WO2023166542A1 - マルチコアファイバ接続装置およびマルチコアファイバ接続方法 - Google Patents

マルチコアファイバ接続装置およびマルチコアファイバ接続方法 Download PDF

Info

Publication number
WO2023166542A1
WO2023166542A1 PCT/JP2022/008499 JP2022008499W WO2023166542A1 WO 2023166542 A1 WO2023166542 A1 WO 2023166542A1 JP 2022008499 W JP2022008499 W JP 2022008499W WO 2023166542 A1 WO2023166542 A1 WO 2023166542A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
core
core fiber
optical
test light
Prior art date
Application number
PCT/JP2022/008499
Other languages
English (en)
French (fr)
Inventor
仁士 竹下
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2024504030A priority Critical patent/JPWO2023166542A1/ja
Priority to PCT/JP2022/008499 priority patent/WO2023166542A1/ja
Publication of WO2023166542A1 publication Critical patent/WO2023166542A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means

Definitions

  • the present invention relates to a multi-core fiber connection device and a multi-core fiber connection method, and more particularly to a multi-core fiber connection device and a multi-core fiber connection method used in a multi-core fiber optical transmission system.
  • Spatial multiplexing technology which is a multiplexing technology of a different dimension than conventional multiplexing technology, is being developed.
  • Spatial multiplexing technology includes multi-core technology for increasing the number of cores per optical fiber and multi-mode technology for increasing the number of propagation modes. Both the number of cores and the number of modes used in current optical fiber communication are one. Therefore, by increasing the number of cores and the number of modes, it is possible to dramatically expand the communication capacity.
  • the multi-core fibers A 1 and A 2 are opposed to each other with their coaxial ends a 3 and a 4 close to each other.
  • the controller S0 controls the suction mechanism of the alignment device
  • the controller S1 controls the rotation mechanism of the alignment device.
  • the wavelengths of the two optical signals led to the controllers S 0 and S 1 are made different from each other, and one optical signal has a wavelength of ⁇ 0 and the wavelength of the other optical signal is ⁇ 1 .
  • one optical signal ⁇ 0 is passed through each center core of both multi-core fibers A 1 and A 2 , and the other optical signal ⁇ 1 is passed through each peripheral core.
  • the respective controllers S 0 and S 1 movement adjustment of the alignment ends in the X and Y directions and rotational adjustment of the alignment ends in the ⁇ direction are performed so as to maximize the optical power.
  • these controllers S 0 and S 1 are supposed to obtain the maximum value of the optical power only by the predetermined signals.
  • An object of the present invention is to solve the above-described problem that, when connecting multi-core fibers, the intensity of the optical signal guided through the multi-core fibers differs for each core, and a multi-core fiber connection device and multi-core fiber connection. It is to provide a method.
  • the multi-core fiber splicing device of the present invention comprises fiber position adjustment means for adjusting the spatial positions of a first multi-core fiber and a second multi-core fiber connected to the first multi-core fiber; First optical connection means for introducing test light of different wavelengths into each core, and light for generating optical spectrum information of the test light after being guided through the first multi-core fiber and the second multi-core fiber It has spectral information generating means and control means for controlling the fiber positioning means using the optical spectral information.
  • the multicore fiber connection method of the present invention introduces test light of different wavelengths into each core of a first multicore fiber, and connects the first multicore fiber and the first multicore fiber to the second multicore fiber.
  • Optical spectral information is generated for the test light after being guided through the fiber, and the optical spectral information is used to adjust the spatial positions of the first multicore fiber and the second multicore fiber.
  • the intensity of the optical signal guided through the multi-core fibers can be made uniform for each core.
  • FIG. 1 is a block diagram showing the configuration of a multi-core fiber connection device according to a first embodiment of the present invention
  • FIG. FIG. 4 is a diagram for explaining the operation of a fiber position adjusting section included in the multicore fiber splicing device according to the first embodiment of the present invention
  • FIG. 2 is a block diagram showing the configuration of a first optical connection section included in the multicore fiber connection device according to the first embodiment of the present invention
  • FIG. 2 is a block diagram showing the configuration of an optical spectrum information generator included in the multicore fiber splicing device according to the first embodiment of the present invention
  • FIG. 3 is a diagram showing optical spectrum information generated by an optical spectrum information generator 130 provided in the multicore fiber splicing device according to the first embodiment of the present invention
  • 1 is a flow chart for explaining a multicore fiber connection method according to a first embodiment of the present invention
  • FIG. 4 is a block diagram showing the configuration of a multi-core fiber connection device according to a second embodiment of the present invention
  • FIG. 9 is a block diagram showing the configuration of a spatial optical system coupling section included in a second optical connection section provided in a multicore fiber connection device according to a second embodiment of the present invention
  • FIG. 10 is a block diagram showing another configuration of the second optical connection part provided in the multicore fiber connection device according to the second embodiment of the present invention
  • FIG. 5 is a cross-sectional view of a second multicore fiber used with the multicore fiber splicing device according to the second embodiment of the present invention
  • FIG. 10 is a cross-sectional view of a multimode fiber that constitutes a second optical connecting portion provided in a multicore fiber connecting device according to a second embodiment of the present invention
  • 6 is a flow chart for explaining a multi-core fiber connection method according to a second embodiment of the present invention
  • FIG. 1 is a block diagram showing the configuration of a multicore fiber splicing device 100 according to the first embodiment of the invention.
  • the multi-core fiber connection device 100 includes a fiber position adjustment section (fiber position adjustment means) 110, a first optical connection section (first optical connection means) 120, an optical spectrum information generation section (optical spectrum information generation means) 130, and It has a control section (control means) 140 .
  • the fiber position adjustment unit 110 adjusts the spatial positions of the first multicore fiber 10 and the second multicore fiber 20 connected to the first multicore fiber 10 .
  • the first optical connection section 120 introduces test light of different wavelengths into each core of the first multicore fiber 10 .
  • the optical spectrum information generator 130 generates optical spectrum information of the test light after being guided through the first multicore fiber 10 and the second multicore fiber 20 .
  • the controller 140 then controls the fiber position adjuster 110 using the optical spectrum information.
  • the multi-core fiber splicing device 100 of the present embodiment introduces test light with different wavelengths for each core into the multi-core fiber, and uses the optical spectrum information of the test light after guided through the multi-core fiber to determine the multi-core fiber. It is configured to adjust the spatial position. Therefore, the spatial position of the multi-core fiber can be adjusted so that the connection loss for each core becomes uniform. Therefore, according to the multi-core fiber connection device 100 of the present embodiment, when the multi-core fibers are connected and used, the intensity of each core of the optical signal guided through the multi-core fibers can be made uniform.
  • the fiber position adjustment unit 110 adjusts the positions of the first multi-core fiber 10 and the second multi-core fiber 20 by adjusting the in-plane position (x direction and y direction in the drawing) and the axial position (z direction), and the amount of rotation ( ⁇ direction, ⁇ direction).
