WO2023165531A1 - 一种透气性流延膜及其制备方法 - Google Patents

一种透气性流延膜及其制备方法 Download PDF

Info

Publication number
WO2023165531A1
WO2023165531A1 PCT/CN2023/079090 CN2023079090W WO2023165531A1 WO 2023165531 A1 WO2023165531 A1 WO 2023165531A1 CN 2023079090 W CN2023079090 W CN 2023079090W WO 2023165531 A1 WO2023165531 A1 WO 2023165531A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
permeable
density polyethylene
parts
polyethylene
Prior art date
Application number
PCT/CN2023/079090
Other languages
English (en)
French (fr)
Inventor
王冬梅
张爱华
黄国华
陆军
张慧慧
李翀
张春君
付正义
Original Assignee
上海紫华薄膜科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海紫华薄膜科技有限公司 filed Critical 上海紫华薄膜科技有限公司
Publication of WO2023165531A1 publication Critical patent/WO2023165531A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins

Definitions

  • the application relates to the technical field of plastics, more specifically, it relates to a gas-permeable casting film and a preparation method thereof.
  • Plastic film refers to films made of polyvinyl chloride, polyethylene, polypropylene, polystyrene and other resins, which are widely used in food, medicine, chemical industry, daily necessities and other fields.
  • the breathable film is a plastic film formed by adding incompatible inorganic particle porogens to the polymer and stretching after film formation.
  • micropores like capillaries in its structure. These micropores Gas molecules are allowed to pass through, but liquid molecules are not allowed to pass through. Based on the breathable and waterproof performance of the breathable film, it is widely used in the field of personal hygiene and medical care.
  • breathable film which is (15 ⁇ 25): (25 ⁇ 35): (5) by mass ratio by low density polyethylene, linear low density polyethylene, metallocene linear low density polyethylene and high density polyethylene ⁇ 15): (35 ⁇ 45) composition.
  • the air permeability of the breathable film is tested, and the time required for the sample to pass through 100mL of air is at least 7850s.
  • the present application provides a breathable cast film and a preparation method thereof.
  • the present application provides an air-permeable cast film, which adopts the following technical solution:
  • a gas-permeable cast film is a layered structure composed of a core layer and surface layers arranged on both sides of the core layer;
  • the surface layer comprises the following components in parts by weight:
  • Described core layer comprises the component of following weight fraction:
  • the breathable masterbatch includes high-density polyethylene, polyethylene glycol and butylene glycol.
  • the nonionic surfactant polyethylene glycol, chain extender butanediol and high-density polyethylene are compounded, and the high-density polyethylene, polyethylene glycol and butanediol have a synergistic effect.
  • the dispersion among the three is strong, which promotes the synergistic effect between high-density polyethylene, polyethylene glycol and butanediol, which can promote high Density polyethylene crystallization improves the crystallinity and lamellar thickness of high-density polyethylene, and obtains breathable masterbatches with good dispersion, narrow molecular weight distribution and large molecular weight.
  • the resulting breathable masterbatch has a strong microporous structure stability, which can reduce the influence of other process conditions on the microporous structure of the breathable masterbatch .
  • the breathable masterbatch is added to the surface layer and the core layer, which improves the crystallinity and lamella thickness of the surface layer and the core layer, improves the elastic recovery rate of the surface layer and the core layer, and is beneficial to the subsequent stretching treatment of the surface layer and the core layer.
  • the skin and core layers separate and form structurally stable micropores, improving the resulting cast Membrane breathability and yield.
  • the pore size of the obtained breathable casting film is smaller than the particle size of water and larger than the particle size of water vapor or air. Therefore, the obtained air-permeable cast film has good air-permeability and waterproofness.
  • the polyethylene glycol and butylene glycol have good compatibility with water, the polyethylene glycol and butylene glycol come off and dissolve from the surface layer and the core layer. In water, a large number of micropores with irregularly arranged holes are formed on the surface layer and the core layer surface, which can further improve the air permeability of the obtained cast film.
  • the time required for the obtained air permeable cast film to pass through 100mL of air is at least 5525s .
  • the melt flow rate of the high-density polyethylene is 8.0-10 g/10 min, and the molecular weight of the polyethylene glycol is 400-600.
  • the melt flow rate of high-density polyethylene is 8.0-10g/10min, which has a unique molecular weight and crystallinity
  • the above-mentioned high-density polyethylene, polyethylene glycol and butanediol are compounded, and there is It is conducive to improving the synergistic effect of polyethylene glycol, butylene glycol and high-density polyethylene, further improving the crystallinity and platelet thickness of high-density polyethylene, and obtaining breathable masterbatches with narrow molecular weight distribution and large molecular weight.
  • the polyethylene glycol with the above molecular weight can also promote the miscibility of butanediol and water, so that the breathable masterbatch has good solubility in water at relatively low temperature. Therefore, the air-permeable masterbatch obtained by compounding high-density polyethylene, polyethylene glycol and butanediol under the above conditions increases the number of micropores in the obtained air-permeable cast film, which is conducive to improving the air-permeable cast film obtained. air permeability.
  • the breathable masterbatch is composed of high-density polyethylene, polyethylene glycol and butylene glycol in a weight ratio of 1:(0.2-0.4):(0.2-0.4).
  • the air-permeable masterbatch is made of high-density polyethylene, polyethylene glycol and butylene glycol
  • the composition is mixed in a weight ratio of 1:(0.4-0.6):(0.4-0.6).
  • the finally obtained breathable cast film has holes on the surface layer and the core layer staggered with each other.
  • the pore diameter of the micropores in the core layer is larger than that of the surface layer micropores, which is conducive to the formation of air pressure in the air-permeable cast film to promote air circulation, thereby improving the air permeability of the air-permeable cast film.
