WO2023166897A1 - 電動車両の制御装置 - Google Patents

電動車両の制御装置 Download PDF

Info

Publication number
WO2023166897A1
WO2023166897A1 PCT/JP2023/002978 JP2023002978W WO2023166897A1 WO 2023166897 A1 WO2023166897 A1 WO 2023166897A1 JP 2023002978 W JP2023002978 W JP 2023002978W WO 2023166897 A1 WO2023166897 A1 WO 2023166897A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
sop
regenerative
short
long
Prior art date
Application number
PCT/JP2023/002978
Other languages
English (en)
French (fr)
Inventor
颯 田中
雅大 井上
北斗 横辻
清貴 石川
一 佐伯
靖章 加納
正紀 新谷
明洋 田力
彩月 八木
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2023532437A priority Critical patent/JP7375988B1/ja
Publication of WO2023166897A1 publication Critical patent/WO2023166897A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This case relates to a control device for an electric vehicle equipped with a motor.
  • regeneration control is terminated when the regeneration time exceeds a predetermined time.
  • the initial regenerative power is power Pa and the regenerative time exceeds time A
  • the regenerative power is sharply decreased toward 0 (see FIG. 9).
  • the electrodeposition and deterioration of the battery may be suppressed.
  • regenerative power is excessively suppressed, and there is a problem that it is difficult to improve power consumption due to large energy loss.
  • One of the purposes of this case was to provide an electric vehicle control device that was invented in light of the above-mentioned problems and that can improve electricity consumption in regenerative power generation.
  • the disclosed control device for an electric vehicle can be implemented as an aspect or application example disclosed below, and solves at least part of the above problems.
  • the disclosed control device for an electric vehicle is a control device for an electric vehicle equipped with a motor that has both a function of driving wheels with battery power and a function of charging the battery with power generated by regenerative power generation.
  • the control device sets a short-time SOP applied when the charging time is less than or equal to a predetermined time, and the short-time SOP applied when the charging time exceeds the predetermined time.
  • a setting unit that sets a long-time SOP having a smaller value than the SOP; a calculation unit that calculates a regenerative SOP corresponding to the maximum value of regenerative electric power from the motor based on the short-time SOP and the long-time SOP; and a control unit that controls the regenerated electric power from the motor within a range equal to or lower than the regenerated SOP. Further, the calculation unit performs transition calculation for gradually changing the regenerative SOP from the short-time SOP to the long-time SOP according to the duration of the regenerative power generation.
  • the disclosed electric vehicle control device by gradually changing the regeneration SOP from the short-time SOP to the long-time SOP, it is possible to increase the regenerated power from the motor while satisfying the battery electrodeposition protection requirements. , the electric power consumption can be improved in the regenerative power generation of the electric vehicle. In addition, since the switching from the short-time SOP to the long-time SOP becomes smooth, it is possible to improve the driving feeling during regenerative power generation.
  • FIG. 1 is a block diagram showing an electric vehicle and its control device
  • FIG. 7 is a graph illustrating changes over time of a short-time SOP and a long-time SOP during regenerative power generation of a motor
  • 4 is a graph illustrating the relationship between the duration of a transition operation and a scaling factor
  • FIG. 10 is an example of a flowchart of control related to transition calculation during regenerative power generation
  • the disclosed electric vehicle control device can be implemented by the following embodiments.
  • FIG. 1 is a block diagram illustrating the configuration of a control device 10 and an electric vehicle 1 to which the control device 10 is applied (hereinafter simply referred to as vehicle 1) as an embodiment.
  • vehicle 1 includes electric vehicles, hybrid vehicles, plug-in hybrid vehicles, and the like.
  • a vehicle 1 is equipped with at least a motor 2 as a drive source and a battery 3 as a power source.
  • the battery 3 is, for example, a secondary battery such as a lithium-ion secondary battery or a nickel-metal hydride battery.
  • the motor 2 is a motor generator (motor/generator) that has both the function of driving the wheels with the power of the battery 3 and the function of charging the battery 3 with power generated by regenerative power generation.
  • the wheels (driving wheels) driven by the motor 2 may be front wheels, rear wheels, or all wheels.
  • the number of mounted motors 2 and the number of drive wheels are irrelevant.
  • a single motor 2 may drive a single drive wheel, a single motor 2 may drive a plurality of drive wheels, a plurality of motors 2 may drive a single drive wheel, or a plurality of motors 2 may drive a single drive wheel. may drive a plurality of drive wheels.
  • a transmission mechanism (not shown) may be interposed on the power transmission path connecting the motor 2 and the driving wheels.
  • a vehicle 1 shown in FIG. 1 is a hybrid electric vehicle (HEV) or a plug-in hybrid electric vehicle (HEV) equipped with an engine 4 as a second drive source and a generator 5 as a power generation device.
  • PHEV a hybrid electric vehicle
  • a hybrid vehicle means a vehicle equipped with an engine 4 and a motor 2 as drive sources.
  • a plug-in hybrid vehicle means a hybrid vehicle capable of externally charging the battery 3 or externally supplying power from the battery 3 .
  • Plug-in hybrid vehicles have a charging port (inlet) for inserting a charging cable that supplies power from an external charging facility, and an external power supply outlet (outlet) for plugging in a power supply cable that supplies power to external devices. ) is provided.
  • the engine 4 is, for example, an internal combustion engine such as a gasoline engine or a diesel engine.
  • a drive shaft of the engine 4 is connected with a generator 5 (generator) having a function of generating electric power using at least the driving force of the engine 4 .
  • the generated power (generated power output) of the generator 5 is used for driving the motor 2 and charging the battery 3 .
  • a transmission mechanism (not shown) may be interposed on a power transmission path connecting the engine 4 and the generator 5 . It should be noted that a generator 5 that also functions as an electric motor for running the vehicle 1 may be applied.
  • a clutch 6 is interposed on the power transmission path that connects the motor 2 and the engine 4 .
  • the engine 4 is connected to drive wheels via a clutch 6 , and the motor 2 is arranged closer to the drive wheels than the clutch 6 is.
  • the generator 5 is connected closer to the engine 4 than the clutch 6 is.
  • the clutch 6 is disengaged (released)
  • the engine 4 and generator 5 are disconnected from the driving wheels, and the motor 2 is connected to the driving wheels. Therefore, by operating only the motor 2, for example, so-called EV running (motor independent running) is realized.
  • so-called series running is realized.
  • the vehicle 1 may be a hybrid vehicle capable of at least EV driving, and other driving modes (ENG driving, series driving, parallel driving) may be omitted as appropriate.
  • the operating states of the motor 2, the battery 3, the engine 4, the generator 5, and the clutch 6 are controlled by the control device 10.
  • the control device 10 is a computer (electronic control unit, ECU, Electronic Control Unit) having at least a function of controlling regenerated electric power from the motor 2 .
  • the control device 10 incorporates a processor (arithmetic processing device) and a memory (storage device).
  • the content of the control (control program) executed by the control device 10 is stored in the memory, and is executed by being appropriately loaded into the processor.
  • a vehicle speed sensor 7, a brake sensor 8, and an accelerator sensor 9 are connected to the control device 10.
  • the vehicle speed sensor 7 is a sensor that detects the travel speed (vehicle speed) of the vehicle 1 .
  • the brake sensor 8 is a sensor that detects parameters (brake opening, brake pedal stroke, brake fluid pressure, etc.) corresponding to the amount of depression of the brake pedal.
  • the accelerator sensor 9 is a sensor that detects parameters (accelerator opening, accelerator pedal stroke, throttle opening, etc.) corresponding to the depression amount of the accelerator pedal. Information detected by each of these sensors 7 to 9 is transmitted to control device 10 .
  • Other information transmitted to the control device 10 includes information on the operating state of the motor 2 (rotational speed, motor temperature, drive current, drive voltage, drive frequency, etc.) and the operating state of the battery 3 (state of charge SOC, healthy state, etc.). temperature SOH, input/output current, battery voltage, battery temperature, internal resistance, etc.) and information on the running state of the vehicle 1 (running mode, outside temperature, etc.).
  • the control device 10 of the present embodiment uses various types of information such as those described above to perform control that changes the regenerated electric power from the motor 2 more flexibly than the existing control. Note that the charging rate SOC of the battery 3 can be calculated based on the input/output current and the battery voltage.
  • the control device 10 is provided with a setting unit 11, a calculation unit 12, and a control unit 13 as elements for performing the above control. These elements indicate the functions of the control device 10 by classifying them for convenience, and can be realized by software (program) or hardware (electronic control circuit). These elements may be integrated into one piece of software or hardware, or may be distributed among multiple pieces of software and hardware. For example, a motor ECU (MCU, Motor Control Unit) for managing the motor 2 may incorporate these elements, or a battery ECU (BMU, Battery Management Unit) for managing the battery 3 may incorporate these elements. may be built in, or these elements may be distributed among a plurality of ECUs.
