WO2023168823A1 - 润滑系统 - Google Patents

润滑系统 Download PDF

Info

Publication number
WO2023168823A1
WO2023168823A1 PCT/CN2022/092238 CN2022092238W WO2023168823A1 WO 2023168823 A1 WO2023168823 A1 WO 2023168823A1 CN 2022092238 W CN2022092238 W CN 2022092238W WO 2023168823 A1 WO2023168823 A1 WO 2023168823A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
component
lubricated
lubrication system
inlet pipe
Prior art date
Application number
PCT/CN2022/092238
Other languages
English (en)
French (fr)
Inventor
冯晓宇
赵大伟
吕亮
刘永诚
马忠章
常胜
付善武
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to US17/900,295 priority Critical patent/US20230048551A1/en
Publication of WO2023168823A1 publication Critical patent/WO2023168823A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/06Mobile combinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/18Lubricating
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/003Bearing, sealing, lubricating details
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/02Fluid rotary type drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/05Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/06Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0412Cooling or heating; Control of temperature
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/02Drilling rigs characterised by means for land transport with their own drive, e.g. skid mounting or wheel mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02039Gearboxes for particular applications
    • F16H2057/02069Gearboxes for particular applications for industrial applications
    • F16H2057/02073Reduction gearboxes for industry

Definitions

  • the present application relates to the fields of shale gas extraction and oil production stimulation, and specifically, to a lubrication system.
  • Electric fracturing equipment is widely used in oil fields and shale gas fields because of its advantages such as high power, large displacement, and environmental protection.
  • the plunger pump components play an important role in the fracturing equipment. During the operation of the plunger pump, in order to extend its life and reduce wear between components, it is necessary to lubricate each component of the plunger pump.
  • the lubrication system mainly uses two parallel circuits for lubrication.
  • the change in the amount of lubricating oil is achieved by working on a single circuit or two circuits working together, which is cumbersome to operate.
  • Each circuit uses a radiator and a temperature control valve to realize the lubricating oil.
  • the heat dissipation function is expensive and the cost is high; in winter, the heating function is set on each circuit, the operation is not intelligent, and interacts with the circuit, which may easily cause the heating function to fail or the circuit pump body to be damaged. Therefore, how to accurately and efficiently achieve effective lubrication during the working process of the plunger pump is currently the focus of attention.
  • the main purpose of this application is to provide a lubrication system to solve the problem that the lubrication system in the prior art cannot achieve effective lubrication accurately and efficiently.
  • the present application provides a lubrication system, including: at least one first component to be lubricated, the inlet of the first component to be lubricated is connected to the first oil inlet pipe, and the outlet of the first component to be lubricated is connected to the first outlet.
  • the oil pipes are connected; at least one second component to be lubricated, the inlet of the second component to be lubricated is connected to the second oil inlet pipe, and the outlet of the second component to be lubricated is connected to the second oil outlet pipe; the first component to be lubricated and the second
  • the parts to be lubricated do not operate at the same pressure.
  • the lubrication system also includes: an oil tank, the first oil inlet pipe, the first oil outlet pipe, the second oil inlet pipe and the second oil outlet pipe are all connected with the oil tank; a heating circuit, the inlet of the heating circuit and the outlet of the heating circuit are all connected with the oil tank. Connected.
  • the lubrication system also includes: a first pump body, which is arranged on the first oil inlet pipe; a first driving part, which is drivingly connected with the first pump body; a first controller, which is communicatively connected with the first driving part; a first pressure The sensor is arranged at the inlet of the first component to be lubricated, and the first pressure sensor is communicatively connected with the first controller; and/or the lubrication system also includes: a third pump body, arranged on the second oil inlet pipe; a third driving member , is drivingly connected to the third pump body; the third controller is communicatively connected to the third driving member; the second pressure sensor is arranged at the inlet of the second component to be lubricated, and the second pressure sensor is communicatively connected to the third controller.
  • the lubrication system further includes: a first control valve, which is provided on the first oil inlet pipe and located between the first pump body and the inlet of the first oil inlet pipe.
  • the lubrication system further includes: a first filter member, which is disposed on the first oil inlet pipe and located between the first control valve and the inlet of the first oil inlet pipe.
  • the lubrication system also includes: a first relief valve, which is provided on the first oil outlet pipe.
  • the working pressure of the first component to be lubricated is less than the working pressure of the second component to be lubricated; a radiator is provided on the first oil inlet pipe; the lubrication system also includes a third device for detecting the temperature of the lubricating oil in the first oil inlet pipe. A temperature sensor, the first temperature sensor is communicatively connected with the radiator.
  • the heating circuit includes: a second overflow valve; a pipeline heater, disposed between the second overflow valve and the outlet of the heating circuit; a second pump body; a second driving member, drivingly connected to the second pump body;
  • the second controller is communicatively connected with the second driving member;
  • the second temperature sensor is arranged in the oil tank, and the second temperature sensor is communicatively connected with the second controller.
  • the lubrication system also includes: a heater, which is arranged in the oil tank.
  • the start and stop of the second overflow valve, the pipeline heater and the heater are controlled manually or through a control system.
  • the lubrication system of the present application includes at least one first component to be lubricated and at least one second component to be lubricated.
  • the working pressures of the first component to be lubricated and the second component to be lubricated are different, and the working pressure of the first component to be lubricated is smaller than that of the second component.
  • the working pressure of the parts to be lubricated is so that the lubrication system can fully lubricate the parts to be lubricated at different pressures, and the lubricating effect will not be insufficient due to the difference in lubricating oil pressure of each part to be lubricated. This solves the problem of the existing technology
  • the lubrication system in the machine cannot achieve effective lubrication accurately and efficiently.
  • Figure 1 shows a schematic diagram of an embodiment of a lubrication system according to the present application.
  • this application provides a lubrication system, please refer to Figure 1, including: at least one first component to be lubricated 11, the first component to be lubricated
  • the inlet of 11 is connected to the first oil inlet pipe 211, and the outlet of the first component to be lubricated 11 is connected to the first oil outlet pipe 212; there is at least one second component to be lubricated 12, and the inlet of the second component to be lubricated 12 is connected to the second inlet.
  • the oil pipe 213 is connected, and the outlet of the second component to be lubricated 12 is connected to the second oil outlet pipe 214; the working pressures of the first component to be lubricated 11 and the second component to be lubricated 12 are different.
