WO2023169227A1 - 纳米纤维基移位斜孔结构油水分离净化材料及其制备方法 - Google Patents

纳米纤维基移位斜孔结构油水分离净化材料及其制备方法 Download PDF

Info

Publication number
WO2023169227A1
WO2023169227A1 PCT/CN2023/078033 CN2023078033W WO2023169227A1 WO 2023169227 A1 WO2023169227 A1 WO 2023169227A1 CN 2023078033 W CN2023078033 W CN 2023078033W WO 2023169227 A1 WO2023169227 A1 WO 2023169227A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped
oblique
fiber membrane
truncated cone
holes
Prior art date
Application number
PCT/CN2023/078033
Other languages
English (en)
French (fr)
Inventor
赵兴雷
蒋攀
王鹏
华婷
Original Assignee
嘉兴中芯纳米材料有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴中芯纳米材料有限责任公司 filed Critical 嘉兴中芯纳米材料有限责任公司
Publication of WO2023169227A1 publication Critical patent/WO2023169227A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes

Definitions

  • the invention belongs to the technical field of oil-water separation and purification materials, and relates to a nanofiber-based shifted oblique pore structure oil-water separation and purification material and a preparation method thereof.
  • the purpose of the present invention is to solve the above-mentioned problems existing in the prior art and provide a nanofiber-based shifted oblique pore structure oil-water separation and purification material and a preparation method thereof.
  • a nanofiber-based shifted oblique hole structure oil-water separation and purification material which is a multi-layer composite fiber membrane; each layer of fiber membrane has a plurality of evenly distributed oblique truncated cone-shaped through holes, and the large end of the oblique truncated cone-shaped through hole faces on the top, with the small end facing down; the big ends of any two adjacent oblique truncated cone-shaped through holes in each layer of fiber membrane are tangent; except for the bottom layer, each oblique truncated cone-shaped through hole in each layer of fiber membrane is in the lower layer Each fiber membrane has a corresponding oblique truncated cone-shaped through hole, and the small end of the oblique truncated cone-shaped through hole in each layer of fiber membrane is connected to the corresponding big end of the oblique truncated cone-shaped through hole in the lower layer of
  • a nanofiber-based shifted oblique pore structure oil-water separation and purification material as described above, the lipophilic and hydrophobic nanofibers are made of polyvinylidene fluoride, polyethersulfone, polysulfone, polypropylene, polyethylene, polyester or Polyvinyl butyral.
  • the average diameter of the lipophilic and hydrophobic nanofibers is 50 to 800 nm.
  • the number of layers of the fiber membrane is 3 to 5 layers.
  • the diameter of the large end of the oblique truncated cone-shaped through hole is 80 ⁇ 200 ⁇ m, the diameter of the small end is 20 ⁇ 60 ⁇ m, and the height is 2 ⁇ 40 ⁇ m.
  • the oblique truncated cone shape The slope is 20 ⁇ 70°. If the size of the oblique truncated cone-shaped through hole is too small, existing technology cannot realize it. If the size is too large, the flux and separation efficiency of the oil-water separation and purification material will be reduced.
  • a nanofiber-based shifted oblique hole structure oil-water separation and purification material.
  • the number of one row or column of oblique truncated cone-shaped through holes per square meter on one side of the fiber membrane is 5,000 to 12,000. Too small a number will cause oil and water The throughput of separation and purification materials is low.
  • a nanofiber-based shifted oblique pore structure oil-water separation and purification material as described above.
  • the nanofiber-based shifted oblique pore structure oil-water separation and purification material has a flux greater than 2500L/m 2 h, a separation efficiency greater than 99.99%, and can be widely used In fields such as oil-water separation and hydrogen peroxide purification; the flux and separation efficiency are measured using the SAEJ1488 standard.
  • the highest levels of flux and separation efficiency of existing oil-water separation and purification materials are 1600 L/m 2 h and 99% respectively. .
  • the present invention also provides a method for preparing a nanofiber-based shifted oblique pore structure oil-water separation and purification material as described above.
  • a plurality of uniform fiber membranes are prepared by melt spinning method, and then according to the holes on each layer of fiber membrane. According to the size, quantity and arrangement requirements, use a hole punch (the hole punch is customized according to the shape of the through hole) to drill oblique truncated cone-shaped through holes on the fiber membrane, and finally according to the requirements of the oblique truncated cone-shaped through holes on different layers of fiber membranes.