  • the metallocene linear low density polyethylene is composed of metallocene linear low density polyethylene 3527PA and metallocene linear low density polyethylene 2018MB, and the metallocene linear low density polyethylene 3527PA and metallocene linear low density polyethylene
  • the weight ratio of ethylene 2018MB is (1.5-1.7):1.
  • compounding metallocene linear low-density polyethylene 3527PA and metallocene linear low-density polyethylene 2018MB according to the above ratio can improve the mechanical properties of the obtained air-permeable cast film.
  • the particle size of the air-permeable masterbatch is 0.2-0.8 mm.
  • the particle size of the air-permeable masterbatch is within the above range, the dispersion in the core layer and the surface layer is better, and it has good separation ability, which is conducive to improving the micropores formed in the core layer and the surface layer. Quantity, improve the air permeability of the resulting cast film.
  • the present application provides a method for preparing a breathable cast film, which adopts the following technical scheme:
  • a method for preparing an air-permeable cast film comprising the steps of:
  • the core layer component and the surface layer component are melted and co-extruded, cooled, stretched, shaped, rolled up, soaked in a water tank, and dried to obtain a breathable cast film.
  • the air-permeable masterbatch in the core layer and the surface layer are separated and micropores are formed.
  • wet cooling is adopted, so that the air-permeable masterbatches in the core layer and the surface layer contact cold water and are dissolved by cold water, which is conducive to further increasing the number of micropores in the obtained air-permeable cast film and improving the air-permeability of the obtained film. Breathable and waterproof properties of cast film.
  • the stretching step includes cold stretching and hot stretching, the temperature of cold stretching is 30-40°C, and the stretching ratio is 1.5-1.7; the temperature of hot stretching is 90-110°C, and the stretching ratio 1.8-1.9.
  • the hot stretching stage promotes the separation of the lamellar structure in the breathable masterbatch , to increase the pore size of the micropores.
  • the lamella in the breathable masterbatch promotes the micropores to form a network structure during the thermal stretching stage, which is beneficial to improve the stability of the micropores. Therefore, after the surface layer and the core layer are cold-stretched and hot-stretched, the air-permeable waterproof membrane obtained has higher air-permeable and waterproof properties.
  • the obtained breathable masterbatch has a narrow molecular weight distribution and a large molecular weight, which is conducive to the separation and formation of a large number of micro-particles in the stretching step. Pores improve the air permeability of the cast film obtained; at the same time, the polyethylene glycol and butanediol in the breathable masterbatch can also be miscible with water in the cooling step, which increases the microporous structure on the surface of the cast film obtained, thus further improving The gas permeability of gained casting film is improved;
  • the method of the present application through cold stretching and hot stretching, promotes the change of the lamella structure in the breathable masterbatch, is conducive to the separation of the breathable masterbatch and forms a large number of micropores, and improves the air permeability of the obtained cast film; at the same time,
  • the preparation method of the present application is simple in operation and convenient for large-scale production.
  • Metallocene linear low-density polyethylene model 3527PA, melt flow rate 3.5g/10min, density 0.927g/cm 3 ;
  • Metallocene linear low density polyethylene the model is 2018MB, the melt flow rate is 10g/10min, and the density is 1.01g/cm 3 ;
  • High-pressure polyethylene model LA-0710, purchased from Kaidun Chemical;
  • Linear low-density polyethylene Saudi 218W, purchased from Jiangsu Gaoou Import and Export Co., Ltd.;
  • the detection standards for water vapor transmission rate, air transmission rate, hydrostatic pressure resistance, elongation at break and porosity are as follows:
  • Air permeability detection refer to IS P8117;
  • Elongation at break detection refer to GB/T1040.3;
  • Porosity detection refer to GB/T 33052-2016.
  • a breathable masterbatch the components and their weights are shown in Table 1.
  • the preparation steps are: mixing high-density polyethylene, polyethylene glycol and butanediol, and banburying at 140°C for 5 minutes, then using double With a screw extruder, the screw speed is 60r/min, and the temperature of the extruder is 180-230°C, extruding and granulating to obtain the air-permeable masterbatch.
  • the type of high-density polyethylene used is 5361A, and the melt flow rate of high-density polyethylene 5361A is 5.4g/10min, purchased from Suzhou Jinsulian Plastic Chemical Co., Ltd.
  • the polyethylene glycol model is PEG-200, the molecular weight is 200, purchased from Jinan Yongchen Chemical Co., Ltd.
  • the particle size of the breathable masterbatch is 0.2-0.8mm.
  • a breathable masterbatch the difference from Preparation Example 3 is that the same amount of high-density polyethylene DGDA-6944 is used to replace high-density polyethylene 5361A, and the melt flow rate of high-density polyethylene DGDA-6944 is 8.0g/10min ; Adopt equivalent polyethylene glycol PEG400 to replace polyethylene glycol PEG-200, and the molecular weight of polyethylene glycol PEG400 is 400.
  • the particle size of the breathable masterbatch is 0.2-0.8mm.
  • a kind of breathable casting film, each component and its weight are as shown in table 2, and prepare by following preparation steps:
  • each zone of extruder A hopper is 185°C, 210°C, 245°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C;
  • the temperature of each area of the extruder B hopper is 200°C, 220°C, 250°C, 260°C, 265°C, 265°C, /, 265°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C.
  • the basis weight of the obtained air permeable cast film was 35 g/m 2 .
  • the air permeable cast film obtained in Examples 1-3 has a water vapor transmission rate as high as 2632-2652g/(m 2 *24h), an air transmission rate as low as 5680-5685s/100mL, and is resistant to static water.
