WO2023162480A1 - 熱電変換用n型材料及びその製造方法、ドーパント並びに熱電変換素子 - Google Patents
熱電変換用n型材料及びその製造方法、ドーパント並びに熱電変換素子 Download PDFInfo
- Publication number
- WO2023162480A1 WO2023162480A1 PCT/JP2023/000062 JP2023000062W WO2023162480A1 WO 2023162480 A1 WO2023162480 A1 WO 2023162480A1 JP 2023000062 W JP2023000062 W JP 2023000062W WO 2023162480 A1 WO2023162480 A1 WO 2023162480A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermoelectric conversion
- type material
- dopant
- solvent
- type
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 222
- 239000000463 material Substances 0.000 title claims abstract description 205
- 239000002019 doping agent Substances 0.000 title claims abstract description 88
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- -1 iron ion Chemical class 0.000 claims abstract description 48
- 150000001768 cations Chemical class 0.000 claims abstract description 28
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 27
- 239000011347 resin Substances 0.000 claims abstract description 27
- 229920005989 resin Polymers 0.000 claims abstract description 27
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 25
- 150000002500 ions Chemical class 0.000 claims abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 23
- 239000002516 radical scavenger Substances 0.000 claims abstract description 20
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 239000002904 solvent Substances 0.000 claims description 49
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 30
- 150000001450 anions Chemical class 0.000 claims description 27
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 19
- 238000005470 impregnation Methods 0.000 claims description 16
- 229960005070 ascorbic acid Drugs 0.000 claims description 14
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 9
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 6
- 235000006408 oxalic acid Nutrition 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 235000010323 ascorbic acid Nutrition 0.000 claims description 4
- 239000011668 ascorbic acid Substances 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 3
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 3
- 229910001516 alkali metal iodide Inorganic materials 0.000 claims description 3
- 235000019253 formic acid Nutrition 0.000 claims description 3
- 235000011150 stannous chloride Nutrition 0.000 claims description 3
- 235000000346 sugar Nutrition 0.000 claims description 3
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 claims description 3
- 150000008163 sugars Chemical class 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 34
- 238000010438 heat treatment Methods 0.000 description 16
- 239000010410 layer Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 239000002211 L-ascorbic acid Substances 0.000 description 11
- 235000000069 L-ascorbic acid Nutrition 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000002109 single walled nanotube Substances 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- 229920001940 conductive polymer Polymers 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- DSFHXKRFDFROER-UHFFFAOYSA-N 2,5,8,11,14,17-hexaoxabicyclo[16.4.0]docosa-1(22),18,20-triene Chemical compound O1CCOCCOCCOCCOCCOC2=CC=CC=C21 DSFHXKRFDFROER-UHFFFAOYSA-N 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 239000002086 nanomaterial Substances 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 7
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 6
- 230000001747 exhibiting effect Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000000370 acceptor Substances 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 150000003983 crown ethers Chemical class 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 239000000276 potassium ferrocyanide Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 description 4
- UTYXJYFJPBYDKY-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide;trihydrate Chemical compound O.O.O.[K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] UTYXJYFJPBYDKY-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OAJNZFCPJVBYHB-UHFFFAOYSA-N 2,5,8,11-tetraoxabicyclo[10.4.0]hexadeca-1(16),12,14-triene Chemical compound O1CCOCCOCCOC2=CC=CC=C21 OAJNZFCPJVBYHB-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- LBQBYTKILJQONR-UHFFFAOYSA-J [Cl-].[Cl-].[Cl-].[Cl-].[Fe++] Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Fe++] LBQBYTKILJQONR-UHFFFAOYSA-J 0.000 description 2
- FNEPSTUXZLEUCK-UHFFFAOYSA-N benzo-15-crown-5 Chemical compound O1CCOCCOCCOCCOC2=CC=CC=C21 FNEPSTUXZLEUCK-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229910001414 potassium ion Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- XQQZRZQVBFHBHL-UHFFFAOYSA-N 12-crown-4 Chemical compound C1COCCOCCOCCO1 XQQZRZQVBFHBHL-UHFFFAOYSA-N 0.000 description 1
- VFTFKUDGYRBSAL-UHFFFAOYSA-N 15-crown-5 Chemical compound C1COCCOCCOCCOCCO1 VFTFKUDGYRBSAL-UHFFFAOYSA-N 0.000 description 1
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- MNQZXJOMYWMBOU-VKHMYHEASA-N D-glyceraldehyde Chemical compound OC[C@@H](O)C=O MNQZXJOMYWMBOU-VKHMYHEASA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- YBGKQGSCGDNZIB-UHFFFAOYSA-N arsenic pentafluoride Chemical compound F[As](F)(F)(F)F YBGKQGSCGDNZIB-UHFFFAOYSA-N 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- VTJUKNSKBAOEHE-UHFFFAOYSA-N calixarene Chemical compound COC(=O)COC1=C(CC=2C(=C(CC=3C(=C(C4)C=C(C=3)C(C)(C)C)OCC(=O)OC)C=C(C=2)C(C)(C)C)OCC(=O)OC)C=C(C(C)(C)C)C=C1CC1=C(OCC(=O)OC)C4=CC(C(C)(C)C)=C1 VTJUKNSKBAOEHE-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910001179 chromel Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- UETZVSHORCDDTH-UHFFFAOYSA-N iron(2+);hexacyanide Chemical compound [Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] UETZVSHORCDDTH-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229940039748 oxalate Drugs 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- OBCUTHMOOONNBS-UHFFFAOYSA-N phosphorus pentafluoride Chemical compound FP(F)(F)(F)F OBCUTHMOOONNBS-UHFFFAOYSA-N 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- GTSHREYGKSITGK-UHFFFAOYSA-N sodium ferrocyanide Chemical compound [Na+].[Na+].[Na+].[Na+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] GTSHREYGKSITGK-UHFFFAOYSA-N 0.000 description 1
- 239000000264 sodium ferrocyanide Substances 0.000 description 1
- 235000012247 sodium ferrocyanide Nutrition 0.000 description 1
- ZNCPFRVNHGOPAG-UHFFFAOYSA-L sodium oxalate Chemical compound [Na+].[Na+].[O-]C(=O)C([O-])=O ZNCPFRVNHGOPAG-UHFFFAOYSA-L 0.000 description 1
- 229940039790 sodium oxalate Drugs 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- 230000005619 thermoelectricity Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/855—Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/856—Thermoelectric active materials comprising organic compositions
Definitions
- the present invention relates to an n-type material for thermoelectric conversion, a method for producing the same, a dopant, and a thermoelectric conversion element.
- Thermoelectric conversion is a technology that uses the Seebeck effect to directly convert heat into electricity, and is attracting attention as an energy recovery technology that converts waste heat, etc. generated when fossil fuels are used into electricity.
- thermoelectric conversion element used in the above field is preferably a bipolar element provided with both a material exhibiting p-type conductivity and a material exhibiting n-type conductivity. There are many things to show. Therefore, there is a demand for a technique for converting a nanomaterial exhibiting p-type conductivity into a nanomaterial exhibiting n-type conductivity.
- Patent Document 1 discloses an n-type dopant that converts a nanomaterial exhibiting p-type conductivity into a nanomaterial exhibiting n-type conductivity.
- Whether the nanomaterial exhibits p-type conductivity or n-type conductivity can be determined by the positive or negative of the Seebeck coefficient (when the Seebeck coefficient is positive, the nanomaterial exhibits p-type When the coefficient is negative, the nanomaterial exhibits n-type conductivity).
