WO2023165079A1 - 一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件 - Google Patents
一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件 Download PDFInfo
- Publication number
- WO2023165079A1 WO2023165079A1 PCT/CN2022/109313 CN2022109313W WO2023165079A1 WO 2023165079 A1 WO2023165079 A1 WO 2023165079A1 CN 2022109313 W CN2022109313 W CN 2022109313W WO 2023165079 A1 WO2023165079 A1 WO 2023165079A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermally activated
- activated delayed
- fluorescent material
- delayed fluorescent
- layer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
- C07D471/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1074—Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Definitions
- the present invention relates to the field of organic electroluminescence materials, in particular to an industrializable and high-performance 11-(9,9-dimethylacridin-10(9H)-yl)bipyridine[3,2-a: 2',3'-c]phenazine (DPPZ-DMAC), 11,12-bis(9,9-dimethylacridin-10(9H)-yl)bipyridine[3,2-a:2' , 3'-c]phenazine (DPPZ-2DMAC) and blue light thermally activated delayed fluorescent material 2,6-bis(9H-carbazol-9-yl)-3,5-bis(3,6-di-tert-butyl -9H-carbazol-9-yl) benzonitrile (2tCz2CzBn) white photoluminescent device and its preparation method.
- DPPZ-DMAC 11-(9,9-dimethylacridin-10(9H)-yl)bipyridine[3,2-a:
- OLEDs Organic light-emitting diodes
- EQE external quantum efficiency
- TADF thermally activated delayed fluorescence
- High-efficiency WOLEDs are mainly based on multiple emission layers (MEL), but the existence of organic layer-organic layer interfaces will hinder the injection and transport of carriers. At the same time, considering the convenience of large-area fabrication, single-emitting layer devices that can accurately realize the distribution of excitons show great advantages.
- MEL multiple emission layers
- single-emitting layer devices that can accurately realize the distribution of excitons show great advantages.
- the realization of high-efficiency all-TADF-WOLEDs mainly relies on the development of novel high-performance emitters. In order to reduce the triplet-triplet annihilation (TTA) of excitons and reduce the energy loss, it is a big challenge to find suitable emitting materials that can reduce TTA.
- TTA triplet-triplet annihilation
- the invention discloses a 2,6-bis(9H-carbazol-9-yl)- A white electroluminescent device composed of 3,5-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)benzonitrile (2tCz2CzBn) and a preparation method thereof. It is used to solve the problems of carrier transfer balance and energy transfer channel reasonable modulation in all-TADF white light devices, so that the energy loss caused by the energy transfer process between the host and the dopant can be reduced as much as possible, and finally its EQE can exceed 20%. , a low turn-on voltage target.
- the present invention adopts the following technical scheme: a white light electroluminescence device doped with bispyridine phenazine thermally activated delayed fluorescent material, the light-emitting layer of the white light electroluminescent device is doped with blue light by bispyridine phenazine thermally activated delayed fluorescent material Preparation of thermally activated delayed fluorescent materials.
- a white light emitting layer doped with bispyridylphenazine thermally activated delayed fluorescent material is prepared by doping blue light thermally activated delayed fluorescent material with bispyridinephenazine thermally activated delayed fluorescent material.
- the doping concentration of the bispyridylphenazine heat-activated delayed fluorescent material is 0.2-1.5wt%, preferably 0.4-1wt%, which refers to the mass of the bispyridylphenazine thermally activated delayed fluorescent material in the total amount of the light-emitting layer percentage.
- the white light electroluminescent device comprises an anode, a hole injection layer, a hole transport layer, a blocking layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode.
- the inventiveness of the present invention lies in that the light-emitting layer of the white light electroluminescent device is prepared by doping the blue light thermally activated delayed fluorescent material with bispyridine phenazine thermally activated delayed fluorescent material, and the remaining materials are conventional raw materials of the electroluminescent device;
- a hole injection layer, a hole transport layer, a blocking layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode to obtain a white light electroluminescent device doped with a thermally activated delayed fluorescent material of the bispyridylphenazine; the specific preparation method is as follows: conventional technology.
- the white light electroluminescent device of the present invention includes 11-(9,9-dimethylacridin-10(9H)-yl)bipyridyl[3,2-a:2',3'-c]phenazine ( DPPZ-DMAC) or 11,12-bis(9,9-dimethylacridin-10(9H)-yl)bipyridyl[3,2-a:2',3'-c]phenazine (DPPZ- 2DMAC) red thermally activated delayed fluorescent material doped blue thermally activated delayed fluorescent material 2,6-di(9H-carbazol-9-yl)-3,5-bis(3,6-di-tert-butyl-9H-carba
- the 11-(9,9-dimethylacridin-10(9H)-yl)bipyridyl[3,2-a:2',3'-c]phenazine (DPPZ-DMAC), 11,12-Bis(9,9-dimethylacridin-10(9H)-yl)bipyridyl[3,2-a:2',3'-c]phenazine (DPPZ-2DMAC) red heat activated Delayed fluorescent material and blue light thermally activated delayed fluorescent material 2,6-bis(9H-carbazol-9-yl)-3,5-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)
- the white photoluminescent device composed of benzonitrile (2tCz2CzBn) is composed of anode, hole injection layer, hole transport layer, barrier layer, light emitting layer, electron transport layer, electron injection layer, cathode; specifically, indium tin oxide ( ITO) as the ano
- the thermally activated delayed fluorescent material of bispyridylphenazine is DPPZ-DMAC or DPPZ-2DMAC; 11-(9,9-dimethylacridin-10(9H)-yl)bipyridine[3,2 -a:2',3'-c]phenazine (DPPZ-DMAC), 11,12-bis(9,9-dimethylacridin-10(9H)-yl)bipyridine[3,2-a : 2',3'-c]phenazine (DPPZ-2DMAC) red thermally activated delayed fluorescent material and blue thermally activated delayed fluorescent material 2,6-di(9H-carbazol-9-yl)-3,5-bis (3,6-di-tert-butyl-9H-carbazol-9-yl)benzonitrile (2tCz2CzBn), its chemical structure is as follows: .
