerization in the present invention contains polysiloxane, the stereoregularity or crystallinity of the resulting polymer can be easily improved when olefins are polymerized. Furthermore, the amount of fine powder in the produced polymer can be easily reduced.
  • Polysiloxane is a polymer having siloxane bonds (-Si-O- bonds) in its main chain, and is also called silicone oil, and has a viscosity of 0.02 to 100.00 cm 2 /s (2 to 10,000 cm 2 /s) at 25°C. centistokes), more preferably 0.03 to 5.00 cm 2 /s (3 to 500 centistokes), and is a linear, partially hydrogenated, cyclic or modified polysiloxane that is liquid or viscous at room temperature.
  • chain polysiloxanes examples include dimethylpolysiloxane and methylphenylpolysiloxane
  • examples of partially hydrogenated polysiloxanes include methyl hydrogen polysiloxanes with a hydrogenation rate of 10 to 80%
  • examples of cyclic polysiloxanes include: One or more selected from hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, 2,4,6-trimethylcyclotrisiloxane and 2,4,6,8-tetramethylcyclotetrasiloxane can be mentioned. .
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention contains the above-mentioned dialkoxymagnesium, titanium halogen compound, and succinic acid diester compound, together with other components as necessary, and an inert organic solvent. Preferably, they are prepared by bringing them into contact with each other in the presence of.
  • the inert organic solvent is preferably one that dissolves the titanium halide compound but does not dissolve the dialkoxymagnesium, and specifically, pentane, hexane, heptane, octane, nonane, decane, cyclohexane, methyl Saturated hydrocarbon compounds such as cyclohexane, ethylcyclohexane, 1,2-diethylcyclohexane, methylcyclohexene, decalin, mineral oil, aromatic hydrocarbon compounds such as benzene, toluene, xylene, ethylbenzene, orthodichlorobenzene, methylene chloride, 1 , 2-dichlorobenzene, carbon tetrachloride, dichloroethane, and other halogenated hydrocarbon compounds.
  • saturated hydrocarbon compounds or aromatic hydrocarbon compounds that are liquid at room temperature and have a boiling point of about 50 to 200°C are preferably used, and among them, hexane, heptane, octane, ethylcyclohexane, mineral oil, One or more selected from toluene, xylene, and ethylbenzene is preferred, and particularly preferably one or more selected from hexane, heptane, ethylcyclohexane, and toluene.
  • dialkoxymagnesium, a titanium halide compound, and a succinic acid diester compound are brought into contact with each other to form the olefin polymerization catalyst according to the present invention.
  • the titanium halogen compound is brought into contact with the dialkoxymagnesium multiple times, and when the titanium halogen halogen compound is brought into contact with the dialkoxymagnesium for the first time, the amount of the titanium halogen compound is 1.5 to 1 mol per mol of the dialkoxymagnesium.
  • the total amount of the titanium compound used is 5.0 to 18.0 mol per 1 mol of the dialkoxymagnesium, Furthermore, a method for obtaining the desired solid catalyst component for polymerizing olefins (hereinafter referred to as (referred to as method a) for producing the solid catalyst component.
  • dialkoxymagnesium is brought into contact with a titanium halogen compound multiple times, and when the titanium halogen halogen compound is brought into contact with dialkoxymagnesium for the first time, It is preferable to use 1.5 to 10.0 mol of the titanium halogen compound, and 2.0 to 8.0 mol of the titanium halogen compound per mol of dialkoxymagnesium. It is more preferable to use 2.0 to 5.0 moles of the titanium halogen compound.
  • the total amount of the titanium compound used is 5.0 to 18.0 mol per mol of dialkoxymagnesium, and 5.0 to 15.0 mol per mol of dialkoxymagnesium. is preferable, and more preferably 5.0 to 10.0 mol per mol of dialkoxymagnesium.
  • the titanium halogen compound and succinic acid diester compound can be optimized while ensuring sufficiently high activity. It is possible to prepare a carrier that can be supported on.
  • the succinic diester compound in method a for producing the solid catalyst component, by controlling the amount of the succinic diester compound used per mol of dialkoxymagnesium within the above range, the succinic diester compound can be suppressed from being excessively supported on the carrier. can be sufficiently supported.
  • a of the solid catalyst component for example, dialkoxymagnesium, a titanium halogen compound, and a succinic acid diester compound are suspended in an inert hydrocarbon solvent and brought into contact with each other for a predetermined period of time while heating.
  • a method of obtaining a solid catalyst component for polymerizing olefins by further adding a titanium halogen compound to the suspension and bringing it into contact with each other while heating to obtain a solid product, and washing the solid product with a hydrocarbon solvent. can be mentioned.
  • the heating temperature is preferably 70 to 150°C, more preferably 80 to 120°C, even more preferably 90 to 110°C.
  • the heating time is preferably 30 to 240 minutes, more preferably 60 to 180 minutes, even more preferably 60 to 120 minutes.
  • the number of times the titanium halogen compound is added to the suspension is not particularly limited.
  • the heating temperature for each addition may be within the above range, and the heating time for each addition may be within the above range.
  • magnesium, titanium, halogen, and a succinic diester compound are determined by the content of the above-mentioned succinic diester compound and the above-mentioned succinic diester compound. As long as the molar ratio represented by compound content (molar amount)/titanium content (molar amount) satisfies the above specifications, desired amounts of each can be contained.
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention preferably contains 2.0 to 5.0% by mass of titanium, and 2.5 to 4.5% by mass of titanium, in terms of atomic weight. %, more preferably 3.5 to 4.5% by mass.
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention preferably contains 15.0 to 25.0% by mass of magnesium, and 16.0 to 23.0% by mass in terms of atomic weight. %, more preferably 17.0 to 22.0% by mass, even more preferably 17.0 to 21.0% by mass.
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention preferably contains 50.0 to 70.0% by mass of halogen, and 55.0 to 68.0% by mass in terms of atomic weight. %, more preferably 58.0 to 67.0% by mass, even more preferably 60.0 to 66.0% by mass.
  • the content of titanium contained in the solid catalyst component for olefin polymerization is the value measured according to the method (oxidation-reduction titration) described in JIS 8311-1997 "Method for determining titanium in titanium ore”. means.
  • the content ratio of magnesium in the solid catalyst component for olefin polymerization means the value measured by an EDTA titration method in which the solid catalyst component for olefin polymerization is dissolved in a hydrochloric acid solution and titrated with an EDTA solution. do.
  • the content of halogen contained in the solid catalyst component for olefin polymerization is determined by treating the solid catalyst component with a mixed solution of sulfuric acid and pure water to form an aqueous solution, and then fractionating a predetermined amount. , means the value measured by the silver nitrate titration method in which halogen is titrated with a silver nitrate standard solution.
  • the content of the succinic diester compound contained in the solid catalyst component for polymerizing olefins is determined by hydrolyzing the solid catalyst component for olefin polymerization and then extracting the succinic acid diester compound, other internal electron donating compounds added as necessary, and phthalic acid ester using an aromatic solvent. It means the value measured for this solution by gas chromatography FID (Flame Ionization Detector) method.
  • FID Frame Ionization Detector
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention has a total pore volume of 0.3 to 1.0 cm 3 /g with a diameter of 1 ⁇ m or less measured by mercury porosimetry. It is preferably 0.3 to 0.8 cm 3 /g, more preferably 0.3 to 0.6 cm 3 /g, and even more preferably 0.3 to 0.6 cm 3 /g.
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention has a total pore volume of 1 ⁇ m or less in diameter within the above range as measured by mercury porosimetry, so that the olefin block coexistence is
  • the rubber component that causes stickiness when subjected to polymerization can be sufficiently retained within the particles, and a block copolymer with excellent fluidity (resistance to stickiness) can be obtained.
  • the total pore volume with a diameter of 1 ⁇ m or less measured by mercury intrusion porosimetry is the value measured by mercury intrusion porosimetry using a mercury intrusion porosimeter (manufactured by Micromeritics, Autopore III 9420). means.
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention preferably has a specific surface area of 200 m 2 /g or more, preferably 300 to 500 m 2 /g or more, and 350 m 2 /g or more. More preferably, the area is 500 m 2 /g or more.
  • the solid catalyst component for olefin polymerization constituting the catalyst for olefin polymerization according to the present invention has a specific surface area of 200 m 2 /g or more, so that when it is used for olefin polymerization, particularly olefin copolymerization,
  • the olefins enter the pores formed on the surface of the solid catalyst component and are subjected to the polymerization reaction within the pores, it is possible to prepare an olefin polymer with high polymerization activity.
  • the polymerization reaction can be easily carried out with high operability while suppressing stickiness on the surface of the solid catalyst component that accompanies the production of the copolymer.
  • the specific surface area of the solid catalyst component for olefin polymerization means a value automatically measured using a specific surface area measuring device (QUANTA SORBQS-17 manufactured by QUANTA CHROME) by the BET method.
  • the catalyst for polymerizing olefins according to the present invention contains an organoaluminum compound.
  • the organoaluminum compound is represented by the following general formula (III); R 8 p AlQ 3-p (III) (In the formula, R 8 is an alkyl group having 1 to 6 carbon atoms, Q is a hydrogen atom or a halogen, p is 0 ⁇ p ⁇ 3, and when there is a plurality of R 8 , each R 8 may be the same or different from each other, and if multiple Qs exist, each Q may be the same or different from each other.) It is preferable that it is one or more selected from the compounds represented by.
  • p is 0 ⁇ p ⁇ 3, and specifically, p is 1, 2 or 3.
  • organoaluminum compound represented by the above general formula (III) include trialkylaluminum such as triethylaluminum, triisopropylaluminum, tri-n-butylaluminum, tri-n-hexylaluminum, triisobutylaluminum, diethyl
  • trialkylaluminum such as triethylaluminum, triisopropylaluminum, tri-n-butylaluminum, tri-n-hexylaluminum, triisobutylaluminum, diethyl
  • alkylaluminum halides such as diethylaluminium chloride, triethylaluminum, tri-n-butylaluminum, triisobutylaluminum, etc.
  • One or more types selected from trialkylaluminum, etc. are preferable, and one or more types selected from triethylaluminum and triisobutylaluminum are more preferable.
  • the catalyst for polymerizing olefins of the present invention has the following general formula (I); R 1 n Si(NR 2 R 3 ) 4-n (I) (In the formula, R 1 is an alkyl group having 1 to 20 carbon atoms, a vinyl group, an alkenyl group having 3 to 12 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a vinyloxy group, an alkenyloxy group having 3 to 20 carbon atoms) , a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkyloxy group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and when there is a plurality of R 1 , a plurality of R 1 may be the same or different from each other.
  • R 2 and R 3 are hydrogen atoms, alkyl groups having 1 to 20 carbon atoms, vinyl groups, alkenyl groups having 3 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • 20 cycloalkyl group, a cycloalkenyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, R 2 and R 3 may be the same or different, and may be bonded to each other to form a ring. (If a plurality of NR 2 R 3 groups are present, the plurality of NR 2 R 3 groups may be the same or different from each other.
  • n is 1 ⁇ n ⁇ 3.
  • R 1 is an alkyl group having 1 to 20 carbon atoms, a vinyl group, an alkenyl group having 3 to 12 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a vinyloxy group, Alkenyloxy group having 3 to 20 carbon atoms, cycloalkyl group having 3 to 20 carbon atoms, cycloalkyloxy group having 3 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, aryloxy group having 6 to 20 carbon atoms and when a plurality of R 1s exist, the plurality of R 1s may be the same or different from each other.
  • R 1 is preferably an alkyl group having 1 to 8 carbon atoms or a cycloalkyl group having 5 to 8 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms and a cycloalkyl group having 5 to 6 carbon atoms.
  • n is 1 ⁇ n ⁇ 3, and specific examples of n include 1, 2, or 3.
  • aminosilane compound represented by the above general formula (I) examples include alkyltris(alkylamino)silane, dialkylbis(alkylamino)silane, and trialkyl(alkylamino)silane.
  • the aminosilane compound represented by the above general formula (I) includes bis(ethylamino)methylethylsilane, t-butylmethylbis(ethylamino)silane, cyclohexylmethylbis(ethylamino)silane, dicyclohexyl Examples include one or more selected from bis(ethylamino)silane, dicyclopentylbis(ethylamino)silane, bis(methylamino)(methylcyclopentylamino)methylsilane, and the like.
  • aminosilane compound represented by the above general formula (I) examples include t-butylmethylbis(ethylamino)silane, cyclohexylmethylbis(ethylamino)silane, dicyclohexylbis(ethylamino)silane, and dicyclopentylbis(ethylamino)silane.
  • ethylamino)silane and the like are preferred.
  • Two or more aminosilane compounds represented by the above general formula (I) may be used in combination.
  • the catalyst for polymerizing olefins according to the present invention contains the above-mentioned solid catalyst component for polymerizing olefins and an organoaluminum compound, and also has one or more external electron donating compounds selected from the aminosilane compounds represented by the above general formula (I). By containing the compound, it is possible to easily produce an olefin polymer having a large complex viscoelastic ratio, excellent moldability, and further excellent flexural modulus.
  • the catalyst for polymerizing olefins according to the present invention comprises the above-mentioned solid catalyst component for polymerizing olefins, an organoaluminum compound, and one or more external electron-donating compounds selected from the aminosilane compound represented by the above general formula (I). In other words, these contact objects.
  • the catalyst for polymerizing olefins according to the present invention comprises the above-mentioned solid catalyst component for polymerizing olefins, an organoaluminum compound, and one or more external electron-donating compounds selected from the aminosilane compound represented by the above general formula (I). It may be prepared by contacting with olefins in the absence of olefins, or it may be prepared by contacting them in the presence of olefins (in the polymerization system) as described below. Good too.
  • the content ratio of each component is arbitrary as long as it does not affect the effects of the present invention, and is not particularly limited.
  • the solid catalyst component preferably contains 1 to 2,000 mol, more preferably 50 to 1,000 mol of the organoaluminum compound per mol of titanium atom in the solid catalyst component.
  • the catalyst for polymerizing olefins according to the present invention preferably contains 0.002 to 10 moles of the external electron donating compound represented by the above general formula (I) per mole of the organoaluminum compound. It is more preferable that it contains .01 to 2 mol, and even more preferable that it contains 0.01 to 0.5 mol.
  • the present invention although it contains a solid catalyst component for olefin polymerization that contains a compound other than phthalate ester as an internal electron donating compound, it has excellent melt flowability and moldability, and is even more bendable. It is possible to provide a catalyst for polymerizing olefins that can easily produce a propylene homopolymer with excellent elastic modulus.
  • the method for producing an olefin polymer according to the present invention is characterized in that olefins are polymerized using the olefin polymerization catalyst according to the present invention.
  • the polymerization of olefins may be homopolymerization or copolymerization.
  • the olefin to be polymerized is one or more selected from ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, vinylcyclohexane, etc. Of these, one or more selected from ethylene, propylene and 1-butene are preferred, with propylene being more preferred.
  • the olefin when the olefin is propylene, it may be a homopolymerization of propylene, or it may be a copolymerization with other ⁇ -olefins.
  • the olefins copolymerized with propylene include one or more selected from ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, vinylcyclohexane, and the like.
  • the usage ratio of each component is determined as long as it does not affect the effects of the present invention.
  • an external electron donating compound selected from the aminosilane compounds represented by the above-mentioned general formula (I) be brought into contact with 1 mol of the above-mentioned organoaluminum compound, and 0.01 It is more preferable to make contact by 2 moles, and even more preferably 0.010 to 0.500 moles.
  • each component constituting the catalyst for polymerizing olefins is arbitrary, but first the organoaluminum compound is charged into the polymerization system, and then the aminosilane compound selected from the aminosilane compound represented by the general formula (I) is added. After charging and contacting the external electron donating compound, it is desirable to charge and contact the above-mentioned solid catalyst component for polymerizing olefins.
  • the method for producing an olefin polymer according to the present invention may be carried out in the presence or absence of an organic solvent. Further, olefin monomers such as propylene can be used in either gas or liquid state.
  • the polymerization temperature is preferably 200°C or lower, more preferably 100°C or lower, and the polymerization pressure is preferably 10 MPa or lower, more preferably 5 MPa or lower.
  • the polymerization of olefins can be carried out by either continuous polymerization method or batch polymerization method. Furthermore, the polymerization reaction may be carried out in one stage or in two or more stages.
  • polymerizing olefins using the catalyst for olefin polymerization according to the present invention also referred to as main polymerization
  • main polymerization in order to further improve catalyst activity, stereoregularity, particle properties of the produced polymer, etc. It is preferable to carry out preliminary polymerization prior to the main polymerization, and during the preliminary polymerization, the same olefins as in the main polymerization or monomers such as styrene can be used.
  • the order in which the components and monomers (olefins) constituting the catalyst for olefin polymerization are contacted is arbitrary, but preferably in the prepolymerization system set in an inert gas atmosphere or olefin gas atmosphere.
  • an organoaluminum compound is charged, and then the above-mentioned solid catalyst component for polymerizing olefins is charged and brought into contact with each other. It is preferable to contact a mixture of one or more of these.
  • the prepolymerization when an external electron donating compound selected from the aminosilane compounds represented by the above general formula (I) is further charged into the prepolymerization system, the prepolymerization is carried out under an inert gas atmosphere or an olefin gas atmosphere.
  • an organoaluminum compound is charged into the system, and then an external electron donating compound selected from the aminosilane compounds represented by the above general formula (I) is charged and brought into contact with it, and then the above-mentioned solid catalyst for polymerizing olefins is added.
  • an olefin such as propylene alone or a mixture of one or more olefins such as propylene and other olefins.
  • the polymerization method includes a slurry polymerization method using a solvent such as an inert hydrocarbon compound such as cyclohexane or heptane, a bulk polymerization method using a solvent such as liquefied propylene, and Gas phase polymerization methods that use substantially no solvent can be mentioned, and bulk polymerization methods or gas phase polymerization methods are preferred.
  • a solvent such as an inert hydrocarbon compound such as cyclohexane or heptane
  • a bulk polymerization method using a solvent such as liquefied propylene
  • Gas phase polymerization methods that use substantially no solvent can be mentioned, and bulk polymerization methods or gas phase polymerization methods are preferred.
  • propylene-ethylene block copolymerization process involves homopolymerization of propylene and other ⁇ -olefins such as ethylene in a second stage (second polymerization tank) or multiple stages (multistage polymerization tank). Polymerization is typical, and block copolymerization of propylene and other ⁇ -olefins is preferred.
  • a block copolymer obtained by block copolymerization is a polymer containing segments in which two or more monomer compositions change continuously, including monomer species, comonomer species, comonomer composition, comonomer content, comonomer arrangement, and stereoregularity. It refers to a form in which two or more types of polymer chains (segments) with different primary structures such as properties are connected in one molecule chain.
  • the block copolymerization reaction of propylene and other ⁇ -olefins is usually carried out in the presence of the catalyst for olefin polymerization according to the present invention, and propylene alone or This can be carried out by bringing propylene into contact with a small amount of ⁇ -olefin (such as ethylene), and then bringing propylene and ⁇ -olefin (such as ethylene) into contact in a subsequent stage.
  • ⁇ -olefin such as ethylene
  • the first-stage polymerization reaction may be repeated multiple times, or the second-stage polymerization reaction may be repeated multiple times to perform a multistage reaction.
  • the polymerization is carried out in the first stage so that the proportion of the polypropylene portion (accounting for the final copolymer) is 20 to 90% by mass.
  • Polymerization is carried out by adjusting the temperature and time, and then in the latter stage propylene and ethylene or other ⁇ -olefins are introduced to form a rubber such as ethylene-propylene rubber (EPR) (accounting for the final copolymer). It is preferable to polymerize so that the proportion is 10 to 80% by mass.
  • EPR ethylene-propylene rubber
  • the polymerization temperature in both the first and second stages is preferably 200°C or less, more preferably 100°C or less, even more preferably 65 to 80°C, and the polymerization pressure is preferably 10MPa or less, more preferably 6MPa or less, and even more preferably 5MPa or less.
  • the polymerization time is preferably 1 minute to 5 hours in each of the first or second polymerization stages, or even in continuous polymerization.
  • Polymerization methods include slurry polymerization methods that use inert hydrocarbon compound solvents such as cyclohexane and heptane, bulk polymerization methods that use solvents such as liquefied propylene, and gas phase polymerization methods that do not substantially use solvents. , bulk polymerization method or gas phase polymerization method are suitable.
  • ethylene/propylene block copolymers contain an EPR component (a copolymerized component of ethylene and propylene), and when the EPR component oozes out onto the surface of the polymer particles, the particles become sticky (sticky) and flow. Sexuality becomes worse.
  • EPR component a copolymerized component of ethylene and propylene
  • deterioration of the fluidity of particles is a factor that reduces the operability of the plant, so it is desirable to select a method for producing a polymer that can suppress oozing of the EPR component onto the particle surface.