  • MCU Motor Control Unit
  • BMU Battery Management Unit
  • the setting unit 11 sets a short-time SOP (short-time chargeable maximum power, short-time State Of Power) and a long-time SOP (long-time chargeable maximum power, long-time) as the maximum value of the power [kW] that can be charged to the battery 3 It is used to set the time State Of Power).
  • the short-time SOP is the maximum power applied during charging when the charging time is less than or equal to the predetermined time C (relatively short time).
  • a scale (degree of length of time) of the predetermined time period C to which the short-time SOP is applied is assumed to be several seconds, for example.
  • the long-time SOP is the maximum power that is applied when the charging time exceeds the predetermined time C, and is set to a smaller value than the short-time SOP.
  • the long-time SOP is a parameter that can correspond to the rated input power of a general battery 3, for example.
  • Each value of the short-time SOP and the long-time SOP may be a preset fixed value, or may be determined based on the operating state of the battery 3 (state of charge SOC, state of health SOH, regenerative current amount, battery voltage, battery temperature, etc.). ) or a variable value set according to the running state of the vehicle 1 (running mode, vehicle speed, outside temperature, accelerator opening, etc.).
  • the predetermined time period C may be set based on the charging current (regenerative current amount) to the battery 3 or the battery voltage.
  • the short-time SOP and the long-time SOP are set on the assumption that at least the motor 2 is operating. Since the short-time SOP and the long-time SOP of the present embodiment are used during regenerative power generation by the motor 2, they may be set on the assumption that the motor 2 is regeneratively generating power.
  • FIG. 2 is a graph exemplifying temporal changes in the short-term SOP and the long-term SOP during regenerative power generation of the motor 2 .
  • the values of the short-term SOP and the long-term SOP change linearly and in parallel.
  • the setting unit 11 always sets both the short-term SOP and the long-term SOP during the regenerative power generation of the motor 2 .
  • the value of the long-term SOP (dashed-dotted line graph) is set to a smaller value than the value of the short-term SOP (dashed line graph) at that time.
  • the values of the short-time SOP and the long-time SOP are set to decrease as the duration A of regenerative power generation increases, and the graphs of the short-time SOP and the long-time SOP shown in FIG. 2 slope downward.
  • Time t2 in FIG. 2 is the time when the predetermined time C (the maximum time of the short-time SOP) has elapsed since the regenerative power generation of the motor 2 was started.
  • the predetermined time C the maximum time of the short-time SOP
  • the setting of the SOP value for a short period of time continues after time t2 , and is referred to for calculation of the regenerative SOP.
  • setting of the value of the short-time SOP may be omitted. .
  • the calculation unit 12 calculates a regenerative SOP corresponding to the maximum value of regenerative electric power from the motor 2 based on the short-time SOP and the long-time SOP set by the setting unit 11 .
  • transition calculation is performed to gradually change the regenerative SOP from the short-time SOP to the long-time SOP according to the duration A of regenerative power generation.
  • the short-time SOP value is directly calculated as the regenerative SOP value.
  • time B time B until the start of the transition calculation
  • time t 1 in FIG. 2 the transition calculation is started.
  • Time B is set shorter than predetermined time C as shown in FIG.
  • the value of the regenerative SOP begins to decrease toward the long-time SOP.
  • the calculation unit 12 of the present embodiment performs a calculation for linearly changing the proportion of the short-term SOP or the proportion of the long-term SOP reflected in the regenerative SOP with respect to the duration A of the regenerative power generation in the above transition calculation. sell.
  • the calculation unit 12 calculates the regeneration SOP based on Equations 1 and 2 below.
  • the transition time D in Equations 1 and 2 is a time based on the time at which the transition calculation is started (the time during which the transition calculation is performed), and is the duration of regenerative power generation A (the regenerative power generation is started (time based on time) minus time B.
  • Regenerative SOP (1-k 1 ) x (Short time SOP) + k 1 x (Long time SOP) (k 1 : multiplication factor that increases in proportion to transition time D, 0 ⁇ k 1 ⁇ 1) Formula 2.
  • Regenerative SOP k 2 ⁇ (short-time SOP) + (1-k 2 ) ⁇ (long-time SOP) (k 2 : multiplication factor that decreases in proportion to transition time D, 0 ⁇ k 2 ⁇ 1)
  • the split coefficient k1 in Equation 1 is a coefficient that increases from 0 to 1 in proportion to the transition time D of the transition calculation.
  • a solid line in FIG. 3 is a graph illustrating the relationship between the transition time D of the transition calculation and the split coefficient k1 .
  • the value of the split coefficient k1 is set to 0.5 when the transition time D is the time E1
  • the value of the split coefficient k1 is set to 1 when the transition time D is equal to or greater than the time E2.
  • the split coefficient k2 in Equation 2 is a coefficient that decreases from 1 to 0 in proportion to the transition time D.
  • Time E 3 is a graph illustrating the relationship between the transition time D of the transition calculation and the split coefficient k2 .
  • Time E2 in FIG. 3 is twice the time E1 and corresponds to the time from time t1 to time t3 in the graph of FIG. After time t3 , the ratio of the short-time SOP reflected in the regeneration SOP becomes 0, and the value of the long-time SOP is directly calculated as the value of the regeneration SOP.
  • Time E 1 is the time until the split coefficients k 1 and k 2 change to 0.5 in the transition calculation.
  • time E2 is the time until the split coefficients k1 and k2 stop changing in the transition calculation.
  • the above scaling factor k2 is not strictly “proportional” to the transition time D (in the mathematical sense). "Proportional” to the transition time D is the scaling factor k2 minus one. Therefore, if you want to understand the relationship between the split coefficient k 2 and the transition time D in accordance with a more rigorous definition, the value obtained by subtracting 1 from the split coefficient k 2 is defined as the "split coefficient k 3 ". Then, this "splitting coefficient k 3 " can be regarded as decreasing from 0 to -1 "proportionally” to the transition time D.
  • the graph shapes of the split coefficients k 1 and k 2 are preferably set so that the time obtained by subtracting the time B from the predetermined time C and the time E 1 match. be done. That is, when the duration A of regenerative power generation reaches the predetermined time C, the proportion of the short-term SOP reflected in the regenerative SOP and the proportion of the long-term SOP reflected in the regenerative SOP are matched (both set to 50%). to) is preferred.
  • the characteristic of the split coefficient k1 is adjusted so that the regenerative SOP becomes an intermediate value (average value) between the short-term SOP and the long-term SOP. It is preferable to set
  • the hatched triangle between times t 1 and t 2 in FIG. 2 becomes congruent with the hatched triangle between times t 2 and t 3 .
  • the hatched area S 1 between times t 1 and t 2 matches the hatched area S 2 between times t 2 and t 3 .
  • the hatched area S 1 corresponds to the surplus chargeable power amount [Wh] generated by reducing the regenerative SOP from the short-time SOP between times t 1 and t 2 .
  • the hatched area S 2 corresponds to the chargeable power amount [Wh] required by increasing the regenerative SOP more than the long-time SOP between times t 2 and t 3 .
  • the regenerated power from the motor 2 can be maximized to the extent that the electrodeposition protection requirements of the battery 3 are met.
  • the regenerative electric power fluctuates more smoothly, and the driving feeling of the vehicle is improved. becomes.
  • the time B from the start of regenerative power generation to the start of the transition calculation may be a preset fixed value (for example, several seconds), or may be determined based on the operating state of the battery 3. (state of charge SOC, state of health SOH, regenerative current amount, battery voltage, battery temperature, etc.) and the running state of the vehicle 1 (running mode, vehicle speed, outside temperature, accelerator opening, etc.). may Similarly, the rate of change over time of the allocation coefficients k 1 and k 2 (that is, the rate of change over time of the regenerative SOP during the transition calculation) may be a preset fixed value, It may be a variable value that is set according to the running state of the vehicle 1 .
  • the control unit 13 uses the regenerative SOP calculated by the calculation unit 12 to control the regenerated electric power from the motor 2 .
  • the control unit 13 controls the operating state of the motor 2 (or an inverter (not shown)) so that the regenerated electric power from the motor 2 is equal to or less than the regeneration SOP.
  • a regenerative braking force is generated in the driving wheels connected to the motor 2, and the battery 3 is charged with the regenerative electric power.
