WO2023171275A1 - ハロゲン化アルケンの製造方法 - Google Patents

ハロゲン化アルケンの製造方法 Download PDF

Info

Publication number
WO2023171275A1
WO2023171275A1 PCT/JP2023/005238 JP2023005238W WO2023171275A1 WO 2023171275 A1 WO2023171275 A1 WO 2023171275A1 JP 2023005238 W JP2023005238 W JP 2023005238W WO 2023171275 A1 WO2023171275 A1 WO 2023171275A1
Authority
WO
WIPO (PCT)
Prior art keywords
halogenated
fluorine
atom
alkane
catalyst
Prior art date
Application number
PCT/JP2023/005238
Other languages
English (en)
French (fr)
Inventor
真理 佐藤
賢輔 鈴木
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2023171275A1 publication Critical patent/WO2023171275A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the present invention relates to a method for producing halogenated alkenes.
  • Patent Document 1 describes a method for producing fluoroolefins through a dehydrofluorination reaction by bringing a fluoroalkane into contact with a metal catalyst.
  • Patent Document 2 and Patent Document 3 describe a method for producing a halogenated butene compound by bringing the halogenated butane compound into contact with activated carbon and dehydrohalogenating the compound.
  • the present invention was made in view of the above-mentioned problems, and aims to obtain halogenated alkenes with high selectivity and high conversion rate using an inexpensive catalyst.
  • a method for producing a halogenated alkene according to one embodiment of the present invention includes contacting a halogenated alkane containing a fluorine atom and having 4 or less carbon atoms with acid clay to dehydrohalogenate the halogenated alkane.
  • a method for producing a halogenated alkene, the method comprising the steps of:
  • halogenated alkenes can be obtained with high selectivity and high conversion using an inexpensive catalyst.
  • the method for producing a halogenated alkene according to the present embodiment includes contacting a catalyst and a halogenated alkane containing a fluorine atom to produce a halogenated alkene.
  • the process includes a step of dehydrohalogenating.
  • this step may be referred to as a "dehydrohalogenation step.”
  • halogenated alkane containing a fluorine atom may be referred to as "fluorine-containing halogenated alkane”.
  • the halogenated alkene containing a fluorine atom produced by the production method of this embodiment will be described later.
  • the halogenated alkane containing a fluorine atom is subjected to a dehydrohalogenation reaction to obtain a halogenated alkene.
  • dehydrohalogenation reactions include dehydrofluorination reactions and the like.
  • the catalyst used in the manufacturing method of this embodiment is acid clay.
  • the specific surface area of the acid clay is preferably 50 cm 2 /g or more, more preferably 80 cm 2 /g or more.
  • the upper limit is not particularly limited, but is preferably 500 cm 2 /g or less, more preferably 300 cm 2 /g or less.
  • Acid clay is a clay whose main components are montmorillonite clay and soluble silicic acid, and is mined as a natural product. Although the appearance, chemical composition, and properties vary depending on the production area, and even within the same production area or location, a wide variety of known types of acid clay can be employed.
  • Acidic clay is spherical or amorphous particles with a diameter or major axis of 2.0 mm or less.
  • the particle size of these particles is not particularly limited, it is preferable that the particles have a median diameter (based on number) of 0.7 mm or less.
  • Acidic clay may or may not be dried before being used in the reaction. When drying, dry at about 250° C. for 1 hour or more. From the viewpoint of water removal efficiency, it is preferable to dry under reduced pressure or under an inert gas stream.
  • conversion rate refers to the molar amount of fluorine-containing halogenated alkanes other than fluorine-containing halogenated alkanes contained in the outflow gas from the reactor outlet in the dehydrohalogenation process.
