WO2023166542A1 - マルチコアファイバ接続装置およびマルチコアファイバ接続方法 - Google Patents
マルチコアファイバ接続装置およびマルチコアファイバ接続方法 Download PDFInfo
- Publication number
- WO2023166542A1 WO2023166542A1 PCT/JP2022/008499 JP2022008499W WO2023166542A1 WO 2023166542 A1 WO2023166542 A1 WO 2023166542A1 JP 2022008499 W JP2022008499 W JP 2022008499W WO 2023166542 A1 WO2023166542 A1 WO 2023166542A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- core
- core fiber
- optical
- test light
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 344
- 238000000034 method Methods 0.000 title claims description 41
- 230000003287 optical effect Effects 0.000 claims abstract description 171
- 238000001228 spectrum Methods 0.000 claims abstract description 59
- 230000008878 coupling Effects 0.000 claims description 20
- 238000010168 coupling process Methods 0.000 claims description 20
- 238000005859 coupling reaction Methods 0.000 claims description 20
- 230000004927 fusion Effects 0.000 claims description 11
- 238000007526 fusion splicing Methods 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 239000013307 optical fiber Substances 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 239000000155 melt Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
Definitions
- the present invention relates to a multi-core fiber connection device and a multi-core fiber connection method, and more particularly to a multi-core fiber connection device and a multi-core fiber connection method used in a multi-core fiber optical transmission system.
- Spatial multiplexing technology which is a multiplexing technology of a different dimension than conventional multiplexing technology, is being developed.
- Spatial multiplexing technology includes multi-core technology for increasing the number of cores per optical fiber and multi-mode technology for increasing the number of propagation modes. Both the number of cores and the number of modes used in current optical fiber communication are one. Therefore, by increasing the number of cores and the number of modes, it is possible to dramatically expand the communication capacity.
- the multi-core fibers A 1 and A 2 are opposed to each other with their coaxial ends a 3 and a 4 close to each other.
- the controller S0 controls the suction mechanism of the alignment device
- the controller S1 controls the rotation mechanism of the alignment device.
- the wavelengths of the two optical signals led to the controllers S 0 and S 1 are made different from each other, and one optical signal has a wavelength of ⁇ 0 and the wavelength of the other optical signal is ⁇ 1 .
- one optical signal ⁇ 0 is passed through each center core of both multi-core fibers A 1 and A 2 , and the other optical signal ⁇ 1 is passed through each peripheral core.
- the respective controllers S 0 and S 1 movement adjustment of the alignment ends in the X and Y directions and rotational adjustment of the alignment ends in the ⁇ direction are performed so as to maximize the optical power.
- these controllers S 0 and S 1 are supposed to obtain the maximum value of the optical power only by the predetermined signals.
- An object of the present invention is to solve the above-described problem that, when connecting multi-core fibers, the intensity of the optical signal guided through the multi-core fibers differs for each core, and a multi-core fiber connection device and multi-core fiber connection. It is to provide a method.
- the multi-core fiber splicing device of the present invention comprises fiber position adjustment means for adjusting the spatial positions of a first multi-core fiber and a second multi-core fiber connected to the first multi-core fiber; First optical connection means for introducing test light of different wavelengths into each core, and light for generating optical spectrum information of the test light after being guided through the first multi-core fiber and the second multi-core fiber It has spectral information generating means and control means for controlling the fiber positioning means using the optical spectral information.
- the multicore fiber connection method of the present invention introduces test light of different wavelengths into each core of a first multicore fiber, and connects the first multicore fiber and the first multicore fiber to the second multicore fiber.
- Optical spectral information is generated for the test light after being guided through the fiber, and the optical spectral information is used to adjust the spatial positions of the first multicore fiber and the second multicore fiber.
- the intensity of the optical signal guided through the multi-core fibers can be made uniform for each core.
