WO2023162442A1 - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
WO2023162442A1
WO2023162442A1 PCT/JP2022/047213 JP2022047213W WO2023162442A1 WO 2023162442 A1 WO2023162442 A1 WO 2023162442A1 JP 2022047213 W JP2022047213 W JP 2022047213W WO 2023162442 A1 WO2023162442 A1 WO 2023162442A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
housing
path
motor
inverter
Prior art date
Application number
PCT/JP2022/047213
Other languages
English (en)
French (fr)
Inventor
啓介 麻生
祐輔 牧野
直大 和田
健斗 辻本
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2023162442A1 publication Critical patent/WO2023162442A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium

Definitions

  • the present invention relates to a driving device.
  • This application claims priority based on Japanese Patent Application No. 2022-030184 filed in Japan on February 28, 2022, the content of which is incorporated herein.
  • the inverter was placed radially outside the motor, so the drive system was radially large. Therefore, it is conceivable to dispose the inverter in the axial direction of the motor.
  • the path for cooling the motor among the flow paths is provided along the outer peripheral surface of the motor. Therefore, if the inverter is arranged in the axial direction of the motor, the flow path is bent at the connection between the path for cooling the inverter and the path for cooling the motor, resulting in an increase in fluid pressure loss. If the pressure loss increases, the flow velocity of the fluid will decrease, and there is a risk that the cooling effect of the fluid will decrease.
  • one of the objects of the present invention is to provide a drive device having a flow path that suppresses pressure loss while reducing the size in the radial direction.
  • One aspect of the driving device of the present invention includes a motor having a rotor that rotates about a central axis and a stator that is radially opposed to the rotor; a housing having an inverter connected in a static connection, a motor accommodating portion that accommodates the motor, and an inverter accommodating portion that accommodates the inverter; a bearing holder that holds a bearing that rotatably supports the
  • the housing has a flow path including a first flow path section, a second flow path section, and a third flow path section.
  • the first flow path portion is arranged in the inverter accommodating portion.
  • the second flow path part is arranged in at least one of the inverter housing part and the motor housing part, and connects the first flow path part and the third flow path part.
  • the third channel portion is arranged in the motor accommodating portion.
  • the third channel portion has an outer peripheral channel portion that extends circumferentially along the outer peripheral surface of the stator.
  • the second flow path section has a first path extending from the first flow path section to the other side in the axial direction, and a second path connecting the first path and the outer peripheral flow path section.
  • the second path and the outer peripheral flow path form an obtuse angle at the connecting portion.
  • a driving device having a flow path that suppresses pressure loss while reducing the size in the radial direction.
  • FIG. 1 is a perspective view of a drive device of one embodiment.
  • FIG. 2 is a conceptual diagram of the driving device of one embodiment.
  • FIG. 3 is a cross-sectional view of the drive device of one embodiment.
  • FIG. 4 is a front view of a mating surface of the housing of one embodiment.
  • FIG. 5 is a front view of a mating surface of a modified housing.
  • FIG. 6 is a perspective view of the vicinity of the opening of the driving device of one embodiment.
  • FIG. 7 is a cross-sectional view of the drive device of one embodiment.
  • FIG. 8 shows the cross-sectional area of the driving device of Modification 1.
  • FIG. FIG. 9 is a cross-sectional view of the driving device of Modification 1.
  • the direction of gravity will be defined based on the positional relationship when the driving device 1 is mounted on a vehicle positioned on a horizontal road surface.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction indicates the vertical direction (that is, the vertical direction), the +Z direction is the upper side (the side opposite to the direction of gravity), and the -Z direction is the lower side (the direction of gravity).
  • the X-axis direction is a direction perpendicular to the Z-axis direction and indicates the front-rear direction of the vehicle in which the driving device 1 is mounted.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and indicates the width direction (horizontal direction) of the vehicle.
  • the direction parallel to the central axis J1 of the motor 2 (Y-axis direction) is simply referred to as the "axial direction,” and the radial direction about the central axis J1 is simply referred to as the "radial direction.”
  • the circumferential direction centered on the central axis J1, that is, the circumference of the central axis J1 is simply called the "circumferential direction”.
  • the above-mentioned "parallel direction” also includes substantially parallel directions.
  • the +Y direction may be simply referred to as one axial direction side
  • the ⁇ Y direction may simply be referred to as the other axial direction side.
  • the X-axis direction may be referred to as the first direction.
  • the Z-axis direction may be called a second direction. That is, the first direction (X-axis direction) is a direction orthogonal to the central axis J1, and the second direction (Z-axis direction) is a direction orthogonal to the central axis J1 and the first direction (X-axis direction).
  • the lower side that is, the -Z side
  • Z-axis direction may be referred to as one side in the second direction (Z-axis direction).
  • FIG. 1 is a perspective view of the driving device 1 of this embodiment.
  • FIG. 2 is a conceptual diagram of the driving device 1 of this embodiment.
  • the drive device 1 of the present embodiment is mounted on a vehicle using a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), an electric vehicle (EV), and is used as the power source.
  • a motor such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), an electric vehicle (EV), and is used as the power source.
  • HEV hybrid vehicle
  • HEV hybrid vehicle
  • EV electric vehicle
  • the drive device 1 includes a motor 2, a bearing holder 69, a power transmission section 4, an inverter (control section) 7, and a housing 6.
  • Housing 6 accommodates motor 2 , bearing holder 69 , power transmission section 4 , and inverter 7 .
  • the motor 2, the power transmission section 4, and the inverter 7 are arranged on the central axis J1.
  • the motor 2 of this embodiment is an inner rotor type three-phase AC motor.
  • the motor 2 has both a function as an electric motor and a function as a generator. Note that the configuration of the motor 2 is not limited to that of the present embodiment, and may be, for example, an AC motor with four or more phases.
  • the motor 2 includes a rotor 20 rotatable around a horizontally extending central axis J1 and a stator 30 radially facing the rotor 20 .
  • the motor 2 of this embodiment is an inner rotor type motor in which the rotor 20 is arranged inside the stator 30 .
  • the rotor 20 has a motor shaft 21, a rotor core 24 fixed to the outer peripheral surface of the motor shaft 21, and a rotor magnet (not shown) fixed to the rotor core. Torque of the rotor 20 is transmitted to the power transmission section 4 .
  • the motor shaft 21 extends axially around the central axis J1. Motor shaft 21 is rotatably supported by bearings 5A and 5B. Also, the bearing 5A is supported by a bearing holder 69 . Bearing 5B is supported by housing 6 .
  • a sensor magnet 77a is fixed to one end (+Y side) of the motor shaft 21 in the axial direction.
  • the sensor magnet 77a rotates together with the motor shaft 21 around the central axis J1.
  • the stator 30 is held by the housing 6 .
  • the stator 30 surrounds the rotor 20 from the radial outside.
  • the stator 30 includes an annular stator core 32 centered on the central axis J1, a coil 31 attached to the stator core 32, a lead wire 31a extending from the coil 31, and an insulator (not shown).
  • the stator core 32 has a plurality of magnetic pole teeth (not shown) radially inward from the inner peripheral surface of the annular yoke.
  • a coil wire is arranged between the magnetic pole teeth.
  • a coil wire located in the gap between adjacent pole teeth constitutes the coil 31 .
  • the insulator is made of an insulating material.
  • the lead wire 31a extends from the coil 31 to one axial side (+Y side).
  • the stator 30 of this embodiment has three lead wires 31a corresponding to the U-phase, V-phase and W-phase.
  • the lead wire 31a has a twisted conductor wire, a crimp terminal 31f crimped to the tip of the lead wire, and an insulating tube (not shown) covering the outer periphery of the coil wire.
  • the crimp terminal 31f is connected to the lead wire connection portion 71a of the busbar 71 by a fixing member 71f.
  • the fixing member 71f of the present embodiment is a bolt and nut that fasten the crimp terminal 31f and the bus bar 71 from the thickness direction. A nut of the fixing member 71f is held by a terminal block (not shown). Also, this terminal block is fixed to, for example, the second circuit board 7D.
  • Inverter 7 is electrically connected to motor 2 .
  • the inverter 7 is connected to a battery (not shown) mounted on the vehicle, converts direct current supplied from the battery into alternating current, and supplies the alternating current to the motor 2 . Also, the inverter 7 controls the motor 2 .
  • the inverter 7 of this embodiment is arranged on one side (+Y side) of the motor 2 in the axial direction. According to this embodiment, the size of the drive device 1 can be reduced in the radial direction compared to the case where the inverter 7 is arranged radially outside the motor 2 .
  • the inverter 7 has a capacitor 7A, a switching element 7B, a first circuit board 7C, a second circuit board (circuit board) 7D, a bus bar 71, and a cable connecting portion 79.
  • the capacitor 7A, the switching element 7B, the first circuit board 7C, and the second circuit board 7D are stacked in this order from one axial side (+Y side) toward the other axial side ( ⁇ Y side).
  • the capacitor 7A is connected to the switching element 7B and the cable connection portion 79.
  • the capacitor 7A smoothes the DC power supplied to the switching element 7B.
  • the switching element 7B constitutes an inverter circuit that converts a DC power supply into an AC current.
  • the switching element 7B of this embodiment is an insulated gate bipolar transistor (IGBT).
  • the first circuit board 7C and the second circuit board 7D extend along a plane perpendicular to the central axis J1.
  • the first circuit board 7C is a so-called power board.
  • a switching element 7B is connected to the first circuit board 7C.
  • the second circuit board 7D is connected to the first circuit board.
  • the second circuit board 7D is arranged at the end of the inverter 7 on the other side ( ⁇ Y side) in the axial direction.
  • a rotation sensor element 77 and a signal line connection portion 75a are mounted on the surface of the second circuit board 7D facing the motor 2 side (that is, the surface facing the other side in the axial direction). That is, the inverter 7 has a rotation sensor element 77 and a signal line connection portion 75a.
  • the rotation sensor element 77 is arranged on the center axis J1.
  • the rotation sensor element 77 faces the sensor magnet 77a in the axial direction.
  • the rotation sensor element 77 measures the rotation speed of the rotor 20 by detecting the magnetic field of the sensor magnet 77a.
  • the signal line connection portion 75a is connected to a signal line (not shown).
  • the busbar 71 is a plate-shaped member made of a metal material with low electrical resistance.
  • the inverter 7 of this embodiment has three bus bars 71 corresponding to the U-phase, V-phase and W-phase.
  • the bus bar 71 bends radially outward from the capacitor 7A and extends toward the motor 2 (that is, the other side in the axial direction).
  • the bus bar 71 has a lead wire connection portion 71a at the end on the other side (-Y side) in the axial direction.
  • a lead wire 31a extending from the coil 31 is connected to the lead wire connection portion 71a. That is, the inverter 7 has a lead wire connection portion 71a electrically connected to the lead wire 31a.
  • the lead wire connecting portion 71a is arranged between the inverter 7 and the motor 2 in the axial direction. Therefore, the inverter 7 and the motor 2 can be connected with the shortest distance, and an increase in electrical resistance and an increase in the size of the drive device 1 due to the lengthening of the wiring path can be suppressed.
  • the axial position of the lead wire connecting portion 71a overlaps the axial position of the second circuit board 7D.
  • the lead wire connecting portion 71a is arranged radially outside of the center axis J1 with respect to the second circuit board 7D.
  • the second circuit board 7D can be arranged closer to the motor 2, and the shaft of the drive device 1 can be arranged. It is possible to reduce the size in the direction.
  • the cable connection part 79 is fixed to the housing 6 .
  • the cable connecting portion 79 is arranged at one axial end (+Y side) of the inverter 7 .
  • a pair of power supply cables 9 are connected to the cable connection portion 79 .
  • a power supply cable 9 electrically connects a battery (not shown) mounted on the vehicle and the inverter 7 to supply power from the battery to the inverter 7 .
  • the power transmission section 4 is arranged on the other side (-Y side) of the motor 2 in the axial direction.
  • the power transmission section 4 is connected to the rotor 20 to transmit the power of the motor 2 and output it to the output shaft 47 .
  • the power transmission unit 4 has a reduction gear 4a and a differential gear 4b. Torque output from the motor 2 is transmitted to the differential gear 4b via the reduction gear 4a.
  • the speed reducer 4a is a parallel shaft gear type speed reducer in which the rotation axes of the gears are arranged in parallel.
  • the differential gear 4b transmits the same torque to both the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle is turning.
  • the reduction gear 4 a has a first shaft 44 , a second shaft 45 , a first gear 41 , a second gear 42 and a third gear 43 .
  • the differential gear 4 b has a ring gear 46 g , a differential case 46 , and a differential mechanism portion 46 c arranged inside the differential case 46 . That is, the power transmission section 4 has a plurality of gears 41, 42, 43, 46g.
  • the first shaft 44 extends axially around the central axis J1.
  • the first shaft 44 is arranged coaxially with the motor shaft 21 .
  • the first shaft 44 is connected at its one axial end (+Y side) to the other axial end ( ⁇ Y side) of the motor shaft 21 .
  • the first shaft 44 rotates together with the motor shaft 21 around the central axis J1.
  • Motor shaft 21 is rotatably supported by bearings 5C and 5D. Bearings 5C and 5D are supported by housing 6 .
  • the first gear 41 is provided on the outer peripheral surface of the first shaft 44 .
  • the first gear 41 rotates together with the first shaft 44 around the center axis J1.
  • the second shaft 45 rotates about an intermediate axis J2 parallel to the central axis J1.
  • the second gear 42 and the third gear 43 are arranged side by side in the axial direction.
  • the second gear 42 and the third gear 43 are provided on the outer peripheral surface of the second shaft 45 .
  • the second gear 42 and the third gear 43 are connected via a second shaft 45 .
  • the second gear 42 and the third gear 43 rotate about the intermediate axis J2.
  • the second gear 42 meshes with the first gear 41 .
  • the third gear 43 meshes with the ring gear 46g of the differential device 4b.
  • the ring gear 46g rotates around an output axis J3 parallel to the central axis J1. Torque output from the motor 2 is transmitted to the ring gear 46g via the reduction gear 4a. A ring gear 46 g is fixed to the differential case 46 .
  • the differential case 46 has a case portion 46b that accommodates the differential mechanism portion 46c therein, and a differential case shaft (shaft) 46a that protrudes to one side and the other side in the axial direction with respect to the case portion 46b. That is, the power transmission section 4 has a differential case shaft 46a.
  • the differential case shaft 46a is cylindrical and extends axially about the output axis J3.
  • the ring gear 46g is provided on the outer peripheral surface of the differential case shaft 46a. The differential case shaft 46a rotates together with the ring gear 46g around the output axis J3.
  • a pair of output shafts 47 are connected to the differential gear 4b.
  • a pair of output shafts 47 protrude from the differential case 46 of the differential gear 4b to one side and the other side in the axial direction.
  • the output shaft 47 is arranged inside the differential case shaft 46a.
  • the output shaft 47 is rotatably supported on the inner peripheral surface of the differential case shaft 46a via bearings.
  • the torque output from the motor 2 is transmitted to the ring gear 46g of the differential device 4b via the first shaft 44, first gear 41, second gear 42, second shaft 45 and third gear 43 of the motor 2, It is output to the output shaft 47 via the differential mechanism portion 46c of the differential device 4b.
  • a plurality of gears 41, 42, 43, 46g of the power transmission section 4 transmit the power of the motor 2 in the order of the first shaft 44, the second shaft 45, and the differential case shaft 46a.
  • the bearing holder 69 is arranged inside the housing 6 on one axial side (+Y side) of the motor 2 .
  • the bearing holder 69 holds a bearing 5A that rotatably supports the rotor 20.
  • the bearing holder 69 of this embodiment is a plate-like member made of a metal material, and is formed by press working.
  • the configuration of the bearing holder 69 is not limited to this embodiment.
  • the bearing holder 69 has a bearing holding portion 69b and a disk portion 69c.
  • the bearing holding portion 69b has a tubular shape extending along the central axis J1.
  • the bearing holding portion 69b surrounds the bearing 5A from the radial outside and holds the bearing 5A.
  • the disk portion 69c has a disk shape centered on the central axis J1.
  • the disc portion 69c extends radially outward from the bearing holding portion 69b.
  • the bearing holder 69 is fixed to the water jacket 6D of the housing 6 at the outer edge of the disc portion 69c.
  • the disk portion 69c is provided with a through-hole 69a extending therethrough in the axial direction. That is, the bearing holder 69 is provided with a through-hole 69a penetrating in the axial direction.
  • a lead wire 31a extending from the coil 31 toward the inverter 7 is arranged in the through hole 69a.
  • the housing 6 has an inverter accommodating portion 6A, a housing body 6B, a gear cover 6C, and a water jacket 6D.
  • the inverter accommodating portion 6A, the housing main body 6B, the gear cover 6C, and the water jacket 6D are separate members.
  • the inverter accommodating portion 6A is arranged on one axial side (+Y side) of the housing body 6B.
  • the gear cover 6C is arranged on the other axial side (-Y side) of the housing body 6B.
  • the water jacket 6D is arranged inside the housing body 6B.
  • the housing main body 6B accommodates the motor 2 and opens on one side (+Y side) in the axial direction.
  • the housing body 6B includes a tubular outer tubular portion 65 centered on the central axis J1, and an opening on the other axial side (-Y side) of the outer tubular portion 65. It has a covering partition wall portion 65a and a concave portion 65b that opens on the other side in the axial direction ( ⁇ Y side).
  • a shaft insertion hole 65h is provided in the partition wall portion 65a.
  • a pair of bearings 5B and 5C and a seal member 5S are arranged in the shaft insertion hole 65h.
  • the bearing 5B supports the motor shaft 21 and the bearing 5C supports the first shaft 44. As shown in FIG.
  • the motor shaft 21 and the first shaft 44 are connected to each other inside the shaft insertion hole 65h.
  • the seal member 5S is arranged axially between the two bearings 5B, 5C.
  • the seal member 5 ⁇ /b>S seals between the inner peripheral surface of the shaft insertion hole 65 h and the outer peripheral surface of the first shaft 44 .
  • the outer tubular portion 65 of the housing main body 6B has a motor enclosing portion 65e that surrounds the motor 2 from the outside in the radial direction, and an inverter enclosing portion 65f that surrounds part of the inverter 7 from the outside in the radial direction.
  • the motor enclosing portion 65e supports the stator 30 via the water jacket 6D.
  • the inverter enclosing portion 65f is positioned on one axial side (+Y side) of the motor enclosing portion 65e.
  • An opening 61 that opens radially outward is provided in the inverter enclosing part 65f.
  • the opening 61 is provided to expose the lead wire connecting portion 71a radially outward.