  • multiple fiber membranes with oblique truncated cone-shaped through holes are combined to obtain the nanofiber-based shifted oblique hole structure oil-water separation and purification material;
  • Composite equipment is used for lamination, and the lamination equipment is equipped with a laser positioner to ensure that the holes in each layer are arranged according to the design.
  • the process parameters of the melt spinning process are: melting temperature 200 ⁇ 320°C, air temperature 200 ⁇ 320°C, die temperature 180 ⁇ 320°C, and fan frequency 50Hz.
  • the principle of the present invention is as follows:
  • the present invention designs and develops an oil-water separation and purification material with a shifted inclined hole structure (multi-layer oblique truncated cone-shaped through hole structure). It utilizes the pressure difference formed by liquid flow on the inclined surface and cooperates with the lipophilic and hydrophobic characteristics of the fibers that constitute the oil-water separation and purification material.
  • the filter material with shifted inclined holes has lower resistance to liquid under the condition of equal filtration efficiency.
  • the main reason is that the filter material with flat structure encounters the vertical incoming liquid flow. The liquid molecules will directly hit the fiber surface and will not change the flow direction and avoid the fiber.
  • the vertically flowing liquid molecules encounter the filter material with oblique truncated cone-shaped through holes, some of the molecules will hit the fiber surface and form liquid pressure, which forces subsequent liquid molecules to change direction and flow to the next layer of oblique truncated cone-shaped through holes. This part is completely impact-free and has the least resistance (the smaller the resistance, the greater the flux).
  • a nanofiber-based shifted oblique pore structure oil-water separation and purification material of the present invention can obtain a hierarchical pore structure filter material, and the stacking structure of the filter material can be controllably adjusted;
  • a nanofiber-based shifted inclined pore structure oil-water separation and purification material of the present invention has an inclined inclined plane structure and large and small pore high-flux channels, and has the characteristics of high oil-water separation efficiency and high flux;
  • the nanofiber-based shifted oblique pore structure oil-water separation and purification material of the present invention has a larger total area compared with the planar structure filter material, so the dirt holding capacity is higher.
  • Figures 1 to 3 are respectively the positional relationship of the oblique truncated cone-shaped through holes on each layer of fiber membranes in the nanofiber-based shifted oblique pore structure oil-water separation and purification material in Examples 1, 5 and 6 and the schematic diagram of the oil-water separation effect.
  • a method for preparing a nanofiber-based shifted oblique pore structure oil-water separation and purification material The specific steps are as follows: (1) Use melt spinning method to prepare three polyvinylidene fluoride fiber membranes. The average diameter of the fibers in the fiber membrane is 300nm.
  • melt spinning melting temperature 225°C, air temperature 230°C, mold The head temperature is 220°C, the fan frequency is 50Hz;
  • each oblique truncated cone-shaped through hole in each layer of fiber membrane has a corresponding oblique truncated cone-shaped through hole in the fiber membrane below it, and the small end of the oblique truncated cone-shaped through hole in each layer of fiber membrane is equal to the
  • the relative position requirement of "the big end of a corresponding oblique truncated cone-shaped through hole in the lower fiber membrane is connected" is to be obtained by using a composite equipment with a laser positioner to composite three fiber membranes with oblique truncated cone-shaped through holes.
  • the nanofiber-based shifted oblique pore structure oil-water separation and purification material is a three-layer composite fiber membrane; the flux of the nanofiber-based shifted oblique pore structure oil-water separation and purification material is 3476L/m 2 h, the separation efficiency was 99.995%.
  • a method for preparing a nanofiber-based shifted oblique pore structure oil-water separation and purification material which is basically the same as Example 1.
  • the material of the fiber membrane is polypropylene fiber