- FIG. 1 is a block diagram showing the configuration of a multi-core fiber connection device according to a first embodiment of the present invention
- FIG. FIG. 4 is a diagram for explaining the operation of a fiber position adjusting section included in the multicore fiber splicing device according to the first embodiment of the present invention
- FIG. 2 is a block diagram showing the configuration of a first optical connection section included in the multicore fiber connection device according to the first embodiment of the present invention
- FIG. 2 is a block diagram showing the configuration of an optical spectrum information generator included in the multicore fiber splicing device according to the first embodiment of the present invention
- FIG. 3 is a diagram showing optical spectrum information generated by an optical spectrum information generator 130 provided in the multicore fiber splicing device according to the first embodiment of the present invention
- 1 is a flow chart for explaining a multicore fiber connection method according to a first embodiment of the present invention
- FIG. 4 is a block diagram showing the configuration of a multi-core fiber connection device according to a second embodiment of the present invention
- FIG. 9 is a block diagram showing the configuration of a spatial optical system coupling section included in a second optical connection section provided in a multicore fiber connection device according to a second embodiment of the present invention
- FIG. 10 is a block diagram showing another configuration of the second optical connection part provided in the multicore fiber connection device according to the second embodiment of the present invention
- FIG. 5 is a cross-sectional view of a second multicore fiber used with the multicore fiber splicing device according to the second embodiment of the present invention
- FIG. 10 is a cross-sectional view of a multimode fiber that constitutes a second optical connecting portion provided in a multicore fiber connecting device according to a second embodiment of the present invention
- 6 is a flow chart for explaining a multi-core fiber connection method according to a second embodiment of the present invention
- FIG. 1 is a block diagram showing the configuration of a multicore fiber splicing device 100 according to the first embodiment of the invention.
- the multi-core fiber connection device 100 includes a fiber position adjustment section (fiber position adjustment means) 110, a first optical connection section (first optical connection means) 120, an optical spectrum information generation section (optical spectrum information generation means) 130, and It has a control section (control means) 140 .
- the fiber position adjustment unit 110 adjusts the spatial positions of the first multicore fiber 10 and the second multicore fiber 20 connected to the first multicore fiber 10 .
- the first optical connection section 120 introduces test light of different wavelengths into each core of the first multicore fiber 10 .
- the optical spectrum information generator 130 generates optical spectrum information of the test light after being guided through the first multicore fiber 10 and the second multicore fiber 20 .
- the controller 140 then controls the fiber position adjuster 110 using the optical spectrum information.
- the multi-core fiber splicing device 100 of the present embodiment introduces test light with different wavelengths for each core into the multi-core fiber, and uses the optical spectrum information of the test light after guided through the multi-core fiber to determine the multi-core fiber. It is configured to adjust the spatial position. Therefore, the spatial position of the multi-core fiber can be adjusted so that the connection loss for each core becomes uniform. Therefore, according to the multi-core fiber connection device 100 of the present embodiment, when the multi-core fibers are connected and used, the intensity of each core of the optical signal guided through the multi-core fibers can be made uniform.
- the fiber position adjustment unit 110 adjusts the positions of the first multi-core fiber 10 and the second multi-core fiber 20 by adjusting the in-plane position (x direction and y direction in the drawing) and the axial position (z direction), and the amount of rotation ( ⁇ direction, ⁇ direction).
- FIG. 2 shows an example in which each of the first multicore fiber 10 and the second multicore fiber 20 has four cores (C11 to C14, C21 to C24).
- the first optical connection section 120 can be configured to include a fan-in fan-out (FIFO) section (fan-in fan-out means).
- FIG. 3 shows an example of the configuration of the first optical connection section 120.
- the fan-in-fan-out section 121 connects each core of the first multi-core fiber 10 to the first single-core fiber 31 through which test lights of different wavelengths ( ⁇ 1 to ⁇ 4 in the example of FIG. 3) are guided respectively. do.
- the first single-core fiber 31 is typically a single mode fiber (SMF).
- SMF single mode fiber
- As the fan-in-fan-out (FIFO) section 121 a fine bundle type FIFO or a melt drawing type FIFO can be used. Alternatively, a spatial optical FIFO or a planar optical waveguide FIFO may be used.
- FIG. 4 shows an example of the configuration of the optical spectrum information generator 130.
- the optical spectrum information generator 130 can be configured to include an optical coupler 131, an optical bandpass filter 132, and an optical power meter 133, as shown in the figure.