- the invention provides a novel thermally activated delay material based on bispyrido[3,2-a2',3'-c]phenazine receptors and bispyrido[3,2-a2',3'-c]
- the thermally activated delay material WOLED of phenazine acceptor achieves its EQE goal of more than 20%; it is used to solve the problems of carrier transport balance and energy transport channel reasonable modulation in all TADF white light devices, so that the host and dopant The energy loss caused by the energy transfer process between them is reduced as much as possible, and the goal of its EQE exceeding 20% and low turn-on voltage is finally achieved.
- the organic thin film formed by the invention has high surface smoothness, stable chemical and physical properties and high luminous efficiency, and the obtained organic electroluminescent device has good performance.
- the beneficial effects of the present invention are as follows: the DPPZ-DMAC and DPPZ-2DMAC red thermally activated delayed fluorescent materials provided by the present invention have the characteristics of a rigid large plane twisted structure and significant internal charge transfer (ICT), and have obvious thermally activated delayed fluorescent properties (TADF), high fluorescence quantum yield (PLQY), good thermal stability and other advantages.
- the WOLED device based on the red thermally activated delayed fluorescent material has the advantages of low driving voltage and high efficiency, and the external quantum efficiency EQE of the prepared white light device is 22.7% and 18.3%, respectively.
- the red-light heat-activated delayed fluorescent material has few preparation steps, easy-to-obtain raw materials, simple synthesis and purification process, high yield, and large-scale synthesis and preparation.
- the white light organic electroluminescent device based on it has a good application prospect in the fields of lighting, flat panel display and the like.
- Figure 1 is a diagram of the efficiency of white light devices with different doping concentrations of DPPZ-DMAC.
- Figure 2 is a diagram of the efficiency of white light devices with different doping concentrations of DPPZ-2DMAC.
- the raw materials involved in the present invention are all conventional commercially available products, and the specific operation methods and testing methods are conventional methods in the art;
- the specific preparation process of thermally activated delayed fluorescence red light materials and the specific preparation process of white light electroluminescent devices and the materials of each layer are existing technologies, such as vacuum evaporation, the vacuum degree is ⁇ 2 ⁇ 10 -4 Pa, and the deposition rate of the functional layer is 2 ⁇ /s , the deposition rate of the host material is 1 ⁇ /s, the deposition rate of the LiF layer is 0.1 ⁇ /s, and the deposition rate of Al is 8 ⁇ /s.
- the inventiveness of the present invention lies in providing a new thermally activated delayed fluorescent material based on bispyrido[3,2-a2',3'-c]phenazine acceptor, which can be used as a white light organic electroluminescent device by doping blue light host materials the luminous layer.
- the invention provides a thermally activated delayed fluorescent material 11-(9,9-dimethylacridin-10(9H)-yl) based on bispyrido[3,2-a2',3'-c]phenazine acceptor Bipyridyl[3,2-a:2',3'-c]phenazine (DPPZ-DMAC) and 11,12-bis(9,9-dimethylacridin-10(9H)-yl)bipyridine [3,2-a:2',3'-c]phenazine (DPPZ-2DMAC).
- the preparation method of the thermally activated delayed fluorescent material based on the bispyrido[3,2-a:2',3'-c]phenazine acceptor of the present invention is as follows.
- 11-fluorobipyridino[3,2-a:2',3'-c]phenazine (or 11,12-fluorobipyridino[3,2-a:2',3'-c]phenazine)
- the molar ratio of 9,9-dimethyl-9,10-dihydroacridine is 1:1.2 (or 1:2.4) for reaction; the reaction is carried out in the presence of NaH and nitrogen protection; the reaction temperature is 100-140 °C, The reaction time is 12-24 h.
- the reaction liquid is extracted, and then the organic phases are combined, and then filtered, separated and purified by column chromatography to obtain the thermally activated delayed fluorescent material 11-(9,9-dimethylacridine-10(9H)- base) bipyridyl[3,2-a:2',3'-c]phenazine (DPPZ-DMAC) and 11,12-bis(9,9-dimethylacridin-10(9H)-yl) Bipyridyl[3,2-a:2',3'-c]phenazine (DPPZ-2DMAC); preferably, the extraction solvent can be dichloromethane or chloroform.
- the eluent used in column chromatography is composed of one of the less polar organic solvents such as petroleum ether, isopentane, n-pentane, hexane, and cyclohexane, and another organic solvent with greater polarity.
- Ratio such as dichloromethane, chloroform, ethyl acetate, ethanol, etc., the volume ratio is 1:2 ⁇ 5.
- the reaction can be shown as follows: .
- 6-Oxo-1,10-phenanthroline-5(6H)-subphyllin) oxyketone (0.70 g, 3.31 mmol) and 4-fluorobenzene-1,2-diamine (0.46 g, 3.65 mmol) was dissolved in 50 mL ethanol.
- the mixed solution was refluxed at 90 °C for 12 h under nitrogen atmosphere, and poured into ice water to stir after stopping the reaction. The precipitate was collected by filtration and washed with ethanol.
- the crude product of DPPZ-F (0.81 g, 2.70 mmol) was obtained, which was directly used in the next reaction. The yield was 81.57%.
- the crude product was further purified by column chromatography with dichloromethane (DCM) and ethanol (50/1, v/v) as the eluent to obtain DPPZ-DMAC (0.45 g, 0.92 mmol) as an orange solid.
- the yield is 34.55%.
- the eluent used in column chromatography is petroleum ether and ethanol in a volume ratio of 1:3.
- 6-Oxo-1,10-phenanthroline-5(6H)-subphyllin) oxyketone (0.70 g, 3.31 mmol) and 4,5-difluorobenzene-1,2-diamine (0.57 g, 7.94 mmol) was dissolved in 50 mL ethanol.
- the mixed solution was refluxed at 90 °C under a nitrogen atmosphere, and a large amount of precipitation appeared after 12 h.
- the mixture was cooled to room temperature, and the precipitate was collected by filtration and washed with ethanol to give DPPZ-2F as a solid (0.95 g, 2.98 mmol), which was used without further purification.