- the present invention relates to, for example, the following [1] to [11].
- An n-type material for thermoelectric conversion obtained by doping a p-type material for thermoelectric conversion containing carbon nanotubes and a conductive resin with a dopant, An n-type material for thermoelectric conversion, wherein the dopant contains a complex ion containing a divalent iron ion, an alkali metal cation, a cation scavenger, and a reducing agent.
- the cation scavenger is a crown ether compound.
- the conductive resin comprises poly(3,4-ethylenedioxythiophene) and an electron acceptor.
- the reducing agent comprises at least one selected from the group consisting of ascorbic acid and its salts, reducing sugars, oxalic acid and its salts, formic acid, alkali metal iodides, and tin (II) chloride.
- thermoelectric conversion The n-type material for thermoelectric conversion according to any one of .
- a step of doping a p-type material for thermoelectric conversion containing carbon nanotubes and a conductive resin with a dopant A method for producing an n-type material for thermoelectric conversion, wherein the dopant contains an anion which is a complex ion, an alkali metal cation, a cation scavenger, and a reducing agent.
- thermoelectric conversion element comprising the n-type material for thermoelectric conversion according to any one of [1] to [5].
- thermoelectric conversion element according to [10] further comprising the p-
- a novel dopant capable of efficiently converting a p-type material for thermoelectric conversion into an n-type material for thermoelectric conversion is provided. Further, according to the present invention, there is provided an n-type material for thermoelectric conversion obtained by doping the p-type material for thermoelectric conversion with the dopant. Furthermore, according to the present invention, there are provided a method for producing the n-type material for thermoelectric conversion, and a thermoelectric conversion element including the n-type material for thermoelectric conversion.
- n-type material for thermoelectric conversion of this embodiment is obtained by doping a p-type material for thermoelectric conversion with a dopant.
- the p-type material for thermoelectric conversion contains carbon nanotubes and a conductive resin.
- Carbon nanotubes may be single-walled, double-walled, or multi-walled, and from the viewpoint of further improving the electrical conductivity of thermoelectric conversion materials (p-type materials for thermoelectric conversion and n-type materials for thermoelectric conversion described later) , a single layer is preferred.
- Carbon nanotubes preferably include single-walled carbon nanotubes.
- the content of single-walled carbon nanotubes relative to the total amount of carbon nanotubes is, for example, preferably 25% by mass or more, more preferably 50% by mass or more, and may be 100% by mass.
- the diameter of the single-walled carbon nanotube is not particularly limited, it may be, for example, 20 nm or less, preferably 10 nm or less, more preferably 3 nm or less. There is no particular lower limit to the diameter of the single-walled carbon nanotube, and it may be, for example, 0.4 nm or more, or 0.5 nm or more. That is, the diameter of the single-walled carbon nanotube may be, for example, 0.4 to 20 nm, 0.4 to 10 nm, 0.4 to 3 nm, 0.5 to 20 nm, 0.5 to 10 nm, or 0.5 to 3 nm. good.
- a known method for evaluating single-walled carbon nanotubes is the G/D ratio in laser Raman spectroscopy.
- the single-walled carbon nanotubes preferably have a G/D ratio of 10 or more, more preferably 20 or more, in laser Raman spectroscopy at a wavelength of 532 nm.
- the upper limit of the G/D ratio is not particularly limited, and may be, for example, 500 or less, or 300 or less. That is, the G/D ratio may be, for example, 10-500, 10-300, 20-500 or 20-300.
- the content of carbon nanotubes may be, for example, 20% by mass or more, preferably 30% by mass or more, and more preferably 40% by mass or more, based on the total solid content of the p-type material for thermoelectric conversion.
- the content of carbon nanotubes may be, for example, 99% by mass or less, preferably 95% by mass or less, and more preferably 90% by mass or less, based on the total solid content of the p-type material for thermoelectric conversion. be. That is, the content of carbon nanotubes is, for example, 20 to 99% by mass, 20 to 95% by mass, 20 to 90% by mass, 30 to 99% by mass, 30 to 99% by mass, based on the total solid content of the p-type material for thermoelectric conversion. It may be 95% by weight, 30-90% by weight, 40-99% by weight, 40-95% by weight or 40-90% by weight.
- the conductive resin of the present embodiment is not particularly limited, and known conductive resins used in p-type materials for thermoelectric conversion can be used without particular limitations.
- Examples of conductive resins include polyaniline-based conductive polymer, polythiophene-based conductive polymer, polypyrrole-based conductive polymer, polyacetylene-based conductive polymer, polyphenylene-based conductive polymer, and polyphenylene vinylene-based conductive polymer. and the like.
- Poly(3,4-ethylenedioxythiophene) can be exemplified as the polythiophene-based conductive polymer.
- the conductive resin of the present embodiment is preferably a conductive resin composed of poly(3,4-ethylenedioxythiophene) (hereinafter sometimes referred to as PEDOT) and an electron acceptor.
- PEDOT poly(3,4-ethylenedioxythiophene)
- Such a conductive resin tends to increase the electrical conductivity of the thermoelectric conversion material.
- Electron acceptors include polystyrenesulfonic acid, polyvinylsulfonic acid, poly(meth)acrylic acid, polyvinylsulfonic acid, toluenesulfonic acid, dodecylbenzenesulfonic acid, camphorsulfonic acid, bis(2-ethylhexyl)sulfosuccinate, chlorine, and bromine.
- PSS Polystyrene sulfonic acid
- a dopant As used herein, a dopant is intended to be a substance that changes the Seebeck coefficient of the material to which it is doped.
- thermoelectric conversion material with a positive Seebeck coefficient has p-type conductivity
- thermoelectric conversion material with a negative Seebeck coefficient has n-type conductivity.
- the Seebeck coefficient can be measured, for example, by the measurement method in Examples described later, and the polarity of the thermoelectric conversion material can be determined from the positive/negative of the measured value.
- the dopant of the present embodiment includes a complex ion containing a divalent iron ion (hereinafter also simply referred to as "anion”), an alkali metal cation (hereinafter also simply referred to as “cation”), and a cation scavenger ( hereinafter also simply referred to as a “capture agent”) and a reducing agent.
- anion a divalent iron ion
- cation alkali metal cation
- a cation scavenger hereinafter also simply referred to as a “capture agent”
- n-type material for thermoelectric conversion that is excellent in durability in a high-temperature and high-humidity environment (for example, 85° C./85 RH %).
- the trapping agent contained in the dopant traps the cation to dissociate the anion (complex ion), and the anion converts the carrier of the carbon nanotube from the hole to the electron.
- the anion is a complex ion having a metal atom in the center, it is considered that the interaction between the metal atom and the carbon nanotube significantly n-types the anion.
- the complex ion has a large ion size, it is considered that the dissociation property with the cation captured by the capturing agent is good, which is one of the reasons why the above effect is exhibited.
- the dopant contains a reducing agent, even if the amount of the anion (complex ion) and cation scavenger in the dopant is small, the p-type material for thermoelectric conversion can be efficiently converted into the n-type material for thermoelectric conversion. Can be converted into mold material. That is, in the present embodiment, it is possible to efficiently convert the p-type material for thermoelectric conversion into the n-type material for thermoelectric conversion while reducing the amount of expensive anion and cation scavengers used.
- the reason why the above effect is exhibited is not particularly limited, but the iron ions that are oxidized when the carriers of the carbon nanotube are changed from holes to electrons are reduced by a reducing agent, so that the carbon nanotube is regenerated.
- a reducing agent so that the carbon nanotube is regenerated.