- FIG. 4 shows a configuration including four optical bandpass filters 132 corresponding to different wavelengths of test light ( ⁇ 1 to ⁇ 4 in the example of FIG. 4), the present invention is not limited to this.
- a configuration including a bandpass filter may be used.
- FIG. 5 shows an example of the optical spectrum information of the test light generated by the optical spectrum information generator 130.
- the control section 140 can be configured to control the fiber position adjustment section 110 so that the difference in light intensity for each different wavelength ( ⁇ 1 to ⁇ 4 in the example of FIG. 5) of the test light is reduced. That is, the control unit 140 adjusts the positions (x-direction, y-direction, z-direction) and rotation ( ⁇ -direction, ⁇ -direction) of the first multicore fiber 10 and the second multicore fiber 20 so that the test light is different. Control is performed so that the difference in light intensity for each wavelength is reduced.
- a central processing unit CPU
- the multi-core fiber splicing device 100 can be configured to further have an end face fusion part (end face fusion means).
- the end face fusion splicer melts and connects the end face of the first multicore fiber 10 and the end face of the second multicore fiber 20 .
- the fiber position adjusting section 110 and the end face fusion splicer constitute an optical fiber fusion splicer.
- An optical fiber fusion splicer is a device that melts the ends of optical fibers with heat generated by arc discharge and instantly connects the end faces of optical fibers arranged on the left and right sides.
- test light with a different wavelength is introduced into each core of the first multicore fiber (step S110).
- optical spectrum information of the test light after being guided through the first multicore fiber and the second multicore fiber connected to the first multicore fiber is generated (step S120).
- the spatial positions of the first multicore fiber and the second multicore fiber are adjusted (step S130).
- test light having different wavelengths for each core is introduced into the multicore fiber, and optical spectrum information of the test light after being guided through the multicore fiber is used to determine the space of the multicore fiber. It is configured to adjust the target position. Therefore, the spatial position of the multi-core fiber can be adjusted so that the connection loss for each core becomes uniform. Therefore, according to the multi-core fiber connection method of the present embodiment, when the multi-core fibers are connected and used, the intensity of the optical signal guided through the multi-core fibers can be made uniform for each core.
- Adjusting the spatial position of the multi-core fiber may include adjusting the spatial position such that the difference in light intensity for different wavelengths of the test light is reduced. Also, introducing the test light (step S110) includes connecting each core of the first multi-core fiber to the first single-core fiber in which the test lights of different wavelengths are respectively guided. can be done.
- the multi-core fiber connection method of the present embodiment may further include melting and connecting the end face of the first multi-core fiber and the end face of the second multi-core fiber.
- the intensity of the optical signal guided through the multi-core fibers is made uniform for each core. be able to.
- FIG. 7 shows the configuration of a multi-core fiber connection device 200 according to this embodiment.
- the multi-core fiber connection device 200 includes a fiber position adjustment section (fiber position adjustment means) 110, a first optical connection section (first optical connection means) 120, an optical spectrum information generation section (optical spectrum information generation means) 130, and It has a control unit (control means) 140 .
- the configuration up to this point is the same as the configuration of the multi-core fiber splicing device 100 according to the first embodiment.
- the multi-core fiber connection device 200 is configured to further include a second optical connection section (second optical connection means) 201 .
- the second optical connection section 201 optically connects the test light after guided through the first multicore fiber 10 and the second multicore fiber 20 and the optical spectrum information generation section 130 .
- the multi-core fiber splicing device 200 of this embodiment introduces test light of different wavelengths into the multi-core fiber, like the multi-core fiber splicing device 100 of the first embodiment. Then, the spatial position of the multi-core fiber is adjusted using the optical spectrum information of the test light after being guided through the multi-core fiber. Therefore, the spatial position of the multi-core fiber can be adjusted so that the connection loss for each core becomes uniform. Therefore, according to the multi-core fiber connection device 200 of the present embodiment, when the multi-core fibers are connected and used, the intensity of the optical signal guided through the multi-core fibers can be made uniform for each core.
- the second optical connection section 201 can be configured to include a spatial optical system coupling section (spatial optical system coupling means).