  • Frictional braking force is applied to the drive wheels via a brake mechanism (not shown) according to the magnitude of the braking force (braking torque) requested by the driver.
  • FIG. 4 is an example of a flowchart of control relating to transition calculation during regenerative power generation.
  • the control shown in this flowchart is repeatedly executed inside the control device 10 at a predetermined cycle while the motor 2 is operating (for example, in the EV driving mode or the hybrid driving mode).
  • the control shown in this flow chart can be performed in any vehicle 1 that has a running mode in which at least the motor 2 operates, regardless of the presence or absence of the engine 4, generator 5, clutch 6, and the like.
  • step A1 the setting unit 11 of the control device 10 sets a short-time SOP and a long-time SOP.
  • the short-time SOP and the long-time SOP are based on the operating state of the battery 3 (state of charge SOC, state of health SOH, regenerative current amount, battery voltage, battery temperature, etc.) and the running state of the vehicle 1 (running mode, vehicle speed, outside temperature, accelerator degree of opening, etc.).
  • the long-time SOP is set to a smaller value than the short-time SOP.
  • step A2 it is determined whether or not regenerative power generation conditions for causing the motor 2 to perform regenerative power generation are satisfied.
  • the regenerative power generation conditions include well-known conditions, for example, that the accelerator opening degree has decreased, that the brake opening degree has increased, and that the battery 3 can be charged (the state of charge SOC is a predetermined value or less). the state of health SOH is equal to or higher than a predetermined value; the battery temperature is within an appropriate range); and the vehicle 1 is not stopped (vehicle speed is not 0). If the regenerative power generation condition is not satisfied (No at step A2), the control in this cycle ends. On the other hand, if the regenerative power generation condition is satisfied (Yes at step A2), the control proceeds to step A3.
  • step A3 the duration A of regenerative power generation is measured.
  • the duration A is the elapsed time from the time when the regenerative power generation condition was first established in step A2.
  • step A4 a time B until the shift calculation is started is calculated.
  • Time B is set shorter than predetermined time C (maximum time of short SOP).
  • step A5 it is determined whether or not the duration A of regenerative power generation is less than the time B. If this condition is satisfied (Yes at step A5), the control proceeds to step A6, and the calculation unit 12 substitutes the value of the short-time SOP into the regeneration SOP.
  • step A10 the regenerated electric power from the motor 2 is controlled in the control section 13 within a range equal to or lower than the regenerated SOP.
  • the Yes route control following step A5 corresponds to the control between times t 0 and t 1 in FIG.
  • step A7 the transition time D of the transition calculation is measured.
  • the transition time D is the elapsed time from the time when the regenerative power generation condition is first established in step A5.
  • step A8 the calculation unit 12 calculates the allocation coefficient k1 according to the transition time D.
  • FIG. The split coefficient k1 is calculated so as to increase linearly with the transition time D, as shown by the solid line graph in FIG. 3, for example.
  • the calculation unit 12 calculates the regeneration SOP based on the above equation (1).
  • the regeneration SOP value is calculated so as to gradually shift from the short-time SOP to the long-time SOP as the transition time D increases.
  • the regenerated electric power from the motor 2 is controlled in the control section 13 within a range equal to or lower than the regenerated SOP.
  • the No route control following step A5 corresponds to the control after time t1 in FIG.
  • a setting unit 11 , a calculation unit 12 , and a control unit 13 are provided in the control device 10 (control device for an electric vehicle).
  • the setting unit 11 sets, as the maximum value of the power that can be charged to the battery 3, a short-time SOP applied when the charging time is equal to or less than the predetermined time C, and a short-time SOP applied when the charging time exceeds the predetermined time C.
  • the calculation unit 12 calculates a regenerative SOP corresponding to the maximum value of regenerated electric power from the motor 2 based on the short-term SOP and the long-term SOP.
  • the control unit 13 controls the regenerated electric power from the motor 2 within a range equal to or lower than the regenerated SOP.
  • the calculation unit 12 performs transition calculation for gradually changing the regenerative SOP from the short-time SOP to the long-time SOP according to the duration A of regenerative power generation.
  • the regenerative electric power is not excessively suppressed, and the electrolysis protection requirements of the battery 3 are satisfied while the electric power from the motor 2 is reduced.
  • Regenerative power can be increased. Therefore, electric power consumption can be improved in regenerative power generation of the vehicle 1 .
  • the switching from the short-time SOP to the long-time SOP becomes smooth, it is possible to improve the driving feeling during regenerative power generation.
  • the calculation unit 12 described above starts the transition calculation before the duration A of regenerative power generation reaches the predetermined time C, as shown in FIG.
  • the regeneration SOP after the elapse of the predetermined time C can be made greater than the long-time SOP. That is, compared to the case where the regenerative SOP is set to the same value as the short-time SOP until the predetermined time C elapses, and the regenerative SOP is set to the same value as the long-time SOP after the elapse of the predetermined time C, the battery 3 is charged more efficiently. A sudden change in the regenerative SOP can be suppressed without changing the total electric energy consumed. Therefore, it is possible to further improve the driving feeling while satisfying the electrodeposition protection requirements of the battery 3 .
  • the calculation unit 12 performs a calculation for linearly changing the proportion of the short-term SOP or the proportion of the long-term SOP reflected in the regenerative SOP with respect to the transition time D of regenerative power generation.
  • the split coefficient k1 indicated by the solid line in FIG. 3 has the characteristic of increasing from 0 in proportion to the transition time D. In this way, by linearly changing the ratio of the short-term SOP and the long-term SOP reflected in the regenerative SOP, the regenerative SOP can be smoothly changed, and the driving feeling can be further improved.
  • the calculation unit 12 can calculate the regeneration SOP based on Equation 1 below.
  • the calculation unit 12 calculates the time B from the start of regenerative power generation to the start of the transition calculation and the time rate of change of the allocation coefficient k1 according to the operating state of the battery 3 and the running state of the vehicle 1. can be set as a variable value. As a result, the length of the execution period of the transition calculation can be changed according to the state of the vehicle 1 and the battery 3, and the balance between the degree of improvement in electricity consumption and the degree of improvement in driving feeling can be easily adjusted.
  • the time B is set short (far from the predetermined time C), and the time rate of change of the split coefficient k1 is set relatively small. You may In this way, by starting the transition calculation early, the execution period of the transition calculation becomes longer, so that the regeneration SOP can be changed gradually. However, the longer the execution period of the transition calculation, the more likely it is that the regenerative power generation will end in the middle of the period.
  • the time B is set long (close to the predetermined time C), and the time rate of change of the split coefficient k1 is set relatively large. You may In this way, by starting the transition calculation later, the execution period of the transition calculation is shortened, so that the regeneration SOP can be quickly changed, and the effect of improving the electricity consumption can be maximized more reliably.
  • the calculation unit 12 calculates the proportion of the short-time SOP reflected in the regenerative SOP and the proportion of the long-term SOP reflected in the regenerative SOP.
  • a transition operation may be performed to match
  • the graph shapes of the split coefficients k 1 and k 2 are set so that the time E 1 shown in FIG. 3 coincides with the time obtained by subtracting the time B from the predetermined time C.
  • the hatched triangles at times t 1 to t 2 correspond to the hatched portions at times t 2 to t 3 . be congruent with the triangle.
  • the area S1 of the former triangle is the same as the area S2 of the latter triangle. Therefore, compared to the case where the regenerative SOP is changed discontinuously (stepwise) from the short-term SOP to the long-term SOP at time t2 , the regenerative SOP is rapidly changed while securing the same chargeable power amount. can be changed smoothly without Therefore, the driving feeling can be further improved.
  • control device 10 in the hybrid vehicle equipped with the motor 2 and the engine 4 as the drive source has been described in detail, but the control device 10 may be applied to vehicles 1 other than the hybrid vehicle.
  • the change in the output with time and the characteristics of the splitting factor as shown in FIGS. 2 and 3 can be changed as appropriate.
  • This case can be used in the manufacturing industry of electric vehicles (electric vehicles, hybrid vehicles, and plug-in hybrid vehicles), as well as in the manufacturing industry of control devices installed in electric vehicles.