  • ratio (mol %) of the total molar amount of the compound is shown.
  • lectivity is the ratio of the molar amount of halogenated alkenes contained in the outflow gas to the total molar amount of compounds other than fluorine-containing halogenated alkanes in the outflow gas from the reactor outlet in the dehydrohalogenation process. (mol%).
  • yield refers to the ratio (mol %) of the molar amount of the halogenated alkene contained in the gas flowing out from the reactor outlet to the molar amount of the fluorine-containing halogenated alkane supplied to the reactor. In other words, “yield” refers to (conversion rate x selectivity)/100.
  • the fluorine-containing halogenated alkane is a halogenated alkane having 4 or less carbon atoms.
  • the fluorine-containing halogenated alkane may have two or three carbon atoms.
  • the number of halogen atoms contained in the fluorine-containing halogenated alkane is 2 or more, and it is preferable that the number of fluorine atoms is 1 or more.
  • the fluorine-containing halogenated alkane is a compound represented by the following general formula (1).
  • R 1 and R 3 represent a hydrogen atom
  • R 2 represents a fluorine atom
  • R 4 represents a hydrogen atom, a fluorine atom, or a chlorine atom
  • R 5 and R 6 represent a fluorine atom.
  • R 4 to R 6 represents an alkane group having 1 or more and 2 or less carbon atoms that may be substituted with a chlorine atom, a hydrogen atom, or a halogen atom.
  • at least one of R 4 to R 6 is a fluorine atom or a chlorine atom.
  • fluorine-containing halogenated alkane examples include 1,1-difluoroethane, 1,2-difluoroethane, 1,1,1-trifluoroethane, 1,1,2-trifluoroethane, 1,1,1,2-tetra Fluoroethane, 1,1-difluoropropane, 1,1,1-trifluoropropane, 1,1,3-trifluoropropane, 1,1,2-trifluoropropane, 1,1,1,3-tetrafluoro Propane, 1,1,1,3,3-pentafluoropropane, 1,1,1,3,3,3-hexafluoropropane, 1,1,2-trifluorobutane, 1-chloro-1,1- Examples include difluoroethane, 1-chloro-2,2-difluoroethane, 1,2-dichloro-1,1-difluoroethane, and the like.
  • the catalyst and the fluorine-containing halogenated alkane are brought into contact to dehalogenate the fluorine-containing halogenated alkane.
  • the catalyst and the fluorine-containing halogenated alkane may be brought into contact by supplying the fluorine-containing halogenated alkane to the reaction system.
  • the lower limit of the temperature in the reaction system is preferably 400°C or higher, more preferably 450°C or higher, from the standpoint of achieving a higher conversion rate. Further, the upper limit of the temperature within the reaction system is preferably 600°C or less, more preferably 550°C or less, from the viewpoint of suppressing the production of by-products.
  • the catalyst and the fluorine-containing halogenated alkane may be brought into contact under an inert gas atmosphere.
  • the inert gas include nitrogen gas, helium, and argon.
  • the contact time (W/F 0 ) between the fluorine-containing halogenated alkane and the catalyst in the above reaction system [W: weight of catalyst (g), F 0 : flow rate of halogenated alkane (mL/s)] is 1 g. It is preferable that it is s/mL or more, and it is preferable that it is 10 g ⁇ s/mL or more. Moreover, it is preferably 300 g ⁇ s/mL or less, and more preferably 200 g ⁇ s/mL or less. Higher selectivity can be achieved when the contact time is within the above range.
  • Materials for the reactor used in the above reaction system include iron, nickel, chromium, molybdenum, and alloys containing these as main components.
  • the pressure in the reactor is preferably at least normal pressure and at most 2 MPa.G, from the viewpoint of allowing the dehydrohalogenation reaction to proceed more efficiently and obtaining a halogenated alkene with high selectivity.
  • the pressure is more preferably at least 1 MPa.G, and even more preferably the pressure is at least normal pressure and at most 0.5 MPa.G.