  • FIG. 2 shows an example in which each of the first multicore fiber 10 and the second multicore fiber 20 has four cores (C11 to C14, C21 to C24).
  • the first optical connection section 120 can be configured to include a fan-in fan-out (FIFO) section (fan-in fan-out means).
  • FIG. 3 shows an example of the configuration of the first optical connection section 120.
  • the fan-in-fan-out section 121 connects each core of the first multi-core fiber 10 to the first single-core fiber 31 through which test lights of different wavelengths ( ⁇ 1 to ⁇ 4 in the example of FIG. 3) are guided respectively. do.
  • the first single-core fiber 31 is typically a single mode fiber (SMF).
  • SMF single mode fiber
  • As the fan-in-fan-out (FIFO) section 121 a fine bundle type FIFO or a melt drawing type FIFO can be used. Alternatively, a spatial optical FIFO or a planar optical waveguide FIFO may be used.
  • FIG. 4 shows an example of the configuration of the optical spectrum information generator 130.
  • the optical spectrum information generator 130 can be configured to include an optical coupler 131, an optical bandpass filter 132, and an optical power meter 133, as shown in the figure.
  • FIG. 4 shows a configuration including four optical bandpass filters 132 corresponding to different wavelengths of test light ( ⁇ 1 to ⁇ 4 in the example of FIG. 4), the present invention is not limited to this.
  • a configuration including a bandpass filter may be used.
  • FIG. 5 shows an example of the optical spectrum information of the test light generated by the optical spectrum information generator 130.
  • the control section 140 can be configured to control the fiber position adjustment section 110 so that the difference in light intensity for each different wavelength ( ⁇ 1 to ⁇ 4 in the example of FIG. 5) of the test light is reduced. That is, the control unit 140 adjusts the positions (x-direction, y-direction, z-direction) and rotation ( ⁇ -direction, ⁇ -direction) of the first multicore fiber 10 and the second multicore fiber 20 so that the test light is different. Control is performed so that the difference in light intensity for each wavelength is reduced.
  • a central processing unit CPU
  • the multi-core fiber splicing device 100 can be configured to further have an end face fusion part (end face fusion means).
  • the end face fusion splicer melts and connects the end face of the first multicore fiber 10 and the end face of the second multicore fiber 20 .
  • the fiber position adjusting section 110 and the end face fusion splicer constitute an optical fiber fusion splicer.
  • An optical fiber fusion splicer is a device that melts the ends of optical fibers with heat generated by arc discharge and instantly connects the end faces of optical fibers arranged on the left and right sides.
  • test light with a different wavelength is introduced into each core of the first multicore fiber (step S110).
  • optical spectrum information of the test light after being guided through the first multicore fiber and the second multicore fiber connected to the first multicore fiber is generated (step S120).
  • the spatial positions of the first multicore fiber and the second multicore fiber are adjusted (step S130).
  • test light having different wavelengths for each core is introduced into the multicore fiber, and optical spectrum information of the test light after being guided through the multicore fiber is used to determine the space of the multicore fiber. It is configured to adjust the target position. Therefore, the spatial position of the multi-core fiber can be adjusted so that the connection loss for each core becomes uniform. Therefore, according to the multi-core fiber connection method of the present embodiment, when the multi-core fibers are connected and used, the intensity of the optical signal guided through the multi-core fibers can be made uniform for each core.
  • Adjusting the spatial position of the multi-core fiber may include adjusting the spatial position such that the difference in light intensity for different wavelengths of the test light is reduced. Also, introducing the test light (step S110) includes connecting each core of the first multi-core fiber to the first single-core fiber in which the test lights of different wavelengths are respectively guided. can be done.
  • the multi-core fiber connection method of the present embodiment may further include melting and connecting the end face of the first multi-core fiber and the end face of the second multi-core fiber.
  • the intensity of the optical signal guided through the multi-core fibers is made uniform for each core. be able to.
  • FIG. 7 shows the configuration of a multi-core fiber connection device 200 according to this embodiment.
  • the multi-core fiber connection device 200 includes a fiber position adjustment section (fiber position adjustment means) 110, a first optical connection section (first optical connection means) 120, an optical spectrum information generation section (optical spectrum information generation means) 130, and It has a control unit (control means) 140 .
  • the configuration up to this point is the same as the configuration of the multi-core fiber splicing device 100 according to the first embodiment.
  • the multi-core fiber connection device 200 is configured to further include a second optical connection section (second optical connection means) 201 .
  • the second optical connection section 201 optically connects the test light after guided through the first multicore fiber 10 and the second multicore fiber 20 and the optical spectrum information generation section 130 .
  • the multi-core fiber splicing device 200 of this embodiment introduces test light of different wavelengths into the multi-core fiber, like the multi-core fiber splicing device 100 of the first embodiment. Then, the spatial position of the multi-core fiber is adjusted using the optical spectrum information of the test light after being guided through the multi-core fiber. Therefore, the spatial position of the multi-core fiber can be adjusted so that the connection loss for each core becomes uniform. Therefore, according to the multi-core fiber connection device 200 of the present embodiment, when the multi-core fibers are connected and used, the intensity of the optical signal guided through the multi-core fibers can be made uniform for each core.
  • the second optical connection section 201 can be configured to include a spatial optical system coupling section (spatial optical system coupling means).
  • the spatial optical coupling unit couples the test light guided through the second multicore fiber 20 to the second single core fiber connected to the optical spectrum information generating unit 130 .
  • FIG. 8 shows an example of the configuration of the spatial optical system coupling section.
  • the spatial optical system coupling section 210 can be configured to include a lens optical system 211 and an optical axis adjusting section (optical axis adjusting means) 212 .
  • the lens optical system 211 collects the test light guided through the second multicore fiber 20 .
  • the optical axis adjusting section 212 adjusts the optical axis of the second single core fiber 32 .
  • test light can be introduced into the optical spectrum information generator 130 without connecting a fan-in-fan-out (FIFO) or a connector to the second multicore fiber 20 .
  • FIFO fan-in-fan-out
  • an optical fiber with a connector connected to an optical spectrum information generator 130 such as an optical spectrum analyzer or an optical power meter can be used as it is.
  • the second single-core fiber 32 is typically a single mode fiber (SMF) or a multimode fiber (MMF).
  • SMF single mode fiber
  • MMF multimode fiber
  • MMF multimode fiber
  • the second optical connection section 201 may be configured to include a multimode fiber 221 and a fusion splicing section 222, as shown in FIG.
  • This multimode fiber 221 is connected to the optical spectrum information generator 130 .
  • the multimode fiber 221 and the second multicore fiber 20 are fusion-spliced at the fusion splicing portion 222 .
  • the connection between the fan-in-fan-out (FIFO) and the second multi-core fiber 20 requires fusion of the multi-core fibers. It is difficult because it is necessary.
  • MCF multi-core fiber
  • MMF multi-mode fiber
  • the second optical connection section 201 can be configured at low cost.
  • FIG. 10A An example of a cross section of the second multicore fiber 20 is shown in FIG. 10A.