  • the lubrication system of the present application includes at least one first component 11 to be lubricated and at least one second component 12 to be lubricated.
  • the working pressures of the first component 11 and the second component 12 to be lubricated are different.
  • the first component 11 to be lubricated has different working pressures.
  • the working pressure is smaller than the working pressure of the second component to be lubricated 12, so that the lubrication system can fully lubricate the components to be lubricated at different pressures, and the lubrication effect will not be insufficient due to the difference in lubricating oil pressure of each component to be lubricated. , which solves the problem that the lubrication system in the existing technology cannot achieve effective lubrication accurately and efficiently.
  • the first component to be lubricated 11 and the second component to be lubricated 12 are different working components inside the plunger pump.
  • the lubrication system also includes: an oil tank 30, the first oil inlet pipe 211, the first oil outlet pipe 212, the second oil inlet pipe 213 and the second oil outlet pipe 214 are all connected with the oil tank 30; a heating circuit 40, a heating circuit The inlet of 40 and the outlet of heating circuit 40 are both connected with the oil tank 30 .
  • the oil tank 30 provides lubricating oil for the first component 11 and the second component 12 to be lubricated for lubrication.
  • the lubricating oil flows out from the oil tank 30 and reaches the first component to be lubricated through the first oil inlet pipe 211 and the second oil inlet pipe 213 .
  • the lubricating component 11 and the second component to be lubricated 12 flow out from the first component to be lubricated 11 and the second component to be lubricated 12 to the first oil outlet pipe 212 and the second oil outlet pipe 214 , and finally flow back to the oil tank 30 .
  • the heating circuit 40 is a part that operates independently under low temperature and cold conditions. When the external environment is too cold, the temperature of the lubricating oil in the oil tank 30 will decrease. Through the heating effect of the heating circuit 40, the lubricating oil can be quickly heated to meet the lubricating oil temperature of the first component to be lubricated and the second lubricated component. condition.
  • the lubrication system also includes: a first pump body 22 disposed on the first oil inlet pipe 211; a first driving member 23 drivingly connected with the first pump body 22; a first controller 24 connected with the first oil inlet pipe 211;
  • the driving member 23 is communicatively connected;
  • the first pressure sensor 25 is provided at the inlet of the first component 11 to be lubricated, and the first pressure sensor 25 is communicatively connected with the first controller 24;
  • the lubrication system also includes: a third pump body 81, is arranged on the second oil inlet pipe 213;
  • the third driving member 82 is drivingly connected with the third pump body 81;
  • the third controller 83 is communicatively connected with the third driving member 82;
  • the second pressure sensor 84 is arranged on the third At the entrance of the second component 12 to be lubricated, the second pressure sensor 84 is communicatively connected with the third controller 83 .
  • the first pump body 22 and the third pump body 81 are both quantitative pumps; the first driving part 23 and the third driving part 82 are both variable frequency motors; the first controller 24 and the third controller 83 are both PLC controlled. device.
  • the lubrication system further includes: a first control valve 26 , which is provided on the first oil inlet pipe 211 and located between the first pump body 22 and the inlet of the first oil inlet pipe 211 .
  • the lubrication system further includes: a third control valve 85 , which is provided on the second oil inlet pipe 213 and located between the third pump body 81 and the inlet of the second oil inlet pipe 213 .
  • the first control valve 26 and the third control valve 85 are both switching butterfly valves, used to control the opening and closing of the first oil inlet pipe 211 and the second oil inlet pipe 213 .
  • the lubrication system further includes: a first filter 27 , which is disposed on the first oil inlet pipe 211 and located between the first control valve 26 and the inlet of the first oil inlet pipe 211 .
  • the lubrication system further includes: a third filter 86 , which is disposed on the second oil inlet pipe 213 and located between the third control valve 85 and the inlet of the second oil inlet pipe 213 .
  • the lubricating oil in the oil tank 30 enters the first oil inlet pipe 211.
  • the first control valve 26 is first opened, and then the first driving member 23 is started. , thereby driving the first pump body 22 to perform oil suction and oil discharge cycles.
  • the first pump body 22 is working, its displacement and rotational speed depend on the pressure signal fed back by the first pressure sensor 25 to the first controller 24.
  • the first controller 24 After detecting the feedback pressure signal, the first controller 24 outputs the corresponding frequency to adjust the working speed of the first driving part 23, so that the first driving part 23 can realize the function of real-time automatic adjustment of the speed under the influence of the rising working oil temperature and gradually decreasing viscosity of the lubricating oil to ensure that the lubrication pressure does not exceed the column.
  • the working pressure range of the piston pump, the inlet pressure of the plunger pump is in a stable state, and meets the operating requirements.
  • an overload protection is also set in the lubrication system.
  • the program will automatically trip the protection, that is, the control system will trigger an instruction to the first driving part 23 to automatically reduce the current. to a speed lower than the set current to ensure stable operation and avoid damage to components.
  • the lubrication process of the second component to be lubricated 12 is the same as that of the first component to be lubricated 11 .
  • the lubrication system also includes: a first relief valve 29 provided on the first oil outlet pipe 212 .
  • the lubrication system further includes a third relief valve 87 , and the third relief valve 87 is provided on the second oil outlet pipe 214 .
  • the first relief valve 29 is provided on the first oil outlet pipe 212
  • the third relief valve 87 is provided on the second oil outlet pipe 214 to further protect the pressure of the internal lubricating components of the plunger pump from exceeding the limit value.
  • the setting of the first relief valve 29 and the third relief valve 87 can not only realize automatic adjustment of the lubricating oil amount and pressure, but also fully and effectively utilize the power of the first driving member 23 and the third driving member 82 , will not cause a waste of power.
  • a pipeline filter 70 is provided on the first oil inlet pipe 211.
  • the pipeline filter 70 is located between the first pump body 22 and the inlet of the first component to be lubricated 11 to lubricate the lubricating oil passing through it.
  • the pipeline filter 70 has a filter element clogging alarm function.
  • the control program will issue a clogging alarm to prompt the operator to replace it, thereby avoiding insufficient lubricating oil due to pipeline blockage.
  • the second oil inlet pipe 213 is provided with a pipeline filter 70 , and the pipeline filter 70 is located between the third pump body 81 and the inlet of the second component to be lubricated 12 .
  • the working pressure of the first component 11 to be lubricated is less than the working pressure of the second component 12 to be lubricated;
  • a radiator 51 is provided on the first oil inlet pipe 211;
  • the lubrication system also includes a device for detecting the first oil inlet pipe 211 There is a first temperature sensor 52 for the lubricating oil temperature inside, and the first temperature sensor 52 is communicatively connected with the radiator 51 .