- the carriers can be changed from holes to electrons.
- thermoelectricity is more excellent in durability in a high temperature environment (for example, 85 ° C./85 RH%). Converting n-type materials tend to be more readily available. That is, when higher durability in a high-temperature environment is required, the amount of the anion (complex ion) and the reducing agent doped into the p-type material for thermoelectric conversion may be increased. When it is desired to obtain an n-type material, the amount of anions (complex ions) doped into the p-type material for thermoelectric conversion may be reduced.
- the anion may be, for example, an anion selected from the group consisting of ferrocyanide ions and tetrachloroferric(II) ions. From the viewpoint of easily obtaining an n-type material for thermoelectric conversion having better properties, the anion is preferably a ferrocyanide ion.
- the anion may be an anion generated by dissociation of a complex salt in a dopant solution.
- the complex salts include potassium ferrocyanide, sodium ferrocyanide, potassium tetrachloroferrate(II), sodium tetrachloroferrate(II) and the like.
- Alkali metal cations include sodium ions, potassium ions, and lithium ions.
- the cation scavenger is not particularly limited as long as it has the ability to take in cations.
- examples thereof include crown ether compounds, cyclodextrin, calixarene, ethylenediaminetetraacetic acid, porphyrin, phthalocyanine and derivatives thereof.
- crown ether compounds include crown ether compounds, cyclodextrin, calixarene, ethylenediaminetetraacetic acid, porphyrin, phthalocyanine and derivatives thereof.
- an organic solvent it is preferable to use a crown ether compound.
- Crown ether compounds include 15-crown-5-ether, 18-crown-6-ether, 12-crown-4-ether, benzo-18-crown-6-ether, and benzo-15-crown-5-ether. , benzo-12-crown-4-ether and the like.
- the ring size of the crown ether used as a scavenger may be selected according to the size of the metal ion to be captured.
- metal ion when the metal ion is a potassium ion, an 18-membered ring crown ether is preferred, when the metal ion is a sodium ion, a 15-membered ring crown ether is preferred, and when the metal ion is a lithium ion, 12 A membered ring crown ether is preferred.
- the crown ether compound preferably has a benzene ring in its molecule.
- a crown ether compound By using such a crown ether compound, p-type conversion due to oxidation is suppressed, and storage stability tends to be further improved.
- crown ether compounds having a benzene ring include benzo-18-crown-6-ether, benzo-15-crown-5-ether and benzo-12-crown-4-ether.
- the molar ratio (C 2 /C 1 ) of the scavenger content C 2 to the cation content C 1 may be, for example, 0.1 or more, preferably 0.3 or more, more preferably 0.5 or more. is. Also, the molar ratio (C 2 /C 1 ) of the scavenger content C 2 to the cation content C 1 may be, for example, 5 or less, preferably 3 or less, and more preferably 2 or less. As a result, the above effects are exhibited more remarkably.
- the molar ratio (C 2 /C 1 ) of the scavenger content C 2 to the cation content C 1 is, for example , 0.1 to 5, 0.1 to 3, 0.1 to 2, 0.3 ⁇ 5, 0.3-3, 0.3-2, 0.5-5, 0.5-3 or 0.5-2.
- the reducing agent is not particularly limited as long as it can reduce trivalent iron ions.
- reducing agents include ascorbic acid, ascorbate (e.g., sodium ascorbate, etc.), reducing sugar (e.g., glucose, fructose, glyceraldehyde, etc.), oxalic acid, oxalate (e.g., sodium oxalate, etc.). ), formic acid, alkali metal iodides (such as potassium iodide) and tin (II) chloride.
- the molar ratio of the reducing agent content C4 to the anion content C3 may be, for example, 0.1 or more, preferably 0.2 or more, and more preferably 0.5 or more. is. Further, the molar ratio ( C4 / C3 ) of the reducing agent content C4 to the anion content C3 may be, for example, 30 or less, preferably 20 or less, more preferably 10 or less. As a result, the above effects are exhibited more remarkably.
- the molar ratio (C 4 /C 3 ) of the reducing agent content C 4 to the anion content C 3 is, for example, 0.1 to 30, 0.1 to 20, 0.1 to 10, 0.2 ⁇ 30, 0.2-20, 0.2-10, 0.5-30, 0.5-20 or 0.5-10.
- the dopant of the present embodiment may contain substances other than the above-described anions, cations, scavengers, and reducing agents, if necessary.
- a substance is not particularly limited as long as it does not inhibit the action of the dopant, and examples thereof include water and organic solvents.
- the dopant of the present embodiment may contain a plurality of types of anions, cations, scavengers, and reducing agents.
- the n-type material for thermoelectric conversion By doping the p-type material for thermoelectric conversion with the dopant of this embodiment, the n-type material for thermoelectric conversion can be obtained.
- the amount of the dopant to be doped into the p-type material for thermoelectric conversion is not particularly limited. good.
- the amount of anions (complex ions) doped into the p-type material for thermoelectric conversion may be, for example, 0.1 parts by mass or more with respect to 100 parts by mass of carbon nanotubes in the p-type material for thermoelectric conversion, preferably It is 1.0 parts by mass or more, more preferably 10 parts by mass or more. Further, the amount of anions (complex ions) doped into the p-type material for thermoelectric conversion may be, for example, 300 parts by mass or less with respect to 100 parts by mass of the carbon nanotubes in the p-type material for thermoelectric conversion, preferably 200 parts by mass or less, more preferably 150 parts by mass or less.
- the amount of anions (complex ions) doped into the p-type material for thermoelectric conversion is, for example, 0.1 to 300, 1.0 to 300, with respect to 100 parts by mass of carbon nanotubes in the p-type material for thermoelectric conversion. , 10-300, 0.1-200, 1.0-200, 10-200, 0.1-150, 1.0-150 or 10-150.
- the method for producing the n-type material for thermoelectric conversion of the present embodiment is not particularly limited, it can be produced, for example, by the following method.
- the manufacturing method of this embodiment includes a step of doping a p-type material for thermoelectric conversion containing carbon nanotubes and a conductive resin with a dopant.
- the above process is also called an n-type conversion process.
- the method of doping the p-type material for thermoelectric conversion with a dopant in the n-type conversion step is not particularly limited, and for example, a method of contacting the p-type material for thermoelectric conversion with a dopant solution containing a dopant can be mentioned.
- the n-type conversion step includes an impregnation step of impregnating at least a portion of the p-type material for thermoelectric conversion with a dopant solution containing a dopant and a solvent, and removing the solvent from the material after impregnation with the dopant solution. and a solvent removal step.
- the boiling point of the solvent is preferably 70°C or higher, more preferably 90°C or higher, even more preferably 110°C or higher, and may be 150°C or higher.
- the high boiling point of the solvent makes it difficult to remove the solvent during the heat treatment, and the effect of the heat treatment is exhibited more efficiently. That is, by using a solvent having the preferred boiling point range described above, the effect of the heat treatment is more pronounced.
- solvents examples include water, acetonitrile, ethanol, ethylene glycol, dimethylsulfoxide (DMSO), N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and the like.
- DMSO dimethylsulfoxide
- N-methylpyrrolidone N,N-dimethylformamide
- N,N-dimethylacetamide and the like.
- a solvent may be used individually by 1 type, and may mix 2 or more types.
- the dopant solution of the present embodiment may contain other components within a range that does not impair the effects of the present invention.
- Other components include, for example, binder resins, antioxidants, thickeners, surfactants, and the like.