  • FIG. 10B shows an example of a cross section of the multimode fiber 221 .
  • FIG. 10A shows an example of a cross section of a second multicore fiber 20 having four cores (black circles).
  • FIG. 10B also shows each core (white circle broken line) of the second multi-core fiber 20 together with the core portion (black circle).
  • the core diameter D1 of the multimode fiber 221 may be equal to or larger than the diameter D2 of the arrangement region of the cores forming the second multicore fiber 20 and equal to or smaller than the clad diameter D3 of the second multicore fiber 20. can. With such a configuration, the optical coupling efficiency between the second multicore fiber 20 and the multimode fiber 221 can be increased.
  • test light with a different wavelength is introduced into each core of the first multicore fiber (step S110).
  • optical spectrum information of the test light after being guided through the first multicore fiber and the second multicore fiber connected to the first multicore fiber is generated (step S120).
  • this optical spectrum information is used to adjust the spatial positions of the first multicore fiber and the second multicore fiber (step S130).
  • the multi-core fiber connection method according to this embodiment further includes optically processing the test light after being guided through the first multi-core fiber and the second multi-core fiber (step S210).
  • Generating optical spectral information can then include generating optical spectral information for the optically processed test light.
  • the above-described optical processing may include coupling the test light guided through the second multi-core fiber to the second single-core fiber.
  • Generating optical spectral information can then include generating optical spectral information for the test light after being guided through the second single-core fiber.
  • coupling the test light into the second single-core fiber includes collecting the test light guided through the second multi-core fiber and adjusting the optical axis of the second single-core fiber.
  • performing the above-described optical processing includes introducing the test light guided through the second multicore fiber into the multimode fiber fusion-spliced to the second multicore fiber. good too.
  • Generating optical spectral information can then include generating optical spectral information for the test light after being guided through the multimode fiber.
  • the core diameter of the above multimode fiber can be equal to or greater than the diameter of the region where the cores constituting the second multicore fiber are arranged and equal to or less than the clad diameter of the second multicore fiber.
  • the intensity of the optical signal guided through the multicore fibers is made uniform for each core. be able to.
  • Fiber positioning means for adjusting the spatial positions of the first multi-core fiber and the second multi-core fiber connected to the first multi-core fiber, each core of the first multi-core fiber, a first optical connecting means for introducing test light of different wavelengths for each core; and light for generating optical spectrum information of the test light guided through the first multicore fiber and the second multicore fiber.
  • a multi-core fiber splicing device comprising spectral information generating means and control means for controlling said fiber position adjusting means using said optical spectral information.
  • Appendix 2 The multi-core fiber splicing device according to Appendix 1, wherein the control means controls the fiber position adjustment means so that the difference in light intensity between the different wavelengths of the test light is reduced.
  • the first optical connection means is a fan-in-fan-out connecting each core of the first multi-core fiber and a first single-core fiber in which the test lights of different wavelengths are guided.
  • a multicore fiber splicing device according to any one of the appendices 1 or 2, comprising means.
  • Appendix 4 further comprising second optical connection means for optically connecting the test light guided through the first multi-core fiber and the second multi-core fiber and the optical spectrum information generation means; 4.
  • the multi-core fiber splicing device according to any one of Appendices 1 to 3, comprising:
  • the second optical connection means is spatial optics for coupling the test light guided through the second multi-core fiber to a second single-core fiber connected to the optical spectrum information generation means.
  • the spatial optical system coupling means includes a lens optical system for condensing the test light guided through the second multi-core fiber, and an optical axis adjustment for adjusting the optical axis of the second single-core fiber. 6.
  • the second optical connection means includes a multimode fiber connected to the optical spectrum information generation means, and a fusion spliced portion in which the multimode fiber and the second multicore fiber are fusion spliced.
  • the core diameter of the multimode fiber is equal to or greater than the diameter of the region where the cores constituting the second multicore fiber are arranged, and is equal to or smaller than the clad diameter of the second multicore fiber.
  • multi-core fiber splicer According to appendix 7, the core diameter of the multimode fiber is equal to or greater than the diameter of the region where the cores constituting the second multicore fiber are arranged, and is equal to or smaller than the clad diameter of the second multicore fiber.
  • Appendix 9 The multicore fiber splicing device according to any one of Appendices 1 to 8, further comprising end face fusion means for fusing and connecting the end face of the first multicore fiber and the end face of the second multicore fiber.
  • a test light having a different wavelength is introduced into each core of the first multi-core fiber, and the first multi-core fiber and the second multi-core fiber connected to the first multi-core fiber are connected.
  • a multi-core fiber splicing method for generating optical spectrum information of the guided test light and using the optical spectrum information to adjust the spatial positions of the first multi-core fiber and the second multi-core fiber.
  • adjusting the spatial position includes adjusting the spatial position such that the difference in light intensity for each of the different wavelengths of the test light is reduced. connection method.
  • Introducing the test light includes connecting each core of the first multi-core fiber to a first single-core fiber in which the test light of different wavelength is guided. 12.
  • Appendix 13 further comprising subjecting the test light guided through the first multi-core fiber and the second multi-core fiber to optical processing, and generating the optical spectrum information includes 13.
  • Applying the optical processing includes coupling the test light guided through the second multi-core fiber to a second single-core fiber, and generating the optical spectrum information includes 14.
  • Coupling the test light to the second single-core fiber includes condensing the test light guided through the second multi-core fiber and aligning the optical axis of the second single-core fiber. 15. The method of multicore fiber splicing according to clause 14, comprising adjusting.
  • Applying the optical processing includes introducing the test light guided through the second multicore fiber into a multimode fiber fusion-spliced to the second multicore fiber, 14.
  • the core diameter of the multimode fiber is equal to or greater than the diameter of the region where the cores constituting the second multicore fiber are arranged, and is equal to or smaller than the clad diameter of the second multicore fiber. multi-core fiber connection method.
  • Appendix 18 The multi-core fiber connection method according to any one of Appendices 10 to 17, further comprising fusing and connecting the end face of the first multi-core fiber and the end face of the second multi-core fiber.
  • multi-core fiber connection device 110 fiber position adjustment unit 120 first optical connection unit 121 fan-in fan-out unit 130 optical spectrum information generation unit 131 optical coupler 132 optical bandpass filter 133 optical power meter 140 control unit 201 second Optical connection section 210 Spatial optical system coupling section 211 Lens optical system 212 Optical axis adjustment section 221 Multimode fiber 222 Fusion splicing section 10 First multicore fiber 20 Second multicore fiber 31 First single core fiber