  • the fluorine-containing halogenated alkane undergoes a dehydrohalogenation reaction to obtain a halogenated alkene.
  • the halogenated alkene produced by the production method of this embodiment is a halogenated alkene containing a fluorine atom.
  • halogenated alkenes include vinyl fluoride (VF), vinylidene fluoride (VDF, 1,1-difluoroethylene), 1,1,2-trifluoroethylene, and the like.
  • One of the most preferred aspects of the production method of the present embodiment includes a step of contacting a catalyst with 1,1,1-trifluoroethane to dehydrohalogenate 1,1,1-trifluoroethane. , a method for manufacturing VDF.
  • the method for producing a halogenated alkene according to aspect 1 of the present invention includes contacting a halogenated alkane containing a fluorine atom and having 4 or less carbon atoms with acid clay to dehydrohalogenate the halogenated alkane. Including process.
  • the halogenated alkane may be a compound represented by the following general formula (1).
  • R 1 and R 3 represent a hydrogen atom
  • R 2 represents a fluorine atom
  • R 4 represents a hydrogen atom, a fluorine atom, or a chlorine atom
  • R 5 and R 6 represent It represents an alkane group having 1 to 2 carbon atoms which may be substituted with a fluorine atom, a chlorine atom, a hydrogen atom, or a halogen atom, and at least one of R 4 to R 6 is a fluorine atom or a chlorine atom.
  • the dehydrohalogenation step may be a dehydrofluorination step.
  • the halogenated alkane may be 1,1,1-trifluoroethane.
  • Example 1 1 g of acid clay was used as a catalyst.
  • the catalyst was supplied to a reaction tube (made of SUS, outer diameter: 1/2 inch).
  • the reaction was carried out to produce VDF (the contact time between the catalyst and R143a was 23 g ⁇ s/mL).
  • the obtained VDF was collected using a gas collection bag.
  • VDF was produced in the same manner as in Example 1 except that the catalyst was changed to SiO 2 /Al 2 O 3 (silica alumina).
  • VDF was produced in the same manner as in Example 1, except that the catalyst was changed to zeolite.
  • VDF was produced in the same manner as in Example 1, except that the catalyst was changed to CrF 3 xH 2 O and the contact time between the catalyst and R143a was changed to 14 g ⁇ s/mL.
  • VDF was produced in the same manner as Comparative Example 3 except that the catalyst was changed to FeF 3 .
  • VDF was produced in the same manner as Comparative Example 3 except that the catalyst was changed to CaF 2 .
  • Tables 1 and 2 show the catalysts, reaction conditions (contact conditions), and evaluation results of the produced VDF used in the Examples and Comparative Examples.
  • Xa represents the molar amount of the fluorine-containing halogenated alkane supplied to the reactor.
  • Xb indicates the molar amount of the fluorine-containing halogenated alkane contained in the gas flowing out from the reactor outlet.
  • Xa and Xb are as defined above.
  • Ya is the molar amount of halogenated alkene contained in the effluent gas from the reactor outlet.
  • the molar amount of fluorine-containing halogenated alkane (Xb) and the molar amount of halogenated alkene (Ya) contained in the gas flowing out from the reactor outlet were calculated from the results of gas chromatography analysis of the gas flowing out from the reactor outlet. .
  • halogenated alkenes could be obtained with high selectivity, high conversion rate, and at low cost. Furthermore, since halogenated alkenes could be obtained with high selectivity and high conversion rate, the yield of halogenated alkenes could also be improved.
  • the polymer obtained by polymerizing the halogenated alkene obtained by the production method of the present invention can be used in a wide range of fields, such as the electrical and electronic fields, the oil and gas field, and the automobile field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

