WO2019009032A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2019009032A1
WO2019009032A1 PCT/JP2018/022593 JP2018022593W WO2019009032A1 WO 2019009032 A1 WO2019009032 A1 WO 2019009032A1 JP 2018022593 W JP2018022593 W JP 2018022593W WO 2019009032 A1 WO2019009032 A1 WO 2019009032A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
intersection
ratio
turning
turn
Prior art date
Application number
PCT/JP2018/022593
Other languages
English (en)
French (fr)
Inventor
高木 亮
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019009032A1 publication Critical patent/WO2019009032A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to a vehicle control device that activates a safety device on an object.
  • the driving support device of Patent Document 1 determines the presence or absence of an intersection or branch point at which it is possible to turn to the left or right from the lane in which the preceding vehicle is traveling, and the operating state (flashing state) of the direction indicator of the preceding car. It predicts the turn of the preceding car. Then, when it is predicted that the preceding vehicle will turn to the left or right, driving assistance is provided. Specifically, when the current inter-vehicle distance is shorter than the inter-vehicle distance currently required to secure a predetermined inter-vehicle distance at the end of deceleration of the host vehicle, the driver is made to present an evasive action request message. . This is intended to avoid a collision with the preceding vehicle.
  • the present disclosure has been made in view of the above problems, and its main object is to provide a safety device according to the situation of turning of the preceding vehicle even if the preceding vehicle does not operate the turn signal.
  • An object of the present invention is to provide a vehicle control device that can be operated properly.
  • a vehicle control device mounted on a host vehicle and operating a safety device with respect to a preceding vehicle ahead of the host vehicle based on a predetermined operating condition, A recognition unit that recognizes a possible turning point ahead of the host vehicle; An acquisition unit that acquires a ratio parameter indicating a ratio at which the preceding vehicle turns without operating a direction indicator at the point, when the point that can be turned to the left or right is recognized by the recognition unit; A determination unit that determines whether the preceding vehicle turns to the left or right based on the ratio parameter; A setting unit configured to set the predetermined operating condition of the safety device based on the determination result by the determination unit; Equipped with
  • the driver of the host vehicle sees the activation of the turn indicator of the leading vehicle and recognizes that the leading vehicle turns to the left or right, but may turn to the left without activating the turn indicator. It is desirable to operate the safety device properly in response to turning.
  • a ratio parameter indicating a ratio at which the preceding vehicle bends without operating the direction indicator at the point is acquired, and the advance is performed based on the ratio parameter. Determine if the car turns left or right. Then, the operating condition of the safety device is set based on the determination result. In this case, for example, when the ratio parameter is high, it is determined by determining whether the preceding vehicle turns to the left or right based on the ratio (ratio parameter) at which the preceding vehicle turns without activating the turn indicator. The operating condition of the safety device can be set in anticipation of turning of the preceding vehicle even if the direction indicator of the preceding vehicle is not activated. As a result, even when the preceding vehicle does not activate the turn indicator, the safety device can be properly operated according to the situation of turning of the preceding vehicle.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle control device
  • FIG. 2 is a diagram showing a state in which a preceding vehicle is operating a turn signal at an intersection
  • Fig. 3 is a correlation diagram showing the relationship between the actuation rate and the left turn probability
  • Fig. 4 is a correlation diagram showing the relationship between the vehicle ratio of left turn and the left turn probability
  • FIG. 5 is a flowchart showing a procedure of setting processing of operating conditions executed by the ECU.
  • FIG. 6 is a diagram for explaining the road form of the intersection
  • FIG. 7 is a flowchart showing a processing procedure executed by the ECU in the second embodiment
  • FIG. 8 is a correlation diagram showing the relationship between the crossing angle and the left turn probability.
  • FIG. 1 shows a pre-crash safety system (hereinafter referred to as PCSS: Pre-crash safety system) to which a vehicle control device is applied.
  • PCSS pre-crash safety system
  • the PCSS detects another vehicle (preceding vehicle) present ahead of the own vehicle in the traveling direction, and when there is a possibility that the detected preceding vehicle may collide with the own vehicle, Perform collision avoidance operation or collision mitigation operation.
  • a vehicle 50 shown in FIG. 1 includes a radar device 21 and an imaging device 22 as object detection sensors, a navigation device 23, a transmitting / receiving device 24, an ECU 10, and an alarm device 31 and a brake device 32 as safety devices.
  • the ECU 10 functions as a vehicle control device.
