WO2023162362A1 - 運転支援装置および運転支援プログラム - Google Patents

運転支援装置および運転支援プログラム Download PDF

Info

Publication number
WO2023162362A1
WO2023162362A1 PCT/JP2022/041728 JP2022041728W WO2023162362A1 WO 2023162362 A1 WO2023162362 A1 WO 2023162362A1 JP 2022041728 W JP2022041728 W JP 2022041728W WO 2023162362 A1 WO2023162362 A1 WO 2023162362A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
information
lane
driving assistance
detected object
Prior art date
Application number
PCT/JP2022/041728
Other languages
English (en)
French (fr)
Inventor
直継 清水
宏次 竹内
純也 福田
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2023162362A1 publication Critical patent/WO2023162362A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to a driving support device and a driving support program.
  • Patent Document 1 discloses a driving assistance device that sets an operation area in an adjacent lane, which is a lane different from the lane in which the vehicle is present, monitors the presence of other vehicles in the operation area, and executes driving assistance.
  • the vehicle travel locus is calculated based on the odometry information indicating the operating state of the own vehicle, and the operating region is estimated based on the calculated own vehicle travel locus.
  • the vehicle's running trajectory may become curved. If the vehicle's trajectory becomes curved due to the vehicle's lane change, the operating area calculated based on the vehicle's trajectory may differ from the shape of the lane. In some cases, the operating area is set to In this case, in order to prevent other vehicles that have entered the operating area from activating an alarm, etc., even though the danger to the own vehicle is low, other vehicles detected within the operating area are used for driving assistance. It is preferable not to set it as a determination target for determining the operation.
  • an object of the present disclosure is to provide technology that can appropriately set a determination target when the traveling direction of the own vehicle changes.
  • the present disclosure provides a driving support device that executes driving support for the own vehicle based on surroundings monitoring information of the own vehicle acquired from a surroundings monitoring device.
  • This driving support device includes: a travel locus calculation unit that calculates a travel locus of the vehicle; an operation area calculation unit that calculates an operation area around the vehicle; and an actuation determination unit that determines actuation of driving support for the host vehicle when an object is detected.
  • a travel locus calculation unit that calculates a travel locus of the vehicle
  • an operation area calculation unit that calculates an operation area around the vehicle
  • an actuation determination unit that determines actuation of driving support for the host vehicle when an object is detected.
  • the operation determination unit detects the detected object when the angle difference between the current direction of travel of the detected object and the direction of travel in the past travel trajectory of the vehicle is less than a predetermined angle difference threshold.
  • a predetermined angle difference threshold Set as a judgment target. For example, when the vehicle changes the direction of travel by changing lanes, etc., the angle difference between the current direction of travel of the detected object and the direction of travel of the vehicle in the past traveling locus increases, and the angle difference threshold is exceeded. tends to become Therefore, it is possible to prevent a detected object having a low degree of danger to the own vehicle from becoming a determination target and triggering an unnecessary alarm or the like.
  • the angular difference between the current traveling direction of the detected object and the traveling direction of the vehicle's past traveling trajectory becomes small. There is a tendency to be below the angular difference threshold. Therefore, it is possible to prevent detection objects that are highly dangerous to the own vehicle from being excluded from determination targets. That is, according to the present disclosure, it is possible to appropriately set a determination target when the traveling direction of the vehicle changes, and to operate driving assistance more appropriately.
  • the present disclosure can also provide a driving assistance program applied to a driving assistance device that executes driving assistance for the own vehicle based on surroundings monitoring information of the own vehicle acquired from the surroundings monitoring device.
  • This program includes a travel locus calculation step of calculating a travel locus of the vehicle, an operation area calculation step of calculating an operation area around the own vehicle, and an object within the operation area based on the perimeter monitoring information. and an actuation determination step of determining actuation of the driving assistance of the own vehicle when detected.
  • the actuation determination step when an angle difference between a current direction of travel of the detected object detected within the actuation area and a direction of travel in the past travel locus of the vehicle is less than a predetermined angle difference threshold, The detected object is set as a determination target for determining the operation of the driving assistance.
  • the determination target can be appropriately set when the traveling direction of the own vehicle changes in the operation determination step, so that the driving assistance can be operated more appropriately.
  • FIG. 1 is a block diagram showing a driving assistance system including a driving assistance device according to the first embodiment
  • FIG. 2 is a diagram showing an object detection area around the own vehicle
  • FIG. 3 is a diagram showing the relationship between the traveling direction of the vehicle and the shape of the lane
  • FIG. 4 is a diagram showing the trajectory of the vehicle and the detected object within the operating area calculated based on the trajectory of the vehicle.
  • FIG. 5 is a diagram for explaining the angle difference between the traveling direction of the own vehicle and the traveling direction of the detected object.
  • FIG. 6 is a flowchart showing driving assistance processing executed by the driving assistance device according to the first embodiment
  • FIG. 7 is a flowchart showing driving assistance processing executed by the driving assistance device according to the second embodiment.
  • the driving support system 10 includes a surroundings monitoring device 20 , odometry sensors 30 , an ECU 40 and a controlled device 50 .
  • the driving assistance system 10 is mounted on the vehicle, and the ECU 40 functions as a driving assistance device that executes driving assistance for the vehicle based on surroundings monitoring information, which is information about the surroundings of the vehicle acquired from the surroundings monitoring device 20 .
  • the perimeter monitoring device 20 is composed of devices that acquire perimeter monitoring information, which is information about the perimeter of the vehicle.
  • the perimeter monitoring device 20 includes a radar device 21 , a camera device 22 , a sonar device 23 and a receiving device 24 .
  • the radar device 21 is, for example, a known millimeter-wave radar that transmits high-frequency signals in the millimeter-wave band. Only one radar device 21 may be installed in the own vehicle, or a plurality thereof may be installed.
  • the radar device 21 is provided, for example, at the front end or the rear end of the own vehicle, defines an area within a predetermined detection angle as a detection range in which an object can be detected, and detects the position of an object within the detection range. Specifically, a search wave is transmitted at predetermined intervals, and reflected waves are received by a plurality of antennas. The distance to the object can be calculated from the transmission time of the search wave and the reception time of the reflected wave.
  • the relative velocity is calculated from the frequency of the reflected wave reflected by the object, which is changed by the Doppler effect.
  • the azimuth of the object can be calculated from the phase difference of the reflected waves received by the multiple antennas. If the position and orientation of the object can be calculated, the relative position of the object with respect to the own vehicle can be specified.
  • the camera device 22 may be, for example, a monocular camera such as a CCD camera, a CMOS image sensor, a near-infrared camera, or a stereo camera. Only one camera device 22 may be installed in the own vehicle, or a plurality of camera devices 22 may be installed.
  • the camera device 22 is mounted, for example, at a predetermined height in the center of the vehicle in the vehicle width direction, and captures an image of an area extending in a predetermined angle range toward the front, rear, or sides of the vehicle from a bird's-eye viewpoint.
  • the camera device 22 extracts feature points indicating the presence of an object in the captured image. Specifically, edge points are extracted based on luminance information of a captured image, and Hough transform is performed on the extracted edge points.
  • the camera device 22 sequentially outputs captured images as sensing information.
  • the sonar device 23 is, for example, a radar that uses ultrasonic waves as search waves. . Specifically, for example, the sonar device 23 transmits search waves at predetermined intervals and receives reflected waves with a plurality of antennas. A plurality of detection points on the object are detected from the transmission time of the search wave and the reception time of the reflected wave, thereby measuring the distance to the object. In addition, the azimuth of the object is calculated from the phase difference of the reflected waves received by the multiple antennas. If the distance to the object and the azimuth of the object can be calculated, the position of the object relative to the own vehicle can be specified. Further, according to the sonar device 23, the relative velocity of the object can be calculated from the frequency of the reflected wave reflected by the object, which is changed by the Doppler effect.
  • the receiving device 24 is a GPS receiving device and an example of a GNSS (Global Navigation Satellite System) receiving device.
  • the receiving device 24 enables the reception of positioning signals from a satellite positioning system that determines the current position on the ground by means of satellites.
  • the radar device 21, the camera device 22, the sonar device 23, and the receiving device 24 are examples of the perimeter monitoring device 20 that acquires perimeter information of the own vehicle.
  • the perimeter monitoring device 20 may include various detection devices and communication devices capable of acquiring information about the perimeter of the vehicle.
  • the perimeter monitoring device may include, for example, a sensor that transmits an investigation wave such as LIDAR (Light Detection and Ranging/Laser Imaging Detection and Ranging).
  • LIDAR Light Detection and Ranging/Laser Imaging Detection and Ranging
  • a communication device related to V2X (Vehicle-to-Everything) communication including vehicle-to-vehicle communication called V2V may be provided.
  • the surroundings monitoring device 20 sequentially outputs the detected or received information about the objects around the vehicle, the road on which the vehicle travels, etc. to the ECU 40 as surroundings monitoring information.
  • the various peripheral monitoring devices described above may detect not only objects behind or behind the vehicle 60, but also objects in front or front and sides of the vehicle 60 and use them as position information.
  • the target object to be monitored may be changed according to the type of perimeter monitoring device to be used. For example, when the camera device 22 is used, it is suitable when the target object is a stationary object such as a road sign or a building, or a moving object such as a pedestrian. Further, when using the radar device 21 or the sonar device 23, it is suitable when the target object is an object having a large reflected power.
  • the perimeter monitoring device to be used may be selected according to the type, position, and moving speed of the target object.
  • FIG. 2 exemplifies areas that can be monitored by various perimeter monitoring devices mounted on the own vehicle 60 .
  • Regions 61FN, 61FL, 61FS, 61BS, and 61B indicated by solid lines indicate regions that can be preferably monitored by the radar device 21 or LIDAR.
  • Areas 62F, 62L, 62R, and 62B indicated by dashed lines indicate areas that can be preferably monitored by the camera device 22.
  • Areas 63 ⁇ /b>F and 63 ⁇ /b>B indicated by dashed lines indicate areas that can be preferably monitored by the sonar device 23 .
  • the area 61FN is suitable for parking assist, for example.
  • Region 61FL is suitable for adaptive cruise control (ACC), for example.
  • Region 61FS is suitable for emergency braking, pedestrian detection, and collision avoidance, for example.
  • Areas 61BS and 61B are suitable for rear-end collision warning and blind spot monitoring, for example.
  • Area 62F is suitable for road sign recognition and lane departure warning.
  • Regions 62L and 62R are suitable for peripheral monitoring (surround view).
  • the area 62B is suitable for parking assist and perimeter monitoring.
  • the odometry sensors 30 are composed of sensors capable of acquiring odometry information indicating the operating state of the own vehicle.
  • the odometry sensors 30 include a vehicle speed sensor 31 , a steering angle sensor 32 and a yaw rate sensor 33 .
  • Examples of the odometry information include the vehicle speed, yaw rate, steering angle, turning radius, etc. of the own vehicle 60 .
  • the vehicle speed sensor 31 is a sensor that detects the traveling speed of the own vehicle 60. Although not limited, for example, a wheel speed sensor that can detect the rotational speed of the wheels can be used. A wheel speed sensor used as the vehicle speed sensor 31 is attached, for example, to a wheel portion of a wheel, and outputs a wheel speed signal corresponding to the wheel speed of the vehicle to the ECU 40 .
  • the steering angle sensor 32 is attached, for example, to the steering rod of the vehicle, and outputs a steering angle signal to the ECU 40 according to changes in the steering angle of the steering wheel caused by the driver's operation.
  • Only one yaw rate sensor 33 may be installed, or a plurality of them may be installed. When installing only one, for example, it is provided at the central position of the vehicle 60 .
  • the yaw rate sensor 33 outputs to the ECU 40 a yaw rate signal corresponding to the change speed of the steering amount of the vehicle 60 .
  • the controlled device 50 is configured to operate based on a control command from the ECU 40 and to operate according to the driver's operation input. Note that the operation input by the driver may be input to the controlled device 50 as a control command after being appropriately processed by the ECU 40 .
  • the controlled device 50 includes, for example, a driving device, a braking device, a steering device, an alarm device, a display device, and the like.
  • the driving device is a device for driving the vehicle, and is controlled by the driver's operation of the accelerator or a command from the ECU 40.
  • the driving device includes a vehicle driving source such as an internal combustion engine, a motor, and a storage battery, and each configuration related thereto.
  • the ECU 40 has a function of automatically controlling the driving device according to the travel plan of the own vehicle 60 and the vehicle state.
  • the braking device is a device for braking the own vehicle 60, and is composed of a group of devices (actuators) related to brake control, such as sensors, motors, valves, and pumps.
  • the braking device is controlled by a driver's brake operation or a command from the ECU 40 .
  • the ECU 40 determines the timing and braking amount (braking amount) to apply the brake, and controls the braking device so that the determined braking amount is obtained at the determined timing.
  • the steering device is a device for steering the own vehicle 60 and is controlled by a driver's steering operation or a command from the ECU 40 .
  • the ECU 40 has a function of automatically controlling the steering system for collision avoidance or lane change.
  • the alarm device is a device for notifying the driver or the like. It can be exemplified, but is not limited to this.
  • the alarm device notifies, for example, the driver that the vehicle is in danger of colliding with an object by emitting an alarm sound or the like based on a control command from the ECU 40 .
  • the display device is a device for visually notifying the driver or the like, and is, for example, a display and gauges installed in the interior of the vehicle 60 .
  • the display device displays a warning message or the like based on a control command from the ECU 40, thereby notifying the driver that the vehicle is in danger of colliding with an object, for example.
  • the controlled device 50 may include devices controlled by the ECU 40 other than those described above.
  • a safety device or the like may be included to ensure the safety of the driver.
  • the safety device includes a door lock device for controlling the unlocking and closing of the door lock of the vehicle, and a seat belt equipped with a pretensioner mechanism for retracting the seat belt provided in each seat of the own vehicle 60.
  • a device or the like can be exemplified.
  • the ECU 40 includes an information acquisition unit 41, a travel locus calculation unit 42, an operation area calculation unit 43, a white line recognition unit 44, a target object recognition unit 45, a lane change detection unit 46, an operation area correction unit 47, and an operation determination unit 48 .
  • the ECU 40 has a CPU, a ROM, a RAM, an I/O, etc.
  • the CPU executes a program installed in the ROM to implement these functions.
  • the ECU 40 creates and outputs a control command to the controlled device 50 based on the information acquired from the surroundings monitoring device 20 and the odometry sensors 30 , thereby driving the own vehicle 60 . Acts as a support device.
  • the information acquisition unit 41 acquires perimeter monitoring information from the perimeter monitoring device 20 and odometry information from the odometry sensors 30 .
  • the ECU 40 may include a storage unit for storing various data acquired by the information acquisition unit 41 and calculated values calculated based on the various data.
  • the ECU 40 may further be configured to store the history of the position of the vehicle 60 on the travel locus of the vehicle 60, the rotation angle, etc.
  • the position and the rotation angle of the vehicle 60 are linked and stored. may be The position and rotation angle of the own vehicle 60 can be obtained from the detection values of the vehicle speed sensor 31, the steering angle sensor 32, the yaw rate sensor 33, and the like.
  • the travel locus calculator 42 calculates the travel locus of the vehicle 60 based on the odometry information acquired from the odometry sensors 30, for example. Note that the travel locus calculator 42 may calculate the own vehicle travel locus using information other than the odometry information. For example, other information such as map information acquired from the receiving device 24 may be used. Specifically, the travel locus of the own vehicle 60 from a predetermined cycle (for example, n cycles, where n is a natural number of 2 or more) before the control period Tc to the present is calculated.
  • a predetermined cycle for example, n cycles, where n is a natural number of 2 or more
  • the estimated vehicle position which is an estimated value of the vehicle position at each control timing from 1 cycle to n cycles ago, with respect to the current position, is obtained from the acquired odometry information (at each control timing up to n cycles ago). obtained value). Then, a line connecting the current position and the calculated estimated position of the vehicle in each cycle is calculated as the running locus of the vehicle.
  • the odometry information such as the vehicle speed and yaw rate of the own vehicle 60 contains errors due to various factors such as detection errors by the vehicle speed sensor and yaw rate sensor and noise. Therefore, the estimated existence range of the vehicle's estimated position may also be calculated in consideration of the error in the odometry information for each vehicle's estimated position at the past control timing up to n cycles before.
  • the estimated existence range can be expressed as an error variance based on the estimated position of the vehicle. Furthermore, by projecting the error variance in the lane width direction (that is, the direction perpendicular to the direction of travel), the existence probability of the estimated vehicle position in the lane width direction is expressed as a predetermined probability distribution centered on the estimated vehicle position. can be represented.
  • the error variance of the estimated vehicle position caused by the error factors of the odometry information may be modeled as a normal distribution (Gaussian distribution).
  • the existence probability of the estimated vehicle position calculated using the odometry information becomes the peak value with the highest probability in the normal distribution, and the existence probability decreases according to the normal distribution as the distance from the estimated vehicle position in the lane width direction increases. continue.