  • the process parameters of melt spinning are: : The melting temperature is 250°C, the air temperature is 220°C, the die temperature is 235°C, and the fan frequency is 50Hz; the flux of the finally prepared nanofiber-based shifted oblique hole structure oil-water separation and purification material is 3359L/m 2 h, and the separation efficiency is 99.997%.
  • a method for preparing a nanofiber-based shifted oblique pore structure oil-water separation and purification material which is basically the same as Example 1.
  • the material of the fiber membrane is polyethylene fiber
  • the process parameters of melt spinning are: : The melting temperature is 235°C, the air temperature is 225°C, the die temperature is 235°C, and the fan frequency is 50Hz; the flux of the finally prepared nanofiber-based shifted oblique hole structure oil-water separation and purification material is 3841L/m 2 h, and the separation efficiency is 99.992%.
  • a method for preparing a nanofiber-based shifted oblique pore structure oil-water separation and purification material which is basically the same as Example 1.
  • the material of the fiber membrane is polyvinyl butyral fiber, which is melt-spun.
  • the process parameters are: melting temperature 205°C, air temperature 200°C, die temperature 210°C, fan frequency 50Hz; the flux of the finally prepared nanofiber-based displaced oblique hole structure oil-water separation and purification material is 4019L/m 2 h , the separation efficiency is 99.993%.
  • a method for preparing a nanofiber-based shifted oblique pore structure oil-water separation and purification material The specific steps are as follows: (1) Use melt spinning method to prepare 4 polyethersulfone fiber membranes. The average diameter of the fibers in the fiber membrane is 800nm.
  • melt spinning The process parameters of melt spinning are: melting temperature 305°C, air temperature 300°C, die temperature 305 °C, fan frequency 50Hz; (2) Use a hole punch to drill oblique truncated cone-shaped through holes on each fiber membrane, so that there are multiple oblique truncated cone-shaped through holes evenly distributed on each fiber membrane, and the big end of the oblique truncated cone-shaped through holes faces upward, and the small end of the oblique truncated cone-shaped through holes faces upward.
  • the slope of the oblique truncated cone is 38°; the sum of the areas of the big ends of all oblique truncated cone-shaped through holes in each fiber membrane accounts for 86% of the single-side surface area of the fiber membrane; (3) According to "Each oblique truncated cone-shaped through hole in each layer of fiber membrane has a corresponding oblique truncated cone-shaped through hole in the fiber membrane below it, and the small end of the oblique truncated cone-shaped through hole in each layer of fiber membrane is equal to the The relative position requirement of "the big end of a corresponding oblique truncated cone-shaped through hole in the lower fiber membrane is connected" is to be obtained by using a composite equipment with a laser positioner to composite 4 fiber membranes with oblique truncated cone-shaped through holes.
  • the nanofiber-based shifted oblique pore structure oil-water separation and purification material is a 4-layer composite fiber membrane; the flux of the nanofiber-based shifted inclined pore structure oil-water separation and purification material is 4430L/m 2 h, the separation efficiency was 99.999%.
  • a method for preparing a nanofiber-based shifted oblique pore structure oil-water separation and purification material The specific steps are as follows: (1) Use the melt spinning method to prepare 5 polysulfone fiber membranes. The average diameter of the fibers in the fiber membrane is 550nm, the melting temperature is 285°C, the air temperature is 290°C, the die temperature is 290°C, and the fan frequency is 50Hz; (2) Use a hole punch to drill oblique truncated cone-shaped through holes on each fiber membrane, so that there are multiple oblique truncated cone-shaped through holes evenly distributed on each fiber membrane, and the big end of the oblique truncated cone-shaped through holes faces upward, and the small end of the oblique truncated cone-shaped through holes faces upward.
  • the nanofiber-based shifted oblique pore structure oil-water separation and purification material is a 5-layer composite fiber membrane; the flux of the nanofiber-based shifted oblique pore structure oil-water separation and purification material is 4509L/m 2 h, the separation efficiency was 99.999%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种纳米纤维基移位斜孔结构油水分离净化材料及其制备方法,首先采用熔融喷丝的方法制备多层纤维膜,然后按照各层纤维膜上孔的尺寸、数量和排布的要求采用打孔器在纤维膜上打斜圆台形通孔,最后按照不同层纤维膜上斜圆台形通孔的相对位置的要求将多层打有斜圆台形通孔的纤维膜进行复合,制得纳米纤维基移位斜孔结构油水分离净化材料;制得的油水分离净化材料为多层复合的纤维膜,每层纤维膜均具有多个均匀分布的斜圆台形通孔,且斜圆台形通孔的大端朝上,小端朝下;各层纤维膜中每一斜圆台形通孔在其下层的纤维膜中均有对应的一个与其连通的斜圆台形通孔。