天然に存在する安価な触媒を使用して、高選択率および高転化率でハロゲン化アルケンを得る方法を実現する。本発明のハロゲン化アルケンの製造方法は、フッ素原子を含み炭素数が4以下であるハロゲン化アルカンと、酸性白土と、を接触させて、ハロゲン化アルカンを脱ハロゲン化水素させる工程を含む。

Description

ハロゲン化アルケンの製造方法
 本発明は、ハロゲン化アルケンの製造方法に関する。
 ハロゲン化アルケンの製造方法として、複数のハロゲン原子で置換されたハロゲン化アルカンから、ハロゲン化水素を脱離させる製造方法が知られている。例えば、特許文献1には、フルオロアルカンを金属触媒と接触させて、脱フッ化水素反応によってフルオロオレフィンを製造する方法が記載されている。また、特許文献2および特許文献3には、ハロゲン化ブタン化合物を活性炭と接触させて、脱ハロゲン化水素によってハロゲン化ブテン化合物を製造する方法が記載されている。
特開2019-196347号公報 特開2021-6515号公報 特開2021-138705号公報
 しかしながら、特許文献1に記載されたフルオロオレフィンを製造する方法、並びに、特許文献2および3に記載されたハロゲン化ブテン化合物を製造する方法は、脱ハロゲン化水素反応の触媒として酸化クロムおよび酸化アルミニウム等の金属触媒、または活性炭が使用されており、触媒に係るコストが嵩むという問題がある。また金属触媒および活性炭はフッ素化することによってより強い活性を示すようになるが、フッ素化するために要するフッ素化剤の使用により、よりコストが嵩むという問題がある。
 本発明は、上述の問題に鑑みてなされたものであり、安価な触媒を使用して、高選択率および高転化率でハロゲン化アルケンを得ることを目的とする。
 本発明者らは上記課題を達成するために、鋭意研究を重ねた結果、触媒として天然に存在する安価な酸性白土を使用することによって、高選択率および高転化率でハロゲン化アルケンを製造できることを見出し、本発明を完成させた。
 本発明の一態様に係るハロゲン化アルケンの製造方法は、フッ素原子を含み炭素数が4以下であるハロゲン化アルカンと、酸性白土と、を接触させて、前記ハロゲン化アルカンを脱ハロゲン化水素させる工程を含むことを特徴とする、ハロゲン化アルケンの製造方法である。
 本発明の一態様によれば、安価な触媒を使用して、高選択率および高転化率でハロゲン化アルケンを得ることができる。
 以下、本発明の一実施形態について、詳細に説明する。
 本実施形態に係るハロゲン化アルケンの製造方法(以下、「本実施形態の製造方法」と示す場合がある)は、触媒と、フッ素原子を含むハロゲン化アルカンと、を接触させて、ハロゲン化アルカンを脱ハロゲン化水素する工程を含む。以下、当該工程を、「脱ハロゲン化水素工程」と示す場合がある。また、「フッ素原子を含むハロゲン化アルカン」を「含フッ素ハロゲン化アルカン」と示す場合がある。本実施形態の製造方法によって製造されるフッ素原子を含むハロゲン化アルケンについては後述する。
 触媒と含フッ素ハロゲン化アルカンとを接触させることによって、フッ素原子を含むハロゲン化アルカンを脱ハロゲン化水素反応させて、ハロゲン化アルケンが得られる。脱ハロゲン化水素反応の例として、脱フッ化水素反応等が挙げられる。
 (触媒)
 本実施形態の製造方法において用いられる触媒は、酸性白土である。
 反応効率向上の観点から、酸性白土の比表面積は、50cm/g以上であることが好ましく、80cm/g以上であることがより好ましい。上限値は特に制限されないが、500cm/g以下であることが好ましく、300cm/g以下であることがより好ましい。
 (酸性白土)
 酸性白土は、モンモリロナイト粘土および可溶性ケイ酸を主成分とした粘土であり、天然物として採掘される。産地により、また同一産地内でも産出箇所によっても、外観、化学組成、性質が異なるが、公知の種類の酸性白土を広く採用することができる。
 酸性白土は、直径または長径が2.0mm以下の球状または不定形の粒子である。これら粒子の粒径は特に限定されないが、メディアン径(個数基準)が0.7mm以下の粒子であることが好ましい。
 酸性白土は、反応に用いる前に乾燥させてもよく、乾燥させなくてもよい。乾燥させる場合には、250℃程度で1時間以上乾燥させる。水分除去効率の観点から、減圧下または不活性ガス気流下で乾燥させることが好ましい。