  • the ethylene-propylene rubber component (EPR) content in the ethylene-propylene copolymer means a value calculated by the following method. ⁇ EPR content> Approximately 2.5 g of the copolymer, 8 mg of 2,6-di-t-butyl-p-cresol, and 250 mL of p-xylene were placed in a 1-liter flask equipped with a stirrer and a cooling tube, and the copolymer was heated at boiling point. Stirring was continued until the polymer was completely dissolved.
  • a specific solid catalyst component for polymerizing olefins, an organoaluminum compound, and one or more external electron donating compounds selected from the aminosilane compound represented by the above general formula (I) are combined.
  • the flexural modulus (FM ) is preferably 1300 MPa or more, more preferably 1300 to 2500 MPa, even more preferably 1500 to 2000 MPa.
  • the flexural modulus (FM) of the above copolymer is specified in JIS K7139 using NEX30III3EG manufactured by Nissei Jushi Kogyo Co., Ltd. under the conditions of a molding temperature of 200 ° C. and a mold temperature of 40 ° C.
  • a multi-purpose test piece type A1 was injection molded and cut into test pieces with a thickness of 4.0 mm, a width of 10.0 mm, and a length of 80 mm from the center of the test piece. The cut test pieces were placed in a thermostatic chamber adjusted to 23°C. means a value measured at a measurement atmosphere temperature of 23°C based on JIS K7171 after conditioning for 72 hours (unit: MPa).
  • the IZOD impact of the copolymer is The strength is preferably 1.0 to 8.0 kJ/m 2 , more preferably 2.0 to 7.0 kJ/m 2 , and preferably 2.0 to 6.0 kJ/m 2 . More preferred.
  • the IZOD impact strength of a copolymer of propylene and other ⁇ -olefin monomers means a value measured by the following method.
  • ⁇ Measurement method of IZOD impact strength> To the copolymer, 0.10% by weight of IRGANOX 1010 (manufactured by BASF), 0.10% by weight of IRGAFOS 168 (manufactured by BASF), and 0.08% by weight of calcium stearate were blended, and the mixture was processed using a twin-screw extruder. The copolymer is kneaded and granulated to obtain a pellet-like copolymer.
  • the pelletized copolymer is introduced into an injection molding machine maintained at a mold temperature of 40° C. and a cylinder temperature of 200° C., and is injection molded into a multipurpose test piece type A1 specified in JIS K7139.
  • the molded multi-purpose test piece was conditioned for 72 hours in a thermostatic chamber controlled at 23°C, and then cut into the shape shown below using an automatic notch machine (manufactured by Yasuda Seiki Seisakusho Co., Ltd.). to form.
  • the Izod impact strength of the notched test piece was measured at 23°C and -30°C according to JIS K7110 using an IZOD tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd., impact tester with low temperature chamber, model number 258-L). Measure. Test piece shape: ISO 180/1A, thickness 4.0mm, width 8.0mm, length 80.0mm Notch shape: Type A notch (notch radius 0.25mm) Temperature conditions: 23°C and 30°C Impact speed: 3.5m/s Nominal pendulum energy: 5.5, 2.75 or 1.0J when measured at 23°C, 1.0 or 0.5J when measured at -30°C
  • a specific solid catalyst component for polymerizing olefins, an organoaluminum compound, and one or more external electron donating compounds selected from the aminosilane compound represented by the above general formula (I) are combined.
  • a copolymer with excellent IZOD impact strength can be easily produced by copolymerizing propylene as an olefin with other ⁇ -olefin monomers using a solid catalyst component for olefin polymerization containing can do.
  • the catalyst for olefin polymerization according to the present invention since the catalyst for olefin polymerization according to the present invention is used, it is possible to easily produce a propylene homopolymer that has excellent melt flowability and moldability as well as even better flexural modulus.
  • a method for producing an olefin polymer can be provided.
  • the propylene homopolymer according to the present invention is (a) Melt flow rate is 300g/10 minutes or less, (b) flexural modulus of 1900 MPa or more; (c) It is characterized in that the ratio of the complex viscosity ⁇ * at an angular frequency of 0.01 radian/sec to the complex viscosity ⁇ * at an angular frequency of 100 radian/sec is 5.5 or more.
  • melt flow rate (MFR) indicating melt flowability of the polymer is 300 g/10 minutes or less, preferably 1 to 300 g/10 minutes, and 10 to 200 g/10 minutes. More preferably, the time is 10 minutes.
  • melt flow rate MFR
  • melt flow rate means a value measured based on ASTM D 1238 and JIS K 7210.
  • the propylene homopolymer according to the present invention has a flexural modulus (FM) of 1900 MPa or more, preferably 1900 to 2500 MPa, more preferably 2000 to 2400 MPa.
  • FM flexural modulus
  • the flexural modulus (FM) of the above copolymer is specified in JIS K7139 using NEX30III3EG manufactured by Nissei Jushi Kogyo Co., Ltd. under the conditions of a molding temperature of 200 ° C. and a mold temperature of 40 ° C.
  • a multi-purpose test piece type A1 was injection molded, and a test piece with a thickness of 4.0 mm, a width of 10.0 mm, and a length of 80.0 mm was cut out from the center of the test piece, and the cut out test piece was adjusted to 23 ° C. It means a value measured at a measurement atmosphere temperature of 23°C based on JIS K7171 after conditioning in a constant temperature room for 72 hours (unit: MPa).
  • the propylene homopolymer according to the present invention can easily exhibit excellent rigidity by satisfying the above-mentioned flexural modulus specification.
  • the propylene homopolymer according to the present invention has a ratio of a complex viscosity ⁇ * at an angular frequency of 100 rad/sec to a complex viscosity ⁇ * at an angular frequency of 0.01 rad/sec (at an angular frequency of 0.01 rad/sec).
  • Complex viscosity ⁇ */complex viscosity ⁇ * at an angular frequency of 100 radians/sec) that is, the complex viscoelastic ratio is 5.5 or more, preferably 5.5 to 20, and 5.5 to 15. It is more preferable that there be.
  • the complex viscoelastic ratio means a value measured by the method shown below.
  • the complex viscosity ⁇ * which defines the complex viscoelastic ratio of the olefin polymer, is measured using a rheometer (MCR302 manufactured by Anton Paar).
  • the olefin polymer is compression-molded at 210° C. for 5 minutes without air bubbles to form a disk-shaped measurement sample with a thickness of 2 mm and a diameter of 25 mm.
  • the measurements are carried out using a rheometer (MCR302) manufactured by Anton Paar.
  • Parallel disks with a diameter of 25 mm placed with a gap of 1 mm are used, and the gap is filled with the measurement sample at a measurement temperature of 190°C and a frequency range of 0.01 radian/second to 100 radian/second. Measure the complex viscosity ⁇ * until .
  • the complex viscoelastic ratio is the complex viscosity ⁇ * at an angular frequency of 100 radian/sec under the temperature condition of 190°C to the complex viscosity ⁇ * at an angular frequency of 0.01 radian/sec under the temperature condition of 190°C.
  • the propylene homopolymer according to the present invention preferably has a molecular weight distribution expressed by Mw/Mn, which is the ratio of weight average molecular weight Mw to number average molecular weight Mn, of 7.0 to 15.0. It is more preferably from 5 to 12.0, and even more preferably from 8.0 to 11.0. Further, the propylene homopolymer according to the present invention preferably has a molecular weight distribution expressed by Mz/Mw, which is the ratio of the Z average molecular weight Mz and the weight average molecular weight Mw, from 4.0 to 10.0. It is more preferably 4.5 to 9.0, and even more preferably 5.0 to 8.0.
  • the propylene homopolymer according to the present invention can easily exhibit a wide molecular weight distribution as described above.
  • the molecular weight distribution of the propylene homopolymer is determined by the mass average molecular weight Mw, the number average molecular weight, which was determined by gel permeation chromatography (GPC) (GPCV2000 manufactured by Waters) under the following conditions. It means a value calculated from Mn and Z average molecular weight Mz.
  • Solvent o-dichlorobenzene (ODCB) Temperature: 140°C (SEC)
  • Flow rate 1.0mL/min
  • the propylene homopolymer according to the present invention can be easily produced by the method for producing an olefin polymer according to the present invention.
  • Example 1 Synthesis of Solid Catalyst Component Diethyl 2,3-diisopropylsuccinate, which is a succinic acid diester compound, was employed as an internal electron donating compound, and a solid catalyst component for olefin polymerization was prepared by the following method.
  • Diethyl 2,3-diisopropylsuccinate which is a succinic acid diester compound
  • a solid catalyst component for olefin polymerization was prepared by the following method.
  • (i) A mixed solution was formed by charging 40.0 mL (365 mmol) of titanium tetrachloride and 50.0 mL of toluene into a 500 mL flask equipped with a stirring device and purged with nitrogen gas.
  • the reaction was carried out for 90 minutes while maintaining the temperature. After the reaction was completed, the supernatant liquid was extracted, and the first contact product, which was a reaction product, was washed four times with 150 mL of toluene at 90°C, and 100 mL of toluene was added. (iv) Next, 20 mL (182 mmol) of titanium tetrachloride was added to the first contact product, the temperature was raised to 100°C, the reaction was carried out for 15 minutes, and after the reaction was completed, the supernatant liquid was extracted three times. The reaction product, the final contact product, was obtained.
  • the obtained final contact product was washed six times with 150 mL of n-heptane at 40° C., and solid and liquid were separated to obtain a solid catalyst component (solid catalyst component for olefin polymerization).
  • solid catalyst component solid catalyst component for olefin polymerization
  • the solid-liquid of the obtained solid catalyst component was separated and the titanium content and the content of the succinic acid diester compound in the obtained solid were measured, they were 3.20% by mass and 17.4% by mass, respectively. Met.
  • the molar ratio of the content of the succinic acid diester compound/the content of titanium was 1.01. Table 1 shows the properties of the obtained solid catalyst component.
  • titanium content in the solid catalyst component the content of a succinic acid diester compound as an internal electron donating compound, and the physical properties were measured by the following methods.
  • Tianium content in solid catalyst component was measured based on the method of JIS 8311-1997.
  • the content of the internal electron donating compound was determined by measurement using gas chromatography (GC-14B, manufactured by Shimadzu Corporation) under the following conditions. Further, the number of moles of the internal electron donating compound was determined from the measurement results of gas chromatography using a calibration curve previously measured at a known concentration.
  • Polymerization activity per 1 g of solid catalyst component was determined by the following formula (2).
  • Polymerization activity (g/g-cat) mass of polymer (g) / mass of solid catalyst component (g) (2)
  • melt flowability (g/10 minutes), which indicates the melt flowability of the polymer, was measured according to ASTM D 1238 and JIS K 7210.
  • the xylene soluble content (XS) was defined as the xylene soluble content (XS).
  • the flexural modulus (FM) of the polymer was determined by injection molding a multipurpose test piece type A1 specified in JIS K7139 using NEX30III3EG manufactured by Nissei Jushi Kogyo Co., Ltd. at a molding temperature of 200°C and a mold temperature of 40°C.
  • a test piece cut out from the center of the test piece with a thickness of 4.0 mm, a width of 10.0 mm, and a length of 80.0 mm was conditioned for 72 hours in a thermostatic chamber adjusted to 23 ° C. Thereafter, the measurement was performed at a measurement atmosphere temperature of 23° C. (unit: MPa) based on JIS K7171.
  • the molecular weight distribution of the polymer is determined by the ratio Mw/Mn of the mass average molecular weight Mw and the number average molecular weight Mn, and Z Evaluation was made by the ratio Mz/Mw of the average molecular weight Mz and the mass average molecular weight Mw.
  • Solvent o-dichlorobenzene (ODCB) Temperature: 140°C (SEC) Column: Shodex GPC UT-806M Sample concentration: 1g/liter-ODCB (50mg/50mL-ODCB) Injection volume: 0.5mL Flow rate: 1.0mL/min
  • Example 2 In “2. Formation of polymerization catalyst and polymerization reaction" of Example 1, instead of using 0.26 mmol of bis(ethylamino)dicyclopentylsilane as the external electron donating compound, bis(ethylamino)cyclohexylmethyl was used. A polymerization catalyst was formed and a polymerization reaction was carried out in the same manner as in Example 1, except that 0.13 mmol of silane was used and the amount of hydrogen gas was changed to 5.0 liters in the formation of a propylene homopolymer. At this time, the polymerization activity per gram of the solid catalyst component and the physical properties of the obtained polymer were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 3 Synthesis of solid catalyst component Diethyl 2,3-diisopropylsuccinate and (2-ethoxyethyl)ethyl carbonate, which is an ether carbonate compound, were employed as internal electron donating compounds, and a solid catalyst component for olefin polymerization was prepared by the following method. Prepared. (i) A mixed solution was formed by charging 40.0 mL (365 mmol) of titanium tetrachloride and 50.0 mL of toluene into a 500 mL flask equipped with a stirring device and purged with nitrogen gas.
  • Example 4 Synthesis of solid catalyst component The amount of diethyl 2,3-diisopropylsuccinate added in ⁇ 1. Synthesis of solid catalyst component'' (ii) and (iii) of Example 1 was 3.0 mL (11.2 mmol). A solid catalyst component (solid catalyst component for olefin polymerization) was obtained in the same manner as in Example 1 except that the amount was changed to 3.6 mL (13.3 mmol). The properties of the obtained solid catalyst component were measured in the same manner as in Example 1. The results are shown in Table 1. 2. Formation of polymerization catalyst and polymerization reaction 1. A polymerization catalyst was formed and a polymerization reaction was carried out in the same manner as in "2.
  • Example 2 Formation of polymerization catalyst and polymerization reaction" of Example 1, except that the solid catalyst component obtained in . At this time, the polymerization activity per gram of the solid catalyst component and the physical properties of the obtained polymer were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 5 Synthesis of solid catalyst component (i) In a 300 mL round bottom flask equipped with a stirrer and purged with nitrogen gas, 5.7 g (60.0 mmol) of anhydrous magnesium chloride, 30 mL of n-decane, and 28 mL of 2-ethylhexyl alcohol were added. (179.0 mmol) was heated at 130°C for 2 hours to obtain a homogeneous solution, and then 2.4 mL (8.8 mmol) of diethyl diisopropylsuccinate was added to this solution and further heated at 130°C for 1 hour. Stir for hours.
  • Example 1 solid catalyst component for olefin polymerization
  • the properties of the obtained solid catalyst component were measured in the same manner as in Example 1. The results are shown in Table 1. 2. Formation of polymerization catalyst and polymerization reaction 1. "2. Formation of polymerization catalyst and polymerization reaction" in Example 1 except that the amount of hydrogen gas charged during the formation of propylene homopolymer was changed to 6.5 liters using the solid catalyst component obtained in Example 1. In the same manner as above, a polymerization catalyst was formed and a polymerization reaction was carried out. At this time, the polymerization activity per gram of the solid catalyst component and the physical properties of the obtained polymer were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 6 Synthesis of solid catalyst component (i) 75.0 mL (684 mmol) of titanium tetrachloride and 15.0 mL of toluene were charged into a 500 mL flask equipped with a stirring device and purged with nitrogen gas, and the mixed solution was charged. Formed. (ii) Next, a suspension formed by mixing 20 g (174.8 mmol) of diethoxymagnesium, 60 mL of toluene, and 2.7 mL (10.2 mmol) of diethyl 2,3-diisopropylsuccinate was mixed at -6°C. was added to the above mixed solution maintained at a liquid temperature of , to obtain a liquid containing an initial contact substance.
  • Example 1 Met. Further, the molar ratio of the content of the succinic acid diester compound/the content of titanium was 0.82.
  • the properties of the obtained solid catalyst component were measured in the same manner as in Example 1. The results are shown in Table 1. 2. Formation of polymerization catalyst and polymerization reaction 1. Using the solid catalyst component obtained in the above, a polymerization catalyst was formed and a polymerization reaction was carried out in the same manner as in "2. Formation of polymerization catalyst and polymerization reaction" of Example 1. At this time, the polymerization activity per gram of the solid catalyst component and the physical properties of the obtained polymer were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 7 In “2. Formation of polymerization catalyst and polymerization reaction" of Example 6, instead of using 0.26 mmol of bis(ethylamino)dicyclopentylsilane as the external electron donating compound, bis(ethylamino)dicyclopentyl was used. A polymerization catalyst was formed and the polymerization reaction was carried out in the same manner as in Example 1, except that 0.13 mmol of silane was used and the hydrogen gas during formation of the propylene homopolymer was changed from 6.0 liters to 4.5 liters. went. At this time, the polymerization activity per gram of the solid catalyst component and the physical properties of the obtained polymer were measured in the same manner as in Example 1. The results are shown in Table 2.
  • a solid catalyst component (solid catalyst component for olefin polymerization) was obtained by washing twice.
  • the properties of the obtained solid catalyst component were measured in the same manner as in Example 1. The results are shown in Table 1.
  • Formation of polymerization catalyst and polymerization reaction 1. 2. Formation of polymerization catalyst and polymerization reaction in Example 1 except that the amount of hydrogen gas charged during the formation of propylene homopolymer was changed to 4.5 liters using the solid catalyst component obtained in Example 1. '', a polymerization catalyst was formed and a polymerization reaction was carried out. At this time, the polymerization activity per gram of the solid catalyst component and the physical properties of the obtained polymer were measured in the same manner as in Example 1. The results are shown in Table 2.
  • Example 8 ⁇ Preparation of ethylene-propylene copolymerization catalyst>
  • 2.4 mmol of triethylaluminum, 0.24 mmol of bis(ethylamino)dicyclopentylsilane as an aminosilane compound, and the solid prepared in Example 1 were placed.
  • a catalyst component was charged at 0.003 mmol in terms of titanium atoms to prepare an ethylene-propylene copolymerization catalyst.
  • Propylene/hydrogen was introduced at a rate of 1.7/2.3/0.086 gas supply per minute (liter/min), respectively, at 1.2 MPa, 70°C, for 60 minutes.
  • an ethylene-propylene copolymer was obtained.
  • copolymerization (ICP) activity g/g-cat
  • block rate mass%
  • EPR content mass%
  • the IZOD impact strength of the copolymer was measured by the following method. The results are shown in Table 3.
  • Copolymerization (ICP) activity (g/g-cat) ((I(g)-G(g))/mass (g) of solid catalyst component contained in catalyst for olefin polymerization)/reaction time (hours) (4)
  • I (g) is the mass (g) of the autoclave after the copolymerization reaction is completed
  • G (g) is the mass (g) of the autoclave after the homo-PP polymerization reaction is completed and unreacted monomers are removed.
  • MFR melt flowability
  • Block rate (mass%) ⁇ (I(g)-G(g))/(I(g)-F(g)) ⁇ 100 (5)
  • I is the autoclave mass (g) after the copolymerization reaction is completed
  • G is the autoclave mass (g) after the homopolypropylene polymerization is completed and unreacted monomers are removed
  • F is the autoclave mass (g).
  • EPR content (mass%) [C (g) / ⁇ B (g) + C (g) ⁇ ] ⁇ 100 (1)
  • the flexural modulus (FM) of the above copolymer is specified in JIS K7139 using NEX30III3EG manufactured by Nissei Jushi Kogyo Co., Ltd. under the conditions of a molding temperature of 200 ° C. and a mold temperature of 40 ° C.
  • a multi-purpose test piece type A1 was injection molded, and a test piece having a thickness of 4.0 mm, a width of 10.0 mm, and a length of 80.0 mm was cut from the center of the test piece. It means a value measured at a measurement atmosphere temperature of 23°C based on JIS K7171 after conditioning the cut test piece in a constant temperature room adjusted to 23°C for 72 hours (unit: MPa).
  • ⁇ IZOD impact strength of copolymer> To the copolymer, 0.10% by weight of IRGANOX 1010 (manufactured by BASF), 0.10% by weight of IRGAFOS 168 (manufactured by BASF), and 0.08% by weight of calcium stearate were blended, and the mixture was processed using a twin-screw extruder. The copolymer is kneaded and granulated to obtain a pellet-like copolymer. Next, the pelletized copolymer is introduced into an injection molding machine maintained at a mold temperature of 40° C. and a cylinder temperature of 200° C., and is injection molded into a multipurpose test piece type A1 specified in JIS K7139.
  • the molded multi-purpose test piece was conditioned for 72 hours in a thermostatic chamber controlled at 23°C, and then cut into the shape shown below using an automatic notch machine (manufactured by Yasuda Seiki Seisakusho Co., Ltd.). to form.
  • the Izod impact strength of the notched test piece was measured at 23°C and -30°C according to JIS K7110 using an IZOD tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd., impact tester with low temperature chamber, model number 258-L). was measured.
  • Test piece shape ISO 180/1A, thickness 4.0mm, width 8.0mm, length 80.0mm
  • Notch shape Type A notch (notch radius 0.25mm)
  • the catalyst for polymerizing olefins according to the present invention used in Examples 1 to 7 contains magnesium, titanium, halogen, and a succinic diester compound, and has the succinic diester compound as the main component.
  • the catalyst for olefin polymerization according to the present invention used in Example 8 contains the above-mentioned specific components, so that it can be used to polymerize olefins containing compounds other than phthalate esters as internal electron donating compounds.
  • the obtained copolymer has excellent block rate and EPR, as well as flexural modulus (FM) and IZOD impact strength of the copolymer. I understand that.
  • the olefin polymerization catalysts used in Comparative Examples 1 and 2 used a compound other than the specific aminosilane compound as an external electron donating compound (Comparative Example 1), Since the ratio expressed by the content of the internal electron donating compound whose main component is a succinic acid diester compound constituting the solid catalyst component/the content of titanium was outside the predetermined range (Comparative Example 2), the Example When compared with Examples 1 to 5, it can be seen that the flexural modulus FM and complex viscoelastic ratio of the obtained propylene homopolymer are low.
  • the catalyst for olefin polymerization used in Comparative Example 3 uses a compound other than the specific aminosilane compound as an external electron donating compound, so when compared with Example 6, the obtained It can be seen that the block rate and EPR of the obtained copolymer are low, and the IZOD impact strength of the copolymer is also low.
  • the present invention although it contains a solid catalyst component for olefin polymerization that contains a compound other than phthalate ester as an internal electron donating compound, it has excellent melt flowability and moldability, and is even more bendable. It is possible to provide a catalyst for polymerizing olefins that can easily produce a propylene homopolymer having an excellent elastic modulus, and also to provide a method for producing an olefin polymer and a propylene homopolymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