Abstract

電動車両の制御装置において、設定部は、バッテリに充電可能な電力の最大値として、充電時間が所定時間以下の充電時に適用される短時間SOPと、充電時間が所定時間を超える充電時に適用される長時間SOPとを設定する。算出部は、短時間SOP及び長時間SOPに基づき、モータからの回生電力の最大値に相当する回生SOPを算出する。制御部は、モータからの回生電力を回生SOP以下の範囲で制御する。算出部は、回生発電の継続時間に応じて回生SOPを短時間SOPから長時間SOPへと徐々に変更する。

Description

電動車両の制御装置
 本件は、モータが搭載された電動車両の制御装置に関する。
 従来、電動車両に搭載されるモータの回生発電に際し、その時点でバッテリに充電可能な電力を考慮して回生電力を制限する制御が知られている。この種の制御では、回生発電の継続時間が長時間になりうることを想定して、回生電力が比較的小さく設定される。一方、回生発電の継続時間が短時間である場合には、回生電力を比較的大きく設定することも可能である。このような設定により、バッテリの過電圧による電析や劣化を抑制しつつ、回生電力を増加させることができる(例えば、特許文献1参照)。
日本国特開2011-223698号公報
 上記のような制御では、回生時間が所定時間を超えた場合に、回生制御を終了させている。例えば、特許文献1の技術では、当初の回生電力が電力Paであって回生時間が時間Aを超えた場合に、回生電力を0に向かって急勾配で減少させている(図9参照)。しかしながら、回生時間が時間Aを超えた直後に回生電力を直ちに0まで減少させなくても、バッテリの電析や劣化が抑制される場合がある。既存の制御では、回生電力が過剰に抑制されており、エネルギーロスが大きいことから電費を向上させにくいという課題がある。
 本件の目的の一つは、上記のような課題に照らして創案されたものであり、回生発電において電費を改善できるようにした電動車両の制御装置を提供することである。なお、この目的に限らず、後述する「発明を実施するための形態」に示す各構成から導き出される作用効果であって、従来の技術では得られない作用効果を奏することも、本件の他の目的として位置付けられる。
 開示の電動車両の制御装置は、以下に開示する態様または適用例として実現でき、上記の課題の少なくとも一部を解決する。
 開示の電動車両の制御装置は、バッテリの電力で車輪を駆動する機能と回生発電で生じた電力を前記バッテリに充電する機能とを併せ持つモータが搭載された電動車両の制御装置である。前記制御装置は、前記バッテリに充電可能な電力の最大値として、充電時間が所定時間以下の充電時に適用される短時間SOPと、前記充電時間が前記所定時間を超える充電時に適用され前記短時間SOPよりも値が小さい長時間SOPとを設定する設定部と、前記短時間SOP及び前記長時間SOPに基づき、前記モータからの回生電力の最大値に相当する回生SOPを算出する算出部と、前記モータからの前記回生電力を前記回生SOP以下の範囲で制御する制御部とを備える。また、前記算出部は、前記回生発電の継続時間に応じて前記回生SOPを前記短時間SOPから前記長時間SOPへと徐々に変更する移行演算を実施する。
 開示の電動車両の制御装置によれば、回生SOPを短時間SOPから長時間SOPへと徐々に変更することで、バッテリの電析保護要件を満たしつつモータからの回生電力を大きくすることができ、電動車両の回生発電において電費を向上させることができる。また、短時間SOPから長時間SOPへの切り替えが滑らかになることから、回生発電時の走行フィーリングを向上させることができる。
電動車両及びその制御装置を示すブロック図である。 モータの回生発電時における短時間SOP及び長時間SOPの経時変化を例示するグラフである。 移行演算の継続時間と割掛け係数との関係を例示するグラフである。 回生発電時の移行演算に関する制御のフローチャート例である。
 開示の電動車両の制御装置は、以下の実施例によって実施されうる。
[1.装置構成]
 図1は、実施例としての制御装置10及び制御装置10が適用される電動車両1(以下、単に車両1とも表記する)の構成を例示するブロック図である。車両1の具体的な種類としては、電気自動車,ハイブリッド自動車,プラグインハイブリッド自動車等が挙げられる。車両1には、少なくとも駆動源としてのモータ2と電力源としてのバッテリ3とが搭載される。バッテリ3は、例えばリチウムイオン二次電池やニッケル水素電池等の二次電池である。
 モータ2は、バッテリ3の電力で車輪を駆動する機能と、回生発電で生じた電力をバッテリ3に充電する機能とを併せ持つモータジェネレータ(電動機兼発電機)である。モータ2によって駆動される車輪(駆動輪)は、前輪でも後輪でもよく、全輪でもよい。モータ2の搭載数や駆動輪の数は不問である。一つのモータ2で一つの駆動輪を駆動してもよいし、一つのモータ2で複数の駆動輪を駆動してもよく、複数のモータ2で一つの駆動輪を駆動してもよく、複数のモータ2で複数の駆動輪を駆動してもよい。また、モータ2と駆動輪とを繋ぐ動力伝達経路上に、図示しない変速機構を介装させてもよい。
 図1に示す車両1は、第二の駆動源としてのエンジン4と発電装置としてのジェネレータ5とが搭載されたハイブリッド自動車(ハイブリッド電気自動車,HEV)またはプラグインハイブリッド自動車(プラグインハイブリッド電気自動車,PHEV)である。ハイブリッド車両とは、駆動源としてエンジン4及びモータ2が搭載された車両を意味する。また、プラグインハイブリッド車両とは、バッテリ3に対する外部充電、または、バッテリ3からの外部給電が可能なハイブリッド車両を意味する。プラグインハイブリッド車両には、外部充電設備からの電力が送給される充電ケーブルを差し込むための充電口(インレット)や、外部機器に電力を供給する給電ケーブルを差し込むための外部給電用コンセント(アウトレット)が設けられる。
 エンジン4は、例えばガソリンエンジンやディーゼルエンジン等の内燃機関である。エンジン4の駆動軸には、少なくともエンジン4の駆動力を利用して発電する機能を持つジェネレータ5(発電機)が連結される。ジェネレータ5の発電電力(発電出力)は、モータ2の駆動やバッテリ3の充電に用いられる。エンジン4とジェネレータ5とを繋ぐ動力伝達経路上には、図示しない変速機構が介装されうる。なお、車両1を走行させる電動機としての機能を兼ね備えたジェネレータ5を適用してもよい。
 モータ2とエンジン4とを繋ぐ動力伝達経路上には、クラッチ6が介装される。エンジン4はクラッチ6を介して駆動輪に接続され、モータ2はクラッチ6よりも駆動輪側に配置される。また、ジェネレータ5はクラッチ6よりもエンジン4側に接続される。クラッチ6が切断(解放)されると、エンジン4及びジェネレータ5が駆動輪に対して非接続の状態となり、モータ2が駆動輪に対して接続された状態となる。したがって、例えばモータ2のみを作動させることで、いわゆるEV走行(モータ単独走行)が実現される。これに加えて、エンジン4を作動させてジェネレータ5に発電させることで、いわゆるシリーズ走行が実現される。
 一方、クラッチ6が接続(締結)されると、モータ2,エンジン4,ジェネレータ5の三者が駆動輪に対して接続された状態となる。したがって、例えばエンジン4のみを作動させることで、いわゆるENG走行(エンジン単独走行)が実現される。これに加えて、モータ2やジェネレータ5を駆動することで、いわゆるパラレル走行が実現される。なお、車両1は少なくともEV走行が可能なハイブリッド車両であればよく、他の走行態様(ENG走行,シリーズ走行,パラレル走行)は適宜省略されうる。