  • the operating area calculator 43 sets the operating area to at least one of the rear side and the rear side of the vehicle 60 .
  • the operation area is set as an area in which driving assistance such as braking, steering, and notification is activated based on predetermined conditions when an object that has entered the area is detected.
  • the operating area can be set to any shape and size within the detection area of the radar device 21 . For example, when the operation area is set to the right rear side of the vehicle 60, it is preferable to set it in a strip shape with a width of about the width of the lane on the right rear side of the vehicle 60.
  • the operation area calculation unit 43 may set the operation area based on information on the own lane in which the own vehicle 60 travels and its adjacent lanes. For example, object information around the own vehicle 60 acquired from the camera device 22 (for example, surrounding vehicles and pedestrians, road markings such as lane markings, road signs, etc.), position information acquired from the receiving device 26, geographical information, The operating area may be set based on traffic information, the travel locus of the vehicle 60 calculated by the travel locus calculator 42, and the like.
  • the white line recognition unit 44 recognizes the division lines of the road on which the vehicle 60 travels.
  • lane markings include various lane markings such as yellow lines and double white lines, and in this specification, lane markings are sometimes simply referred to as "white lines".
  • the white line recognizing unit 44 extracts edge points, which are pixels with a large change in luminance value, from the image captured by the camera device 22 . Edge points are extracted from almost the entire area of the image by repeating the extraction of edge points while shifting the position in the vertical direction of the image, that is, in the depth direction of the image. By connecting the extracted edge points, a white line paint, which is a block of paint that constitutes the partition line, is extracted.
  • white line paint is a paint that consists of lines such as white lines and yellow lines formed by broken lines and solid lines on the road along the direction in which the road extends in order to divide the area in the width direction of the road. be.
  • the target recognition unit 45 recognizes targets around the vehicle 60 based on the surroundings monitoring information acquired from the surroundings monitoring device 20 . Specifically, the object is identified based on the size, moving speed, etc. of the object detected around the own vehicle 60 and recognized as a target. The target object recognition unit 45 executes target object recognition at least for an object detected in at least one of the rear side and the rear side of the own vehicle 60 .
  • the lane change detection unit 46 detects lane changes of the own vehicle 60 .
  • the lane change is performed, for example, by information on road markings recognized by the white line recognition unit 44, information on road structures obtained by detecting structures around the road, map information obtainable by the receiving device 26, and the like. can be detected based on Specifically, for example, the lane change detection unit 46 detects the change in the distance between the vehicle 60 and the lane marking of the road on which the vehicle 60 is traveling, which is recognized by the white line recognition unit 44. It may be configured to detect lane changes.
  • the lane change detection unit 46 is configured to detect a lane change of the vehicle 60 based on a change in the distance between the vehicle 60 and road structures such as guardrails and road walls installed on the road shoulder. may have been
  • the lane change detection unit 46 may be configured to detect a lane change of the own vehicle 60 based on the map information received by the receiving device 24 . Specifically, the shapes of the roads and lanes on which the vehicle 60 travels are obtained from the map information, and compared with the vehicle travel trajectory of the vehicle 60, so that the vehicle travel trajectory of the vehicle 60 can be obtained from the map information. It may be detected that the own vehicle 60 has changed lanes when the vehicle has crossed the lane.
  • the lane change detection unit 46 may be configured to be able to detect a lane change based on a plurality of pieces of information, or may be configured to prioritize information to be acquired and detect a lane change. For example, when the lane change detection unit 46 can detect a lane change based on information about lane markings, information about road structures, and map information, it is difficult to detect a lane change based on information about lane markings. In such a case, the lane change may be detected based on information on road structures and map information.
  • the operation region correction unit 47 corrects the operation region based on the lane information regarding the driving lane after the lane change of the vehicle 60 .
  • the lane information is information about the lane in which the vehicle 60 travels, and includes information about lane markings, information about road structures, map information, and the like. Correction of the operating region may be performed after the lane change is completed, or may be performed sequentially from the start of the lane change to the completion of the lane change.
  • the operation determination unit 48 determines the current traveling direction of the detected object detected within the operation area and the traveling direction of the vehicle 60 on the past travel locus.
  • the detected object is set as a determination target for determining the operation of driving support. Then, for the determination target, an operation determination is performed to determine the operation of the driving assistance of the own vehicle 60, the result of the operation determination is commanded to the controlled device 50, and the driving assistance control is appropriately performed.
  • the angle difference threshold is a positive number and is set based on experiments or simulations.
  • the angle difference threshold may be adjusted based on various parameters such as the moving speed, size, and lane shape of the vehicle 60 and the detected object.
  • Driving support control includes, for example, collision suppression control and collision avoidance control such as notification commands to alarm devices, automatic braking commands to braking devices, steering avoidance commands to steering devices, and safety devices such as automatic locking commands for vehicle doors. may be executed.
  • the operation determination unit 48 automatically applies the brakes when a rear-end collision is unavoidable to reduce secondary damage, flashes the hazard lamps to notify the following vehicle of the danger of a rear-end collision, and exists in the blind spot.
  • Blind spot monitoring to notify the driver by detecting a vehicle 60 that is approaching the vehicle 60, warning to prevent trapping when turning left or right, trailer blind spot monitoring to automatically detect trailer connection and expand the operating area, and detection of vehicles approaching the vehicle 60 It may be configured to determine the operation of various driving support systems, such as a getting-off warning that notifies the driver that the door will be opened to get off the vehicle.
  • the road 80a has two straight lanes 82a and 83a separated by a partition line 81a.
  • the operation is performed in the lane 82a, which is the adjacent lane on the right.
  • a substantially rectangular operating region 70a calculated by the region calculator 43 is set.
  • the target recognition unit 45 recognizes the other vehicle 66a as a vehicle detected within the operation area 70a. detected.
  • the operation determination unit 48 calculates the angle difference between the current traveling direction of the other vehicle 66 a that is the detected object and the traveling direction of the own vehicle 60 .
  • the current traveling direction of the other vehicle 66a is the direction of the arrow shown in S20.
  • the current direction of travel of the own vehicle 60 is S10, and the direction of travel has not changed at S10 from when it passed the current position of the other vehicle 66a to the present. Since the traveling direction S20 of the other vehicle 66a and the traveling direction S10 of the own vehicle 60 are substantially parallel, the angle difference is zero, which is less than the angle difference threshold. Therefore, the other vehicle 66a is set as a determination target.
  • the own vehicle 60 is traveling on the lane 83a of the road 80a as in FIG. 3(a), and the other vehicle 66b is traveling on the lane 82a of the road 80a. However, unlike FIG. 3(a), it is in the advancing direction S21b.
  • the target recognition unit 45 detects the other vehicle 66b as a vehicle detected within the operating area 70a.
  • the angle of the traveling direction S21b of the other vehicle 66b is greatly inclined with respect to the traveling direction of the own vehicle 60, it is not necessary to activate driving support such as an alarm for the own vehicle 60.
  • the operation determination unit 48 when the angle difference between the traveling direction S21b of the other vehicle 66b and the traveling direction S10 of the host vehicle 60 is greater than or equal to the angle difference threshold value, the other vehicle 66a is the determination target. is not set, it is possible to suppress the operation of unnecessary driving assistance for the own vehicle 60 .
  • the road 80c has two straight lanes 82c and 83c separated by a partition line 81c.
  • the vehicle 60 is traveling in the left lane 83c while making a turn along the lane shape, based on the vehicle traveling locus calculated by the traveling locus calculation unit 42, the lane 82c, which is the adjacent lane on the right, is calculated. , a substantially annular fan-shaped operation area 70c calculated by the operation area calculation unit 43 is set.
  • the target recognition unit 45 recognizes the other vehicle 66c as a vehicle detected within the operation area 70c. detected.
  • the traveling directions of the own vehicle 60 and the other vehicle 66c change over time.
  • the current traveling direction S10 of the own vehicle 60 is different from the traveling direction of the own vehicle 60 in the past traveling locus of the own vehicle. Therefore, when the angle difference between the current traveling direction S21c of the other vehicle 66c and the current traveling direction S10 of the own vehicle 60 is compared with the angle difference threshold value, the angle difference becomes equal to or greater than the angle difference threshold value, and the own vehicle 60
  • the other vehicle 66c is not set as a determination target even though it is necessary to activate driving support such as an alarm for the other vehicle 66c.
  • the operation determination unit 48 based on the comparison of the angle difference between the current traveling direction of the other vehicle 66a and the traveling direction of the past traveling locus of the own vehicle 60, the angular difference is less than the angular difference threshold value. In this case, since the other vehicle 66c is set as the determination target, both unnecessary driving assistance for the own vehicle 60 and necessary driving assistance for the own vehicle 60 are not operated. can be suppressed.
  • the operation determination unit 48 it contributes to the realization of appropriate operation determination in the various driving support systems described above. For example, if the ECU 40 is applied to a hazard flashing system, it is possible to avoid hazard flashing even though there is no need for notification, which is useful in countries and regions where hazard flashing is legally regulated.
  • the operation determination unit 48 determines whether or not to set the other vehicle 66c as a determination target.
  • the operation determination unit 48 determines the angular difference between the current direction of travel of the detected object and the direction of travel of the vehicle 60 at the time when the travel locus of the vehicle 60 is traced according to the current distance between the detected object and the vehicle 60. is less than a predetermined angular difference threshold, the detected object may be set as a determination target. For example, the longer the current distance (the distance in the direction following the lane shape) between the other vehicle 66c and the host vehicle 60 shown in FIG. .
  • Points A0 to A9 are points on the travel locus of vehicle 60, and more specifically, indicate the positions of midpoints of line segments connecting the left and right rear wheels of vehicle 60 at present or in the past.
  • the current position of the own vehicle 60 is indicated by a point A0, and indicates the past positions of the own vehicle 60 in the order of A1, A2, . . . , A9 at predetermined time intervals. All of the points A0 to A9 may be positions of the own vehicle 60 that are actually measured, or some of them may be positions that are calculated by interpolation based on actually measured data.
  • the distance to each point can be calculated by multiplying the average speed of own vehicle 60 in that section by the time interval.
  • points B0 to B9 and points C0 to C9 are points on L0 to L9, which are lateral lines extending in the rotation radius direction of the vehicle 60 at points A0 to A9, respectively.
  • the operating region is set as a region of a lane width SH that changes while drawing a locus similar to the locus of travel on the right side of the locus of travel of the vehicle 60 .
  • the operating region is set in a shape in which substantially annular fan-shaped regions centered on the rotation center of the vehicle 60 are connected along the vehicle travel locus of the vehicle 60 .
  • the left rear operating area set to the left rear of the vehicle 60 can be set or changed in the same manner as the right rear operating area.
  • Operation area calculation unit 43 linearly extends lateral lines L0 to L9 to the left side of the travel locus of host vehicle 60, and points D0 to D9 (not shown) and point E0 on lateral lines L0 to L9. ⁇ E9 (not shown). Then, an area surrounded by points D0 to D9 and points E0 to E9 is calculated as an operating area.
  • an operating region of the lane width SH can be set that varies along a locus similar to the traveled locus. In the horizontal line Li, the distances between the points Ai and Di are all equal SH/2, and the distances between the points Di and Ei are all equal SH.
  • the lateral width (width in the lateral line direction) of the operating area may be set based on the lane width SH of the own lane as described above, or may be set based on the actual lane width of the adjacent lane. good too.
  • the lane width may be actually measured by detecting a white line with the camera device 22 or may be obtained by the receiving device 24 .
  • the width of each operating area is the lane width SH, but the present invention is not limited to this.
  • the other vehicle 66 when the other vehicle 66 enters the operating area surrounded by the points B0 to B9 and the points C0 to C9, the other vehicle 66 is detected within the operating area by the target recognition unit 45. Detected as a vehicle.
  • the operation determination unit 48 determines the current traveling direction S23 of the other vehicle 66, which is the detected object, and the traveling direction of the own vehicle 60 when the own vehicle 60 passed the current position of the other vehicle 66 in the past.
  • the angle difference ⁇ 1 with respect to the direction S13 is less than the angle difference threshold value
  • the other vehicle 66 is set as a determination target.
  • the current position of the other vehicle 66 is the position of point T shown in FIG. Since the point T exists between the lateral line L8 and the lateral line L9, as shown in FIG.
  • the angle difference ⁇ 1 between the traveling direction S23 and the traveling direction S13 of the host vehicle 60 is compared with the angular difference threshold value ⁇ t to determine whether or not the other vehicle 66 is to be determined.
  • the current traveling direction of the vehicle 60 shown in FIG. 4 is the traveling direction S12 shown in FIG.
  • the angle difference ⁇ 0 between the current traveling direction S23 of the other vehicle 66 and the current traveling direction S12 of the own vehicle 60 is larger than the angle difference ⁇ 1. Therefore, even if the lane shape of the road on which the vehicle 60 travels is curved and ⁇ 0 ⁇ t, ⁇ 1 ⁇ t can be established, so the other vehicle 66 can be set as a determination target.
  • a lateral line LT passing through a point T between the lateral line L8 and the lateral line L9 is estimated complementarily, and the intersection of the travel locus of the vehicle and the lateral line LT is the current
  • the point T which is the position, may be estimated as the point in time at which the vehicle 60 has passed in the past.
  • the operation determination unit 48 determines the current traveling direction of the detected object and the traveling direction of the own vehicle 60 at the time when the traveling locus of the own vehicle 60 is traced according to the current distance between the detected object and the own vehicle 60.
  • the current distance between the other vehicle 66 and the own vehicle 60 may be calculated as the distance between the point T and the point A0. This distance may be a straight-line distance, but is preferably calculated as a distance in a direction along the shape of the lane.
  • the angle difference before and after the point in time when the own vehicle traveling locus is traced back by the distance in the direction along the lane shape between the point T and the point A0 may be statistically processed to calculate the angle difference.
  • the operation determination unit 48 sets the detected object as a determination target. It may be configured to be set as a determination target without executing the determination of whether or not.
  • a typical example in which the vehicle travel locus of vehicle 60 deviates from the lane shape of the vehicle's lane is when vehicle 60 changes lanes. That is, when the lane change detection unit 46 detects that the vehicle 60 has changed lanes, the detected object is set as a determination target without executing a determination as to whether or not to set the detected object as a determination target.
  • the operation determination unit 48 is configured to determine whether or not the vehicle travel locus deviates from the lane shape of the vehicle 60 on the basis of the lane marking information obtained by the white line recognition unit 44 . is preferred.
  • the lane marking information is information about the lane marking of the road on which the vehicle 60 travels.
  • the lane marking information can be obtained by calculation or the like based on imaging information that can be obtained from the camera device 22 .
  • the lane marking information may be included in the map information that can be acquired from the receiving device 24 .
  • the operation determination unit 48 is configured to set the detected object as the determination target without executing the determination as to whether or not to set the detected object as the determination target when the various parameters used for the determination are unstable. good too. For example, when it is determined that the variation in the odometry information exceeds a predetermined variation threshold, or when the reliability of the lane marking information is low, the determination of whether or not to set the detected object as the determination target is not performed. It may be configured to be set as a determination target.
  • the operation determination unit 48 determines the information other than the lane marking information. Based on this, it may be determined whether or not the vehicle travel locus deviates from the lane shape of the travel lane of the vehicle 60 .
  • the operation determination unit 48 is preferably configured to determine whether or not the vehicle travel locus deviates from the lane shape of the vehicle 60 traveled based on at least the imaging information.
  • the imaging information is perimeter monitoring information that can be acquired from the camera device 22 .
  • the shape of the lane on which the vehicle 60 actually travels can be accurately detected by the camera device 22, making it possible to make a determination that better corresponds to the actual shape of the lane.
  • the operation determination unit 48 may be configured to determine whether or not the vehicle travel locus deviates from the lane shape of the vehicle 60 traveled based on the map information.
  • the map information is perimeter monitoring information that can be acquired from the receiving device 24 . Further, when the reliability of the lane marking information is low, the operation determination unit 48 may be configured to set the detected object as the determination target without executing the determination as to whether or not to set the detected object as the determination target. good.
  • the ECU 40 executes a driving support program, which is a computer program stored in a storage device such as a ROM, to detect objects existing within the operating area and control the vehicle.
  • FIG. 6 shows a flowchart of driving assistance processing executed by the ECU 40 . The processing shown in this flowchart is continuously executed at predetermined intervals. Also, this process is continuously executed regardless of whether the vehicle 60 is running or stopped.
  • step S101 odometry information is acquired. For example, detection values of various sensors are obtained from the vehicle speed sensor 31, the steering angle sensor 32, and the yaw rate sensor 33, and odometry information regarding the running state of the own vehicle 60 is obtained.