- the spatial optical coupling unit couples the test light guided through the second multicore fiber 20 to the second single core fiber connected to the optical spectrum information generating unit 130 .
- FIG. 8 shows an example of the configuration of the spatial optical system coupling section.
- the spatial optical system coupling section 210 can be configured to include a lens optical system 211 and an optical axis adjusting section (optical axis adjusting means) 212 .
- the lens optical system 211 collects the test light guided through the second multicore fiber 20 .
- the optical axis adjusting section 212 adjusts the optical axis of the second single core fiber 32 .
- test light can be introduced into the optical spectrum information generator 130 without connecting a fan-in-fan-out (FIFO) or a connector to the second multicore fiber 20 .
- FIFO fan-in-fan-out
- an optical fiber with a connector connected to an optical spectrum information generator 130 such as an optical spectrum analyzer or an optical power meter can be used as it is.
- the second single-core fiber 32 is typically a single mode fiber (SMF) or a multimode fiber (MMF).
- SMF single mode fiber
- MMF multimode fiber
- MMF multimode fiber
- the second optical connection section 201 may be configured to include a multimode fiber 221 and a fusion splicing section 222, as shown in FIG.
- This multimode fiber 221 is connected to the optical spectrum information generator 130 .
- the multimode fiber 221 and the second multicore fiber 20 are fusion-spliced at the fusion splicing portion 222 .
- the connection between the fan-in-fan-out (FIFO) and the second multi-core fiber 20 requires fusion of the multi-core fibers. It is difficult because it is necessary.
- MCF multi-core fiber
- MMF multi-mode fiber
- the second optical connection section 201 can be configured at low cost.
- FIG. 10A An example of a cross section of the second multicore fiber 20 is shown in FIG. 10A.
- FIG. 10B shows an example of a cross section of the multimode fiber 221 .
- FIG. 10A shows an example of a cross section of a second multicore fiber 20 having four cores (black circles).
- FIG. 10B also shows each core (white circle broken line) of the second multi-core fiber 20 together with the core portion (black circle).
- the core diameter D1 of the multimode fiber 221 may be equal to or larger than the diameter D2 of the arrangement region of the cores forming the second multicore fiber 20 and equal to or smaller than the clad diameter D3 of the second multicore fiber 20. can. With such a configuration, the optical coupling efficiency between the second multicore fiber 20 and the multimode fiber 221 can be increased.
- test light with a different wavelength is introduced into each core of the first multicore fiber (step S110).
- optical spectrum information of the test light after being guided through the first multicore fiber and the second multicore fiber connected to the first multicore fiber is generated (step S120).
- this optical spectrum information is used to adjust the spatial positions of the first multicore fiber and the second multicore fiber (step S130).
- the multi-core fiber connection method according to this embodiment further includes optically processing the test light after being guided through the first multi-core fiber and the second multi-core fiber (step S210).
- Generating optical spectral information can then include generating optical spectral information for the optically processed test light.
- the above-described optical processing may include coupling the test light guided through the second multi-core fiber to the second single-core fiber.
- Generating optical spectral information can then include generating optical spectral information for the test light after being guided through the second single-core fiber.
- coupling the test light into the second single-core fiber includes collecting the test light guided through the second multi-core fiber and adjusting the optical axis of the second single-core fiber.
- performing the above-described optical processing includes introducing the test light guided through the second multicore fiber into the multimode fiber fusion-spliced to the second multicore fiber. good too.
- Generating optical spectral information can then include generating optical spectral information for the test light after being guided through the multimode fiber.
- the core diameter of the above multimode fiber can be equal to or greater than the diameter of the region where the cores constituting the second multicore fiber are arranged and equal to or less than the clad diameter of the second multicore fiber.
- the intensity of the optical signal guided through the multicore fibers is made uniform for each core. be able to.
- Fiber positioning means for adjusting the spatial positions of the first multi-core fiber and the second multi-core fiber connected to the first multi-core fiber, each core of the first multi-core fiber, a first optical connecting means for introducing test light of different wavelengths for each core; and light for generating optical spectrum information of the test light guided through the first multicore fiber and the second multicore fiber.