  • the radar device 21 is attached at the front of the vehicle 50 so that the optical axis thereof is directed to the front of the vehicle, transmits a directional electromagnetic wave such as a millimeter wave or a laser as a transmission wave to the front of the vehicle
  • a directional electromagnetic wave such as a millimeter wave or a laser
  • the relative position of the preceding vehicle ahead of the host vehicle is acquired at a predetermined cycle.
  • the relative position is acquired as a position on the relative coordinates with the vehicle width direction of the vehicle 50 as the X axis and the traveling direction of the vehicle 50 as the Y axis when the vehicle 50 is the origin.
  • the acquired relative position is output to the ECU 10 in a predetermined cycle.
  • the imaging device 22 is an on-vehicle camera, and is configured using, for example, a CCD camera, a CMOS image sensor, a near infrared camera, or the like.
  • the imaging device 22 is attached at a predetermined height (for example, near the upper end of the windshield) at the center in the vehicle width direction of the host vehicle 50, and captures an area extending in a predetermined angle range from the overhead viewpoint.
  • the captured image that has been captured is output to the ECU 10 at predetermined intervals.
  • the imaging device 22 may be a single-eye camera or a stereo camera.
  • the navigation device 23 provides the ECU 10 with road information of the road on which the vehicle 50 travels.
  • the navigation device 23 includes a memory for recording map information, and a position specifying unit for specifying the position of the vehicle 50 on the map by using positioning information transmitted from GPS (Global Positioning System) satellites. There is. Then, the navigation device 23 refers to the road information around the vehicle position based on the vehicle position on the identified map.
  • the road information includes information on possible turning points. The points which can be turned to the left and right are, for example, entrances of intersections and stores.
  • the navigation device 23 transmits the referenced road information to the ECU 10.
  • the transmitting and receiving device 24 is a device capable of transmitting and receiving information to and from a system such as a transmitting and receiving device.
  • the transmission / reception device 24 receives, for example, information transmitted from the transmission / reception device 110 provided in the preceding vehicle 100, and transmits information to the transmission / reception device 110. In this case, inter-vehicle communication is possible between the host vehicle 50 and the leading vehicle 100.
  • the transmission / reception device 24 can transmit / receive information to / from the road system 200 in which travel data of a plurality of vehicles including the host vehicle 50 and the leading vehicle 100 is stored.
  • the alarm device 31 warns the driver that an object is present in front of the vehicle according to a control command from the ECU 10.
  • the alarm device 31 includes, for example, a speaker provided in a vehicle compartment and a display unit for displaying an image.
  • the brake device 32 is a braking device that brakes the host vehicle 50.
  • the brake device 32 operates when the possibility of collision with a front object increases. Specifically, the braking force for the brake operation by the driver is made stronger (brake assist function), or the automatic braking is performed if the driver does not perform the brake operation (automatic brake function).
  • the ECU 10 is configured as a well-known microcomputer including a CPU and various memories (ROM, RAM), and executes control in the host vehicle 50 with reference to calculation programs and control data in the ROM.
  • the ECU 10 operates the alarm device 31 and the brake device 32 based on the detection results output from the radar device 21 and the imaging device 22.
  • the ECU 10 acquires the relative position (including the lateral position and the relative distance) of the preceding vehicle based on the relative position output from the radar device 21 and the captured image output from the imaging device 22.
  • the ECU 10 detects a leading vehicle in the captured image based on the captured image and the dictionary information for vehicle identification prepared in advance.
  • dictionary information for vehicle identification at least dictionary information of a rear pattern is prepared, and the ECU 10 detects a leading vehicle by matching the captured image with the dictionary information by pattern matching.
  • the ECU 10 fuses these to obtain the fusion position as the relative position of the object.
  • the ECU 10 determines whether or not the own vehicle 50 may collide based on the acquired relative position of the preceding vehicle. Specifically, when the lateral position of the preceding vehicle belongs to the collision prediction area to be subjected to the collision avoidance control, it is determined that the preceding vehicle and the own vehicle 50 may collide.
  • the ECU 10 operates the safety devices 31 and 32 based on a predetermined operation condition for the preceding vehicle 100 determined to have a possibility of collision. Specifically, it calculates an allowance time (TTC) until the own vehicle 50 and the preceding vehicle 100 collide with each other, and operates the safety device according to the TTC. For example, when the calculated TTC becomes equal to or less than the normal operation timing TTC1 of the alarm device 31, the ECU 10 warns the driver that the preceding vehicle is ahead in the traveling direction. In addition, when the calculated TTC becomes equal to or less than the normal actuation timing TTC2 of the brake device 32, an automatic brake is performed to reduce the speed of the host vehicle 50 by a predetermined amount.