- the yield was 90.03%.
- the crude product was further purified by column chromatography with dichloromethane (DCM) and ethanol (50/1, v/v) as the eluent to obtain an orange solid (1.43 g, 2.05 mmol). The yield was 72.44%.
- the eluent used in column chromatography is petroleum ether and ethanol in a volume ratio of 1:3.
- Example 1 Fabrication and performance evaluation of a white light organic electroluminescent device with a doping concentration of 0.4 wt% DPPZ-DMAC as the light-emitting layer: (1) Pretreatment of the glass anode: select an indium tin oxide (ITO) film as the A glass substrate (3 ⁇ 3 mm) for a transparent electrode; the glass substrate is cleaned with ethanol, and then treated with UV-ozone to obtain a pretreated glass substrate; (2) Vacuum evaporation: after the pretreatment Vacuum evaporation of each layer is carried out on the glass substrate by vacuum evaporation method, and the treated glass substrate is placed in a vacuum evaporation chamber with a vacuum degree of ⁇ 2 ⁇ 10 -4 Pa.
- ITO indium tin oxide
- the device structure is as follows: ITO/HAT-CN (10 nm)/TAPC (45 nm)/TCTA (5 nm)/mCBP (5 nm)/ 2tCz2CzBn:0.4 wt% DPPZ-DMAC (25 nm)/B3PYMPM (50 nm)/LiF (1 nm)/Al ( 100 nm); the specific evaporation of each layer is a conventional technology; (3) device packaging: the fabricated organic electroluminescent device is sealed in a nitrogen atmosphere glove box with a water oxygen concentration below 1 ppm, and then used with an epoxy type The glass sealing cover of ultraviolet curable resin covers the above-mentioned film-forming substrate and is sealed by ultraviolet curing; the specific packaging is a conventional technology.
- Example 2 Fabrication and performance evaluation of an organic electroluminescent device with a doping concentration of 0.7 wt% DPPZ-DMAC as the light-emitting layer: (1) Pretreatment of the glass anode: select an indium tin oxide (ITO) film as a transparent The glass substrate of the electrode (3 ⁇ 3 mm); the glass substrate was cleaned with ethanol, and then treated with UV-ozone to obtain a pretreated glass substrate; (2) Vacuum evaporation: on the pretreated Vacuum evaporation of each layer is carried out on the glass substrate by vacuum evaporation method, and the treated glass substrate is placed in a vacuum evaporation chamber with a vacuum degree of ⁇ 2 ⁇ 10 -4 Pa.
- ITO indium tin oxide
- the device structure is as follows: ITO/HAT-CN ( 10 nm)/TAPC (45 nm)/TCTA (5 nm)/mCBP (5 nm)/ 2tCz2CzBn:0.7 wt% DPPZ-DMAC (25 nm)/B3PYMPM (50 nm)/LiF (1 nm)/Al (100 nm); the specific evaporation of each layer is a conventional technology; (3) device packaging: the fabricated organic electroluminescent device is sealed in a nitrogen atmosphere glove box with a water oxygen concentration below 1 ppm, and then used with an epoxy-type ultraviolet The sealing cover of cured resin glass covers the above-mentioned film-forming substrate and is sealed by ultraviolet curing; the specific packaging is a conventional technology.
- Example 3 Fabrication and performance evaluation of an organic electroluminescent device with a doping concentration of 1 wt% DPPZ-DMAC as the light-emitting layer: (1) Pretreatment of the glass anode: select an indium tin oxide (ITO) film as a transparent The glass substrate of the electrode (3 ⁇ 3 mm); the glass substrate was cleaned with ethanol, and then treated with UV-ozone to obtain a pretreated glass substrate; (2) Vacuum evaporation: on the pretreated Vacuum evaporation of each layer is carried out on the glass substrate by vacuum evaporation method, and the treated glass substrate is placed in a vacuum evaporation chamber with a vacuum degree of ⁇ 2 ⁇ 10 -4 Pa.
- ITO indium tin oxide
- the device structure is as follows: ITO/HAT-CN ( 10 nm)/TAPC (45 nm)/TCTA (5 nm)/mCBP (5 nm)/ 2tCz2CzBn:1 wt% DPPZ-DMAC (25 nm)/B3PYMPM (50 nm)/LiF (1 nm)/Al (100 nm); the specific evaporation of each layer is a conventional technology; (3) device packaging: the fabricated organic electroluminescent device is sealed in a nitrogen atmosphere glove box with a water oxygen concentration below 1 ppm, and then used with an epoxy-type ultraviolet The sealing cover of cured resin glass covers the above-mentioned film-forming substrate and is sealed by ultraviolet curing; the specific packaging is a conventional technology.
- Example 4 Fabrication and performance evaluation of an organic electroluminescent device with a doping concentration of 0.4 wt% DPPZ-2DMAC as the light-emitting layer: (1) Pretreatment of the glass anode: select an indium tin oxide (ITO) film as a transparent The glass substrate of the electrode (3 ⁇ 3 mm); the glass substrate was cleaned with ethanol, and then treated with UV-ozone to obtain a pretreated glass substrate; (2) Vacuum evaporation: on the pretreated Vacuum evaporation of each layer is carried out on the glass substrate by vacuum evaporation method, and the treated glass substrate is placed in a vacuum evaporation chamber with a vacuum degree of ⁇ 2 ⁇ 10 -4 Pa.
- ITO indium tin oxide
- the device structure is as follows: ITO/HAT-CN ( 10 nm)/TAPC (45 nm)/TCTA (5 nm)/mCBP (5 nm)/ 2tCz2CzBn:0.4 wt% DPPZ-2DMAC (25 nm)/B3PYMPM (50 nm)/LiF (1 nm)/Al (100 nm); the specific evaporation of each layer is a conventional technology; (3) device packaging: the fabricated organic electroluminescent device is sealed in a nitrogen atmosphere glove box with a water oxygen concentration below 1 ppm, and then used with an epoxy-type ultraviolet The sealing cover of cured resin glass covers the above-mentioned film-forming substrate and is sealed by ultraviolet curing; the specific packaging is a conventional technology.