 モータ2,バッテリ3,エンジン4,ジェネレータ5,クラッチ6の作動状態は、制御装置10によって制御される。制御装置10は、少なくともモータ2からの回生電力を制御する機能を持ったコンピュータ(電子制御装置,ECU,Electronic Control Unit)である。制御装置10は、プロセッサ(演算処理装置)及びメモリ(記憶装置)を内蔵する。制御装置10が実施する制御の内容(制御プログラム)はメモリに保存され、その内容がプロセッサに適宜読み込まれることによって実行される。
 制御装置10には、車速センサ7,ブレーキセンサ8,アクセルセンサ9が接続される。車速センサ7は、車両1の走行速度(車速)を検出するセンサである。ブレーキセンサ8は、ブレーキペダルの踏み込み量に相当するパラメータ(ブレーキ開度,ブレーキペダルストローク,ブレーキ液圧等)を検出するセンサである。アクセルセンサ9は、アクセルペダルの踏み込み量に相当するパラメータ(アクセル開度,アクセルペダルストローク,スロットル開度等)を検出するセンサである。これらの各センサ7~9で検出された情報は、制御装置10に伝達される。
 制御装置10に伝達される他の情報としては、モータ2の作動状態(回転速度,モータ温度,駆動電流,駆動電圧,駆動周波数等)の情報や、バッテリ3の作動状態(充電率SOC,健全度SOH,入出力電流,バッテリ電圧,バッテリ温度,内部抵抗等)の情報や、車両1の走行状態(走行モード,外気温等)の情報が挙げられる。本実施例の制御装置10は、上記のような多様な情報を用いて、モータ2からの回生電力を既存の制御よりも柔軟に変更する制御を実施する。なお、バッテリ3の充電率SOCは、入出力電流やバッテリ電圧に基づいて算出可能である。
[2.制御構成]
 上記の制御を実施するための要素として、制御装置10には、設定部11と算出部12と制御部13とが設けられる。これらの要素は、制御装置10の機能を便宜的に分類して示したものであり、ソフトウェア(プログラム)やハードウェア(電子制御回路)で実現されうる。これらの要素は、一つのソフトウェアまたはハードウェアに一体化されてもよいし、複数のソフトウェア及びハードウェアに分散化されてもよい。例えば、モータ2を管理するためのモータECU(MCU,Motor Control Unit)にこれらの要素を内蔵させてもよいし、バッテリ3を管理するためのバッテリECU(BMU,Battery Management Unit)にこれらの要素を内蔵させてもよく、あるいは、これらの要素を複数のECUに分散させて設けてもよい。
 設定部11は、バッテリ3に充電可能な電力[kW]の最大値として、短時間SOP(短時間充電可能最大電力,短時間State Of Power)と長時間SOP(長時間充電可能最大電力,長時間State Of Power)とを設定するものである。短時間SOPは、充電時間が所定時間C以下(比較的短い時間)の充電時に適用される最大電力である。短時間SOPが適用される所定時間Cのスケール(時間の長さの度合い)としては、例えば数秒程度が想定されている。これに対して長時間SOPは、充電時間が所定時間Cを超える充電時に適用される最大電力であって、短時間SOPよりも値が小さく設定される。長時間SOPは、例えば一般的なバッテリ3の定格入力電力に相当しうるパラメータである。
 短時間SOP,長時間SOPの各々の値は、あらかじめ設定された固定値であってもよいし、バッテリ3の作動状態(充電率SOC,健全度SOH,回生電流量,バッテリ電圧,バッテリ温度等)や車両1の走行状態(走行モード,車速,外気温,アクセル開度等)に応じて設定される可変値であってもよい。また、短時間SOPを使用できる所定時間Cについても同様であり、あらかじめ設定された固定値であってもよいし、バッテリ3の作動状態や車両1の走行状態に応じて設定される可変値であってもよい。例えば、バッテリ3への充電電流(回生電流量)やバッテリ電圧に基づいて所定時間Cを設定してもよい。短時間SOP及び長時間SOPは、少なくともモータ2が作動していることを前提として設定される。本実施例の短時間SOP及び長時間SOPは、モータ2の回生発電時に使用されるため、モータ2が回生発電していることを前提として設定されてもよい。
 図2は、モータ2の回生発電時における短時間SOP及び長時間SOPの経時変化を例示するグラフである。この例では、短時間SOP及び長時間SOPの値が直線状かつ平行に推移している。設定部11では、モータ2の回生発電中は常に短時間SOP及び長時間SOPの両方の値が設定される。長時間SOP(二点鎖線グラフ)の値は、その時点における短時間SOP(破線グラフ)の値よりも小さな値に設定される。また、回生発電の継続時間Aが長くなるにつれて、バッテリ3の充電率が上昇して満充電に近い状態となる。そのため、短時間SOP及び長時間SOPの値は、回生発電の継続時間Aが長くなるほど減少するように設定され、図2中に示す短時間SOP及び長時間SOPのグラフが下り勾配となる。
 図2中の時刻tは、モータ2の回生発電が開始されてから所定時間C(短時間SOPの最大時間)が経過した時刻である。従来の制御では、所定時間Cを超えて短時間SOPを使用することが想定されていないため、時刻t以降に短時間SOPを設定する必要がなかった。一方、本実施例ではモータ2が作動している限り、時刻t以降も短時間SOPの値の設定が継続され、回生SOPの算出のために参照される。ただし、以下に説明する回生SOPの値に短時間SOPの値を反映させる必要がなくなった後には(図2中の時刻t以降は)、短時間SOPの値の設定を省略してもよい。
 算出部12は、設定部11で設定された短時間SOP及び長時間SOPに基づき、モータ2からの回生電力の最大値に相当する回生SOPを算出するものである。ここでは、回生発電の継続時間Aに応じて、回生SOPを短時間SOPから長時間SOPへと徐々に変更する移行演算が実施される。回生発電の開始時(図2中の時刻t)には、短時間SOPの値がそのまま回生SOPの値として算出される。その後、回生発電の開始時から時間B(移行演算を開始するまでの時間B)が経過すると(図2中の時刻t)、移行演算が開始される。時間Bは、図2に示すように所定時間Cよりも短く設定される。これにより、回生発電によるバッテリ3への充電時間が所定時間Cに達する前に、回生SOPの値が長時間SOPへ向かって減少し始めることになる。
 本実施例の算出部12は、上記の移行演算において、回生SOPに反映される短時間SOPの割合または長時間SOPの割合を回生発電の継続時間Aに対して線形に変化させる演算を実施しうる。例えば、算出部12は以下の式1や式2に基づいて回生SOPを算出する。なお、式1,式2中の移行時間Dは、移行演算が開始された時刻を基準とした時間(移行演算の実施時間)であって、回生発電の継続時間A(回生発電が開始された時刻を基準とした時間)から時間Bを減じた時間に相当する。
 式1.回生SOP=(1-k)×(短時間SOP)+k×(長時間SOP)
    (k:移行時間Dに比例して増加する割掛け係数,0≦k≦1)
 式2.回生SOP=k×(短時間SOP)+(1-k)×(長時間SOP)
    (k:移行時間Dに比例して減少する割掛け係数,0≦k≦1)