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

マルチコアファイバを接続して用いる場合、マルチコアファイバを導波した光信号の強度がコア毎に異なるため、本発明のマルチコアファイバ接続装置(100)は、第1のマルチコアファイバ(10)と、第1のマルチコアファイバ(10)と接続する第2のマルチコアファイバ(20)との空間的位置を調整するファイバ位置調整手段(110)と、第1のマルチコアファイバ(10)の各コアに、コア毎に異なる波長の試験光を導入する第1の光接続手段(120)と、第1のマルチコアファイバ(10)および第2のマルチコアファイバ(20)を導波した後の試験光の光スペクトル情報を生成する光スペクトル情報生成手段(130)と、光スペクトル情報を用いてファイバ位置調整手段(110)を制御する制御手段(140)、とを有する。

Description

マルチコアファイバ接続装置およびマルチコアファイバ接続方法
 本発明は、マルチコアファイバ接続装置およびマルチコアファイバ接続方法に関し、特に、マルチコアファイバ光伝送システムにおいて用いられるマルチコアファイバ接続装置およびマルチコアファイバ接続方法に関する。
 モバイルトラフィックやビデオサービスの急速な拡大などにより、コアネットワークにおける通信容量の拡大が求められている。この容量拡大の要求は、今後も継続する傾向にある。通信容量の拡大はこれまで、時間多重技術や波長多重技術を用いることによって実現されてきた。この時間多重技術や波長多重技術は、シングルコア光ファイバによる光通信システムに適用されてきた。
 通信容量をさらに拡大するため、これまでの多重技術とは異なる次元の多重技術である空間多重技術が開発されている。空間多重技術には、光ファイバ1本あたりのコア数を増大させるマルチコア技術と、伝播モード数を増大させるマルチモード技術がある。現在の光ファイバ通信で用いられているコア数およびモード数は、いずれも一個である。そのため、コア数およびモード数を増大させることによって通信容量を飛躍的に拡大することが可能である。
 このようなマルチコア技術で用いられるマルチコアファイバの軸合法の一例が、特許文献1に記載されている。
 特許文献1に記載されたマルチコアファイバの軸合法では、まず、マルチコアファイバA、Aはその軸合端a、aが互いに接近して対向される。制御器Sは軸合装置の吸着機構を制御し、制御器Sは軸合装置の回転機構を制御する。ここで、軸合端a、a間での漏話に対処するため、制御器S、Sにまで導く2つの光信号の波長を互いに異ならせ、一方の光信号の波長はλとし、他方の光信号の波長はλとしている。このとき、両マルチコアファイバA、Aの各中心コアには一方の光信号λを通し、各周辺コアには他方の光信号λを通す。そして、それぞれの制御器S、Sにおいて光パワーが最大となるようなX、Y方向の軸合端移動調整、ならびにθ方向の軸合端回動調整が行なわれる。この結果、これらの制御器S、Sはそれぞれ所定信号のみによって光パワーの最大値を得るようになるとしている。このような構成としたことにより、関連するマルチコアファイバの軸合法によれば、漏話信号によって光パワーの最大値に誤差が生じるといったことは回避され、マルチコアファイバにおける軸合が正確かつ簡易に行えるとしている。
特公昭61-051764号公報
 上述したように、特許文献1に記載されたマルチコアファイバの軸合法においては、異なる波長の光信号を用いて軸合端間での漏話による影響を回避することにより、正確な軸合わせが行なえるとしている。しかし、マルチコアファイバ同士の軸合わせを行っても、コア毎の接続損失が均等になるとは限らない。そのため、接続されたマルチコアファイバを導波した光信号の強度がコア毎に異なる場合が生じる。
 このように、マルチコアファイバを接続して用いる場合、マルチコアファイバを導波した光信号の強度がコア毎に異なる、という問題があった。
 本発明の目的は、上述した課題である、マルチコアファイバを接続して用いる場合、マルチコアファイバを導波した光信号の強度がコア毎に異なる、という課題を解決するマルチコアファイバ接続装置およびマルチコアファイバ接続方法を提供することにある。
 本発明のマルチコアファイバ接続装置は、第1のマルチコアファイバと、第1のマルチコアファイバと接続する第2のマルチコアファイバとの空間的位置を調整するファイバ位置調整手段と、記第1のマルチコアファイバの各コアに、コア毎に異なる波長の試験光を導入する第1の光接続手段と、第1のマルチコアファイバおよび第2のマルチコアファイバを導波した後の試験光の光スペクトル情報を生成する光スペクトル情報生成手段と、光スペクトル情報を用いてファイバ位置調整手段を制御する制御手段、とを有する。
 本発明のマルチコアファイバ接続方法は、第1のマルチコアファイバの各コアに、コア毎に異なる波長の試験光を導入し、第1のマルチコアファイバ、および第1のマルチコアファイバと接続する第2のマルチコアファイバを導波した後の試験光の光スペクトル情報を生成し、光スペクトル情報を用いて、第1のマルチコアファイバと第2のマルチコアファイバとの空間的位置を調整する。
 本発明のマルチコアファイバ接続装置およびマルチコアファイバ接続方法によれば、マルチコアファイバを接続して用いる場合、マルチコアファイバを導波した光信号のコア毎の強度を均等にすることができる。
本発明の第1の実施形態に係るマルチコアファイバ接続装置の構成を示すブロック図である。 本発明の第1の実施形態に係るマルチコアファイバ接続装置が備えるファイバ位置調整部の動作を説明するための図である。 本発明の第1の実施形態に係るマルチコアファイバ接続装置が備える第1の光接続部の構成を示すブロック図である。 本発明の第1の実施形態に係るマルチコアファイバ接続装置が備える光スペクトル情報生成部の構成を示すブロック図である。 本発明の第1の実施形態に係るマルチコアファイバ接続装置が備える光スペクトル情報生成部130が生成した光スペクトル情報を示す図である。 本発明の第1の実施形態に係るマルチコアファイバ接続方法を説明するためのフローチャートである。 本発明の第2の実施形態に係るマルチコアファイバ接続装置の構成を示すブロック図である。 本発明の第2の実施形態に係るマルチコアファイバ接続装置が備える第2の光接続部に含まれる空間光学系結合部の構成を示すブロック図である。 本発明の第2の実施形態に係るマルチコアファイバ接続装置が備える第2の光接続部の別の構成を示すブロック図である。 本発明の第2の実施形態に係るマルチコアファイバ接続装置とともに用いられる第2のマルチコアファイバの断面図である。 本発明の第2の実施形態に係るマルチコアファイバ接続装置が備える第2の光接続部を構成するマルチモードファイバの断面図である。 本発明の第2の実施形態に係るマルチコアファイバ接続方法を説明するためのフローチャートである。
 以下に、図面を参照しながら、本発明の実施形態について説明する。
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係るマルチコアファイバ接続装置100の構成を示すブロック図である。マルチコアファイバ接続装置100は、ファイバ位置調整部(ファイバ位置調整手段)110、第1の光接続部(第1の光接続手段)120、光スペクトル情報生成部(光スペクトル情報生成手段)130、および制御部(制御手段)140を有する。
 ファイバ位置調整部110は、第1のマルチコアファイバ10と、第1のマルチコアファイバ10と接続する第2のマルチコアファイバ20との空間的位置を調整する。第1の光接続部120は、第1のマルチコアファイバ10の各コアに、コア毎に異なる波長の試験光を導入する。光スペクトル情報生成部130は、第1のマルチコアファイバ10および第2のマルチコアファイバ20を導波した後の試験光の光スペクトル情報を生成する。そして、制御部140は、光スペクトル情報を用いてファイバ位置調整部110を制御する。
 このように、本実施形態のマルチコアファイバ接続装置100は、コア毎に異なる波長の試験光をマルチコアファイバに導入し、マルチコアファイバを導波した後の試験光の光スペクトル情報を用いてマルチコアファイバの空間的位置を調整する構成としている。そのため、コア毎の接続損失が均等になるように、マルチコアファイバの空間的位置を調整することができる。したがって、本実施形態のマルチコアファイバ接続装置100によれば、マルチコアファイバを接続して用いる場合、マルチコアファイバを導波した光信号のコア毎の強度を均等にすることができる。
 ファイバ位置調整部110は、図2に示すように、第1のマルチコアファイバ10と第2のマルチコアファイバ20の位置に関して、面内位置(図中のx方向およびy方向)、軸方向位置(z方向)、および回転量(θ方向、φ方向)をそれぞれ調整する。なお、図2では、第1のマルチコアファイバ10および第2のマルチコアファイバ20のいずれもが4個のコア(C11~C14、C21~C24)を備えた場合を例として示す。