- Example 5 Fabrication and performance evaluation of an organic electroluminescent device with a doping concentration of 0.7 wt% DPPZ-2DMAC as the light-emitting layer: (1) Pretreatment of the glass anode: select an indium tin oxide (ITO) film as a transparent The glass substrate of the electrode (3 ⁇ 3 mm); the glass substrate was cleaned with ethanol, and then treated with UV-ozone to obtain a pretreated glass substrate; (2) Vacuum evaporation: on the pretreated Vacuum evaporation of each layer is carried out on the glass substrate by vacuum evaporation method, and the treated glass substrate is placed in a vacuum evaporation chamber with a vacuum degree of ⁇ 2 ⁇ 10 -4 Pa.
- ITO indium tin oxide
- the device structure is as follows: ITO/HAT-CN ( 10 nm)/TAPC (45 nm)/TCTA (5 nm)/mCBP (5 nm)/ 2tCz2CzBn:0.7 wt% DPPZ-2DMAC (25 nm)/B3PYMPM (50 nm)/LiF (1 nm)/Al (100 nm); the specific evaporation of each layer is a conventional technology; (3) device packaging: the fabricated organic electroluminescent device is sealed in a nitrogen atmosphere glove box with a water oxygen concentration below 1 ppm, and then used with an epoxy-type ultraviolet The sealing cover of cured resin glass covers the above-mentioned film-forming substrate and is sealed by ultraviolet curing; the specific packaging is a conventional technology.
- a DC current was applied to the fabricated organic electroluminescent device, and the PhotoResearch PR655 luminance meter was used to evaluate the luminous performance; a computer-controlled Keithley 2400 digital source meter was used to measure the current-voltage characteristics.
- the luminescent properties of the organic electroluminescent device are measured under the condition of changing the applied DC voltage. Device performance is shown in Table 1, Table 2 and Figure 1, Figure 2.
- the thermally activated retardation material WOLED based on bispyrido[3,2-a2',3'-c]phenazine acceptor provided by the present invention realizes the goal of its EQE exceeding 20%; it is used to solve the problem in all TADF white light devices Issues such as carrier transport balance and reasonable modulation of energy transport channels can reduce the energy loss caused by the energy transfer process between the host and the dopant as much as possible, and finally achieve the goal of its EQE exceeding 20% and low turn-on voltage.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明涉及一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件,在阳极上依次真空蒸镀空穴注入层、空穴传输层、阻挡层、发光层、电子传输层、电子注入层、阴极,得到所述器件,发光层由双吡啶吩嗪热激活延迟荧光材料掺杂蓝光热激活延迟荧光材料制备,引入延迟荧光敏化机制,成功制备了一系列采用两个发光材料的WOLED,并通过调节EML中DPPZ-DMAC的比例实现了从冷白到正白到暖白的转变,最终实现了基于DPPZ-DMAC的EQE max为22.7%的WOLED。这也证明了基于双吡啶并[3,2-a2',3'-c]吩嗪受体的发射材料为制备热激活延迟荧光发光层的单层白光电致发光器件展示了无限潜力。
Description
本发明涉及有机电致发光材料领域,尤其涉及一种可工业化、性能好的基于11-(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-DMAC)、11,12-双(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2DMAC)和蓝光热激活延迟荧光材料2,6-二(9H-咔唑-9-基)-3,5-双(3,6-二叔丁基-9H-咔唑-9-基)苄腈(2tCz2CzBn)组成的白光电致发光器件及其制备方法。
有机发光二极管 (OLED) 因其响应速度快、功耗低和灵活性强等优点,在全彩显示和固态照明领域得到了广泛的研究。基于重金属原子的磷光材料可以收集25%的单线态激子来实现100%的外量子效率(EQE),但贵金属的高成本和环境不友好也限制了OLED的发展。热激活延迟荧光(TADF)的出现可以实现100%外量子效率为提高OLED 效率和降低成本提供了新思路。目前,基于全TADF的WOLED 的效率很少超过20%,高效WOLED主要以多发射层(MEL)为主,但有机层-有机层界面的存在会阻碍载流子的注入和传输。同时,考虑到大面积制备的便利性,能够准确实现激子分布的单发射层器件显示出很大的优势。目前,高效全TADF-WOLED的实现主要依赖于新型高性能发射器的开发。为了减少激子的三重态-三重态湮灭(TTA)并减少能量损失,寻找合适且能够减少TTA的发射材料是一大难题。