 式1中の割掛け係数kは、移行演算の移行時間Dに比例して0から1へと増加する係数である。図3中の実線は、移行演算の移行時間Dと割掛け係数kとの関係を例示するグラフである。この例では、移行時間Dが時間Eであるときに割掛け係数kの値が0.5に設定され、移行時間Dが時間E以上になると割掛け係数kの値が1に設定されている。また、式2中の割掛け係数kは、移行時間Dに比例して1から0へと減少する係数である。図3中の破線は、移行演算の移行時間Dと割掛け係数kとの関係を例示するグラフである。図3中の時間Eは、時間Eの倍の時間であって、図2のグラフ中における時刻tから時刻tまでの時間に対応する。時刻t以降は、回生SOPに反映される短時間SOPの割合が0となり、長時間SOPの値がそのまま回生SOPの値として算出される。時間Eは、移行演算において割掛け係数k,kが0.5に変化するまでの時間である。また、時間Eは、移行演算において割掛け係数k,kの変化が停止するまでの時間である。
 上記の割掛け係数kは、厳密には(数学的な意味においては)移行時間Dに「比例」しているとはいえない。移行時間Dに「比例」しているのは、割掛け係数kから1を減じた値である。したがって、割掛け係数kと移行時間Dとの関係をより厳密な定義に即応させて理解したい場合には、割掛け係数kから1を減じた値を「割掛け係数k」と定義し、この「割掛け係数k」が移行時間Dに「比例」して0から-1へと減少するものと捉えればよい。
 上記の割掛け係数k,kの特性に関して、好ましくは所定時間Cから時間Bを減算した時間と時間Eとが一致するように、割掛け係数k,kのグラフ形状が設定される。つまり、回生発電の継続時間Aが所定時間Cに達した時点で、回生SOPに反映される短時間SOPの割合と回生SOPに反映される長時間SOPの割合とを一致させる(ともに50%にする)ことが好ましい。言い換えれば、回生発電の継続時間Aが所定時間Cに達したときに、回生SOPが短時間SOPと長時間SOPとの中間値(平均値)になるように、割掛け係数kの特性を定めておくことが好ましい。
 これにより、図2における時刻t~t間のハッチング部分の三角形が時刻t~t間のハッチング部分の三角形と合同になる。換言すれば、時刻t~t間のハッチング面積Sが、時刻t~t間のハッチング面積Sに一致する。ハッチング面積Sは、時刻t~t間の短時間SOPよりも回生SOPを減少させることによって生じる余剰分の充電可能電力量[Wh]に相当する。また、ハッチング面積Sは、時刻t~t間の長時間SOPよりも回生SOPを増加させることによって必要となる充電可能電力量[Wh]に相当する。
 これらの二つの面積(二つの電力量)を一致させることで、充電可能電力量の過不足が相殺される。したがって、バッテリ3の電析保護要件が満たされる範囲において、モータ2からの回生電力が最大化されうる。また、時刻tに回生SOPを短時間SOPから長時間SOPへと不連続に(階段状に)変化させた場合と比較すると、回生電力の変動が滑らかになり、車両の走行フィーリングが良好となる。
 算出部12における回生SOPの算出に際し、回生発電の開始時から移行演算を開始するまでの時間Bは、あらかじめ設定された固定値(例えば、数秒)であってもよいし、バッテリ3の作動状態(充電率SOC,健全度SOH,回生電流量,バッテリ電圧,バッテリ温度等)や車両1の走行状態(走行モード,車速,外気温,アクセル開度等)に応じて設定される可変値であってもよい。同様に、割掛け係数k,kの時間変化率(すなわち、移行演算中における回生SOPの時間変化率)は、あらかじめ設定された固定値であってもよいし、バッテリ3の作動状態や車両1の走行状態に応じて設定される可変値であってもよい。
 制御部13は、算出部12で算出された回生SOPを用いて、モータ2からの回生電力を制御するものである。制御部13は、モータ2からの回生電力が回生SOP以下になるように、モータ2(あるいは図示しないインバータ)の作動状態を制御する。これにより、モータ2に接続された駆動輪に回生制動力が発生するとともに、回生電力がバッテリ3に充電される。また、ドライバーが要求する制動力(制動トルク)の大きさに応じて、図示しないブレーキ機構を介して駆動輪に摩擦制動力が付与される。
[3.フローチャート]
 図4は、回生発電時の移行演算に関する制御のフローチャート例である。このフローチャートに示す制御は、モータ2が作動している状況(例えば、EV走行モード時やハイブリッド走行モード時)において、制御装置10の内部で所定の周期で繰り返し実行される。なお、このフローチャートに示す制御は、少なくともモータ2が作動する走行モードを有する車両1であれば実施可能であり、エンジン4,ジェネレータ5,クラッチ6等の有無は不問である。
 ステップA1では、制御装置10の設定部11において、短時間SOPと長時間SOPとが設定される。短時間SOP及び長時間SOPは、バッテリ3の作動状態(充電率SOC,健全度SOH,回生電流量,バッテリ電圧,バッテリ温度等)や車両1の走行状態(走行モード,車速,外気温,アクセル開度等)に応じて設定される。長時間SOPは、短時間SOPよりも値が小さく設定される。
 ステップA2では、モータ2に回生発電を実施させるための回生発電条件が成立するか否かが判定される。回生発電条件には公知の諸条件が含まれ、例えばアクセル開度が減少したこと、ブレーキ開度が増加したこと、バッテリ3への充電が可能な状態であること(充電率SOCが所定値以下であること,健全度SOHが所定値以上であること,バッテリ温度が適正範囲内であること)、車両1が停止していないこと(車速が0でないこと)などが含まれる。回生発電条件が成立しなければ(ステップA2にてNo)、この周期での制御が終了する。一方、回生発電条件が成立すると(ステップA2にてYes)、制御がステップA3に進む。
 ステップA3では、回生発電の継続時間Aが計測される。継続時間Aとは、ステップA2で回生発電条件が最初に成立した時刻からの経過時間である。また、ステップA4では、移行演算を開始するまでの時間Bが算出される。時間Bは、所定時間C(短時間SOPの最大時間)よりも短く設定される。続くステップA5では、回生発電の継続時間Aが時間B未満であるか否かが判定される。この条件が成立する場合には(ステップA5にてYes)制御がステップA6に進み、算出部12において短時間SOPの値が回生SOPに代入される。その後、ステップA10では、制御部13においてモータ2からの回生電力が回生SOP以下の範囲で制御される。ステップA5に続くYesルートの制御は、図2中の時刻t~t間の制御に対応する。
 回生発電の継続時間Aが時間B以上になり、ステップA5の条件が成立しなくなった場合には(ステップA5にてNo)、制御がステップA7に進む。ステップA7では、移行演算の移行時間Dが計測される。移行時間Dとは、ステップA5で回生発電条件が最初に成立した時刻からの経過時間である。また、ステップA8では、算出部12において、移行時間Dに応じて割掛け係数kが算出される。割掛け係数kは、例えば図3中の実線グラフのように、移行時間Dに対して線形に増加するように算出される。
 続くステップA9では、算出部12において、上記の式1に基づいて回生SOPが算出される。回生SOPの値は、移行時間Dが増加するにつれて短時間SOPから長時間SOPへと徐々に移行するように算出される。その後、ステップA10では、制御部13においてモータ2からの回生電力が回生SOP以下の範囲で制御される。ステップA5に続くNoルートの制御は、図2中の時刻t以降の制御に対応する。