  • the opening 61 is covered with a lid 61c. That is, the housing 6 has a lid portion 61 c that covers the opening portion 61 .
  • the lid portion 61 c prevents dust and moisture from entering the housing 6 through the opening 61 . Thereby, the motor 2 and the inverter 7 arranged inside the housing 6 can be protected.
  • the seal portion 61s is arranged between the opening portion 61 and the lid portion 61c. The seal portion 61 s seals between the opening portion 61 and the lid portion 61 c to prevent moisture from entering the housing 6 .
  • a breather 63 extending in the radial direction is provided on the outer cylindrical portion 65 of the housing body 6B.
  • the breather 63 prevents the pressure in the internal space of the housing 6 from increasing excessively.
  • a filter unit 63 f is arranged in the breather 63 .
  • the filter unit 63f prevents contamination from passing through the breather 63.
  • the inverter housing portion 6A houses the inverter 7 and supports the inverter 7.
  • the inverter housing portion 6A covers an opening on one axial side (+Y side) of the housing body 6B.
  • a first flow path portion 91 that cools the inverter 7 is provided in the inverter housing portion 6A.
  • the inverter housing portion 6A has a support wall portion 83a perpendicular to the central axis J1.
  • Support wall portion 83a is arranged between capacitor 7A of inverter 7 and switching element 7B.
  • the supporting wall portion 83a supports the capacitor 7A on its surface facing one axial side (+Y side), and supports the switching element 7B on its surface facing the other axial side ( ⁇ Y side).
  • a plurality of support column portions 83b are provided on the surface of the support wall portion 83a facing the other side ( ⁇ Y side) in the axial direction.
  • the support column portion 83b supports the first circuit board 7C and the second circuit board 7D.
  • the switching element 7B, the first circuit board 7C, and the second circuit board 7D of the inverter 7 are arranged radially inside the inverter enclosing portion 65f of the housing body 6B. That is, the inverter 7 is arranged inside the housing 6 beyond the boundary between the housing body 6B and the inverter accommodating portion 6A.
  • a first flow path portion 91 is provided in the inverter housing portion 6A. The inverter 7 is cooled by the fluid L in the first channel portion 91 .
  • the water jacket 6D has a tubular inner tubular portion 64 centered on the central axis J1, and a flange portion 64f located at one end of the inner tubular portion 64 in the axial direction.
  • the inner tubular portion 64 surrounds the stator 30 from the outside in the radial direction.
  • the inner diameter of the inner tubular portion 64 substantially matches the outer diameter of the stator core 32 .
  • the inner peripheral surface of the inner tubular portion 64 contacts the outer peripheral surface of the stator 30 .
  • the inner tubular portion 64 is surrounded from the radially inner side by the outer tubular portion 65 .
  • the outer diameter of the inner tubular portion 64 is smaller than the inner diameter of the outer tubular portion 65 of the housing main body 6B.
  • O-rings 64c are arranged at both ends in the axial direction of the outer peripheral surface of the inner cylindrical portion 64, respectively.
  • the O-ring 64 c seals between the outer peripheral surface of the inner tubular portion 64 and the outer tubular portion 65 .
  • a gap that functions as the third flow path portion 93 is provided between the inner tubular portion 64 and the outer tubular portion 65 and between the pair of O-rings 64c.
  • the inner tubular portion 64 and the outer tubular portion 65 constitute the motor housing portion 60 . That is, the housing 6 has a motor housing portion 60 .
  • the motor housing portion 60 houses the motor 2 .
  • a third flow path portion 93 is provided in the motor housing portion 60 .
  • the flange portion 64f extends radially outward from the inner cylindrical portion 64.
  • the water jacket 6D is fixed to the outer tubular portion 65 of the housing body 6B at the flange portion 64f.
  • a bearing holder 69 is fixed to the flange portion 64f. That is, the bearing holder 69 is fixed to the inner tubular portion 64 .
  • the gear cover 6C is fixed to the concave portion 65b of the housing body 6B.
  • the gear cover 6C and the concave portion 65b constitute a housing space for housing the power transmission portion 4.
  • Oil O is stored in the housing space of the power transmission portion 4 .
  • the oil O enhances the lubricity of the power transmission section 4 .
  • the housing 6 is provided with a channel 90 through which the fluid L flows.
  • the fluid L is, for example, water. Note that the fluid L may not be water.
  • the fluid L may be oil or other fluids.
  • the flow path 90 includes an external pipe 97 passing through the outside of the housing 6, and a first flow path portion 91, a second flow path portion 92, a third flow path portion 93, and a fourth flow path passing through the inside of the housing 6. a portion 94;
  • the external piping 97 is piping connected to the housing 6 .
  • the external pipe 97 is connected to the inverter housing portion 6A at a first connecting portion 97a, and is connected to the housing main body 6B at a second connecting portion 97b.
  • a radiator (not shown) for cooling the fluid L is arranged in the path of the external pipe 97 .
  • the external pipe 97 sends the low-temperature fluid L into the housing 6 at the first connecting portion 97a, and recovers the fluid L whose temperature has increased by absorbing heat inside the housing 6 at the second connecting portion 97b.
  • the first channel portion 91 , the second channel portion 92 , and the fourth channel portion 94 are holes mainly provided in the housing 6 .
  • the first channel portion 91, the second channel portion 92, and the fourth channel portion 94 are formed by machining the wall portion of the housing 6 using a drill or the like.
  • the third flow path portion 93 is provided in the gap between the inner tubular portion 64 and the outer tubular portion 65 .
  • the first flow path portion 91 is provided in the support wall portion 83a of the inverter housing portion 6A.
  • the first flow path portion 91 has a first hole portion 91a, a cooling portion 91b, a second hole portion 91c, and a third hole portion 91d.
  • the fluid L flows through the first hole portion 91a, the cooling portion 91b, the second hole portion 91c, and the third hole portion 91d in this order.
  • the first hole portion 91 a is connected to a first connecting portion 97 a of the external pipe 97 .
  • the first hole portion 91a extends along a plane perpendicular to the central axis J1.
  • the cooling portion 91b is provided between the recess 91ba provided on the surface of the support wall portion 83a facing the other axial side ( ⁇ Y side) and the switching element 7B covering the opening of the recess 91ba.
  • the fluid L flowing through the cooling portion 91b contacts the switching element 7B and cools the switching element 7B.
  • a first hole portion 91a and a second hole portion 91c are opened in the sidewall of the recessed portion 91ba.
  • the second hole portion 91c extends from the cooling portion 91b along a plane perpendicular to the central axis J1.
  • the third hole portion 91d extends from the second hole portion 91c to the other axial side (-Y side).
  • the third hole portion 91d opens on the surface of the inverter accommodating portion 6A facing the other side (-Y side) in the axial direction.
  • the second channel portion 92 connects the first channel portion 91 and the third channel portion 93 .
  • the fluid L flowing through the first channel portion 91 cools the inverter 7 and the fluid L flowing through the third channel portion 93 cools the motor 2 . Therefore, the second flow path portion 92 is a path connecting a flow path for cooling the inverter 7 and a flow path for cooling the motor 2 .
  • the second flow path portion 92 is provided in the outer cylindrical portion 65 of the housing main body 6B.
  • the outer tubular portion 65 is provided with a bulging portion 65d that is locally thickened.
  • the bulging portion 65 d protrudes radially outward with respect to the outer peripheral surface of the outer cylindrical portion 65 .
  • the second flow path portion 92 is formed by drilling the inside of the bulging portion 65d.
  • the second flow path portion 92 connects the first flow path portion 91 and the third flow path portion 93, and may be arranged in at least one of the inverter housing portion 6A and the motor housing portion 60. .
  • the second flow path section 92 has a first path 92a and a second path 92b.
  • the first path 92a extends from the first flow path portion 91 to the other side in the axial direction.
  • the first path 92a opens to the end surface of the outer cylindrical portion 65 on one axial side (+Y side).
  • the opening of the first path 92 a faces the opening of the third hole portion 91 d of the first channel portion 91 . Therefore, the first path 92a is connected to the first flow path portion 91 and extends from the first flow path portion 91 to the other side (-Y side) in the axial direction.
  • the second path 92b extends radially.
  • the second path 92b connects the first path 92a and the third flow path portion 93 .
  • the first path 92a is provided inside the wall of the outer tubular portion 65 .
  • a bearing holder 69 is arranged radially inside the outer cylindrical portion 65 . Therefore, the first path 92a of the present embodiment is arranged radially outside the bearing holder 69, and the bearing holder 69 is not provided with a flow path. According to this embodiment, the rigidity of the bearing holder 69 can be increased and the bearing 5A can be stably held, compared to the case where the flow path is provided in the member that holds the bearing.
  • the first path 92a of the present embodiment is located below the central axis J1 (one side in the second direction). For this reason, even if the fluid L flows out from the first path 92a, the fluid L that has flowed out flows downward according to gravity, and therefore does not easily enter the inside of the housing 6 . According to this embodiment, it is possible to prevent the fluid L flowing out from the first path 92 a from flowing into the housing 6 .
  • the third flow path portion 93 is arranged in the motor housing portion 60 .
  • the third flow path portion 93 of the present embodiment is arranged radially between the outer cylindrical portion 65 of the housing body 6B and the inner cylindrical portion 64 of the water jacket 6D. More specifically, the third flow path portion 93 is provided radially inside the outer tubular portion 65 and radially outside the water jacket 6D.
  • a spiral ridge portion 64 a is provided on the outer peripheral surface of the inner cylindrical portion 64 .
  • the third flow path portion 93 spirally extends between the protrusions 64a.
  • the fluid L flowing through the third flow path portion 93 cools the stator 30 .
  • the third flow path portion 93 has an outer peripheral flow path portion 93a that extends circumferentially along the outer peripheral surface of the stator.
  • the third flow channel portion 93 of the present embodiment has an outer peripheral flow channel portion 93a over its entire length.
  • the third channel portion 93 may have other portions as long as it has the outer peripheral channel portion 93a.
  • the outer peripheral channel portion 93a of the present embodiment has a spiral shape centered on the central axis J1, the outer peripheral channel portion 93a may have another structure.
  • the third flow path portion 93 has a meandering shape that meanders alternately on one side and the other side in the circumferential direction, and has a structure in which a plurality of outer flow path portions extending along the circumferential direction are connected at folded portions.
  • the third flow path portion 93 has a meandering shape that meanders alternately on one side in the axial direction and on the other side in the axial direction, and has a structure in which an outer peripheral flow path portion extending along the circumferential direction is provided at the folded portion.
  • FIG. 3 is a cross-sectional view of the drive device 1 at the connecting portion between the second flow path portion 92 and the third flow path portion 93 of this embodiment.
  • the second channel portion 92 is connected to the outer peripheral channel portion 93a of the third channel portion 93 via a second path 92b. That is, the second path 92b connects the first path 92a and the outer peripheral flow path portion 93a.
  • the second path 92b is formed by drilling the bulging portion 65d of the outer tubular portion 65 from the outer peripheral side, and the opening thereof is closed with a cap C. As shown in FIG.
  • the second path 92b of this embodiment is linear over its entire length. That is, the second path 92b linearly connects the first path 92a and the outer peripheral flow path portion 93a. Therefore, the second path 92b is easily formed by a single drilling process.
  • the second path 92b and the outer peripheral channel portion 93a of the present embodiment form an obtuse angle at the connecting portion 95 .
  • the connecting portion 95 between the second path 92b and the outer peripheral flow path portion 93a means a portion where the second path 92b and the outer peripheral flow path portion 93a intersect. More specifically, the connecting portion 95 means the entire space where the regions where the second path 92b and the outer peripheral flow path portion 93a extend intersect and overlap each other. In other words, the connecting portion 95 means the entire space where the space obtained by virtually extending the second path 92b toward the outer peripheral flow path portion 93a overlaps with the outer peripheral flow path portion 93a.
  • the angle ⁇ formed between the second path 92b and the outer peripheral channel portion 93a in the connecting portion 95 means the bending angle of the channel 90 in the flow direction of the fluid L.
  • the angle ⁇ is an angle between the direction in which the second path 92 b extends toward the connecting portion 95 and the direction in which the outer peripheral flow path portion 93 a extends from the connecting portion 95 .
  • the angle ⁇ is an angle between a straight line L1 extending toward the upstream side of the second path 92b centering on the connecting portion 95 and a straight line L2 extending toward the downstream side of the outer peripheral flow path portion 93a. is.
  • the direction in which the outer peripheral channel portion 93a extends from the connecting portion 95 is the tangential direction of the outer peripheral channel portion 93a at the connecting portion 95.
  • the second path 92b extends in a direction inclined in the circumferential direction of the central axis J1 with respect to the radial direction of the central axis J1.
  • the radial direction of the center axis J1 means the direction in which a straight line passing through the center axis J1 and another point extends in a plane perpendicular to the center axis J1.
  • the "circumferential direction of the central axis J1" means a tangential direction of a circle centered on the central axis J1.
  • the second path 92b may be inclined in the circumferential direction with respect to the radial direction of the central axis J1. Therefore, the second path 92b may extend in the circumferential direction of the center axis J1.
  • the case where the second path 92b extends in the circumferential direction means that the second path 92b extends in the tangential direction of the outer peripheral flow path portion 93a.
  • the driving device 1 of this embodiment achieves a reduction in the size of the driving device 1 in the radial direction by arranging the motor 2 and the inverter 7 side by side along the axial direction of the central axis J1. Further, the third flow passage portion 93 for cooling the motor 2 has an outer circumference flow passage portion 93a extending in the circumferential direction along the outer circumference of the motor 2 in order to cool the entire outer circumference of the motor 2 evenly.
  • the second flow path part linearly connects the first flow path part and the third flow path part in the axial direction
  • the second flow path part and the outer peripheral flow path part It is thought that the flow path is bent at a right angle at the connection with and causes a large pressure loss. Also, when the second channel portion and the outer peripheral channel portion are connected at an acute angle, it is considered that a large pressure loss occurs at the connection portion.
  • the second path 92b of the present embodiment forms an obtuse angle at the connecting portion 95 with the outer peripheral flow path portion 93a. Therefore, the fluid L can smoothly flow from the second channel portion 92 to the third channel portion 93 at the connecting portion 95 .
  • the pressure loss at the connecting portion 95 between the second channel portion 92 and the third channel portion 93 can be reduced, the flow velocity of the fluid L can be ensured, and the cooling efficiency of the motor 2 can be enhanced. .
  • the flow path of the second flow path portion 92 of the present embodiment is bent at the boundary portion between the first path 92a and the second path 92b. For this reason, some pressure loss occurs also at the boundary between the first path 92a and the second path 92b.
  • the pressure loss of the fluid at the curved portion of the channel can be reduced by increasing the channel cross-sectional area of the curved portion.
  • the pressure loss at the connecting portion between the first path 92a and the second path 92b of the second flow path portion 92 can be suppressed by ensuring a sufficient cross-sectional area of the second flow path portion 92 .
  • the drive device 1 can be miniaturized by providing the curved portion in the second flow path portion 92 where the cross-sectional area of the flow path can be easily increased.
  • the second path 92b of this embodiment extends parallel to a plane (XZ plane) perpendicular to the central axis J1.
  • a plane XZ plane
  • the second path 92b forms an obtuse angle ⁇ with the outer peripheral flow path portion 93a at the connecting portion 95, the above effect can be obtained even if the second path 92b does not extend parallel to the plane perpendicular to the central axis J1. .
  • the angle ⁇ formed by the second path 92b and the outer peripheral flow path portion 93a at the connecting portion 95 is more than 90° (that is, an obtuse angle) at the connecting portion 95, the above effects can be obtained.
  • the angle ⁇ between the second path 92b and the outer peripheral channel portion 93a in the connecting portion 95 is preferably 120° or more, more preferably 150° or more.
  • the connecting portion 95 is the entire space where the second path 92b and the outer peripheral flow path portion 93a intersect. Therefore, depending on the shape of the second path 92b and the outer peripheral flow path portion 93a, the angle ⁇ defined by the extending direction of the second path 92b and the outer peripheral flow path portion 93a slightly changes depending on the position in the connecting portion 95. .
  • the angle ⁇ between the second path 92b and the outer peripheral channel portion 93a at any position in the connecting portion 95 is an obtuse angle, the effect of smoothly flowing the fluid L at least at that position is obtained. be able to.
  • the angle ⁇ may be an obtuse angle at the radially outer end of the connecting portion 95 and at the interface with the second path 92b located on the outer peripheral surface of the outer peripheral flow path portion 93a. Further, the angle ⁇ may be an obtuse angle at the inner peripheral surface of the outer peripheral flow path portion 93 a at the radially inner end portion of the connecting portion 95 .
  • the angle ⁇ is an obtuse angle at any position within the connecting portion 95 . Therefore, the fluid L can flow smoothly at any position in the connection portion 95, and the effect of reducing the pressure loss can be further obtained.
  • the angle ⁇ 120° or more, or 150° or more. That is, it suffices that the angle ⁇ is 120° or more (or 150° or more) at any position in the connection portion 95, and the angle ⁇ is 120° or more (or 150°) at all positions in the connection portion 95. above) is more preferable.
  • the fourth flow path portion 94 is a hole provided in the outer tubular portion 65 of the housing body 6B.
  • the fourth flow path portion 94 extends radially.
  • the fourth channel portion 94 is connected to the third channel portion 93 at its radially inner end, and is connected to the second connecting portion 97b of the external pipe 97 at its radially outer end.
  • the fourth channel portion 94 of this embodiment is connected to the outer peripheral channel portion 93 a of the third channel portion 93 .
  • the fourth flow path portion 94 extends along a plane (XZ plane) perpendicular to the central axis J1.
  • the fourth flow path part 94 extends in a direction inclined in the circumferential direction of the central axis J1 with respect to the radial direction of the central axis J1. Therefore, the fluid L can smoothly flow from the third flow path portion 93 to the fourth flow path portion 94, thereby reducing the pressure loss between the third flow path portion 93 and the fourth flow path portion 94. can.