内部電子供与性化合物としてフタル酸エステル以外の化合物を含むオレフィン類重合用固体触媒成分を含有するものであるにも拘わらず、溶融流れ性及び成形性に優れるとともにより一層曲げ弾性率に優れたプロピレン単独重合体を簡便に製造し得るオレフィン類重合用触媒を提供する。 マグネシウム、チタン、ハロゲン、コハク酸ジエステル化合物を含み、前記チタンの含有量(T)に対する前記コハク酸ジエステル化合物を主成分とする内部電子供与性化合物の総含有量(S)で表される比(S/T)が、モル比で0.60~1.30であるオレフィン類重合用固体触媒成分と、有機アルミニウム化合物と、特定のアミノシラン化合物から選ばれる一種以上の外部電子供与性化合物とを含むことを特徴とするオレフィン類重合用触媒である。

Description

オレフィン類重合用触媒、オレフィン類重合体の製造方法及びプロピレン単独重合体
 本発明は、オレフィン類重合用触媒、オレフィン類重合体の製造方法及びプロピレン単独重合体に関する。
 近年、ポリプロピレン(PP)等のオレフィン類重合体は、自動車部品あるいは家電製品などの成型品の他、容器やフィルム等種々の用途に利用されている。
 ポリプロピレン系樹脂組成物は、軽量で成形性に優れるとともに、成形体の耐熱性や耐薬品性等の化学的安定性に優れ、コストパフォーマンス上も非常に優秀であることから、最も重要なプラスチック材料の一つとして多くの分野で使用されている。
 さらなる用途拡大を図るため、ポリスチレンやABS樹脂の代替として使用可能な、溶融流れ性(メルトフローレート(MFR))が高く成形性に優れるとともに曲げ弾性率(FM)に優れたポリプロピレンが望まれるようになっている。
 プロピレンなどのオレフィン類の重合においては、マグネシウム原子、チタン原子、ハロゲン原子及び内部電子供与性化合物を必須成分として含む固体触媒成分を用いた重合方法が知られており、上記固体触媒成分、有機アルミニウム化合物及び有機ケイ素化合物から成るオレフィン類重合用触媒の存在下に、オレフィン類を重合もしくは共重合させる方法が数多く提案されている(特許文献1等参照)。
 例えば、特許文献1には、フタル酸エステル等の内部電子供与性化合物が担持された固体状チタン触媒成分と、助触媒成分として有機アルミニウム化合物と、少なくとも一つのSi-O-C結合を有する有機ケイ素化合物とを含むオレフィン類重合用触媒を用いてプロピレンを重合させる方法が提案されており、特許文献1を含め多くの文献において内部電子供与性化合物としてフタル酸エステルを使用し、高い重合活性の下、高立体規則性ポリマーを得る方法が提案されている。
特開昭57-63310号公報 特開2000-017019号公報
 しかしながら、フタル酸エステルの一種であるフタル酸ジ-n-ブチルやフタル酸ベンジルブチルは、欧州のRegistration,Evaluation,Authorization and Restriction of Chemicals(REACH)規制におけるSubstance of Very High Concern(SVHC)物質として特定されており、環境負荷低減の観点から、SVHC物質を使用しない触媒系への転換要求が高まっている。
 一方、内部電子供与化合物としてフタル酸エステル以外の化合物を含むオレフィン類重合用固体触媒成分を使用した場合、内部電子供与性化合物としてフタル酸エステルを含むオレフィン類重合用固体触媒成分を使用した場合に比較して、オレフィン類の重合に供したときに、得られる重合体の諸特性に劣ることが知られており、特に、溶融流れ性及び成形性に優れ、曲げ弾性率に優れた重合体を製造することが困難となる。
 成形性を向上させるためには、適度な溶融流れ性(MFR)を有するポリマーのほか、低角周波数で高複素粘度を高角周波数で低複素粘度を示す線形粘弾性に優れたポリマーが好ましく、このようなポリマーとして、例えば、分子量分布の広いポリマーが好適であることが知られている。
 分子量分布を広げて成形性の良いポリプロピレンを得る方法として、例えば、特許文献2には、複数の重合反応器を用いて多段重合を行う方法が提案されているが、特許文献2記載の重合方法は、その実施例として、フタル酸エステルを内部電子供与性化合物として含むオレフィン類重合用固体触媒成分の使用例を開示するものであって、得られるポリマーとしてもより一層優れた曲げ弾性率(FM)を示すものが求められるようになっている。
 このように、従来、成形性の指標となる溶融流れ性(MFR)が300g/10分間以下と実用上適度な成形性を有するとともに複素粘弾比が5.5以上と高く、曲げ弾性率(FM)が1900MPa以上と高いポリプロピレン(プロピレン単独重合体)を製造し得るオレフィン類重合用触媒は知られていなかった。
 このような状況下、本発明は、内部電子供与性化合物としてフタル酸エステル以外の化合物を含むオレフィン類重合用固体触媒成分を含有するものであるにも拘わらず、溶融流れ性及び成形性に優れるとともにより一層曲げ弾性率に優れたプロピレン単独重合体を簡便に製造し得るオレフィン類重合用触媒を提供できるとともに、オレフィン類重合体の製造方法及びプロピレン単独重合体を提供することを目的とするものである。
 上記技術課題を解決すべく、本発明者等が鋭意検討を重ねた結果、マグネシウム、チタン、ハロゲン、コハク酸ジエステル化合物を含み、前記チタンの含有量(T)に対する前記コハク酸ジエステル化合物を主成分とする内部電子供与性化合物の総含有量(S)で表される比(S/T)が、モル比で0.60~1.30であるオレフィン類重合用固体触媒成分と、有機アルミニウム化合物と、特定のアミノシラン化合物から選ばれる一種以上の外部電子供与性化合物とを含むオレフィン類重合用触媒により、上記技術課題を解決し得ることを見出し、本知見に基づいて本発明を完成するに至った。
 すなわち、本発明は、
(1)マグネシウム、チタン、ハロゲン、コハク酸ジエステル化合物を含み、前記チタンの含有量(T)に対する前記コハク酸ジエステル化合物を主成分とする内部電子供与性化合物の総含有量(S)で表される比(S/T)が、モル比で0.60~1.30であるオレフィン類重合用固体触媒成分と、
 有機アルミニウム化合物と、
 下記一般式(I);
 R Si(NR4-n (I)
(式中、Rは、炭素数1~20のアルキル基、ビニル基、炭素数3~12のアルケニル基、炭素数1~20のアルコキシ基、ビニルオキシ基、炭素数3~20のアルケニルオキシ基、炭素数3~20のシクロアルキル基、炭素数3~20のシクロアルキルオキシ基又は炭素数6~20のアリール基、炭素数6~20のアリールオキシ基を示し、Rが複数存在する場合、複数のRは互いに同一でも異なっていてもよい。R及びRは、水素原子、炭素数1~20のアルキル基、ビニル基、炭素数3~20のアルケニル基、炭素数3~20のシクロアルキル基、炭素数3~20のシクロアルケニル基又は炭素数6~20のアリール基を示し、R及びRは互いに同一でも異なっていてもよく、また互いに結合して環を形成してもよく、NR基が複数存在する場合、複数のNR基は互いに同一でも異なっていてもよい。nは1≦n≦3である。)
で表されるアミノシラン化合物から選ばれる一種以上の外部電子供与性化合物と
を含むことを特徴とするオレフィン類重合用触媒、
(2)前記オレフィン類重合用固体触媒成分中における前記コハク酸ジエステル化合物を主成分とする内部電子供与性化合物の総含有量(S)が10.0質量%以上である上記(1)に記載のオレフィン類重合用触媒、
(3)前記オレフィン類重合用固体触媒成分中における前記チタンの含有量(T)が1.0~6.0質量%である上記(1)又は(2)に記載のオレフィン類重合用触媒、
(4)前記コハク酸ジエステル化合物が、下記一般式(II);
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは、水素原子又は炭素数1~4のアルキル基であって互いに同一であってもよいし異なっていてもよく、R及びRは、炭素数2~4の直鎖アルキル基又は分岐アルキル基であって互いに同一であってもよいし異なっていてもよい。)
で表される化合物から選ばれる一種以上である上記(1)~(3)のいずれかに記載のオレフィン類重合用触媒、
(5)前記有機アルミニウム化合物が、下記一般式(III);
   R AlQ3-p (III)
(式中、Rは、炭素数1~6のアルキル基であり、Qは、水素原子あるいはハロゲンであり、pは、0<p≦3であり、Rが複数存在する場合、各Rは互いに同一であっても異なっていてもよく、Qが複数存在する場合、各Qは互いに同一であっても異なっていてもよい。)
で表わされる化合物から選ばれる一種以上である上記(1)~(4)のいずれかに記載のオレフィン類重合用触媒、
(6)上記(1)~(5)のいずれかに記載のオレフィン重合用触媒を用いてオレフィン類の重合を行うことを特徴とするオレフィン類重合体の製造方法、および
(7)(a)メルトフローレートが300g/10分間以下、
(b)曲げ弾性率が1900MPa以上、
(c)角周波数100ラジアン/秒での複素粘度η*に対する角周波数0.01ラジアン/秒での複素粘度η*の比が5.5以上である
ことを特徴とするプロピレン単独重合体
を提供するものである。
 本発明によれば、内部電子供与性化合物としてフタル酸エステル以外の化合物を含むオレフィン類重合用固体触媒成分を含有するものであるにも拘わらず、溶融流れ性及び成形性に優れるとともにより一層曲げ弾性率に優れたプロピレン単独重合体を簡便に製造し得るオレフィン類重合用触媒を提供できるとともに、オレフィン類重合体の製造方法及びプロピレン単独重合体を提供することができる。
 先ず、本発明に係るオレフィン類重合用触媒について説明する。
 本発明に係るオレフィン類重合用触媒は、マグネシウム、チタン、ハロゲン、コハク酸ジエステル化合物を含み、
 前記チタンの含有量(T)に対する前記コハク酸ジエステル化合物を主成分とする内部電子供与性化合物の総含有量(S)で表される比(S/T)が、モル比で0.60~1.30であるオレフィン類重合用固体触媒成分と、
 有機アルミニウム化合物と、
 下記一般式(I);
 R Si(NR4-n (I)
(式中、Rは、炭素数1~20のアルキル基、ビニル基、炭素数3~12のアルケニル基、炭素数1~20のアルコキシ基、ビニルオキシ基、炭素数3~20のアルケニルオキシ基、炭素数3~20のシクロアルキル基、炭素数3~20のシクロアルキルオキシ基又は炭素数6~20のアリール基、炭素数6~20のアリールオキシ基を示し、Rが複数存在する場合、複数のRは互いに同一でも異なっていてもよい。R及びRは、水素原子、炭素数1~20のアルキル基、ビニル基、炭素数3~20のアルケニル基、炭素数3~20のシクロアルキル基、炭素数3~20のシクロアルケニル基又は炭素数6~20のアリール基を示し、R及びRは互いに同一でも異なっていてもよく、また互いに結合して環を形成してもよく、NR基が複数存在する場合、複数のNR基は互いに同一でも異なっていてもよい。nは1≦n≦3である。)
で表されるアミノシラン化合物から選ばれる一種以上の外部電子供与性化合物と
を含むことを特徴とするものである。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分としては、マグネシウム、チタン及びハロゲンの供給源となる原料成分と内部電子供与性化合物であるコハク酸ジエステル化合物とを有機溶媒中で相互に接触させ、反応させてなる接触反応物を挙げることができ、具体的には、マグネシウム、チタン及びハロゲンの供給源となる原料成分として、マグネシウム化合物及び四価のチタンハロゲン化合物を用い、これ等の原料とコハク酸ジエステル化合物を含む内部電子供与性化合物とを相互に接触させてなる接触反応物を挙げることができる。
 上記マグネシウム化合物としては、ジアルコキシマグネシウム、ジハロゲン化マグネシウム及びアルコキシマグネシウムハライド等から選ばれる一種以上を挙げることができる。
 上記マグネシウム化合物の内、ジアルコキシマグネシウム又はマグネシウムジハライドが好ましく、具体的には、ジメトキシマグネシウム、ジエトキシマグネシウム、ジプロポキシマグネシウム、ジブトキシマグネシウム、エトキシメトキシマグネシウム、エトキシプロポキシマグネシウム、ブトキシエトキシマグネシウム、マグネシウムジクロライド、マグネシウムジブロマイド、マグネシウムジイオダイド等が挙げられ、ジエトキシマグネシウム及びマグネシウムジクロライドが特に好ましい。
 上記マグネシウム化合物のうち、ジアルコキシマグネシウムは、金属マグネシウムを、ハロゲンあるいはハロゲン含有金属化合物等の存在下に、アルコールと反応させて得たものでもよい。
 上記ジアルコキシマグネシウムは、顆粒状又は粉末状であるものが好ましく、その形状は不定形状あるいは球状のものを使用し得る。
 ジアルコキシマグネシウムとして球状のものを使用した場合、より良好な粒子形状を有し(より球状で)狭い粒度分布を有する重合体粉末が得られ、重合操作時に生成した重合体粉末の取扱い操作性が向上し、生成した重合体粉末に含まれる微粉に起因する閉塞等の発生を抑制することができる。
 上記球状のジアルコキシマグネシウムは、必ずしも真球状である必要はなく、楕円形状あるいは馬鈴薯形状のものを用いることもできる。
 また、上記ジアルコキシマグネシウムの平均粒子径(平均粒子径D50)は、1.0~200.0μmであることが好ましく、5.0~150.0μmであることがより好ましい。ここで、平均粒子径D50は、レーザー光散乱回折法粒度測定機を用いて測定したときの、体積積算粒度分布における積算粒度で50%の粒径を意味するものである。
 ジアルコキシマグネシウムが球状である場合、上記平均粒子径D50は1.0~100.0μmであることが好ましく、5.0~80.0μmであることがより好ましく、10.0~70.0μmであることがさらに好ましい。
 また、ジアルコキシマグネシウムの粒度分布については、微粉及び粗粉の少ない、粒度分布の狭いものであることが好ましい。
 具体的には、ジアルコキシマグネシウムは、レーザー光散乱回折法粒度測定機を用いて測定したときに、粒子径5.0μm以下の粒子が20%以下であることが好ましく、10%以下であることがより好ましい。一方、レーザー光散乱回折法粒度測定機を用いて測定したときに、粒子径100.0μm以上の粒子が20%以下であることが好ましく、10%以下であることがより好ましい。
 更にその粒度分布をln(D90/D10)で表すと3以下であることが好ましく、2以下であることがより好ましい。ここで、D90は、レーザー光散乱回折法粒度測定機を用いて測定したときの、体積積算粒度分布における積算粒度で90%の粒径を意味するものである。また、D10は、レーザー光散乱回折法粒度測定機を用いて測定したときの、体積積算粒度分布における積算粒度で10%の粒径を意味するものである。
 上記球状のジアルコキシマグネシウムの製造方法は、例えば特開昭62-51633号公報、特開平3-74341号公報、特開平4-368391号公報、特開平8-73388号公報等に例示されている。
 本発明に係るオレフィン類重合用固体触媒成分において、マグネシウム化合物としては、比表面積が、5m/g以上であるものが好ましく、5~50m/gであるものがより好ましく、10~40m/gであるものがさらに好ましい。
 マグネシム化合物として比表面積が上記範囲内にあるものを使用することにより、所望の比表面積を有するオレフィン類重合用固体触媒成分を容易に調製することができる。
 なお、本出願書類において、マグネシウム化合物の比表面積は、BET法により測定した値を意味し、具体的には、マグネシウム化合物の比表面積は、予め測定試料を50℃で2時間真空乾燥した上で、Mountech社製Automatic Surface Area Analyzer HM model-1230を用い、窒素とヘリウムとの混合ガスの存在下において、BET法(自動測定)により測定した値を意味する。
 上記マグネシウム化合物は、反応時に溶液状又は懸濁液状であることが好ましく、溶液状又は懸濁液状であることにより、反応を好適に進行させることができる。
 上記マグネシウム化合物が固体である場合には、マグネシウム化合物の可溶化能を有する溶媒に溶解することにより溶液状のマグネシウム化合物とすることができ、又はマグネシウム化合物の可溶化能を有さない溶媒に懸濁することによりマグネシウム化合物懸濁液とすることができる。
 なお、マグネシウム化合物が液体である場合には、そのまま溶液状のマグネシウム化合物として用いてもよいし、マグネシウム化合物の可溶化能を有する溶媒にさらに溶解して溶液状のマグネシウム化合物として用いてもよい。
 固体のマグネシウム化合物を可溶化しうる化合物としては、アルコール、エーテル及びエステルからなる群から選ばれる少なくとも1種の化合物が挙げられ、エタノール、プロパノール、ブタノール、2-エチルヘキサノールなどのアルコールが好ましく、2-エチルヘキサノールが特に好ましい。
 一方、固体状のマグネシウム化合物に対して可溶化能を有さない媒体としては、マグネシウム化合物を溶解することがない、飽和炭化水素溶媒又は不飽和炭化水素溶媒から選ばれる一種以上が挙げられる。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分において、チタン及びハロゲンの供給源となる原料成分である四価のチタンハロゲン化合物と
しては、特に制限されないが、下記一般式(IV)
  Ti(OR4-r   (IV)
(式中、Rは、炭素数1~4のアルキル基を示し、Xは、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子を示し、rは、0≦r≦3である。)で表されるチタンハライド又はアルコキシチタンハライド群から選択される化合物の一種以上であることが好適である。
 上記一般式(IV)において、rは0≦r≦3であり、具体的には、rとして、0、1、2又は3が挙げられる。
 上記一般式(IV)で表されるチタンハライドとしては、チタンテトラクロライド、チタンテトラブロマイド、チタンテトラアイオダイド等から選ばれる一種以上のチタンテトラハライドが挙げられる。
 また、上記一般式(IV)で表されるアルコキシチタンハライドとしては、メトキシチタントリクロライド、エトキシチタントリクロライド、プロポキシチタントリクロライド、n-ブトキシチタントリクロライド、ジメトキシチタンジクロライド、ジエトキシチタンジクロライド、ジプロポキシチタンジクロライド、ジ-n-ブトキシチタンジクロライド、トリメトキシチタンクロライド、トリエトキシチタンクロライド、トリプロポキシチタンクロライド、トリ-n-ブトキシチタンクロライド等から選ばれる一種以上が挙げられる。
 四価のチタンハロゲン化合物としては、チタンテトラハライドが好ましく、チタンテトラクロライドがより好ましい。
 これらのチタン化合物は単独で用いられてもよいし、2種以上併用することもできる。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分において、コハク酸ジエステル化合物としては、下記一般式(II);
Figure JPOXMLDOC01-appb-C000003
(式中、R及びRは水素原子又は炭素数1~4のアルキル基であって互いに同一であってもよいし異なっていてもよく、R及びRは炭素数2~4の直鎖アルキル基又は分岐アルキル基であって互いに同一であってもよいし異なっていてもよい。)
で表される化合物から選ばれる一種以上を挙げることができる。
 上記一般式(II)で表される化合物において、R及びRは水素原子又は炭素数1~4のアルキル基であって互いに同一であってもよいし異なっていてもよい。
 R又はRが炭素数1~4のアルキル基である場合、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基又はイソブチル基を挙げることができる。
 上記一般式(II)で表される化合物において、R及びRは炭素数2~4の直鎖アルキル基又は分岐アルキル基であって互いに同一であってもよいし異なっていてもよい。
 R及びRが炭素数2~4の直鎖アルキル基又は分岐アルキル基である場合、具体的には、エチル基、n-プロピル基、イソプロピル基、n-ブチル基又はイソブチル基を挙げることができる。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分において、コハク酸ジエステル化合物としては、前記一般式(II)で示されるコハク酸ジアルキルエステルであれば特に制限されず、例えば、
 コハク酸ジエチル、2,3-ジメチルコハク酸ジエチル、2,3-ジエチルコハク酸ジエチル、2,3-ジ-n-プロピルコハク酸ジエチル、2,3-ジイソプロピルコハク酸ジエチル、2,3-ジ-n-ブチルコハク酸ジエチル、2,3-ジイソブチルコハク酸ジエチル;
 コハク酸ジ-n-プロピル、2,3-ジメチルコハク酸ジ-n-プロピル、2,3-ジエチルコハク酸ジ-n-プロピル、2,3-ジ-n-プロピルコハク酸ジ-n-プロピル、2,3-ジイソプロピルコハク酸ジ-n-プロピル、2,3-ジ-n-ブチルコハク酸ジ-n-プロピル、2,3-ジイソブチルコハク酸ジ-n-プロピル;
 コハク酸ジイソプロピル、2,3-ジメチルコハク酸ジイソプロピル、2,3-ジエチルコハク酸ジイソプロピル、2,3-ジ-n-プロピルコハク酸ジイソプロピル、2,3-ジイソプロピルコハク酸ジイソプロピル、2,3-ジ-n-ブチルコハク酸ジイソプロピル、2,3-ジイソブチルコハク酸ジイソプロピル;
 コハク酸ジ-n-ブチル、2,3-ジメチルコハク酸ジ-n-ブチル、2,3-ジエチルコハク酸ジ-n-ブチル、2,3-ジ-n-プロピルコハク酸ジ-n-ブチル、2,3-ジイソプロピルコハク酸ジ-n-ブチル、2,3-ジ-n-ブチルコハク酸ジ-n-ブチル、2,3-ジイソブチルコハク酸ジ-n-ブチル;
 コハク酸ジイソブチル、2,3-ジメチルコハク酸ジイソブチル、2,3-ジエチルコハク酸ジイソブチル、2,3-ジ-n-プロピルコハク酸ジイソブチル、2,3-ジイソプロピルコハク酸ジイソブチル、2,3-ジ-n-ブチルコハク酸ジイソブチル、2,3-ジイソブチルコハク酸ジイソブチル;
から選ばれる一種以上を挙げることができる。
 これらのコハク酸ジアルキルエステルの中でも、コハク酸ジエチル、コハク酸ジ-n-プロピル、コハク酸ジ-n-ブチル、コハク酸ジイソブチル、2,3-ジ-n-プロピルコハク酸ジエチル、2,3-ジイソプロピルコハク酸ジエチル、2,3-ジ-n-プロピルコハク酸ジ-n-プロピル、2,3-ジイソプロピルコハク酸ジ-n-プロピル、2,3-ジ-n-プロピルコハク酸ジイソプロピル、2,3-ジイソプロピルコハク酸ジイソプロピル、2,3-ジ-n-プロピルコハク酸ジ-n-ブチル、2,3-ジイソプロピルコハク酸ジ-n-ブチル、2,3-ジ-n-プロピルコハク酸ジイソブチル、2,3-ジイソプロピルコハク酸ジイソブチルが好ましく用いられる。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、内部電子供与性化合物としてコハク酸ジエステル化合物を必須成分として含むが、これ等の内部電子供与性化合物以外に、さらにその他の内部電子供与性化合物(以下、適宜、「その他の内部電子供与性化合物」と称する。)を含んでいてもよい。
 このようなその他の内部電子供与性化合物としては、カーボネート類、酸ハライド類、酸アミド類、ニトリル類、酸無水物、ジエーテル化合物類及びカルボン酸エステル類等から選ばれる一種以上が挙げられる。