[4.効果]
 (1)上記の制御装置10(電動車両の制御装置)には、設定部11と算出部12と制御部13とが設けられる。設定部11は、バッテリ3に充電可能な電力の最大値として、充電時間が所定時間C以下の充電時に適用される短時間SOPと、充電時間が所定時間Cを超える充電時に適用され短時間SOPよりも値が小さい長時間SOPとを設定する。算出部12は、短時間SOP及び長時間SOPに基づき、モータ2からの回生電力の最大値に相当する回生SOPを算出する。制御部13は、モータ2からの回生電力を回生SOP以下の範囲で制御する。また、算出部12は、回生発電の継続時間Aに応じて回生SOPを短時間SOPから長時間SOPへと徐々に変更する移行演算を実施する。
 上記のように、回生SOPを短時間SOPから長時間SOPへと徐々に変更することで、回生電力が過剰に抑制されることがなくなり、バッテリ3の電析保護要件を満たしつつモータ2からの回生電力を大きくすることができる。したがって、車両1の回生発電において電費を向上させることができる。また、短時間SOPから長時間SOPへの切り替えが滑らかになることから、回生発電時の走行フィーリングを向上させることができる。
 (2)上記の算出部12は、図2に示すように、回生発電の継続時間Aが所定時間Cに達する前に移行演算を開始する。このように、所定時間Cが経過する前に回生SOPを短時間SOPよりも小さくすることで、所定時間Cの経過後における回生SOPを長時間SOPよりも大きくすることができる。つまり、所定時間Cが経過するまで回生SOPを短時間SOPと同一値にし、かつ、所定時間Cの経過後に回生SOPを長時間SOPと同一値にした場合と比較して、バッテリ3に充電されるトータルの電力量を変化させることなく回生SOPの急変を抑制できる。したがって、バッテリ3の電析保護要件を満たしつつ、走行フィーリングをさらに向上させることができる。
 (3)上記の算出部12は、図3に示すように、回生SOPに反映される短時間SOPの割合または長時間SOPの割合を回生発電の移行時間Dに対して線形に変化させる演算を実施しうる。例えば、図3中に実線で示す割掛け係数kは、移行時間Dに比例して0から増加する特性を持つ。このように、回生SOPに反映される短時間SOPや長時間SOPの割合をリニアに変化させることで、回生SOPを滑らかに変化させることができ、走行フィーリングをさらに向上させることができる。
 (4)上記の算出部12は、以下のような式1に基づいて回生SOPを算出しうる。
 式1.回生SOP=(1-k)×(短時間SOP)+k×(長時間SOP)
    (k:移行時間Dに比例して増加する割掛け係数,0≦k≦1)
 このようなシンプルな算定式を利用することで、滑らかに変化する回生SOPを素早くかつ容易に算出できるようになり、走行フィーリングをさらに向上させることができる。
 (5)上記の算出部12は、回生発電の開始時から移行演算を開始するまでの時間B及び割掛け係数kの時間変化率を、バッテリ3の作動状態や車両1の走行状態に応じた可変値として設定しうる。これにより、車両1やバッテリ3の状態に応じて移行演算の実施期間の長さを変更でき、電費の改善度合いと走行フィーリングの改善度合いとのバランスを容易に調節できるようになる。
 例えば、回生発電が比較的長時間にわたって継続される可能性がある場合には、時間Bを短く設定する(所定時間Cから遠ざける)とともに、割掛け係数kの時間変化率を比較的小さく設定してもよい。このように、早めに移行演算を開始することで移行演算の実施期間が長くなるため、回生SOPを緩やかに変化させることができる。ただし、移行演算の実施期間が長くなるほど、その途中で回生発電が終了しやすくなるため、電費の改善効果を最大化できるとは限らない。
 反対に、回生発電が比較的短時間で終了する可能性がある場合には、時間Bを長く設定する(所定時間Cに近づける)とともに、割掛け係数kの時間変化率を比較的大きく設定してもよい。このように、遅めに移行演算を開始することで移行演算の実施期間が短くなるため、回生SOPを速やかに変化させることができ、より確実に電費の改善効果を最大化できる。
 (6)上記の算出部12は、回生発電の継続時間Aが所定時間Cに達した時点で、回生SOPに反映される短時間SOPの割合と回生SOPに反映される長時間SOPの割合とを一致させる移行演算を実施しうる。例えば、図3に示す時間Eが、所定時間Cから時間Bを減算した時間と一致するように、割掛け係数k,kのグラフ形状が設定される。これにより、回生発電の継続時間Aが所定時間Cに達した時点で、回生SOPに反映される短時間SOPの割合と回生SOPに反映される長時間SOPの割合とがともに50%になる。
 ここで、図2において、短時間SOP及び長時間SOPのグラフがともに直線かつ平行であると仮定すると、時刻t~tのハッチング部分の三角形は、時刻t~tのハッチング部分の三角形と合同になる。また、前者の三角形の面積Sは、後者の三角形の面積Sと同一になる。したがって、時刻tに回生SOPを短時間SOPから長時間SOPへと不連続に(階段状に)変化させた場合と比較して、同じ充電可能電力量を確保しながら、回生SOPを急変させることなく滑らかに変動させることができる。したがって、走行フィーリングをさらに向上させることができる。
[5.その他]
 上記の実施例はあくまでも例示に過ぎず、本実施例で明示しない種々の変形や技術の適用を排除する意図はない。本実施例の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施できる。また、本実施例の各構成は、必要に応じて取捨選択でき、あるいは、適宜組み合わせることができる。
 上記の実施例では、駆動源としてのモータ2及びエンジン4を搭載したハイブリッド自動車における制御装置10について詳述したが、制御装置10をハイブリッド自動車以外の車両1に適用してもよい。また、図2,図3に示すような出力の経時変化や割掛け係数の特性は、適宜変更可能である。少なくとも、モータ2が搭載された車両1に上記の制御装置10を適用することで、上述の実施形態と同様の制御を実現でき、上述の実施形態と同様の効果を獲得できる。
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2022年3月4日出願の日本特許出願(特願2022-033195)に基づくものであり、その内容は本出願の中に参照として援用される。
 本件は、電動車両(電気自動車,ハイブリッド自動車,プラグインハイブリッド自動車)の製造産業に利用可能であるとともに、電動車両に搭載される制御装置の製造産業に利用可能である。
1 車両(電動車両)
2 モータ
3 バッテリ
4 エンジン
5 ジェネレータ
6 クラッチ
7 車速センサ
8 ブレーキセンサ
9 アクセルセンサ
10 制御装置
11 設定部
12 算出部
13 制御部
A 回生発電の継続時間
B 移行演算を開始するまでの時間
C 所定時間(短時間SOPの最大時間)
D 移行時間(移行演算の実施時間)
 時間(移行演算において割掛け係数k,kが0.5に変化するまでの時間)
 時間(移行演算において割掛け係数k,kの変化が停止するまで時間)
~k 割掛け係数
~t 時刻