  • the acquired odometry information is stored in the ECU 40 as appropriate.
  • the ECU 40 associates and stores the position of the own vehicle 60 and the odometry information. After that, the process proceeds to step S102.
  • step S102 based on the odometry information stored in the ECU 40, the own vehicle travel locus, which is the travel locus of the own vehicle 60, is calculated. For example, the past actual measured position of the own vehicle 60 and estimated positions between adjacent measured positions estimated based on the odometry information are connected to calculate the own vehicle travel locus. For example, a trajectory obtained by connecting points A0 to A9 shown in FIG. 4 is calculated as the travel trajectory of the vehicle. Then, based on the calculated own vehicle travel locus, an operation area is calculated within the adjacent lane area of the own vehicle 60 . For example, points B0 to B9 and points C0 to C9 shown in FIG. 4 are calculated based on the odometry information, and an area surrounded by points B0 to B9 and points C0 to C9 is set as the operating area. After that, the process proceeds to step S103.
  • step S103 peripheral monitoring information is acquired.
  • Perimeter monitoring information is obtained from at least one of the devices included in the perimeter monitoring device 20 such as the radar device 21 , the camera device 22 , the sonar device 23 and the receiving device 24 . After that, the process proceeds to step S104.
  • step S104 it is determined whether or not a target is detected within the operating area of the vehicle 60 based on the perimeter monitoring information acquired in step S103. For example, object recognition is performed for objects detected around the vehicle 60 . For example, mobile objects such as automobiles, motorcycles, bicycles and pedestrians, and stationary objects such as structures on the road are recognized as targets. Then, it is determined whether or not the detected target exists within the operating area. If the target is detected within the operating area, the process proceeds to step S105. If no target is detected within the operating area, the process ends.
  • step S105 the angle difference ⁇ i between the current direction of travel of the target recognized within the operating area in step S104 and the direction of travel of the vehicle 60 in the past travel locus is calculated.
  • the angle difference ⁇ 1 shown in FIG. 5 is calculated.
  • step S106 it is determined whether or not the angular difference ⁇ i is less than the angular difference threshold ⁇ t. If ⁇ i ⁇ t, the process proceeds to step S107. If ⁇ i ⁇ t, the process ends.
  • step S107 the target detected within the operation area in step S104 is set as a determination target for determining the operation of driving support. Then, based on a predetermined condition, it is determined whether or not to operate the driving support control for the determination target. When there is a determination to activate the driving support control, the controlled device 50 is commanded to execute the driving support control.
  • the processing related to this driving support program includes the travel locus calculation step (corresponding to step S102) for calculating the travel locus of the vehicle, and the operation area calculation step for calculating the operation area around the vehicle (step (corresponding to S102), and an actuation determination step for determining actuation of the driving assistance of the own vehicle when an object is detected within the actuation area based on surrounding monitoring information, wherein the object is detected within the actuation area. If the angle difference ⁇ i between the current direction of travel of the detected object and the direction of travel of the vehicle 60 in the past travel locus is less than a predetermined angle difference threshold value ⁇ t, the detected object is determined to be the driving assistance operation. (corresponding to steps S105 to S107).
  • the vehicle travel locus of the vehicle 60 is calculated.
  • the operating area around the own vehicle 60 is calculated.
  • the estimated position obtained by estimating the position of the vehicle 60 using the odometry information can be used to accurately calculate the vehicle travel trajectory and, in turn, to accurately calculate the operating region. .
  • steps S104 to S107 based on the perimeter monitoring information acquired from the perimeter monitoring device 20, when a target is detected within the operating area of the vehicle 60, the detected target (detection (corresponding to an object) is calculated as an angle difference ⁇ i between the current direction of travel of the object and the direction of travel of the vehicle 60 in the past travel locus. Then, if ⁇ i ⁇ t, the process proceeds to step S107, the target recognized within the operation area is set as a determination target for determining the operation of the driving assistance, and the operation determination is executed. If .theta.i.gtoreq..theta.t, the process ends without executing step S107. Therefore, the target detected within the operation area is not set as a determination target, and the operation determination is not performed.
  • the ECU 40 and the driving support program executed in the ECU 40 according to the first embodiment for example, when the own vehicle 60 or the other vehicle 66, which is a detected object, changes the direction of travel due to a lane change or the like, the other vehicle The angle difference between the current direction of travel of 66 and the direction of travel in the past travel locus of own vehicle 60 increases, and may exceed the angle difference threshold value. Unnecessary activation of an alarm or the like as a target can be suppressed.
  • the vehicle 60 changes its traveling direction by traveling on a curved road, etc.
  • the current traveling direction of the other vehicle 66 which is the detected object
  • the traveling direction of the past traveling trajectory of the own vehicle 60 for example, when the vehicle 60 changes its traveling direction by traveling on a curved road, etc.
  • the determination target can be appropriately set, and the driving assistance can be operated more appropriately.
  • FIG. 7 shows a flowchart of driving support processing according to the second embodiment.
  • the detected This differs from the driving support process shown in FIG. 6 in that it is selected whether to execute steps S207 and S208 relating to the determination of whether or not to set an object as a determination target. Since the processes shown in steps S201 to S203 and S207 to S209 are the same as the processes shown in steps S101 to S103 and S107 to S109, description thereof will be omitted.
  • step S204 if a target is detected within the operating area, the process proceeds to step S205. If no target is detected within the operating area, the process ends.
  • step S205 the shape of the road is detected, and it is determined whether or not the detection is reliable. Specifically, based on the perimeter monitoring information acquired in step S203, for example, the lane markings of the road on which the vehicle 60 is traveling are recognized, and lane marking information, which is information about the lane markings of the road on which the vehicle 60 is traveling, is generated. to create Then, it is determined whether or not the generated lane marking information is highly reliable. Specifically, it is determined whether or not the reliability of the lane marking information is equal to or higher than a predetermined threshold. If the reliability is greater than or equal to the predetermined threshold, it is determined that the road shape detection reliability is high, and the process proceeds to step S206. If the reliability is less than the predetermined threshold, it is determined that the road shape detection reliability is low, and the process proceeds to step S209.
  • step S206 it is determined whether or not the course of the vehicle 60 matches the shape of the road. For example, when the vehicle 60 changes lanes, it is determined that the course of the vehicle 60 does not match the road shape. For example, based on the lane marking information created in step S205, whether or not the vehicle 60 has changed lanes is determined based on the change in the distance between the vehicle 60 and the lane marking of the road on which the vehicle 60 is traveling. detectable. If the course of the own vehicle 60 matches the shape of the road, the process proceeds to step S207. If they do not match, the process proceeds to step S209.
  • the reliability of detection of the shape of the road on which the vehicle 60 travels is low.
  • the operation determination shown in step S209 is executed without executing the determination of whether or not the detected object shown in steps S207 and S208 is set as the determination target. . That is, the target detected within the operating area in step S204 is set as a determination target without performing the processing shown in steps S207 and S208.
  • step S207 and S208 when it is determined that the variation in the odometry information exceeds a predetermined variation threshold, it is determined in steps S207 and S208 whether or not the detected object is to be set as a determination target. Alternatively, the operation determination shown in step S209 may be executed without execution.
  • the road shape is preferably detected based on the lane marking information, but is not limited to this.
  • the shape of the road may be detected based on the distance between the vehicle 60 and road structures such as guardrails and road walls installed on the road shoulder. Further, for example, the road shape may be detected based on the map information received by the receiving device 24 . If a plurality of means can be used as the road shape detection means, the determination in step S205 may be executed for the means with the highest detection reliability.
  • step S206 it is preferable to determine whether or not the course of the vehicle 60 matches the shape of the road based on the lane marking information, but the present invention is not limited to this.
  • the vehicle 60 It may be configured to determine whether or not the course of the road matches the shape of the road.
  • the operation determination unit 48 determines whether the vehicle is traveling based on the information other than the lane marking information when the reliability of the lane marking information is low. It may be configured to determine whether or not the trajectory deviates from the lane shape of the driving lane of the vehicle 60 .
  • the ECU 40 functions as a driving assistance device that executes driving assistance for the own vehicle 60 based on the surroundings monitoring information of the own vehicle 60 acquired from the surroundings monitoring device 20. , and an operation determination unit 48 .
  • the travel locus calculation unit 42 calculates the travel locus of the own vehicle 60 .
  • the operating area calculator 43 calculates an operating area around the vehicle 60 .
  • the operation determination unit 48 determines the angle between the current traveling direction (for example, S23) of the detected object (for example, the other vehicle 66) detected in the operation area and the traveling direction (for example, S13) in the past travel locus of the own vehicle 60. When the difference (for example, ⁇ 1) is less than a predetermined angle difference threshold ⁇ t, the detected object is set as a determination target for determining the operation of driving assistance. Furthermore, the actuation determination unit 48 determines actuation of driving assistance for the own vehicle 60 when it is determined that the detected object is a determination target.
  • the own vehicle 60 or another vehicle 66 which is a detected object, changes its traveling direction due to a lane change or the like
  • the current traveling direction of the other vehicle 66 and the current traveling direction of the own vehicle 60 are changed.
  • the angle difference from the traveling direction in the past travel locus increases, and may exceed the angle difference threshold value, so the other vehicle 66, which is less dangerous to the own vehicle 60, becomes the object of determination, and an alarm or the like is activated unnecessarily. can be suppressed.
  • the vehicle 60 changes its traveling direction by traveling on a curved road, etc.
  • the current traveling direction of the other vehicle 66 which is the detected object, and the traveling direction of the past traveling trajectory of the own vehicle 60. becomes smaller and tends to be less than the angle difference threshold value, it is possible to prevent the other vehicle 66 having a high degree of danger from the host vehicle 60 from being excluded from the determination targets. That is, even when the traveling direction of the own vehicle 60 changes, the determination target can be appropriately set, and the driving assistance can be operated more appropriately.
  • the operation determination unit 48 determines the current traveling direction of the detected object (for example, S23) and the traveling direction of the own vehicle 60 when the own vehicle passed the current position of the detected object (for example, point T) in the past (for example, S13). is less than the angular difference threshold value ⁇ t, the detected object may be set as a determination target. For example, as shown in FIGS. 3(a) and 3(b), it is possible to determine whether or not to set a detected object as a determination target with the same degree of certainty as when the vehicle 60 continues to travel along a straight road. .
  • the operation determination unit 48 determines the traveling direction of the own vehicle 60 at the time when the traveling locus of the own vehicle 60 is traced according to the current traveling direction of the detected object (for example, S23) and the current distance between the detected object and the own vehicle 60.
  • the detected object may be set as a determination target when the angle difference (for example, ⁇ 1) from (for example, S13) is less than the angle difference threshold value ⁇ t. Whether or not to set the detected object as a determination target can be determined with the same degree of certainty as when the vehicle 60 continues to travel along the straight road.
  • the operation determination unit 48 is configured to set the detected object as a determination target when it is determined that the travel locus of the vehicle 60 deviates from the lane shape of the vehicle 60 traveling lane obtained from the perimeter monitoring information. may have been When the own vehicle travel locus of the own vehicle 60 temporarily deviates from the lane shape due to a lane change or the like, it is possible to prevent the necessary driving assistance from being activated for the own vehicle 60 .
  • lane marking information which is information about the lane markings of the road on which the vehicle is traveling, is included as the surroundings monitoring information, the operation determination unit 48 determines the running trajectory of the vehicle 60 based on the lane marking information.
  • the operation determination unit 48 is preferably configured to determine whether or not the vehicle deviates from the lane shape of the lane in which the vehicle is traveling. Further, the operation determination unit 48 may be configured to set the detected object as a determination target when the reliability of the lane marking information is low. On the other hand, when at least the lane marking information and information other than the lane marking information is included as the perimeter monitoring information, the operation determination unit 48, if the reliability of the lane marking information is low, It may be configured to determine whether or not the travel locus of the vehicle 60 deviates from the lane shape of the travel lane of the vehicle based on information other than the lane marking information.
  • the travel locus calculation unit 42 may be configured to calculate the travel locus of the own vehicle 60 based on the odometry information indicating the operating state of the own vehicle 60 . In addition to the actually measured position of the vehicle 60, the position of the vehicle 60 can be interpolated based on the odometry information, so the vehicle travel locus can be calculated with high accuracy. Further, in this case, the operation determination unit 48 may be configured to set the detected object as a determination target when it is determined that the variation in the odometry information exceeds a predetermined variation threshold. When the traveling direction of the own vehicle 60 changes greatly, it is possible to prevent the necessary driving assistance from being activated for the own vehicle 60 .
  • the driving support program applied to the ECU 40 includes a travel locus calculation step (steps S102, S202) for calculating the travel locus of the vehicle 60, and an operation area calculation step (steps S102, S202) for calculating an operation area around the vehicle 60. S202), and an operation determination step (steps S107 to 109, S207 to 209) for determining operation of driving support for the own vehicle 60 when an object is detected within the operation area based on surrounding monitoring information. .
  • the actuation determination step if the angle difference between the current direction of travel of the detected object detected within the actuation area and the direction of travel in the past travel locus of the vehicle 60 is less than a predetermined angle difference threshold value, the detected object is detected. as a determination target for determining the operation of driving support (steps S107, S108, S207, S208).
  • the controller and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by the computer program.
  • the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.
  • the operation determination unit determines whether an angle difference between a current traveling direction of the detected object and a traveling direction of the own vehicle when the own vehicle passed the current position of the detected object in the past is less than the angle difference threshold.
  • the driving support device according to configuration 1, wherein, in some cases, the detected object is set as the determination target.
  • the operation determination unit determines the current traveling direction of the detected object and the traveling direction of the own vehicle at the time when the travel locus of the own vehicle is traced according to the current distance between the detected object and the own vehicle.
  • the driving support device according to configuration 1 or 2 wherein the detected object is set as the determination target when the angular difference is less than the angular difference threshold.
  • the operation determination unit sets the detected object as the determination target when it is determined that the travel locus of the vehicle deviates from the lane shape of the vehicle's travel lane obtained from the perimeter monitoring information.
  • a driving support device according to any one of configurations 1 to 3.
  • the running trajectory calculation unit calculates a running trajectory of the vehicle based on odometry information indicating an operating state of the vehicle, The driving support device according to any one of configurations 1 to 4, wherein the operation determination unit sets the detected object as the determination target when it is determined that the variation in the odometry information exceeds a predetermined variation threshold.
  • the surroundings monitoring information includes lane marking information that is information about lane markings of the road on which the vehicle travels, 6.
  • Driving assistance device [Configuration 7]
  • the surroundings monitoring information includes lane marking information that is information about lane markings of the road on which the vehicle travels,
  • the driving support device according to any one of configurations 1 to 6, wherein the operation determination unit sets the detected object as the determination target when the lane marking information has a low reliability.
  • the surroundings monitoring information includes at least lane marking information, which is information about lane markings of the road on which the vehicle travels, and information other than the lane marking information, When the reliability of the lane marking information is low, the operation determination unit determines that the running path of the vehicle deviates from the shape of the lane in which the vehicle is traveling based on information other than the lane marking information.
  • the driving support device according to any one of configurations 1 to 6 for determining whether or not.
  • a driving assistance program applied to a driving assistance device that executes driving assistance for the own vehicle based on surroundings monitoring information of the own vehicle acquired from the surroundings monitoring device, a travel locus calculation step of calculating a travel locus of the own vehicle; an operating area calculation step of calculating an operating area around the own vehicle; an actuation determination step of determining actuation of driving assistance for the host vehicle when an object is detected within the actuation area based on the perimeter monitoring information; In the actuation determination step, when an angle difference between a current direction of travel of the detected object detected within the actuation area and a direction of travel in the past travel locus of the vehicle is less than a predetermined angle difference threshold, A driving assistance program for setting the detected object as a determination target for determining the operation of the driving assistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)