  • the pressure is as high as 62-65cm/H 2 O, and the porosity is as high as 40-42%. This shows that the air-permeable casting film obtained in the present application has good air-permeable and waterproof ability, and has a higher elongation at break.
  • Example 2 An air-permeable casting film, the difference from Example 2 is that, except that the surface layer and the core layer use water-permeable masterbatches obtained from different preparation examples, everything else is the same as Example 2.
  • the water-permeable masterbatch used in the surface layer and the core layer is shown in the table below.
  • the air-permeable cast film obtained in Examples 2, 4-11, and Example 14 has high water vapor transmission rate, air transmission rate, hydrostatic pressure resistance, elongation at break and porosity. Higher than the air permeable cast film obtained in Example 12 and Example 13.
  • the air-permeable masterbatch is mixed by high-density polyethylene, polyethylene glycol and butylene glycol in a weight ratio of 1: (0.2-0.6): (0.2-0.6)
  • the composition can improve the air permeability and water resistance and elongation at break of the obtained air permeable cast film.
  • the air-permeable cast films obtained in Examples 4-11 have a water vapor permeability
  • the pass rate, air permeability, hydrostatic pressure resistance, elongation at break and porosity are all high.
  • the air-permeable master batch in the surface layer, is composed of high-density polyethylene, polyethylene glycol and butanediol in a weight ratio of 1: (0.2-0.4): (0.2- 0.4) Mixed composition; in the core layer, the breathable masterbatch is composed of high-density polyethylene, polyethylene glycol and butanediol mixed in a weight ratio of 1:(0.4-0.6):(0.4-0.6).
  • the air-permeable and waterproof ability of the finally obtained air-permeable casting film can be improved.
  • the water vapor transmission rate, air transmission rate, hydrostatic pressure resistance, elongation at break and The porosity is high.
  • a gas-permeable cast film the difference from Example 14 is that the metallocene linear low density
  • the polyethylene is composed of 4kg metallocene linear low density polyethylene 3527PA and 2.5kg metallocene linear low density polyethylene 2018MB, and the others are the same as in Example 14.
  • metallocene linear low density polyethylene obtained by metallocene linear low density polyethylene 3527PA and metallocene linear low density polyethylene 2018MB by weight ratio (1.5-1.7): 1 has a great influence on the gas permeable casting film.
  • the impact on performance is the same, so in the examples of this application, only the mixed composition of metallocene linear low density polyethylene 3527PA and metallocene linear low density polyethylene 2018MB is 1.6:1 as an example for a brief description, but it does not affect Other weight ratios of metallocene linear low density polyethylene 3527PA and metallocene linear low density polyethylene 2018MB are used in this application.
  • Example 14 The water vapor transmission rate, air transmission rate, hydrostatic pressure resistance, elongation at break and porosity of the air-permeable cast film obtained in Example 14 are tested and the test results are shown in the table below.
  • An air-permeable cast film the difference from Example 15 is that in the preparation step S3 of the air-permeable cast film, the cold stretching temperature is 30°C, and the draw ratio is 1.5; the hot stretching temperature is 90°C, the draw ratio is 1.8.
  • Example 16 The water vapor transmission rate, air transmission rate, hydrostatic pressure resistance, elongation at break and porosity of the air-permeable cast film obtained in Example 16 are tested and the test results are shown in the table below.
  • the temperature of cold stretching is 30-40°C, and the stretching ratio is 1.5-1.7; the temperature of hot stretching is 90-110°C, and the stretching ratio is 1.8-1.9, It has the same effect on the water vapor transmission rate, hydrostatic pressure resistance, elongation at break and porosity of the finally obtained air-permeable cast film, so in the examples of this application, only the temperature of cold stretching is 30°C, stretching The ratio is 1.5; the hot stretching temperature is 90°C, and the stretching ratio is 1.8 as an example for a brief description, but it does not affect the application of hot stretching, cold stretching temperature and stretching ratio in this application.
  • a gas-permeable casting film which differs from Example 16 in that an equivalent amount of polyethylene glycol PEG400 is used instead of butanediol, and the others are the same as in Example 16.
  • a gas-permeable casting film the difference from Example 16 is that the same amount of butanediol is used to replace polyethylene glycol PEG400, and the others are the same as Example 16.
  • An air-permeable casting film the difference from Example 16 is that the same amount of butanediol is used to replace the air-permeable masterbatch, and the others are the same as in Example 16.
  • An air-permeable casting film the difference from Example 16 is that the same amount of polyethylene glycol PEG400 is used to replace the air-permeable masterbatch, and the others are the same as in Example 16.
  • Example 16 An air-permeable casting film, the difference from Example 16 is that the same amount of low-density polyethylene LD605 is used instead of high-density polyethylene DGDA-6944, and the others are the same as in Example 16.
  • the air permeable cast film obtained in Comparative Examples 1-5 has a water vapor transmission rate as low as 1105-1253g/(m 2 *24h), the air permeability is as high as 6500-6615s/100mL, the hydrostatic pressure resistance is as low as 50-55cm/H 2 O, and the porosity is as low as 26-33%.
  • the air permeable casting film obtained according to Comparative Examples 1-5 has a relatively lower water vapor transmission rate of 55.25-60.54%, and a relative increase of 17.65-19.73% in air permeation rate. %, the hydrostatic pressure resistance is relatively reduced by 28.57-35.06%, and the porosity is relatively reduced by 36.54-50.00%.
  • high-density polyethylene, polyethylene glycol and butanediol have a synergistic effect, which can improve the air-permeability, water resistance and elongation at break of the air-permeable cast film obtained. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本申请涉及塑料技术领域,更具体地说,它涉及一种透气性流延膜及其制备方法。一种透气性流延膜为层状结构,由芯层和设置在芯层两侧的表层复合而成;所述表层包括如下重量份数的组分:茂金属线性低密度聚乙烯55-75份、高压聚乙烯20-35份、透气母粒15-25份、所述芯层包括如下重量分数的组分:线性低密度聚乙烯16.5-20.5份、高压聚乙烯12-16份、透气母粒60-65份;所述透气母粒包括高密度聚乙烯、聚乙二醇和丁二醇;其制备方法为:将芯层材组分和表层组分熔融共挤出,冷却定型,收卷,得到透气性流延膜。本申请的透气性流延膜具有大量孔洞排列不规则的微孔,有利于提高空气流通,具有较高的透气性。