 このようなその他の内部電子供与性化合物として、具体的には、エーテルカーボネート化合物や、シクロアルカンジカルボン酸ジエステル、シクロアルケンジカルボン酸ジエステル、マロン酸ジエステル、アルキル置換マロン酸ジエステル、マレイン酸ジエステル等のカルボン酸ジエステルや、ジエーテル化合物等から選ばれる一種以上を挙げることができる。
 より具体的には、(2-エトキシエチル)メチルカーボネート、(2-エトキシエチル)エチルカーボネート、(2-エトキシエチル)フェニルカーボネート等のエーテルカーボネート化合物、ジイソブチルマロン酸ジメチル、ジイソブチルマロン酸ジエチル等のジアルキルマロン酸ジエステル、シクロヘキサン-1,2-ジカルボン酸ジメチル等のシクロアルカンジカルボン酸ジエステル及び、(イソプロピル)(イソペンチル)-1,3-ジメトキシプロパン、9,9-ビス(メトキシメチル)フルオレン等の1,3-ジエーテルから選ばれる一種以上がより好ましい。
 一方、本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、フタル酸エステルの含有量が、0.2質量%以下(0.0~0.2質量%)であることが適当であり、0.1質量%以下(0.0~0.1質量%)であることがより適当であり、0.0質量%である(実質的にフタル酸エステルを含まない(検出限界以下))ことがさらに適当である。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、コハク酸ジエステル化合物とともに、その他の内部電子供与性化合物を有するものであることにより、重合時の水素応答性や、重合時に得られるオレフィン類重合体の立体規則性や分子量分布等の物性を、従来のフタル酸エステルを内部電子供与性化合物として含む固体触媒を用いて製造した重合体と同等の範囲に容易にコントロールすることができる。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、固形分換算したときに、コハク酸ジエステル化合物の含有量が、7.0質量%以上であることが好ましく、15.0~25.0質量%であることがより好ましく、20.0~23.0質量%であることがさらに好ましい。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、固形分換算したときに、コハク酸ジエステル化合物の含有量が、7.0質量%以上であることにより、オレフィン類の重合に供したときに、溶融流れ性に優れるとともにより一層曲げ弾性率に優れたプロピレン単独重合体を容易に製造することができる。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、上述したように、内部電子供与性化合物として、コハク酸ジエステル化合物を主成分としてその他の内部電子供与性化合物を含んでよいものであり、コハク酸ジエステル化合物を主成分とする内部電子供与性化合物の総含有量(S)は、10.0質量%以上であることが好ましく、15.0~25.0質量%であることがより好ましく、20.0~24.0質量%であることがさらに好ましい。
 なお、本出願書類において、コハク酸ジエステル化合物を主成分とするとは、オレフィン類重合用固体触媒成分を構成する全内部電子供与性化合物中に占めるコハク酸ジエステル化合物の含有割合が60.0~100.0質量%であることを意味する。
 本発明に係るオレフィン類重合用触媒において、オレフィン類重合用固体触媒成分中における、チタンの含有量(T)に対するコハク酸ジエステル化合物を主成分とする内部電子供与性化合物の総含有量(S)で表される比(S/T)が、モル比で、0.60~1.30であり、0.60~1.20であることが好ましく、0.65~1.20であることがより好ましい。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、前記チタンの含有量(T)に対する前記コハク酸ジエステル化合物の含有量(S)で表される比(S/T)、すなわち、本発明に係るオレフィン類重合用固体触媒成分中における、上記コハク酸ジエステル化合物を主成分とする内部電子供与性化合物の総含有量/上記チタンの含有量で表される比が、モル比で0.60~1.30であることにより、オレフィン類の重合に供したときに、溶融流れ性に優れるとともに曲げ弾性率に優れたプロピレン単独重合体をより効果的に製造することができる。
 従来、コハク酸ジエステル化合物は、オレフィン類重合用固体触媒成分の内部電子供与性化合物として使用する上では、それ自体が高価であるとともに、オレフィン類の重合に供したときに、得られるオレフィン類重合体の立体規則性を向上させ難い化合物であると考えられていた。このため、オレフィン類重合用固体触媒成分の内部電子供与性化合物として採用し、さらにはこれを多量に含有させようとすることは行われていなかったが、本発明者等の検討によれば、全く意外なことに、オレフィン類重合用固体触媒成分における、コハク酸ジエステル化合物を主成分とする内部電子供与性化合物の総含有量/チタンの含有量で表される比をモル比で0.60~1.30として、コハク酸ジエステル化合物を高い割合で含有するものとすることにより、オレフィン類の重合に供したときに、実用上有用な溶融流れ性を確保しつつ従来以上に曲げ弾性率の高いプロピレン単独重合体を製造し得ることを見出し、本発明を完成するに至ったものである。
 本発明におけるオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、マグネシウム、チタン、ハロゲン及びコハク酸ジエステル化合物と、必要に応じてその他の内部電子供与性化合物とを含むとともに、さらにポリシロキサンを含むものであってもよい。
 本発明におけるオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分が、ポリシロキサンを含むものであることにより、オレフィン類を重合したときに、得られる重合体の立体規則性あるいは結晶性を容易に向上させることができ、さらには生成ポリマーの微粉を容易に低減することができる。
 ポリシロキサンは、主鎖にシロキサン結合(-Si-O-結合)を有する重合体であるが、シリコーンオイルとも称され、25℃における粘度が0.02~100.00cm/s(2~10000センチストークス)、より好ましくは0.03~5.00cm/s(3~500センチストークス)を有する、常温で液状あるいは粘稠状の鎖状、部分水素化、環状あるいは変性ポリシロキサンである。
 鎖状ポリシロキサンとしては、ジメチルポリシロキサン、メチルフェニルポリシロキサンが挙げられ、部分水素化ポリシロキサンとしては、水素化率10~80%のメチルハイドロジェンポリシロキサンが挙げられ、環状ポリシロキサンとしては、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、2,4,6-トリメチルシクロトリシロキサン及び2,4,6,8-テトラメチルシクロテトラシロキサンから選ばれる一種以上が挙げられる。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、上記ジアルコキシマグネシウム、チタンハロゲン化合物及びコハク酸ジエステル化合物を、必要に応じてさらにその他の成分とともに、不活性有機溶媒の存在下に相互に接触させることによって調製してなるものであることが好ましい。
 本発明において、上記不活性有機溶媒としては、チタンハロゲン化合物を溶解し、かつジアルコキシマグネシウムは溶解しないものが好ましく、具体的には、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、1,2-ジエチルシクロヘキサン、メチルシクロヘキセン、デカリン、ミネラルオイル等の飽和炭化水素化合物、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素化合物、オルトジクロルベンゼン、塩化メチレン、1,2-ジクロロベンゼン、四塩化炭素、ジクロルエタン等のハロゲン化炭化水素化合物等から選ば
れる一種以上を挙げることができる。
 上記不活性有機溶媒としては、沸点が50~200℃程度の、常温で液状の飽和炭化水素化合物あるいは芳香族炭化水素化合物が好ましく用いられ、中でも、ヘキサン、ヘプタン、オクタン、エチルシクロヘキサン、ミネラルオイル、トルエン、キシレン、エチルベンゼンから選ばれる一種以上が好ましく、特に好ましくは、ヘキサン、ヘプタン、エチルシクロヘキサン及びトルエンから選ばれるいずれか一種以上である。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分を製造する方法としては、ジアルコキシマグネシウム、チタンハロゲン化合物及びコハク酸ジエステル化合物を相互に接触させて本発明に係るオレフィン類重合用固体触媒成分を調製するに際し、
 ジアルコキシマグネシウムに対して前記チタンハロゲン化合物を複数回接触させ、ジアルコキシマグネシウムに対してチタンハロゲンハロゲン化合物を最初に接触させる際に、ジアルコキシマグネシウム1モルに対してチタンハロゲン化合物を1.5~10.0モル使用し、
 チタン化合物の総使用量が前記ジアルコキシマグネシウム1モルあたり5.0~18.0モルであり、
 さらに、前記ジアルコキシマグネシウム1モルあたりのコハク酸ジエステル化合物の使用量が0.10~0.20モルとなるように使用して、目的とするオレフィン類重合用固体触媒成分を得る方法(以下、固体触媒成分の製法aと称する)が挙げられる。
 固体触媒成分の製法aにおいては、ジアルコキシマグネシウムに対してチタンハロゲン化合物を複数回接触させ、ジアルコキシマグネシウムに対してチタンハロゲンハロゲン化合物を最初に接触させる際に、ジアルコキシマグネシウム1モルに対してチタンハロゲン合物を1.5~10.0モル使用し、ジアルコキシマグネシウム1モルに対してチタンハロゲン合物を2.0~8.0モル使用することが好ましく、ジアルコキシマグネシウム1モルに対してチタンハロゲン合物を2.0~5.0モル使用することがより好ましい。
 固体触媒成分の製法aにおいて、ジアルコキシマグネシウムに対するチタンハロゲン化合物の使用量を上記範囲内に制御することにより、少量のチタンハロゲン化合物で高い活性を得るオレフィン類重合用固体触媒成分を調製することができる。
 固体触媒成分の製法aにおいて、チタン化合物の総使用量は、ジアルコキシマグネシウム1モルあたり5.0~18.0モルであり、ジアルコキシマグネシウム1モルあたり5.0~15.0モルであることが好ましく、ジアルコキシマグネシウム1モルあたり5.0~10.0モルであることがより好ましい。
 固体触媒成分の製法aにおいて、ジアルコキシマグネシウム1モルあたりのチタン化合物の総使用量を上記範囲内に制御することにより、十分に高い活性を確保しつつ、チタンハロゲン化合物及びコハク酸ジエステル化合物を最適に担持できる担体を調製することができる。
 固体触媒成分の製法aにおいては、ジアルコキシマグネシウム1モルあたりコハク酸ジエステル化合物を0.10~0.20モル使用し、ジアルコキシマグネシウム1モルあたりコハク酸ジエステル化合物を0.10~0.18モル使用することが好ましく、ジアルコキシマグネシウム1モルあたりコハク酸ジエステル化合物を0.10~0.15モル使用することがより好ましい。
 固体触媒成分の製法aにおいて、ジアルコキシマグネシウム1モルに対するコハク酸ジエステル化合物の使用量を上記範囲内に制御することにより、担体へのチタンハロゲン化合物の過剰な担持を抑制しつつ、コハク酸ジエステル化合物を十分に担持させることができる。
 固体触媒成分の製法aとして、より具体的には、例えば、ジアルコキシマグネシウム、チタンハロゲン化合物及びコハク酸ジエステル化合物を不活性炭化水素溶媒に懸濁し、加熱しながら所定時間接触させた後、得られた懸濁液にさらにチタンハロゲン化合物を加え、加熱しながら接触させて固体生成物を得、当該固体生成物を炭化水素溶媒で洗浄することにより目的とするオレフィン類重合用固体触媒成分を得る方法を挙げることができる。
 上記加熱温度は、70~150℃が好ましく、80~120℃がより好ましく、90~110℃がさらに好ましい。
 上記加熱時間は、30~240分間が好ましく、60~180分間がより好ましく、60~120分間がさらに好ましい。
 上記懸濁液に対するチタンハロゲン化合物の添加回数は特に制限されない。
 上記懸濁液に対しチタンハロゲン化合物を複数回添加した場合には、各加熱温度が上記範囲内になるように、また各添加時における加熱時間が上記範囲内となるようにすればよい。
 なお、上記調製方法において、コハク酸ジエステル化合物に加え、その他の内部電子供与性化合物を併用してもよい。さらに、上記接触は、例えば、ケイ素、リン、アルミニウム等の他の反応試剤や界面活性剤の共存下に行ってもよい。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分おいて、マグネシウム、チタン、ハロゲン、コハク酸ジエステル化合物は、上述したコハク酸ジエステル化合物の含有量や、上述したコハク酸ジエステル化合物の含有量(モル量)/チタンの含有量(モル量)で表されるモル比が上記規定を満たすものであれば、各々所望量含有することができる。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、チタンを、原子量換算で、2.0~5.0質量%含むものが好ましく、2.5~4.5質量%含むものがより好ましく、3.5~4.5質量%含むものがさらに好ましい。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、マグネシウムを、原子量換算で、15.0~25.0質量%含むものが好ましく、16.0~23.0質量%含むものがより好ましく、17.0~22.0質量%含むものがさらに好ましく、17.0~21.0質量%含むものが一層好ましい。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、ハロゲンを、原子量換算で、50.0~70.0質量%含むものが好ましく、55.0~68.0質量%含むものがより好ましく、58.0~67.0質量%含むものがさらに好ましく、60.0~66.0質量%含むものが一層好ましい。
 本出願書類において、オレフィン類重合用固体触媒成分中に含まれるチタンの含有率は、JIS 8311-1997「チタン鉱石中のチタン定量方法」に記載の方法(酸化還元滴定)に準じて測定した値を意味する。
 また、本出願書類において、オレフィン類重合用固体触媒成分中のマグネシウムの含有割合は、オレフィン類重合用固体触媒成分を塩酸溶液で溶解し、EDTA溶液で滴定するEDTA滴定方法により測定した値を意味する。
 また、本出願書類において、オレフィン類重合用固体触媒成分中に含まれるハロゲンの含有量は、固体触媒成分を硫酸と純水の混合溶液で処理して水溶液とした後、所定量を分取し、硝酸銀標準溶液でハロゲンを滴定する硝酸銀滴定法によって測定した値を意味する。
 さらに、本出願書類において、オレフィン類重合用固体触媒成分中に含まれるコハク酸ジエステル化合物の含有率や、必要に応じて添加されるその他の内部電子供与性化合物の含有率や、フタル酸エステルの含有率は、オレフィン類重合用固体触媒成分を加水分解した後、芳香族溶剤を用いてコハク酸ジエステル化合物や、必要に応じて添加されるその他の内部電子供与性化合物や、フタル酸エステルを抽出し、この溶液をガスクロマトグラフィーFID(Flame Ionization Detector、水素炎イオン化型検出器)法によって測定した値を意味する。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、水銀圧入法により測定される直径1μm以下の全細孔容量が、0.3~1.0cm/gであるものが好ましく、0.3~0.8cm/gであるものがより好ましく、0.3~0.6cm/gであるものがさらに好ましい。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、水銀圧入法により測定される直径1μm以下の全細孔容量が上記範囲内にあることから、オレフィン類のブロック共重合に供したときに、べたつきを生じるゴム成分を粒子内に十分に保持することができ、流動性(べたつきにくさ)に優れたブロック共重合体を得ることができる。
 なお、本出願書類において、水銀圧入法により測定される直径1μm以下の全細孔容量は、水銀圧入ポロシメーター(マイクロメリティックス社製、オートポアIII9420)を用い、水銀圧入法により測定される値を意味する。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、比表面積が、200m/g以上であるものが好ましく、300~500m/g以上であるものが好ましく、350~500m/g以上であるものがより好ましい。
 本発明に係るオレフィン類重合用触媒を構成するオレフィン類重合用固体触媒成分は、比表面積が、200m/g以上であることにより、オレフィン類の重合、特にオレフィン類の共重合に供したときに、オレフィン類が固体触媒成分表面に形成される空孔内に入り込み、当該空孔内で重合反応に供されることから、高い重合活性の下でオレフィン類重合体を調製することができるとともに、共重合体の生成に伴う固体触媒成分表面のべたつきを抑制しつつ、高い操作性の下で簡便に重合反応を行うことができる。
 なお、本出願書類において、オレフィン類重合用固体触媒成分の比表面積は、BET法により、比表面積測定機(QUANTA CHROME社製QUANTA SORBQS-17)を用いて自動測定される値を意味する。
 本発明に係るオレフィン類重合用触媒は、有機アルミニウム化合物を含む。
 本発明に係るオレフィン類重合用触媒において、有機アルミニウム化合物としては、下記一般式(III);
 R AlQ3-p (III)
(式中、Rは、炭素数1~6のアルキル基であり、Qは、水素原子あるいはハロゲンであり、pは、0<p≦3であり、Rが複数存在する場合、各Rは互いに同一であっても異なっていてもよく、Qが複数存在する場合、各Qは互いに同一であっても異なっていてもよい。)
で表わされる化合物から選ばれる一種以上であることが好ましい。
 上記一般式(III)で表される化合物において、pは0<p≦3であり、具体的には、pとして、1、2又は3が挙げられる。
 上記一般式(III)で表される有機アルミニウム化合物の具体例としては、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリ-n-ヘキシルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、ジエチルアルミニウムクロライド、ジエチルアルミニウムブロマイド等のハロゲン化アルキルアルミニウム、ジエチルアルミニウムハイドライド等から選ばれる一種以上が挙げられ、ジエチルアルミニウムクロライド等のハロゲン化アルキルアルミニウム、トリエチルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウムなどのトリアルキルアルミニウム等から選ばれる一種以上が好ましく、トリエチルアルミニウム及びトリイソブチルアルミニウムから選ばれる一種以上がより好ましい。
 本発明のオレフィン類重合用触媒は、下記一般式(I);
 R Si(NR4-n (I)
(式中、Rは、炭素数1~20のアルキル基、ビニル基、炭素数3~12のアルケニル基、炭素数1~20のアルコキシ基、ビニルオキシ基、炭素数3~20のアルケニルオキシ基、炭素数3~20のシクロアルキル基、炭素数3~20のシクロアルキルオキシ基又は炭素数6~20のアリール基、炭素数6~20のアリールオキシ基を示し、Rが複数存在する場合、複数のRは互いに同一でも異なっていてもよい。R及びRは、水素原子、炭素数1~20のアルキル基、ビニル基、炭素数3~20のアルケニル基、炭素数3~20のシクロアルキル基、炭素数3~20のシクロアルケニル基又は炭素数6~20のアリール基を示し、R及びRは互いに同一でも異なっていてもよく、また互いに結合して環を形成してもよく、NR基が複数存在する場合、複数のNR基は互いに同一でも異なっていてもよい。nは1≦n≦3である。)
で表されるアミノシラン化合物から選ばれる一種以上の外部電子供与性化合物を含む。
 上記一般式(I)で表される化合物において、Rは、炭素数1~20のアルキル基、ビニル基、炭素数3~12のアルケニル基、炭素数1~20のアルコキシ基、ビニルオキシ基、炭素数3~20のアルケニルオキシ基、炭素数3~20のシクロアルキル基、炭素数3~20のシクロアルキルオキシ基又は炭素数6~20のアリール基、炭素数6~20のアリールオキシ基を示し、Rが複数存在する場合、複数のRは互いに同一でも異なっていてもよい。
 Rとしては、炭素数1~8のアルキル基又は炭素数5~8のシクロアルキル基が好ましく、炭素数1~6のアルキル基及び炭素数5~6のシクロアルキル基がより好ましい。
 上記一般式(I)で表されるアミノシラン化合物において、nは1≦n≦3であり、具体的には、nとして、1、2又は3が挙げられる。
  上記一般式(I)で表わされるアミノシラン化合物としては、アルキルトリス(アルキルアミノ)シラン、ジアルキルビス(アルキルアミノ)シラン、トリアルキル(アルキルアミノ)シラン等が挙げられる。
  上記一般式(I)で表わされるアミノシラン化合物として、具体的には、ビス(エチルアミノ)メチルエチルシラン、t-ブチルメチルビス(エチルアミノ)シラン、シクロへキシルメチルビス(エチルアミノ)シラン、ジシクロヘキシルビス(エチルアミノ)シラン、ジシクロペンチルビス(エチルアミノ)シラン、ビス(メチルアミノ)(メチルシクロペンチルアミノ)メチルシラン等から選ばれる一種以上が挙げられる。
 上記一般式(I)で表わされるアミノシラン化合物としては、特に、t-ブチルメチルビス(エチルアミノ)シラン、シクロへキシルメチルビス(エチルアミノ)シラン、ジシクロヘキシルビス(エチルアミノ)シラン、ジシクロペンチルビス(エチルアミノ)シラン等から選ばれる一種以上が好ましい。
 上記一般式(I)で表されるアミノシラン化合物は、二種以上組み合わせて用いてもよい。
 本発明に係るオレフィン類重合用触媒は、上述したオレフィン類重合用固体触媒成分及び有機アルミニウム化合物を含むとともに、上記一般式(I)で表されるアミノシラン化合物から選ばれる一種以上の外部電子供与性化合物を含むものであることにより、複素粘弾比が大きく成形性に優れるとともに、より一層曲げ弾性率に優れたオレフィン類重合体を容易に製造することができる。
 本発明に係るオレフィン類重合用触媒は、上述したオレフィン類重合用固体触媒成分と、有機アルミニウム化合物と、上記一般式(I)で表されるアミノシラン化合物から選ばれる一種以上の外部電子供与性化合物を含むもの、すなわちこれ等の接触物である。
 本発明に係るオレフィン類重合用触媒は、上述したオレフィン類重合用固体触媒成分と、有機アルミニウム化合物と、上記一般式(I)で表されるアミノシラン化合物から選ばれる一種以上の外部電子供与性化合物とをオレフィン類不存在下で接触させることにより調製してなるものであってもよいし、以下に記述するように、オレフィン類存在下で(重合系内で)接触させてなるものであってもよい。