  • the motor housing portion 60 and the inverter housing portion 6A of this embodiment are fastened together in the axial direction. That is, the motor housing portion 60 has a first mating surface 6a facing one axial side (+Y side), and the inverter housing portion 6A has a second mating surface 6k facing the other axial side ( ⁇ Y side). The first mating surface 6a and the second mating surface 6k are in contact with each other in the axial direction. Further, the flow path 90 extends from the inverter accommodating portion 6A to the motor accommodating portion 60 inside the wall of the housing 6 .
  • the first flow path portion 91 opens to the other side ( ⁇ Y side) in the axial direction at the second mating surface 6k between the motor housing portion 60 and the inverter housing portion 6A.
  • the second flow path portion 92 opens to one side (+Y side) in the axial direction at the first mating surface 6a.
  • the openings of the first channel portion 91 and the second channel portion 92 communicate with each other at the mating surfaces 6a and 6k.
  • a sealing member such as a liquid gasket is disposed on the mating surfaces 6a and 6k between the motor housing portion 60 and the inverter housing portion 6A to prevent the fluid from flowing out of the flow path 90 at the mating surfaces 6a and 6k.
  • first mating surface 6a and the second mating surface 6k extend along a plane perpendicular to the central axis J1.
  • first mating surface 6a and the second mating surface 6k may be inclined with respect to the plane orthogonal to the central axis J1 as long as they face one side and the other side in the axial direction, respectively. That is, the normal direction of the first mating surface 6a and the second mating surface 6k may be inclined with respect to the central axis J as long as it has an axial component.
  • first mating surface 6a and the second mating surface 6k are in contact means not only the case where the first mating surface 6a and the second mating surface 6k are in direct contact, but also the sealing such as a gasket. This concept also includes the case of contact via a member.
  • FIG. 4 is a front view of mating surfaces 6a and 6k between the motor accommodating portion 60 and the inverter accommodating portion 6A.
  • FIG. 4 is a front view of the first mating surface 6a on the side of the motor housing portion 60, and the second mating surface 6k on the side of the inverter housing portion 6A overlapping the motor housing portion 60 is indicated by a chain double-dashed line.
  • a plurality of fastening holes 6b for fastening the motor accommodating portion 60 and the inverter accommodating portion 6A are provided in the first mating surface 6a and the second mating surface 6k, respectively.
  • the fastening hole 6b of the motor housing portion 60 is a threaded hole having a female screw on the inner circumference
  • the fastening hole 6b of the inverter housing portion 6A is an insertion hole through which a bolt is inserted.
  • the wall 6d of the motor accommodating portion 60 and the inverter accommodating portion 6A is provided with a thick portion 6c for ensuring a thick wall around the fastening hole 6b.
  • the walls 6d of the motor accommodating portion 60 and the inverter accommodating portion 6A protrude toward the inside A and the outside B of the housing 6 at the thick portion 6c.
  • the housing 6 has an inner wall surface 6f facing the inside A side of the housing 6 and an outer wall surface 6g facing the outside B side of the housing.
  • the flow path 90 is arranged between the inner wall surface 6 f and the outer wall surface 6 g of the housing 6 .
  • the inside A of the housing 6 means a space surrounded by the housing 6 in which the motor 2 and the like are accommodated.
  • the outside B of the housing 6 means the space outside the housing 6 .
  • the shortest distance h1 between the flow path 90 and the inner wall surface 6f is longer than the shortest distance h2 between the flow path 90 and the outer wall surface 6g. Accordingly, even if the fluid L flowing through the flow path 90 flows out from the first mating surface 6a and the second mating surface 6k, the fluid L can easily reach the outside B side of the housing 6 and can be discharged to the outside B of the housing 6. , the inside A of the housing 6 is difficult to enter. That is, according to this embodiment, the fluid L can be prevented from entering the housing 6 .
  • the cross-sectional shape of the flow path 90 on the mating surface 6a is circular.
  • the cross-sectional shape of the flow path 90 on the mating surface 6a is not limited to a circular shape, and may be an elliptical shape, a polygonal shape, or the like.
  • FIG. 5 is a front view of mating surfaces 206a and 206k of a modified housing 206 that can be employed in this embodiment.
  • the shortest distance h1 between the flow path 90 and the inner wall surface 206f is equal to the shortest distance h2 between the flow path 90 and the outer wall surface 206g on the mating surfaces 206a and 206k.
  • the fastening force is evenly applied to the mating surfaces 206 a around the flow path 290 , and the sealing properties of the mating surfaces 206 a and 206 k can be improved to suppress the outflow of the fluid L from the flow path 290 .
  • FIG. 6 is a perspective view of the driving device 1 in the vicinity of the opening 61.
  • FIG. 6 illustration of the lid portion 61c that covers the opening portion 61 is omitted.
  • the configuration and function of the opening 61 provided in the housing 6 will be described in more detail with reference to FIG.
  • the opening 61 of this embodiment opens radially outward with respect to the central axis J1.
  • the opening 61 of the present embodiment has a rectangular shape with short sides extending in the axial direction when viewed from the front.
  • the opening 61 is provided in an outer tubular portion 65 of the housing 6 . That is, the opening 61 radially penetrates the outer cylindrical portion 65 .
  • the axial position of the opening 61 overlaps the axial position of the inverter 7 . More specifically, the axial position of the opening 61 overlaps the second circuit board 7D of the inverter 7 and the lead wire connecting portion 71a. Also, the axial position of the opening 61 overlaps the bearing holder 69 .
  • the housing 6 has a protruding wall 61w protruding radially outward along the inner edge 61a of the opening 61.
  • the projecting wall 61w has four walls 61wa, 61wb, 61wc, and 61wd corresponding to each side of the opening 61.
  • Two wall portions 61wa and 61wb of the four wall portions forming the projecting wall 61w extend along a plane perpendicular to the central axis J1 and face each other in the axial direction.
  • the remaining two wall portions 61wc and 61wd of the four wall portions forming the projecting wall 61w extend along the axial direction and face each other in the circumferential direction.
  • One wall 61wd of the two walls 61wc and 61wd facing each other in the circumferential direction is provided with a through hole 62 penetrating in the thickness direction. That is, the through hole 62 is provided in the projecting wall 61w.
  • the through hole 62 communicates the external space of the housing 6 with the internal space of the housing 6 .
  • a connector portion 68 is arranged at the opening of the through hole 62 .
  • a signal cable 8 extending from a vehicle control device (not shown) is connected to the connector portion 68 .
  • the signal cable 8 connects the vehicle control device and the driving device 1 and transmits control signals between the vehicle control device and the inverter 7 .
  • the connector portion 68 has a connector portion main body 68b to which the signal cable 8 is connected, and a signal line 68a extending from the connector portion main body 68b.
  • the connector main body 68 b is fixed to the housing 6 from the outer peripheral side of the housing 6 and covers the opening of the through hole 62 .
  • the signal line 68a is passed through the through hole 62.
  • the signal line 68a connects the connector portion main body 68b and the signal line connecting portion 75a mounted on the second circuit board 7D. Thereby, the signal line 68 a electrically connects the signal cable 8 and the inverter 7 .
  • the lead wire connecting portion 71a When viewing the opening 61 from the radial direction of the central axis J1, the lead wire connecting portion 71a is arranged in a region surrounded by the inner edge 61a of the opening 61. As shown in FIG. According to the housing 6 of the present embodiment, the lead wire connecting portion 71 a can be exposed radially outward from the opening 61 . An operator can insert a tool or the like from the opening 61 to connect the lead wire 31a to the lead wire connection portion 71a. Therefore, it is possible to employ an assembling method in which the motor 2 and the inverter 7 are connected after the motor 2 and the inverter 7 are housed inside the housing 6 .
  • the motor 2 is fixed to the housing main body 6B
  • the inverter 7 is fixed to the inverter accommodating portion 6A
  • the housing main body 6B and the inverter accommodating portion 6A are assembled together. 7 can be connected.
  • the process of assembling the motor 2 to the housing main body 6B and the process of assembling the inverter 7 to the inverter housing portion 6A can be performed simultaneously in parallel. Efficiency can be improved.
  • the lead wire connection portion 71a which is the connection portion between the lead wire 31a and the bus bar 71, can be arranged inside the housing. Therefore, compared to the case where the lead wire connection portion 71a is arranged outside the housing 6, the lead wire 31a does not need to be sealed outside the housing 6, and the waterproof and dustproof structure of the drive device 1 can be simplified. Furthermore, according to the present embodiment, compared to the case where the lead wire 31a is drawn out of the housing 6, it is possible to reduce the size of the drive device 1 as a whole.
  • the signal line connection portion 75a is arranged in a region surrounded by the inner edge 61a of the opening 61 when viewed from the radial direction of the center axis J1.
  • the housing 6 can expose the signal line connection portion 75 a radially outward from the opening 61 .
  • An operator can access the interior of the housing 6 through the opening 61 and connect the signal line 68a to the signal line connection portion 75a. Therefore, it is possible to employ an assembling method in which the signal line 68a is connected to the inverter 7 after the inverter 7 is housed inside the housing 6, which facilitates simplification of the assembling process.
  • the through hole 62 through which the signal line 68a is passed is provided in the projecting wall 61w extending along the inner edge 61a of the opening 61. As shown in FIG. Therefore, the operator can access the opening 61, pass the signal wire 68a through the through hole 69a, and pull the signal wire 68a into the housing 6, thereby simplifying the work.
  • FIG. 7 is a cross-sectional view of the driving device 1 taken along a cross section perpendicular to the central axis J1.
  • a virtual line connecting the center axis J1 and the output axis J3 when viewed from the axial direction of the center axis J1 is defined as a gear arrangement virtual line VL1.
  • a gear arrangement phantom line VL1 is a phantom line extending along the power transmission direction of the power transmission unit 4 .
  • the gear arrangement phantom line VL1 of this embodiment extends along the horizontal plane. That is, in the present embodiment, the power transmission direction of the power transmission unit 4 is the direction along the first direction (X-axis direction).
  • the circumferential position of the opening 61 overlaps the circumferential position of the through hole 69 a of the bearing holder 69 .
  • a lead wire 31a extending from the coil 31 passes through the through hole 69a.
  • the direction in which the opening 61 is arranged with respect to the central axis J1 is called a third direction D3. That is, the opening 61 is arranged in the third direction D3 with respect to the central axis J1.
  • the third direction D3 is a direction perpendicular to the center axis J1.
  • the first path 92a of the present embodiment is arranged on the opposite side of the internal space of the housing 6 in the third direction D3. That is, the opening 61 and the first path 92a are arranged on opposite sides of the inner space of the housing 6 in the third direction D3. Furthermore, the first path 92a of the present embodiment is arranged below the upper end of the opening 61 (one side in the second direction).
  • the housing 6 of this embodiment is provided with the breather 63 that communicates the internal space of the housing 6 with the external space.
  • the first path 92a of the second flow path portion 92 is located below the breather 63 (on one side in the second direction) in a portion overlapping the breather 63 in the axial direction. Therefore, even if the fluid L flows out from the first path 92 a and travels along the outer surface of the housing 6 , the fluid L flows down due to gravity and hardly reaches the breather 63 . Therefore, it is possible to prevent the outflowing fluid L from entering the interior of the housing 6 via the breather 63 .
  • FIG. 8 and 9 are cross-sectional views of the driving device 101 of Modification 1.
  • FIG. FIG. 8 is a diagram corresponding to FIG. 3 in the embodiment described above.
  • FIG. 9 is a diagram corresponding to FIG. 7 in the embodiment described above.
  • the driving device 101 of this modified example differs from the above-described embodiment mainly in the configuration of the housing 106 .
  • the driving device 101 of this modified example differs from the above-described embodiment in the arrangement of the output axis J3 with respect to the central axis J1.
  • the output axis J3 was located on the -X side with respect to the central axis J1, but in this modified example the output axis J3 is located on the +X side with respect to the central axis J1.
  • the drive device of this modified example differs from the above-described embodiment in the arrangement of the second flow path portion 192 .
  • the housing 106 of this modified example is provided with a second flow channel portion 192 and a third flow channel portion 193 as in the above-described embodiment.
  • the second flow path portion 192 has a first path 192a and a second path 192b.
  • the second channel portion 192 is connected to the outer peripheral channel portion 193a of the third channel portion 193 via a second path 192b.
  • the second path 192b extends along a plane (XZ plane) perpendicular to the central axis J1.
  • the second path 192b of this modified example extends in the first direction (X-axis direction, horizontal direction).
  • the second path 192b is arranged below the central axis J1.
  • An angle ⁇ formed between the second path 192b and the outer peripheral flow path portion 193a at the connecting portion is an obtuse angle at the connecting portion. Therefore, the second path 192b extends in a direction inclined in the circumferential direction of the central axis J1 with respect to the radial direction of the central axis J1.
  • the second path 192b and the outer peripheral flow channel portion 193a form an obtuse angle at the connecting portion. Therefore, the fluid L can smoothly flow from the second channel portion 192 to the third channel portion 193 . According to this modification, the pressure loss between the second channel portion 192 and the third channel portion 193 can be reduced, and the flow velocity of the fluid L can be ensured.
  • the first path 192a of this modified example is located below the central axis J1 (one side in the second direction). For this reason, even if the fluid L flows out from the first path 192a, the fluid L that has flowed out does not easily enter the inside of the housing 106 because it flows downward according to gravity.
  • the housing 106 of this modified example is provided with an opening 161 and a breather 163 as in the above-described embodiment.
  • a projecting wall 161w projecting radially outward is provided at the inner edge of the opening 161.
  • the protruding wall 161w is provided with a through hole 162 penetrating in the thickness direction.
  • the signal line 68a is passed through the through-hole 162 and electrically connected to the signal line connecting portion 75a mounted on the second circuit board 7D.
  • the circumferential position of the opening 161 overlaps with the circumferential position of the through hole 69a of the bearing holder 69, as in the above-described embodiment.
  • the tip of the lead wire 31a can be easily arranged in front of the opening 161, and the connection work at the lead wire connection portion 71a can be easily performed.
  • the first path 192a of the second flow path portion 192 is provided on the projecting wall 161w of the opening 161.
  • the projecting wall 161w of the opening 161 it is not necessary to provide a thick bulging portion for passing the flow path in another part of the housing 106, and the size of the driving device 101 can be reduced.
  • the first path 192a of this modified example is arranged below the opening 161 (one side in the second direction). Therefore, even if the fluid L flows out from the first path 192 a and travels along the outer surface of the housing 106 , the fluid L flows down due to gravity and does not easily reach the opening 161 .
  • the first path 192a of this modified example is located below the breather 163 (on one side in the second direction) at a portion overlapping the breather 163 in the axial direction. Therefore, even if the fluid L flows out from the first path 192 a and travels along the outer surface of the housing 106 , the fluid L flows down due to gravity and hardly reaches the breather 163 .
  • the direction in which the opening 161 is arranged with respect to the central axis J1 is called a third direction D3. That is, the opening 161 is arranged in the third direction D3 with respect to the central axis J1.
  • the third direction D3 is a direction perpendicular to the center axis J1.
  • the first path 192a of this modification is arranged in the third direction D3 with respect to the internal space of the housing 106 . That is, the first path 192a and the opening 161 of this modified example are arranged in the same direction with respect to the internal space of the housing 106 .
  • the first path 192a is arranged closer to the lead wire connection portion 71a, and the lead wire connection portion 71a can be cooled by the fluid L of the first path 192a.
  • the lead wire connecting portion 71a can serve as a heat transfer path between the motor and the inverter. According to this modification, it is possible to suppress heat transfer from the motor to the inverter or from the inverter to the motor.
  • the shortest distance d1 between the first path 192a and the lead wire connection portion 71a is shorter than the shortest distance d2 between the first path 192a and the signal line connection portion 75a.
  • the first path 192a can be arranged close to the lead wire connection portion 71a, and the lead wire connection portion 71a can be cooled by the fluid L of the first path 192a.
  • the "shortest distance” here means the length of the shortest straight line out of countless straight lines connecting two parts.
  • the first path 192a extends in one direction along the axial direction, so the shortest distances d1 and d2 are the lengths of straight lines in a plane orthogonal to the extending direction of the first path 192a.
  • the drive device 101 of this modified example is provided with a plurality (three) of lead wire connection portions 71a.
  • all the shortest distances d1 between the lead wire connection portions 71a and the first paths 192a are shorter than the shortest distances d2 between the first paths 192a and the signal line connection portions 75a.
  • the above-mentioned effect can be obtained more remarkably.
  • the shortest distance d1 between at least one lead wire connecting portion 71a and the first path 192a is shorter than the shortest distance d2 between the first path 192a and the signal line connecting portion 75a, the above effect can be obtained to some extent. can be done.
  • the coil is a bendable conductor attached to the stator, and the lead wire extending from the coil has a structure in which a plurality of conductors are bundled with crimp terminals.
  • the coil may be a segment coil composed of a rectangular wire with high rigidity, and the lead wire extending from the coil may also be a single rectangular wire.
  • the lead wire may be a bus bar connected to the conductor wire of the coil and extending from the coil.
  • Reference Signs List 1 101 drive device 2 motor 5A, 5B, 5C bearing 6, 106, 206 housing 6a, 6k, 206a, 206k mating surface 6d wall 6A inverter accommodating portion 6f, 206f... inner wall surface, 6g, 206g... outer wall surface, 7... inverter, 7D... second circuit board (circuit board), 20... rotor, 30... stator, 31... coil, 31a... lead wire, 60... motor accommodating portion, 61, 161... opening, 61a... inner edge, 61w, 161w... projecting wall, 61wa, 61wc, 61wd... wall part, 62, 69a, 162... through hole, 63, 163... breather, 68a...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