  • the radiator 51 is located between the pipeline filter 70 on the first oil inlet pipe 211 and the outlet of the first oil inlet pipe 211; wherein, the outlet of the first oil inlet pipe 211 is connected with the inlet of the first component 11 to be lubricated. . After the lubricating oil passes through the first pump body 22, it first passes through the pipeline filter 70 and then passes through the radiator 51, thereby preventing impurities in the oil circuit from damaging the radiator.
  • connection point between the first temperature sensor 52 and the first oil inlet pipe 211 is located between the radiator 51 and the inlet of the first component to be lubricated 11 .
  • a radiator 51 and a first temperature sensor 52 are provided on the first oil inlet pipe 211 . Because when the plunger pump operates for a long time, the temperature of the lubricating oil will gradually rise. If no auxiliary heat dissipation is provided, the viscosity of the lubricating oil will gradually decrease, or even fail. At this time, the first temperature sensor 52 is installed at the inlet that requires low-pressure lubrication. The detected temperature signal is transmitted to the first controller 24. After receiving the corresponding signal, the first controller 24 sends an instruction to the radiator 51, and the program will Compare the set heat dissipation temperature with the feedback temperature signal. When the temperature reaches the set value, the radiator starts working to dissipate heat for the entire lubrication system and control the system temperature within a reasonable working range.
  • radiators are provided in both the first oil inlet pipe 211 and the second oil inlet pipe 213.
  • the double radiator is converted into a single radiator and is used alone in the first oil inlet pipe 211, which can meet the system heat dissipation needs. .
  • the conventional radiator 51 has a low pressure resistance value and cannot meet the needs of the high-pressure second oil inlet pipe 213. If used in the high-pressure second oil inlet pipe 213, the radiator 51 Additional volume needs to be added, including changes in the structure and material of internal components, and it will take up space; and in the high-pressure second oil inlet pipe 213, the required amount of lubricating oil is low, and one of the factors affecting the heat dissipation power of the radiator 51 It is related to the amount of oil entering the radiator 51, and the low-pressure first oil inlet pipe 211 requires a large amount of lubricating oil, so the heat dissipation power can also be well matched and utilized. By arranging the radiator 51 separately in the first oil inlet pipe 211, the cost is further saved, and there is no need to use a thermostat for heat dissipation or double radiators in the prior art for heat dissipation.
  • the lubrication system lubricates the plunger pump
  • the low-pressure components to be lubricated include at least one of bearings and reduction gearbox gears
  • the high-pressure components to be lubricated include a crankshaft.
  • the lubrication system is divided into high and low pressure lubrication.
  • the low-pressure lubricating oil circuit mainly provides lubricating oil volume to the bearings and reduction box gears inside the plunger pump.
  • High-pressure lubrication The circuit provides high-pressure lubrication for the crankshaft of the plunger pump to achieve sufficient lubrication during the working process.
  • the heating circuit 40 includes: a second overflow valve 41; and a pipe heater 42, which is disposed between the second overflow valve 41 and the outlet of the heating circuit 40.
  • the second relief valve 41 is a heating component in the entire heating circuit 40 and is also a key component for the heating circuit 40 to generate heat and increase the oil temperature.
  • the oil passes through the oil passage inside the second relief valve 41, generating resistance and throttling, realizing the work of the heating circuit, generating heat, and conducting heat exchange with the cold lubricating oil to achieve The effect of heating oil temperature.
  • matching heaters 60 and pipe heaters 42 are added inside the fuel tank 30 and in the pipelines, respectively, to reduce the temperature of the fuel tank 30
  • the oil inside and in the pipeline is heated continuously to further improve the heating effect and heating time.
  • the heating circuit 40 also includes: a second pump body 43; a second driving member 44, drivingly connected with the second pump body 43; a second controller 45, communicatively connected with the second driving member 44;
  • the temperature sensor 46 is disposed in the fuel tank 30 , and the second temperature sensor 46 is communicatively connected with the second controller 45 .
  • the second pump body 43 is a quantitative pump
  • the second driving member 44 is a variable frequency motor
  • the second controller 45 is a PLC controller.
  • the lubrication system further includes: a heater 60 disposed in the oil tank 30 .
  • the heater 60 is installed inside the oil tank 30 and is used to heat the lubricating oil inside the oil tank 30 and assist in rapidly raising the oil temperature in the heating circuit 40; the opening and closing of the heater 60 is related to the second heating circuit in the oil circuit. There is no direct relationship between the starting and stopping of the driving member 44. The starting and stopping of the heater 60 is an auxiliary measure to heat up the entire lubricating oil.
  • the start and stop of the second overflow valve 41, the pipe heater 42 and the heater 60 are controlled manually or through a control system.
  • the second temperature sensor 46 feeds back the detected temperature signal of the fuel tank 30 to the second controller 45. After receiving the feedback signal, the second driving member 44 starts the engine. Heating, at this time, the current value of the second driving part 44 is also monitored synchronously, because during the initial heating process, due to the viscosity of the oil, overload conditions are likely to occur, so the operating current must be monitored synchronously to ensure that the second driving part 44 No overload operation, after receiving the feedback temperature signal and the operating current signal of the second driving member 44, the speed of the second driving member 44 is automatically adjusted, thereby overflowing through the second overflow valve 41 and instant heating by the pipe heater 42 , to achieve efficient heating effect.
  • matching heaters 60 and pipe heaters 42 are added inside the oil tank 30 and in the pipelines, respectively.
  • the oil in the path is continuously heated and circulated to further improve the heating effect and heating time.
  • the heating circuit 40 also includes a second filter 47 and a second control valve 48.
  • the second control valve 48 is located between the inlet of the heating circuit 40 and the second pump body 43.
  • the second control valve 48 is used to open or close.
  • Heating circuit 40; the second filter element 47 is provided on the side of the second control valve 48 away from the second pump body 43 to filter the passing lubricating oil.
  • the setting of the heating circuit 40 produces the following beneficial effects:
  • the heating circuit 40 has the function of automatically detecting the temperature of the lubricating oil and adjusting the corresponding rotation speed and power according to the control current to achieve the heating effect of the lubricating oil. It also heats efficiently without overloading, greatly shortening the heating time and making it more intelligent. , improve the construction efficiency at the job site, and effectively solve the disadvantages of difficulty in starting up the low-temperature lubricated motor on site and long heating time. And the operation of this circuit will not cause any conflict with the lubrication circuit and can be performed synchronously. With just one click of the heating button on site, rapid heating and temperature rise can be achieved, effectively ensuring normal operation requirements.
  • spatially relative terms can be used here, such as “on", “on", “on the upper surface of", “above”, etc., to describe what is shown in the figure.
  • the exemplary term “over” may include both orientations “above” and “below.”
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • General Details Of Gearings (AREA)