Description

一种透气性流延膜及其制备方法 技术领域
本申请涉及塑料技术领域,更具体地说,它涉及一种透气性流延膜及其制备方法。
背景技术
塑料薄膜是指用聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯以及其他树脂制成的薄膜,被广泛应用于食品、医药、化工、生活用品等领域。其中,透气性薄膜是一种通过在聚合物中加入不相容的无机微粒致孔剂,经过成膜后拉伸形成的塑料薄膜,其结构中存在很多像毛细管一样的微孔,这些微孔可允许气体分子通过,但不允许液体分子通过。基于透气性薄膜的透气防水性能,其被广泛应用于个人卫生护理领域及医疗领域。
目前,存在一种透气薄膜,由低密度聚乙烯、线性低密度聚乙烯、茂金属线性低密度聚乙烯和高密度聚乙烯按质量比为(15~25)∶(25~35)∶(5~15)∶(35~45)组成。按照JIS P8117的方法对该透气薄膜进行透气性检测,试样透过100mL空气所需时间最短为7850s。
但是,随着人们生活水平不断提高,人们对日常卫生护理用品的品质、透气性和舒适度等要求也越来越高,因此,已有透气薄膜的透气性已不能很好地满足人们的需要,薄膜的透气性有待提高。
发明内容
为了提高流延膜的透气性,本申请提供一种透气性流延膜及其制备方法。
第一方面,本申请提供一种透气性流延膜,采用如下的技术方案:
一种透气性流延膜,为层状结构,由芯层和设置在芯层两侧的表层复合而成;
所述表层包括如下重量份数的组分:
茂金属线性低密度聚乙烯55-75份;
高压聚乙烯20-35份;
透气母粒15-25份;
所述芯层包括如下重量分数的组分:
线性低密度聚乙烯16.5-20.5份;
高压聚乙烯12-16份;
透气母粒60-65份;
所述透气母粒包括高密度聚乙烯、聚乙二醇和丁二醇。
通过采用上述技术方案,将非离子表面活性剂聚乙二醇、扩链剂丁二醇与高密度聚乙烯复配,高密度聚乙烯、聚乙二醇和丁二醇具有协同作用。一方面,高密度聚乙烯、聚乙二醇和丁二醇复配后,三者之间分散性较强,促进高密度聚乙烯、聚乙二醇和丁二醇之间的协同作用,可促进高密度聚乙烯结晶,提高了高密度聚乙烯的结晶度和片晶厚度,得到分散性好、分子量分布较窄、分子量较大的透气母粒。另一方面,高密度聚乙烯、聚乙二醇和丁二醇复配后,所得的透气母粒,产生的微孔结构稳定性较强,可减少其他工艺条件对透气母粒微孔结构的影响。
因此,将透气母粒加入表层和芯层中,提高了表层和芯层的结晶度和片晶厚度,提高了表层和芯层的弹性回复率,有利于表层和芯层在后续的拉伸处理步骤中,表层和芯层分离并形成结构稳定的微孔,提高所得流延 膜的透气性和成品率。同时,由于透气母粒在表层和芯层中的分散性较好,所得的透气性流延膜的孔径,小于水的粒径,大于水蒸气或空气的粒径。因此,所得的透气性流延膜,具有良好的透气性和防水性。而且,在表层和芯层在后续的冷却处理步骤中,因聚乙二醇和丁二醇均与水具有良好的相容性,所以聚乙二醇和丁二醇从表层和芯层中脱落并溶解于水中,使得表层和芯层表面成形成大量孔洞排列不规则的微孔,可进一步提高了所得流延膜的透气性,所得的透气性流延膜,透过100mL空气所需时间最短为5525s。
优选的,所述高密度聚乙烯的熔体流动率为8.0-10g/10min,所述聚乙二醇的分子量为400-600。
通过采用上述技术方案,高密度聚乙烯的熔体流动率为8.0-10g/10min,其具有特有的分子量和结晶度,将上述高密度聚乙烯、聚乙二醇与丁二醇复配,有利于提高聚乙二醇、丁二醇和高密度聚乙烯的协同作用,进一步提高了高密度聚乙烯的结晶度和片晶厚度,得到分子量分布较窄、分子量较大的透气母粒。同时,上述分子量的聚乙二醇还可促进丁二醇与水互溶,使得透气母粒在较低温度水中具有良好的溶解度。因此,采用上述条件下的高密度聚乙烯、聚乙二醇与丁二醇复配所得的透气母粒,提高了所得透气性流延膜的微孔数量,有利于提高所得透气性流延膜的透气性。
优选的,所述表层中,透气母粒由高密度聚乙烯、聚乙二醇和丁二醇按重量比1∶(0.2-0.4)∶(0.2-0.4)混合组成。
优选的,所述芯层中,透气母粒由高密度聚乙烯、聚乙二醇和丁二醇 按重量比1∶(0.4-0.6)∶(0.4-0.6)混合组成。
通过采用上述技术方案,通过优化表层和芯层中,制备透气母粒所用高密度聚乙烯、聚乙二醇和丁二醇的配比,最终所得的透气性流延膜,表层和芯层表面孔洞相互交错排列。同时,芯层的微孔的孔径大于表层微孔的孔径,有利于透气性流延膜内形成气压,促进空气流通,从而提高透气性流延膜的透气性。
优选的,所述茂金属线性低密度聚乙烯由茂金属线性低密度聚乙烯3527PA和茂金属线性低密度聚乙烯2018MB混合组成,所述茂金属线性低密度聚乙烯3527PA和茂金属线性低密度聚乙烯2018MB的重量比为(1.5-1.7)∶1。
通过采用上述技术方案,茂金属线性低密度聚乙烯3527PA和茂金属线性低密度聚乙烯2018MB按上述比例进行复配,可提高所得透气性流延膜的力学性能。
优选的,所述透气母粒的粒径为0.2-0.8mm。
通过采用上述技术方案,由于透气母粒的粒径在上述范围内,在芯层和表层中的分散性较好,并且具有良好的分离能力,有利于提高在芯层和表层中形成的微孔数量,提高所得流延膜的透气性。
第二方面,本申请提供一种透气性流延膜的制备方法,采用如下的技术方案:
一种透气性流延膜的制备方法,包括如下步骤:
将芯层材组分和表层组分熔融共挤出,冷却,拉伸,定型,收卷,水槽浸泡,干燥,即得透气性流延膜。
通过采用上述技术方案,芯层材组分和表层组分依次经过熔融共挤出和拉伸处理后,芯层和表层中的透气母粒分离并形成微孔。同时,在冷却定型步骤中,采用湿法冷却,使得芯层和表层中的透气母粒接触冷水,并被冷水溶解,有利于进一步提高所得透气性流延膜的微孔数量,提高所得透气性流延膜的透气防水性。