Description

纳米纤维基移位斜孔结构油水分离净化材料及其制备方法 技术领域
本发明属于油水分离净化材料技术领域,涉及一种纳米纤维基移位斜孔结构油水分离净化材料及其制备方法。
背景技术
两相不相容体系的有效分离在众多领域具有大量的应用需求。优异的油水分离净化材料应具备高分离效率、高通量、高纳污量的特性。但现有滤材通常存在通量低的缺点。这主要是由于现有滤材多为平面结构的熔喷滤材或纳米纤维滤材,其无规堆积的平面微米级或纳米级纤维结构在遇到水/油分子时会与分子发生撞击,阻碍液体分子的通过,从而对液体通过形成了较大的阻力,导致滤材整体阻力高,且现有滤材的平面结构使得其纳污量不足。现有公开专利《一种高效油水分离复合纤维膜及其制备方法》(CN201410125768.1)、《一种磁响应高效油水分离纤维膜及其制备方法》(CN201410584912.8)、《高效的静电纺丝油水分离纤维膜》(CN201610040433.9)、《一种具有优异抗污能力的油水分离纤维膜及其制备方法》(CN201610580631.4)报道了利用静电纺丝法制备油水分离材料的方法,但上述方法制备的材料仍存在平面结构导致纤维膜的通量较低,因此亟需一种直径细、孔径小、高通量的高效油水分离材料。
发明内容
本发明的目的是解决现有技术中存在的上述问题,提供一种纳米纤维基移位斜孔结构油水分离净化材料及其制备方法。
为达到上述目的,本发明采用的技术方案如下:
一种纳米纤维基移位斜孔结构油水分离净化材料,为多层复合的纤维膜;每层纤维膜均具有多个均匀分布的斜圆台形通孔,且斜圆台形通孔的大端朝上,小端朝下;每层纤维膜中任意相邻两个斜圆台形通孔的大端相切;除最下面一层外,各层纤维膜中每一斜圆台形通孔在其下层的纤维膜中均有对应的一个斜圆台形通孔,且各层纤维膜中斜圆台形通孔的小端与其下层纤维膜中对应的一个斜圆台形通孔的大端连通;
所有斜圆台形通孔尺寸、倾斜方向和斜角均相同;
每层纤维膜中所有斜圆台形通孔大端的面积之和占纤维膜单侧表面面积的百分比为80~90%,类似孔隙率的概念,比例越高孔的比例越高,通量就越大;
构成每层纤维膜的纤维为亲油疏水纳米纤维。
作为优选的技术方案:
如上所述的一种纳米纤维基移位斜孔结构油水分离净化材料,所述亲油疏水纳米纤维的材质为聚偏氟乙烯、聚醚砜、聚砜、聚丙烯、聚乙烯、聚酯或聚乙烯醇缩丁醛。
如上所述的一种纳米纤维基移位斜孔结构油水分离净化材料,所述亲油疏水纳米纤维的平均直径为50~800nm。
如上所述的一种纳米纤维基移位斜孔结构油水分离净化材料,所述纤维膜的层数为3~5层。
如上所述的一种纳米纤维基移位斜孔结构油水分离净化材料,斜圆台形通孔的大端直径为80~200μm,小端直径为20~60μm,高为2~40μm,斜圆台形的斜度为20~70°。斜圆台形通孔的尺寸太小的话,现有的技术实现不了,尺寸太大的话则会导致油水分离净化材料的通量和分离效率降低。
如上所述的一种纳米纤维基移位斜孔结构油水分离净化材料,纤维膜单侧表面每平方米内其中一行或者一列斜圆台形通孔的数量为5000~12000个,数量太少会导致油水分离净化材料的通量低。
如上所述的一种纳米纤维基移位斜孔结构油水分离净化材料,纳米纤维基移位斜孔结构油水分离净化材料的通量大于2500L/m 2h,分离效率大于99.99%,可广泛用于油水分离、双氧水纯化等领域;通量和分离效率均采用SAEJ1488的标准测得,现有技术的油水分离净化材料的通量和分离效率的最高水平分别为1600 L/m 2h和99%。
本发明还提供了制备如上所述的一种纳米纤维基移位斜孔结构油水分离净化材料的方法,首先采用熔融喷丝的方法制备多张均匀的纤维膜,然后按照各层纤维膜上孔的尺寸、数量和排布的要求采用打孔器(打孔器是依据通孔的形状定制的)在纤维膜上打斜圆台形通孔,最后按照不同层纤维膜上斜圆台形通孔的相对位置的要求将多张打有斜圆台形通孔的纤维膜进行复合,即得所述纳米纤维基移位斜孔结构油水分离净化材料;