Abstract

本申请提供了一种润滑系统,包括:至少一个第一待润滑部件,第一待润滑部件的入口与第一进油管相接,第一待润滑部件的出口与第一出油管相接;至少一个第二待润滑部件,第二待润滑部件的入口与第二进油管相接,第二待润滑部件的出口与第二出油管相接;第一待润滑部件和第二待润滑部件的工作压力不相同。本申请的润滑系统解决了现有技术中的润滑系统无法精准、高效的实现有效润滑的问题。

Description

润滑系统
本申请要求于2022年3月10日提交至中国国家知识产权局、申请号为202210240946.X、申请名称为“润滑系统”的专利申请的优先权。
技术领域
本申请涉及页岩气开采以及石油增产领域,具体而言,涉及一种润滑系统。
背景技术
电驱压裂设备因其具有功率大、大排量以及环保等优点,被广泛应用于油田以及页岩气领域。而压裂设备中起到重要作用的则是柱塞泵部件。在柱塞泵工作的过程中为了让其寿命更加持久,减少部件之间的磨损,就需要对柱塞泵的各个部件进行润滑。
目前,润滑系统主要使用两个并联回路进行润滑,润滑油量的大小改变是通过单个回路工作或者两个回路一起工作来实现,操作繁琐;各个回路均使用散热器以及温控阀来实现润滑油的散热功能,造价以及成本较高;冬季加热功能设置在各个回路上,操作不智能,与回路相互影响,容易造成加热功能失效或回路泵体损坏。因此,如何精准、高效的实现柱塞泵工作过程中的有效润滑,是目前比较关注的重点。同时,如何在寒冷的冬季实现润滑油的自动加热,短时间内满足施工作业,并且防止驱动润滑油泵的电机低温启机困难情况也是目前现场急需解决的问题。
发明内容
本申请的主要目的在于提供一种润滑系统,以解决现有技术中的润滑系统无法精准、高效的实现有效润滑的问题。
为了实现上述目的,本申请提供了一种润滑系统,包括:至少一个第一待润滑部件,第一待润滑部件的入口与第一进油管相接,第一待润滑部件的出口与第一出油管相接;至少一个第二待润滑部件,第二待润滑部件的入口与第二进油管相接,第二待润滑部件的出口与第二出油管相接;第一待润滑部件和第二待润滑部件的工作压力不相同。
进一步地,润滑系统还包括:油箱,第一进油管、第一出油管、第二进油管和第二出油管均与油箱相连通;加热回路,加热回路的进口和加热回路的出口均与油箱相连通。
进一步地,润滑系统还包括:第一泵体,设置在第一进油管上;第一驱动件,与第一泵体驱动连接;第一控制器,与第一驱动件通讯连接;第一压力传感器,设置在第一待润滑部件的入口,第一压力传感器与第一控制器通讯连接;和/或,润滑系统还包括:第三泵体,设置在第二进油管上;第三驱动件,与第三泵体驱动连接;第三控制器,与第三驱动件通讯连 接;第二压力传感器,设置在第二待润滑部件的入口,第二压力传感器与第三控制器通讯连接。
进一步地,润滑系统还包括:第一控制阀,设置在第一进油管上且位于第一泵体和第一进油管的进口之间。
进一步地,润滑系统还包括:第一过滤件,设置在第一进油管上且位于第一控制阀和第一进油管的进口之间。
进一步地,润滑系统还包括:第一溢流阀,设置在第一出油管上。
进一步地,第一待润滑部件的工作压力小于第二待润滑部件的工作压力;第一进油管上设置有散热器;润滑系统还包括用于检测第一进油管内的润滑油油温的第一温度传感器,第一温度传感器与散热器通讯连接。
进一步地,加热回路包括:第二溢流阀;管道加热器,设置在第二溢流阀和加热回路的出口之间;第二泵体;第二驱动件,与第二泵体驱动连接;第二控制器,与第二驱动件通讯连接;第二温度传感器,设置在油箱内,第二温度传感器与第二控制器通讯连接。
进一步地,润滑系统还包括:加热器,设置在油箱内。
进一步地,根据第二温度传感器检测到的润滑油的温度的高低,通过人为或控制系统控制第二溢流阀、管道加热器和加热器的启停。
本申请的润滑系统包括至少一个第一待润滑部件和至少一个第二待润滑部件,第一待润滑部件和第二待润滑部件的工作压力不相同,第一待润滑部件的工作压力小于第二待润滑部件的工作压力,以使润滑系统对不同压力的待润滑部件进行充分润滑,不会由于各个待润滑部件的润滑油压的差异不同,导致润滑效果不足的情况出现,解决了现有技术中的润滑系统无法精准、高效的实现有效润滑的问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的润滑系统的实施例的示意图。
其中,上述附图包括以下附图标记:
11、第一待润滑部件;12、第二待润滑部件;211、第一进油管;212、第一出油管;213、第二进油管;214、第二出油管;22、第一泵体;23、第一驱动件;24、第一控制器;25、第一压力传感器;26、第一控制阀;27、第一过滤件;29、第一溢流阀;30、油箱;40、加热回路;41、第二溢流阀;42、管道加热器;43、第二泵体;44、第二驱动件;45、第二控制器;46、第二温度传感器;47、第二过滤件;48、第二控制阀;51、散热器;52、第一温度 传感器;60、加热器;70、管路过滤器;81、第三泵体;82、第三驱动件;83、第三控制器;84、第二压力传感器;85、第三控制阀;86、第三过滤件;87、第三溢流阀。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