Abstract

運転支援装置(40)は、周辺監視装置(20)から取得した自車(60)の周辺監視情報に基づいて、自車の運転支援を実行し、自車の走行軌跡を算出する走行軌跡算出部(42)と、自車の周辺の作動領域を算出する作動領域算出部(43)と、周辺監視情報に基づいて作動領域内に物体が検出された場合に、自車の運転支援の作動を判定する作動判定部(48)と、を備え、作動判定部は、作動領域内に検出された検出物体の現在の進行方向と、自車の過去の走行軌跡における進行方向との角度差が所定の角度差閾値未満である場合に、検出物体を、運転支援の作動を判定する対象である判定対象に設定する。

Description

運転支援装置および運転支援プログラム 関連出願の相互参照
 本出願は、2022年2月25日に出願された日本出願番号2022-028176号に基づくもので、ここにその記載内容を援用する。
 本開示は、運転支援装置および運転支援プログラムに関する。
 特許文献1に、自車が存在している車線とは別の車線である隣接車線に作動領域を設定し、作動領域における他車の存在を監視して、運転支援を実行する運転支援装置が記載されている。この運転支援装置では、自車両の動作状態を示すオドメトリ情報に基づいて自車走行軌跡を算出し、算出した自車走行軌跡に基づいて作動領域を推定する。
特開2016-85567号公報
 自車の進行方向の変化により、自車走行軌跡が曲線状となることがある。自車が車線変更するために自車走行軌跡が曲線状となる場合、自車走行軌跡に基づいて算出した作動領域は車線形状と異なるものとなり得るため、自車に対して危険度が低い領域に作動領域が設定される場合がある。この場合、作動領域に侵入した他車が、自車に対して危険度が低いにも関わらず、警報等を作動させることがないように、作動領域内で検出された他車を運転支援の作動を判定する判定対象に設定しないようにすることが好ましい。一方で、自車がカーブ路を走行するために自車走行軌跡が曲線状となる場合、車線変更時と同様に作動領域内で検出された他車を判定対象に設定しないようにすると、自車に対して危険度が高い他車であるにも関わらず、判定対象から除外されてしまうことが懸念される。
 上記に鑑み、本開示は、自車の進行方向が変化する場合に適切に判定対象を設定し得る技術を提供することを目的とする。
 本開示は、周辺監視装置から取得する自車の周辺監視情報に基づいて、前記自車の運転支援を実行する運転支援装置を提供する。この運転支援装置は、前記自車の走行軌跡を算出する走行軌跡算出部と、前記自車の周辺の作動領域を算出する作動領域算出部と、前記周辺監視情報に基づいて前記作動領域内に物体が検出された場合に、前記自車の運転支援の作動を判定する作動判定部と、を備える。前記作動判定部は、前記作動領域内に検出された検出物体の現在の進行方向と、前記自車の過去の走行軌跡における進行方向との角度差が所定の角度差閾値未満である場合に、前記検出物体を、前記運転支援の作動を判定する対象である判定対象に設定する。
 本開示によれば、作動判定部は、検出物体の現在の進行方向と、自車の過去の走行軌跡における進行方向との角度差が所定の角度差閾値未満である場合に、検出物体を、判定対象に設定する。例えば、車線変更する等により自車が進行方向を変化させる場合には、検出物体の現在の進行方向と、自車の過去の走行軌跡における進行方向との角度差が大きくなり、角度差閾値以上となり得る傾向がある。このため、自車に対して危険度が低い検出物体が判定対象となって警報等を不要に作動させることを抑制できる。一方、例えば、カーブ路を走行する等により自車が進行方向を変化させる場合には、検出物体の現在の進行方向と、自車の過去の走行軌跡における進行方向との角度差が小さくなり、角度差閾値未満となり得る傾向がある。このため、自車に対して危険度が高い検出物体が判定対象から除外されてしまうことを抑制できる。すなわち、本開示によれば、自車の進行方向が変化する場合に適切に判定対象を設定でき、運転支援をより適切に作動させることができる。
 本開示は、また、周辺監視装置から取得する自車の周辺監視情報に基づいて、前記自車の運転支援を実行する運転支援装置に適用される運転支援プログラムを提供することもできる。このプログラムは、前記自車の走行軌跡を算出する走行軌跡算出ステップと、前記自車の周辺の作動領域を算出する作動領域算出ステップと、前記周辺監視情報に基づいて前記作動領域内に物体が検出された場合に、前記自車の運転支援の作動を判定する作動判定ステップと、を含む。前記作動判定ステップは、前記作動領域内に検出された検出物体の現在の進行方向と、前記自車の過去の走行軌跡における進行方向との角度差が所定の角度差閾値未満である場合に、前記検出物体を、前記運転支援の作動を判定する対象である判定対象に設定する。
 上記の運転支援プログラムによれば、運転支援装置と同様に、作動判定ステップによって自車の進行方向が変化する場合に適切に判定対象を設定できるため、運転支援をより適切に作動させることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る運転支援装置を含む運転支援システムを示すブロック図であり、 図2は、自車の周囲の物体検出領域を示す図であり、 図3は、車両の進行方向と車線形状との関係を示す図であり、 図4は、自車走行軌跡と、自車走行軌跡に基づいて算出された作動領域内の検出物体とを示す図であり、 図5は、自車の進行方向と、検出物体との進行方向との角度差を説明する図であり、 図6は、第1実施形態に係る運転支援装置が実行する運転支援処理を示すフローチャートであり、 図7は、第2実施形態に係る運転支援装置が実行する運転支援処理を示すフローチャートである。
 (第1実施形態)
 図1に示すように、実施形態に係る運転支援システム10は、周辺監視装置20と、オドメトリセンサ類30と、ECU40と、被制御装置50と、を備えている。運転支援システム10は車両に搭載され、ECU40は、周辺監視装置20から取得した車両の周辺の情報である周辺監視情報に基づいて、車両の運転支援を実行する運転支援装置として機能する。
 周辺監視装置20は、自車の周辺に関する情報である周辺監視情報を取得する各装置によって構成される。周辺監視装置20は、レーダ装置21と、カメラ装置22と、ソナー装置23と、受信装置24とを備えている。
 レーダ装置21は、例えば、ミリ波帯の高周波信号を送信波とする公知のミリ波レーダである。レーダ装置21は、自車に1つのみ設置されていてもよいし、複数設置されていてもよい。レーダ装置21は、例えば、自車の前端部や後端部等に設けられ、所定の検出角に入る領域を物体検出可能な検出範囲とし、検出範囲内の物体の位置を検出する。具体的には、所定周期で探査波を送信し、複数のアンテナにより反射波を受信する。この探査波の送信時刻と反射波の受信時刻とにより、物体との距離を算出することができる。また、物体に反射された反射波の、ドップラー効果により変化した周波数により、相対速度を算出する。加えて、複数のアンテナが受信した反射波の位相差により、物体の方位を算出することができる。なお、物体の位置および方位が算出できれば、その物体の、自車に対する相対位置を特定することができる。
 カメラ装置22は、例えばCCDカメラ、CMOSイメージセンサ、近赤外線カメラ等の単眼カメラであってもよいし、ステレオカメラであってもよい。カメラ装置22は、自車に1つのみ設置されていてもよいし、複数設置されていてもよい。カメラ装置22は、例えば、車両の車幅方向中央の所定高さに取り付けられており、車両前方、後方、または側方へ向けて所定角度範囲で広がる領域を俯瞰視点から撮像する。カメラ装置22は、撮像した画像における、物体の存在を示す特徴点を抽出する。具体的には、撮像した画像の輝度情報に基づきエッジ点を抽出し、抽出したエッジ点に対してハフ変換を行う。ハフ変換では、例えば、エッジ点が複数個連続して並ぶ直線上の点や、直線どうしが直交する点が特徴点として抽出される。カメラ装置22は、逐次撮像する撮像画像をセンシング情報として逐次出力する。
 ソナー装置23は、例えば、超音波を探査波とするレーダであり、自車の前端、後端、及び両側面にそれぞれ搭載され、自車周辺の物体までの距離の計測に好適に使用される。具体的には、例えば、ソナー装置23は、所定周期で探査波を送信し、複数のアンテナにより反射波を受信する。この探査波の送信時刻と反射波の受信時刻とにより、物体上の複数の検出点を検出し、これにより当該物体までの距離を計測する。加えて、複数のアンテナが受信した反射波の位相差により、物体の方位を算出する。物体までの距離及び物体の方位が算出できれば、その物体の自車両に対する相対位置を特定することができる。また、ソナー装置23によれば、物体で反射された反射波の、ドップラー効果により変化した周波数により、物体の相対速度を算出できる。
 受信装置24は、GPS受信装置であり、GNSS(Global Navigation Satellite System)受信装置の一例である。受信装置24によって、人工衛星により地上の現在位置を決定する衛星測位システムからの測位信号を受信することができる。
 レーダ装置21、カメラ装置22、ソナー装置23および受信装置24は、自車の周辺情報を取得する周辺監視装置20の一例である。周辺監視装置20は、上記の他に、自車の周辺の情報を取得可能な各種の検出装置や通信装置を含んでいてもよい。周辺監視装置としては、例えば、LIDAR(Light Detection and Ranging/Laser Imaging Detection and Ranging)等の探査波を送信するセンサを備えていてもよい。また、例えば、V2Vと称される車車間通信等を含むV2X(Vehicle-to-Everything)通信に関する通信装置を備えていてもよい。周辺監視装置20は、検出または受信した自車の周辺の物体や自車が走行する道路等に関する情報を周辺監視情報としてECU40へ逐次出力する。
 上述の各種周辺監視装置は、自車60の後方や後側方の物体に限らず、前方や前側方の物体を検出し、位置情報として利用してもよい。また、使用する周辺監視装置の種類に応じて、監視対象とする対象物体を変更してもよい。例えば、カメラ装置22を用いる場合には、道路標識や建物等の静止物体や、歩行者等の移動体が対象物体である場合に好適である。また、レーダ装置21やソナー装置23を用いる場合には、反射電力が大きい物体が対象物体である場合に好適である。また、対象物体の種類や位置、移動速度に応じて、使用する周辺監視装置を選択してもよい。
 図2に、自車60に搭載された各種周辺監視装置によって監視可能な領域を例示する。実線で示す領域61FN,61FL,61FS、61BS,61Bは、レーダ装置21またはLIDARによって好適に監視できる領域を示す。破線で示す領域62F,62L,62R,62Bは、カメラ装置22によって好適に監視できる領域を示す。一点鎖線で示す領域63F,63Bは、ソナー装置23によって好適に監視できる領域を示す。
 領域61FNは、例えば、駐車アシストに好適である。領域61FLは、例えば、アダプティブクルーズコントロール(ACC)に好適である。領域61FSは、例えば、緊急ブレーキ、歩行者検出、衝突回避に好適である。領域61BSおよび領域61Bは、例えば、追突警報、死角監視に好適である。領域62Fは、道路標識認識、車線逸脱警報に好適である。領域62Lおよび領域62Rは、周辺監視(サラウンドビュー)に好適である。領域62Bは、駐車アシスト、周辺監視に好適である。
 オドメトリセンサ類30は、自車の動作状態を示すオドメトリ情報を取得可能なセンサ類によって構成される。オドメトリセンサ類30は、車速センサ31と、操舵角センサ32と、ヨーレートセンサ33とを備えている。オドメトリ情報としては、例えば、自車60の車速、ヨーレート、操舵角、旋回半径等を例示できる。
 車速センサ31は、自車60の走行速度を検出するセンサであり、限定されないが、例えば、車輪の回転速度を検出可能な車輪速センサを用いることができる。車速センサ31として利用される車輪速センサは、例えば、車輪のホイール部分に取り付けられており、車両の車輪速度に応じた車輪速度信号をECU40に出力する。
 操舵角センサ32は、例えば、車両のステアリングロッドに取り付けられており、運転者の操作に伴うステアリングホイールの操舵角の変化に応じた操舵角信号をECU40に出力する。
 ヨーレートセンサ33は、1つのみ設置されていてもよいし、複数設置されていてもよい。1つのみ設置する場合には、例えば、自車60の中央位置に設けられる。ヨーレートセンサ33は、自車60の操舵量の変化速度に応じたヨーレート信号をECU40に出力する。
 被制御装置50は、ECU40からの制御指令に基づいて作動するともに、運転者の操作入力によって作動するように構成されている。なお、運転者の操作入力は、ECU40によって適宜処理された後に、制御指令として被制御装置50に入力されてもよい。被制御装置50は、例えば、駆動装置、制動装置、操舵装置、警報装置、および表示装置等を備えている。
 駆動装置は、車両を駆動するための装置であり、運転者のアクセル等の操作またはECU40からの指令によって制御される。具体的には、内燃機関やモータ、蓄電池等の車両の駆動源と、それに関連する各構成を駆動装置として挙げることができる。ECU40は、自車60の走行計画や車両状態に応じて駆動装置を自動で制御する機能を有している。
 制動装置は、自車60を制動するための装置であり、センサ、モータ、バルブおよびポンプ等のブレーキ制御に関わる装置群(アクチュエータ)により構成される。制動装置は、運転者のブレーキ操作またはECU40からの指令によって制御される。ECU40は、ブレーキを掛けるタイミングおよびブレーキ量(制動量)を決定し、決定されたタイミングで決定されたブレーキ量が得られるように、制動装置を制御する。
 操舵装置は、自車60を操舵するための装置であり、運転者の操舵操作またはECU40からの指令によって制御される。ECU40は、衝突回避または車線変更のために、操舵装置を自動で制御する機能を有している。
 警報装置は、運転者等に報知するための装置であり、例えば自車60の車室内に設置されたスピーカやブザー等の聴覚的に報知する装置、ディスプレイ等の視覚的に報知する装置等を例示できるが、これに限定されない。警報装置は、ECU40からの制御指令に基づき警報音等を発することにより、例えば、運転者に対し、物体との衝突の危険が及んでいること等を報知する。