- a multi-core fiber splicing device comprising spectral information generating means and control means for controlling said fiber position adjusting means using said optical spectral information.
- Appendix 2 The multi-core fiber splicing device according to Appendix 1, wherein the control means controls the fiber position adjustment means so that the difference in light intensity between the different wavelengths of the test light is reduced.
- the first optical connection means is a fan-in-fan-out connecting each core of the first multi-core fiber and a first single-core fiber in which the test lights of different wavelengths are guided.
- a multicore fiber splicing device according to any one of the appendices 1 or 2, comprising means.
- Appendix 4 further comprising second optical connection means for optically connecting the test light guided through the first multi-core fiber and the second multi-core fiber and the optical spectrum information generation means; 4.
- the multi-core fiber splicing device according to any one of Appendices 1 to 3, comprising:
- the second optical connection means is spatial optics for coupling the test light guided through the second multi-core fiber to a second single-core fiber connected to the optical spectrum information generation means.
- the spatial optical system coupling means includes a lens optical system for condensing the test light guided through the second multi-core fiber, and an optical axis adjustment for adjusting the optical axis of the second single-core fiber. 6.
- the second optical connection means includes a multimode fiber connected to the optical spectrum information generation means, and a fusion spliced portion in which the multimode fiber and the second multicore fiber are fusion spliced.
- the core diameter of the multimode fiber is equal to or greater than the diameter of the region where the cores constituting the second multicore fiber are arranged, and is equal to or smaller than the clad diameter of the second multicore fiber.
- multi-core fiber splicer According to appendix 7, the core diameter of the multimode fiber is equal to or greater than the diameter of the region where the cores constituting the second multicore fiber are arranged, and is equal to or smaller than the clad diameter of the second multicore fiber.
- Appendix 9 The multicore fiber splicing device according to any one of Appendices 1 to 8, further comprising end face fusion means for fusing and connecting the end face of the first multicore fiber and the end face of the second multicore fiber.
- a test light having a different wavelength is introduced into each core of the first multi-core fiber, and the first multi-core fiber and the second multi-core fiber connected to the first multi-core fiber are connected.
- a multi-core fiber splicing method for generating optical spectrum information of the guided test light and using the optical spectrum information to adjust the spatial positions of the first multi-core fiber and the second multi-core fiber.
- adjusting the spatial position includes adjusting the spatial position such that the difference in light intensity for each of the different wavelengths of the test light is reduced. connection method.
- Introducing the test light includes connecting each core of the first multi-core fiber to a first single-core fiber in which the test light of different wavelength is guided. 12.
- Appendix 13 further comprising subjecting the test light guided through the first multi-core fiber and the second multi-core fiber to optical processing, and generating the optical spectrum information includes 13.
- Applying the optical processing includes coupling the test light guided through the second multi-core fiber to a second single-core fiber, and generating the optical spectrum information includes 14.
- Coupling the test light to the second single-core fiber includes condensing the test light guided through the second multi-core fiber and aligning the optical axis of the second single-core fiber. 15. The method of multicore fiber splicing according to clause 14, comprising adjusting.
- Applying the optical processing includes introducing the test light guided through the second multicore fiber into a multimode fiber fusion-spliced to the second multicore fiber, 14.
- the core diameter of the multimode fiber is equal to or greater than the diameter of the region where the cores constituting the second multicore fiber are arranged, and is equal to or smaller than the clad diameter of the second multicore fiber. multi-core fiber connection method.
- Appendix 18 The multi-core fiber connection method according to any one of Appendices 10 to 17, further comprising fusing and connecting the end face of the first multi-core fiber and the end face of the second multi-core fiber.