本発明の駆動装置の一つの態様は、中心軸線を中心とするモータと、モータに対し軸方向一方側に配置されるインバータと、モータ収容部およびインバータ収容部を有するハウジングと、を備える。ハウジングは、第1流路部、第2流路部、および第3流路部を含む流路を有する。第1流路部は、インバータ収容部に配置される。第2流路部は、インバータ収容部およびモータ収容部のうち、少なくとも一方に配置され、第1流路部と第3流路部とを繋ぐ。第3流路部は、モータ収容部に配置される。第3流路部は、ステータの外周面に沿って円周状に延びる外周流路部を有する。第2流路部は、第1流路部から軸方向他方側に延びる第1経路と、第1経路と外周流路部とを繋ぐ第2経路と、を有する。第2経路と外周流路部とは、接続部において鈍角をなす。

Description

駆動装置
 本発明は、駆動装置に関する。
 本願は、2022年2月28日に日本に出願された特願2022-030184号に基づき優先権を主張し、その内容をここに援用する。
 近年、電気自動車等に搭載される駆動装置として、モータと当該モータに接続されるインバータとを備える駆動装置の開発が盛んに行われている。このような駆動装置は、モータとインバータとこれらを収容するハウジングとを有する。また、ハウジングには、モータおよびインバータを冷却するための冷媒の流路が設けられる(例えば、特許文献1)。ハウジングに設けられる流路は、モータ全体を効率的に冷却するために、モータの外周面に沿って円弧状に延びる。
特開2017-011912号公報
 従来の駆動装置では、インバータがモータの径方向外側に配置されるため、駆動装置が径方向に大型化していた。そこで、インバータをモータの軸方向に配置することが考えられる。上述したように、流路のうちモータを冷却する経路は、モータの外周面に沿って設けられる。このため、インバータをモータの軸方向に配置すると、インバータを冷却する経路とモータを冷却する経路との接続部分で、流路が屈曲してしまい流体の圧力損失が高くなってしまう。圧力損失が高くなると、流体の流速が低下し、流体による冷却効果が低減する虞がある。
 本発明は、上記事情に鑑みて、径方向寸法の小型化を図りつつ圧力損失を抑制した流路を有する駆動装置の提供を目的の一つとする。
 本発明の駆動装置の一つの態様は、中心軸線を中心として回転するロータ、および前記ロータと径方向に対向するステータを有するモータと、前記モータに対し軸方向一方側に配置され前記モータと電気的に接続されるインバータと、前記モータを収容するモータ収容部、および前記インバータを収容するインバータ収容部を有するハウジングと、前記ハウジングの内部で前記モータに対し軸方向一方側に配置され、前記ロータを回転可能に支持するベアリングを保持するベアリングホルダと、を備える。前記ハウジングは、第1流路部、第2流路部、および第3流路部を含む流路を有する。前記第1流路部は、前記インバータ収容部に配置される。前記第2流路部は、前記インバータ収容部および前記モータ収容部のうち、少なくとも一方に配置され、前記第1流路部と前記第3流路部とを繋ぐ。前記第3流路部は、前記モータ収容部に配置される。前記第3流路部は、前記ステータの外周面に沿って円周状に延びる外周流路部を有する。前記第2流路部は、前記第1流路部から軸方向他方側に延びる第1経路と、前記第1経路と前記外周流路部とを繋ぐ第2経路と、を有する。前記第2経路と前記外周流路部とは、接続部において鈍角をなす。
 本発明の一つの態様によれば、径方向寸法の小型化を図りつつ圧力損失を抑制した流路を有する駆動装置を提供できる。
図1は、一実施形態の駆動装置の斜視図である。 図2は、一実施形態の駆動装置の概念図である。 図3は、一実施形態の駆動装置の断面図である。 図4は、一実施形態のハウジングの合わせ面の正面図である。 図5は、変形例のハウジングの合わせ面の正面図である。 図6は、一実施形態の駆動装置の開口部近傍の斜視図である。 図7は、一実施形態の駆動装置の断面図である。 図8は、変形例1の駆動装置の断面積である。 図9は、変形例1の駆動装置の断面図である。
 以下の説明では、駆動装置1が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して説明する。また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。
 XYZ座標系において、Z軸方向は、鉛直方向(すなわち上下方向)を示し、+Z方向が上側(重力方向の反対側)であり、-Z方向が下側(重力方向)である。また、X軸方向は、Z軸方向と直交する方向であって駆動装置1が搭載される車両の前後方向を示す。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向であって、車両の幅方向(左右方向)を示す。
 以下の説明において特に断りのない限り、モータ2の中心軸線J1に平行な方向(Y軸方向)を単に「軸方向」と呼び、中心軸線J1を中心とする径方向を単に「径方向」と呼び、中心軸線J1を中心とする周方向、すなわち、中心軸線J1の軸周りを単に「周方向」と呼ぶ。ただし、上記の「平行な方向」は、略平行な方向も含む。さらに、以下の説明において、中心軸線J1の軸方向のうち、+Y方向を単に軸方向一方側と呼び、-Y方向を単に軸方向他方側と呼ぶ場合がある。
 さらに、本明細書において、X軸方向を第1方向と呼ぶ場合がある。Z軸方向を第2方向と呼ぶ場合がある。すなわち、第1方向(X軸方向)は、中心軸線J1と直交する方向であり、第2方向(Z軸方向)は、中心軸線J1、および第1方向(X軸方向)と直交する方向である。また、本明細書において下側(すなわち、-Z側)を、第2方向(Z軸方向)一方側と呼ぶ場合がある。
 <駆動装置>
 図1は、本実施形態の駆動装置1の斜視図である。図2は、本実施形態の駆動装置1の概念図である。
 本実施形態の駆動装置1は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等、モータを動力源とする車両に搭載され、その動力源として使用される。
 図2に示すように、駆動装置1は、モータ2とベアリングホルダ69と動力伝達部4とインバータ(制御部)7とハウジング6とを備える。ハウジング6は、モータ2、ベアリングホルダ69、動力伝達部4、およびインバータ7を収容する。ハウジング6の内部において、モータ2、動力伝達部4、およびインバータ7は、中心軸線J1上に配置される。
 <モータ>
 本実施形態のモータ2は、インナーロータ型の三相交流モータである。モータ2は、電動機としての機能と発電機としての機能とを兼ね備える。なお、モータ2の構成は本実施形態に限定されず、例えば四相以上の交流モータであってもよい。
 モータ2は、水平方向に延びる中心軸線J1を中心として回転可能なロータ20と、ロータ20と径方向に対向するステータ30と、を備える。本実施形態のモータ2は、ステータ30の内側にロータ20が配置されるインナーロータ型モータである。
 ロータ20は、モータシャフト21と、モータシャフト21の外周面に固定されるロータコア24と、ロータコアに固定されるロータマグネット(図示略)と、を有する。ロータ20のトルクは、動力伝達部4に伝達される。
 モータシャフト21は、中心軸線J1を中心として軸方向に沿って延びる。モータシャフト21は、ベアリング5A、5Bに回転可能に支持される。また、ベアリング5Aは、ベアリングホルダ69に支持される。ベアリング5Bは、ハウジング6に支持される。
 モータシャフト21の軸方向一方側(+Y側)の端部には、センサマグネット77aが固定される。センサマグネット77aは、モータシャフト21とともに中心軸線J1周りを回転する。
 ステータ30は、ハウジング6に保持される。ステータ30は、ロータ20を径方向外側から囲む。ステータ30は、中心軸線J1を中心とする環状のステータコア32と、ステータコア32に装着されるコイル31と、コイル31から延び出る引出線31aと、ステータコア32とコイル31との間に介在するインシュレータ(図示略)とを有する。
 ステータコア32は、環状のヨークの内周面から径方向内方に複数の磁極歯(図示略)を有する。磁極歯の間には、コイル線が配置される。隣り合う磁極歯の間の間隙内に位置するコイル線は、コイル31を構成する。インシュレータは、絶縁性の材料からなる。
 引出線31aは、コイル31から軸方向一方側(+Y側)に延び出る。本実施形態のステータ30は、U相、V相およびW相に対応する3本の引出線31aを有する。引出線31aは、撚り合わせられた導線と、その先端に圧着された圧着端子31fと、コイル線の外周を覆う絶縁チューブ(図示略)と、を有する。圧着端子31fは、固定部材71fによってバスバー71の引出線接続部71aに接続される。本実施形態の固定部材71fは、圧着端子31fとバスバー71とを厚さ方向から締結するボルトおよびナットである。固定部材71fのナットは、図示略の端子台に保持される。また、この端子台は、例えば、第2回路基板7Dに固定される。
 <インバータ>
 インバータ7は、モータ2と電気的に接続される。インバータ7は、車両に搭載されるバッテリ(不図示)に接続され、バッテリーから供給された直流電流を交流電流に変換して、モータ2に供給する。また、インバータ7は、モータ2を制御する。
 本実施形態のインバータ7は、モータ2に対し軸方向一方側(+Y側)に配置される。本実施形態によれば、インバータ7をモータ2の径方向外側に配置する場合と比較して駆動装置1を径方向に小型化することができる。
 インバータ7は、コンデンサ7Aと、スイッチング素子7Bと、第1回路基板7Cと、第2回路基板(回路基板)7Dと、バスバー71と、ケーブル接続部79と、を有する。コンデンサ7A、スイッチング素子7B、第1回路基板7C、および第2回路基板7Dは、軸方向一方側(+Y側)から軸方向他方側(-Y側)に向かってこの順で積層される。
 コンデンサ7Aは、スイッチング素子7B、およびケーブル接続部79に接続される。コンデンサ7Aは、スイッチング素子7Bに供給する直流電源を平滑化する。
 スイッチング素子7Bは、直流電源を交流電流に変換するインバータ回路を構成する。本実施形態のスイッチング素子7Bは、絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)である。
 第1回路基板7Cおよび第2回路基板7Dは、中心軸線J1と直交する平面に沿って延びる。第1回路基板7Cは、いわゆるパワー基板である。第1回路基板7Cには、スイッチング素子7Bが接続される。
 第2回路基板7Dは、第1回路基板に接続される。第2回路基板7Dは、インバータ7の軸方向他方側(-Y側)の端部に配置される。第2回路基板7Dのモータ2側を向く面(すなわち、軸方向他方側を向く面)には、回転センサ素子77、および信号線接続部75aが実装される。すなわち、インバータ7は、回転センサ素子77、および信号線接続部75aを有する。回転センサ素子77は、中心軸線J1上に配置される。回転センサ素子77は、軸方向において、センサマグネット77aと対向する。回転センサ素子77は、センサマグネット77aの磁場を検出することでロータ20の回転数を測定する。信号線接続部75aは、信号線(図示略)に接続される。
 バスバー71は、電気抵抗の低い金属材料から構成される板状の部材である。本実施形態のインバータ7は、U相、V相、およびW相に対応する3つのバスバー71を有する。バスバー71は、コンデンサ7Aから径方向外側に屈曲しつつモータ2側(すなわち、軸方向他方側)に延び出る。
 バスバー71は、軸方向他方側(-Y側)の端部に引出線接続部71aを有する。引出線接続部71aには、コイル31から延び出る引出線31aが接続される。すなわち、インバータ7は、引出線31aに電気的に接続される引出線接続部71aを有する。
 引出線接続部71aは、軸方向においてインバータ7とモータ2の間に配置される。このため、インバータ7とモータ2とを最短距離で接続することができ、配線経路が長くなることによる電気抵抗の増加および駆動装置1の大型化を抑制できる。また、引出線接続部71aの軸方向位置は、第2回路基板7Dの軸方向位置に重なる。引出線接続部71aは、第2回路基板7Dに対し、中心軸線J1の径方向外側に配置される。本実施形態によれば、引出線接続部71aを第2回路基板7Dの径方向外側に配置することで、第2回路基板7Dをモータ2に近づけて配置することができ、駆動装置1の軸方向寸法の小型化を図ることができる。
 ケーブル接続部79は、ハウジング6に固定される。ケーブル接続部79は、インバータ7の軸方向一方側(+Y側)の端部に配置される。図1に示すように、ケーブル接続部79には、一対の給電用ケーブル9が接続される。給電用ケーブル9は、車両に搭載されるバッテリ(不図示)とインバータ7とを電気的に接続し、バッテリーからの電力をインバータ7に供給する。
 <動力伝達部>
 図2に示すように、動力伝達部4は、モータ2に対し軸方向他方側(-Y側)に配置される。動力伝達部4は、ロータ20に接続されてモータ2の動力を伝達し出力シャフト47に出力する。動力伝達部4は、減速装置4aと差動装置4bとを有する。モータ2から出力されるトルクは、減速装置4aを介して差動装置4bに伝達される。減速装置4aは、各ギヤの回転軸線が平行に配置される平行軸歯車タイプの減速機である。差動装置4bは、車両の旋回時に、左右の車輪の速度差を吸収しつつ左右両輪に同トルクを伝達する。
 減速装置4aは、第1シャフト44、第2シャフト45、第1ギヤ41、第2ギヤ42、および第3ギヤ43を有する。差動装置4bは、リングギヤ46g、デフケース46、およびデフケース46の内部に配置される差動機構部46cを有する。すなわち、動力伝達部4は、複数のギヤ41、42、43、46gを有する。
 第1シャフト44は、中心軸線J1を中心として軸方向に延びる。第1シャフト44は、モータシャフト21と同軸上に配置される。第1シャフト44は、軸方向一方側(+Y側)の端部において、モータシャフト21の軸方向他方側(-Y側)の端部に連結される。第1シャフト44は、モータシャフト21ととともに中心軸線J1周りを回転する。モータシャフト21は、ベアリング5C、5Dに回転可能に支持される。ベアリング5C、5Dは、ハウジング6に支持される。