为了解决现有技术中的润滑系统无法精准、高效的实现有效润滑的问题,本申请提供了一种润滑系统,请参考图1,包括:至少一个第一待润滑部件11,第一待润滑部件11的入口与第一进油管211相接,第一待润滑部件11的出口与第一出油管212相接;至少一个第二待润滑部件12,第二待润滑部件12的入口与第二进油管213相接,第二待润滑部件12的出口与第二出油管214相接;第一待润滑部件11和第二待润滑部件12的工作压力不相同。
本申请的润滑系统包括至少一个第一待润滑部件11和至少一个第二待润滑部件12,第一待润滑部件11和第二待润滑部件12的工作压力不相同,第一待润滑部件11的工作压力小于第二待润滑部件12的工作压力,以使润滑系统对不同压力的待润滑部件进行充分润滑,不会由于各个待润滑部件的润滑油压的差异不同,导致润滑效果不足的情况出现,解决了现有技术中的润滑系统无法精准、高效的实现有效润滑的问题。
具体地,第一待润滑部件11和第二待润滑部件12为柱塞泵内部的不同工作部件。
在本实施例中,润滑系统还包括:油箱30,第一进油管211、第一出油管212、第二进油管213和第二出油管214均与油箱30相连通;加热回路40,加热回路40的进口和加热回路40的出口均与油箱30相连通。
具体地,油箱30为第一待润滑部件11和第二待润滑部件12提供润滑油以进行润滑作用,润滑油从油箱30流出,经过第一进油管211与第二进油管213到达第一待润滑部件11和第二待润滑部件12;再由第一待润滑部件11和第二待润滑部件12流出至第一出油管212和第二出油管214,最终流回油箱30。
具体地,加热回路40是在低温寒冷的情况下,独立运转的一个部分。在外界环境过于寒冷时,油箱30内的润滑油的温度会降低,通过加热回路40的加热作用,实现润滑油的快速加热,从而满足第一待润滑部件和第二带润滑部件的润滑油温度条件。
在本实施例中,润滑系统还包括:第一泵体22,设置在第一进油管211上;第一驱动件23,与第一泵体22驱动连接;第一控制器24,与第一驱动件23通讯连接;第一压力传感器25,设置在第一待润滑部件11的入口,第一压力传感器25与第一控制器24通讯连接;和/或,润滑系统还包括:第三泵体81,设置在第二进油管213上;第三驱动件82,与第三泵体81驱动连接;第三控制器83,与第三驱动件82通讯连接;第二压力传感器84,设置在第二待润滑部件12的入口,第二压力传感器84与第三控制器83通讯连接。
具体地,第一泵体22和第三泵体81均为定量泵;第一驱动件23和第三驱动件82均为变频电机;第一控制器24和第三控制器83均为PLC控制器。
在本实施例中,润滑系统还包括:第一控制阀26,设置在第一进油管211上且位于第一泵体22和第一进油管211的进口之间。
在本实施例中,润滑系统还包括:第三控制阀85,设置在第二进油管213上且位于第三泵体81和第二进油管213的进口之间。
具体地,第一控制阀26和第三控制阀85均为开关蝶阀,用来控制第一进油管211和第二进油管213的通断。
在本实施例中,润滑系统还包括:第一过滤件27,设置在第一进油管211上且位于第一控制阀26和第一进油管211的进口之间。
在本实施例中,润滑系统还包括:第三过滤件86,设置在第二进油管213上且位于第三控制阀85和第二进油管213的进口之间。
具体实施时,以第一待润滑部件11为例,油箱30中的润滑油进入第一进油管211,在柱塞泵作业前,先将第一控制阀26打开,随后启动第一驱动件23,从而驱动第一泵体22进行吸油和排油循环。在第一泵体22工作中,其排量转速大小取决于第一压力传感器25反馈到第一控制器24的压力信号,第一控制器24检测到反馈后的压力信号后,再输出相应的频率来调节第一驱动件23的工作转速,使第一驱动件23在润滑油工作油温升高、粘度逐渐减小的影响下实现转速实时自动调节的功能,以保证润滑压力不会超出柱塞泵工作压力范围,柱塞泵入口压力处于稳定状态,满足作业需求。具体地,润滑系统中还设定过载保护,当第一驱动件23的电流超过设定电流时,程序会自动保护跳闸,即控制系统会触发给第一驱动件23一个指令,使其自动降低到低于设定电流的转速,保证其稳定工作运转,避免部件的损坏。第二待润滑部件12的润滑过程与第一待润滑部件11相同。
在本实施例中,润滑系统还包括:第一溢流阀29,设置在第一出油管212上。
在本实施例中,润滑系统还包括第三溢流阀87,第三溢流阀87设置在第二出油管214上。
具体地,第一溢流阀29设置在第一出油管212上,第三溢流阀87设置在第二出油管214上,进一步保护柱塞泵内部润滑部件压力不超极限值。
具体实施时,第一溢流阀29和第三溢流阀87的设置不仅可以实现润滑油量以及压力的自动调节,而且使第一驱动件23和第三驱动件82的功率得到充分有效利用,不会造成功率的浪费。
具体实施时,第一进油管211上设置有管路过滤器70,管路过滤器70位于第一泵体22和第一待润滑部件11的入口之间,以对经过其的润滑油进行润滑;管路过滤器70具有滤芯堵塞报警功能,当管路过滤器70的压差报警器检测到管路过滤器70前后的压差大于本身设定值时,会传递一个信号至控制系统,此时控制系统会发出一个预警指令弹出至显示界面,提示堵塞预警。每当滤芯由于长期作业被杂质污染堵塞,控制程序就会发出堵塞报警,提示作业人员进行更换,从而避免由于管路堵塞造成润滑油量不足的情况。同样地,第二进油管213上设置有管路过滤器70,管路过滤器70位于第三泵体81和第二待润滑部件12的入口之间。