本发明公开了一种基于双吡啶并[3,2-a2',3'-c]吩嗪受体和蓝光热激活延迟荧光材料2,6-二(9H-咔唑-9-基)-3,5-双(3,6-二叔丁基-9H-咔唑-9-基)苄腈(2tCz2CzBn)组成的白光电致发光器件及其制备方法。用来解决全TADF白光器件中载流子传输平衡和能量传输通道合理调制等问题,从而使得主体与掺杂剂之间的能量转移过程引起的能量损失尽可能减少,最终实现其EQE超过20%,低开启电压的目标。
本发明采用如下技术方案:一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件,所述白光电致发光器件的发光层由双吡啶吩嗪热激活延迟荧光材料掺杂蓝光热激活延迟荧光材料制备。
一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光发光层,所述白光发光层由双吡啶吩嗪热激活延迟荧光材料掺杂蓝光热激活延迟荧光材料制备。
本发明中,所述双吡啶吩嗪热激活延迟荧光材料的掺杂浓度为0.2~1.5wt%,优选为0.4~1wt%,指双吡啶吩嗪热激活延迟荧光材料占发光层总量的质量百分数。
本发明中,所述白光电致发光器件包括阳极、空穴注入层、空穴传输层、阻挡层、发光层、电子传输层、电子注入层、阴极。本发明的创造性在于白光电致发光器件的发光层由双吡啶吩嗪热激活延迟荧光材料掺杂蓝光热激活延迟荧光材料制备,其余材料为电致发光器件的常规原料;在阳极上依次制备空穴注入层、空穴传输层、阻挡层、发光层、电子传输层、电子注入层、阴极,得到所述双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件;具体制备方法为常规技术。
本发明的白光电致发光器件包括基于11-(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-DMAC)或11,12-双(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2DMAC)红色热激活延迟荧光材料掺杂蓝光热激活延迟荧光材料2,6-二(9H-咔唑-9-基)-3,5-双(3,6-二叔丁基-9H-咔唑-9-基)苄腈(2tCz2CzBn)的发光层; 11-(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-DMAC)、11,12-双(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2DMAC)红色热激活延迟荧光材料作为客体材料掺杂主体材料2,6-二(9H-咔唑-9-基)-3,5-双(3,6-二叔丁基-9H-咔唑-9-基)苄腈(2tCz2CzBn)作为发光层。
本发明公开的基于11-(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-DMAC)、11,12-双(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2DMAC)红色热激活延迟荧光材料和蓝光热激活延迟荧光材料2,6-二(9H-咔唑-9-基)-3,5-双(3,6-二叔丁基-9H-咔唑-9-基)苄腈(2tCz2CzBn)组成的白光电致发光器件由阳极、空穴注入层、空穴传输层、阻挡层、发光层、电子传输层、电子注入层、阴极组成;具体可以为,氧化铟锡(ITO)用作阳极、双吡嗪并[2,3-f:2',3'-h]喹喔啉-2,3,6,7,10,11-己腈(HATCN)用作空穴注入层(HIL)、4,4'-(环己烷-1,1-二基)双(N,N-二-对甲苯基苯胺)(TAPC)用作空穴传输层(HTL)、三(4-(9H-咔唑-9-基)苯基)胺(TCTA)和3,3-二(9H-咔唑-9-基)联苯(mCBP)用作电子/激子阻挡层(EBL)、11-(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-DMAC)或11,12-双(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2DMAC)红色热激活延迟荧光材料作客体材料掺杂2,6-二(9H-咔唑-9-基)-3,5-双(3,6-二叔丁基-9H-咔唑-9-基)苄腈(2tCz2CzBn)主体材料共同用作发光层(EML)、4,6-双(3,5-二(吡啶-3-基)苯基)-2-甲基嘧啶(B3PYMPM)用作电子传输层(ETL)、氟化锂(LiF)用作电子注入层(EIL)、铝(Al)用作阴极;比如,有机电致发光器件各层规格为:ITO/HAT-CN (10 nm)/TAPC
(45 nm)/TCTA (5 nm)/mCBP (5 nm)/ EML (25 nm)/B3PYMPM (50 nm)/LiF (1 nm)/Al (100
nm) (EML: 2tCz2CzBn:X wt% DPPZ-DMAC or DPPZ-2DMAC)。
本发明中,所述双吡啶吩嗪热激活延迟荧光材料为DPPZ-DMAC或者DPPZ-2DMAC;11-(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-DMAC)、11,12-双(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2DMAC)红色热激活延迟荧光材料和蓝光热激活延迟荧光材料2,6-二(9H-咔唑-9-基)-3,5-双(3,6-二叔丁基-9H-咔唑-9-基)苄腈(2tCz2CzBn),其化学结构式如下:
。
本发明提供一种新型基于双吡啶并[3,2-a2',3'-c]吩嗪受体的热激活延迟材料以及基于双吡啶并[3,2-a2',3'-c]吩嗪受体的热激活延迟材料的WOLED,实现其EQE超过20%的目标;用来解决全TADF白光器件中载流子传输平衡和能量传输通道合理调制等问题,从而使得主体与掺杂剂之间的能量转移过程引起的能量损失尽可能减少,最终实现其EQE超过20%,低开启电压的目标。
对于本发明所述的基于双吡啶并[3,2-a2',3'-c]吩嗪受体的热激活延迟材料所形成的白光有机电致发光器件的制备方法以及其他原料没有特殊的限制。利用本发明所形成的有机薄膜具有高表面光滑性、化学物理性质稳定高发光效率,所得到的有机电致发光器件性能良好。
本发明有益效果如下:本发明提供的DPPZ-DMAC和DPPZ-2DMAC红色热激活延迟荧光材料具有刚性大平面扭曲结构和显著的内电荷转移(ICT)的特点,具有明显的热激活延迟荧光性质(TADF),高荧光量子产率(PLQY)、热稳定性好等优点。基于该红色热激活延迟荧光材料的WOLED器件,具有驱动电压低,效率高的优点,且制备的白光器件的外量子效率EQE分别为22.7%和18.3%。且红光热激活延迟荧光材料合成制备步骤少,原料易得,合成及纯化工艺简单,产率高,可大规模合成制备。基于其的白光有机电致发光器件在照明、平板显示等领域具有很好的应用前景。
图1是DPPZ-DMAC不同掺杂浓度白光器件效率图。