优选的,所述拉伸步骤包括冷拉伸和热拉伸,冷拉伸的温度为30-40℃,拉伸比为1.5-1.7;热拉伸的温度为90-110℃,拉伸比为1.8-1.9。
通过采用上述技术方案,表层和芯层在上述条件下,冷拉伸使得透气母粒中的片晶结构发生弯曲,并分离成微孔;热拉伸阶段促进透气母粒中的片晶结构分离,提高微孔的孔径。同时,透气母粒中的片晶在热拉伸阶段,促使微孔形成网络结构,有利于提高微孔的稳定性。因此,表层和芯层经过冷拉伸和热拉伸后,所得的透气性防水膜,具有较高的透气防水性。
综上所述,本申请具有以下有益效果:
1、由于本申请采用的高密度聚乙烯、聚乙二醇和丁二醇具有协同作用,所得的透气母粒分子量分布较窄、分子量较大,有利于在拉伸步骤中,分离并形成大量微孔,提高所得流延膜的透气性;同时,透气母粒中的聚乙二醇和丁二醇还能在冷却步骤中与水互溶,增加了所得流延膜表面的微孔结构,因此进一步提高了所得流延膜的透气性;
2、本申请的方法,通过冷拉伸和热拉伸,促进透气母粒中片晶结构的改变,有利于透气母粒分离并形成大量微孔,提高所得流延膜的透气性;同时,本申请的制备方法,操作简单,便于大规模生产。
具体实施方式
以下结合实施例对本申请作进一步详细说明。
茂金属线性低密度聚乙烯,型号为3527PA,熔体流动率为3.5g/10min,密度为0.927g/cm3
茂金属线性低密度聚乙烯,型号为2018MB,熔体流动率为10g/10min,密度为1.01g/cm3
高压聚乙烯,型号为LA-0710,采购自凯筃化工;
线性低密度聚乙烯,为沙特218W,采购自江苏高欧进出口有限公司;
色母粒,型号为7M3001A,采购自上海金住色母粒料有限公司。
对本申请实施例和对比例所得的透气性流延膜,进行水蒸气透过率、空气透过率、耐静水压、断裂伸长率和孔隙率检测检测标准如下:
水蒸气透过率检测:参照IS Z0208;
空气透过率检测:参照IS P8117;
耐静水压检测:参照GB/T4744;
断裂伸长率检测:参照GB/T1040.3;
孔隙率检测:参照GB/T 33052-2016。
原料的制备例
制备例1
一种透气母粒,各组分及其重量如表1所示,其制备步骤为:将高密度聚乙烯、聚乙二醇和丁二醇混合,再在140℃进行密炼5min后,采用双螺杆挤出机,在螺杆转速为60r/min,挤出机温度为180-230℃,挤出造粒,即得透气母粒。
本制备例中,采用的高密度聚乙烯,型号为5361A,高密度聚乙烯5361A的熔体流动率为5.4g/10min,采购自苏州金塑联塑化有限公司。
聚乙二醇型号为PEG-200,分子量为200,采购自济南永宸化工有限公司。
经检测,透气母粒的粒径为0.2-0.8mm。
制备例2-3
一种透气母粒,与制备例1的不同之处在于,各组分及其重量如表1所示。
表1制备例2-3中各组分及其重量(kg)
制备例6
一种透气母粒,与制备例3的不同之处在于,采用等量高密度聚乙烯DGDA-6944替代高密度聚乙烯5361A,高密度聚乙烯DGDA-6944的熔体流动率为8.0g/10min;采用等量的聚乙二醇PEG400替代聚乙二醇PEG-200,聚乙二醇PEG400的分子量为400。
由于由熔体流动率为8.0-10g/10min的高密度聚乙烯,分子量为400-600的聚乙二醇,与丁二醇复配所得的透气母粒,对透气母粒的分子量分布、分子量、结晶度和片晶厚度的影响相同。所以,本制备例中,仅 以熔体流动率为8.0g/10min的高密度聚乙烯、聚乙二醇的分子量为400为例做简要说明,但并不影响本申请限定熔体流动率的高密度聚乙烯在本申请中的应用。
经检测,透气母粒的粒径为0.2-0.8mm。
实施例
实施例1
一种透气性流延膜,各组分及其重量如表2所示,并通过如下制备步骤制备:
S1:将表层中的组分和芯层中的组分分别混合均匀后,得到表层混合物和芯层混合物。将表层混合物加入双螺杆挤出机的A料斗中,将芯层混合物加入双螺杆挤出机的B料斗中,控制挤出机线速度为200r/min,挤出熔片。
其中,挤出机A料斗各区温度从喂料段到机头各区温度依次为185℃、210℃、245℃、260℃、260℃、260℃、260℃、260℃、260℃、260℃、260℃、260℃、260℃、260℃、260℃;
挤出机B料斗各区温度从喂料段到机头各区温度依次为200℃、220℃、250℃、260℃、265℃、265℃、/、265℃、260℃、260℃、260℃、260℃、260℃、260℃、260℃。
S2:控制风刀出口处空气流速1.2m/s,然后将熔片采用风刀冷却后,再通过90℃的流延辊牵引至80℃的冷却辊冷却,再由收卷辊收卷,即得预制膜。其中,流延辊的拉伸比为55。将预制膜在130℃的烘箱中退火120min得到硬弹性体预制膜。
S3:先将硬弹性体预制膜在拉伸应变速率为500%/min,拉伸比为1.3、温度为25℃进行冷拉伸,再在拉伸应变速率为50%/min,拉伸比为1.6、温度为80℃进行热拉伸,随后在140℃下热定型20min,最后再在20℃的水槽中浸泡5min,在100℃干燥后,即得透气性流延膜。
本申请中,所得透气性流延膜的基重为35g/m2
实施例2-3
一种透气性流延膜,与实施例1的不同之处在于,各组分及其重量如表2所示。
表2实施例2-3中各组分及其重量(kg)
对实施例1-3所得的透气性流延膜,进行水蒸气透过率、空气透过率、 耐静水压、断裂伸长率和孔隙率检测检测结果如下表所示。
从上表可知,实施例1-3所得的透气性流延膜,水蒸气透过率高达2632-2652g/(m2*24h),空气透过率低至5680-5685s/100mL,耐静水压高达62-65cm/H2O,孔隙率高达40-42%。由此表明,本申请所得的透气性流延膜,具有良好的透气防水能力,并且具有较高的断裂伸长率。
实施例4-5
一种透气性流延膜,与实施例2的不同之处在于,除表层和芯层采用不同制备例所得的透水母粒外,其他均与实施例2相同。
表层和芯层采用的透水母粒如下表所示。