在本实施例中,第一待润滑部件11的工作压力小于第二待润滑部件12的工作压力;第一进油管211上设置有散热器51;润滑系统还包括用于检测第一进油管211内的润滑油油温的第一温度传感器52,第一温度传感器52与散热器51通讯连接。
具体地,散热器51位于第一进油管211上的管路过滤器70和第一进油管211的出口之间;其中,第一进油管211的出口与第一待润滑部件11的入口相连通。在润滑油经过第一泵体22后,先经过管路过滤器70再经过散热器51,避免了油路中的杂质损伤散热器。
具体地,第一温度传感器52与第一进油管211的连接处位于散热器51和第一待润滑部件11的入口之间。
具体实施时,在第一进油管211上设置有散热器51和第一温度传感器52。由于在柱塞泵长期运转的情况下,润滑油油温会逐渐上升,如果不加以辅助散热,会造成润滑油粘度逐渐变小,甚至失效的情况。此时需要低压润滑的进口安装有第一温度传感器52,通过检测到的温度信号传递给第一控制器24,接收到相应的信号后,第一控制器24发出指令到散热器51,程序会将设定的散热温度与反馈的温度信号进行对比,当温度达到设定值后,散热器进行工作,对整个润滑系统进行散热工作,将系统温度控制在合理工作范围内。
具体实施时,由于润滑系统存在第一进油管211和第二进油管213,在普遍的设置中都会在第一进油管211和第二进油管213中均设置散热器,但在本申请的润滑系统中,考虑到系统的散热功率主要来源是柱塞泵做功产生的热损,根据设计计算,将双散热器变换成单个散热器,单独应用在第一进油管211中,可以满足系统散热需求。在压力较高的第二进油管213中,常规的散热器51的耐压值低,满足不了高压的第二进油管213的需求,如果应用在高压的第二进油管213中,散热器51需要增加额外的体积,包括内部部件的结构、材质等变化,而且会占用空间;并且在高压的第二进油管213中,需求的润滑油量低,而散热器51的散热功率影响因素之一是与进入散热器51的油量多少有关,而低压的第一进油管211需求润滑油量大,因此散热功率也可以很好的匹配利用。通过散热器51单独设置在第一进油管211中,更加节省了成本,并且不需要通过节温器进行分流散热或者现有技术中的双散热器进行散热。
具体地,润滑系统为柱塞泵进行润滑,低压待润滑部件包括轴承、减速箱齿轮中的至少一种,高压待润滑部件包括曲轴。根据柱塞泵内部不同工作部件润滑压力以及需求流量不同,润滑系统分为高、低压润滑,低压的润滑油路主要给柱塞泵内部的轴承、减速箱齿轮等提供润滑油量,高压的润滑回路则是为柱塞泵的曲轴进行高压力润滑,达到工作过程中的充分润滑。
在本实施例中,加热回路40包括:第二溢流阀41;管道加热器42,设置在第二溢流阀41和加热回路40的出口之间。
具体地,第二溢流阀41是整个加热回路40中的发热部件,也是加热回路40产生热量、提升油温的关键元件。通过第二溢流阀41本身的特性,油液经过第二溢流阀41内部的油道,产生阻力节流,实现加热回路做功,产生热量,并且与冷的润滑油进行热交换,起到加热油温的效果。
具体地,由于油箱30在自然状态下存在一个自身的散热过程,考虑到此部分的热量损耗,在油箱30内部以及管路中分别增加相匹配的加热器60和管道加热器42,将油箱30内部以及管路中的油进行连续循环加热,进一步提升加热效果以及加热时间。
在本实施例中,加热回路40还包括:第二泵体43;第二驱动件44,与第二泵体43驱动连接;第二控制器45,与第二驱动件44通讯连接;第二温度传感器46,设置在油箱30内,第二温度传感器46与第二控制器45通讯连接。
具体地,第二泵体43为定量泵;第二驱动件44为变频电机;第二控制器45为PLC控制器。
在本实施例中,润滑系统还包括:加热器60,设置在油箱30内。
具体地,加热器60是安装在油箱30内部的,用于加热油箱30内部的润滑油,辅助加热回路40中的油温快速提升;加热器60的开启与关闭与加热油路中的第二驱动件44启停没有直接关系,加热器60的启停是整个润滑油升温的辅助措施。
在本实施例中,根据第二温度传感器46检测到的润滑油的温度的高低,通过人为或控制系统控制第二溢流阀41、管道加热器42和加热器60的启停。
具体实施时,当冬季进行启机加热后,首先,第二温度传感器46将检测到的油箱30的温度信号反馈至第二控制器45,接收到反馈信号后,第二驱动件44进行启机加热,此时同步监测的还有第二驱动件44的电流数值,因为刚开始加热的过程中,由于油液粘稠,容易存在过载情况,因此要同步监测运行电流,确保第二驱动件44不过载运行,在接收到反馈的温度信号以及第二驱动件44的运行电流信号后,进行自动调整第二驱动件44转速,从而通过第二溢流阀41溢流以及管道加热器42即时加热,实现高效加热效果。由于油箱30在自然状态下存在一个自身的散热过程,考虑到此部分的热量损耗,在油箱30内部以及管路中分别增加相匹配的加热器60和管道加热器42,将油箱30内部以及管路中的油进行连续循环加热,进一步提升加热效果以及加热时间。
具体地,加热回路40还包括第二过滤件47和第二控制阀48,第二控制阀48位于加热回路40的进口和第二泵体43之间,第二控制阀48用于打开或关闭加热回路40;第二过滤件47设置在第二控制阀48远离第二泵体43的一侧,以对经过的润滑油进行过滤。