 本発明に係るオレフィン類重合用触媒において、各成分の含有比は、本発明の効果に影響を及ぼすことのない限り任意であり、特に限定されるものではないが、通常、上述したオレフィン類重合用固体触媒成分中のチタン原子1モル当たり、有機アルミニウム化合物を、1~2000モル含むものであることが好ましく、50~1000モル含むものであることがより好ましい。
 また、本発明に係るオレフィン類重合用触媒は、有機アルミニウム化合物1モル当たり、上記一般式(I)で表される外部電子供与性化合物を、0.002~10モル含むものであることが好ましく、0.01~2モル含むものであることがより好ましく、0.01~0.5モル含むものであることがさらに好ましい。
 本発明によれば、内部電子供与性化合物としてフタル酸エステル以外の化合物を含むオレフィン類重合用固体触媒成分を含有するものであるにも拘わらず、溶融流れ性及び成形性に優れるとともにより一層曲げ弾性率に優れたプロピレン単独重合体を簡便に製造し得るオレフィン類重合用触媒を提供することができる。
 次に、本発明に係るオレフィン類重合体の製造方法について説明する。
 本発明に係るオレフィン類重合体の製造方法は、本発明に係るオレフィン重合用触媒を用いてオレフィン類の重合を行うことを特徴とするものである。
 本発明に係るオレフィン類重合体の製造方法において、オレフィン類の重合は単独重合であってもよいし、共重合であってもよい。
 本発明に係るオレフィン類重合体の製造方法において、重合対象となるオレフィン類としては、エチレン、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、ビニルシクロヘキサン等から選ばれる一種以上を挙げることができ、中でもエチレン、プロピレン及び1-ブテンから選ばれる一種以上が好適であり、プロピレンがより好適である。
 上記オレフィン類がプロピレンである場合、プロピレンの単独重合であってもよいが、他のα-オレフィン類との共重合であってもよい。
 プロピレンと共重合されるオレフィン類としては、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、ビニルシクロヘキサン等から選ばれる一種以上を挙げることができる。
 本発明に係るオレフィン類重合用触媒がオレフィン類存在下に(重合系内で)調製してなるものである場合、各成分の使用量比は、本発明の効果に影響を及ぼすことのない限り任意であり、特に限定されるものではないが、通常、上述した有機アルミニウム化合物を、上述したオレフィン類重合用固体触媒成分中のチタン原子1モル当たり、1~2000モル接触させることが好ましく、50~1000モル接触させることがより好ましい。また、上述した一般式(I)で表されるアミノシラン化合物から選ばれる外部電子供与性化合物を、上記有機アルミニウム化合物1モル当たり、0.002~10.000モル接触させることが好ましく、0.01~2モル接触させることがより好ましく、0.010~0.500モル接触させることがさらに好ましい。
 上記オレフィン類重合用触媒を構成する各成分の接触順序は任意であるが、重合系内にまず上記有機アルミニウム化合物を装入し、次いで上記一般式(I)で表されるアミノシラン化合物から選ばれる外部電子供与性化合物を装入、接触させた後、上述したオレフィン類重合用固体触媒成分を装入、接触させることが望ましい。
 本発明に係るオレフィン類重合体の製造方法は、有機溶媒の存在下行ってもよいし不存在下で行ってもよい。
 またプロピレン等のオレフィンモノマーは、気体及び液体のいずれの状態でも用いることができる。重合温度は200℃以下が好ましく、100℃以下がより好ましく、重合圧力は10MPa以下が好ましく、5MPa以下がより好ましい。また、オレフィン類の重合は、連続重合法、バッチ式重合法のいずれでも可能である。さらに、重合反応は一段で行なってもよいし、二段以上で行なってもよい。
 加えて、本発明に係るオレフィン類重合用触媒を用いてオレフィン類を重合するにあたり(本重合とも称する)、触媒活性、立体規則性及び生成する重合体の粒子性状等を一層改善させるために、本重合に先立ち予備重合を行うことが好ましく、予備重合の際には、本重合と同様のオレフィン類あるいはスチレン等のモノマーを用いることができる。
 予備重合を行うに際して、上記オレフィン類重合用触媒を構成する各成分及びモノマー(オレフィン類)の接触順序は任意であるが、好ましくは、不活性ガス雰囲気あるいはオレフィンガス雰囲気に設定した予備重合系内に、先ず有機アルミニウム化合物を装入し、次いで上述したオレフィン類重合用固体触媒成分を装入、接触させた後、プロピレン等のオレフィン類を単独で、又はプロピレン等のオレフィン類及びその他のオレフィン類を一種以上混合したものを接触させることが好ましい。
 上記予備重合において、予備重合系内にさらに上記一般式(I)で表されるアミノシラン化合物から選ばれる外部電子供与性化合物を装入する場合、不活性ガス雰囲気あるいはオレフィンガス雰囲気に設定した予備重合系内に、先ず有機アルミニウム化合物を装入し、次いで上記一般式(I)で表されるアミノシラン化合物から選ばれる外部電子供与性化合物を装入、接触させ、更に上述したオレフィン類重合用固体触媒成分を接触させた後、プロピレン等のオレフィン類を単独で、又はプロピレン等のオレフィン類及びその他のオレフィン類を一種以上混合したものを接触させることが好ましい。
 本発明に係るオレフィン類重合体の製造方法において、重合方法としては、シクロヘキサン、ヘプタン等の不活性炭化水素化合物の溶媒を使用するスラリー重合法、液化プロピレン等の溶媒を使用するバルク重合法、及び実質的に溶媒を使用しない気相重合法を挙げることができ、バルク重合法又は気相重合法が好ましい。
 プロピレンと他のα-オレフィン類の単量体との共重合を行う場合、プロピレンと少量のエチレンをコモノマーとして、1段で重合するランダム共重合と、第一段階(第一重合槽)でプロピレンの単独重合を行い、第二段階(第二重合槽)あるいはそれ以上の多段階(多段重合槽)でプロピレンとエチレン等の他のα-オレフィンとの共重合を行う、いわゆるプロピレン-エチレンブロック共重合が代表的であり、プロピレンと他のα-オレフィンとのブロック共重合が好ましい。
 ブロック共重合により得られるブロック共重合体とは、2種以上のモノマー組成が連続して変化するセグメントを含む重合体であり、モノマー種、コモノマー種、コモノマー組成、コモノマー含量、コモノマー配列、立体規則性などポリマーの一次構造の異なるポリマー鎖(セグメント)が1分子鎖中に2種類以上繋がっている形態のものをいう。
 本発明に係るオレフィン類重合体の製造方法において、プロピレンと他のα-オレフィン類とのブロック共重合反応は、通常、本発明に係るオレフィン類重合用触媒の存在下、前段でプロピレン単独あるいは、プロピレンと少量のα-オレフィン(エチレン等)とを接触させ、次いで後段でプロピレンとα-オレフィン(エチレン等)とを接触させることにより実施することができる。
 なお、上記前段の重合反応を複数回繰り返し実施してもよいし、上記後段の重合反応を複数回繰り返し多段反応により実施してもよい。
 プロピレンと他のα-オレフィン類とのブロック共重合反応は、具体的には、前段で(最終的に得られる共重合体に占める)ポリプロピレン部の割合が20~90質量%になるように重合温度及び時間を調整して重合を行ない、次いで後段において、プロピレン及びエチレンあるいは他のα-オレフィンを導入し、(最終的に得られる共重合体に占める)エチレン-プロピレンゴム(EPR)などのゴム部割合が10~80質量%になるように重合することが好ましい。
 前段及び後段における重合温度は共に、200℃以下が好ましく、100℃以下がより好ましく、65~80℃がさらに好ましく、重合圧力は、10MPa以下が好ましく、6MPa以下がより好ましく、5MPa以下がさらに好ましい。
 上記共重合反応においても、連続重合法、バッチ式重合法のいずれの重合法も採用することができ、重合反応は1段で行なってもよいし、2段以上で行なってもよい。
 また、重合時間(反応炉内の滞留時間)は、前段又は後段の各重合段階のそれぞれの重合段階で、あるいは連続重合の際においても、1分~5時間であることが好ましい。
 重合方法としては、シクロヘキサン、ヘプタン等の不活性炭化水素化合物の溶媒を使用するスラリー重合法、液化プロピレン等の溶媒を使用するバルク重合法、実質的に溶媒を使用しない気相重合法が挙げられ、バルク重合法又は気相重合法が好適である。
 特にエチレン・プロピレンブロック共重合体はEPR成分(エチレン及びプロピレンの共重合成分)を含有しており、重合体の粒子表面上にEPR成分が滲み出すと粒子のべたつき(粘着性)が起こり、流動性が悪くなる。重合体の製造設備において粒子の流動性の悪化はプラントの運転性を下げる要因となることから、粒子表面へのEPR成分の滲み出しを抑制できる重合体の製造方法を選択することが望まれる。
 本出願書類において、エチレン-プロピレン共重合体中のエチレン-プロピレンゴム成分(EPR)含有率は、下記の方法により算出した値を意味する。
<EPR含有率>
 攪拌機及び冷却管を具備した1リッターのフラスコに、共重合体を約2.5g、2,6-ジ-t-ブチル-p-クレゾール8mg、p-キシレン250mLを投入し、沸点下で、共重合体が完全に溶解するまで攪拌した。次に、フラスコを室温まで冷却し、15時間放置し、固形物を析出させ、これを遠心分離機により固形物と液相部分とに分離した後、分離した固形物をビーカーにとり、アセトン500mLを注入して室温で15時間攪拌後、固形物を濾過して乾燥させ、乾燥質量を測定した(この質量をB(g)とする)。また分離した液相部分についても同様の操作を行い、固形物を析出後に乾燥させ、その乾燥質量を測定し(この質量をC(g)とする)、下記式(1)により、共重合体中のエチレン-プロピレンゴム成分(EPR)含有率を算出した。
 EPR含有率(質量%)=[C(g)/{B(g)+C(g)}]×100 (1)
 フタル酸エステル以外の内部電子供与性化合物を含むオレフィン類重合用固体触媒成分を用いてオレフィン類を共重合した場合、フタル酸エステルを内部電子供与性化合物として含むオレフィン類重合用固体触媒成分を用いてオレフィン類を共重合した場合に比較して、一般に得られる共重合体のブロック率やEPR含有率に劣ることが知られている。
 これに対して、本件発明においては、特定のオレフィン類重合用固体触媒成分と、有機アルミニウム化合物と、上記一般式(I)で表されるアミノシラン化合物から選ばれる一種以上の外部電子供与性化合物とを含むオレフィン類重合用固体触媒成分を用いて、オレフィン類としてプロピレンと他のα-オレフィン類の単量体とを共重合体することにより、ブロック率やEPR含有率に優れた共重合体を容易に製造することができる。
 本発明に係るオレフィン類重合体の製造方法において、得られるオレフィン類重合体がプロピレンと他のα-オレフィン類の単量体との共重合体である場合、共重合体の曲げ弾性率(FM)が、1300MPa以上であるものが好ましく、1300~2500MPaであるものがより好ましく、1500~2000MPaであるものがさらに好ましい。
 プロピレンと他のα-オレフィン類の単量体との共重合体の曲げ弾性率(FM)が上記範囲内にあることにより、優れた剛性を容易に発揮することができる。
 なお、本出願書類において、上記共重合体の曲げ弾性率(FM)は、日精樹脂工業(株)製NEX30III3EGを用い、成形温度200℃、金型温度40℃の条件でJIS K7139に規定される多目的試験片タイプA1を射出成形し、試験片の中央部から厚さ4.0mm、幅10.0mm、長さ80mmの試験片に切り出し、切り出した試験片について、23℃に調節された恒温室内で、状態調節を72時間行った後、JIS K7171に基づいて、測定雰囲気温度23℃で測定される値を意味する(単位はMPa)。
 本発明に係るオレフィン類重合体の製造方法において、得られるオレフィン類重合体がプロピレンと他のα-オレフィン類の単量体との共重合体である場合、共重合体のIZOD(アイゾッド)衝撃強度は、1.0~8.0kJ/mであることが好ましく、2.0~7.0kJ/mであることがより好ましく、2.0~6.0kJ/mであることがさらに好ましい。
 本出願書類において、プロピレンと他のα-オレフィン類の単量体との共重合体のIZOD衝撃強度は、以下の方法で測定される値を意味する。
<IZOD(アイゾッド)衝撃強度の測定方法>
 共重合体に対し、IRGANOX 1010(BASF社製)0.10重量%、IRGAFOS 168(BASF社製)0.10重量%、及びステアリン酸カルシウム0.08重量%を配合し、二軸押出機にて混練造粒してペレット状の共重合体を得る。
 次いで、上記ペレット状の共重合体を、金型温度40℃、シリンダー温度200℃に保持した射出成形機に導入し、射出成形によりJIS K7139に規定される多目的試験片タイプA1を射出成形する。
 成型後の多目的試験片について、23℃に調節された恒温室内で、状態調節を72時間行った後、自動ノッチ加工機((株)安田精機製作所製)を用い、以下に示す形状に試験片を成形する。ノッチ加工した試験片について、IZOD試験機((株)安田精機製作所製、低温槽付衝撃試験機 型番258-L)を用い、JIS K7110に従い、23℃と-30℃における試験片のアイゾット衝撃強度を測定する。
  試験片形状:ISO 180/1A、厚さ4.0mm、幅8.0mm、長さ80.0mm
  ノッチ形状:タイプAノッチ(ノッチ半径0.25mm)
  温度条件 :23℃及び30℃
  衝撃速度 :3.5m/s
  公称振り子エネルギー:23℃測定時 5.5、2.75又は1.0J、-30℃測定時 1.0又は0.5J
 フタル酸エステル以外の内部電子供与性化合物を含むオレフィン類重合用固体触媒成分を用いてオレフィン類を共重合した場合、フタル酸エステルを内部電子供与性化合物として含むオレフィン類重合用固体触媒成分を用いてオレフィン類を共重合した場合に比較して、一般に得られる共重合体のIZOD衝撃強度に劣ることが知られている。
 これに対して、本件発明においては、特定のオレフィン類重合用固体触媒成分と、有機アルミニウム化合物と、上記一般式(I)で表されるアミノシラン化合物から選ばれる一種以上の外部電子供与性化合物とを含むオレフィン類重合用固体触媒成分を用いて、オレフィン類としてプロピレンと他のα-オレフィン類の単量体とを共重合体することにより、IZOD衝撃強度に優れた共重合体を容易に製造することができる。
 本発明によれば、本発明に係るオレフィン類重合用触媒を用いるものであるために、溶融流れ性及び成形性に優れるとともにより一層曲げ弾性率に優れたプロピレン単独重合体を簡便に製造し得るオレフィン類重合体の製造方法を提供することができる。
 次に、本発明に係るプロピレン単独重合体について説明する。
 本発明に係るプロピレン単独重合体は、
(a)メルトフローレートが300g/10分間以下、
(b)曲げ弾性率が1900MPa以上、
(c)角周波数100ラジアン/秒での複素粘度η*に対する角周波数0.01ラジアン
/秒での複素粘度η*の比が5.5以上である
ことを特徴とするものである。
 本発明に係るプロピレン単独重合体において、重合体の溶融流れ性を示すメルトフローレート(MFR)は、300g/10分間以下であり、1~300g/10分間であることが好ましく、10~200g/10分間であることがより好ましい。
 本発明に係るプロピレン単独重合体において、メルトフローレート(MFR)が上記範囲内にあることにより、実用上、十分な成形性を容易に発揮することができる。
 なお、本出願書類において、メルトフローレート(MFR)は、ASTM D 1238、JIS K 7210に基づいて測定される値を意味する。
 本発明に係るプロピレン単独重合体は、曲げ弾性率(FM)が、1900MPa以上であるものであり、1900~2500MPaであるものが好ましく、2000~2400MPaであるものがより好ましい。
 本発明に係るプロピレン単独重合体において、曲げ弾性率(FM)が上記範囲内にあることにより、優れた剛性を容易に発揮することができる。
 なお、本出願書類において、上記共重合体の曲げ弾性率(FM)は、日精樹脂工業(株)製NEX30III3EGを用い、成形温度200℃、金型温度40℃の条件でJIS K7139に規定される多目的試験片タイプA1を射出成形し、試験片の中央部から厚さ4.0mm、幅10.0mm、長さ80.0mmの試験片に切り出し、切り出した試験片について、23℃に調節された恒温室内で、状態調節を72時間行った後、JIS K7171に基づいて、測定雰囲気温度23℃で測定される値を意味する(単位はMPa)。
 本発明に係るプロピレン単独重合体は、上記曲げ弾性率の規定を満たすものであることにより、優れた剛性を容易に発揮することができる。
 本発明に係るプロピレン単独重合体は、角周波数100ラジアン/秒での複素粘度η*に対する角周波数0.01ラジアン/秒での複素粘度η*の比(角周波数0.01ラジアン/秒での複素粘度η*/角周波数100ラジアン/秒での複素粘度η*)、すなわち複素粘弾比が、5.5以上であり、5.5~20であることが好ましく、5.5~15であることがより好ましい。
 本発明に係るプロピレン単独重合体において、上記複素粘弾比が、5.5以上であることにより、優れた引張強度を容易に達成することができる。
 なお、本出願書類において、複素粘弾比は、以下に示す方法で測定される値を意味する。
(オレフィン類重合体の複素粘弾比)
 オレフィン類重合体の複素粘弾比を規定する複素粘度η*は、レオメータ(アントンパール社製  MCR302)を用いて測定する。
 オレフィン類重合体を気泡が入らないように210℃、5分間プレスで圧縮成形し、厚さ2mm、直径25mmの円盤状の測定用サンプルとする。
  測定は、アントンパール社製のレオメーター(MCR302)を使用して行なう。
 1mmの間隙をおいて配置された直径25mmの平行円板を使用し、間隙に測定用サンプルを充満させた状態で、測定温度190℃かつ周波数範囲が0.01ラジアン/秒から100ラジアン/秒になるまで複素粘度ηを測定する。
 複素粘弾比は、上記190℃の温度条件下での角周波数100ラジアン/秒での複素粘度η*に対する190℃の温度条件下での角周波数0.01ラジアン/秒での複素粘度η*(190℃の温度条件下での角周波数0.01ラジアン/秒での複素粘度η*/190℃の温度条件下での角周波数100ラジアン/秒での複素粘度η*)で表される比として算出する。
 本発明に係るプロピレン単独重合体は、重量平均分子量Mw及び数平均分子量Mnの比である、Mw/Mnで表される分子量分布が、7.0~15.0であるものが好ましく、7.5~12.0であるものがより好ましく、8.0~11.0であるものがさらに好ましい。
 また、本発明に係るプロピレン単独重合体は、Z平均分子量Mz及び重量平均分子量Mwの比である、Mz/Mwで表される分子量分布が、4.0~10.0であるものが好ましく、4.5~9.0であるものがより好ましく、5.0~8.0であるものがさらに好ましい。
 本発明に係るプロピレン単独重合体は、上記のような広い分子量分布を容易に発揮することができる。
 なお、本出願書類において、プロピレン単独重合体の分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)(Waters社製GPCV2000)にて以下の条件で測定して求めた、質量平均分子量Mw、数平均分子量Mn及びZ平均分子量Mzから算出される値を意味する。
 溶媒:o-ジクロロベンゼン(ODCB)
 温度:140℃(SEC)
 カラム:Shodex GPC UT-806M
 サンプル濃度:1g/liter-ODCB(50mg/50mL-ODCB)
 注入量:0.5mL
 流量:1.0mL/min
 本発明に係るプロピレン単独重合体は、本発明に係るオレフィン類重合体の製造方法により容易に製造することができる。
 本発明によれば、溶融流れ性及び成形性に優れるとともにより一層曲げ弾性率に優れたプロピレン単独重合体を提供することができる。
 次に、実施例を挙げて本発明をさらに具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
(実施例1)
1.固体触媒成分の合成
 内部電子供与性化合物として、コハク酸ジエステル化合物である2,3-ジイソプロピルコハク酸ジエチルを採用し、以下の方法によりオレフィン類重合用固体触媒成分を調製した。
(i)攪拌装置を備え、窒素ガスで置換された内容積500mLのフラスコに、四塩化チタン40.0mL(365ミリモル)及びトルエン50.0mLを装入して、混合溶液を形成した。
(ii)次いで、ジエトキシマグネシウム20g(174.8ミリモル)、トルエン60mL及び2,3-ジイソプロピルコハク酸ジエチル3.0mL(11.2ミリモル)を混合して形成した懸濁液を、-6℃の液温に保持した上記混合溶液中に添加し、初期接触物含有液を得た。
(iii)上記初期接触物含有液を昇温し、昇温途中の60℃で2,3-ジイソプロピルコハク酸ジエチル3.0mL(11.2ミリモル)を加え、さらに昇温して100℃とし同温度を保持した状態で90分間反応させた。反応終了後、上澄み液を抜き出し、反応生成物である第一の接触生成物を90℃のトルエン150mLで4回洗浄し、トルエン100mLを加えた。
(iv)次に、上記第一の接触生成物に対し、四塩化チタン20mL(182ミリモル)を加えて100℃に昇温し15分間反応させ、反応終了後、上澄み液を抜き出す操作を3回行い、反応生成物である最終接触生成物を得た。次いで、得られた最終接触生成物に対し、40℃のn-ヘプタン150mLで6回洗浄し、固液を分離することにより固体触媒成分(オレフィン類重合用固体触媒成分)を得た。
 得られた固体触媒成分の固液を分離して、得られた固体分中のチタン含有量及びコハク酸ジエステル化合物の含有量を測定したところ、それぞれ、3.20質量%及び17.4質量%であった。また、コハク酸ジエステル化合物の含有量/チタンの含有量で表される比が、モル比で1.01であった。
 得られた固体触媒成分の特性を表1に示す。
 なお、固体触媒成分中のチタン含有量、内部電子供与性化合物であるコハク酸ジエステル化合物などの含有量や、物性については、下記方法により測定した。
<固体触媒成分中のチタン含有量>
 固体触媒成分中のチタン含有量は、JIS 8311-1997の方法に基づいて測定した。
<内部電子供与性化合物含有量>
 内部電子供与性化合物の含有量は、ガスクロマトグラフィー((株)島津製作所製、GC-14B)を用いて以下の条件にて測定することで求めた。また、内部電子供与性化合物のモル数については、ガスクロマトグラフィーの測定結果より、予め既知濃度において測定した検量線を用いて求めた。
(測定条件)
・カラム:パックドカラム(φ2.6×2.1m,Silicone SE-30 10%,Chromosorb WAW DMCS 80/100、ジーエルサイエンス(株)社製)
・検出器:FID(Flame Ionization Detector,水素炎イオン化型検出器)
・キャリアガス:ヘリウム、流量40mL/分
・測定温度:気化室280℃、カラム225℃、検出器280℃
2.重合触媒の形成及び重合反応
 窒素ガスで置換された内容積2.0リットルの攪拌機付オートクレーブに、トリエチルアルミニウム1.3ミリモル、アミノシラン化合物としてビス(エチルアミノ)ジシクロペンチルシランを0.26ミリモル及び上記固体触媒成分をチタン原子換算で0.0026ミリモル装入することにより重合用触媒を形成した。その後、水素ガス6.0リットル、液化プロピレン1.4リットルを装入し、20℃で5分間予備重合を行なった後に昇温し、70℃で1時間の重合反応を行なった。