对实施例4-14所得的透气性流延膜,进行水蒸气透过率、空气透过率、耐静水压、断裂伸长率和孔隙率检测检测结果如下表所示。

从上表可知,实施例2、4-11、实施例14所得的透气性流延膜,水蒸气透过率、空气透过率、耐静水压、断裂伸长率和孔隙率均明显的高于实施例12和实施例13所得的透气性流延膜。由此表明,在本申请透气性流延膜的总原料中,透气母粒由高密度聚乙烯、聚乙二醇和丁二醇按重量比1∶(0.2-0.6)∶(0.2-0.6)混合组成,可提高所得透气性流延膜的透气防水性和断裂伸长率。
特别是,在实施例4-11所得的透气性流延膜中,实施例4、5、实施例7、实施例8、实施例10和实施例11所得的透气性流延膜,水蒸气透过率、空气透过率、耐静水压、断裂伸长率和孔隙率均较高。由此表明,在本申请透气性流延膜的总原料中,表层中,透气母粒由高密度聚乙烯、聚乙二醇和丁二醇按重量比1∶(0.2-0.4)∶(0.2-0.4)混合组成;芯层中,透气母粒由高密度聚乙烯、聚乙二醇和丁二醇按重量比1∶(0.4-0.6)∶(0.4-0.6)混合组成。可提高最终所得透气性流延膜的透气防水能力。
其中,在实施例5、7、8、10、11和14所得的透气性流延膜中,实施例14的水蒸气透过率、空气透过率、耐静水压、断裂伸长率和孔隙率均较高。
实施例15
一种透气性流延膜,与实施例14的不同之处在于,茂金属线性低密度 聚乙烯由4kg茂金属线性低密度聚乙烯3527PA和2.5kg茂金属线性低密度聚乙烯2018MB混合组成外,其他均与实施例14相同。
由于本申请中,由茂金属线性低密度聚乙烯3527PA和茂金属线性低密度聚乙烯2018MB按重量比(1.5-1.7)∶1所得的茂金属线性低密度聚乙烯对透气性流延膜各项性能的影响相同,所以本申请实施例中,仅以茂金属线性低密度聚乙烯3527PA和茂金属线性低密度聚乙烯2018MB的重量比为1.6∶1混合组成为例做简要说明,但并不影响茂金属线性低密度聚乙烯3527PA和茂金属线性低密度聚乙烯2018MB的其他重量比在本申请中的应用。
对实施例14所得的透气性流延膜,进行水蒸气透过率、空气透过率、耐静水压、断裂伸长率和孔隙率检测检测结果如下表所示。
实施例16
一种透气性流延膜,与实施例15的不同之处在于,透气性流延膜的制备步骤S3中,冷拉伸的温度为30℃,拉伸比为1.5;热拉伸的温度为90℃,拉伸比为1.8。
对实施例16所得的透气性流延膜,进行水蒸气透过率、空气透过率、耐静水压、断裂伸长率和孔隙率检测检测结果如下表所示。
由于透气性流延膜的制备步骤S3中,冷拉伸的温度为30-40℃,拉伸比为1.5-1.7;热拉伸的温度为90-110℃,拉伸比为1.8-1.9,对最终所得透气性流延膜的水蒸气透过率、耐静水压、断裂伸长率和孔隙率影响相同,所以本申请实施例中,仅以冷拉伸的温度为30℃,拉伸比为1.5;热拉伸的温度为90℃,拉伸比为1.8为例做简要说明,但并不影响热拉伸、冷拉伸的温度和拉伸比在本申请中的应用。
对比例
对比例1
一种透气性流延膜,与实施例16的不同之处在于,采用等量聚乙二醇PEG400替代丁二醇外,其他均与实施例16相同。
对比例2
一种透气性流延膜,与实施例16的不同之处在于,采用等量的丁二醇替代聚乙二醇PEG400外,其他均与实施例16相同。
对比例3
一种透气性流延膜,与实施例16的不同之处在于,采用等量的丁二醇替代透气母粒外,其他均与实施例16相同。
对比例4
一种透气性流延膜,与实施例16的不同之处在于,采用等量的聚乙二醇PEG400替代透气母粒外,其他均与实施例16相同。
对比例5
一种透气性流延膜,与实施例16的不同之处在于,采用等量的低密度聚乙烯LD605替代高密度聚乙烯DGDA-6944外,其他均与实施例16相同。
对上述对比例1-5所得的透气性流延膜,进行水蒸气透过率、空气透过率、耐静水压、断裂伸长率和孔隙率检测检测结果如下表所示。