 表示装置は、視覚的に運転者等に報知するための装置であり、例えば自車60の車室内に設置されたディスプレイおよび計器類である。表示装置は、ECU40からの制御指令に基づき警報メッセージ等を表示することにより、例えば、運転者に対し、物体との衝突の危険が及んでいること等を通知する。
 被制御装置50は、上記以外のECU40により制御される装置を含んでいてもよい。例えば、運転者の安全を確保するための安全装置等が含まれていてもよい。安全装置としては、具体的には、車両のドアロックの開錠および閉錠を制御するドアロック装置や、自車60の各座席に設けられたシートベルトを引き込むプリテンショナ機構を備えたシートベルト装置等を例示できる。
 ECU40は、情報取得部41と、走行軌跡算出部42と、作動領域算出部43と、白線認識部44と、物標認識部45と、車線変更検出部46と、作動領域補正部47と、作動判定部48とを備えている。ECU40は、CPU、ROM、RAM、I/O等を備えた、CPUが、ROMにインストールされているプログラムを実行することでこれら各機能を実現する。これによって、ECU40は、周辺監視装置20およびオドメトリセンサ類30から取得した情報に基づいて、被制御装置50への制御指令を作成し、出力することにより、自車60の運転支援を実行する運転支援装置として機能する。
 情報取得部41は、周辺監視装置20から周辺監視情報を取得し、オドメトリセンサ類30からオドメトリ情報を取得する。ECU40は、情報取得部41が取得した各種データ、および各種データに基づいて算出した算出値を記憶するために、記憶部を備えていてもよい。ECU40は、さらに、自車60の走行軌跡における自車60の位置、回転角等の履歴を記憶できるように構成されていてもよく、自車60の位置と回転角とは紐付けされて記憶されてもよい。自車60の位置および回転角は、車速センサ31、操舵角センサ32、ヨーレートセンサ33等の検出値から求めることができる。
 走行軌跡算出部42は、例えば、オドメトリセンサ類30から取得したオドメトリ情報に基づいて、自車60の走行軌跡を算出する。なお、走行軌跡算出部42は、オドメトリ情報以外の情報を用いて自車走行軌跡を算出してもよい。例えば、受信装置24から取得した地図情報等の他の情報等を用いてもよい。具体的には、制御周期Tcの所定サイクル(例えばnサイクル。nは2以上の自然数)前から現在までの、自車60の走行軌跡を算出する。例えば、現在位置を基準とした、1サイクル前からnサイクル前までの各制御タイミングにおける自車位置の推定値である自車推定位置を、取得したオドメトリ情報(nサイクル前までの各制御タイミングでの取得値)を用いて算出する。そして、現在位置と、算出した各サイクルの自車推定位置とを結んだ線を、自車走行軌跡として算出する。
 なお、自車60の車速やヨーレートなどのオドメトリ情報には、車速センサやヨーレートセンサによる検出誤差やノイズ等の種々の要因で、誤差が含まれている。そのため、nサイクル前までの過去の制御タイミングでの各自車推定位置について、オドメトリ情報の誤差を考慮した、自車推定位置の推定存在範囲も算出するように構成されていてもよい。推定存在範囲は、自車推定位置を基準とした誤差分散として表すことができる。さらに、その誤差分散を車線幅方向(即ち進行方向に垂直な方向)に射影することで、自車推定位置の車線幅方向の存在確率を、自車推定位置を中心とした所定の確率分布として表すことができる。例えば、オドメトリ情報の誤差要因に起因する自車推定位置の誤差分散を、正規分布(ガウス分布)としてモデル化してもよい。この場合、オドメトリ情報を用いて算出した自車推定位置の存在確率が、正規分布における確率の最も高いピーク値となり、自車推定位置から車線幅方向に離れるほど、正規分布に従って、存在確率が減少していく。
 作動領域算出部43は、自車60の後方と後側方との少なくともいずれか一方に作動領域を設定する。作動領域は、その領域に侵入した物体を検出した場合に、所定の条件に基づいて、制動、操舵、報知等の運転支援を作動させる領域として設定される。作動領域は、レーダ装置21の検出領域内において、任意の形状および大きさに設定できる。例えば、作動領域を自車60の右後側方に設定する場合には、自車60の右後側方において、車線幅程度の横幅で帯状に設定することが好ましい。
 作動領域算出部43は、自車60が走行する自車線や、その隣接車線の情報に基づいて、作動領域を設定してもよい。例えば、カメラ装置22から取得した自車60の周囲の物体情報(例えば、周囲の車両や歩行者、区画線等の路面標示、道路標識等)、受信装置26から取得する位置情報、地理情報、交通情報、走行軌跡算出部42により算出される自車60の走行軌跡等に基づいて、作動領域を設定してもよい。
 白線認識部44は、自車60が走行する道路の区画線を認識する。区画線は、白線の他に、黄色線や二重白線等の各種区分線を含み、本明細書では、区画線を単に「白線」と称することがある。具体的には、白線認識部44は、カメラ装置22にて撮影された画像から、輝度値の変化が大きい画素であるエッジ点を抽出する。エッジ点の抽出を、画像の上下方向、即ち画像の奥行き方向へ位置をずらしながら繰り返すことで、画像のほぼ全領域からエッジ点を抽出する。抽出されたエッジ点同士を繋げることによって、区画線を構成するペイントの塊である白線ペイントを抽出する。なお、白線ペイントとは、道路の幅方向における領域を区分するために、道路の延びる方向に沿って、道路上に破線や実線にて形成された白線や黄線等の線を構成するペイントである。抽出された白線ペイント同士を、自車60の走行方向に繋げることで、自車60の走行方向に沿って延びるように存在する区画線を抽出する。
 物標認識部45は、周辺監視装置20から取得した周辺監視情報に基づいて、自車60の周辺の物標を認識する。具体的には、自車60の周辺に検出された物体の大きさや移動速度等に基づいて物体を識別し、物標として認識する。物標認識部45は、少なくとも、自車60の後方と後側方との少なくともいずれか一方に検出される物体について、物標認識を実行する。
 車線変更検出部46は、自車60の車線変更を検出する。車線変更は、例えば、白線認識部44により認識される路上の区画線に関する情報、道路の周囲の構造物を検出して得られる路上構造物に関する情報、受信装置26により取得可能な地図情報等に基づいて、検出することができる。具体的には、例えば、車線変更検出部46は、白線認識部44によって認識された自車60が走行する道路の区画線と、自車60との距離の変化に基づいて、自車60の車線変更を検出するように構成されていてもよい。
 また、例えば、車線変更検出部46は、路肩に設置されたガードレールや路壁等の路上構造物と自車60との距離の変化に基づいて、自車60の車線変更を検出するように構成されていてもよい。
 また、例えば、車線変更検出部46は、受信装置24により受信した地図情報に基づいて、自車60の車線変更を検出するように構成されていてもよい。具体的には、自車60の走行する道路や車線の形状を地図情報から取得して、自車60の自車走行軌跡と照合し、自車60の自車走行軌跡が地図情報から得られる車線を越えるものであった場合に、自車60が車線変更したことを検出してもよい。
 車線変更検出部46は、複数の情報に基づいて車線変更を検出可能に構成されていてもよく、取得する情報に優先順位を付けて車線変更を検出するように構成されていてもよい。例えば、車線変更検出部46が、区画線に関する情報、路上構造物に関する情報、地図情報に基づいて車線変更を検出可能である場合に、区画線に関する情報に基づいて車線変更を検出することが困難なときは、路上構造物や地図情報に関する情報に基づいて車線変更を検出するように構成されていてもよい。
 作動領域補正部47は、車線変更検出部46により自車の車線変更が検出された場合に、自車60の車線変更後の走行車線に関する車線情報に基づいて、作動領域を補正する。車線情報とは、自車60が走行する車線に関する情報であり、区画線に関する情報、路上構造物に関する情報、地図情報等を含む。作動領域の補正は、車線変更が完了した後に実行してもよいし、車線変更を開始してから完了するまでの間に逐次実行してもよい。
 作動判定部48は、物標認識部45により作動領域内に物体が検出された場合に、作動領域内に検出された検出物体の現在の進行方向と、自車60の過去の走行軌跡における進行方向との角度差が所定の角度差閾値未満である場合に、検出物体を、運転支援の作動を判定する対象である判定対象に設定する。そして、判定対象について、自車60の運転支援の作動を判定する作動判定を実行し、作動判定の結果を被制御装置50に指令して、適宜、運転支援制御を実行する。
 角度差閾値は、正数であり、実験もしくはシミュレーション等に基づいて、設定される。角度差閾値は、自車60および検出物体の移動速度、大きさ、車線形状等の各種パラメータに基づいて調整されてもよい。
 運転支援制御としては、例えば、警報装置への報知指令、制動装置への自動ブレーキ指令、操舵装置への操舵回避指令等の衝突抑制制御や衝突回避制御、車両ドアの自動ロック指令等の安全装置を作動させる制御を実行するようにしてもよい。作動判定部48は、追突が避けられない場合に自動ブレーキをかけて二次被害を低減する二次衝突ブレーキ、ハザードランプを点滅させて後続車に追突の危険を報知するハザード点滅、死角に存在する車両等を検出して運転者に知らせる死角監視、右左折時の巻き込み防止警報、自動でトレーラの連結を検出して作動領域を拡大するトレーラ死角監視、自車60に接近する車両等を検出して降車のためにドアを開ける運転者に通知する降車警報等の各種運転支援システムの作動を判定するように構成されていてもよい。
 図3(a)に示すように、道路80aは、区画線81aによって区画された直進する2つの車線82a,83aを有する。自車60が左側の車線83aを車線形状に沿って走行している場合に、走行軌跡算出部42により算出された自車走行軌跡に基づいて、右側の隣接車線である車線82a内に、作動領域算出部43により算出された略長方形状の作動領域70aが設定される。自車60よりも後方において車線82aを車線形状に沿って走行する他車66aが作動領域70aに侵入すると、物標認識部45により、他車66aは、作動領域70a内に検出された車両として検出される。
 作動判定部48は、検出物体である他車66aの現在の進行方向と、自車60の進行方向との角度差を算出する。他車66aの現在の進行方向はS20に示される矢印の方向である。自車60の現在の進行方向はS10であり、他車66aの現在位置を通過した時から現在まで進行方向はS10で変化していない。他車66aの進行方向S20と、自車60の進行方向S10とは概ね並行であるため、角度差は零となり、角度差閾値未満となる。このため、他車66aは、判定対象に設定される。
 図3(b)に示すように、自車60は、図3(a)と同様に道路80aの車線83aを走行しており、他車66bは、道路80aの車線82aを走行してはいるものの、図3(a)とは異なり、進行方向S21bの方向となっている。他車66bが作動領域70aに侵入すると、物標認識部45により、他車66bは、作動領域70a内に検出された車両として検出される。自車60の進行方向に対して、他車66bの進行方向S21bの角度が大きく傾いている場合、自車60に対して警報等の運転支援を作動させる必要がない。このような場合、作動判定部48によれば、他車66bの進行方向S21bと、自車60の進行方向S10との角度差が角度差閾値以上となる場合に、他車66aは、判定対象に設定されないため、自車60に対して不要な運転支援が作動させることを抑制できる。
 図3(c)に示すように、道路80cは、区画線81cによって区画された直進する2つの車線82c,83cを有する。自車60が左側の車線83cを車線形状に沿って旋回しながら走行している場合に、走行軌跡算出部42により算出された自車走行軌跡に基づいて、右側の隣接車線である車線82c内に、作動領域算出部43により算出された略環状扇形状の作動領域70cが設定される。自車60よりも後方において車線82cを車線形状に沿って走行する他車66cが作動領域70cに侵入すると、物標認識部45により、他車66cは、作動領域70c内に検出された車両として検出される。
 このような場合、自車60および他車66cの進行方向は、経時的に変化する。自車60の現在の進行方向S10は、過去の自車走行軌跡における自車60の進行方向とは相違するものとなる。このため、他車66cの現在の進行方向S21cと、自車60の現在の進行方向S10との角度差と、角度差閾値とを比較すると、その角度差が角度差閾値以上となり、自車60に対して警報等の運転支援を作動させる必要があるにも関わらず、他車66cが判定対象に設定されない場合がある。しかしながら、作動判定部48によれば、他車66aの現在の進行方向と、自車60の過去の走行軌跡における進行方向との角度差との比較に基づいて、その角度差が角度差閾値未満である場合に、他車66cを判定対象に設定するため、自車60に対して不要な運転支援が作動させることと、自車60に対して必要な運転支援が作動されなくなることとの双方を抑制することができる。
 作動判定部48によれば、上述の各種運転支援システムにおいても、適切な作動判定の実現に寄与する。例えば、ハザード点滅システムにECU40を適用すれば、報知の必要が無いにも関わらずハザード点滅を実行することを回避でき、ハザード点滅に法規制等がある国や地域において有用なものとなる。
 作動判定部48は、検出物体の現在の進行方向と、検出物体の現在位置を自車60が過去に通過した際の自車60の進行方向との角度差が角度差閾値未満である場合に、検出物体を、判定対象に設定するように構成されていることが好ましい。図3(c)に示すような場合に、検出物体である他車66cの現在位置を自車60cが過去に通過した際の自車60c進行方向との角度差とを比較して、他車66cを判定対象に設定するか否かを判定することにより、図3(a)(b)のような場合と同程度の確かさで、他車66cを判定対象に設定するか否かを判定できる。
 なお、「検出物体の現在位置を自車60が過去に通過した際」は、検出物体の現在位置を自車60が過去に通過した時点に限らず、その時点に対して、時間的または距離的にある程度の幅を有するものであってもよい。また、検出物体の現在位置を自車60が過去に通過した時点の前後における角度差について統計的処理を行い、角度差の平均値等を角度差閾値と比較して、検出物体を判定対象に設定するか否かを判定してもよい。