 本明細書において、「転化率」は、脱ハロゲン化水素工程において、反応器に供給される含フッ素ハロゲン化アルカンのモル量に対する、反応器出口からの流出ガスに含まれる含フッ素ハロゲン化アルカン以外の化合物の合計モル量の割合(モル%)を示す。また「選択率」は、脱ハロゲン化水素工程において、反応器出口からの流出ガスにおける含フッ素ハロゲン化アルカン以外の化合物の合計モル量に対する、当該流出ガスに含まれるハロゲン化アルケンのモル量の割合(モル%)を指す。また「収率」は、反応器に供給される含フッ素ハロゲン化アルカンのモル量に対する、反応器出口からの流出ガスに含まれるハロゲン化アルケンのモル量の割合(モル%)を指す。換言すれば、「収率」は(転化率×選択率)/100を指す。
 (含フッ素ハロゲン化アルカン)
 含フッ素ハロゲン化アルカンは、炭素数が4以下であるハロゲン化アルカンである。含フッ素ハロゲン化アルカンは炭素数が2であってもよく、炭素数が3であってもよい。含フッ素ハロゲン化アルカンに含まれるハロゲン原子の数は2以上であり、フッ素原子の数が1以上含まれることが好ましい。
 含フッ素ハロゲン化アルカンは、下記一般式(1)で示される化合物である。
Figure JPOXMLDOC01-appb-C000002
 一般式(1)中、RおよびRは水素原子を示し、Rはフッ素原子を示し、Rは、水素原子、フッ素原子または塩素原子を示し、RおよびRは、フッ素原子、塩素原子、水素原子、または、ハロゲン原子で置換されてもよい炭素数1以上2以下のアルカン基を示す。また、R~Rの少なくとも1つはフッ素原子または塩素原子である。
 含フッ素ハロゲン化アルカンとして、例えば、1,1-ジフルオロエタン、1,2-ジフルオロエタン、1,1,1-トリフルオロエタン、1,1,2-トリフルオロエタン、1,1,1,2-テトラフルオロエタン、1,1-ジフルオロプロパン、1,1,1-トリフルオロプロパン、1,1,3-トリフルオロプロパン、1,1,2-トリフルオロプロパン、1,1,1,3-テトラフルオロプロパン、1,1,1,3,3-ペンタフルオロプロパン、1,1,1,3,3,3-ヘキサフルオロプロパン、1,1,2-トリフルオロブタン、1-クロロ-1,1-ジフルオロエタン、1-クロロ-2,2-ジフルオロエタン、1,2-ジクロロ-1,1-ジフルオロエタン等が挙げられる。
 (脱ハロゲン化水素工程の詳細および各条件)
 脱ハロゲン化水素工程においては、触媒と含フッ素ハロゲン化アルカンとを接触させて、前記含フッ素ハロゲン化アルカンを脱ハロゲン化させる。例えば、反応系に触媒を供給後、含フッ素ハロゲン化アルカンを当該反応系に供給することによって、当該触媒と含フッ素ハロゲン化アルカンとを接触させてもよい。
 上記反応系内の温度の下限は、より高い転化率を達成できる点で、400℃以上が好ましく、450℃以上がより好ましい。また、当該反応系内の温度の上限は、副生成物の生成を抑制する点で、600℃以下が好ましく、550℃以下がより好ましい。
 脱ハロゲン化水素工程において、不活性ガス雰囲気下、触媒と含フッ素ハロゲン化アルカンとを接触させてもよい。不活性ガスとして、例えば、窒素ガス、ヘリウムおよびアルゴン等が挙げられる。
 上記反応系内における、含フッ素ハロゲン化アルカンと触媒の接触時間(W/F)[W:触媒の重量(g)、F:ハロゲン化アルカンの流量(mL/s)]は、1g・s/mL以上であることが好ましく、10g・s/mL以上であることが好ましい。また、300g・s/mL以下であることが好ましく、200g・s/mL以下であることがより好ましい。接触時間が上記範囲内であると、より高い選択率を達成することができる。
 上記反応系で使用する反応器の材質としては、鉄、ニッケル、クロム、モリブテン、これらを主成分とする合金等が挙げられる。
 上記反応器内の圧力は、より効率的に脱ハロゲン化水素反応を進行させて高い選択率でハロゲン化アルケンを得ることができる点から、常圧以上2MPa・G以下であることが好ましく、常圧以上1MPa・G以下であることがより好ましく、常圧以上0.5MPa・G以下であることがさらに好ましい。
 上述の通り、触媒と含フッ素ハロゲン化アルカンとを接触させることによって、含フッ素ハロゲン化アルカンが脱ハロゲン化水素反応して、ハロゲン化アルケンが得られる。
 (ハロゲン化アルケン)
 本実施形態の製造方法によって製造されるハロゲン化アルケンは、フッ素原子を含むハロゲン化アルケンである。ハロゲン化アルケンの例として、フッ化ビニル(VF)、フッ化ビニリデン(VDF、1,1-ジフルオロエチレン)、1,1,2-トリフルオロエチレン等が挙げられる。
 本実施形態の製造方法のもっとも好ましい態様の1つは、触媒と1,1,1-トリフルオロエタンとを接触させて、1,1,1-トリフルオロエタンを脱ハロゲン化水素させる工程を含む、VDFの製造方法である。
 〔まとめ〕