- the method for impregnating the p-type material for thermoelectric conversion with the dopant solution is not particularly limited, and for example, a method such as immersing the p-type material for thermoelectric conversion in the dopant solution or coating the p-type material for thermoelectric conversion with the dopant solution. are mentioned.
- the dopant of this embodiment has excellent doping efficiency, so doping can be completed in a short time.
- the time for impregnating the p-type material for thermoelectric conversion with the dopant solution may be, for example, 10 minutes to 72 hours, or may be 30 minutes to 24 hours. When the time for impregnation with the dopant solution is within the above range, the productivity of the n-type material for thermoelectric conversion is excellent.
- the p-type material for thermoelectric conversion contains a conductive resin. There is concern that the adhesive resin will interfere.
- conventional dopants there are cases where it is necessary to dope the p-type material for thermoelectric conversion for a long period of time, or to disperse the p-type material for thermoelectric conversion in a dopant treatment liquid by shearing.
- the dopant of the present embodiment eliminates such trouble and can provide an n-type material having excellent thermoelectric conversion performance with a short impregnation time of about 10 minutes.
- a material impregnated with a dopant solution is obtained, and this material is subjected to a solvent removal step.
- the solvent used in the impregnation step may be removed at the end of the impregnation step except for the solvent impregnated or adhered to the material.
- the material may be removed from the dopant solution and subjected to the solvent removal step.
- the solvent removal step at least part of the solvent is removed from the material after being impregnated with the dopant solution.
- the solvent removing step it is not always necessary to remove all the solvent, and the solvent may remain to the extent that it functions sufficiently as an n-type material for thermoelectric conversion.
- the solvent removal step may be, for example, a step of removing the solvent by natural drying, or a step of removing the solvent by heat treatment, pressure reduction treatment, or the like.
- the solvent removal step may include a step of heat-treating the thermoelectric conversion material impregnated with the solvent.
- the solvent whose compatibility with the conductive resin has been improved by heating, causes the conductive resin in the material to flow, filling the voids between the carbon nanotubes and forming a denser structure. be done. Therefore, in this aspect, the thermoelectric conversion characteristics tend to be more significantly improved.
- the temperature of the heat treatment is not particularly limited, and may be, for example, 40°C or higher, preferably 50°C or higher, and more preferably 60°C or higher.
- the temperature of the heat treatment may be, for example, 250° C. or lower, preferably 225° C. or lower, and more preferably 200° C. or lower. Lowering the heat treatment temperature tends to improve the electrical conductivity of the thermoelectric conversion material.
- the Seebeck coefficient and electrical conductivity tend to vary depending on the heat treatment temperature. Therefore, the temperature of the heat treatment may be appropriately selected within the above range, for example, by looking at the balance between the Seebeck coefficient and the electrical conductivity.
- the heat treatment time is not particularly limited.
- the heat treatment time may be, for example, 1 minute or longer, preferably 10 minutes or longer, and may be 12 hours or shorter, preferably 6 hours or shorter.
- the heat treatment in this aspect does not necessarily have to be aimed at removing the solvent
- the solvent removal step according to this aspect may be a step in which the solvent is further removed after the heat treatment.
- the portion doped with the dopant of the p-type material for thermoelectric conversion becomes the n-type material for thermoelectric conversion.
- all of the p-type material for thermoelectric conversion may be doped with a dopant to form an n-type material for thermoelectric conversion, or a portion of the p-type material for thermoelectric conversion may be doped with a dopant to form a p-type material for thermoelectric conversion. and an n-type material for thermoelectric conversion may form a composite.
- the impregnation step may be a step of impregnating a portion of the resin layer containing the p-type material for thermoelectric conversion with a dopant solution containing a dopant and a solvent
- the solvent removal step may be a step of impregnating the dopant solution.
- a step of removing the solvent from the impregnated resin layer to obtain a thermoelectric conversion layer containing the p-type material for thermoelectric conversion and the n-type material for thermoelectric conversion may be obtained.
- a thermoelectric conversion layer containing a p-type material and an n-type material can be easily obtained.
- a thermoelectric conversion layer having a desired p/n configuration can be easily obtained.
- the shape of the n-type material for thermoelectric conversion is not particularly limited.
- a composite material obtained by forming a film of a p-type material for thermoelectric conversion on a support may be subjected to a doping treatment to obtain an n-type material for thermoelectric conversion as a film supported by the support.
- supports include polyimide, polyethylene terephthalate, polyethylene naphthalate, polyethylene isophthalate, polybutylene terephthalate, polycarbonate, polyetheretherketone, polyphenylsulfide, polysulfone, glass, copper, silver, gold, and aluminum.
- it is preferably selected from the group consisting of polyimide, polyethylene terephthalate and polyethylene naphthalate, since the obtained thermoelectric conversion material exhibits good flexibility.
- the film thickness of the n-type material for thermoelectric conversion is preferably 100 nm to 1 mm, more preferably 200 nm to 800 ⁇ m, even more preferably 300 nm to 600 ⁇ m, from the viewpoint of obtaining appropriate electrical resistance and excellent flexibility.
- the n-type material for thermoelectric conversion of this embodiment can be suitably used as an n-type material for thermoelectric conversion elements.
- the n-type material for thermoelectric conversion of the present embodiment can also be suitably used for applications such as Peltier elements and temperature sensors.
- thermoelectric conversion element of this embodiment includes the n-type material for thermoelectric conversion.
- the thermoelectric conversion element of the present embodiment may further contain the p-type material for thermoelectric conversion.
- thermoelectric conversion element of this embodiment may include, for example, two conductive substrates and a thermoelectric conversion layer disposed between the conductive substrates and containing the n-type material for thermoelectric conversion. Moreover, the thermoelectric conversion layer may further contain the p-type material for thermoelectric conversion.
- the two conductive substrates can also be called a first electrode and a second electrode, respectively.
- thermoelectric conversion element of the present embodiment is manufactured, for example, by a manufacturing method comprising a lamination step of arranging a thermoelectric conversion layer containing an n-type material for thermoelectric conversion and a p-type material for thermoelectric conversion on a conductive substrate. It can be anything.
- the thermoelectric conversion element of the present embodiment includes, for example, a first lamination step of arranging a resin layer containing a p-type material for thermoelectric conversion on one conductive substrate, and a part of the resin layer containing the dopant and the solvent An impregnation step of impregnating a dopant solution containing a solvent removal step of obtaining a thermoelectric conversion layer containing a p-type material for thermoelectric conversion and an n-type material for thermoelectric conversion by removing the solvent, and and a second lamination step of laminating the other conductive substrate.
- thermoelectric conversion element may further include configurations other than those described above.
- the thermoelectric conversion element includes a sealing material for sealing the thermoelectric conversion layer, wiring for electrically connecting the thermoelectric conversion elements to each other or extracting electric power to an external circuit, and heat dissipation of the thermoelectric conversion element. Insulation or thermally conductive materials or the like may also be included to control conductivity.
- Example 1 ⁇ Preparation of mixed solution> Heraeus "Clevious PH1000" (PEDOT / PSS aqueous dispersion, solid content concentration: 1.2% by mass) 0.28 g and Meijo Nanocarbon "EC-DH” (single-walled carbon nanotube aqueous dispersion, single-walled CNT concentration 0.2% by mass, the diameter of the single-walled CNT is 0.9 to 1.7 nm, and the G/D ratio is 41).