 作動判定部48は、検出物体の現在の進行方向と、検出物体と自車60との現在の距離に応じて自車60の走行軌跡を遡った時点における自車60の進行方向との角度差が所定の角度差閾値未満である場合に、検出物体を、判定対象に設定するに構成されていてもよい。例えば、図3(c)に示す他車66cと自車60との現在の距離(車線形状に従う方向の距離)が長いほど、自車60の自車走行軌跡を過去に遡るようにしてもよい。
 図4に、走行軌跡算出部42により算出された、n=9である場合の自車走行軌跡を例示的に示す。点A0~A9は、自車60の走行軌跡上の点であり、より具体的には、現在または過去における自車60の左右の後輪を結ぶ線分の中点の位置を示している。自車60の現在の位置は点A0により示され、所定の時間間隔で、A1、A2、…、A9の順に過去に遡った自車60の位置を示している。点A0~A9は、全てが実測された自車60の位置であってもよいし、その一部は実測データに基づいて補間的に算出された位置であってもよい。点A0~A9が所定の時間間隔で取得された場合、各点の距離は、その区間の自車60の平均速度と時間間隔との積により算出できる。
 図4において、点B0~B9および点C0~C9は、それぞれ、点A0~A9における自車60の回転半径方向に延びる横方向ラインであるL0~L9上の点である。i=0~9としたとき、横方向ラインLiにおいて、点Aiと点Biとの間隔は全て等しくY1であり、点Biと点Ciとの間隔は全て等しくY2である。
 作動領域算出部43は、自車60の走行軌跡上の点Aiにおける回転角αi(図示していない)から、点Aiを通る法線方向に延びる横方向ラインLiを設定する。そして、作動領域算出部43は、自車60の走行する自車線の車線幅がSHである場合に、例えば、間隔Y1=SH/2、Y2=SHと設定して、自車60の右側の隣接車線の左側端としての点Biの位置と、右側端としての点Ciの位置を推定する。そして、点B0~B9および点C0~点C9により囲われた領域を作動領域として推定する。作動領域は、自車60の走行軌跡の右側に、走行軌跡と同様の軌跡を描いて変化する車線幅SHの領域として設定される。図4に示すように、作動領域は、自車60の回転中心を中心とする略環状扇形形状の領域が自車60の自車走行軌跡に沿って連結した形状に設定される。その結果、自車60の旋回時における内側ほど作動領域は小さくなり、外側ほど作動領域は大きくなる。
 なお、必要に応じて、自車60の左後方に設定された左後方作動領域についても、右後方作動領域である作動領域と同様に設定または変更することができる。作動領域算出部43は、横方向ラインL0~L9を自車60の走行軌跡の左側まで直線的に延長し、横方向ラインL0~L9上に点D0~D9(図示していない)および点E0~E9(図示していない)を設定する。そして、点D0~D9および点E0~点E9により囲われた領域を作動領域として算出する。これにより、自車60の走行軌跡の左側に、走行軌跡と同様の軌跡を描いて変化する車線幅SHの作動領域を設定できる。なお、横方向ラインLiにおいて、点Aiと点Diとの間隔は全て等しくSH/2であり、点Diと点Eiとの間隔は全て等しくSHである。
 なお、作動領域の横幅(横方向ライン方向の幅)は、上記のように自車線の車線幅SHに基づいて設定してもよいし、隣接車線の実際の車線幅に基づいて各々設定してもよい。車線幅は、カメラ装置22により白線を検出して実測したものであってもよいし、受信装置24により取得したものであってもよい。また、上記においては、各作動領域の幅(横方向ラインに沿う幅)を車線幅SHとしたが、これに限定されない。
 図4に示すように、点B0~B9および点C0~点C9により囲われた作動領域に他車66が侵入すると、物標認識部45により、他車66は、作動領域内に検出された車両として検出される。
 図5に示すように、作動判定部48は、検出物体である他車66の現在の進行方向S23と、他車66の現在位置を自車60が過去に通過した際の自車60の進行方向S13との角度差θ1が角度差閾値未満である場合に、他車66を、判定対象に設定する。他車66の現在位置は、図4に示す点Tの位置であり、他車66の前端中央位置である。点Tは、横方向ラインL8と横方向ラインL9との間に存在するため、図5に示すように、点Tよりも自車60に近い側の横方向ラインL8における他車66の現在の進行方向S23と、自車60の進行方向S13との角度差θ1を用いて、角度差閾値θtと比較し、他車66を判定対象とするか否かを判定する。図4に示す自車60の現在の進行方向は、図5に示す進行方向S12である。他車66の現在の進行方向S23と、自車60の現在の進行方向S12との角度差θ0は、角度差θ1と比較して大きい。このため、自車60が走行する道路の車線形状がカーブ路であり、θ0≧θtとなる場合でも、θ1<θtとなるため、他車66を判定対象として設定できる。
 なお、横方向ラインL8と横方向ラインL9との間に、点Tを通る横方向ラインLTを補完的に推定し、自車走行軌跡と横方向ラインLTとの交点を、他車66の現在位置である点Tを自車60が過去に通過した時点として推定してもよい。
 また、作動判定部48は、検出物体の現在の進行方向と、検出物体と自車60との現在の距離に応じて自車60の走行軌跡を遡った時点における自車60の進行方向との角度差を算出する場合には、他車66と自車60との現在の距離は、点Tと点A0との距離として算出してもよい。この距離は、直線距離でも良いが、車線形状に沿った方向の距離として算出されることが好ましい。例えば、点Tと点A0との車線形状に沿った方向の距離の分だけ自車走行軌跡を遡った時点における自車60の進行方向と、現在の他車66との進行方向との角度差を算出するようにしてもよい。この場合も、点Tと点A0との車線形状に沿った方向の距離の分だけ自車走行軌跡を遡った時点に対して、時間的または距離的にある程度の幅を持たせて、角度差を算出してもよい。また、点Tと点A0との車線形状に沿った方向の距離の分だけ自車走行軌跡を遡った時点の前後における角度差について統計的処理を行って、角度差を算出してもよい。
 作動判定部48は、自車60の自車走行軌跡が、周辺監視情報から得られる自車60の走行車線の車線形状を逸脱すると判定される場合には、検出物体を判定対象に設定するか否かの判定を実行しないで、判定対象に設定するように構成されていてもよい。自車60の自車走行軌跡が、自車60の走行車線の車線形状を逸脱する場合の典型例は、自車60が車線変更する場合である。すなわち、車線変更検出部46により、自車60が車線変更したことが検出された場合には、検出物体を判定対象に設定するか否かの判定を実行しないで、判定対象に設定するようにしてもよい。作動判定部48は、白線認識部44により得られる区画線情報に基づいて、自車走行軌跡が、自車60の走行車線の車線形状を逸脱するか否かを判定するように構成されていることが好ましい。区画線情報は、自車60が走行する道路の区画線についての情報である。区画線情報は、カメラ装置22から取得できる撮像情報に基づいて算出等することにより得ることができる。また、区画線情報は、受信装置24から取得できる地図情報に含まれていてもよい。
 作動判定部48は、判定に際して使用する各種パラメータが不安定である場合には、検出物体を判定対象に設定するか否かの判定を実行しないで、判定対象に設定するように構成されていてもよい。例えば、オドメトリ情報の変動が所定の変動閾値を超えると判定される場合や、区画線情報の信頼度が低い場合には、検出物体を判定対象に設定するか否かの判定を実行しないで、判定対象に設定するように構成されていてもよい。
 また、周辺監視情報が、区画線情報と、区画線情報以外の情報とを含む場合には、作動判定部48は、区画線情報の信頼度が低い場合には、区画線情報以外の情報に基づいて、自車走行軌跡が、自車60の走行車線の車線形状を逸脱するか否かを判定するように構成されていてもよい。
 作動判定部48は、少なくとも撮像情報に基づいて、自車走行軌跡が、自車60の走行車線の車線形状を逸脱するか否かを判定するように構成されていることが好ましい。撮像情報は、カメラ装置22から取得できる周辺監視情報である。自車60が実際に走行する車線形状をカメラ装置22で精度よく検出して、より実際の車線形状に良く対応した判定を行うことができる。また、作動判定部48は、地図情報に基づいて、自車走行軌跡が、自車60の走行車線の車線形状を逸脱するか否かを判定するように構成されていてもよい。地図情報は、受信装置24から取得できる周辺監視情報である。また、作動判定部48は、区画線情報の信頼度が低い場合には、検出物体を判定対象に設定するか否かの判定を実行しないで、判定対象に設定するように構成されていてもよい。
 ECU40は、ROM等の記憶装置に記憶されたコンピュータプログラムである運転支援プログラムを実行することにより、作動領域内に存在する物体を検出して車両を制御する。図6に、ECU40が実行する運転支援処理のフローチャートを示す。このフローチャートに示す処理は、所定の間隔で継続して実行される。また、この処理は、自車60の走行中および停車中に関わらず継続して実行される。
 まず、ステップS101では、オドメトリ情報を取得する。例えば、車速センサ31、操舵角センサ32、ヨーレートセンサ33から、各種センサ類の検出値等を適宜取得し、自車60の走行状態に関するオドメトリ情報を取得する。取得したオドメトリ情報は、適宜、ECU40に記憶される。ECU40は、自車60の位置とオドメトリ情報とを紐付けして記憶する。その後、ステップS102に進む。
 ステップS102では、ECU40に記憶されたオドメトリ情報に基づいて、自車60の走行軌跡である自車走行軌跡を算出する。例えば、実測した過去の自車60の実測位置と、オドメトリ情報に基づいて推定した隣接する実測位置の間の推定位置とを連結して、自車走行軌跡として算出する。例えば、図4に示す点A0~A9を連結して得られる軌跡を自車走行軌跡として算出する。そして、算出した自車走行軌跡に基づいて、自車60の隣接車線領域内に作動領域を算出する。例えば、オドメトリ情報に基づいて、図4に示す点B0~B9および点C0~C9を算出し、点B0~B9および点C0~C9によって囲まれる領域を作動領域に設定する。その後、ステップS103に進む。
 ステップS103では、周辺監視情報を取得する。周辺監視情報は、レーダ装置21、カメラ装置22、ソナー装置23および受信装置24等の周辺監視装置20に含まれる各装置のうちの少なくとも1つより取得する。その後、ステップS104に進む。
 ステップS104では、ステップS103において取得した周辺監視情報に基づいて、自車60の作動領域内に物標が検出されたか否かを判定する。例えば、自車60の周辺に検出された物体について、物標認識を実行する。例えば、自動車、自動二輪車、自転車、歩行者等の移動体、路上構造物などの静止体が物標として認識される。そして、検出された物標が、作動領域内に存在する物標であるか否かを判定する。作動領域内に物標が検出された場合には、ステップS105に進む。作動領域内に物標が検出されなかった場合には、処理を終了する。
 ステップS105では、ステップS104において作動領域内に認識された物標の現在の進行方向と、自車60の過去の走行軌跡における進行方向との角度差θiを算出する。例えば、図5に示す角度差θ1を算出する。
 ステップS106では、角度差θiが角度差閾値θt未満であるか否かを判定する。θi<θtである場合には、ステップS107に進む。θi≧θtである場合には、処理を終了する。
 ステップS107では、ステップS104において作動領域内に検出された物標を運転支援の作動を判定する対象である判定対象に設定する。そして、所定の条件に基づいて、判定対象について運転支援制御を作動させるか否かを判定する。運転支援制御を作動させる判定があった場合には、被制御装置50に指令して運転支援制御を実行する。
 上記のとおり、この運転支援プログラムに係る処理は、自車の走行軌跡を算出する走行軌跡算出ステップ(ステップS102に相当する)と、自車の周辺の作動領域を算出する作動領域算出ステップ(ステップS102に相当する)と、周辺監視情報に基づいて、作動領域内に物体が検出された場合に、自車の運転支援の作動を判定する作動判定ステップであって、作動領域内に検出された検出物体の現在の進行方向と、自車60の過去の走行軌跡における進行方向との角度差θiが所定の角度差閾値θt未満である場合に、検出物体を、運転支援の作動を判定する対象である判定対象に設定する(ステップS105~S107に相当する)と、を含む。
 第1実施形態に係る運転支援処理によれば、ステップS101,S102に示すように、オドメトリセンサ類30から取得したオドメトリ情報に基づいて、自車60の自車走行軌跡を算出し、算出された自車60の自車走行軌跡に基づいて、自車60の周辺の作動領域を算出する。自車60の位置の実測位置に加えて、オドメトリ情報を用いて自車60の位置を推定した推定位置を用いて、精度よく自車走行軌跡を算出でき、ひいては、作動領域を精度よく算出できる。
 また、ステップS104~S107に示すように、周辺監視装置20から取得した周辺監視情報に基づいて、自車60の作動領域内に物標が検出された場合には、検出された物標(検出物体に相当する)の現在の進行方向と、自車60の過去の走行軌跡における進行方向との角度差θiを算出する。そして、θi<θtである場合には、ステップS107に進み、作動領域内に認識された物標を運転支援の作動を判定する対象である判定対象に設定して、作動判定を実行する。θi≧θtである場合には、ステップS107を実行しないで処理を終了するため、作動領域内に検出された物標は判定対象に設定されることなく、作動判定も実行されない。
 第1実施形態に係るECU40およびECU40において実行される運転支援プログラムによれば、例えば、車線変更する等により自車60や検出物体である他車66が進行方向を変化させる場合には、他車66の現在の進行方向と、自車60の過去の走行軌跡における進行方向との角度差が大きくなり、角度差閾値以上となり得るため、自車60に対して危険度が低い他車66が判定対象となって警報等を不要に作動させることを抑制できる。一方、例えば、カーブ路を走行する等により自車60が進行方向を変化させる場合には、検出物体である他車66の現在の進行方向と、自車60の過去の走行軌跡における進行方向との角度差が小さくなり、角度差閾値未満となり得る傾向があるため、自車60に対して危険度が高い他車66が判定対象から除外されてしまうことを抑制できる。すなわち、自車60の進行方向が変化する場合にも適切に判定対象を設定でき、運転支援をより適切に作動させることができる。