- multi-core fiber connection device 110 fiber position adjustment unit 120 first optical connection unit 121 fan-in fan-out unit 130 optical spectrum information generation unit 131 optical coupler 132 optical bandpass filter 133 optical power meter 140 control unit 201 second Optical connection section 210 Spatial optical system coupling section 211 Lens optical system 212 Optical axis adjustment section 221 Multimode fiber 222 Fusion splicing section 10 First multicore fiber 20 Second multicore fiber 31 First single core fiber
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
図1は、本発明の第1の実施形態に係るマルチコアファイバ接続装置100の構成を示すブロック図である。マルチコアファイバ接続装置100は、ファイバ位置調整部(ファイバ位置調整手段)110、第1の光接続部(第1の光接続手段)120、光スペクトル情報生成部(光スペクトル情報生成手段)130、および制御部(制御手段)140を有する。
次に、本発明の第2の実施形態について説明する。図7に、本実施形態によるマルチコアファイバ接続装置200の構成を示す。マルチコアファイバ接続装置200は、ファイバ位置調整部(ファイバ位置調整手段)110、第1の光接続部(第1の光接続手段)120、光スペクトル情報生成部(光スペクトル情報生成手段)130、および制御部(制御手段)140を有する。ここまでの構成は、第1の実施形態によるマルチコアファイバ接続装置100の構成と同様である。
110 ファイバ位置調整部
120 第1の光接続部
121 ファンインファンアウト部
130 光スペクトル情報生成部
131 光カプラ
132 光バンドパスフィルタ
133 光パワーメータ
140 制御部
201 第2の光接続部
210 空間光学系結合部
211 レンズ光学系
212 光軸調整部
221 マルチモードファイバ
222 融着部
10 第1のマルチコアファイバ
20 第2のマルチコアファイバ
31 第1のシングルコアファイバ
Claims (18)
- 第1のマルチコアファイバと、前記第1のマルチコアファイバと接続する第2のマルチコアファイバとの空間的位置を調整するファイバ位置調整手段と、
前記第1のマルチコアファイバの各コアに、前記コア毎に異なる波長の試験光を導入する第1の光接続手段と、
前記第1のマルチコアファイバおよび前記第2のマルチコアファイバを導波した後の前記試験光の光スペクトル情報を生成する光スペクトル情報生成手段と、
前記光スペクトル情報を用いて前記ファイバ位置調整手段を制御する制御手段、とを有する
マルチコアファイバ接続装置。 - 前記制御手段は、前記試験光の前記異なる波長毎の光強度の差が減少するように、前記ファイバ位置調整手段を制御する
請求項1に記載したマルチコアファイバ接続装置。 - 前記第1の光接続手段は、前記第1のマルチコアファイバの各コアと、前記異なる波長の試験光がそれぞれ導波する第1のシングルコアファイバとをそれぞれ接続するファンインファンアウト手段を備える
請求項1または2に記載したマルチコアファイバ接続装置。 - 前記第1のマルチコアファイバおよび前記第2のマルチコアファイバを導波した後の前記試験光と、前記光スペクトル情報生成手段とを光学的に接続する第2の光接続手段、をさらに有する
請求項1から3のいずれか一項に記載したマルチコアファイバ接続装置。 - 前記第2の光接続手段は、前記第2のマルチコアファイバを導波した前記試験光を、前記光スペクトル情報生成手段と接続している第2のシングルコアファイバに結合させる空間光学系結合手段を備える
請求項4に記載したマルチコアファイバ接続装置。 - 前記空間光学系結合手段は、前記第2のマルチコアファイバを導波した前記試験光を集光するレンズ光学系と、前記第2のシングルコアファイバの光軸を調整する光軸調整手段とを備える
請求項5に記載したマルチコアファイバ接続装置。 - 前記第2の光接続手段は、
前記光スペクトル情報生成手段と接続しているマルチモードファイバと、
前記マルチモードファイバと前記第2のマルチコアファイバとが融着接続された融着部、とを備える
請求項4に記載したマルチコアファイバ接続装置。 - 前記マルチモードファイバのコア径は、前記第2のマルチコアファイバを構成するコアの配置領域の径以上であり、かつ、前記第2のマルチコアファイバのクラッド径以下である
請求項7に記載したマルチコアファイバ接続装置。 - 前記第1のマルチコアファイバの端面と前記第2のマルチコアファイバの端面を溶融して接続する端面融着手段をさらに有する
請求項1から8のいずれか一項に記載したマルチコアファイバ接続装置。 - 第1のマルチコアファイバの各コアに、前記コア毎に異なる波長の試験光を導入し、
前記第1のマルチコアファイバ、および前記第1のマルチコアファイバと接続する第2のマルチコアファイバを導波した後の前記試験光の光スペクトル情報を生成し、
前記光スペクトル情報を用いて、前記第1のマルチコアファイバと前記第2のマルチコアファイバとの空間的位置を調整する