 このときの固体触媒成分1g当たりの重合活性、重合体の溶融流れ性(メルトフローレート(MFR))、重合体のp-キシレン可溶分の割合(XS)、重合体の曲げ弾性率(FM)、重合体の分子量分布(Mw/Mn、Mz/Mw)、複素粘弾比(角周波数0.01ラジアン/秒での複素粘度η*/角周波数100ラジアン/秒での複素粘度η*)を以下の方法で測定した。結果を表2に示す。
<固体触媒成分1g当たりの重合活性>
 固体触媒成分1g当たりの重合活性については、下記式(2)により求めた。
 重合活性(g/g-cat)=重合体の質量(g)/固体触媒成分の質量(g) (2)
<重合体の溶融流れ性(MFR)>
 重合体の溶融流れ性を示すメルトフローレート(MFR)(g/10分間)を、ASTM D 1238、JIS K 7210に準じて測定した。
<重合体のp-キシレン可溶分の割合(XS)>
 攪拌装置を具備したフラスコ内に、4.0gの重合体(ポリプロピレン)と、200mLのp-キシレンを装入した。次いで、外部温度を約150℃に設定し、フラスコ内におけるp-キシレン(沸点137~138℃)の還流が維持された状態で撹拌を2時間継続して上記重合体を溶解させた。その後、この溶液を1時間かけて液温が23℃になるまで冷却し、不溶解成分と溶解成分とを濾過分別した。上記溶解成分の溶液を採取し、加熱減圧乾燥によりp-キシレンを留去し、得られた残留物の重量を求め、生成した重合体(ポリプロピレン)に対する相対割合(質量%)を算出して、キシレン可溶分(XS)とした。
<重合体の曲げ弾性率(FM)>
 重合体の曲げ弾性率(FM)は、日精樹脂工業(株)製NEX30III3EGを用い、成形温度200℃、金型温度40℃の条件でJIS K7139に規定される多目的試験片タイプA1を射出成形し、試験片の中央部から厚さ4.0mm、幅10.0mm、長さ80.0mmの試験片に切り出した試験片について、23℃に調節された恒温室内で、状態調節を72時間行った後、JIS K7171に基づいて、測定雰囲気温度23℃で測定した(単位はMPa)。
<重合体の分子量分布>
 重合体の分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)(Waters社製GPCV2000)にて以下の条件で測定して求めた、質量平均分子量Mw及び数平均分子量Mnの比Mw/Mnと、Z平均分子量Mz及び質量平均分子量Mwの比Mz/Mwによって評価した。
 溶媒:o-ジクロロベンゼン(ODCB)
 温度:140℃(SEC)
 カラム:Shodex GPC UT-806M
 サンプル濃度:1g/liter-ODCB(50mg/50mL-ODCB)
 注入量:0.5mL
 流量:1.0mL/min
<複素粘弾比(角周波数0.01ラジアン/秒での複素粘度η*/角周波数100ラジアン/秒での複素粘度η*)>
 オレフィン類重合体の複素粘度η*を、レオメータ(アントンパール社製  MCR302)を用いて測定した。
 オレフィン類重合体を気泡が入らないように190℃、5分間プレスで圧縮成形し、厚さ2mm、直径25mmの円盤状の測定用サンプルとした。
 測定は、アントンパール社製のレオメーター(MCR302)を使用して行なった。
 1mmの間隙をおいて配置された直径25mmの平行円板を使用し、間隙に測定用サンプルを充満させた状態で、測定温度190℃かつ周波数範囲が0.01ラジアン/秒から100ラジアン/秒になるまで複素粘度ηを測定した。
 その上で、複素粘弾比を、上記190℃の温度条件下での角周波数100ラジアン/秒での複素粘度η*に対する190℃の温度条件下での角周波数0.01ラジアン/秒での複素粘度η*(190℃の温度条件下での角周波数0.01ラジアン/秒での複素粘度η*/190℃の温度条件下での角周波数100ラジアン/秒での複素粘度η*)で表される比として算出した。
(実施例2)
 実施例1の「2.重合触媒の形成及び重合反応」において、外部電子供与性化合物としてビス(エチルアミノ)ジシクロペンチルシランを0.26ミリモル使用することに代えて、ビス(エチルアミノ)シクロヘキシルメチルシランを0.13ミリモル使用し、さらにプロピレン単独重合体の形成において水素ガスを5.0リットルに変更した以外は、実施例1と同様に重合触媒を形成して重合反応を行った。
 このときの固体触媒成分1g当たりの重合活性や、得られた重合体の物性を実施例1と同様の方法で測定した。結果を表2に示す。
(実施例3)
1.固体触媒成分の合成
 内部電子供与性化合物として、2,3-ジイソプロピルコハク酸ジエチル及びエーテルカーボネート化合物である(2-エトキシエチル)エチルカーボネートを採用し、以下の方法によりオレフィン類重合用固体触媒成分を調製した。
(i)攪拌装置を備え、窒素ガスで置換された内容積500mLのフラスコに、四塩化チタン40.0mL(365ミリモル)及びトルエン50.0mLを装入して、混合溶液を形成した。
(ii)次いで、ジエトキシマグネシウム20g(174.8ミリモル)及びトルエン60mLを混合して形成した懸濁液を、-6℃の液温に保持した上記混合溶液中に添加し、初期接触物含有液を得た。
(iii)上記初期接触物含有液を昇温し、昇温途中の60℃で2,3-ジイソプロピルコハク酸ジエチル3.2mL(11.7ミリモル)、80℃で(2-エトキシエチル)エチルカーボネート2.5mL(15.4ミリモル)を加え、さらに昇温して100℃とし同温度を保持した状態で90分間反応させた。反応終了後、上澄み液を抜き出し、反応生成物である第一の接触生成物を90℃のトルエン150mLで4回洗浄した。
(iv)次に、上記第一の接触生成物に対し、トルエン80mL及び四塩化チタン40mL(365ミリモル)を加えて100℃に昇温し15分間反応させ、反応終了後、上澄み液を抜き出す操作を4回行い、反応生成物である最終接触生成物を得た。次いで、得られた最終接触生成物に対し、40℃のn-ヘプタン150mLで6回洗浄し、固液を分離することにより固体触媒成分(オレフィン類重合用固体触媒成分)を得た。
 得られた固体触媒成分の特性を実施例1と同様に測定した。結果を表1に示す。
2.重合触媒の形成及び重合反応
 上記1.で得られた固体触媒成分を用いて、プロピレン単独重合体の形成時における水素ガスを4.5リットルに変更した以外は、実施例1の「2.重合触媒の形成及び重合反応」と同様にして、重合触媒を形成して重合反応を行った。
 このときの固体触媒成分1g当たりの重合活性や、得られた重合体の物性を実施例1と同様の方法で測定した。結果を表2に示す。
(比較例1)
 実施例3の「2.重合触媒の形成及び重合反応」において、外部電子供与性化合物としてビス(エチルアミノ)ジシクロペンチルシランを0.13ミリモル使用することに代えて、ジシクロペンチルジメトキシシランを0.13ミリモル使用し、さらにプロピレン単独重合体の形成時における水素ガス装入量を9.0リットルに変更した以外は、実施例3と同様に重合触媒を形成して重合反応を行った。
 このときの固体触媒成分1g当たりの重合活性や、得られた重合体の物性を実施例1と同様の方法で測定した。結果を表2に示す。
(実施例4)
1.固体触媒成分の合成
 実施例1の「1.固体触媒成分の合成」(ii)及び(iii)における、2,3-ジイソプロピルコハク酸ジエチルの添加量3.0mL(11.2ミリモル)をいずれも3.6mL(13.3ミリモル)に変更した以外は、実施例1と同様にして固体触媒成分(オレフィン類重合用固体触媒成分)を得た。
 得られた固体触媒成分の特性を実施例1と同様に測定した。結果を表1に示す。
2.重合触媒の形成及び重合反応
 上記1.で得られた固体触媒成分を用いた以外は、実施例1の「2.重合触媒の形成及び重合反応」と同様にして、重合触媒を形成して重合反応を行った。
 このときの固体触媒成分1g当たりの重合活性や、得られた重合体の物性を実施例1と同様の方法で測定した。結果を表2に示す。
(比較例2)
1.固体触媒成分の合成
 実施例1の「1.固体触媒成分の合成」(iii)において、昇温途中の60℃で2,3-ジイソプロピルコハク酸ジエチル3.0mL(11.2ミリモル)を加えなかった以外は、実施例1と同様にして固体触媒成分(オレフィン類重合用固体触媒成分)を得た。
 得られた固体触媒成分の特性を実施例1と同様に測定した。結果を表1に示す。
2.重合触媒の形成及び重合反応
 上記1.で得られた固体触媒成分を用い、プロピレン単独重合体の形成時における水素ガス装入量を3.0リットルに変更した以外は、実施例1の「2.重合触媒の形成及び重合反応」と同様にして、重合触媒を形成して重合反応を行った。
 このときの固体触媒成分1g当たりの重合活性や、得られた重合体の物性を実施例1と同様の方法で測定した。結果を表2に示す。
(実施例5)
1.固体触媒成分の合成
(i)攪拌機を具備し、窒素ガスで置換された容量300mLの丸底フラスコに、無水塩化マグネシウム5.7g(60.0ミリモル)、n-デカン30mL及び2-エチルヘキシルアルコール28mL(179.0ミリモル)を装入し、130℃で2時間加熱反応を行い均一溶液とした後、この溶液中にジイソプロピルコハク酸ジエチル2.4mL(8.8ミリモル)を加え130℃で更に1時間攪拌した。
(ii)このようにして得られた均一溶液を室温に冷却した後、-20℃に保持された四塩化チタン240mL(2.2モル)中に1時間にわたって全量滴下装入した。この混合液の温度を2時間かけて110℃に昇温し、途中90℃に達したところでジイソプロピルコハク酸ジエチル3.2mL(11.9ミリモル)を添加し、110℃にて2時間攪拌し、2時間の反応終了後、上澄み液を抜き出した。
(iii)次に、四塩化チタン240mL(2.2モル)を加え、再び110℃で2時間、加熱反応を行った。生成物を110℃のトルエン100mLで2回洗浄した後、40℃のn-ヘプタン100mLで4回洗浄することにより固体触媒成分(オレフィン類重合用固体触媒成分)を得た。
 得られた固体触媒成分の特性を実施例1と同様に測定した。結果を表1に示す。
2.重合触媒の形成及び重合反応
 上記1.で得られた固体触媒成分を用いて、プロピレン単独重合体の形成時における水素ガス装入量を6.5リットルに変更した以外は、実施例1の「2.重合触媒の形成及び重合反応」と同様にして、重合触媒を形成して重合反応を行った。
 このときの固体触媒成分1g当たりの重合活性や、得られた重合体の物性を実施例1と同様の方法で測定した。結果を表2に示す。
(実施例6)
1.固体触媒成分の合成
(i)攪拌装置を備え、窒素ガスで置換された内容積500mLのフラスコに、四塩化チタン75.0mL(684ミリモル)及びトルエン15.0mLを装入して、混合溶液を形成した。
(ii)次いで、ジエトキシマグネシウム20g(174.8ミリモル)、トルエン60mL及び2,3-ジイソプロピルコハク酸ジエチル2.7mL(10.2ミリモル)を混合して形成した懸濁液を、-6℃の液温に保持した上記混合溶液中に添加し、初期接触物含有液を得た。
(iii)上記初期接触物含有液を昇温し、昇温途中の60℃で2,3-ジイソプロピルコハク酸ジエチル2.7mL(10.2ミリモル)を加え、さらに昇温して100℃とし同温度を保持した状態で90分間反応させた。反応終了後、上澄み液を抜き出し、反応生成物である第一の接触生成物を90℃のトルエン150mLで4回洗浄し、トルエン80mLを加えた。
(iv)次に、上記第一の接触生成物に対し、四塩化チタン40mL(365ミリモル)を加えて100℃に昇温し15分間反応させ、反応終了後、上澄み液を抜き出す操作を3回行い、反応生成物である最終接触生成物を得た。次いで、得られた最終接触生成物に対し、40℃のn-ヘプタン150mLで6回洗浄し、固液を分離することにより固体触媒成分(オレフィン類重合用固体触媒成分)を得た。
 得られた固体触媒成分の固液を分離して、得られた固体分中のチタン含有量及びコハク酸ジエステル化合物の含有量を測定したところ、それぞれ、4.63質量%及び20.5質量%であった。また、コハク酸ジエステル化合物の含有量/チタンの含有量で表される比が、モル比で0.82であった。
 得られた固体触媒成分の特性を実施例1と同様に測定した。結果を表1に示す。
2.重合触媒の形成及び重合反応
 上記1.で得られた固体触媒成分を用いて、実施例1の「2.重合触媒の形成及び重合反応」と同様にして、重合触媒を形成して重合反応を行った。
 このときの固体触媒成分1g当たりの重合活性や、得られた重合体の物性を実施例1と同様の方法で測定した。結果を表2に示す。
(実施例7)
 実施例6の「2.重合触媒の形成及び重合反応」において、外部電子供与性化合物としてビス(エチルアミノ)ジシクロペンチルシランを0.26ミリモル使用することに代えて、ビス(エチルアミノ)ジシクロペンチルシランを0.13ミリモル使用し、プロピレン単独重合体の形成時における水素ガスを6.0リットルから4.5リットルに変更した以外は、実施例1と同様に重合触媒を形成して重合反応を行った。
 このときの固体触媒成分1g当たりの重合活性や、得られた重合体の物性を実施例1と同様の方法で測定した。結果を表2に示す。
(参考例1)
1.固体触媒成分の合成
 攪拌機を具備し、窒素ガスで充分に置換された容量200mLの丸底フラスコに、ジエトキシマグネシウム10g(87.4ミリモル)、フタル酸ジn-ブチル2.5mL(9.4ミリモル)及びトルエン50mLを装入し、懸濁状態とした。次いで、該懸濁液を、攪拌機を具備し、窒素ガスで充分に置換された容量500mLの丸底フラスコに予め装てんされたトルエン30mL及び四塩化チタン20mL(0.18モル)の均一溶液中に添加した。
 次に攪拌しながら昇温し、昇温途中の60℃でフタル酸ジn-ブチル1.2mL(4.5ミリモル)を加え、さらに昇温して110℃とし同温度を保持した状態で2時間反応させた。反応終了後、上澄み液を抜き出し、生成物を105℃のトルエン100mLで4回洗浄した。
 次いで、トルエン40mLと四塩化チタン20mL(0.18モル)を加え、攪拌しながら105℃に昇温し、105℃で2時間反応させた後、生成物を40℃のn-ヘプタン75mLで8回洗浄することにより固体触媒成分(オレフィン類重合用固体触媒成分)を得た。
 得られた固体触媒成分の特性を実施例1と同様に測定した。結果を表1に示す。
2.重合触媒の形成及び重合反応
 上記1.で得られた固体触媒成分を用いて、プロピレン単独重合体の形成時における水素ガスの装入量を4.5リットルに変更した以外は、実施例1の「2.重合触媒の形成及び重合反応」と同様にして、重合触媒を形成して重合反応を行った。
 このときの固体触媒成分1g当たりの重合活性や、得られた重合体の物性を実施例1と同様の方法で測定した。結果を表2に示す。
(参考例2)
 参考例1の「2.重合触媒の形成及び重合反応」において、外部電子供与性化合物としてビス(エチルアミノ)ジシクロペンチルシランを0.26ミリモル使用することに代えて、シクロヘキシルメチルジメトキシシランを同モル使用し、水素ガス装入量を11リットルに変更した以外は、参考例1と同様に重合触媒を形成して重合反応を行った。
 このときの固体触媒成分1g当たりの重合活性や、得られた重合体の物性を実施例1と同様の方法で測定した。結果を表2に示す。
(参考例3)
 参考例1の「2.重合触媒の形成及び重合反応」において、外部電子供与性化合物としてビス(エチルアミノ)ジシクロペンチルシランを0.26ミリモル使用することに代えて、ジイソプロピルジメトキシシランを同モル使用し、水素ガス装入量を9リットルに変更した以外は、参考例1と同様に重合触媒を形成して重合反応を行った。
 このときの固体触媒成分1g当たりの重合活性や、得られた重合体の物性を実施例1と同様の方法で測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
(実施例8)
<エチレン-プロピレン共重合触媒の調製>
 窒素ガスで置換された内容積2.0リットルの撹拌機付オートクレーブに、トリエチルアルミニウム2.4ミリモル、アミノシラン化合物としてビス(エチルアミノ)ジシクロペンチルシランを0.24ミリモル及び実施例1で調製した固体触媒成分をチタン原子換算で0.003ミリモル装入し、エチレン-プロピレン共重合触媒を調製した。
<エチレン-プロピレン共重合>
1.ホモ重合反応(ホモ段重合)
 上記で調製したエチレン-プロピレン共重合触媒を含む攪拌機付オートクレーブに、液化プロピレン15モル(1.2リットル)及び水素ガス0.20MPa(分圧)を装入し、20℃で5分間予備重合を行なった後に昇温し、70℃で45分間、1段目のプロピレンホモ重合反応(ホモ段重合)を行なった後、常圧に戻し、次いでオートクレーブ内(リアクター内)を窒素置換してからオートクレーブの計量を行ない、オートクレーブの風袋質量を差し引いてホモ段(1段目)の重合活性(ホモ活性、g/g-cat)を下記式により算出した。
 重合性能及びポリマー物性の評価用として、生成した一部のポリマーを分取して、重合体の溶融流れ性(MFR)を以下の方法により評価した。
<ホモ活性(固体触媒成分1g当たりの重合活性)>
 ホモ活性(固体触媒成分1g当たりの重合活性)については、下記式(3)により求めた。
 重合活性(g-pp/g-触媒)=重合体の質量(g)/固体触媒成分の質量(g) (3)
<重合体の溶融流れ性(MFR)>
 重合体の溶融流れ性を示すメルトフローレート(MFR)(g/10分間)を、ASTM D 1238、JIS K 7210に準じて測定した。
2.エチレン-プロピレン共重合反応
 次に、エチレン/プロピレンを、それぞれモル比が0.42/0.58となるように上記オートクレーブ内(リアクター内)に投入した後、70℃まで昇温し、エチレン/プロピレン/水素を、それぞれ1分あたりのガス供給量(リットル/分)が1.7/2.3/0.086の割合となるように導入しつつ、1.2MPa、70℃、60分間の条件で反応させることにより、エチレン-プロピレン共重合体を得た。
 得られたエチレン-プロピレン共重合体において、共重合(ICP)活性(g/g-cat)、共重合体の溶融流れ性(MFR)、ブロック率(質量%)、EPR含有率(質量%)、共重合体のIZOD衝撃強度を、以下の方法により測定した。結果を表3に示す。
<共重合(ICP)活性(g/g-cat)>
 エチレン・プロピレンブロック共重合体形成時における共重合(ICP)活性は、下記式(4)により算出した。
 共重合(ICP)活性(g/g-cat)=((I(g)-G(g))/オレフィン類重合用触媒に含まれる固体触媒成分の質量(g))/反応時間(時間) (4)
 ここで、I(g)は共重合反応終了後のオートクレーブ質量(g)、G(g)はホモPP重合反応終了後、未反応モノマーを除去した後のオートクレーブ質量(g)である。
<共重合体の溶融流れ性(MFR)>
 共重合体の溶融流れ性を示すメルトフローレート(MFR)(g/10分間)を、ASTM D 1238、JIS K 7210に準じて測定した。
<ブロック率(質量%)>
 エチレン・プロピレン共重合体のブロック率は、下記式(5)により算出した。
 ブロック率(質量%)={(I(g)-G(g))/(I(g)-F(g))}×100 (5)
 ここで、Iは共重合反応終了後のオートクレーブ質量(g)、Gはホモポリプロピレン重合終了後、未反応モノマーを除去した後のオートクレーブ質量(g)、Fはオートクレーブ質量(g)である。
<EPR含有率>
 攪拌機及び冷却管を具備した1リッターのフラスコに、共重合体を約2.5g、2,6-ジ-t-ブチル-p-クレゾール8mg、p-キシレン250mLを投入し、沸点下で、共重合体が完全に溶解するまで攪拌した。次に、フラスコを室温まで冷却し、15時間放置し、固形物を析出させ、これを遠心分離機により固形物と液相部分とに分離した後、分離した固形物をビーカーにとり、アセトン500mLを注入して室温で15時間攪拌後、固形物を濾過して乾燥させ、乾燥質量を測定した(この質量をB(g)とする)。また分離した液相部分についても同様の操作を行い、固形物を析出後に乾燥させ、その乾燥質量を測定し(この質量をC(g)とする)、下記式(1)により、共重合体中のエチレン-プロピレンゴム成分(EPR)含有率を算出した。
 EPR含有率(質量%)=[C(g)/{B(g)+C(g)}]×100 (1)
<共重合体の曲げ弾性率(FM)>
 なお、本出願書類において、上記共重合体の曲げ弾性率(FM)は、日精樹脂工業(株)製NEX30III3EGを用い、成形温度200℃、金型温度40℃の条件でJIS K7139に規定される多目的試験片タイプA1を射出成形し、試験片の中央部から厚さ4.0mm、幅10.0mm、長さ80.0mmの試験片に切り出した。切り出した試験片について、23℃に調節された恒温室内で、状態調節を72時間行った後、JIS K7171に基づいて、測定雰囲気温度23℃で測定される値を意味する(単位はMPa)。
<共重合体のIZOD衝撃強度>
 共重合体に対し、IRGANOX 1010(BASF社製)0.10重量%、IRGAFOS 168(BASF社製)0.10重量%、及びステアリン酸カルシウム0.08重量%を配合し、二軸押出機にて混練造粒してペレット状の共重合体を得る。
 次いで、上記ペレット状の共重合体を、金型温度40℃、シリンダー温度200℃に保持した射出成形機に導入し、射出成形によりJIS K7139に規定される多目的試験片タイプA1を射出成形する。
 成型後の多目的試験片について、23℃に調節された恒温室内で、状態調節を72時間行った後、自動ノッチ加工機((株)安田精機製作所製)を用い、以下に示す形状に試験片を成形する。ノッチ加工した試験片について、IZOD試験機((株)安田精機製作所製、低温槽付衝撃試験機 型番258-L)を用い、JIS K7110に従い、23℃と-30℃における試験片のアイゾット衝撃強度を測定した。
  試験片形状:ISO 180/1A、厚さ4.0mm、幅8.0mm、長さ80.0mm
  ノッチ形状:タイプAノッチ(ノッチ半径0.25mm)
  温度条件 :23℃及び30℃
  衝撃速度 :3.5m/s
  公称振り子エネルギー:23℃測定時 5.5、2.75又は1.0J、-30℃測定時 1.0又は0.5J
(比較例3)
 実施例6の「2.重合触媒の形成及び重合反応」において、外部電子供与性化合物としてビス(エチルアミノ)ジシクロペンチルシランを0.24ミリモル使用することに代えて、シクロヘキシルメチルジメトキシシランを同モル使用した以外は、実施例6と同様にエチレン-プロピレン重合触媒を形成して共重合反応を行った。
 このときの重合活性や、得られた共重合体の物性を実施例6と同様の方法で測定した。
 結果を表3に示す。
(参考例4)
<エチレン-プロピレン共重合触媒の調製>
 窒素ガスで完全に置換された内容積2.0リットルの撹拌機付オートクレーブに、トリエチルアルミニウム2.4ミリモル、シラン化合物としてシクロヘキシルメチルジメトキシシランを0.24ミリモル及び参考例1で調製した固体触媒成分をチタン原子換算で0.003ミリモル装入し、エチレン-プロピレン共重合触媒を調製した。
<エチレン-プロピレン共重合>
 上記エチレン-プロピレン共重合触媒を用いた以外は、実施例6と同様にして共重合反応を行った。
 このときの重合活性や、得られた共重合体の物性を実施例6と同様の方法で測定した。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
 