从上表可知,对比例1-5所得的透气性流延膜,水蒸气透过率低至 1105-1253g/(m2*24h),空气透过率高达6500-6615s/100mL,耐静水压低至50-55cm/H2O,孔隙率低至26-33%。
依据对比例1-5所得的透气性流延膜与实施例14所得的透气性流延膜相比,水蒸气透过率相对降低了55.25-60.54%,空气透过率相对提高了17.65-19.73%,耐静水压相对降低了28.57-35.06%,孔隙率相对降低了36.54-50.00%。由此表明,在本申请透气性流延膜的总原料中,高密度聚乙烯、聚乙二醇和丁二醇具有协同作用,可提高所得透气性流延膜的透气防水性和断裂伸长率。
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。

Claims (8)

  1. 一种透气性流延膜,其特征在于,为层状结构,由芯层和设置在芯层两侧的表层复合而成;
    所述表层包括如下重量份数的组分:
    茂金属线性低密度聚乙烯55-75份;
    高压聚乙烯20-35份;
    透气母粒15-25份;
    所述芯层包括如下重量分数的组分:
    线性低密度聚乙烯16.5-20.5份;
    高压聚乙烯12-16份;
    透气母粒60-65份;
    所述透气母粒包括高密度聚乙烯、聚乙二醇和丁二醇。
  2. 根据权利要求1所述的透气性流延膜,其特征在于:所述高密度聚乙烯的熔体流动速率为8.0-10g/10min,所述聚乙二醇的分子量为400-600。
  3. 根据权利要求2所述的透气性流延膜,其特征在于:所述表层中,透气母粒由高密度聚乙烯、聚乙二醇和丁二醇按重量比1∶(0.2-0.4)∶(0.2-0.4)混合组成。
  4. 根据权利要求2所述的透气性流延膜,其特征在于:所述芯层中,透气母粒由高密度聚乙烯、聚乙二醇和丁二醇按重量比1∶(0.4-0.6)∶(0.4-0.6)混合组成。
  5. 根据权利要求1所述的透气性流延膜,其特征在于:所述茂金属线性低密度聚乙烯由熔体流动速率为3.0-4.0g/10min,密度为0.925-0.929 g/cm3的茂金属线性低密度聚乙烯和熔体流动速率为1.5-2.5g/10min,密度为0.916-0.929g/cm3的茂金属线性低密度聚乙烯混合组成,所述熔体流动速率为3.0-4.0g/10min,密度为0.925-0.929g/cm3的茂金属线性低密度聚乙烯和熔体流动速率为1.5-2.5g/10min,密度为0.916-0.929g/cm3的茂金属线性低密度聚乙烯的重量比为(1.5-1.7)。
  6. 根据权利要求1所述的透气性流延膜,其特征在于:所述透气母粒的粒径为0.2-0.8mm。
  7. 权利要求1-6所述的透气性流延膜的制备方法,其特征在于:包括如下步骤:
    将芯层材组分和表层组分熔融共挤出,冷却,拉伸,定型,收卷,水槽浸泡,干燥,即得透气性流延膜。
  8. 根据权利要求7所述的透气性流延膜的制备方法,其特征在于:所述拉伸步骤包括冷拉伸和热拉伸,冷拉伸的温度为30-40℃,拉伸比为1.5-1.7;热拉伸的温度为90-110℃,拉伸比为1.8-1.9。
PCT/CN2023/079090 2022-03-03 2023-03-01 一种透气性流延膜及其制备方法 WO2023165531A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210209452.5A CN114851660B (zh) 2022-03-03 2022-03-03 一种透气性流延膜及其制备方法
CN202210209452.5 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023165531A1 true WO2023165531A1 (zh) 2023-09-07