复合采用复合设备,所述复合设备上带有激光定位器,可保证每层的孔按照设计排列。
作为优选的技术方案:
如上所述的方法,所述熔融喷丝的工艺参数为:熔融温度200~320℃,风温200~320℃,模头温度180~320℃,风机频率50Hz。
本发明的原理如下:
本发明设计开发了移位斜孔结构(多层斜圆台形通孔结构)的油水分离净化材料,利用液体流动在斜面上形成的压力差,配合构成油水分离净化材料的纤维的亲油疏水特性,使得油能够透过斜圆台形通孔的斜面,而水被聚结拦截(高效分离),之后未透过斜面的液体,从斜圆台形通孔的小端流出(相比于平面结构,其通量大),进入下一层并重复油水分离的过程。
同平面结构的滤材相比,移位斜孔的滤材在具有相等过滤效率的条件下,对液体的阻力要低,主要原因是平面结构的滤材在遇到垂直进来的液体流时,液体分子会直接撞击到纤维表面,不会发生流动方向变化而躲避纤维的情况。而垂直流动的液体分子在遇到斜圆台形通孔的滤材时,一部分分子会撞击纤维表面形成液体压力,从而迫使后续的液体分子发生方向变化,流向下一层的斜圆台形通孔,这部分完全无撞击,阻力最小(阻力越小,通量越大)。
有益效果
(1)本发明的一种纳米纤维基移位斜孔结构油水分离净化材料,可以得到层级孔结构过滤材料,且该过滤材料的堆积结构能够可控调节;
(2)本发明的一种纳米纤维基移位斜孔结构油水分离净化材料,具有倾斜的斜面结构及大小孔高通量通道,具有高油水分离效率、高通量的特性;
(3)本发明的一种纳米纤维基移位斜孔结构油水分离净化材料,与平面结构的滤材相比,总面积更大,因而纳污量更高。
附图说明
图1~3分别为实施例1、5和6中纳米纤维基移位斜孔结构油水分离净化材料中各层纤维膜上的斜圆台形通孔的位置关系以及油水分离效果示意图。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
一种纳米纤维基移位斜孔结构油水分离净化材料的制备方法,具体步骤如下:
(1)采用熔融喷丝的方法制备3张聚偏氟乙烯纤维膜,其中,纤维膜中纤维的平均直径为300nm,熔融喷丝的工艺参数为:熔融温度225℃,风温230℃,模头温度220℃,风机频率50Hz;
(2)采用打孔器在每张纤维膜上打斜圆台形通孔,使得每张纤维膜上均匀分布有多个斜圆台形通孔,且斜圆台形通孔的大端朝上,小端朝下;从斜圆台形通孔大端所在的各张纤维膜表面来看,平均每平方米内的每一行具有8900个斜圆台形通孔;每张纤维膜中任意相邻两个斜圆台形通孔的大端相切;各张纤维膜中所有斜圆台形通孔尺寸、倾斜方向和斜角均相同;每个斜圆台形通孔的大端平均直径为120μm,小端直径为45μm,高为26μm,斜圆台形的斜度为46°;每张纤维膜中所有斜圆台形通孔大端的面积之和占纤维膜单侧表面面积的百分比为82%;
(3)按照“各层纤维膜中每一斜圆台形通孔在其下层的纤维膜中均有对应的一个斜圆台形通孔,且各层纤维膜中斜圆台形通孔的小端与其下层纤维膜中对应的一个斜圆台形通孔的大端连通”的相对位置要求,采用带有激光定位器的复合设备将3张打有斜圆台形通孔的纤维膜进行复合,即得所述纳米纤维基移位斜孔结构油水分离净化材料;
最终制得的纳米纤维基移位斜孔结构油水分离净化材料,如图1所示,为三层复合的纤维膜;纳米纤维基移位斜孔结构油水分离净化材料的通量为3476L/m 2h,分离效率为99.995%。
实施例2
一种纳米纤维基移位斜孔结构油水分离净化材料的制备方法,基本同实施例1,不同之处仅在于步骤(1)中纤维膜的材质为聚丙烯纤维,熔融喷丝的工艺参数为:熔融温度250℃,风温220℃,模头温度235℃,风机频率50Hz;最终制得的纳米纤维基移位斜孔结构油水分离净化材料的通量为3359L/m 2h,分离效率为99.997%。