 (第2実施形態)
 図7に、第2実施形態に係る運転支援処理のフローチャートを示す。図7に示す運転支援処理では、ステップS205,S206に示すように、自車60が走行する道路の形状の検出信頼性や、自車進路と道路形状と一致するか否かに基づいて、検出物体を判定対象に設定するか否かの判定に係るステップS207,S208を実行するか否かを選択する点において、図6に示す運転支援処理と相違している。ステップS201~S203,S207~S209に示す処理は、ステップS101~S103,S107~S109に示す処理と同様であるため、説明を省略する。
 ステップS204において、作動領域内に物標が検出された場合には、ステップS205に進む。作動領域内に物標が検出されなかった場合には、処理を終了する。
 ステップS205では、道路形状の検出し、さらに、その検出に信頼性があるか否かを判定する。具体的には、ステップS203により取得した周辺監視情報に基づき、例えば、自車60が走行する道路の区画線を認識し、自車60が走行する道路の区画線についての情報である区画線情報を作成する。そして、作成した区画線情報の信頼度が高いか否かを判定する。具体的には、区画線情報の信頼度が所定の閾値以上であるか否かを判定する。信頼度が所定の閾値以上である場合には、道路形状の検出信頼性は高いものとして、ステップS206に進む。信頼度が所定の閾値未満である場合には、道路形状の検出信頼性は低いものとして、ステップS209に進む。
 ステップS206では、自車60の進路が道路形状と一致しているか否かを判定する。例えば、自車60の車線変更があった場合には、自車60の進路が道路形状と一致していないと判定される。例えば、ステップS205において作成された区画線情報に基づいて、自車60が走行する道路の区画線と、自車60との距離の変化に基づいて、自車60が車線変更したか否かを検出できる。自車60の進路が道路形状と一致している場合には、ステップS207に進む。一致していない場合には、ステップS209に進む。
 第2実施形態に係る第1実施形態に係るECU40およびECU40において実行される運転支援プログラムによれば、ステップS205,S206に示すように、自車60が走行する道路の形状の検出信頼性が低い場合や、自車進路と道路形状とが不一致である場合に、ステップS207,S208に示す検出物体を判定対象に設定するか否かの判定を実行しないで、ステップS209に示す作動判定を実行する。すなわち、ステップS204において作動領域内に検出された物標を、ステップS207,S208に示す処理を行うことなく、判定対象に設定する。道路の形状の検出信頼性が低い場合や、車線変更など、自車60の自車走行軌跡が一時的に車線形状から逸脱する場合に、自車60に対して必要な運転支援が作動されなくなることを抑制することができる。
 なお、図7には図示していないが、オドメトリ情報の変動が所定の変動閾値を超えると判定される場合に、ステップS207,S208に示す検出物体を判定対象に設定するか否かの判定を実行しないで、ステップS209に示す作動判定を実行するように構成してもよい。
 また、ステップS205において、道路形状は、区画線情報に基づいて検出することが好ましいが、これに限定されない。例えば、路肩に設置されたガードレールや路壁等の路上構造物と自車60との距離に基づいて、道路形状を検出するように構成されていてもよい。また、例えば、受信装置24により受信した地図情報に基づいて、道路形状を検出するように構成されていてもよい。道路形状の検出手段として、複数の手段を利用できる場合には、最も検出信頼性が高い手段について、ステップS205の判定を実行するようにしてもよい。
 また、ステップS206において、区画線情報に基づいて、自車60の進路が道路形状と一致しているか否かを判定することが好ましいが、これに限定されない。例えば、路肩に設置されたガードレールや路壁等の路上構造物と自車60との距離の変化や、受信装置24により受信した地図情報と自車走行軌跡との関係に基づいて、自車60の進路が道路形状と一致しているか否かを判定するように構成されていてもよい。区画線情報と、区画線情報以外との双方を利用できる場合には、作動判定部48は、区画線情報の信頼度が低い場合には、区画線情報以外の情報に基づいて、自車走行軌跡が、自車60の走行車線の車線形状を逸脱するか否かを判定するように構成されていてもよい。
 上記の各実施形態では、自車60の右後側方に帯状の作動領域を設定する場合を例示して説明したが、これに限定されない。警報装置への報知指令、制動装置への自動ブレーキ指令、衝突抑制制御や衝突回避制御、安全装置を作動させる制御、二次衝突ブレーキ、ハザードランプを点滅させて後続車に追突の危険を報知するハザード点滅、死角に存在する車両等を検出して運転者に知らせる死角監視、右左折時の巻き込み防止警報、自動でトレーラの連結を検出して作動領域を拡大するトレーラ死角監視、自車60に接近する車両等を検出して降車のためにドアを開ける運転者に通知する降車警報等の具体的な運転支援に応じて、作動領域算出部43が算出する作動領域について、その大きさ、形状、設定する位置は変更される。
 上記の各実施形態によれば、下記の効果を得ることができる。
 ECU40は、周辺監視装置20から取得した自車60の周辺監視情報に基づいて、自車60の運転支援を実行する運転支援装置として機能し、走行軌跡算出部42と、作動領域算出部43と、作動判定部48とを備える。
 走行軌跡算出部42は、自車60の走行軌跡を算出する。作動領域算出部43は、自車60の周辺の作動領域を算出する。作動判定部48は、作動領域内に検出された検出物体(例えば他車66)の現在の進行方向(例えばS23)と、自車60の過去の走行軌跡における進行方向(例えばS13)との角度差(例えばθ1)が所定の角度差閾値θt未満である場合に、検出物体を、運転支援の作動を判定する対象である判定対象に設定する。さらに、作動判定部48は、検出物体が判定対象であると判定された場合に、自車60の運転支援の作動を判定する。
 ECU40が備える上記各部によれば、例えば、車線変更する等により自車60や検出物体である他車66が進行方向を変化させる場合には、他車66の現在の進行方向と、自車60の過去の走行軌跡における進行方向との角度差が大きくなり、角度差閾値以上となり得るため、自車60に対して危険度が低い他車66が判定対象となって警報等を不要に作動させることを抑制できる。一方、例えば、カーブ路を走行する等により自車60が進行方向を変化させる場合には、検出物体である他車66の現在の進行方向と、自車60の過去の走行軌跡における進行方向との角度差が小さくなり、角度差閾値未満となり得る傾向があるため、自車60に対して危険度が高い他車66が判定対象から除外されてしまうことを抑制できる。すなわち、自車60の進行方向が変化する場合にも適切に判定対象を設定でき、運転支援をより適切に作動させることができる。
 作動判定部48は、検出物体の現在の進行方向(例えばS23)と、検出物体の現在位置(例えば点T)を自車が過去に通過した際の自車60の進行方向(例えばS13)との角度差(例えばθ1)が角度差閾値θt未満である場合に、検出物体を、判定対象に設定するように構成されていてもよい。例えば図3(a)(b)に示すように、自車60が直進する道路に従って走行し続けている場合と同程度の確かさで、検出物体を判定対象に設定するか否かを判定できる。
 作動判定部48は、検出物体の現在の進行方向(例えばS23)と、検出物体と自車60との現在の距離に応じて自車60の走行軌跡を遡った時点における自車60の進行方向(例えばS13)との角度差(例えばθ1)が角度差閾値θt未満である場合に、検出物体を、判定対象に設定するように構成されていてもよい。自車60が直進する道路に従って走行し続けている場合と同程度の確かさで、検出物体を判定対象に設定するか否かを判定できる。
 作動判定部48は、自車60の走行軌跡が、周辺監視情報から得られる自車60の走行車線の車線形状を逸脱すると判定される場合には、検出物体を判定対象に設定するように構成されていてもよい。車線変更など、自車60の自車走行軌跡が一時的に車線形状から逸脱する場合に、自車60に対して必要な運転支援が作動されなくなることを抑制することができる。周辺監視情報として、自車が走行する道路の区画線についての情報である区画線情報が含まれている場合には、作動判定部48は、区画線情報に基づいて、自車60の走行軌跡が、自車の走行車線の車線形状を逸脱するか否かを判定するように構成されていることが好ましい。また、作動判定部48は、区画線情報の信頼度が低い場合には、検出物体を判定対象に設定するように構成されていてもよい。これに対して、周辺監視情報として、区画線情報と、区画線情報以外の情報とが少なくとも含まれている場合には、作動判定部48は、区画線情報の信頼度が低い場合には、区画線情報以外の情報に基づいて、自車60の走行軌跡が、自車の走行車線の車線形状を逸脱するか否かを判定するように構成されていてもよい。
 走行軌跡算出部42は、自車60の動作状態を示すオドメトリ情報に基づいて、自車60の走行軌跡を算出するように構成されていてもよい。実測された自車60の位置に加えて、オドメトリ情報に基づいて補間的に自車60の位置を算出できるため、自車走行軌跡を精度良く算出できる。また、この場合、作動判定部48は、オドメトリ情報の変動が所定の変動閾値を超えると判定される場合には、検出物体を判定対象に設定するように構成されていてもよい。自車60の進行方向が大きく変動する場合に、自車60に対して必要な運転支援が作動されなくなることを抑制することができる。
 ECU40に適用される運転支援プログラムは、自車60の走行軌跡を算出する走行軌跡算出ステップ(ステップS102,S202)と、自車60の周辺の作動領域を算出する作動領域算出ステップ(ステップS102,S202)と、周辺監視情報に基づいて作動領域内に物体が検出された場合に、自車60の運転支援の作動を判定する作動判定ステップ(ステップS107~109,S207~209)と、を含む。作動判定ステップは、作動領域内に検出された検出物体の現在の進行方向と、自車60の過去の走行軌跡における進行方向との角度差が所定の角度差閾値未満である場合に、検出物体を、運転支援の作動を判定する対象である判定対象に設定するステップ(ステップS107,S108,S207,S208)を含む。
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 以下、上述した各実施形態から抽出される特徴的な構成を記載する。
[構成1]
 周辺監視装置(20)から取得した自車(60)の周辺監視情報に基づいて、前記自車の運転支援を実行する運転支援装置(40)であって、
 前記自車の走行軌跡を算出する走行軌跡算出部(42)と、
 前記自車の周辺の作動領域を算出する作動領域算出部(43)と、
 前記周辺監視情報に基づいて前記作動領域内に物体が検出された場合に、前記自車の運転支援の作動を判定する作動判定部(48)と、を備え、
 前記作動判定部は、前記作動領域内に検出された検出物体の現在の進行方向と、前記自車の過去の走行軌跡における進行方向との角度差が所定の角度差閾値未満である場合に、前記検出物体を、前記運転支援の作動を判定する対象である判定対象に設定する運転支援装置。
[構成2]
 前記作動判定部は、前記検出物体の現在の進行方向と、前記検出物体の現在位置を前記自車が過去に通過した際の前記自車の進行方向との角度差が前記角度差閾値未満である場合に、前記検出物体を、前記判定対象に設定する構成1に記載の運転支援装置。
[構成3]
 前記作動判定部は、前記検出物体の現在の進行方向と、前記検出物体と前記自車との現在の距離に応じて前記自車の走行軌跡を遡った時点における前記自車の進行方向との角度差が前記角度差閾値未満である場合に、前記検出物体を、前記判定対象に設定する構成1または2に記載の運転支援装置。
[構成4]
 前記作動判定部は、前記自車の走行軌跡が、前記周辺監視情報から得られる前記自車の走行車線の車線形状を逸脱すると判定される場合には、前記検出物体を前記判定対象に設定する構成1~3のいずれかに記載の運転支援装置。
[構成5]
 前記走行軌跡算出部は、前記自車の動作状態を示すオドメトリ情報に基づいて、前記自車の走行軌跡を算出し、
 前記作動判定部は、前記オドメトリ情報の変動が所定の変動閾値を超えると判定される場合には、前記検出物体を前記判定対象に設定する構成1~4のいずれかに記載の運転支援装置。
[構成6]
 前記周辺監視情報は、前記自車が走行する道路の区画線についての情報である区画線情報を含み、
 前記作動判定部は、前記区画線情報に基づいて、前記自車の走行軌跡が、前記自車の走行車線の車線形状を逸脱するか否かを判定する構成1~5のいずれかに記載の運転支援装置。
[構成7]
 前記周辺監視情報は、前記自車が走行する道路の区画線についての情報である区画線情報を含み、
 前記作動判定部は、前記区画線情報の信頼度が低い場合には、前記検出物体を前記判定対象に設定する構成1~6のいずれかに記載の運転支援装置。
[構成8]
 前記周辺監視情報は、前記自車が走行する道路の区画線についての情報である区画線情報と、前記区画線情報以外の情報とを少なくとも含み、
 前記作動判定部は、前記区画線情報の信頼度が低い場合には、前記区画線情報以外の情報に基づいて、前記自車の走行軌跡が、前記自車の走行車線の車線形状を逸脱するか否かを判定する構成1~6のいずれかに記載の運転支援装置。
[構成9]
 周辺監視装置から取得した自車の周辺監視情報に基づいて、前記自車の運転支援を実行する運転支援装置に適用される運転支援プログラムであって、
 前記自車の走行軌跡を算出する走行軌跡算出ステップと、
 前記自車の周辺の作動領域を算出する作動領域算出ステップと、
 前記周辺監視情報に基づいて前記作動領域内に物体が検出された場合に、前記自車の運転支援の作動を判定する作動判定ステップと、を含み、
 前記作動判定ステップは、前記作動領域内に検出された検出物体の現在の進行方向と、前記自車の過去の走行軌跡における進行方向との角度差が所定の角度差閾値未満である場合に、前記検出物体を、前記運転支援の作動を判定する対象である判定対象に設定する運転支援プログラム。