マルチコアファイバ接続方法。 - 前記空間的位置を調整することは、前記試験光の前記異なる波長毎の光強度の差が減少するように、前記空間的位置を調整することを含む
請求項10に記載したマルチコアファイバ接続方法。 - 前記試験光を導入することは、前記第1のマルチコアファイバの各コアと、前記異なる波長の試験光がそれぞれ導波する第1のシングルコアファイバとをそれぞれ接続することを含む
請求項10または11に記載したマルチコアファイバ接続方法。 - 前記第1のマルチコアファイバおよび前記第2のマルチコアファイバを導波した後の前記試験光に光学的処理を施すことをさらに有し、
前記光スペクトル情報を生成することは、前記光学的処理を施された前記試験光の光スペクトル情報を生成することを含む
請求項10から12のいずれか一項に記載したマルチコアファイバ接続方法。 - 前記光学的処理を施すことは、前記第2のマルチコアファイバを導波した前記試験光を、第2のシングルコアファイバに結合させることを含み、
前記光スペクトル情報を生成することは、前記第2のシングルコアファイバを導波した後の前記試験光の光スペクトル情報を生成することを含む
請求項13に記載したマルチコアファイバ接続方法。 - 前記試験光を前記第2のシングルコアファイバに結合させることは、前記第2のマルチコアファイバを導波した前記試験光を集光し、前記第2のシングルコアファイバの光軸を調整することを含む
請求項14に記載したマルチコアファイバ接続方法。 - 前記光学的処理を施すことは、前記第2のマルチコアファイバを導波した前記試験光を、前記第2のマルチコアファイバと融着接続したマルチモードファイバに導入することを含み、
前記光スペクトル情報を生成することは、前記マルチモードファイバを導波した後の前記試験光の光スペクトル情報を生成することを含む
請求項13に記載したマルチコアファイバ接続方法。 - 前記マルチモードファイバのコア径は、前記第2のマルチコアファイバを構成するコアの配置領域の径以上であり、かつ、前記第2のマルチコアファイバのクラッド径以下である
請求項16に記載したマルチコアファイバ接続方法。 - 前記第1のマルチコアファイバの端面と前記第2のマルチコアファイバの端面を溶融して接続することをさらに有する
請求項10から17のいずれか一項に記載したマルチコアファイバ接続方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024504030A JPWO2023166542A1 (ja) | 2022-03-01 | 2022-03-01 | |
PCT/JP2022/008499 WO2023166542A1 (ja) | 2022-03-01 | 2022-03-01 | マルチコアファイバ接続装置およびマルチコアファイバ接続方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/008499 WO2023166542A1 (ja) | 2022-03-01 | 2022-03-01 | マルチコアファイバ接続装置およびマルチコアファイバ接続方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023166542A1 true WO2023166542A1 (ja) | 2023-09-07 |
Family
ID=87883162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/008499 WO2023166542A1 (ja) | 2022-03-01 | 2022-03-01 | マルチコアファイバ接続装置およびマルチコアファイバ接続方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023166542A1 (ja) |
WO (1) | WO2023166542A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5683712A (en) * | 1979-12-12 | 1981-07-08 | Nippon Telegr & Teleph Corp <Ntt> | Axially aligning method of multicore fiber |
JPS6355505A (ja) * | 1986-08-26 | 1988-03-10 | Sumitomo Electric Ind Ltd | マルチコア光フアイバの軸合せ方法 |
US20150043878A1 (en) * | 2013-08-06 | 2015-02-12 | Verizon Patent And Licensing Inc. | Alignment for splicing multi-core optical fibers |
JP2017219560A (ja) * | 2016-06-02 | 2017-12-14 | 日本電信電話株式会社 | 光ビーム制御装置 |
WO2017217539A1 (ja) * | 2016-06-17 | 2017-12-21 | 住友電気工業株式会社 | 結合型マルチコア光ファイバの軸合わせ方法 |
JP2019012096A (ja) * | 2017-06-29 | 2019-01-24 | 株式会社フジクラ | 光デバイスの製造方法 |
WO2019172162A1 (ja) * | 2018-03-07 | 2019-09-12 | 日本電信電話株式会社 | 光スペクトル整形器及びそれを用いた光信号モニタ装置 |
-
2022
- 2022-03-01 JP JP2024504030A patent/JPWO2023166542A1/ja active Pending