 本発明の態様1に係るハロゲン化アルケンの製造方法は、フッ素原子を含み炭素数が4以下であるハロゲン化アルカンと、酸性白土と、を接触させて、前記ハロゲン化アルカンを脱ハロゲン化水素させる工程を含む。
 本発明の態様2に係るハロゲン化アルケンの製造方法は、上記態様1において、前記ハロゲン化アルカンは、下記一般式(1)で示される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、RおよびRは水素原子を示し、Rはフッ素原子を示し、Rは、水素原子、フッ素原子、または塩素原子を示し、RおよびRは、フッ素原子、塩素原子、水素原子、または、ハロゲン原子で置換されてもよい炭素数1以上2以下のアルカン基を示し、かつR~Rの少なくとも1つはフッ素原子または塩素原子である。)
 本発明の態様3に係るハロゲン化アルケンの製造方法は、上記態様1または2において、前記脱ハロゲン化水素させる工程は脱フッ化水素工程であってもよい。
 本発明の態様4に係るハロゲン化アルケンの製造方法は、上記態様1~3のいずれかにおいて、前記ハロゲン化アルカンが1,1,1-トリフルオロエタンであってもよい。
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明の以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
 (実施例1)
 触媒として酸性白土を1g使用した。触媒を反応管(SUS製、外径:1/2インチ)に供給した。反応管を500℃に昇温させ、窒素雰囲気下、窒素と1,1,1-トリフルオロエタン(R143a)との混合ガス(窒素:R143a=95:5)を20mL/分で60分通気して反応させてVDFを製造した(触媒とR143aとの接触時間は23g・s/mL)。得られたVDFはガス捕集袋によって回収した。
 (比較例1)
 触媒をSiO/Al(シリカアルミナ)に変更した以外は、実施例1と同様にして、VDFを製造した。
 (比較例2)
 触媒をゼオライトに変更した以外は、実施例1と同様にして、VDFを製造した。
 (比較例3)
 触媒をCrF xHOに変更し、触媒とR143aとの接触時間を14g・s/mLに変更した以外は、実施例1と同様にして、VDFを製造した。
 (比較例4)
 触媒をAlFに変更した以外は、比較例3と同様にして、VDFを製造した。
 (比較例5)
 触媒をFeFに変更した以外は、比較例3と同様にして、VDFを製造した。
 (比較例6)
 触媒をCaFに変更した以外は、比較例3と同様にして、VDFを製造した。
 (比較例7)
 触媒を活性白土に変更した以外は、比較例3と同様にして、VDFを製造した。
 (評価例)
 実施例および各比較例について、窒素とR143aとの混合ガスを通気し、ガス捕集袋に回収された気体成分を、ガスクロマトグラフィで分析した。ガスクロマトグラフィのカラムはアジレント・テクノロジー社製、CP-Pora PLOT Q(登録商標)を使用した。
 実施例および比較例で使用した触媒、反応条件(接触条件)、および製造したVDFの評価結果を表1および2に示す。
 表1、2中、R143a転化率(X)は、下記式(A)から求めた。
 X=100×(Xa-Xb)/Xa・・・(A)
 式(A)中、Xaは、反応器に供給される含フッ素ハロゲン化アルカンのモル量を示す。また、Xbは、反応器出口からの流出ガスに含まれる含フッ素ハロゲン化アルカンのモル量を示す。
 また、選択率Y(%)は、下式(B)から求めた。
 Y=100×Ya/(Xa-Xb)・・・(B)
 式(B)中、XaおよびXbは上述の定義の通りである。Yaは、反応器出口からの流出ガスに含まれるハロゲン化アルケンのモル量である。
 また、収率Z(%)は、下記式(C)から求めた。
 Z=(X×Y)/100・・・(C)
 反応器出口からの流出ガスに含まれる含フッ素ハロゲン化アルカンのモル量(Xb)およびハロゲン化アルケンのモル量(Ya)は、反応器出口からの流出ガスをガスクロマトグラフィで分析した結果から算出した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1、2に示すように、触媒として、酸性白土を使用することによって、高選択率、高転化率、かつ低コストでハロゲン化アルケンを得ることができた。また、高選択率かつ高転化率でハロゲン化アルケンを得ることができるため、ハロゲン化アルケンの収率についても向上させることができた。
 本発明の製造方法によって得られるハロゲン化アルケンを重合して得られるポリマーは、電気・電子分野、石油ガス分野および自動車分野等、幅広い分野において利用できる。