Claims (9)

  1.  周辺監視装置(20)から取得した自車(60)の周辺監視情報に基づいて、前記自車の運転支援を実行する運転支援装置(40)であって、
     前記自車の走行軌跡を算出する走行軌跡算出部(42)と、
     前記自車の周辺の作動領域を算出する作動領域算出部(43)と、
     前記周辺監視情報に基づいて前記作動領域内に物体が検出された場合に、前記自車の運転支援の作動を判定する作動判定部(48)と、を備え、
     前記作動判定部は、前記作動領域内に検出された検出物体の現在の進行方向と、前記自車の過去の走行軌跡における進行方向との角度差が所定の角度差閾値未満である場合に、前記検出物体を、前記運転支援の作動を判定する対象である判定対象に設定する運転支援装置。
  2.  前記作動判定部は、前記検出物体の現在の進行方向と、前記検出物体の現在位置を前記自車が過去に通過した際の前記自車の進行方向との角度差が前記角度差閾値未満である場合に、前記検出物体を、前記判定対象に設定する請求項1に記載の運転支援装置。
  3.  前記作動判定部は、前記検出物体の現在の進行方向と、前記検出物体と前記自車との現在の距離に応じて前記自車の走行軌跡を遡った時点における前記自車の進行方向との角度差が前記角度差閾値未満である場合に、前記検出物体を、前記判定対象に設定する請求項1に記載の運転支援装置。
  4.  前記作動判定部は、前記自車の走行軌跡が、前記周辺監視情報から得られる前記自車の走行車線の車線形状を逸脱すると判定される場合には、前記検出物体を前記判定対象に設定する請求項1に記載の運転支援装置。
  5.  前記走行軌跡算出部は、前記自車の動作状態を示すオドメトリ情報に基づいて、前記自車の走行軌跡を算出し、
     前記作動判定部は、前記オドメトリ情報の変動が所定の変動閾値を超えると判定される場合には、前記検出物体を前記判定対象に設定する請求項1に記載の運転支援装置。
  6.  前記周辺監視情報は、前記自車が走行する道路の区画線についての情報である区画線情報を含み、
     前記作動判定部は、前記区画線情報に基づいて、前記自車の走行軌跡が、前記自車の走行車線の車線形状を逸脱するか否かを判定する請求項1に記載の運転支援装置。
  7.  前記周辺監視情報は、前記自車が走行する道路の区画線についての情報である区画線情報を含み、
     前記作動判定部は、前記区画線情報の信頼度が低い場合には、前記検出物体を前記判定対象に設定する請求項1に記載の運転支援装置。
  8.  前記周辺監視情報は、前記自車が走行する道路の区画線についての情報である区画線情報と、前記区画線情報以外の情報とを少なくとも含み、
     前記作動判定部は、前記区画線情報の信頼度が低い場合には、前記区画線情報以外の情報に基づいて、前記自車の走行軌跡が、前記自車の走行車線の車線形状を逸脱するか否かを判定する請求項1に記載の運転支援装置。
  9.  周辺監視装置から取得した自車の周辺監視情報に基づいて、前記自車の運転支援を実行する運転支援装置に適用される運転支援プログラムであって、
     前記自車の走行軌跡を算出する走行軌跡算出ステップと、
     前記自車の周辺の作動領域を算出する作動領域算出ステップと、
     前記周辺監視情報に基づいて前記作動領域内に物体が検出された場合に、前記自車の運転支援の作動を判定する作動判定ステップと、を含み、
     前記作動判定ステップは、前記作動領域内に検出された検出物体の現在の進行方向と、前記自車の過去の走行軌跡における進行方向との角度差が所定の角度差閾値未満である場合に、前記検出物体を、前記運転支援の作動を判定する対象である判定対象に設定する運転支援プログラム。
PCT/JP2022/041728 2022-02-25 2022-11-09 運転支援装置および運転支援プログラム WO2023162362A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-028176 2022-02-25
JP2022028176 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023162362A1 true WO2023162362A1 (ja) 2023-08-31

Family

ID=87765400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041728 WO2023162362A1 (ja) 2022-02-25 2022-11-09 運転支援装置および運転支援プログラム

Country Status (1)

Country Link
WO (1) WO2023162362A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218377A (ja) * 2012-04-04 2013-10-24 Denso Corp 車両用無線通信装置
JP2016085567A (ja) * 2014-10-24 2016-05-19 株式会社デンソー 隣接車線監視装置
JP2016139192A (ja) * 2015-01-26 2016-08-04 住友電気工業株式会社 運転支援装置、コンピュータプログラム及び運転支援方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218377A (ja) * 2012-04-04 2013-10-24 Denso Corp 車両用無線通信装置
JP2016085567A (ja) * 2014-10-24 2016-05-19 株式会社デンソー 隣接車線監視装置
JP2016139192A (ja) * 2015-01-26 2016-08-04 住友電気工業株式会社 運転支援装置、コンピュータプログラム及び運転支援方法

Similar Documents

Publication Publication Date Title
US9688272B2 (en) Surroundings monitoring apparatus and drive assistance apparatus
US9669760B2 (en) Warning device
US9688273B2 (en) Methods of improving performance of automotive intersection turn assist features
US7797108B2 (en) Collision avoidance system and method of aiding rearward vehicular motion
US9852633B2 (en) Travel assist apparatus and travel assist method
US20150307096A1 (en) Driving support apparatus, driving support method, and vehicle
JP7119720B2 (ja) 運転支援装置
KR20200102004A (ko) 충돌 방지 장치, 시스템 및 방법
WO2017042089A1 (en) Automated detection of hazardous drifting vehicles by vehicle sensors
US10930153B2 (en) Vehicle external notification device
KR101511858B1 (ko) 보행자 또는 이륜차를 인지하는 운전보조시스템 및 그 제어방법
US20140139368A1 (en) Device And Method For Judging Likelihood Of Collision Between Vehicle And Target, Vehicle Collision Avoidance System, And Method For Avoiding Collision Between Vehicle And Target
US20190073540A1 (en) Vehicle control device, vehicle control method, and storage medium
US11042759B2 (en) Roadside object recognition apparatus
JP2019093764A (ja) 車両制御装置
US20210370931A1 (en) Driving assistance device
CN113771867A (zh) 一种行驶状态的预测方法、装置和终端设备
WO2019009032A1 (ja) 車両制御装置
JP6609292B2 (ja) 車外環境認識装置
WO2023162362A1 (ja) 運転支援装置および運転支援プログラム
US20220309804A1 (en) Vehicle control device, vehicle control method, and storage medium
WO2023162560A1 (ja) 運転支援装置および運転支援プログラム
JP2020107115A (ja) 運転支援装置
JP7364112B2 (ja) 運転支援装置
RU2814813C1 (ru) Устройство и способ для отслеживания объектов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928880

Country of ref document: EP

Kind code of ref document: A1