 
 表1~表2より、実施例1~実施例7で用いた本発明に係るオレフィン類重合用触媒は、マグネシウム、チタン、ハロゲン、コハク酸ジエステル化合物を含み、コハク酸ジエステル化合物を主成分とする内部電子供与性化合物の総含有量/チタンの含有量で表される比が、モル比で0.60~1.30であるオレフィン類重合用固体触媒成分と、有機アルミニウム化合物と、一般式(I)で表される特定のアミノシラン化合物から選ばれる一種以上の外部電子供与性化合物を含むことから、内部電子供与性化合物としてフタル酸エステル以外の化合物を含むオレフィン類重合用固体触媒成分を含有するものであるにも拘わらず、溶融流れ性及び成形性に優れるとともに、(内部電子供与性化合物としてフタル酸エステルを含むオレフィン類重合用固体触媒成分を含む参考例1~参考例3で得られたオレフィン重合用触媒を用いた場合と比較した場合においても)より一層曲げ弾性率に優れたプロピレン単独重合体を簡便に製造し得ることが分かる。
 また、表3より、実施例8で用いた本発明に係るオレフィン類重合用触媒は、上記特定の成分を含むものであることにより、内部電子供与性化合物としてフタル酸エステル以外の化合物を含むオレフィン類重合用固体触媒成分を含有するものであるにも拘わらず、得られた共重合体のブロック率及びEPRに優れるとともに、共重合体の曲げ弾性率(FM)及びIZOD衝撃強度にも優れるものであることが分かる。
 一方、表1~表2より、比較例1~比較例2で用いたオレフィン類重合用触媒は、外部電子供与性化合物として特定のアミノシラン化合物以外の化合物を使用していたり(比較例1)、固体触媒成分を構成するコハク酸ジエステル化合物を主成分とする内部電子供与性化合物の含有量/チタンの含有量で表される比が所定の範囲外にあることから(比較例2)、実施例1~実施例5と比較したときに、得られたプロピレン単独重合体の曲げ弾性率FMや複素粘弾比が低いことが分かる。
 また、表3より、比較例3で用いたオレフィン類重合用触媒は、外部電子供与性化合物として特定のアミノシラン化合物以外の化合物を使用していることから、実施例6と比較したときに、得られた共重合体のブロック率及びEPRが低く、共重合体のIZOD衝撃強度も低いものであることが分かる。
 本発明によれば、内部電子供与性化合物としてフタル酸エステル以外の化合物を含むオレフィン類重合用固体触媒成分を含有するものであるにも拘わらず、溶融流れ性及び成形性に優れるとともにより一層曲げ弾性率に優れたプロピレン単独重合体を簡便に製造し得るオレフィン類重合用触媒を提供できるとともに、オレフィン類重合体の製造方法及びプロピレン単独重合体を提供することができる。