图2是DPPZ-2DMAC不同掺杂浓度白光器件效率图。
本发明涉及的原料都为常规市售产品,具体操作方法以及测试方法为本领域常规方法;尤其基于本发明基于双吡啶并[3,2-a2',3'-c]吩嗪受体的热激活延迟荧光的红光材料的白光电致发光器件的具体制备过程以及各层材料为现有技术,比如真空蒸镀,真空度≤2×10
-4Pa,功能层沉积速率为2Å/s,主体材料的沉积速率为1Å/s,LiF层沉积速率为0.1Å/s,Al的沉积速率8Å/s。
本发明的创造性在于提供新的基于双吡啶并[3,2-a2',3'-c]吩嗪受体的热激活延迟荧光材料,掺杂蓝光主体材料共同用作白光有机电致发光器件的发光层。
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明提供基于双吡啶并[3,2-a2',3'-c]吩嗪受体的热激活延迟荧光材料11-(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-DMAC)和11,12-双(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2DMAC)。
本发明基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光材料的制备方法如下。
以6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮和4-氟苯-1,2-二胺(或4,5-二氟苯-1,2-二胺)为原料,反应制备得到11-氟双吡啶[3,2-a:2',3'-c]吩嗪(或11,12-氟双吡啶[3,2-a:2',3'-c]吩嗪);反应完毕后,将反应液直接抽滤得大量固体,粗产物用乙醇不断淋洗,得到11-氟双吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-F),或11,12-氟双吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2F)。反应可示意如下:
。
11-氟双吡啶[3,2-a:2',3'-c]吩嗪(或11,12-氟双吡啶[3,2-a:2',3'-c]吩嗪)、9,9-二甲基-9,10-二氢吖啶的摩尔比1:1.2(或1:2.4)反应;反应在NaH存在下、氮气保护下进行;反应的温度为100~140 ℃,反应的时间为12~24 h。反应完毕后,萃取反应液,然后合并有机相,再抽滤,经过柱层析分离纯化,得到所述热激活延迟荧光材料11-(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-DMAC)和11,12-双(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2DMAC);优选的,萃取溶剂可以是二氯甲烷或三氯甲烷。柱层析采用洗脱剂是由石油醚、异戊烷、正戊烷、己烷、环己烷等极性较小的有机溶剂中的一种与另一种极性较大的有机溶剂配比而成,如二氯甲烷、三氯甲烷、乙酸乙酯、乙醇等,其体积比为1:2~5。反应可示意如下:
。
将6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮(0.70 g, 3.31 mmol)和4-氟苯-1,2-二胺 (0.46 g, 3.65 mmol) 溶于50 mL乙醇中。将混合溶液在90℃、氮气气氛下回流12 h,停止反应后倒入冰水中搅拌。沉淀物通过过滤收集,用乙醇洗涤。得到DPPZ-F粗产物(0.81 g, 2.70 mmol),直接用于下一步反应。收率为81.57%。
9,9-二甲基-9,10-二氢吖啶(0.67 g, 3.20 mmol)溶于10 ml N,N-二甲基甲酰胺(DMF)中;然后在冰水浴下,氮气氛围中,将0.09 g (3.83 mmol)的氢化钠加入到溶液中,搅拌30分钟,再加入DPPZ-F (0.80 g, 2.66 mmol);然后在90℃加热24小时后,将反应混合物倒入冰水中。沉淀物通过过滤收集,用水清洗。粗产物以二氯甲烷(DCM)和乙醇(50/1,v/v)为洗脱液,柱层析进一步纯化得到橘红色固体DPPZ-DMAC (0.45 g, 0.92
mmol)。收率为34.55%。柱层析采用洗脱剂是由石油醚、乙醇,其体积比为1∶3。化合物DPPZ-DMAC结构检测具体如下:
1H NMR (400 MHz, DMSO) δ 9.58-9.50 (m, 2H), 9.28 – 9.21 (m, 2H), 8.64 (d, J
= 8.9 Hz, 1H), 8.44 (d, J = 2.2 Hz, 1H), 8.05 – 7.91 (m, 3H), 7.58 (dd, J = 7.4, 1.8
Hz, 2H), 7.02 (pd, J = 7.2, 1.5 Hz, 4H), 6.45 (dd, J = 7.8, 1.4 Hz, 2H), 1.70
(s, 6H).
13C NMR (101 MHz, CDCl
3) δ 152.78, 152.70, 148.36,
148.28, 143.65, 143.53, 141.86, 141.45, 141.39, 140.54, 133.99, 133.65, 132.35,
131.33, 130.63, 127.54, 127.45, 126.50, 125.40, 124.36, 121.53, 114.91, 36.25,
30.90. MALDI-TOF-MS: m/z: calculated for C33H23N5: 489.20 (100%), found:490.19。
将6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮 (0.70 g, 3.31 mmol) 和4,5-二氟苯-1,2-二胺 (0.57 g, 7.94 mmol)溶于50 mL乙醇中。混合溶液在90℃、氮气气氛下回流,12 h后出现大量沉淀。将混合物冷却至室温,过滤收集沉淀,用乙醇洗涤得到DPPZ-2F固体(0.95 g, 2.98 mmol),无需进一步纯化即可使用。收率为90.03%。
9,9-二甲基-9,10-二氢吖啶(0.67 g, 3.20 mmol)溶于10 ml N,N-二甲基甲酰胺(DMF)中。然后在冰水浴下,氮气氛围中,将0.09 g (3.83 mmol)的氢化钠加入到溶液中,搅拌30分钟,再加入DPPZ-2F (0.90 g, 2.83
mmol),然后在90℃加热24小时后,将反应混合物倒入冰水中。沉淀物通过过滤收集,用水清洗。粗产物以二氯甲烷(DCM)和乙醇(50/1,v/v)为洗脱液,柱层析进一步纯化得到橘红色固体(1.43 g, 2.05 mmol)。收率为72.44%。柱层析采用洗脱剂是由石油醚、乙醇,其体积比为1∶3。化合物DPPZ-2DMAC结构检测具体如下:
1H NMR (400 MHz, CDCl
3)
δ 9.67 (dd, J = 8.1, 1.7
Hz, 2H), 9.34 (dd, J = 4.4, 1.7 Hz, 2H), 8.82 (s, 2H), 7.84 (dd, J = 8.1, 4.5
Hz, 2H), 7.27 (d, J = 1.5 Hz, 2H), 7.25 (d, J = 1.5 Hz, 2H), 6.80-6.69 (m, 8H),
6.55 (dd, J = 8.2, 1.1 Hz, 4H), 1.32 (s, 12H).