 第1の光接続部120は、ファンインファンアウト(Fan-In Fan-Out:FIFO)部(ファンインファンアウト手段)を備えた構成とすることができる。図3に、第1の光接続部120の構成の一例を示す。ファンインファンアウト部121は、第1のマルチコアファイバ10の各コアと、異なる波長(図3の例ではλ1~λ4)の試験光がそれぞれ導波する第1のシングルコアファイバ31とをそれぞれ接続する。第1のシングルコアファイバ31は、典型的にはシングルモードファイバ(Single Mode Fiber:SMF)である。ファンインファンアウト(FIFO)部121として、ファインバンドル型FIFOや溶融延伸型FIFOを用いることができる。また、空間光学型FIFOや平面光導波路型FIFOを用いることとしてもよい。
 光スペクトル情報生成部130として、典型的には光スペクトラムアナライザまたは光パワーメータを用いることができる。図4に、光スペクトル情報生成部130の構成の一例を示す。光スペクトル情報生成部130は同図に示すように、光カプラ131、光バンドパスフィルタ132、および光パワーメータ133を備えた構成とすることができる。図4では、試験光の異なる波長(図4の例ではλ1~λ4)に対応した4個の光バンドパスフィルタ132を備えた構成を示したが、これに限らず、1個の波長可変光バンドパスフィルタを備えた構成としてもよい。
 図5に、光スペクトル情報生成部130が生成した試験光の光スペクトル情報の一例を示す。ここで、制御部140は、試験光の異なる波長(図5の例ではλ1~λ4)毎の光強度の差が減少するように、ファイバ位置調整部110を制御する構成とすることができる。すなわち、制御部140は、第1のマルチコアファイバ10と第2のマルチコアファイバ20の位置(x方向、y方向、z方向)および回転(θ方向、φ方向)を調整して、試験光の異なる波長毎の光強度の差が減少するように制御する。制御部140として例えば中央演算処理装置(Central Processing Unit:CPU)などを用いることができる。
 マルチコアファイバ接続装置100は、端面融着部(端面融着手段)をさらに有する構成とすることができる。端面融着部は、第1のマルチコアファイバ10の端面と第2のマルチコアファイバ20の端面を溶融して接続する。ここで、ファイバ位置調整部110と端面融着部が光ファイバ融着接続機を構成する。光ファイバ融着接続機は、アーク放電によって発生する熱で光ファイバ端部を溶融し、左右に配置した光ファイバの端面同士を瞬時に接続する装置である。
 次に、本実施形態によるマルチコアファイバ接続方法について、図6に示したフローチャートを用いて説明する。
 本実施形態によるマルチコアファイバ接続方法においては、まず、第1のマルチコアファイバの各コアに、コア毎に異なる波長の試験光を導入する(ステップS110)。次に、第1のマルチコアファイバ、および第1のマルチコアファイバと接続する第2のマルチコアファイバを導波した後の試験光の光スペクトル情報を生成する(ステップS120)。そして、この光スペクトル情報を用いて、第1のマルチコアファイバと第2のマルチコアファイバとの空間的位置を調整する(ステップS130)。
 このように、本実施形態のマルチコアファイバ接続方法は、コア毎に異なる波長の試験光をマルチコアファイバに導入し、マルチコアファイバを導波した後の試験光の光スペクトル情報を用いてマルチコアファイバの空間的位置を調整する構成としている。そのため、コア毎の接続損失が均等になるように、マルチコアファイバの空間的位置を調整することができる。したがって、本実施形態のマルチコアファイバ接続方法によれば、マルチコアファイバを接続して用いる場合、マルチコアファイバを導波した光信号のコア毎の強度を均等にすることができる。
 マルチコアファイバの空間的位置を調整すること(ステップS130)は、試験光の異なる波長毎の光強度の差が減少するように、空間的位置を調整することを含むものとすることができる。また、試験光を導入すること(ステップS110)は、第1のマルチコアファイバの各コアと、異なる波長の試験光がそれぞれ導波する第1のシングルコアファイバとをそれぞれ接続することを含むものとすることができる。
 本実施形態のマルチコアファイバ接続方法は、第1のマルチコアファイバの端面と第2のマルチコアファイバの端面を溶融して接続することをさらに有する構成としてもよい。
 以上説明したように、本実施形態のマルチコアファイバ接続装置100およびマルチコアファイバ接続方法によれば、マルチコアファイバを接続して用いる場合、マルチコアファイバを導波した光信号のコア毎の強度を均等にすることができる。
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図7に、本実施形態によるマルチコアファイバ接続装置200の構成を示す。マルチコアファイバ接続装置200は、ファイバ位置調整部(ファイバ位置調整手段)110、第1の光接続部(第1の光接続手段)120、光スペクトル情報生成部(光スペクトル情報生成手段)130、および制御部(制御手段)140を有する。ここまでの構成は、第1の実施形態によるマルチコアファイバ接続装置100の構成と同様である。
 本実施形態によるマルチコアファイバ接続装置200は、第2の光接続部(第2の光接続手段)201をさらに有する構成とした。第2の光接続部201は、第1のマルチコアファイバ10および第2のマルチコアファイバ20を導波した後の試験光と、光スペクトル情報生成部130とを光学的に接続する。
 本実施形態のマルチコアファイバ接続装置200は、第1の実施形態のマルチコアファイバ接続装置100と同様に、コア毎に異なる波長の試験光をマルチコアファイバに導入する。そして、マルチコアファイバを導波した後の試験光の光スペクトル情報を用いて、マルチコアファイバの空間的位置を調整する構成としている。そのため、コア毎の接続損失が均等になるように、マルチコアファイバの空間的位置を調整することができる。したがって、本実施形態のマルチコアファイバ接続装置200によれば、マルチコアファイバを接続して用いる場合、マルチコアファイバを導波した光信号のコア毎の強度を均等にすることができる。
 ここで、第2の光接続部201は、空間光学系結合部(空間光学系結合手段)を備えた構成とすることができる。空間光学系結合部は、第2のマルチコアファイバ20を導波した試験光を、光スペクトル情報生成部130と接続している第2のシングルコアファイバに結合させる。
 図8に、空間光学系結合部の構成の一例を示す。空間光学系結合部210は、レンズ光学系211と光軸調整部(光軸調整手段)212を備えた構成とすることができる。レンズ光学系211は、第2のマルチコアファイバ20を導波した試験光を集光する。光軸調整部212は、第2のシングルコアファイバ32の光軸を調整する。
 このような構成とすることにより、第2のマルチコアファイバ20にファンインファンアウト(FIFO)やコネクタを接続することなく、試験光を光スペクトル情報生成部130に導入することができる。また、第2のシングルコアファイバ32として、光スペクトラムアナライザや光パワーメータなどの光スペクトル情報生成部130に接続されたコネクタ付きの光ファイバをそのまま使用することができる。
 第2のシングルコアファイバ32は、典型的にはシングルモードファイバ(SMF)またはマルチモードファイバ(Multi Mode Fiber:MMF)である。好適には、マルチモードファイバ(MMF)を用いることができる。
 また、第2の光接続部201は、図9に示すように、マルチモードファイバ221と融着部222を備えた構成としてもよい。このマルチモードファイバ221は光スペクトル情報生成部130と接続している。そして、融着部222において、マルチモードファイバ221と第2のマルチコアファイバ20とが融着接続されている。
 ここで、第2の光接続部201としてファンインファンアウト(FIFO)を用いることとすると、ファンインファンアウト(FIFO)と第2のマルチコアファイバ20との接続は、マルチコアファイバ同士の融着が必要となるので困難である。しかし、第2の光接続部201として上述した構成とすることにより、マルチコアファイバ(Multi Core Fiber:MCF)とマルチモードファイバ(MMF)との融着になるので簡易に接続することが可能である。また、ファンインファンアウト(FIFO)を用いる必要がないので、安価に第2の光接続部201を構成することができる。
 図10Aに、第2のマルチコアファイバ20の断面の例を示す。また、図10Bに、マルチモードファイバ221の断面の例を示す。図10Aでは4個のコア(黒丸)を有する第2のマルチコアファイバ20の断面を例として示す。また、図10Bには、コア部(黒丸)に第2のマルチコアファイバ20の各コア(白丸破線)も合わせて示す。
 ここで、マルチモードファイバ221のコア径D1は、第2のマルチコアファイバ20を構成するコアの配置領域の径D2以上であり、かつ、第2のマルチコアファイバ20のクラッド径D3以下とすることができる。このような構成とすることにより、第2のマルチコアファイバ20とマルチモードファイバ221との光結合効率を増大させることができる。