实施例3
一种纳米纤维基移位斜孔结构油水分离净化材料的制备方法,基本同实施例1,不同之处仅在于步骤(1)中纤维膜的材质为聚乙烯纤维,熔融喷丝的工艺参数为:熔融温度235℃,风温225℃,模头温度235℃,风机频率50Hz;最终制得的纳米纤维基移位斜孔结构油水分离净化材料的通量为3841L/m 2h,分离效率为99.992%。
实施例4
一种纳米纤维基移位斜孔结构油水分离净化材料的制备方法,基本同实施例1,不同之处仅在于步骤(1)中纤维膜的材质为聚乙烯醇缩丁醛纤维,熔融喷丝的工艺参数为:熔融温度205℃,风温200℃,模头温度210℃,风机频率50Hz;最终制得的纳米纤维基移位斜孔结构油水分离净化材料的通量为4019L/m 2h,分离效率为99.993%。
实施例5
一种纳米纤维基移位斜孔结构油水分离净化材料的制备方法,具体步骤如下:
(1)采用熔融喷丝的方法制备4张聚醚砜纤维膜,其中,纤维膜中纤维的平均直径为800nm,熔融喷丝的工艺参数为:熔融温度305℃,风温300℃,模头温度305℃,风机频率50Hz;
(2)采用打孔器在每张纤维膜上打斜圆台形通孔,使得每张纤维膜上均匀分布有多个斜圆台形通孔,且斜圆台形通孔的大端朝上,小端朝下;从斜圆台形通孔大端所在的各张纤维膜表面来看,平均每平方米内的每一列具有11080个斜圆台形通孔;每张纤维膜中任意相邻两个斜圆台形通孔的大端相切;各张纤维膜中斜圆台形通孔尺寸、倾斜方向和斜角均相同;每个斜圆台形通孔的大端直径为180μm,小端直径为55μm,高为35μm,斜圆台形的斜度为38°;每张纤维膜中所有斜圆台形通孔大端的面积之和占纤维膜单侧表面面积的百分比为86%;
(3)按照“各层纤维膜中每一斜圆台形通孔在其下层的纤维膜中均有对应的一个斜圆台形通孔,且各层纤维膜中斜圆台形通孔的小端与其下层纤维膜中对应的一个斜圆台形通孔的大端连通”的相对位置要求,采用带有激光定位器的复合设备将4张打有斜圆台形通孔的纤维膜进行复合,即得所述纳米纤维基移位斜孔结构油水分离净化材料;
最终制得的纳米纤维基移位斜孔结构油水分离净化材料,如图2所示,为4层复合的纤维膜;纳米纤维基移位斜孔结构油水分离净化材料的通量为4430L/m 2h,分离效率为99.999%。
实施例6
一种纳米纤维基移位斜孔结构油水分离净化材料的制备方法,具体步骤如下:
(1)采用熔融喷丝的方法制备5张聚砜纤维膜,其中,纤维膜中纤维的平均直径为550nm,熔融温度285℃,风温290℃,模头温度290℃,风机频率50Hz;
(2)采用打孔器在每张纤维膜上打斜圆台形通孔,使得每张纤维膜上均匀分布有多个斜圆台形通孔,且斜圆台形通孔的大端朝上,小端朝下;从斜圆台形通孔大端所在的各张纤维膜表面来看,平均每平方米内的每一行具有9089个斜圆台形通孔;每张纤维膜中任意相邻两个斜圆台形通孔的大端相切;各张纤维膜中所有斜圆台形通孔尺寸、倾斜方向和斜角均相同;每个斜圆台形通孔的大端直径为168μm,小端直径为28μm,高为22μm,斜圆台形的斜度为58°;每张纤维膜中所有斜圆台形通孔大端的面积之和占纤维膜单侧表面面积的百分比为88%;
(3)按照“各层纤维膜中每一斜圆台形通孔在其下层的纤维膜中均有对应的一个斜圆台形通孔,且各层纤维膜中斜圆台形通孔的小端与其下层纤维膜中对应的一个斜圆台形通孔的大端连通”的相对位置要求,采用带有激光定位器的复合设备将5张打有斜圆台形通孔的纤维膜进行复合,即得所述纳米纤维基移位斜孔结构油水分离净化材料;
最终制得的纳米纤维基移位斜孔结构油水分离净化材料,如图3所示,为5层复合的纤维膜;纳米纤维基移位斜孔结构油水分离净化材料的通量为4509L/m 2h,分离效率为99.999%。