Claims (4)

  1.  フッ素原子を含み炭素数が4以下であるハロゲン化アルカンと、
     酸性白土と、を接触させて、前記ハロゲン化アルカンを脱ハロゲン化水素させる工程を含むことを
    特徴とする、ハロゲン化アルケンの製造方法。
  2.  前記ハロゲン化アルカンは、下記一般式(1)で示される化合物である、請求項1に記載のハロゲン化アルケンの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、
    およびRは水素原子を示し、
    はフッ素原子を示し、
    は、水素原子、フッ素原子、または塩素原子を示し、
    およびRは、フッ素原子、塩素原子、水素原子、または、ハロゲン原子で置換されてもよい炭素数1以上2以下のアルカン基を示し、
    かつR~Rの少なくとも1つはフッ素原子または塩素原子である。)
  3.  前記脱ハロゲン化水素させる工程が脱フッ化水素工程である、請求項1に記載のハロゲン化アルケンの製造方法。
  4.  前記ハロゲン化アルカンが1,1,1-トリフルオロエタンである、請求項1に記載のハロゲン化アルケンの製造方法。
PCT/JP2023/005238 2022-03-09 2023-02-15 ハロゲン化アルケンの製造方法 WO2023171275A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-036336 2022-03-09
JP2022036336A JP2023131520A (ja) 2022-03-09 2022-03-09 ハロゲン化アルケンの製造方法

Publications (1)

Publication Number Publication Date
WO2023171275A1 true WO2023171275A1 (ja) 2023-09-14

Family

ID=87936732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005238 WO2023171275A1 (ja) 2022-03-09 2023-02-15 ハロゲン化アルケンの製造方法

Country Status (2)