 第1ギヤ41は、第1シャフト44の外周面に設けられる。第1ギヤ41は、第1シャフト44とともに中心軸線J1周りに回転する。第2シャフト45は、中心軸線J1と平行な中間軸線J2を中心として回転する。第2ギヤ42と第3ギヤ43とは、軸方向に並んで配置される。第2ギヤ42および第3ギヤ43は、第2シャフト45の外周面に設けられる。第2ギヤ42および第3ギヤ43は、第2シャフト45を介して接続される。第2ギヤ42および第3ギヤ43は、中間軸線J2を中心として回転する。第2ギヤ42は、第1ギヤ41と噛み合う。第3ギヤ43は、差動装置4bのリングギヤ46gと噛み合う。
 リングギヤ46gは、中心軸線J1と平行な出力軸線J3を中心として回転する。リングギヤ46gには、モータ2から出力されるトルクが減速装置4aを介して伝えられる。リングギヤ46gは、デフケース46に固定される。
 デフケース46は、内部に差動機構部46cを収容するケース部46bと、ケース部46bに対して軸方向一方側および他方側にそれぞれ突出するデフケースシャフト(シャフト)46aと、を有する。すなわち、動力伝達部4は、デフケースシャフト46aを有する。デフケースシャフト46aは、出力軸線J3を中心として軸方向に沿って延びる筒状である。リングギヤ46gは、デフケースシャフト46aの外周面に設けられる。デフケースシャフト46aは、出力軸線J3を中心としてリングギヤ46gとともに回転する。
 一対の出力シャフト47は、差動装置4bに接続される。一対の出力シャフト47は、差動装置4bのデフケース46から軸方向一方側および他方側に突出する。出力シャフト47は、デフケースシャフト46aの内側に配置される。出力シャフト47は、デフケースシャフト46aの内周面に、ベアリングを介して回転可能に支持される。
 モータ2から出力されるトルクは、モータ2の第1シャフト44、第1ギヤ41、第2ギヤ42、第2シャフト45および第3ギヤ43を介して差動装置4bのリングギヤ46gに伝達され、差動装置4bの差動機構部46cを介して出力シャフト47に出力される。動力伝達部4の複数のギヤ41、42、43、46gは、第1シャフト44、第2シャフト45、デフケースシャフト46aの順でモータ2の動力を伝達する。
 <ベアリングホルダ>
 ベアリングホルダ69は、ハウジング6の内部でモータ2に対し軸方向一方側(+Y側)に配置される。ベアリングホルダ69は、ロータ20を回転可能に支持するベアリング5Aを保持する。本実施形態のベアリングホルダ69は、金属材料からなる板状部材であり、プレス加工によって成形される。しかしながら、ベアリングホルダ69の構成は、本実施形態に限定されない。
 ベアリングホルダ69は、ベアリング保持部69bと円板部69cとを有する。ベアリング保持部69bは、中心軸線J1に沿って延びる筒状である。ベアリング保持部69bは、ベアリング5Aを径方向外側から囲みベアリング5Aを保持する。円板部69cは、中心軸線J1を中心とする円板状である。円板部69cは、ベアリング保持部69bから径方向外側に延びる。ベアリングホルダ69は、円板部69cの外縁において、ハウジング6のウォータジャケット6Dに固定される。円板部69cには、軸方向に貫通する貫通孔69aが設けられる。すなわち、ベアリングホルダ69には、軸方向に貫通する貫通孔69aが設けられる。貫通孔69aには、コイル31からインバータ7側に延びる引出線31aが配置される。
 <ハウジング>
 ハウジング6は、インバータ収容部6Aとハウジング本体6Bとギヤカバー6Cとウォータジャケット6Dと、を有する。インバータ収容部6A、ハウジング本体6B、ギヤカバー6C、およびウォータジャケット6Dは、それぞれ別部材である。インバータ収容部6Aは、ハウジング本体6Bの軸方向一方側(+Y側)に配置される。ギヤカバー6Cは、ハウジング本体6Bの軸方向他方側(-Y側)に配置される。ウォータジャケット6Dは、ハウジング本体6Bの内部に配置される。
 ハウジング本体6Bは、モータ2を収容し軸方向一方側(+Y側)に開口する。ハウジング本体6Bは、中心軸線J1を中心とする筒状の外側筒部65と、外側筒部65の軸方向他方側(-Y側)に配置され外側筒部65の軸方向他方側の開口を覆う隔壁部65aと、軸方向他方側(-Y側)に開口する凹状部65bと、を有する。
 隔壁部65aには、シャフト挿通孔65hが設けられる。シャフト挿通孔65hには、一対のベアリング5B、5Cと、シール部材5Sが配置される。ベアリング5Bは、モータシャフト21を支持し、ベアリング5Cは、第1シャフト44を支持する。モータシャフト21と第1シャフト44とは、シャフト挿通孔65hの内部で互いに連結される。シール部材5Sは、軸方向において2つのベアリング5B、5Cの間に配置される。シール部材5Sは、シャフト挿通孔65hの内周面と第1シャフト44の外周面との間をシールする。
 ハウジング本体6Bの外側筒部65は、モータ2を径方向外側から囲むモータ包囲部65eと、インバータ7の一部を径方向外側から囲むインバータ包囲部65fと、を有する。モータ包囲部65eは、ウォータジャケット6Dを介してステータ30を支持する。インバータ包囲部65fは、モータ包囲部65eの軸方向一方側(+Y側)に位置する。
 インバータ包囲部65fには、径方向外側に開口する開口部61が設けられる。開口部61は、引出線接続部71aを径方向外側に露出させるために設けられる。開口部61は、蓋部61cによって覆われる。すなわち、ハウジング6は、開口部61を覆う蓋部61cを有する。蓋部61cは、開口部61を介してのハウジング6の内部への粉塵および水分の侵入を抑制する。これにより、ハウジング6の内部に配置されるモータ2およびインバータ7を保護することができる。特に、本実施形態において、開口部61と蓋部61cとの間には、シール部61sが配置される。シール部61sは、開口部61と蓋部61cとの間を封止して、ハウジング6内への水分の侵入を抑制する。
 ハウジング本体6Bの外側筒部65には、径方向に沿って延びるブリーザ63が設けられる。ブリーザ63は、ハウジング6の内部空間の圧力が過度に高まることを抑制する。ブリーザ63には、フィルタユニット63fが配置される。フィルタユニット63fは、ブリーザ63をコンタミが通過することを抑制する。
 インバータ収容部6Aは、インバータ7を収容するとともにインバータ7を支持する。インバータ収容部6Aは、ハウジング本体6Bの軸方向一方側(+Y側)の開口を覆う。インバータ収容部6Aには、インバータ7を冷却する第1流路部91が設けられる。
 インバータ収容部6Aは、中心軸線J1と直交する支持壁部83aを有する。支持壁部83aは、インバータ7のコンデンサ7Aとスイッチング素子7Bとの間に配置される。支持壁部83aは、軸方向一方側(+Y側)を向く面でコンデンサ7Aを支持し、軸方向他方側(-Y側)を向く面でスイッチング素子7Bを支持する。支持壁部83aの軸方向他方側(-Y側)を向く面には、複数の支持柱部83bが設けられる。支持柱部83bは、第1回路基板7C、および第2回路基板7Dを支持する。インバータ7のスイッチング素子7B、第1回路基板7C、および第2回路基板7Dは、ハウジング本体6Bのインバータ包囲部65fの径方向内側に配置される。すなわち、インバータ7は、ハウジング6の内部において、ハウジング本体6Bとインバータ収容部6Aとの境界部を超えて配置される。インバータ収容部6Aには、第1流路部91が設けられる。インバータ7は、第1流路部91の流体Lによって冷却される。
 ウォータジャケット6Dは、中心軸線J1を中心とする筒状の内側筒部64と、内側筒部64の軸方向一方側の端部に位置するフランジ部64fと、を有する。
 内側筒部64は、ステータ30を径方向外側から囲む。内側筒部64の内径は、ステータコア32の外径と略一致する。内側筒部64の内周面は、ステータ30の外周面と接触する。また、内側筒部64は、外側筒部65によって径方向内側から囲まれる。内側筒部64の外径は、ハウジング本体6Bの外側筒部65の内径より小さい。内側筒部64の外周面の軸方向両端部には、それぞれOリング64cが配置される。Oリング64cは、内側筒部64の外周面と外側筒部65との間をシールする。内側筒部64と外側筒部65との間であって、一対のOリング64cの間には、第3流路部93として機能する隙間が設けられる。
 内側筒部64と外側筒部65とは、モータ収容部60を構成する。すなわち、ハウジング6は、モータ収容部60を有する。モータ収容部60は、モータ2を収容する。モータ収容部60には、第3流路部93が設けられる。
 フランジ部64fは、内側筒部64から径方向外側に延びる。ウォータジャケット6Dは、フランジ部64fにおいてハウジング本体6Bの外側筒部65に固定される。また、フランジ部64fには、ベアリングホルダ69が固定される。すなわち、ベアリングホルダ69は、内側筒部64に固定される。
 ギヤカバー6Cは、ハウジング本体6Bの凹状部65bに固定される。ギヤカバー6Cと凹状部65bとは、動力伝達部4を収容する収容空間を構成する。動力伝達部4の収容空間には、オイルOが貯留される。オイルOは、動力伝達部4の潤滑性を高める。
 <流路>
 ハウジング6には、流体Lが流れる流路90が設けられる。流体Lは、例えば、水である。なお、流体Lは、水でなくてもよい。例えば、流体Lは、オイルであってもよく、他の流体で合っても良い。流路90は、ハウジング6の外部を通過する外部配管97と、ハウジング6の内部を通過する第1流路部91、第2流路部92、第3流路部93、および第4流路部94と、を含む。
 外部配管97は、ハウジング6に接続される配管である。外部配管97は、第1連結部97aにおいてインバータ収容部6Aに連結され、第2連結部97bにおいてハウジング本体6Bに接続される。外部配管97の経路中には、流体Lを冷却するラジエータ(図示略)が配置される。外部配管97は、第1連結部97aにおいてハウジング6内に低温の流体Lを送り、第2連結部97bにおいてハウジング6内で熱を吸収して温度が高まった流体Lを回収する。
 流体Lは、ハウジング6の内部において、第1流路部91、第2流路部92、第3流路部93、第4流路部94の順で流れる。第1流路部91、第2流路部92、および第4流路部94は、主にハウジング6に設けられる孔部である。第1流路部91、第2流路部92、および第4流路部94は、ハウジング6の壁部にドリル等による機械加工を施すことで形成される。一方で、第3流路部93は、内側筒部64と外側筒部65との間の隙間に設けられる。
 第1流路部91は、インバータ収容部6Aの支持壁部83aに設けられる。第1流路部91は、第1孔部91aと、冷却部91bと、第2孔部91cと、第3孔部91dと、を有する。流体Lは、第1流路部91において、第1孔部91a、冷却部91b、第2孔部91c、第3孔部91dの順で流れる。第1孔部91aは、外部配管97の第1連結部97aに接続される。第1孔部91aは、中心軸線J1と直交する平面に沿って延びる。冷却部91bは、支持壁部83aの軸方向他方側(-Y側)を向く面に設けられる凹部91baと、凹部91baの開口を覆うスイッチング素子7Bと、の間に設けられる。冷却部91bを流れる流体Lは、スイッチング素子7Bに接触してスイッチング素子7Bを冷却する。凹部91baの側壁には、第1孔部91aおよび第2孔部91cが開口する。第2孔部91cは、冷却部91bから中心軸線J1と直交する平面に沿って延びる。第3孔部91dは、第2孔部91cから軸方向他方側(-Y側)に延びる。第3孔部91dは、インバータ収容部6Aの軸方向他方側(-Y側)を向く面に開口する。
 第2流路部92は、第1流路部91と第3流路部93とを繋ぐ。上述したように、第1流路部91を流れる流体Lはインバータ7を冷却し、第3流路部93を流れる流体Lはモータ2を冷却する。したがって、第2流路部92は、インバータ7を冷却する流路と、モータ2とを冷却する流路とを繋ぐ経路である。
 図1に示すように、第2流路部92は、ハウジング本体6Bの外側筒部65に設けられる。外側筒部65には、局所的に厚肉に成形された膨出部65dが設けられる。膨出部65dは、外側筒部65の外周面に対し径方向外側に突出する。第2流路部92は、膨出部65dの内部にドリル加工することで形成される。なお、第2流路部92は、第1流路部91と第3流路部93とを繋ぐものであり、インバータ収容部6Aおよびモータ収容部60のうち少なくとも一方に配置されていればよい。
 図2に示すように、第2流路部92は、第1経路92aと第2経路92bとを有する。第1経路92aは、第1流路部91から軸方向他方側に延びる。第1経路92aは、外側筒部65の軸方向一方側(+Y側)の端面に開口する。第1経路92aの開口は、第1流路部91の第3孔部91dの開口と対向する。したがって、第1経路92aは、第1流路部91に繋がり、第1流路部91から軸方向他方側(-Y側)に延びる。第2経路92bは、径方向に沿って延びる。第2経路92bは、第1経路92aと第3流路部93とを繋ぐ。
 上述したように、第1経路92aは、外側筒部65の壁内部に設けられる。また、外側筒部65の径方向内側には、ベアリングホルダ69が配置される。したがって、本実施形態の第1経路92aは、ベアリングホルダ69より径方向外側に配置され、ベアリングホルダ69には流路が設けられない。本実施形態によれば、ベアリングを保持する部材に流路を設ける場合と比較して、ベアリングホルダ69の剛性を高めることができ、ベアリング5Aを安定的に保持できる。
 本実施形態の第1経路92aは、中心軸線J1より下側(第2方向一方側)に位置する。このため、第1経路92aから流体Lが流出したとしても、流出した流体Lは、重力に従って下側に流れ落ちるため、ハウジング6の内部に入り難い。本実施形態によれば、第1経路92aから流出した流体Lが、ハウジング6内部に流入することを抑制できる。