加热回路40的设置产生了如下有益效果:
加热回路40具有自动检测润滑油温度、根据控制电流大小调整相对应的转速以及功率大小来实现润滑油的加热效果的功能,并且在保证不过载的基础上高效加热,大大缩短加热时间,更加智能,提升作业现场施工效率,切实解决现场低温润滑电机启机困难以及加热时间较长的弊端。并且此回路运行不会和润滑回路产生任何冲突,可以同步进行。现场只需一键加热,即可实现快速加热升温的效果,有力保障了正常作业的需求。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种润滑系统,其特征在于,包括:
    至少一个第一待润滑部件(11),所述第一待润滑部件(11)的入口与第一进油管(211)相接,所述第一待润滑部件(11)的出口与第一出油管(212)相接;
    至少一个第二待润滑部件(12),所述第二待润滑部件(12)的入口与第二进油管(213)相接,所述第二待润滑部件(12)的出口与第二出油管(214)相接;
    所述第一待润滑部件(11)和所述第二待润滑部件(12)的工作压力不相同。
  2. 根据权利要求1所述的润滑系统,其特征在于,所述润滑系统还包括:
    油箱(30),所述第一进油管(211)、所述第一出油管(212)、所述第二进油管(213)和所述第二出油管(214)均与所述油箱(30)相连通;
    加热回路(40),所述加热回路(40)的进口和所述加热回路(40)的出口均与所述油箱(30)相连通。
  3. 根据权利要求1所述的润滑系统,其特征在于,
    所述润滑系统还包括:
    第一泵体(22),设置在所述第一进油管(211)上;
    第一驱动件(23),与所述第一泵体(22)驱动连接;
    第一控制器(24),与所述第一驱动件(23)通讯连接;
    第一压力传感器(25),设置在所述第一待润滑部件(11)的入口,所述第一压力传感器(25)与所述第一控制器(24)通讯连接;和/或,
    所述润滑系统还包括:
    第三泵体(81),设置在所述第二进油管(213)上;
    第三驱动件(82),与所述第三泵体(81)驱动连接;
    第三控制器(83),与所述第三驱动件(82)通讯连接;
    第二压力传感器(84),设置在所述第二待润滑部件(12)的入口,所述第二压力传感器(84)与所述第三控制器(83)通讯连接。
  4. 根据权利要求3所述的润滑系统,其特征在于,所述润滑系统还包括:
    第一控制阀(26),设置在所述第一进油管(211)上且位于所述第一泵体(22)和所述第一进油管(211)的进口之间。
  5. 根据权利要求4所述的润滑系统,其特征在于,所述润滑系统还包括:
    第一过滤件(27),设置在所述第一进油管(211)上且位于所述第一控制阀(26)和所述第一进油管(211)的进口之间。
  6. 根据权利要求1所述的润滑系统,其特征在于,所述润滑系统还包括:
    第一溢流阀(29),设置在所述第一出油管(212)上。
  7. 根据权利要求1至6中任一项所述的润滑系统,其特征在于,所述第一待润滑部件(11)的工作压力小于所述第二待润滑部件(12)的工作压力;所述第一进油管(211)上设置有散热器(51);所述润滑系统还包括用于检测所述第一进油管(211)内的润滑油油温的第一温度传感器(52),所述第一温度传感器(52)与所述散热器(51)通讯连接。
  8. 根据权利要求2所述的润滑系统,其特征在于,所述加热回路(40)包括:
    第二溢流阀(41);
    管道加热器(42),设置在所述第二溢流阀(41)和所述加热回路(40)的出口之间;
    第二泵体(43);
    第二驱动件(44),与所述第二泵体(43)驱动连接;
    第二控制器(45),与所述第二驱动件(44)通讯连接;
    第二温度传感器(46),设置在所述油箱(30)内,所述第二温度传感器(46)与所述第二控制器(45)通讯连接。
  9. 根据权利要求8所述的润滑系统,其特征在于,所述润滑系统还包括:
    加热器(60),设置在所述油箱(30)内。
  10. 根据权利要求9所述的润滑系统,其特征在于,根据所述第二温度传感器(46)检测到的润滑油的温度的高低,通过人为或控制系统控制所述第二溢流阀(41)、所述管道加热器(42)和所述加热器(60)的启停。
PCT/CN2022/092238 2020-03-12 2022-05-11 润滑系统 WO2023168823A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/900,295 US20230048551A1 (en) 2020-03-12 2022-08-31 Lubrication System for Continuous High-Power Turbine Fracturing Equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210240946.X 2022-03-10
CN202210240946.XA CN114753999A (zh) 2022-03-10 2022-03-10 润滑系统