Claims (9)

  1. 一种纳米纤维基移位斜孔结构油水分离净化材料,其特征在于:为多层复合的纤维膜;每层纤维膜均具有多个均匀分布的斜圆台形通孔,且斜圆台形通孔的大端朝上,小端朝下;每层纤维膜中任意相邻两个斜圆台形通孔的大端相切;各层纤维膜中每一斜圆台形通孔在其下层的纤维膜中均有对应的一个斜圆台形通孔,且各层纤维膜中斜圆台形通孔的小端与其下层纤维膜中对应的一个斜圆台形通孔的大端连通;
    所有斜圆台形通孔尺寸、倾斜方向和斜角均相同;
    每层纤维膜中所有斜圆台形通孔大端的面积之和占纤维膜单侧表面面积的百分比为80~90%;
    构成每层纤维膜的纤维为亲油疏水纳米纤维。
  2. 根据权利要求1所述的一种纳米纤维基移位斜孔结构油水分离净化材料,其特征在于,所述亲油疏水纳米纤维的材质为聚偏氟乙烯、聚醚砜、聚砜、聚丙烯、聚乙烯、聚酯或聚乙烯醇缩丁醛。
  3. 根据权利要求2所述的一种纳米纤维基移位斜孔结构油水分离净化材料,其特征在于,所述亲油疏水纳米纤维的平均直径为50~800nm。
  4. 根据权利要求1所述的一种纳米纤维基移位斜孔结构油水分离净化材料,其特征在于,所述纤维膜的层数为3~5层。
  5. 根据权利要求1所述的一种纳米纤维基移位斜孔结构油水分离净化材料,其特征在于,斜圆台形通孔的大端直径为80~200μm,小端直径为20~60μm,高为2~40μm,斜圆台形的斜度为20~70°。
  6. 根据权利要求1所述的一种纳米纤维基移位斜孔结构油水分离净化材料,其特征在于,纤维膜单侧表面每平方米内其中一行或者一列斜圆台形通孔的数量为5000~12000个。
  7. 根据权利要求1所述的一种纳米纤维基移位斜孔结构油水分离净化材料,其特征在于,纳米纤维基移位斜孔结构油水分离净化材料的通量大于2500L/m 2 h,分离效率大于99.99%。
  8. 制备如权利要求1~7任一项所述的一种纳米纤维基移位斜孔结构油水分离净化材料的方法,其特征在于:首先采用熔融喷丝的方法制备多张纤维膜,然后按照各层纤维膜上孔的尺寸、数量和排布的要求采用打孔器在纤维膜上打斜圆台形通孔,最后按照不同层纤维膜上斜圆台形通孔的相对位置的要求将多张打有斜圆台形通孔的纤维膜进行复合,即得所述纳米纤维基移位斜孔结构油水分离净化材料;
    复合采用复合设备,所述复合设备上带有激光定位器。
  9. 根据权利要求8所述的方法,其特征在于,所述熔融喷丝的工艺参数为:熔融温度200~320℃,风温200~320℃,模头温度180~320℃,风机频率50Hz。
PCT/CN2023/078033 2022-03-09 2023-02-24 纳米纤维基移位斜孔结构油水分离净化材料及其制备方法 WO2023169227A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210230778.6A CN114984764B (zh) 2022-03-09 2022-03-09 纳米纤维基移位斜孔结构油水分离净化材料及其制备方法
CN202210230778.6 2022-03-09

Publications (1)

Publication Number Publication Date
WO2023169227A1 true WO2023169227A1 (zh) 2023-09-14

Family

ID=83023944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078033 WO2023169227A1 (zh) 2022-03-09 2023-02-24 纳米纤维基移位斜孔结构油水分离净化材料及其制备方法

Country Status (2)