 第3流路部93は、モータ収容部60に配置される。本実施形態の第3流路部93は、ハウジング本体6Bの外側筒部65と、ウォータジャケット6Dの内側筒部64との径方向の間に配置される。より具体的には、第3流路部93は、外側筒部65の径方向内側かつウォータジャケット6Dの径方向外側に設けられる。内側筒部64の外周面には、螺旋状の突条部64aが設けられる。第3流路部93は、突条部64aの間を螺旋状に延びる。第3流路部93を流れる流体Lは、ステータ30を冷却する。
 図1に示すように、第3流路部93は、ステータの外周面に沿って円周状に延びる外周流路部93aを有する。本実施形態の第3流路部93は、その全長が外周流路部93aから構成される。しかしながら、第3流路部93は、外周流路部93aを有していれば、他の部分を有していてもよい。また、本実施形態の外周流路部93aは、中心軸線J1を中心とする螺旋状であるが、外周流路部93aは他の構造であってもよい。例えば、第3流路部93は、周方向一側と他方側とに交互に蛇行する蛇行形状であり、周方向に沿って延びる複数の外周流路部が折り返し部分で接続された構造であってもよい。また、第3流路部93は、軸方向一方側と軸方向他方側とに交互に蛇行する蛇行形状であって、折り返し部分に周方向に沿って延びる外周流路部が設けられる構造であってもよい。
 図3は、本実施形態の第2流路部92と第3流路部93との接続部分における駆動装置1の断面図である。
 図3に示すように、第2流路部92は、第2経路92bにおいて第3流路部93の外周流路部93aに接続される。すなわち、第2経路92bは、第1経路92aと外周流路部93aとを繋ぐ。第2経路92bは、外側筒部65の膨出部65dを、外周側からドリル加工することで形成され、その開口はキャップCによって塞がれる。
 本実施形態の第2経路92bは、全長に亘って直線状である。すなわち、第2経路92bは、第1経路92aと外周流路部93aとを直線状に繋ぐ。このため、第2経路92bは、1回のドリル加工によって容易に形成される。
 本実施形態の第2経路92bと外周流路部93aとは、接続部95において鈍角をなす。ここで、第2経路92bと外周流路部93aとの接続部95とは、第2経路92bと外周流路部93aとが交差する部分を意味する。より具体的には、接続部95は、第2経路92bと外周流路部93aとが延びている領域同士が交差して重なる空間全体を意味する。言い換えれば、接続部95は、第2経路92bを外周流路部93a側に仮想的に伸ばした空間が、外周流路部93aと重なる部分の空間全体を意味する。また、接続部95における第2経路92bと外周流路部93aとのなす角度θは、流体Lの流動方向における流路90の屈折角度を意味する。角度θは、第2経路92bが接続部95に向かって延びる方向と、接続部95から外周流路部93aが延びる方向と、のなす角度である。より具体的には、角度θは、接続部95を中心として第2経路92bの上流側に向かって延びる直線L1と、外周流路部93aの下流側に向かって延びる直線L2と、のなす角度である。ここで、外周流路部93aは円弧状に延びるため、接続部95から外周流路部93aが延びる方向(すなわち、直線L2の延びる方向)は、接続部95における外周流路部93aの接線方向である。このような構成とすることで、第2経路92bは、中心軸線J1の径方向に対し中心軸線J1の周方向に傾く方向に延びる。なお、ここで「中心軸線J1の径方向」とは、中心軸線J1と直交する平面内において中心軸線J1と他の1点とを通過する直線が延びる方向を意味する。また、「中心軸線J1の周方向」とは、中心軸線J1を中心とする円の接線方向を意味する。第2経路92bは、中心軸線J1の径方向に対し周方向側に傾いていればよい。したがって、第2経路92bは、中心軸線J1の周方向に延びていてもよい。第2経路92bが周方向に延びる場合とは、第2経路92bが外周流路部93aの接線方向に延びることを意味する。
 本実施形態の駆動装置1は、モータ2とインバータ7とが中心軸線J1の軸方向に沿って並んで配置することで駆動装置1の径方向寸法の小型化を実現するものである。また、モータ2を冷却する第3流路部93は、モータ2の外周全体をムラなく冷却するためにモータ2の外周に沿って周方向に沿って延びる外周流路部93aを有する。本実施形態の駆動装置1において、第2流路部が、第1流路部と第3流路部とを軸方向に直線的に繋いでしまうと、第2流路部と外周流路部との接続部分で流路が直角で屈曲して大きな圧力損失を生じると考えられる。また、第2流路部と外周流路部とが鋭角で接続される場合も、接続部で大きな圧力損失が生じると考えられる。
 これに対し、本実施形態の第2経路92bは、外周流路部93aとの接続部95において鈍角をなす。このため、流体Lは、接続部95において第2流路部92から第3流路部93に円滑に流入することができる。本実施形態によれば、第2流路部92と第3流路部93との接続部95における圧力損失を低減でき、流体Lの流速を確保し、モータ2の冷却効率を高めることができる。
 なお、本実施形態の第2流路部92は、第1経路92aおよび第2経路92bの境界部分において流路が屈曲する。このため、第1経路92aと第2経路92bとの境界部分においても若干の圧力損失を生じる。一般的に、流路の屈曲部分における流体の圧力損失は、屈曲部分の流路断面積を大きくすることで小さくできる。第2流路部92の第1経路92aと第2経路92bとの接続部の圧力損失は、第2流路部92の流路断面積を十分に確保することで抑制可能である。一方で、外周流路部93aの流路断面積を大きくしようとすると、モータ収容部60の径方向寸法の全体を大型化する必要があり、駆動装置1全体の大型化に繋がってしまう。本実施形態の流路90は、屈曲部分を、流路断面積を大きくし易い第2流路部92内に設けることで駆動装置1の小型化を図ることができる。
 本実施形態の第2経路92bは、中心軸線J1と直交する平面(X-Z平面)と平行に延びる。しかしながら、第2経路92bは、接続部95において外周流路部93aとなす角度θが鈍角であれば、中心軸線J1と直交する平面と平行に延びていなくても上述の効果を得ることができる。
 また、接続部95における第2経路92bと外周流路部93aとのなす角度θは、接続部95において90°超(すなわち、鈍角)であれば、上述の効果を得ることができる。しかしながら、接続部95における第2経路92bと外周流路部93aとのなす角度θは、120°以上とすることが好ましく、150°以上とすることがさらに好ましい。角度θを120°以上(より好ましくは150°以上)とすることで、接続部95における流体Lの流れをさらに円滑にすることができ、圧力損失を効果的に低減できる。
 上述したように、接続部95は、第2経路92bと外周流路部93aとが交差する空間全体である。したがって、第2経路92bおよび外周流路部93aの形状によっては、接続部95内の位置に応じて、第2経路92bおよび外周流路部93aの延びる方向で定義される角度θが若干変化する。ここでは、接続部95内の何れかの位置における、第2経路92bと外周流路部93aとのなす角度θが、鈍角であれば、少なくともその位置において流体Lを円滑に流すという効果を得ることができる。例えば、接続部95の径方向外側の端部であって、外周流路部93aの外周面に位置する第2経路92bとの境界面において、角度θが鈍角であってもよい。また、接続部95の径方向内側の端部であって外周流路部93aの内周面において、角度θが鈍角であってもよい。
 なお、本実施形態では、接続部95内の何れの位置においても、角度θが鈍角となっている。このため、接続部95内の何れの位置において流体Lを円滑に流すことができ、圧力損失を低減させる効果をより一層得ることができる。
 また、角度θのより好ましい範囲(120°以上、もしくは150°以上)についても、同様である。すなわち、接続部95内の何れか位置で、角度θが120°以上(もしくは150°以上)を満たしてればよく、接続部95内の全ての位置で角度θが120°以上(もしくは150°以上)であることがさらに好ましい。
 図2に示すように、第4流路部94は、ハウジング本体6Bの外側筒部65に設けられる孔部である。第4流路部94は、径方向に沿って延びる。第4流路部94は、径方向内側の端部で第3流路部93に繋がり、径方向外側の端部で外部配管97の第2連結部97bに接続される。
 図1に示すように、本実施形態の第4流路部94は、第3流路部93の外周流路部93aに接続される。第4流路部94は、中心軸線J1と直交する平面(X-Z平面)に沿って延びる。第4流路部94は、第2流路部92の第2経路92bと同様に、中心軸線J1の径方向に対し中心軸線J1の周方向に傾く方向に延びる。このため、流体Lは、第3流路部93から第4流路部94に円滑に流入することができ、第3流路部93と第4流路部94との間の圧力損失を低減できる。
 図2に示すように、本実施形態のモータ収容部60とインバータ収容部6Aとは、軸方向に締結されている。すなわち、モータ収容部60は、軸方向一方側(+Y側)を向く第1合わせ面6aを有し、インバータ収容部6Aは、軸方向他方側(-Y側)を向く第2合わせ面6kを有し、軸方向において、第1合わせ面6aと第2合わせ面6kとは互いに接触する。また、流路90は、ハウジング6の壁内部であって、インバータ収容部6Aからモータ収容部60まで延びる。第1流路部91は、モータ収容部60とインバータ収容部6Aとの第2合わせ面6kにおいて、軸方向他方側(-Y側)に開口する。一方で、第2流路部92は、第1合わせ面6aにおいて、軸方向一方側(+Y側)に開口する。第1流路部91と第2流路部92の開口同士は、合わせ面6a、6kにおいて互いに連通する。モータ収容部60とインバータ収容部6Aとの合わせ面6a、6kには、液状ガスケットなどの封止部材が配置され、合わせ面6a、6kにおいて流路90から流体が流出することを抑制する。
 なお、本実施形態において、第1合わせ面6aと第2合わせ面6kとは、中心軸線J1と直交する平面に沿って延びる。しかしながら、第1合わせ面6aと第2合わせ面6kとは、それぞれ軸方向一方側、および他方側を向いてれいば、中心軸線J1と直交する平面に対して傾斜していてもよい。すなわち、第1合わせ面6a、および第2合わせ面6kの法線方向は、軸方向成分を有していれば、中心軸線Jに対して傾いた方向であってもよい。
 また、「第1合わせ面6aと第2合わせ面6kとが接触する」とは、第1合わせ面6aと第2合わせ面6kとが直接的に接触する場合のみならず、ガスケットなどの封止部材を介して接触する場合も含む概念である。
 図4は、モータ収容部60とインバータ収容部6Aとの合わせ面6a、6kの正面図である。図4は、モータ収容部60側の第1合わせ面6aを正面側から見た図であり、モータ収容部60に重なるインバータ収容部6A側の第2合わせ面6kを二点鎖線で示す。
 第1合わせ面6a、および第2合わせ面6kには、それぞれモータ収容部60とインバータ収容部6Aとを締結するための複数の締結孔6bが設けられる。モータ収容部60の締結孔6bは内周にメネジが設けられるネジ孔であり、インバータ収容部6Aの締結孔6bは、ボルトが挿通される挿通孔である。また、モータ収容部60およびインバータ収容部6Aの壁6dには、締結孔6bの周りに厚肉を確保するための厚肉部6cが設けられる。モータ収容部60およびインバータ収容部6Aの壁6dは、厚肉部6cにおいてハウジング6の内部A側、および外部B側にそれぞれ突出する。
 図4に示すように、ハウジング6は、ハウジング6の内部A側を向く内壁面6fと、前記ハウジングの外部B側を向く外壁面6gとを有する。流路90は、ハウジング6の内壁面6fと外壁面6gとの間に配置される。なお、ここで、ハウジング6の内部Aとは、ハウジング6に囲まれる空間であって、モータ2などが収容される空間を意味する。一方で、ハウジング6の外部Bとは、ハウジング6の外部空間を意味する。
 第1合わせ面6a、および第2合わせ面6kにおいて、流路90と内壁面6fとの最短距離h1は、流路90と外壁面6gとの最短距離h2よりも、長い。これにより、第1合わせ面6a、および第2合わせ面6kにおいて、流路90を流れる流体Lが流出したとしても、流体Lがハウジング6の外部B側に達しやすくハウジング6の外部Bに排出でき、ハウジング6の内部Aに侵入し難い。すなわち、本実施形態によれば、流体Lが、ハウジング6内部に侵入することを抑制できる。
 なお、本実施形態では、第1合わせ面6a、および第2合わせ面6kにおいて、流路90がハウジング6の外部B側に極端に偏って配置される場合について説明した。しかしながら、流路90は、第1合わせ面6a、および第2合わせ面6kにおいてハウジング6の外部B側に若干であっても偏って配置されていれば、上述の効果を得ることができる。
 なお、本実施形態では、合わせ面6aにおける流路90の断面形状が円形である場合について説明した。しかしながら、合わせ面6aにおける流路90の断面形状は円形に限らず、楕円形や多角形状などであってもよい。
 図5は、本実施形態に採用可能な変形例のハウジング206の合わせ面206a、206kの正面図である。本変形例では、合わせ面206a、206kにおいて、流路90と内壁面206fとの最短距離h1は、流路90と外壁面206gとの最短距離h2と等しい。本変形例によれば、流路290の周囲で合わせ面206aに均等に締結力が加わり、合わせ面206a、206kにおけるシール性を高めて流路290からの流体Lの流出を抑制できる。
 <開口部>
 図6は、開口部61の近傍における駆動装置1の斜視図である。なお、図6において、開口部61を覆う蓋部61cの図示を省略する。図6を基にハウジング6に設けられる開口部61の構成、およびその機能についてより具体的に説明する。
 本実施形態の開口部61は、中心軸線J1に対し径方向外側に開口する。本実施形態の開口部61は、正面から見て軸方向を短辺とする矩形状である。開口部61は、ハウジング6の外側筒部65に設けられる。すなわち、開口部61は、外側筒部65を径方向に貫通する。開口部61の軸方向位置は、インバータ7の軸方向位置に重なる。より具体的には、開口部61の軸方向位置は、インバータ7の第2回路基板7Dおよび引出線接続部71aと重なる。また開口部61の軸方向位置は、ベアリングホルダ69に重なる。