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/558,633 Continuation-In-Part US11920584B2 (en) 2020-03-12 2021-12-22 Continuous high-power turbine fracturing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/900,295 Continuation-In-Part US20230048551A1 (en) 2020-03-12 2022-08-31 Lubrication System for Continuous High-Power Turbine Fracturing Equipment

Publications (1)

Publication Number Publication Date
WO2023168823A1 true WO2023168823A1 (zh) 2023-09-14

Family

ID=82327411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092238 WO2023168823A1 (zh) 2020-03-12 2022-05-11 润滑系统

Country Status (3)

Country Link
US (1) US20230048551A1 (zh)
CN (1) CN114753999A (zh)
WO (1) WO2023168823A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
CA3092859A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160177945A1 (en) * 2014-12-22 2016-06-23 S.P.M. Flow Control, Inc. Reciprocating pump with dual circuit power end lubrication system
CN107747674A (zh) * 2017-11-23 2018-03-02 徐工集团工程机械有限公司 制砂机的润滑系统和制砂机
CN111188763A (zh) * 2020-03-12 2020-05-22 美国杰瑞国际有限公司 一种用于大功率柱塞泵的高低压润滑系统
CN111536087A (zh) * 2020-04-30 2020-08-14 中铁工程机械研究设计院有限公司 一种液压油油温控制系统及控制方法
CN211950841U (zh) * 2020-03-12 2020-11-17 美国杰瑞国际有限公司 一种用于大功率柱塞泵的高低压润滑系统
CN112160904A (zh) * 2020-09-02 2021-01-01 中油国家油气钻井装备工程技术研究中心有限公司 一种大功率电驱压裂橇动力端润滑系统
CN112833316A (zh) * 2021-02-25 2021-05-25 三一石油智能装备有限公司 一种电驱压裂撬润滑系统、压裂撬与润滑控制方法
CN214035804U (zh) * 2021-01-07 2021-08-24 好科(上海)环保科技有限公司 一种新型轴流透平机润滑系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201810502U (zh) * 2010-10-22 2011-04-27 大连华锐股份有限公司 风力发电机组齿轮箱润滑系统
CN103629267B (zh) * 2013-11-26 2015-12-09 江苏大学 一种液粘调速离合器节能型液压系统
CN204611308U (zh) * 2015-04-24 2015-09-02 山东科瑞压缩机有限公司 一种天然气压缩机润滑油加热系统
CN105972194B (zh) * 2016-06-28 2019-06-11 中车戚墅堰机车车辆工艺研究所有限公司 一种用于车辆齿轮箱的润滑冷却系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160177945A1 (en) * 2014-12-22 2016-06-23 S.P.M. Flow Control, Inc. Reciprocating pump with dual circuit power end lubrication system
CN107747674A (zh) * 2017-11-23 2018-03-02 徐工集团工程机械有限公司 制砂机的润滑系统和制砂机
CN111188763A (zh) * 2020-03-12 2020-05-22 美国杰瑞国际有限公司 一种用于大功率柱塞泵的高低压润滑系统
CN211950841U (zh) * 2020-03-12 2020-11-17 美国杰瑞国际有限公司 一种用于大功率柱塞泵的高低压润滑系统
CN111536087A (zh) * 2020-04-30 2020-08-14 中铁工程机械研究设计院有限公司 一种液压油油温控制系统及控制方法
CN112160904A (zh) * 2020-09-02 2021-01-01 中油国家油气钻井装备工程技术研究中心有限公司 一种大功率电驱压裂橇动力端润滑系统
CN214035804U (zh) * 2021-01-07 2021-08-24 好科(上海)环保科技有限公司 一种新型轴流透平机润滑系统
CN112833316A (zh) * 2021-02-25 2021-05-25 三一石油智能装备有限公司 一种电驱压裂撬润滑系统、压裂撬与润滑控制方法

Also Published As

Publication number Publication date
CN114753999A (zh) 2022-07-15
US20230048551A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
WO2023168823A1 (zh) 润滑系统
CN201729056U (zh) 一种工程机械用散热系统及工程机械
WO2013060233A1 (zh) 泵送设备及其分配液压系统和加热方法
CN209129693U (zh) 一种新型润滑油站系统
CN201982092U (zh) 电牵引采煤机调高液压系统
WO2019105079A1 (zh) 柴油机变海拔变流量冷却系统及其控制过程
CN109654887B (zh) 一种循环水冷却系统及其自动控制方法
CN103629267A (zh) 一种液粘调速离合器节能型液压系统
CN104454801A (zh) 液压油温度控制系统,液压油温度控制方法
CN103452958B (zh) 压力阀调试系统
CN109973262B (zh) 一种基于智能控制的水加热式双腔油箱控制系统
CN105370376A (zh) 一种工程机械用柴油机冷却系统及其控制方法
US20080085180A1 (en) Variable capacity natural gas compressor
CN105781961A (zh) 工艺泵组机封冷却水循环复用装置及其使用方法
CN106640796A (zh) 一种履带装甲车辆风扇液压传动系统
CN201202521Y (zh) 一种带有限压截止阀的电控液力驱动风扇热系统
CN210370836U (zh) 一种发动机机油温度自动调节装置
CN103591087A (zh) 泵送液压系统的温度控制装置和控制方法、工程机械
CN208010705U (zh) 挤压机油箱冷却过滤系统
CN210485240U (zh) 一种履带移动圆锥破碎机润滑油加热装置
CN205260458U (zh) 卸船机液压控制系统
CN104405731A (zh) 液压油液加热系统
CN209800384U (zh) 远程调压负载敏感液压站
CN210832645U (zh) 一种螺杆并联压缩机组虹吸油冷却系统
CN107787162B (zh) 采用纯水介质的循环冷却装置及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930452

Country of ref document: EP

Kind code of ref document: A1