 次に、本実施形態によるマルチコアファイバ接続方法について、図11に示したフローチャートを用いて説明する。
 本実施形態によるマルチコアファイバ接続方法においては、まず、第1のマルチコアファイバの各コアに、コア毎に異なる波長の試験光を導入する(ステップS110)。そして、第1のマルチコアファイバ、および第1のマルチコアファイバと接続する第2のマルチコアファイバを導波した後の試験光の光スペクトル情報を生成する(ステップS120)。最後に、この光スペクトル情報を用いて、第1のマルチコアファイバと第2のマルチコアファイバとの空間的位置を調整する(ステップS130)。
 これらの構成は、第1の実施形態によるマルチコアファイバ接続方法と同様である。本実施形態によるマルチコアファイバ接続方法においては、第1のマルチコアファイバおよび第2のマルチコアファイバを導波した後の試験光に光学的処理を施す(ステップS210)ことをさらに有する構成とした。このとき、光スペクトル情報を生成すること(ステップS120)は、光学的処理を施された試験光の光スペクトル情報を生成することを含むものとすることができる。
 上述した光学的処理を施すこと(ステップS210)は、第2のマルチコアファイバを導波した試験光を、第2のシングルコアファイバに結合させることを含むこととしてもよい。このとき、光スペクトル情報を生成すること(ステップS120)は、第2のシングルコアファイバを導波した後の試験光の光スペクトル情報を生成することを含むものとすることができる。ここで、試験光を第2のシングルコアファイバに結合させることは、第2のマルチコアファイバを導波した試験光を集光し、第2のシングルコアファイバの光軸を調整することを含むこととしてもよい。
 また、上述した光学的処理を施すこと(ステップS210)は、第2のマルチコアファイバを導波した試験光を、第2のマルチコアファイバと融着接続したマルチモードファイバに導入することを含むこととしてもよい。このとき、光スペクトル情報を生成すること(ステップS120)は、マルチモードファイバを導波した後の試験光の光スペクトル情報を生成することを含むものとすることができる。ここで、上述のマルチモードファイバのコア径は、第2のマルチコアファイバを構成するコアの配置領域の径以上であり、かつ、第2のマルチコアファイバのクラッド径以下であるとすることができる。
 以上説明したように、本実施形態のマルチコアファイバ接続装置200およびマルチコアファイバ接続方法によれば、マルチコアファイバを接続して用いる場合、マルチコアファイバを導波した光信号のコア毎の強度を均等にすることができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)第1のマルチコアファイバと、前記第1のマルチコアファイバと接続する第2のマルチコアファイバとの空間的位置を調整するファイバ位置調整手段と、前記第1のマルチコアファイバの各コアに、前記コア毎に異なる波長の試験光を導入する第1の光接続手段と、前記第1のマルチコアファイバおよび前記第2のマルチコアファイバを導波した後の前記試験光の光スペクトル情報を生成する光スペクトル情報生成手段と、前記光スペクトル情報を用いて前記ファイバ位置調整手段を制御する制御手段、とを有するマルチコアファイバ接続装置。
 (付記2)前記制御手段は、前記試験光の前記異なる波長毎の光強度の差が減少するように、前記ファイバ位置調整手段を制御する付記1に記載したマルチコアファイバ接続装置。
 (付記3)前記第1の光接続手段は、前記第1のマルチコアファイバの各コアと、前記異なる波長の試験光がそれぞれ導波する第1のシングルコアファイバとをそれぞれ接続するファンインファンアウト手段を備える付記1または2に記載したマルチコアファイバ接続装置。
 (付記4)前記第1のマルチコアファイバおよび前記第2のマルチコアファイバを導波した後の前記試験光と、前記光スペクトル情報生成手段とを光学的に接続する第2の光接続手段、をさらに有する付記1から3のいずれか一項に記載したマルチコアファイバ接続装置。
 (付記5)前記第2の光接続手段は、前記第2のマルチコアファイバを導波した前記試験光を、前記光スペクトル情報生成手段と接続している第2のシングルコアファイバに結合させる空間光学系結合手段を備える付記4に記載したマルチコアファイバ接続装置。
 (付記6)前記空間光学系結合手段は、前記第2のマルチコアファイバを導波した前記試験光を集光するレンズ光学系と、前記第2のシングルコアファイバの光軸を調整する光軸調整手段とを備える付記5に記載したマルチコアファイバ接続装置。
 (付記7)前記第2の光接続手段は、前記光スペクトル情報生成手段と接続しているマルチモードファイバと、前記マルチモードファイバと前記第2のマルチコアファイバとが融着接続された融着部、とを備える付記4に記載したマルチコアファイバ接続装置。
 (付記8)前記マルチモードファイバのコア径は、前記第2のマルチコアファイバを構成するコアの配置領域の径以上であり、かつ、前記第2のマルチコアファイバのクラッド径以下である付記7に記載したマルチコアファイバ接続装置。
 (付記9)前記第1のマルチコアファイバの端面と前記第2のマルチコアファイバの端面を溶融して接続する端面融着手段をさらに有する付記1から8のいずれか一項に記載したマルチコアファイバ接続装置。
 (付記10)第1のマルチコアファイバの各コアに、前記コア毎に異なる波長の試験光を導入し、前記第1のマルチコアファイバ、および前記第1のマルチコアファイバと接続する第2のマルチコアファイバを導波した後の前記試験光の光スペクトル情報を生成し、前記光スペクトル情報を用いて、前記第1のマルチコアファイバと前記第2のマルチコアファイバとの空間的位置を調整するマルチコアファイバ接続方法。
 (付記11)前記空間的位置を調整することは、前記試験光の前記異なる波長毎の光強度の差が減少するように、前記空間的位置を調整することを含む付記10に記載したマルチコアファイバ接続方法。
 (付記12)前記試験光を導入することは、前記第1のマルチコアファイバの各コアと、前記異なる波長の試験光がそれぞれ導波する第1のシングルコアファイバとをそれぞれ接続することを含む付記10または11に記載したマルチコアファイバ接続方法。
 (付記13)前記第1のマルチコアファイバおよび前記第2のマルチコアファイバを導波した後の前記試験光に光学的処理を施すことをさらに有し、前記光スペクトル情報を生成することは、前記光学的処理を施された前記試験光の光スペクトル情報を生成することを含む付記10から12のいずれか一項に記載したマルチコアファイバ接続方法。
 (付記14)前記光学的処理を施すことは、前記第2のマルチコアファイバを導波した前記試験光を、第2のシングルコアファイバに結合させることを含み、前記光スペクトル情報を生成することは、前記第2のシングルコアファイバを導波した後の前記試験光の光スペクトル情報を生成することを含む付記13に記載したマルチコアファイバ接続方法。
 (付記15)前記試験光を前記第2のシングルコアファイバに結合させることは、前記第2のマルチコアファイバを導波した前記試験光を集光し、前記第2のシングルコアファイバの光軸を調整することを含む付記14に記載したマルチコアファイバ接続方法。
 (付記16)前記光学的処理を施すことは、前記第2のマルチコアファイバを導波した前記試験光を、前記第2のマルチコアファイバと融着接続したマルチモードファイバに導入することを含み、前記光スペクトル情報を生成することは、前記マルチモードファイバを導波した後の前記試験光の光スペクトル情報を生成することを含む付記13に記載したマルチコアファイバ接続方法。
 (付記17)前記マルチモードファイバのコア径は、前記第2のマルチコアファイバを構成するコアの配置領域の径以上であり、かつ、前記第2のマルチコアファイバのクラッド径以下である付記16に記載したマルチコアファイバ接続方法。
 (付記18)前記第1のマルチコアファイバの端面と前記第2のマルチコアファイバの端面を溶融して接続することをさらに有する付記10から17のいずれか一項に記載したマルチコアファイバ接続方法。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 100、200  マルチコアファイバ接続装置
 110  ファイバ位置調整部
 120  第1の光接続部
 121  ファンインファンアウト部
 130  光スペクトル情報生成部
 131  光カプラ
 132  光バンドパスフィルタ
 133  光パワーメータ
 140  制御部
 201  第2の光接続部
 210  空間光学系結合部
 211  レンズ光学系
 212  光軸調整部
 221  マルチモードファイバ
 222  融着部
 10  第1のマルチコアファイバ
 20  第2のマルチコアファイバ
 31  第1のシングルコアファイバ