 ハウジング6は、開口部61の内縁61aに沿って径方向外側に突出する突出壁61wを有する。上述したように、開口部61は矩形状であるため、突出壁61wは、開口部61の各辺に対応する4つの壁部61wa、61wb、61wc、61wdを有する。突出壁61wを構成する4つの壁部のうち、2つの壁部61wa、61wbは、中心軸線J1と直交する平面に沿って延び、軸方向において互いに対向する。また、突出壁61wを構成する4つの壁部のうち、残る2つの壁部61wc、61wdは、軸方向に沿って延びて周方向において互いに対向する。周方向に対向する2つの壁部61wc、61wdのうち一方の壁部61wdには、厚さ方向に貫通する貫通孔62が設けられる。すなわち、突出壁61wには、貫通孔62が設けられる。貫通孔62は、ハウジング6の外部空間とハウジング6の内部空間とを連通させる。
 貫通孔62の開口には、コネクタ部68が配置される。コネクタ部68には、車両用制御装置(図示略)から延びる信号用ケーブル8が接続される。信号用ケーブル8は、車両用制御装置と駆動装置1とを繋ぎ、車両用制御装置とインバータ7との間で制御信号の伝送を行う。
 コネクタ部68は、信号用ケーブル8が接続されるコネクタ部本体68bと、コネクタ部本体68bから延び出る信号線68aと、を有する。コネクタ部本体68bは、ハウジング6の外周側からハウジング6に固定され貫通孔62の開口を覆う。
 信号線68aは、貫通孔62に通される。信号線68aは、コネクタ部本体68bと、第2回路基板7Dに実装される信号線接続部75aを繋ぐ。これにより、信号線68aは、信号用ケーブル8とインバータ7とを電気的に繋ぐ。
 開口部61を中心軸線J1の径方向から見て、開口部61の内縁61aに囲まれる領域には、引出線接続部71aが配置される。本実施形態のハウジング6によれば、開口部61から引出線接続部71aを径方向外側に露出させることができる。作業者は、開口部61から工具等を挿入して引出線31aを引出線接続部71aに接続することができる。このため、ハウジング6の内部にモータ2およびインバータ7を収容した後に、モータ2とインバータ7とを接続する組立方法を採用することができる。より具体的には、モータ2をハウジング本体6Bに固定し、インバータ7をインバータ収容部6Aに固定し、さらにハウジング本体6Bとインバータ収容部6Aと組み付けた後に、ハウジング6の内部でモータ2とインバータ7とを接続することができる。このような組み立て工程を採用することで、ハウジング本体6Bに対してモータ2を組み付ける工程と、インバータ収容部6Aに対してインバータ7を組み付ける工程と、を同時並行で行うことができ、組立工程の効率化が可能となる。
 また、本実施形態によれば、引出線31aとバスバー71との接続部分である引出線接続部71aをハウジングの内部に配置できる。したがって、引出線接続部71aをハウジング6の外部に配置する場合と比較して、引出線31aをハウジング6の外部で封止する必要がなく、駆動装置1の防水、防塵構造を簡素化できる。さらに本実施形態によれば、引出線31aをハウジング6の外側に引き出す場合と比較して、駆動装置1全体の小型化を図ることができる。
 本実施形態によれば、開口部61を中心軸線J1の径方向から見て、開口部61の内縁61aに囲まれる領域には、信号線接続部75aが配置される。ハウジング6は、開口部61から信号線接続部75aを径方向外側に露出させることができる。作業者は、開口部61からハウジング6の内部にアクセスして、信号線68aを信号線接続部75aに接続することができる。したがって、ハウジング6の内部にインバータ7を収容した後に、信号線68aをインバータ7に接続する組み立て方法を採用することができ、組み立て工程を簡素化し易い。
 また、本実施形態によれば、信号線68aが通される貫通孔62が、開口部61の内縁61aに沿って延びる突出壁61wに設けられる。このため、作業者は、開口部61からアクセスして、貫通孔69aに信号線68aを通し信号線68aをハウジング6の内部に引き込む工程を行うことができ、作業を簡素化することができる。
 図7は、中心軸線J1と直交する断面に沿う駆動装置1の断面図である。
 図7に示すように、中心軸線J1の軸方向から見て、中心軸線J1と出力軸線J3とを結ぶ仮想線をギヤ配列仮想線VL1とする。ギヤ配列仮想線VL1は、動力伝達部4の動力伝達方向に沿って延びる仮想線である。本実施形態のギヤ配列仮想線VL1は、水平面に沿って延びる。すなわち、本実施形態において、動力伝達部4の動力の伝達方向は、第1方向(X軸方向)に沿う方向である。
 開口部61の周方向位置は、ベアリングホルダ69の貫通孔69aの周方向位置と重なる。貫通孔69aには、コイル31から延び出る引出線31aが通過する。開口部61と貫通孔69aとを周方向に重ねて配置することで、引出線31aの先端を開口部61の正面に配置しやすく、引出線接続部71aにおける接続作業を容易に行うことができる。
 本実施形態において、中心軸線J1に対し開口部61が配置される方向を第3方向D3と呼ぶ。すなわち、開口部61は、中心軸線J1に対して第3方向D3に配置される。第3方向D3は、中心軸線J1と直交する方向である。本実施形態の第1経路92aは、ハウジング6の内部空間に対して第3方向D3の反対側に配置される。すなわち、開口部61と第1経路92aとは、第3方向D3においてハウジング6の内部空間を挟んで反対側に配置される。さらに、本実施形態の第1経路92aは、開口部61の上端より下側(第2方向一方側)に配置される。このため、第1経路92aから流体Lが流出しハウジング6の外側面を伝っても、この流体Lは重力に従って下側に流れ落ちて、開口部61に達し難い。このため、流出した流体Lが開口部61を介してハウジング6の内部に侵入することを抑制できる。
 上述したように、本実施形態のハウジング6には、ハウジング6の内部空間と外部空間とを連通させるブリーザ63が設けられている。本実施形態において、第2流路部92の第1経路92aは、軸方向位置がブリーザ63と重なる部分において、ブリーザ63より下側(第2方向一方側)に位置する。このため、第1経路92aから流体Lが流出しハウジング6の外側面を伝っても、この流体Lは重力に従って下側に流れ落ちて、ブリーザ63に達し難い。このため、流出した流体Lがブリーザ63を介してハウジング6の内部に侵入することを抑制できる。
 (変形例1)
 次に、上述の実施形態に採用可能な変形例について説明する。以下に説明する変形例において、既に説明した実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 図8、および図9は、変形例1の駆動装置101の断面図である。図8は、上述する実施形態における図3に対応する図である。一方で、図9は、上述する実施形態における図7に対応する図である。
 本変形例の駆動装置101は、上述の実施形態と比較して、主にハウジング106の構成が主に異なる。また、本変形例の駆動装置101は、上述の実施形態と比較して、中心軸線J1に対する出力軸線J3の配置が異なる。上述の実施形態では、出力軸線J3が中心軸線J1に対し-X側に位置していたが、本変形例の出力軸線J3は中心軸線J1に対して+X側に位置する。また、本変形例の駆動装置は、上述の実施形態と比較して、第2流路部192の配置が異なる。
 図8に示すように、本変形例のハウジング106には、上述の実施形態と同様に第2流路部192と第3流路部193とが設けられる。また、第2流路部192は、第1経路192aと第2経路192bとを有する。第2流路部192は、第2経路192bにおいて第3流路部193の外周流路部193aに接続される。
 第2経路192bは、中心軸線J1と直交する平面(X-Z平面)に沿って延びる。本変形例の第2経路192bは、第1方向(X軸方向、水平方向)に延びる。また、第2経路192bは、中心軸線J1より下側に配置される。接続部における第2経路192bと外周流路部193aとのなす角度θは、接続部において鈍角である。このため、第2経路192bは、中心軸線J1の径方向に対し中心軸線J1の周方向に傾く方向に延びる。本変形例の第2流路部192は、第2経路192bと外周流路部193aとは、接続部において鈍角をなす。このため、流体Lは、第2流路部192から第3流路部193に円滑に流入することができる。本変形例によれば、第2流路部192と第3流路部193との間の圧力損失を低減でき、流体Lの流速を確保できる。
 本変形例の第1経路192aは、中心軸線J1より下側(第2方向一方側)に位置する。このため、第1経路192aから流体Lが流出したとしても、流出した流体Lは、重力に従って下側に流れ落ちることでハウジング106の内部に入り難い。
 図9に示すように、本変形例のハウジング106には、上述の実施形態と同様に、開口部161、およびブリーザ163が設けられる。また、開口部161の内縁には、径方向外側に突出する突出壁161wが設けられる。突出壁161wには、厚さ方向に貫通する貫通孔162が設けられる。貫通孔162には、信号線68aが通されて第2回路基板7Dに実装される信号線接続部75aに電気的に接続される。
 上述の実施形態と同様に、開口部161の周方向位置は、ベアリングホルダ69の貫通孔69aの周方向位置と重なる。これにより、引出線31aの先端を開口部161の正面に配置しやすく、引出線接続部71aにおける接続作業を容易に行うことができる。
 本変形例において、第2流路部192の第1経路192aは、開口部161の突出壁161wに設けられる。開口部161の突出壁161wに設けることで、ハウジング106の他の部位に、流路を通過させるための厚肉の膨出部を設ける必要がなく、駆動装置101を小型化できる。
 本変形例の第1経路192aは、開口部161より下側(第2方向一方側)に配置される。このため、第1経路192aから流体Lが流出しハウジング106の外側面を伝っても、この流体Lは重力に従って下側に流れ落ちて、開口部161に達し難い。同様に、本変形例の第1経路192aは、軸方向位置がブリーザ163と重なる部分において、ブリーザ163より下側(第2方向一方側)に位置する。このため、第1経路192aから流体Lが流出しハウジング106の外側面を伝っても、この流体Lは重力に従って下側に流れ落ちて、ブリーザ163に達し難い。
 本変形例において、中心軸線J1に対し開口部161が配置される方向を第3方向D3と呼ぶ。すなわち、開口部161は、中心軸線J1に対して第3方向D3に配置される。第3方向D3は、中心軸線J1と直交する方向である。本変形の第1経路192aは、ハウジング106の内部空間に対して第3方向D3に配置される。すなわち、本変形例の第1経路192aと開口部161とは、ハウジング106の内部空間に対し同方向に配置される。これにより、第1経路192aが引出線接続部71aに近づけて配置され、引出線接続部71aを第1経路192aの流体Lで冷却することができる。引出線接続部71aは、モータとインバータとの間の熱の伝達経路となり得る。本変形例によれば、モータからインバータ、またはインバータからモータに熱が伝わることを抑制できる。
 本変形例において、第1経路192aと引出線接続部71aとの最短距離d1は、第1経路192aと信号線接続部75aとの最短距離d2よりも短い。本変形例によれば、第1経路192aを引出線接続部71aに近づけて配置することができ、引出線接続部71aを第1経路192aの流体Lで冷却することができる。
 なお、ここで「最短距離」とは、2つの部位の間を結ぶ無数の直線のうち、最も短い直線の長さを意味する。本変形例において、第1経路192aは、軸方向に沿う一方向に延びるため、最短距離d1、d2は、それぞれ第1経路192aの延びる方向と直交する平面内の直線の長さである。
 また、本変形例の駆動装置101には、複数(3つ)の引出線接続部71aが設けられる。本変形例において、それぞれの引出線接続部71aと第1経路192aとの全ての最短距離d1が、第1経路192aと信号線接続部75aとの最短距離d2よりも短い。これにより、上述の効果をより顕著に得ることができる。しかしながら、少なくとも一つの引出線接続部71aと第1経路192aとの最短距離d1が、第1経路192aと信号線接続部75aとの最短距離d2よりも短ければ、上述の効果を少なからず得ることができる。
 以上に、本発明の様々な実施形態および変形例を説明したが、各実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
 例えば、上述の実施形態において、コイルは、ステータに装着される屈曲可能な導線であり、コイルから延び出る引出線は、複数の導線を圧着端子によった束ねた構造を有する。しかしながら、コイルは、剛性の高い平角線から構成されるセグメントコイルであって、コイルから延び出る引出線も1本の平角線であってもよい。また、引出線は、コイルの導線に接続されコイルから延びるバスバーであってもよい。
 1,101…駆動装置、2…モータ、5A,5B,5C…ベアリング、6,106,206…ハウジング、6a,6k,206a,206k…合わせ面、6d…壁、6A…インバータ収容部、6f,206f…内壁面、6g,206g…外壁面、7…インバータ、7D…第2回路基板(回路基板)、20…ロータ、30…ステータ、31…コイル、31a…引出線、60…モータ収容部、61,161…開口部、61a…内縁、61w,161w…突出壁、61wa,61wc,61wd…壁部、62,69a,162…貫通孔、63,163…ブリーザ、68a…信号線、69…ベアリングホルダ、71a…引出線接続部、75a…信号線接続部、90,290…流路、91…第1流路部、92,192…第2流路部、92a,192a…第1経路、92b,192b…第2経路、93,193…第3流路部、93a,193a…外周流路部、95…接続部、A…内部、B…外部、d1,d2…最短距離、D3…第3方向、J1…中心軸線、X…第1方向、Z…第2方向