13C NMR (101 MHz,
CDCl
3) δ 153.02, 148.51, 143.17, 142.39, 142.12, 139.20, 136.41, 134.17, 130.32,
127.42, 125.78, 125.68, 124.51, 121.14, 114.46, 35.64, 30.95. MALDI-TOF-MS:
m/z: calculated for C
33H
23N
5: 697.41 (100%),
found: 696.30。
由上述检测结果可知,化合物DPPZ-DMAC和DPPZ-2DMAC的结构正确。化合物DPPZ-DMAC和DPPZ-2DMAC的光物理和电化学性质如下。
。
以下通过应用实施例说明本发明合成的化合物在器件中作为发光层材料的应用效果。
实施例一 掺杂浓度为0.4 wt%的DPPZ-DMAC为发光层的白光有机电致发光器件的制作与性能评价:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10
-4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC
(45 nm)/TCTA (5 nm)/mCBP (5 nm)/ 2tCz2CzBn:0.4 wt% DPPZ-DMAC (25 nm)/B3PYMPM
(50 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术;(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
实施例二 掺杂浓度为0.7 wt%的DPPZ-DMAC为发光层的有机电致发光器件的制作与性能评价:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10
-4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC
(45 nm)/TCTA (5 nm)/mCBP (5 nm)/ 2tCz2CzBn:0.7 wt% DPPZ-DMAC (25 nm)/B3PYMPM
(50 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术;(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
实施例三 掺杂浓度为1 wt%的DPPZ-DMAC为发光层的有机电致发光器件的制作与性能评价:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10
-4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC
(45 nm)/TCTA (5 nm)/mCBP (5 nm)/ 2tCz2CzBn:1 wt% DPPZ-DMAC (25 nm)/B3PYMPM (50
nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术;(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
实施例四 掺杂浓度为0.4 wt%的DPPZ-2DMAC为发光层的有机电致发光器件的制作与性能评价:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10
-4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC
(45 nm)/TCTA (5 nm)/mCBP (5 nm)/ 2tCz2CzBn:0.4 wt% DPPZ-2DMAC (25 nm)/B3PYMPM
(50 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术;(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
实施例五 掺杂浓度为0.7 wt%的DPPZ-2DMAC为发光层的有机电致发光器件的制作与性能评价:(1)玻璃阳极的预处理:选取带有氧化铟锡(ITO)膜作为透明电极的玻璃基板(3×3 mm);用乙醇将所述玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10
-4Pa,器件结构如下:ITO/HAT-CN (10 nm)/TAPC
(45 nm)/TCTA (5 nm)/mCBP (5 nm)/ 2tCz2CzBn:0.7 wt% DPPZ-2DMAC (25 nm)/B3PYMPM
(50 nm)/LiF (1 nm)/Al (100 nm);具体各层蒸镀为常规技术;(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见表1、表2和图1、图2。
表1 基于DPPZ-DMAC的白光有机电致发光器件的发光性能。
。
表2 基于DPPZ-2DMAC的有机电致发光器件的发光性能。
。
本发明提供的基于双吡啶并[3,2-a2',3'-c]吩嗪受体的热激活延迟材料的WOLED,实现其EQE超过20%的目标;用来解决全TADF白光器件中载流子传输平衡和能量传输通道合理调制等问题,从而使得主体与掺杂剂之间的能量转移过程引起的能量损失尽可能减少,最终实现其EQE超过20%,低开启电压的目标。
Claims (10)
- 一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件,其特征在于,所述白光电致发光器件的发光层由双吡啶吩嗪热激活延迟荧光材料掺杂蓝光热激活延迟荧光材料制备。
- 根据权利要求1所述双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件,其特征在于,所述双吡啶吩嗪热激活延迟荧光材料为DPPZ-DMAC或者DPPZ-2DMAC。
- 根据权利要求1所述双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件,其特征在于,所述白光电致发光器件包括阳极、空穴注入层、空穴传输层、阻挡层、发光层、电子传输层、电子注入层、阴极。
- 根据权利要求1所述双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件,其特征在于,所述双吡啶吩嗪热激活延迟荧光材料的掺杂浓度为0.2~1.5wt%。
- 根据权利要求1所述双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件在制备白光发光装置中的应用。
- 权利要求1所述双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件的制备方法,其特征在于,在阳极上依次制备空穴注入层、空穴传输层、阻挡层、发光层、电子传输层、电子注入层、阴极,得到所述双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件。
- 根据权利要求6所述双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件的制备方法,其特征在于,以11-氟双吡啶[3,2-a:2',3'-c]吩嗪和9,9-二甲基-9,10-二氢吖啶为原料,反应制备DPPZ-DMAC;以11,12-氟双吡啶[3,2-a:2',3'-c]吩嗪和9,9-二甲基-9,10-二氢吖啶为原料,反应制备DPPZ-2DMAC。
- 一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光发光层,其特征在于,所述白光发光层由双吡啶吩嗪热激活延迟荧光材料掺杂蓝光热激活延迟荧光材料制备。
- 权利要求8所述双吡啶吩嗪热激活延迟荧光材料掺杂的白光发光层在制备白光电致发光器件中的应用。
- 双吡啶吩嗪热激活延迟荧光材料掺杂蓝光热激活延迟荧光材料在制备白光电致发光器件中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210192683.X | 2022-03-01 | ||
CN202210192683.XA CN114605412B (zh) | 2022-03-01 | 2022-03-01 | 一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023165079A1 true WO2023165079A1 (zh) | 2023-09-07 |
Family
ID=81860090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/109313 WO2023165079A1 (zh) | 2022-03-01 | 2022-07-31 | 一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114605412B (zh) |
WO (1) | WO2023165079A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114649489B (zh) * | 2022-03-01 | 2024-02-02 | 苏州大学 | 一种基于双吡啶吩嗪热激活延迟荧光材料的红光电致发光器件 |
CN114605412B (zh) * | 2022-03-01 | 2023-09-05 | 苏州大学 | 一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件 |
CN114644632B (zh) * | 2022-03-01 | 2023-06-16 | 苏州大学 | 基于双吡啶并吩嗪受体的热激活延迟荧光材料及其制备方法与应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005330219A (ja) * | 2004-05-19 | 2005-12-02 | Chemiprokasei Kaisha Ltd | 置換ビニル基含有ジピリドフェナジン誘導体、それを用いた電子輸送材料および有機エレクトロルミネッセンス素子 |