Country Link
CN (1) CN114984764B (zh)
WO (1) WO2023169227A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114984764B (zh) * 2022-03-09 2023-02-03 嘉兴中芯纳米材料有限责任公司 纳米纤维基移位斜孔结构油水分离净化材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101181832A (zh) * 2006-11-13 2008-05-21 谢继华 纤维合成塑胶薄膜及其生产方法
US20120244314A1 (en) * 2009-12-14 2012-09-27 3M Innovative Properties Company Microperforated polymeric film and methods of making and using the same
CN205391812U (zh) * 2016-03-23 2016-07-27 福建省粤华环保科技有限公司 一种复合型多层油水分离膜
JP2017100067A (ja) * 2015-11-30 2017-06-08 三菱マテリアル株式会社 油水分離装置
CN108176245A (zh) * 2017-12-28 2018-06-19 袁虹娣 用于液体-液体分离的纳米级双圆锥孔滤膜
CN109396665A (zh) * 2018-11-29 2019-03-01 华中科技大学 一种利用皮秒激光制备油水分离膜的方法
US20200197878A1 (en) * 2018-12-21 2020-06-25 King Fahd University Of Petroleum And Minerals Hybrid membrane and method for separating oil and water
CN114984764A (zh) * 2022-03-09 2022-09-02 嘉兴中芯纳米材料有限责任公司 纳米纤维基移位斜孔结构油水分离净化材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH186565A (de) * 1934-09-17 1936-09-30 Seelig & Hille R Verfahren und Vorrichtung zur Herstellung von Lochungen geringen Durchmessers in Bahnen aus durchsichtiger Zellulosefolie, Metallfolie oder dergleichen.
CN101380547A (zh) * 2007-09-07 2009-03-11 毕明光 一种新型核孔膜
JP2009066552A (ja) * 2007-09-14 2009-04-02 Chung Yuan Christian Univ 非対称膜材の成形方法及びその装置
CN103219483B (zh) * 2013-04-27 2015-05-27 中材科技股份有限公司 一种复合锂电池隔膜及其制备方法
CN106048901B (zh) * 2016-06-12 2018-04-17 东华大学 三维曲折纳米纤维复合窗纱及其静电纺丝方法
CN106621590B (zh) * 2016-12-30 2019-02-26 东华大学 一种具备抗菌功能的过滤材料及其制备方法
CN109432825A (zh) * 2018-10-23 2019-03-08 上海师范大学 一种具有油水分离及抗油污染双功能的图案化多孔纳米纤维材料及其制备方法和应用
CN112777689B (zh) * 2020-12-30 2022-01-25 同济大学 一种具有梯度结构的超亲水纳米纤维膜高效处理水包油乳化液的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101181832A (zh) * 2006-11-13 2008-05-21 谢继华 纤维合成塑胶薄膜及其生产方法
US20120244314A1 (en) * 2009-12-14 2012-09-27 3M Innovative Properties Company Microperforated polymeric film and methods of making and using the same
JP2017100067A (ja) * 2015-11-30 2017-06-08 三菱マテリアル株式会社 油水分離装置
CN205391812U (zh) * 2016-03-23 2016-07-27 福建省粤华环保科技有限公司 一种复合型多层油水分离膜
CN108176245A (zh) * 2017-12-28 2018-06-19 袁虹娣 用于液体-液体分离的纳米级双圆锥孔滤膜
CN109396665A (zh) * 2018-11-29 2019-03-01 华中科技大学 一种利用皮秒激光制备油水分离膜的方法
US20200197878A1 (en) * 2018-12-21 2020-06-25 King Fahd University Of Petroleum And Minerals Hybrid membrane and method for separating oil and water
CN114984764A (zh) * 2022-03-09 2022-09-02 嘉兴中芯纳米材料有限责任公司 纳米纤维基移位斜孔结构油水分离净化材料及其制备方法

Also Published As

Publication number Publication date
CN114984764B (zh) 2023-02-03
CN114984764A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023169227A1 (zh) 纳米纤维基移位斜孔结构油水分离净化材料及其制备方法
JP4980154B2 (ja) 濾材およびその製造方法
CN104994928B (zh) 过滤介质及其制备方法和利用其的过滤装置
US9180393B2 (en) Liquid filtration media
EP2121164A1 (en) Improved liquid filtration media
KR102390788B1 (ko) 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛
US20190070538A1 (en) Nanofiber web with controllable solid volume fraction
US11484841B2 (en) Feed spacer having three-layered structure, and reverse osmosis membrane filter module including same
JP5585105B2 (ja) 分離膜支持体ならびにそれを用いた分離膜および流体分離素子
JP5581779B2 (ja) 分離膜支持体の製造方法
EP2654920A1 (en) High porosity high basis weight filter media
KR102576129B1 (ko) 필터여재 및 이를 포함하는 필터유닛
JP2009061373A (ja) 分離膜支持体
JP2019093366A (ja) 分離膜
KR102576134B1 (ko) 필터여재 및 이를 포함하는 필터유닛
US20130126418A1 (en) Liquid filtration media
JPH05295645A (ja) 不織布およびその製造方法
CN110709155A (zh) 过滤器滤材、其制造方法及包括其的过滤器单元
CN210302761U (zh) 一种ptfe复合pp滤材结构
CN211416550U (zh) 一种棉花收储包装网膜
JP2004270865A (ja) 自動変速機用オイルフィルタの濾過材
WO2021141540A1 (en) An improved composite membrane
CN210302760U (zh) 一种用于新风过滤系统的滤材
CN111545074A (zh) 一种流体分离膜及其制造方法和其应用
JP6380056B2 (ja) 分離膜支持体ならびにそれを用いた分離膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765805

Country of ref document: EP

Kind code of ref document: A1