- EC-DH Meijo Nanocarbon
- ⁇ Preparation of composite membrane> The mixture was dropped onto a polyimide film (thickness 100 ⁇ m) washed with acetone, coated using a doctor blade with a gap of 2.5 mm, placed in a blower dryer set at 60° C., and dried for 2 hours. Thereby, a composite film having a thickness of 25 ⁇ m was formed on the polyimide film.
- a high-precision digimatic micrometer manufactured by Mitutoyo Co., Ltd., MDH-25MB is used to measure the film thickness, and the film thickness at the location where the composite film is formed and the film thickness at the location where only the polyimide film is formed are measured. The difference between the two was calculated as the film thickness of the composite film.
- n-type material for thermoelectric conversion Dissolve 0.063 g of potassium ferrocyanide trihydrate, 0.188 g of benzo-18-crown-6-ether and 0.018 g of L-ascorbic acid in 5 mL of ultrapure water (molar concentration of potassium ferrocyanide is 0.03 M, The molar concentration of benzo-18-crown-6-ether was 0.12 M, and the molar concentration of L-ascorbic acid was 0.02 M) to form a dopant solution.
- the above p-type material for thermoelectric conversion was cut into a piece of 10 mm ⁇ 10 mm together with the polyimide film, and 40 ⁇ L of a dopant solution was dropped onto the piece.
- the Seebeck coefficient of the obtained n-type material for thermoelectric conversion (referred to as “the Seebeck coefficient after doping treatment” in the table below) was ⁇ 20.9 ⁇ V/K.
- Potassium ferrocyanide trihydrate contains divalent iron ions.
- the Seebeck coefficients of the p-type material for thermoelectric conversion and the n-type material for thermoelectric conversion were measured by the following method.
- Example 2 An n-type material for thermoelectric conversion was obtained in the same manner as in Example 1, except that 0.018 g of D-(+)-glucose was used instead of L-ascorbic acid. The molar concentration of D-(+)-glucose in the dopant solution was 0.02M.
- the Seebeck coefficient of the p-type material for thermoelectric conversion before doping treatment was 23.3 ⁇ V/K
- the Seebeck coefficient of the n-type material for thermoelectric conversion after doping treatment was ⁇ 19.2 ⁇ V/K. there were.
- Example 3 As a dopant solution, 0.021 g of potassium ferrocyanide trihydrate, 0.063 g of benzo-18-crown-6-ether, and 0.035 g of D-(+)-glucose are dissolved in 5 mL of ultrapure water. An n-type material for thermoelectric conversion was obtained in the same manner as in Example 1, except that the was used. In the dopant solution, the molar concentration of potassium ferrocyanide was 0.01 M, the molar concentration of benzo-18-crown-6-ether was 0.04 M, and the molar concentration of D-(+)-glucose was 0.04 M. .
- Example 3 the Seebeck coefficient of the p-type material for thermoelectric conversion before doping treatment was 22.5 ⁇ V/K, and the Seebeck coefficient of the n-type material for thermoelectric conversion after doping treatment was ⁇ 16.4 ⁇ V/K. there were.
- Example 4 An n-type material for thermoelectric conversion was obtained in the same manner as in Example 1, except that 0.009 g of oxalic acid was used instead of L-ascorbic acid. The molar concentration of oxalic acid in the dopant solution was 0.02M.
- the Seebeck coefficient of the p-type material for thermoelectric conversion before doping treatment was 21.4 ⁇ V/K
- the Seebeck coefficient of the n-type material for thermoelectric conversion after doping treatment was ⁇ 21.5 ⁇ V/K. there were.
- Comparative example 1 An n-type material for thermoelectric conversion was obtained in the same manner as in Example 1, except that L-ascorbic acid was not used.
- the Seebeck coefficient of the p-type material for thermoelectric conversion before doping treatment was 23.1 ⁇ V/K
- the Seebeck coefficient of the n-type material for thermoelectric conversion after doping treatment was ⁇ 15.3 ⁇ V/K. there were.
- Comparative example 2 An n-type material for thermoelectric conversion was obtained in the same manner as in Example 3, except that D-(+)-glucose was not used.
- the Seebeck coefficient of the p-type material for thermoelectric conversion before doping treatment was 23.4 ⁇ V/K
- the Seebeck coefficient of the n-type material for thermoelectric conversion after doping treatment was ⁇ 7.8 ⁇ V/K. there were.
- thermoelectric conversion material (Comparative Example 3) A p-type thermoelectric conversion material was doped with a dopant in the same manner as in Example 1, except that potassium ferrocyanide trihydrate was not used.
- the Seebeck coefficient before doping was 25.66 ⁇ V/K
- the Seebeck coefficient after doping was 25.54 ⁇ V/K.
- Examples 1-4 and Comparative Examples 1-3 are shown in Tables 1 and 2.
- the complex ion concentration, the cation scavenger concentration, and the reducing agent concentration indicate the concentrations of the respective components in the doping solution.
- reducing agent 1 indicates L-ascorbic acid
- reducing agent 2 indicates D-(+)-glucose
- reducing agent 3 indicates oxalic acid.
- Example 5 ⁇ Preparation of p-type material for thermoelectric conversion> A p-type material for thermoelectric conversion was produced in the same manner as in Example 1.
- the Seebeck coefficient of the obtained p-type thermoelectric conversion material (referred to as "Seebeck coefficient before doping treatment" in the table below) was 22.5 ⁇ V/K.
- n-type material for thermoelectric conversion ⁇ Production of n-type material for thermoelectric conversion> Except that the molar concentration of potassium ferrocyanide in the dopant solution was changed to 0.05M, the molar concentration of benzo-18-crown-6-ether was changed to 0.2M, and the molar concentration of L-ascorbic acid was changed to 0.05M.
- a dopant solution was prepared in the same manner as in Example 1.
- An n-type material for thermoelectric conversion was produced in the same manner as in Example 1, except that the obtained p-type material for thermoelectric conversion and the dopant solution were used.
- the Seebeck coefficient of the obtained n-type material for thermoelectric conversion (referred to as “the Seebeck coefficient after doping treatment” in the table below) was ⁇ 19.4 ⁇ V/K.
- Example 6 An n-type material for thermoelectric conversion was obtained in the same manner as in Example 5, except that the molar concentration of L-ascorbic acid in the dopant solution was changed to 0.12M.
- the Seebeck coefficient of the p-type material for thermoelectric conversion before doping treatment was 24.4 ⁇ V/K
- the Seebeck coefficient of the n-type material for thermoelectric conversion after doping treatment was ⁇ 21.0 ⁇ V/K. there were.
- Example 7 An n-type material for thermoelectric conversion was obtained in the same manner as in Example 5, except that the molar concentration of L-ascorbic acid in the dopant solution was changed to 0.23M.
- the Seebeck coefficient of the p-type material for thermoelectric conversion before doping treatment was 23.8 ⁇ V/K
- the Seebeck coefficient of the n-type material for thermoelectric conversion after doping treatment was ⁇ 20.6 ⁇ V/K. there were.
- Comparative Example 4 An n-type material for thermoelectric conversion was obtained in the same manner as in Example 5, except that L-ascorbic acid was not added to the dopant solution.
- the Seebeck coefficient of the p-type material for thermoelectric conversion before doping treatment was 21.78 ⁇ V/K
- the Seebeck coefficient of the n-type material for thermoelectric conversion after doping treatment was ⁇ 23.0 ⁇ V/K. there were.
- Table 3 shows the results of Examples 5 to 7 and Comparative Example 4.
- the complex ion concentration, the cation scavenger concentration, and the reducing agent concentration indicate the concentrations of the respective components in the doping solution.
- reducing agent 1 represents L-ascorbic acid.