CN109256473A (zh) * | 2018-08-20 | 2019-01-22 | 电子科技大学 | 白光有机发光二极管及制备方法 |
CN110283209A (zh) * | 2019-04-30 | 2019-09-27 | 黑龙江大学 | 膦氧基团修饰的二吡啶并吩嗪基红光/近红外热激发延迟荧光材料、合成方法及其应用 |
CN113735855A (zh) * | 2021-09-08 | 2021-12-03 | 苏州大学 | 一种深红/近红外光热激活延迟荧光材料及其制备方法与在有机电致发光材料中的应用 |
CN114605412A (zh) * | 2022-03-01 | 2022-06-10 | 苏州大学 | 一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109912619B (zh) * | 2017-12-13 | 2022-05-20 | 北京夏禾科技有限公司 | 有机电致发光材料和器件 |
CN113527322B (zh) * | 2020-09-08 | 2022-04-26 | 苏州大学 | 手性热激活延迟荧光材料的制备方法 |
-
2022
- 2022-03-01 CN CN202210192683.XA patent/CN114605412B/zh active Active
- 2022-07-31 WO PCT/CN2022/109313 patent/WO2023165079A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005330219A (ja) * | 2004-05-19 | 2005-12-02 | Chemiprokasei Kaisha Ltd | 置換ビニル基含有ジピリドフェナジン誘導体、それを用いた電子輸送材料および有機エレクトロルミネッセンス素子 |
CN109256473A (zh) * | 2018-08-20 | 2019-01-22 | 电子科技大学 | 白光有机发光二极管及制备方法 |
CN110283209A (zh) * | 2019-04-30 | 2019-09-27 | 黑龙江大学 | 膦氧基团修饰的二吡啶并吩嗪基红光/近红外热激发延迟荧光材料、合成方法及其应用 |
CN113735855A (zh) * | 2021-09-08 | 2021-12-03 | 苏州大学 | 一种深红/近红外光热激活延迟荧光材料及其制备方法与在有机电致发光材料中的应用 |
CN114605412A (zh) * | 2022-03-01 | 2022-06-10 | 苏州大学 | 一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件 |
Non-Patent Citations (2)
Title |
---|
CHEN JIA‐XIONG, WANG KAI, XIAO YA‐FANG, CAO CHEN, TAN JI‐HUA, WANG HUI, FAN XIAO‐CHUN, YU JIA, GENG FENG‐XIA, ZHANG XIAO‐HONG, LEE: "Thermally Activated Delayed Fluorescence Warm White Organic Light Emitting Devices with External Quantum Efficiencies Over 30%", ADVANCED FUNCTIONAL MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 31, no. 31, 1 August 2021 (2021-08-01), DE , XP093087792, ISSN: 1616-301X, DOI: 10.1002/adfm.202101647 * |
ZENG XIN‐YI, ZHOU JING‐XIONG, ZOU SHI‐JIE, TANG YAN‐QING, LI HAO‐ZE, HE YI‐HUI, LI YAN‐QING, WANG WEN‐JUN, TANG JIAN‐XIN: "Management of Multi‐Energy‐Transfer Channels and Exciton Harvesting for Power‐Efficient White Thermally Activated Delayed Fluorescence Diodes", ADVANCED OPTICAL MATERIALS, WILEY, DE, vol. 10, no. 11, 1 June 2022 (2022-06-01), DE , pages 2200277, XP093087550, ISSN: 2195-1071, DOI: 10.1002/adom.202200277 * |
Also Published As
Publication number | Publication date |
---|---|
CN114605412B (zh) | 2023-09-05 |
CN114605412A (zh) | 2022-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zheng et al. | Novel hole transport materials based on N, N′-disubstituted-dihydrophenazine derivatives for electroluminescent diodes | |
US10026901B2 (en) | Organic electronic material and organic electroluminescent device | |
CN102227485B (zh) | 有机光电装置用的新化合物和含该化合物的有机光电装置 | |
CN111574543A (zh) | 一种含硼的有机化合物及其在有机电致发光器件上的应用 | |
CN111574544A (zh) | 一种含硼的有机化合物及其在有机电致发光器件上的应用 | |
CN114605412B (zh) | 一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件 | |
CN107021926A (zh) | 一种含有氮杂螺芴和含氮六元杂环的化合物及其在oled上的应用 | |
WO2018033086A1 (zh) | 一种以氧杂蒽酮为核心的二苯并六元环取代化合物及其应用 | |
WO2019056932A1 (zh) | 咪唑衍生物、包含该咪唑衍生物的材料和有机电致发光器件 | |
Li et al. | Intramolecular hydrogen bond–enhanced electroluminescence performance of hybridized local and charge transfer (HLCT) excited-state blue-emissive materials | |
CN111808085B (zh) | 一种化合物及其应用、包含其的有机电致发光器件 | |
CN114649489B (zh) | 一种基于双吡啶吩嗪热激活延迟荧光材料的红光电致发光器件 | |
CN110818675A (zh) | 一类有机化合物及其应用 | |
Chen et al. | A multifunctional bipolar host material based on phenanthroimidazole for efficient green and red PhOLEDs with low turn-on voltage | |
CN109503427B (zh) | 一种d-a型有机蓝色荧光材料及其制备方法和应用 | |
CN112079843A (zh) | 手性热激活延迟荧光材料及其制备方法 | |
WO2023165077A1 (zh) | 基于双吡啶并吩嗪受体的热激活延迟荧光材料及其制备方法与应用 | |
WO2019085759A1 (zh) | 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用 | |
Shi et al. | Tetraphenylethylene-substituted phenothiazine-based AIEgens for non-doped deep-blue organic light-emitting diodes with negligible efficiency roll-off | |
WO2022242521A1 (zh) | 一种稠合氮杂环化合物及其应用以及包含该化合物的有机电致发光器件 | |
CN110577488A (zh) | 一种以咔唑为核心的化合物及其在有机电致发光器件上的应用 | |
CN111454251A (zh) | 一种吡嗪衍生物及其在oled器件中的应用 | |
CN112939993A (zh) | 一种苯并吡喃类发光辅助材料及其制备方法和有机电致发光器件 | |
CN113896724B (zh) | 基于苯并噻二唑-芘并咪唑的有机红光小分子及其在制备非掺杂有机电致发光器件中的应用 | |
Liang et al. | A novel host material with high thermal stability for green electrophosphorescent device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22929512 Country of ref document: EP Kind code of ref document: A1 |