Family

ID=82627456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079090 WO2023165531A1 (zh) 2022-03-03 2023-03-01 一种透气性流延膜及其制备方法

Country Status (2)

Country Link
CN (1) CN114851660B (zh)
WO (1) WO2023165531A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114851660B (zh) * 2022-03-03 2024-03-26 上海紫华薄膜科技有限公司 一种透气性流延膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109203616A (zh) * 2018-07-11 2019-01-15 汪培杰 一种三层共挤流延膜及其制备方法
CN112046108A (zh) * 2020-08-31 2020-12-08 广东鼎孚新材料科技有限公司 一种生鲜食物保鲜用透气袋
CN114851660A (zh) * 2022-03-03 2022-08-05 上海紫华薄膜科技有限公司 一种透气性流延膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297935A (ja) * 2008-06-11 2009-12-24 Toppan Printing Co Ltd 防湿包装材料
CN103030863B (zh) * 2012-12-28 2018-04-06 广东美联新材料股份有限公司 一种透气母粒及利用该母粒制造透气膜的方法
CN107353485B (zh) * 2016-05-10 2020-11-20 合肥杰事杰新材料股份有限公司 一种抗菌透气膜母粒及其制备方法
WO2019217769A1 (en) * 2018-05-11 2019-11-14 Owens Corning Intellectual Capital, Llc Reinforced breathable sheet
KR20200018755A (ko) * 2018-08-10 2020-02-20 이정운 고내수성 및 투습성 신발용 갑피

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109203616A (zh) * 2018-07-11 2019-01-15 汪培杰 一种三层共挤流延膜及其制备方法
CN112046108A (zh) * 2020-08-31 2020-12-08 广东鼎孚新材料科技有限公司 一种生鲜食物保鲜用透气袋
CN114851660A (zh) * 2022-03-03 2022-08-05 上海紫华薄膜科技有限公司 一种透气性流延膜及其制备方法

Also Published As

Publication number Publication date
CN114851660A (zh) 2022-08-05
CN114851660B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
JP6427183B2 (ja) 再生セルロースフィルム、機能フィルム及びその製造方法
KR101408473B1 (ko) 평균 기공 크기가 비교적 큰 미세다공성 막 및 이를 제조하는 방법
JP5603349B2 (ja) エチレン−クロロトリフルオロエチレンコポリマーからの微小多孔性材料とその製造方法
US7780014B2 (en) Porous water filtration membrane of vinylidene fluoride resin hollow fiber and process for production thereof
CN111875864B (zh) 医疗防护服用聚乙烯pe微孔透气膜及其制备方法
JPS63276529A (ja) 溶融エンボスポリオレフィン/フィラー先駆体フィルムから製造される通気性フィルム
JP2020531323A (ja) 複合多孔質膜及びその製造方法と用途
JPS5936575B2 (ja) 微孔性重合体フイルムの製法
JPH02208329A (ja) フルオロカーボン膜及びフルオロカーボン膜の製造方法
WO2023165531A1 (zh) 一种透气性流延膜及其制备方法
CN107236167A (zh) 一种高性能聚乙烯透气膜的制备方法
WO2014101670A1 (zh) 一种透气母粒及利用该母粒制造透气膜的方法
CN112029173A (zh) 一种聚乙烯透气膜及其制备方法
JPH02276833A (ja) 冷間圧延前駆体フィルムから製造される微孔性膜
CN108525529B (zh) 高强度聚乙烯微孔膜、其制备方法及其应用
CN106633305A (zh) 一种高透气率复合透气膜及其制备方法
CN111978644A (zh) 一种聚丙烯透气膜及其制备方法
WO2022052469A1 (zh) 一种聚烯烃微多孔膜及其制备方法
CN111001299B (zh) 孔径不对称隔膜及制备方法、在海水淡化中的应用
WO1998041572A1 (fr) Procede de production de polyolefine poreuse
KR101443491B1 (ko) 중공사막의 제조방법 및 그에 의해서 제조된 중공사막
CN111941977B (zh) 一种防水透气膜及其生产工艺
CN110721598B (zh) 一种高通量多孔膜的制备方法
US4144299A (en) Process for producing acrylonitrile polymer film
JP2003192815A (ja) フッ素樹脂の硬質多孔質成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762929

Country of ref document: EP

Kind code of ref document: A1