 

Claims (7)

  1.  マグネシウム、チタン、ハロゲン、コハク酸ジエステル化合物を含み、前記チタンの含有量(T)に対する前記コハク酸ジエステル化合物を主成分とする内部電子供与性化合物の総含有量(S)で表される比(S/T)が、モル比で0.60~1.30であるオレフィン類重合用固体触媒成分と、
     有機アルミニウム化合物と、
     下記一般式(I);
     R Si(NR4-n (I)
    (式中、Rは、炭素数1~20のアルキル基、ビニル基、炭素数3~12のアルケニル基、炭素数1~20のアルコキシ基、ビニルオキシ基、炭素数3~20のアルケニルオキシ基、炭素数3~20のシクロアルキル基、炭素数3~20のシクロアルキルオキシ基又は炭素数6~20のアリール基、炭素数6~20のアリールオキシ基を示し、Rが複数存在する場合、複数のRは互いに同一でも異なっていてもよい。R及びRは、水素原子、炭素数1~20のアルキル基、ビニル基、炭素数3~20のアルケニル基、炭素数3~20のシクロアルキル基、炭素数3~20のシクロアルケニル基又は炭素数6~20のアリール基を示し、R及びRは互いに同一でも異なっていてもよく、また互いに結合して環を形成してもよく、NR基が複数存在する場合、複数のNR基は互いに同一でも異なっていてもよい。nは1≦n≦3である。)
    で表されるアミノシラン化合物から選ばれる一種以上の外部電子供与性化合物と
    を含むことを特徴とするオレフィン類重合用触媒。
  2.  前記オレフィン類重合用固体触媒成分中における前記コハク酸ジエステル化合物を主成分とする内部電子供与性化合物の総含有量(S)が10.0質量%以上である請求項1に記載のオレフィン類重合用触媒。
  3.  前記オレフィン類重合用固体触媒成分中における前記チタンの含有量(T)が1.0~6.0質量%である請求項1に記載のオレフィン類重合用触媒。
  4.  前記コハク酸ジエステル化合物が、下記一般式(II);
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは、水素原子又は炭素数1~4のアルキル基であって互いに同一であってもよいし異なっていてもよく、R及びRは、炭素数2~4の直鎖アルキル基又は分岐アルキル基であって互いに同一であってもよいし異なっていてもよい。)
    で表される化合物から選ばれる一種以上である請求項1に記載のオレフィン類重合用触媒。
  5.  前記有機アルミニウム化合物が、下記一般式(III);
       R AlQ3-p (III)
    (式中、Rは、炭素数1~6のアルキル基であり、Qは、水素原子あるいはハロゲンであり、pは、0<p≦3であり、Rが複数存在する場合、各Rは互いに同一であっても異なっていてもよく、Qが複数存在する場合、各Qは互いに同一であっても異なっていてもよい。)
    で表わされる化合物から選ばれる一種以上である請求項1に記載のオレフィン類重合用触媒。
  6.  請求項1~請求項5のいずれかに記載のオレフィン重合用触媒を用いてオレフィン類の重合を行うことを特徴とするオレフィン類重合体の製造方法。
  7. (a)メルトフローレートが300g/10分間以下、
    (b)曲げ弾性率が1900MPa以上、
    (c)角周波数100ラジアン/秒での複素粘度η*に対する角周波数0.01ラジアン/秒での複素粘度η*の比が5.5以上である
    ことを特徴とするプロピレン単独重合体。
PCT/JP2023/006929 2022-03-11 2023-02-27 オレフィン類重合用触媒、オレフィン類重合体の製造方法及びプロピレン単独重合体 WO2023171435A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-038522 2022-03-11
JP2022038522A JP2023132923A (ja) 2022-03-11 2022-03-11 オレフィン類重合用触媒、オレフィン類重合体の製造方法及びプロピレン単独重合体

Publications (1)

Publication Number Publication Date
WO2023171435A1 true WO2023171435A1 (ja) 2023-09-14

Family

ID=87935143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006929 WO2023171435A1 (ja) 2022-03-11 2023-02-27 オレフィン類重合用触媒、オレフィン類重合体の製造方法及びプロピレン単独重合体

Country Status (2)

Country Link
JP (1) JP2023132923A (ja)
WO (1) WO2023171435A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
JPS6251633A (ja) 1985-08-28 1987-03-06 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ オレフィン重合触媒成分を製造する方法
JPH0374341A (ja) 1989-08-16 1991-03-28 Korukooto Eng Kk 球形で粒度分布の狭いマグネシウムアルコラートの合成方法
JPH04368391A (ja) 1991-06-18 1992-12-21 Idemitsu Petrochem Co Ltd マグネシウムジアルコキシドの製造方法
JPH0873388A (ja) 1994-09-07 1996-03-19 Nippon Soda Co Ltd マグネシウムエチラート球状微粒品の製造方法
JP2000017019A (ja) 1998-06-30 2000-01-18 Nippon Polyolefin Kk 高剛性プロピレン系樹脂
JP2002542347A (ja) * 1999-04-15 2002-12-10 バセル テクノロジー カンパニー ビー.ブイ. オレフィン重合用の成分および触媒
JP2003522231A (ja) * 2000-02-02 2003-07-22 バセル テクノロジー カンパニー ビー.ブイ. オレフィン重合用成分及び触媒
JP2019065131A (ja) * 2017-09-29 2019-04-25 東邦チタニウム株式会社 オレフィン類重合用触媒、オレフィン類重合用触媒の製造方法、オレフィン類重合体の製造方法およびプロピレン−α−オレフィン共重合体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
JPS6251633A (ja) 1985-08-28 1987-03-06 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ オレフィン重合触媒成分を製造する方法
JPH0374341A (ja) 1989-08-16 1991-03-28 Korukooto Eng Kk 球形で粒度分布の狭いマグネシウムアルコラートの合成方法
JPH04368391A (ja) 1991-06-18 1992-12-21 Idemitsu Petrochem Co Ltd マグネシウムジアルコキシドの製造方法
JPH0873388A (ja) 1994-09-07 1996-03-19 Nippon Soda Co Ltd マグネシウムエチラート球状微粒品の製造方法
JP2000017019A (ja) 1998-06-30 2000-01-18 Nippon Polyolefin Kk 高剛性プロピレン系樹脂
JP2002542347A (ja) * 1999-04-15 2002-12-10 バセル テクノロジー カンパニー ビー.ブイ. オレフィン重合用の成分および触媒
JP2003522231A (ja) * 2000-02-02 2003-07-22 バセル テクノロジー カンパニー ビー.ブイ. オレフィン重合用成分及び触媒
JP2019065131A (ja) * 2017-09-29 2019-04-25 東邦チタニウム株式会社 オレフィン類重合用触媒、オレフィン類重合用触媒の製造方法、オレフィン類重合体の製造方法およびプロピレン−α−オレフィン共重合体

Also Published As

Publication number Publication date
JP2023132923A (ja) 2023-09-22

Similar Documents

Publication Publication Date Title
EP2636688B1 (en) Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and olefin polymers
US7141634B2 (en) Catalyst for olefin polymerization and process for polymerizing olefins
JP5816481B2 (ja) オレフィン類重合用固体触媒成分、その製造方法、オレフィン類重合触媒およびオレフィン類重合体の製造方法
JP5039351B2 (ja) プロピレン系重合用触媒成分、触媒およびプロピレン系重合体の製造方法
JP5785809B2 (ja) オレフィン類重合用固体触媒成分、その製造方法、オレフィン類重合触媒およびオレフィン類重合体の製造方法
JP2020525567A (ja) オレフィン重合用のバナジウム化合物を含有する固体触媒成分の製造方法、オレフィン重合触媒、およびオレフィンポリマーの製造方法
JP7361680B2 (ja) オレフィン類重合体の製造方法
US11505685B2 (en) High impact polypropylene impact copolymer
US11732067B2 (en) High stiffness polypropylene impact copolymer
WO2023171435A1 (ja) オレフィン類重合用触媒、オレフィン類重合体の製造方法及びプロピレン単独重合体
JP7132952B2 (ja) オレフィン重合用固体触媒成分の製造方法、オレフィン重合用触媒、およびプロピレン重合プロセス
WO2024024880A1 (ja) オレフィン類重合用固体触媒成分混合物、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
WO2023171433A1 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法及びオレフィン類重合体
JP2024108453A (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法及びオレフィン類重合体
CN118829663A (zh) 烯烃类聚合用催化剂、烯烃类聚合物的制造方法和丙烯均聚物
JP7195897B2 (ja) プロピレン系樹脂組成物および成形体
US20080227937A1 (en) Process for Producing Olefin Copolymerization Catalyst and Process for Producing Olefin Copolymer
WO2022250034A1 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒、オレフィン類重合体の製造方法、オレフィン類重合体、プロピレン系ブロック共重合体の製造方法及びプロピレン系ブロック共重合体
JP3954830B2 (ja) プロピレン−エチレンブロック共重合体及びその製造方法
JPWO2020035962A1 (ja) オレフィン類重合用触媒、オレフィン類重合用触媒の製造方法、オレフィン類重合体の製造方法およびオレフィン類重合体
CN110770262A (zh) 烯烃类聚合用固体催化剂成分、烯烃类聚合用固体催化剂成分的制造方法、烯烃类聚合用催化剂和烯烃类聚合物的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401005868

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 11202405528Q

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 2023766613

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023766613

Country of ref document: EP

Effective date: 20241011