- thermoelectric conversion n-type materials obtained in Examples 5 to 7 and Comparative Example 4 were allowed to stand in an environment of 85° C. and 85% humidity for a predetermined time (500 hours, 1000 hours, 2000 hours, 3000 hours). After the lapse of time, it was taken out and the Seebeck coefficient was measured. Table 3 shows the measurement results at each time.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
[1]
カーボンナノチューブ及び導電性樹脂を含有する熱電変換用p型材料にドーパントをドープしてなる熱電変換用n型材料であって、
前記ドーパントが、二価の鉄イオンを含有する錯イオンと、アルカリ金属カチオンと、カチオン捕捉剤と、還元剤とを含有する、熱電変換用n型材料。
[2]
前記カチオン捕捉剤が、クラウンエーテル系化合物である、[1]に記載の熱電変換用n型材料。
[3]
前記カチオン捕捉剤が、分子内にベンゼン環を有するクラウンエーテル系化合物である、[2]に記載の熱電変換用n型材料。
[4]
前記導電性樹脂が、ポリ(3,4-エチレンジオキシチオフェン)と電子受容体とから構成されている、[1]~[3]のいずれか一つに記載の熱電変換用n型材料。
[5]
前記還元剤が、アスコルビン酸及びその塩、還元糖、シュウ酸及びその塩、ギ酸、アルカリ金属ヨウ化物並びに塩化スズ(II)からなる群より選択される少なくとも一種を含む、[1]~[4]のいずれか一つに記載の熱電変換用n型材料。
[6]
カーボンナノチューブ及び導電性樹脂を含有する熱電変換用p型材料にドープされ、前記熱電変換用p型材料をn型化するドーパントであって、
錯イオンであるアニオンと、アルカリ金属カチオンと、カチオン捕捉剤と、還元剤とを含有する、ドーパント。
[7]
カーボンナノチューブ及び導電性樹脂を含有する熱電変換用p型材料にドーパントをドープする工程を含み、
前記ドーパントが、錯イオンであるアニオンと、アルカリ金属カチオンと、カチオン捕捉剤と、還元剤とを含有する、熱電変換用n型材料の製造方法。
[8]
前記工程が、
前記熱電変換用p型材料の少なくとも一部に、前記ドーパント及び溶剤を含有するドーパント溶液を含浸させる含浸工程と、
前記溶剤を除去する溶剤除去工程と、
を含む、[7]に記載の熱電変換用n型材料の製造方法。
[9]
前記工程が、
前記熱電変換用p型材料を含有する樹脂層の一部に、前記ドーパント及び溶剤を含有するドーパント溶液を含浸させる含浸工程と、
前記溶剤を除去して、前記熱電変換用p型材料と熱電変換用n型材料とを含有する熱電変換層を得る溶剤除去工程と、
を含む、[7]に記載の熱電変換用n型材料の製造方法。
[10]
[1]~[5]のいずれか一つに記載の熱電変換用n型材料を含む、熱電変換素子。
[11]
前記熱電変換用p型材料を更に含む、[10]に記載の熱電変換素子。
本実施形態の熱電変換用n型材料は、熱電変換用p型材料にドーパントをドープしてなる。
熱電変換用p型材料は、カーボンナノチューブ及び導電性樹脂を含有する。
本明細書において、ドーパントとは、当該ドーパントがドープされる対象となる材料のゼーベック係数を変化させる物質を意図している。
本実施形態の製造方法は、カーボンナノチューブ及び導電性樹脂を含有する熱電変換用p型材料にドーパントをドープする工程を含む。上記工程をn型化工程ともいう。
本実施形態の熱電変換素子は、上記熱電変換用n型材料を含む。本実施形態の熱電変換素子は、上記熱電変換用p型材料を更に含んでいてもよい。
<混合液の調製>
Heraeus製「Clevious PH1000」(PEDOT/PSS水分散液、固形分濃度:1.2質量%)0.28gと名城ナノカーボン製「EC-DH」(単層カーボンナノチューブ水分散液、単層CNT濃度0.2質量%、単層CNTの直径は0.9~1.7nm、G/D比:41)5gを、自転公転式ミキサー(シンキー社製「あわとり練太郎 ARE-310」)で撹拌・混合して、PEDOT/PSS及び単層CNTの合計量に対する単層CNTの含有量が75質量%の混合液を調製した。なお、「PEDOT/PSS」とは、PEDOT及びPSSからなる導電性高分子をいう。
アセトンで洗浄したポリイミドフィルム(厚み100μm)上に、混合液を滴下し、ギャップ2.5mmのドクターブレードを用いて塗工し、60℃に設定した送風乾燥機に入れ、2時間乾燥させた。これにより、膜厚25μmの複合膜をポリイミドフィルム上に形成させた。膜厚の測定には高精度デジマチックマイクロメータ(株式会社ミツトヨ製、MDH-25MB)を用い、複合膜が形成された箇所の膜厚とポリイミドフィルムのみの箇所の膜厚とをそれぞれ測定し、両者の差を複合膜の膜厚として算出した。
上記複合膜をジメチルスルホキシド(DMSO、沸点189℃)に室温で5分間、浸漬処理した。その後、60℃に設定したホットプレート上に120分間配置した。これにより、熱電変換用p型材料の層(厚み5μm)を作製した。得られたp型熱電変換材料のゼーベック係数(下記表中では「ドーピング処理前のゼーベック係数」という)は、22.8μV/Kであった。
超純水5mLにフェロシアン化カリウム三水和物0.063gとベンゾ-18-クラウン-6-エーテル0.188gとL-アスコルビン酸0.018gとを溶解させ(フェロシアン化カリウムのモル濃度が0.03M、ベンゾ-18-クラウン-6-エーテルのモル濃度が0.12M、L-アスコルビン酸のモル濃度が0.02M)、ドーパント溶液とした。上記の熱電変換用p型材料を、ポリイミドフィルムごと10mm×10mmに切り出し、その上にドーパント溶液を40μL滴下した。その後、60℃で30分間乾燥させ、次いで100℃に設定した送風乾燥機に入れ、加熱処理を60分間行った。これにより、熱電変換用n型材料を得た。得られた熱電変換用n型材料のゼーベック係数(下記表中では「ドーピング処理後のゼーベック係数」という)は、-20.9μV/Kであった。なお、フェロシアン化カリウム三水和物は二価の鉄イオンを含有する。
ポリイミドフィルム上に配置された熱電変換材料(熱電変換用p型材料又は熱電変換用n型材料)を20mm×10mmに切り出して、試験片を作製した。試験片の長辺の一端を冷却(試験片の初期温度-5℃=18℃)し、試験片の長辺のもう一端を加熱(試験片の初期温度+5℃=28℃)し、両端に生じる温度差と電圧をアルメル-クロメル熱電対で計測し、温度差と電圧の傾きからゼーベック係数を算出した。
L-アスコルビン酸の代わりにD-(+)-グルコースを0.018g用いたこと以外は、実施例1と同様にして、熱電変換用n型材料を得た。なお、ドーパント溶液中のD-(+)-グルコースのモル濃度は0.02Mであった。実施例2では、ドーピング処理前の熱電変換用p型材料のゼーベック係数は、23.3μV/Kであり、ドーピング処理後の熱電変換用n型材料のゼーベック係数は、-19.2μV/Kであった。
ドーパント溶液として、フェロシアン化カリウム三水和物0.021gと、ベンゾ-18-クラウン-6-エーテル0.063gと、D-(+)-グルコース0.035gとを超純水5mLに溶解させたものを用いたこと以外は、実施例1と同様にして、熱電変換用n型材料を得た。なお、ドーパント溶液中、フェロシアン化カリウムのモル濃度は0.01M、ベンゾ-18-クラウン-6-エーテルのモル濃度は0.04M、D-(+)-グルコースのモル濃度は0.04Mであった。実施例3では、ドーピング処理前の熱電変換用p型材料のゼーベック係数は、22.5μV/Kであり、ドーピング処理後の熱電変換用n型材料のゼーベック係数は、-16.4μV/Kであった。
L-アスコルビン酸の代わりにシュウ酸を0.009g用いたこと以外は、実施例1と同様にして、熱電変換用n型材料を得た。なお、ドーパント溶液中のシュウ酸のモル濃度は0.02Mであった。実施例4では、ドーピング処理前の熱電変換用p型材料のゼーベック係数は、21.4μV/Kであり、ドーピング処理後の熱電変換用n型材料のゼーベック係数は、-21.5μV/Kであった。
L-アスコルビン酸を用いなかったこと以外は実施例1と同様にして、熱電変換用n型材料を得た。比較例1では、ドーピング処理前の熱電変換用p型材料のゼーベック係数は、23.1μV/Kであり、ドーピング処理後の熱電変換用n型材料のゼーベック係数は、-15.3μV/Kであった。
D-(+)-グルコースを用いなかったこと以外は実施例3と同様にして、熱電変換用n型材料を得た。比較例2では、ドーピング処理前の熱電変換用p型材料のゼーベック係数は、23.4μV/Kであり、ドーピング処理後の熱電変換用n型材料のゼーベック係数は、-7.8μV/Kであった。
フェロシアン化カリウム三水和物を用いなかったこと以外は実施例1と同様にして、p型熱電変換材料にドーパントをドープした。比較例3では、ドーピング処理前のゼーベック係数は、25.66μV/Kであり、ドーピング処理後のゼーベック係数は、25.54μV/Kであった。