- 2022-03-01 WO PCT/JP2022/008499 patent/WO2023166542A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5683712A (en) * | 1979-12-12 | 1981-07-08 | Nippon Telegr & Teleph Corp <Ntt> | Axially aligning method of multicore fiber |
JPS6151764B2 (ja) | 1979-12-12 | 1986-11-10 | Nippon Denshin Denwa Kk | |
JPS6355505A (ja) * | 1986-08-26 | 1988-03-10 | Sumitomo Electric Ind Ltd | マルチコア光フアイバの軸合せ方法 |
US20150043878A1 (en) * | 2013-08-06 | 2015-02-12 | Verizon Patent And Licensing Inc. | Alignment for splicing multi-core optical fibers |
JP2017219560A (ja) * | 2016-06-02 | 2017-12-14 | 日本電信電話株式会社 | 光ビーム制御装置 |
WO2017217539A1 (ja) * | 2016-06-17 | 2017-12-21 | 住友電気工業株式会社 | 結合型マルチコア光ファイバの軸合わせ方法 |
JP2019012096A (ja) * | 2017-06-29 | 2019-01-24 | 株式会社フジクラ | 光デバイスの製造方法 |
WO2019172162A1 (ja) * | 2018-03-07 | 2019-09-12 | 日本電信電話株式会社 | 光スペクトル整形器及びそれを用いた光信号モニタ装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023166542A1 (ja) | 2023-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6014483A (en) | Method of fabricating a collective optical coupling device and device obtained by such a method | |
US6430337B1 (en) | Optical alignment system | |
JP3287773B2 (ja) | 光導波路デバイスの製造方法 | |
US5408556A (en) | 1 X N splitter for single-mode fibers and method of construction | |
JPH0321905A (ja) | 偏波カプラ | |
KR100430945B1 (ko) | 광학 소자의 융착 접속 방법 및 이에 의해 제조된 광학 장치 | |
WO2023166542A1 (ja) | マルチコアファイバ接続装置およびマルチコアファイバ接続方法 | |
JPH10227934A (ja) | 光回路部品とその作製方法および光回路調心装置 | |
US6866428B2 (en) | Method for connecting optical fibers, and heat treatment apparatus used therefor | |
US6959131B2 (en) | Achromatic fiber-optic power splitter and related methods | |
CN111999806A (zh) | 一种单模和多模光纤模式耦合的方法和功能器件 | |
JP2000111756A (ja) | 光ファイバ―ブロックと平面光導波路素子の整列装置及びその制御方法 | |
JP3949137B2 (ja) | 光ファイバ端末とその製造方法並びに光結合器及び光部品 | |
JP3359150B2 (ja) | 光部品の光損失測定方法 | |
JPWO2004053547A6 (ja) | 光ファイバ端末とその製造方法並びに光結合器及び光部品 | |
JPH0526167B2 (ja) | ||
JP2783392B2 (ja) | 光ファイバの軸合わせ方法 | |
WO2022157847A1 (ja) | 光クロスコネクト装置 | |
WO2023170862A1 (ja) | コア位置特定方法、光ファイバ接続方法および光ファイバ接続装置 | |
JP7371900B2 (ja) | マルチコアファイバ用一括モニタ及びモニタリング方法 | |
JP2005031139A (ja) | 光受動部品 | |
JPH0361926B2 (ja) | ||
JP2883443B2 (ja) | 光ファイバカプラ | |
JPH01154009A (ja) | ファイバ融着型光カプラの製造方法 | |
KR0149719B1 (ko) | 적어도 2개 이상의 결합부를 갖는 광섬유커플러 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22929691 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024504030 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022929691 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022929691 Country of ref document: EP Effective date: 20241001 |