Country Link
JP (1) JP2023131520A (ja)
WO (1) WO2023171275A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2480560A (en) * 1945-12-06 1949-08-30 Kinetic Chemicals Inc Method for pyrolyzing polyfluoroalkanes
JPS54130507A (en) * 1978-03-30 1979-10-09 Daikin Ind Ltd Preparation of vinylidene fluoride
US5387725A (en) * 1991-11-07 1995-02-07 The Dow Chemical Company Chlorination process, alkylation of products of said process and some products thereof
JP2008037822A (ja) * 2006-08-08 2008-02-21 Osaka Univ 炭素−窒素又は炭素−炭素結合形成方法
JP2019196347A (ja) * 2018-05-08 2019-11-14 ダイキン工業株式会社 フルオロオレフィンの製造方法
JP2021006515A (ja) * 2019-02-21 2021-01-21 ダイキン工業株式会社 ハロゲン化アルケン化合物及びフッ化アルキン化合物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2480560A (en) * 1945-12-06 1949-08-30 Kinetic Chemicals Inc Method for pyrolyzing polyfluoroalkanes
JPS54130507A (en) * 1978-03-30 1979-10-09 Daikin Ind Ltd Preparation of vinylidene fluoride
US5387725A (en) * 1991-11-07 1995-02-07 The Dow Chemical Company Chlorination process, alkylation of products of said process and some products thereof
JP2008037822A (ja) * 2006-08-08 2008-02-21 Osaka Univ 炭素−窒素又は炭素−炭素結合形成方法
JP2019196347A (ja) * 2018-05-08 2019-11-14 ダイキン工業株式会社 フルオロオレフィンの製造方法
JP2021006515A (ja) * 2019-02-21 2021-01-21 ダイキン工業株式会社 ハロゲン化アルケン化合物及びフッ化アルキン化合物の製造方法

Also Published As

Publication number Publication date
JP2023131520A (ja) 2023-09-22

Similar Documents

Publication Publication Date Title
JP5926488B2 (ja) フッ素化されたオレフィンを生成するための方法
US7880040B2 (en) Method for producing fluorinated organic compounds
KR101349634B1 (ko) 플루오르화된 유기 화합물의 제조 방법
JP5947337B2 (ja) 2,2,3,3−テトラフルオロ−1−プロペンの製造方法
JP5462469B2 (ja) 2−クロロ−3,3,3−トリフルオロ−1−プロペンからの2,3,3,3−テトラフルオロ−1−プロペンの気相合成
KR101404980B1 (ko) 플루오르화 유기 화합물 제조 방법
JP2017036283A (ja) トランス−1,3,3,3−テトラフルオロプロペンを製造するための方法
JP2009518288A (ja) フッ素化有機化合物の製造方法
JP2012515215A (ja) 1,1,3,3−テトラフルオロプロペンの異性化
TW200920720A (en) Processes for producing 2,3,3,3-tetrafluoropropene and/or 1,2,3,3-tetrafluoropropene
JP5833660B2 (ja) ペンタクロロプロパンの気相フッ素化による2−クロロ−3,3,3−トリフルオロプロペンの製造方法
CN112811975B (zh) 气相异构化制备z-1-r-3,3,3-三氟丙烯的方法
JP5715177B2 (ja) フッ素化有機化合物の製造方法
JP2024515192A (ja) 3,3,3-トリフルオロプロペン(1243zf)を含有する組成物並びに当該組成物の製造及び使用方法
CN1210846A (zh) 氢氟链烷的制备方法
JP5246327B2 (ja) 気相フッ素化による含フッ素プロペンの製造方法
US7524999B2 (en) Process for the production of 1,1,1,3,3,3-hexafluoropropane
WO2023171275A1 (ja) ハロゲン化アルケンの製造方法
WO2023171274A1 (ja) ハロゲン化アルケンの製造方法
WO2023171273A1 (ja) ハロゲン化アルケンの製造方法
WO2020218336A1 (ja) ハイドロクロロフルオロカーボンの製造方法、1-クロロ-2,3,3-トリフルオロプロペンの製造方法、1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテンの製造方法
JP6038251B2 (ja) ペンタクロロプロパンの気相フッ素化による2−クロロ−3,3,3−トリフルオロプロペンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766455

Country of ref document: EP

Kind code of ref document: A1