<熱電変換用p型材料の作製>
実施例1と同様の方法により、熱電変換用p型材料を作製した。得られたp型熱電変換材料のゼーベック係数(下記表中では「ドーピング処理前のゼーベック係数」という)は22.5μV/Kであった。
ドーパント溶液におけるフェロシアン化カリウムのモル濃度を0.05Mに、ベンゾ-18-クラウン-6-エーテルのモル濃度を0.2Mに、L-アスコルビン酸のモル濃度を0.05Mにそれぞれ変更したこと以外は、実施例1と同様にしてドーパント溶液を調製した。得られた熱電変換用p型材料及びドーパント溶液を用いたこと以外は、実施例1と同様にして熱電変換用n型材料を作製した。得られた熱電変換用n型材料のゼーベック係数(下記表中では「ドーピング処理後のゼーベック係数」という)は、-19.4μV/Kであった。
ドーパント溶液におけるL-アスコルビン酸のモル濃度を0.12Mに変更したこと以外は、実施例5と同様にして熱電変換用n型材料を得た。実施例6では、ドーピング処理前の熱電変換用p型材料のゼーベック係数は、24.4μV/Kであり、ドーピング処理後の熱電変換用n型材料のゼーベック係数は、-21.0μV/Kであった。
ドーパント溶液におけるL-アスコルビン酸のモル濃度を0.23Mに変更したこと以外は、実施例5と同様にして熱電変換用n型材料を得た。実施例6では、ドーピング処理前の熱電変換用p型材料のゼーベック係数は、23.8μV/Kであり、ドーピング処理後の熱電変換用n型材料のゼーベック係数は、-20.6μV/Kであった。
ドーパント溶液にL-アスコルビン酸を添加しなかったこと以外は、実施例5と同様にして熱電変換用n型材料を得た。比較例4では、ドーピング処理前の熱電変換用p型材料のゼーベック係数は、21.78μV/Kであり、ドーピング処理後の熱電変換用n型材料のゼーベック係数は、-23.0μV/Kであった。
実施例5~7及び比較例4で得られた熱電変換用n型材料を、85℃、湿度85%の環境下で静置し、所定時間(500時間、1000時間、2000時間、3000時間)経過後に取り出して、ゼーベック係数を測定した。各時間での測定結果を表3に示す。
Claims (11)
- カーボンナノチューブ及び導電性樹脂を含有する熱電変換用p型材料にドーパントをドープしてなる熱電変換用n型材料であって、
前記ドーパントが、二価の鉄イオンを含有する錯イオンと、アルカリ金属カチオンと、カチオン捕捉剤と、還元剤とを含有する、熱電変換用n型材料。 - 前記カチオン捕捉剤が、クラウンエーテル系化合物である、請求項1に記載の熱電変換用n型材料。
- 前記カチオン捕捉剤が、分子内にベンゼン環を有するクラウンエーテル系化合物である、請求項2に記載の熱電変換用n型材料。
- 前記導電性樹脂が、ポリ(3,4-エチレンジオキシチオフェン)と電子受容体とから構成されている、請求項1に記載の熱電変換用n型材料。
- 前記還元剤が、アスコルビン酸及びその塩、還元糖、シュウ酸及びその塩、ギ酸、アルカリ金属ヨウ化物並びに塩化スズ(II)からなる群より選択される少なくとも一種を含む、請求項1に記載の熱電変換用n型材料。
- カーボンナノチューブ及び導電性樹脂を含有する熱電変換用p型材料にドープされ、前記熱電変換用p型材料をn型化するドーパントであって、
錯イオンであるアニオンと、アルカリ金属カチオンと、カチオン捕捉剤と、還元剤とを含有する、ドーパント。 - カーボンナノチューブ及び導電性樹脂を含有する熱電変換用p型材料にドーパントをドープする工程を含み、
前記ドーパントが、錯イオンであるアニオンと、アルカリ金属カチオンと、カチオン捕捉剤と、還元剤とを含有する、熱電変換用n型材料の製造方法。 - 前記工程が、
前記熱電変換用p型材料の少なくとも一部に、前記ドーパント及び溶剤を含有するドーパント溶液を含浸させる含浸工程と、
前記溶剤を除去する溶剤除去工程と、
を含む、請求項7に記載の熱電変換用n型材料の製造方法。 - 前記工程が、
前記熱電変換用p型材料を含有する樹脂層の一部に、前記ドーパント及び溶剤を含有するドーパント溶液を含浸させる含浸工程と、
前記溶剤を除去して、前記熱電変換用p型材料と熱電変換用n型材料とを含有する熱電変換層を得る溶剤除去工程と、
を含む、請求項7に記載の熱電変換用n型材料の製造方法。 - 請求項1~5のいずれか一項に記載の熱電変換用n型材料を含む、熱電変換素子。
- 前記熱電変換用p型材料を更に含む、請求項10に記載の熱電変換素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380021159.9A CN118715888A (zh) | 2022-02-25 | 2023-01-05 | 热电转换用n型材料及其制造方法、掺杂剂及热电转换元件 |
JP2024502884A JPWO2023162480A1 (ja) | 2022-02-25 | 2023-01-05 | |
KR1020247030678A KR20240148908A (ko) | 2022-02-25 | 2023-01-05 | 열전 변환용 n형 재료 및 그 제조 방법, 도펀트, 및 열전 변환 소자 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-027725 | 2022-02-25 | ||
JP2022027725 | 2022-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023162480A1 true WO2023162480A1 (ja) | 2023-08-31 |
Family
ID=87765344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/000062 WO2023162480A1 (ja) | 2022-02-25 | 2023-01-05 | 熱電変換用n型材料及びその製造方法、ドーパント並びに熱電変換素子 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2023162480A1 (ja) |
KR (1) | KR20240148908A (ja) |
CN (1) | CN118715888A (ja) |
WO (1) | WO2023162480A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118459942A (zh) * | 2024-07-15 | 2024-08-09 | 深圳市心之礼电子有限公司 | 一种用于加热手套高柔性高导电电热薄膜及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015198980A1 (ja) | 2014-06-26 | 2015-12-30 | 国立大学法人奈良先端科学技術大学院大学 | ナノ材料-ドーパント組成物複合体の製造方法、ナノ材料-ドーパント組成物複合体およびドーパント組成物 |
JP2016009851A (ja) * | 2014-06-26 | 2016-01-18 | 国立大学法人 奈良先端科学技術大学院大学 | ナノ材料−ドーパント組成物複合体の製造方法、ナノ材料−ドーパント組成物複合体およびドーパント組成物 |
JP2016157942A (ja) * | 2015-02-23 | 2016-09-01 | 国立大学法人 奈良先端科学技術大学院大学 | カーボンナノチューブ−ドーパント組成物複合体の製造方法およびカーボンナノチューブ−ドーパント組成物複合体 |
WO2018147126A1 (ja) * | 2017-02-10 | 2018-08-16 | 国立大学法人 奈良先端科学技術大学院大学 | n型導電材料およびその製造方法 |
JP2018137399A (ja) * | 2017-02-23 | 2018-08-30 | 国立大学法人 奈良先端科学技術大学院大学 | ナノ材料複合体およびその製造方法 |
JP2018195679A (ja) * | 2017-05-16 | 2018-12-06 | 国立大学法人 奈良先端科学技術大学院大学 | ナノ材料複合体およびその製造方法 |
WO2021235526A1 (ja) * | 2020-05-21 | 2021-11-25 | デンカ株式会社 | 熱電変換用n型材料及びその製造方法、ドーパント並びに熱電変換素子 |
-
2023
- 2023-01-05 JP JP2024502884A patent/JPWO2023162480A1/ja active Pending
- 2023-01-05 CN CN202380021159.9A patent/CN118715888A/zh active Pending
- 2023-01-05 KR KR1020247030678A patent/KR20240148908A/ko unknown
- 2023-01-05 WO PCT/JP2023/000062 patent/WO2023162480A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015198980A1 (ja) | 2014-06-26 | 2015-12-30 | 国立大学法人奈良先端科学技術大学院大学 | ナノ材料-ドーパント組成物複合体の製造方法、ナノ材料-ドーパント組成物複合体およびドーパント組成物 |