Claims (10)

  1.  中心軸線を中心として回転するロータ、および前記ロータと径方向に対向するステータを有するモータと、
     前記モータに対し軸方向一方側に配置され前記モータと電気的に接続されるインバータと、
     前記モータを収容するモータ収容部、および前記インバータを収容するインバータ収容部を有するハウジングと、
     前記ハウジングの内部で前記モータに対し軸方向一方側に配置され、前記ロータを回転可能に支持するベアリングを保持するベアリングホルダと、を備え、
     前記ハウジングは、第1流路部、第2流路部、および第3流路部を含む流路を有し、
     前記第1流路部は、前記インバータ収容部に配置され、
     前記第2流路部は、前記インバータ収容部および前記モータ収容部のうち、少なくとも一方に配置され、前記第1流路部と前記第3流路部とを繋ぎ、
     前記第3流路部は、前記モータ収容部に配置され、
     前記第3流路部は、前記ステータの外周面に沿って円周状に延びる外周流路部を有し、
     前記第2流路部は、
      前記第1流路部から軸方向他方側に延びる第1経路と、
      前記第1経路と前記外周流路部とを繋ぐ第2経路と、を有し、
     前記第2経路と前記外周流路部とは、接続部において鈍角をなす、駆動装置。
  2.  前記第2経路は、前記第1経路と前記外周流路部とを直線状に繋ぐ、請求項1に記載の駆動装置。
  3.  前記第1経路は、前記ベアリングホルダより径方向外側に配置される、請求項1又は2に記載の駆動装置。
  4.  前記モータ収容部は、軸方向一方側を向く第1合わせ面を有し、
     前記インバータ収容部は、軸方向他方側を向く第2合わせ面を有し、
     軸方向において、前記第1合わせ面と前記第2合わせ面とは互いに接触し、
     前記流路は、前記インバータ収容部から前記モータ収容部まで延び、
     前記ハウジングは、前記ハウジングの内部側を向く内壁面と、前記ハウジングの外部側を向く外壁面とを有し、
     前記流路は、前記ハウジングの前記内壁面と前記外壁面との間に配置され、
     前記第1合わせ面、および前記第2合わせ面において、前記流路と前記内壁面との最短距離は、前記流路と前記外壁面との最短距離よりも、長い、請求項1~3の何れか一項に記載の駆動装置。
  5.  前記モータ収容部は、軸方向一方側を向く第1合わせ面を有し、
     前記インバータ収容部は、軸方向他方側を向く第2合わせ面を有し、
     軸方向において、前記第1合わせ面と前記第2合わせ面とは互いに接触し、
     前記流路は、前記インバータ収容部から前記モータ収容部まで延び、
     前記ハウジングは、前記ハウジングの内部側を向く内壁面と、前記ハウジングの外部側を向く外壁面とを有し、
     前記流路は、前記ハウジングの前記内壁面と前記外壁面との間に配置され、
     前記第1合わせ面、および前記第2合わせ面において、前記流路と前記内壁面との最短距離は、前記流路と前記外壁面との最短距離と等しい、請求項1~3の何れか一項に記載の駆動装置。
  6.  前記中心軸線と直交する方向を第1方向とし、
     前記中心軸線、および前記第1方向と直交する方向を第2方向とし、
     前記第1経路は、前記中心軸線より第2方向一方側に位置する、請求項1~5の何れか一項に記載の駆動装置。
  7.  前記ステータは、コイルと、前記コイルから軸方向一方側に延び出る引出線と、を有し、
     前記インバータは、前記引出線に電気的に接続される引出線接続部を有し、
     前記ハウジングには、前記中心軸線に対し径方向外側に開口する開口部が設けられ、
     前記開口部を前記中心軸線の径方向から見て、前記開口部の内縁に囲まれる領域には、前記引出線接続部が配置され、
     前記中心軸線と直交する方向を第1方向とし、
     前記中心軸線、および前記第1方向と直交する方向を第2方向とし、
     前記第1経路は、前記開口部より第2方向一方側に配置される、請求項1~6の何れか一項に記載の駆動装置。
  8.  前記開口部は、前記中心軸線に対して前記中心軸線と直交する第3方向に配置され、
     前記第1経路は、前記ハウジングの内部空間に対して前記第3方向に配置される、請求項7に記載の駆動装置。
  9.  前記インバータは、信号線接続部において信号線が電気的に接続される回路基板を有し、
     前記ハウジングには、前記開口部の内縁に沿って径方向外側に突出する突出壁部を有し、
     前記突出壁部には、前記信号線が通される貫通孔が設けられ、
     前記開口部を前記中心軸線の径方向から見て、前記開口部の内縁に囲まれる領域には、前記信号線接続部が配置され、
     前記第1経路と前記引出線接続部との最短距離は、前記第1経路と前記信号線接続部との最短距離よりも短い、請求項7又は8に記載の駆動装置。
  10.  前記ハウジングには、前記ハウジングの内部空間と外部空間とを連通させるブリーザが設けられ、
     前記中心軸線と直交する方向を第1方向とし、
     前記中心軸線、および前記第1方向と直交する方向を第2方向とし、
     前記第1経路は、軸方向位置が前記ブリーザと重なる部分において、前記ブリーザより第2方向一方側に位置する、請求項1~9の何れか一項に記載の駆動装置。
PCT/JP2022/047213 2022-02-28 2022-12-21 駆動装置 WO2023162442A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022030184 2022-02-28
JP2022-030184 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023162442A1 true WO2023162442A1 (ja) 2023-08-31

Family

ID=87765365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047213 WO2023162442A1 (ja) 2022-02-28 2022-12-21 駆動装置

Country Status (1)

Country Link
WO (1) WO2023162442A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065394A (ja) * 2010-09-14 2012-03-29 Ihi Corp モータ用ケーシングの製造方法及びモータ用ケーシング
JP2013179830A (ja) * 2013-04-24 2013-09-09 Yaskawa Electric Corp モータ駆動装置および車両
JP2019126169A (ja) * 2018-01-16 2019-07-25 日産自動車株式会社 インバータの冷却構造
JP2021151101A (ja) * 2020-03-19 2021-09-27 株式会社明電舎 電気機器及びモータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065394A (ja) * 2010-09-14 2012-03-29 Ihi Corp モータ用ケーシングの製造方法及びモータ用ケーシング
JP2013179830A (ja) * 2013-04-24 2013-09-09 Yaskawa Electric Corp モータ駆動装置および車両
JP2019126169A (ja) * 2018-01-16 2019-07-25 日産自動車株式会社 インバータの冷却構造
JP2021151101A (ja) * 2020-03-19 2021-09-27 株式会社明電舎 電気機器及びモータ

Similar Documents

Publication Publication Date Title
JP7439820B2 (ja) モータユニット
JP5316839B2 (ja) モータおよびこれを備える車両用操舵装置
US20220173641A1 (en) Motor unit
US11784533B2 (en) Drive device
JP7188387B2 (ja) モータ
US20140062234A1 (en) Rotating electrical machine
WO2020067277A1 (ja) モータユニット
JP7275432B2 (ja) モータ
CN110277859B (zh) 旋转电机
WO2023162442A1 (ja) 駆動装置
JPH09182352A (ja) モータ駆動装置
WO2023162441A1 (ja) 駆動装置
WO2023162443A1 (ja) 駆動装置
WO2024070226A1 (ja) 駆動装置
US20230090548A1 (en) Drive apparatus
JP2013198310A (ja) 電気接続構造、シール装置、及びインバータ一体型モータ
WO2024070227A1 (ja) 駆動装置
WO2023189033A1 (ja) 駆動装置
WO2024070228A1 (ja) 駆動装置
JP7331430B2 (ja) 駆動装置
WO2023188622A1 (ja) 駆動装置
WO2024042797A1 (ja) 駆動装置
WO2022173016A1 (ja) スイッチング素子モジュール、インバータ装置、及び車両駆動装置
JP7452758B2 (ja) 車両駆動装置
CN216774548U (zh) 一种电机组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928959

Country of ref document: EP

Kind code of ref document: A1