Claims (18)

  1. 第1のマルチコアファイバと、前記第1のマルチコアファイバと接続する第2のマルチコアファイバとの空間的位置を調整するファイバ位置調整手段と、
     前記第1のマルチコアファイバの各コアに、前記コア毎に異なる波長の試験光を導入する第1の光接続手段と、
     前記第1のマルチコアファイバおよび前記第2のマルチコアファイバを導波した後の前記試験光の光スペクトル情報を生成する光スペクトル情報生成手段と、
     前記光スペクトル情報を用いて前記ファイバ位置調整手段を制御する制御手段、とを有する
     マルチコアファイバ接続装置。
  2. 前記制御手段は、前記試験光の前記異なる波長毎の光強度の差が減少するように、前記ファイバ位置調整手段を制御する
     請求項1に記載したマルチコアファイバ接続装置。
  3. 前記第1の光接続手段は、前記第1のマルチコアファイバの各コアと、前記異なる波長の試験光がそれぞれ導波する第1のシングルコアファイバとをそれぞれ接続するファンインファンアウト手段を備える
     請求項1または2に記載したマルチコアファイバ接続装置。
  4. 前記第1のマルチコアファイバおよび前記第2のマルチコアファイバを導波した後の前記試験光と、前記光スペクトル情報生成手段とを光学的に接続する第2の光接続手段、をさらに有する
     請求項1から3のいずれか一項に記載したマルチコアファイバ接続装置。
  5. 前記第2の光接続手段は、前記第2のマルチコアファイバを導波した前記試験光を、前記光スペクトル情報生成手段と接続している第2のシングルコアファイバに結合させる空間光学系結合手段を備える
     請求項4に記載したマルチコアファイバ接続装置。
  6. 前記空間光学系結合手段は、前記第2のマルチコアファイバを導波した前記試験光を集光するレンズ光学系と、前記第2のシングルコアファイバの光軸を調整する光軸調整手段とを備える
     請求項5に記載したマルチコアファイバ接続装置。
  7. 前記第2の光接続手段は、
     前記光スペクトル情報生成手段と接続しているマルチモードファイバと、
     前記マルチモードファイバと前記第2のマルチコアファイバとが融着接続された融着部、とを備える
     請求項4に記載したマルチコアファイバ接続装置。
  8. 前記マルチモードファイバのコア径は、前記第2のマルチコアファイバを構成するコアの配置領域の径以上であり、かつ、前記第2のマルチコアファイバのクラッド径以下である
     請求項7に記載したマルチコアファイバ接続装置。
  9. 前記第1のマルチコアファイバの端面と前記第2のマルチコアファイバの端面を溶融して接続する端面融着手段をさらに有する
     請求項1から8のいずれか一項に記載したマルチコアファイバ接続装置。
  10. 第1のマルチコアファイバの各コアに、前記コア毎に異なる波長の試験光を導入し、
     前記第1のマルチコアファイバ、および前記第1のマルチコアファイバと接続する第2のマルチコアファイバを導波した後の前記試験光の光スペクトル情報を生成し、
     前記光スペクトル情報を用いて、前記第1のマルチコアファイバと前記第2のマルチコアファイバとの空間的位置を調整する
     マルチコアファイバ接続方法。
  11. 前記空間的位置を調整することは、前記試験光の前記異なる波長毎の光強度の差が減少するように、前記空間的位置を調整することを含む
     請求項10に記載したマルチコアファイバ接続方法。
  12. 前記試験光を導入することは、前記第1のマルチコアファイバの各コアと、前記異なる波長の試験光がそれぞれ導波する第1のシングルコアファイバとをそれぞれ接続することを含む
     請求項10または11に記載したマルチコアファイバ接続方法。
  13. 前記第1のマルチコアファイバおよび前記第2のマルチコアファイバを導波した後の前記試験光に光学的処理を施すことをさらに有し、
     前記光スペクトル情報を生成することは、前記光学的処理を施された前記試験光の光スペクトル情報を生成することを含む
     請求項10から12のいずれか一項に記載したマルチコアファイバ接続方法。
  14. 前記光学的処理を施すことは、前記第2のマルチコアファイバを導波した前記試験光を、第2のシングルコアファイバに結合させることを含み、
     前記光スペクトル情報を生成することは、前記第2のシングルコアファイバを導波した後の前記試験光の光スペクトル情報を生成することを含む
     請求項13に記載したマルチコアファイバ接続方法。
  15. 前記試験光を前記第2のシングルコアファイバに結合させることは、前記第2のマルチコアファイバを導波した前記試験光を集光し、前記第2のシングルコアファイバの光軸を調整することを含む
     請求項14に記載したマルチコアファイバ接続方法。
  16. 前記光学的処理を施すことは、前記第2のマルチコアファイバを導波した前記試験光を、前記第2のマルチコアファイバと融着接続したマルチモードファイバに導入することを含み、
     前記光スペクトル情報を生成することは、前記マルチモードファイバを導波した後の前記試験光の光スペクトル情報を生成することを含む
     請求項13に記載したマルチコアファイバ接続方法。
  17. 前記マルチモードファイバのコア径は、前記第2のマルチコアファイバを構成するコアの配置領域の径以上であり、かつ、前記第2のマルチコアファイバのクラッド径以下である
     請求項16に記載したマルチコアファイバ接続方法。
  18. 前記第1のマルチコアファイバの端面と前記第2のマルチコアファイバの端面を溶融して接続することをさらに有する
     請求項10から17のいずれか一項に記載したマルチコアファイバ接続方法。
PCT/JP2022/008499 2022-03-01 2022-03-01 マルチコアファイバ接続装置およびマルチコアファイバ接続方法 WO2023166542A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024504030A JPWO2023166542A1 (ja) 2022-03-01 2022-03-01
PCT/JP2022/008499 WO2023166542A1 (ja) 2022-03-01 2022-03-01 マルチコアファイバ接続装置およびマルチコアファイバ接続方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008499 WO2023166542A1 (ja) 2022-03-01 2022-03-01 マルチコアファイバ接続装置およびマルチコアファイバ接続方法