Claims (6)

  1.  バッテリの電力で車輪を駆動する機能と回生発電で生じた電力を前記バッテリに充電する機能とを併せ持つモータが搭載された電動車両の制御装置であって、
     前記バッテリに充電可能な電力の最大値として、充電時間が所定時間以下の充電時に適用される短時間SOPと、前記充電時間が前記所定時間を超える充電時に適用され前記短時間SOPよりも値が小さい長時間SOPとを設定する設定部と、
     前記短時間SOP及び前記長時間SOPに基づき、前記モータからの回生電力の最大値に相当する回生SOPを算出する算出部と、
     前記モータからの前記回生電力を前記回生SOP以下の範囲で制御する制御部とを備え、
     前記算出部が、前記回生発電の継続時間に応じて前記回生SOPを前記短時間SOPから前記長時間SOPへと徐々に変更する移行演算を実施することを特徴とする、電動車両の制御装置。
  2.  前記算出部は、前記回生発電の継続時間が前記所定時間に達する前に前記移行演算を開始することを特徴とする、請求項1記載の電動車両の制御装置。
  3.  前記算出部は、前記移行演算において、前記回生SOPに反映される前記短時間SOPの割合または前記長時間SOPの割合を前記回生発電の継続時間に対して線形に変化させることを特徴とする、請求項1または2記載の電動車両の制御装置。
  4.  前記算出部は、以下の式1に基づいて前記回生SOPを算出する
      式1.回生SOP=(1-k)×(短時間SOP)+k×(長時間SOP)
       (k:移行演算の実施時間に比例して増加する割掛け係数,0≦k≦1)
    ことを特徴とする、請求項3記載の電動車両の制御装置。
  5.  前記算出部は、前記回生発電を開始してから前記移行演算が開始されるまでの時間及び前記割掛け係数kの時間変化率を、前記バッテリの作動状態または前記電動車両の走行状態に応じて設定することを特徴とする、請求項4記載の電動車両の制御装置。
  6.  前記算出部は、前記回生発電の継続時間が前記所定時間に達した時点で、前記回生SOPに反映される前記短時間SOPの割合と前記回生SOPに反映される前記長時間SOPの割合とを一致させることを特徴とする、請求項3~5のいずれか一項に記載の電動車両の制御装置。
PCT/JP2023/002978 2022-03-04 2023-01-31 電動車両の制御装置 WO2023166897A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023532437A JP7375988B1 (ja) 2022-03-04 2023-01-31 電動車両の制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022033195 2022-03-04
JP2022-033195 2022-03-04

Publications (1)

Publication Number Publication Date
WO2023166897A1 true WO2023166897A1 (ja) 2023-09-07

Family

ID=87883706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002978 WO2023166897A1 (ja) 2022-03-04 2023-01-31 電動車両の制御装置

Country Status (2)

Country Link
JP (1) JP7375988B1 (ja)
WO (1) WO2023166897A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223698A (ja) * 2010-04-07 2011-11-04 Nissan Motor Co Ltd 電動車両の制御装置
JP2016046919A (ja) * 2014-08-22 2016-04-04 トヨタ自動車株式会社 自動車
JP2017165373A (ja) * 2016-03-18 2017-09-21 三菱自動車工業株式会社 ハイブリッド車両の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223698A (ja) * 2010-04-07 2011-11-04 Nissan Motor Co Ltd 電動車両の制御装置
JP2016046919A (ja) * 2014-08-22 2016-04-04 トヨタ自動車株式会社 自動車
JP2017165373A (ja) * 2016-03-18 2017-09-21 三菱自動車工業株式会社 ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
JPWO2023166897A1 (ja) 2023-09-07
JP7375988B1 (ja) 2023-11-08

Similar Documents

Publication Publication Date Title
US6891279B2 (en) Vehicle control system and control method
US7797089B2 (en) System and method for managing a power source in a vehicle
JP4968159B2 (ja) ハイブリッド車両の制御装置
JP5510116B2 (ja) ハイブリッド車の回生制御装置
EP2546089A2 (en) Regeneration control device of electrically powered vehicle
US20080119975A1 (en) Hybrid Electric Vehicle Powertrain with Engine Start and Transmission Shift Arbitration
US20140236405A1 (en) Controller for hybrid vehicle
KR101816247B1 (ko) 요구 출력 변화에 따른 하이브리드 차량의 엔진과 모터의 동력분배방법
WO2012131864A1 (ja) 電動車両およびその制御方法
US20050173179A1 (en) Driving force switching control apparatus
US9252630B2 (en) Battery charge control apparatus
JP2019156229A (ja) ハイブリッド車両および、その制御方法
JP2004084484A (ja) 車両用制御装置
KR20160038010A (ko) 발전 제어 장치 및 발전 제어 방법
JP7135476B2 (ja) 車両の発電制御装置
CN113556075B (zh) 一种电机扭矩的控制方法、装置、车辆及设备
JP2012186906A (ja) 電気自動車および充電装置
JP6967633B2 (ja) 車両の制御装置
WO2023166897A1 (ja) 電動車両の制御装置
US9434378B2 (en) System and method for improving the vehicle feel, fuel efficiency and performance of a hybrid vehicle
EP3825193B1 (en) Power control device and power control method for hybrid vehicle
JP6630210B2 (ja) ハイブリッド車両の制御装置及びハイブリッド車両
JP2011230670A (ja) 電動車両
JP2020082919A (ja) ハイブリッド車両の制御システム
WO2023157166A1 (ja) ハイブリッド車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023532437

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763159

Country of ref document: EP

Kind code of ref document: A1