JP2016009851A (ja) * | 2014-06-26 | 2016-01-18 | 国立大学法人 奈良先端科学技術大学院大学 | ナノ材料−ドーパント組成物複合体の製造方法、ナノ材料−ドーパント組成物複合体およびドーパント組成物 |
JP2016157942A (ja) * | 2015-02-23 | 2016-09-01 | 国立大学法人 奈良先端科学技術大学院大学 | カーボンナノチューブ−ドーパント組成物複合体の製造方法およびカーボンナノチューブ−ドーパント組成物複合体 |
WO2018147126A1 (ja) * | 2017-02-10 | 2018-08-16 | 国立大学法人 奈良先端科学技術大学院大学 | n型導電材料およびその製造方法 |
JP2018137399A (ja) * | 2017-02-23 | 2018-08-30 | 国立大学法人 奈良先端科学技術大学院大学 | ナノ材料複合体およびその製造方法 |
JP2018195679A (ja) * | 2017-05-16 | 2018-12-06 | 国立大学法人 奈良先端科学技術大学院大学 | ナノ材料複合体およびその製造方法 |
WO2021235526A1 (ja) * | 2020-05-21 | 2021-11-25 | デンカ株式会社 | 熱電変換用n型材料及びその製造方法、ドーパント並びに熱電変換素子 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118459942A (zh) * | 2024-07-15 | 2024-08-09 | 深圳市心之礼电子有限公司 | 一种用于加热手套高柔性高导电电热薄膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20240148908A (ko) | 2024-10-11 |
CN118715888A (zh) | 2024-09-27 |
JPWO2023162480A1 (ja) | 2023-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4151591B1 (en) | N-type material for thermoelectric conversion, method for producing same, dopant and thermoelectric conversion element | |
Lee et al. | Vapor-assisted ex-situ doping of carbon nanotube toward efficient and stable perovskite solar cells | |
Zhang et al. | 4-tert-Butylpyridine free hole transport materials for efficient perovskite solar cells: a new strategy to enhance the environmental and thermal stability | |
Bera et al. | Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells | |
Habisreutinger et al. | Dopant-free planar n–i–p perovskite solar cells with steady-state efficiencies exceeding 18% | |
Farooq et al. | Efficient photocatalysis through conductive polymer coated FTO counter electrode in platinum free dye sensitized solar cells | |
Yusupov et al. | Polymer‐based low‐temperature thermoelectric composites | |
Manspeaker et al. | Role of interface in stability of perovskite solar cells | |
Wang et al. | New insight into the Lewis basic sites in metal–organic framework-doped hole transport materials for efficient and stable Perovskite solar cells | |
US20050072462A1 (en) | Solid state dye-sensitized solar cell employing composite polymer electrolyte | |
Zheng et al. | High-performance, stable and low-cost mesoscopic perovskite (CH 3 NH 3 PbI 3) solar cells based on poly (3-hexylthiophene)-modified carbon nanotube cathodes | |
US10991868B2 (en) | Thermoelectric conversion element | |
Torabi et al. | Performance enhancement of perovskite solar cell by controlling deposition temperature of copper phthalocyanine as a dopant-free hole transporting layer | |
WO2023162480A1 (ja) | 熱電変換用n型材料及びその製造方法、ドーパント並びに熱電変換素子 | |
JP6771844B2 (ja) | 熱電変換層、熱電変換層形成用組成物、熱電変換素子、熱電変換モジュール | |
Alam et al. | Enhancing thermoelectric performance of PEDOT: PSS: A review of treatment and nanocomposite strategies | |
Bandara et al. | Polyethyleneoxide (PEO)-based, anion conducting solid polymer electrolyte for PEC solar cells | |
Elawad et al. | An organic hole-transporting material spiro-OMeTAD doped with a Mn complex for efficient perovskite solar cells with high conversion efficiency | |
Mabrouk et al. | Electrochemically Prepared Polyaniline as an Alternative to Poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) for Inverted Perovskite Solar Cells | |
WO2023063177A1 (ja) | 熱電変換素子及びその製造方法 | |
JPWO2018012370A1 (ja) | n型半導体層、熱電変換層、熱電変換素子、熱電変換モジュール、及びn型半導体層形成用組成物 | |
JP6670382B2 (ja) | p型半導体層、熱電変換層、熱電変換素子、熱電変換モジュール、及びp型半導体層形成用組成物 | |
WO2023058523A1 (ja) | 熱電変換モジュール及びその製造方法 | |
JP6846784B2 (ja) | 熱電変換素子、n型有機半導体材料とその製造方法、およびn型有機半導体材料の安定化剤 | |
WO2024053581A1 (ja) | 熱電変換用p型材料及びその製造方法、並びに熱電変換素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23759486 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024502884 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2023759486 Country of ref document: EP Effective date: 20240829 |
|
ENP | Entry into the national phase |
Ref document number: 20247030678 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247030678 Country of ref document: KR |