Publications (1)

Publication Number Publication Date
WO2023166542A1 true WO2023166542A1 (ja) 2023-09-07

Family

ID=87883162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008499 WO2023166542A1 (ja) 2022-03-01 2022-03-01 マルチコアファイバ接続装置およびマルチコアファイバ接続方法

Country Status (2)

Country Link
JP (1) JPWO2023166542A1 (ja)
WO (1) WO2023166542A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683712A (en) * 1979-12-12 1981-07-08 Nippon Telegr & Teleph Corp <Ntt> Axially aligning method of multicore fiber
JPS6355505A (ja) * 1986-08-26 1988-03-10 Sumitomo Electric Ind Ltd マルチコア光フアイバの軸合せ方法
US20150043878A1 (en) * 2013-08-06 2015-02-12 Verizon Patent And Licensing Inc. Alignment for splicing multi-core optical fibers
JP2017219560A (ja) * 2016-06-02 2017-12-14 日本電信電話株式会社 光ビーム制御装置
WO2017217539A1 (ja) * 2016-06-17 2017-12-21 住友電気工業株式会社 結合型マルチコア光ファイバの軸合わせ方法
JP2019012096A (ja) * 2017-06-29 2019-01-24 株式会社フジクラ 光デバイスの製造方法
WO2019172162A1 (ja) * 2018-03-07 2019-09-12 日本電信電話株式会社 光スペクトル整形器及びそれを用いた光信号モニタ装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683712A (en) * 1979-12-12 1981-07-08 Nippon Telegr & Teleph Corp <Ntt> Axially aligning method of multicore fiber
JPS6151764B2 (ja) 1979-12-12 1986-11-10 Nippon Denshin Denwa Kk
JPS6355505A (ja) * 1986-08-26 1988-03-10 Sumitomo Electric Ind Ltd マルチコア光フアイバの軸合せ方法
US20150043878A1 (en) * 2013-08-06 2015-02-12 Verizon Patent And Licensing Inc. Alignment for splicing multi-core optical fibers
JP2017219560A (ja) * 2016-06-02 2017-12-14 日本電信電話株式会社 光ビーム制御装置
WO2017217539A1 (ja) * 2016-06-17 2017-12-21 住友電気工業株式会社 結合型マルチコア光ファイバの軸合わせ方法
JP2019012096A (ja) * 2017-06-29 2019-01-24 株式会社フジクラ 光デバイスの製造方法
WO2019172162A1 (ja) * 2018-03-07 2019-09-12 日本電信電話株式会社 光スペクトル整形器及びそれを用いた光信号モニタ装置

Also Published As

Publication number Publication date
JPWO2023166542A1 (ja) 2023-09-07

Similar Documents

Publication Publication Date Title
US6014483A (en) Method of fabricating a collective optical coupling device and device obtained by such a method
US6430337B1 (en) Optical alignment system
JP3287773B2 (ja) 光導波路デバイスの製造方法
US5408556A (en) 1 X N splitter for single-mode fibers and method of construction
JPH0321905A (ja) 偏波カプラ
KR100430945B1 (ko) 광학 소자의 융착 접속 방법 및 이에 의해 제조된 광학 장치
WO2023166542A1 (ja) マルチコアファイバ接続装置およびマルチコアファイバ接続方法
JPH10227934A (ja) 光回路部品とその作製方法および光回路調心装置
US6866428B2 (en) Method for connecting optical fibers, and heat treatment apparatus used therefor
US6959131B2 (en) Achromatic fiber-optic power splitter and related methods
CN111999806A (zh) 一种单模和多模光纤模式耦合的方法和功能器件
JP2000111756A (ja) 光ファイバ―ブロックと平面光導波路素子の整列装置及びその制御方法
JP3949137B2 (ja) 光ファイバ端末とその製造方法並びに光結合器及び光部品
JP3359150B2 (ja) 光部品の光損失測定方法
JPWO2004053547A6 (ja) 光ファイバ端末とその製造方法並びに光結合器及び光部品
JPH0526167B2 (ja)
JP2783392B2 (ja) 光ファイバの軸合わせ方法
WO2022157847A1 (ja) 光クロスコネクト装置
WO2023170862A1 (ja) コア位置特定方法、光ファイバ接続方法および光ファイバ接続装置
JP7371900B2 (ja) マルチコアファイバ用一括モニタ及びモニタリング方法
JP2005031139A (ja) 光受動部品
JPH0361926B2 (ja)
JP2883443B2 (ja) 光ファイバカプラ
JPH01154009A (ja) ファイバ融着型光カプラの製造方法
KR0149719B1 (ko) 적어도 2개 이상의 결합부를 갖는 광섬유커플러 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024504030

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022929691

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022929691

Country of ref document: EP

Effective date: 20241001