  • TTC allowance time
  • FIG. 2 shows a state in which the leading vehicle 100 activates the turn indicator 120 and turns left at an intersection.
  • the driver of the own vehicle 50 sees the operation of the left turn indicator of the leading vehicle 100 and grasps the left turn of the leading vehicle 100. Then, it is considered that the driver decelerates the host vehicle 50 according to it, or overtakes the leading vehicle 100 while moving the host vehicle 50 to the right.
  • the conventional PCS control for example, by detecting the presence or absence of the operation of the direction indicator 120 of the leading vehicle 100, it is determined in advance whether the leading vehicle 100 is turning or not, and the alarm device 31 is activated accordingly. On the other hand, it is conceivable that the leading vehicle 100 turns the left or right at the intersection without operating the direction indicator 120. In such a case, it is difficult to determine the turning of the leading vehicle 100 in advance in the conventional PCS control . Therefore, it is desirable that PCS control be performed for such a vehicle according to the situation of turning to the left or right.
  • the ratio parameter (left turn probability P2) indicating the ratio at which the leading vehicle 100 turns without operating the direction indicator 120 at the intersection is acquired Then, based on the left turn probability P2, it is determined whether the leading vehicle 100 turns left. Then, the operating conditions of the safety devices 31 and 32 are set based on the determination result. That is, also for the preceding vehicle 100 which turns left without operating the turn indicator 120, the safety devices 31 and 32 are properly operated in anticipation of that. In the following, the left turn of the leading vehicle 100 will be described, but the same applies to a right turn.
  • the ECU 10 calculates the left turn probability P2 based on the history information of the turn indicator 120 when the leading vehicle 100 turns left.
  • the history information of the preceding vehicle 100 is acquired by being received by the transmission / reception device 24.
  • acquisition of history information in the leading vehicle 100 will be described with reference to FIG.
  • each vehicle traveling on the road including the leading vehicle 100 includes a direction indicator 120, a turning motion detection sensor 130, a navigation device 140, and an ECU 150 in addition to the transmitting / receiving device 110.
  • Direction indicator 120 outputs an operation signal indicating whether the operation position by the driver is “right instruction position”, “left instruction position” or “non-operation position” to ECU 150.
  • the turning motion detection sensor 130 detects a turning angular velocity that changes in the traveling direction of the vehicle, and outputs a detection signal to the ECU 150. In this case, the larger the turning angular velocity, the more the vehicle bends.
  • the turning motion detection sensor 130 is configured of, for example, a yaw rate sensor that detects a turning angular velocity, and a steering angle sensor that detects a steering angle by a steering device (not shown).
  • the navigation device 140 is configured in the same manner as the navigation device 23 described above.
  • working of the leading vehicle 100 each time is reflected in the map information of the navigation apparatus 23 one by one, and is memorize
  • the ECU 150 is configured as a well-known microcomputer including a CPU and various memories (ROM, RAM), and executes control in the leading vehicle 100 with reference to an arithmetic program and control data in the ROM.
  • the ECU 150 determines, based on a detection signal from the turning motion detection sensor 130, whether or not the leading vehicle 100 is turning (for example, turning left). Then, when it is determined that the leading vehicle 100 is turning left, the ECU 150 sequentially stores the number of times of determination as the number of times of turning left. Further, the ECU 150 determines whether or not the turn indicator 120 has been activated within a predetermined time before determining that the vehicle is turning left, that is, whether or not the operation position of the turn indicator 120 is “left indication position”. judge. When it is determined that direction indicator 120 is activated, ECU 150 sequentially stores the number of determinations as the number of times direction indicator 120 is activated at the time of left turn. Note that these determination results correspond to the "operation history".
  • the ECU 150 calculates a ratio (operation ratio P1) at which the turn indicator 120 is operated at the time of left turn, based on the operation history.
  • the actuation rate P1 is calculated based on the following equation (1).
  • Operation rate P1 number of times the turn indicator 120 was activated when turning left / number of turning left ... (1) That is, although the preceding vehicle 100 tends to operate the direction indicator 120 at the time of left turn as the actuation rate P1 is higher, the preceding vehicle 100 tends not to operate the direction indicator 120 as the actuation rate P1 is lower. .
  • Operation rate P1 may be calculated based on the operation history in all the past travels of preceding vehicle 100, or may be calculated based on the operation history in the one trip from ignition on to ignition off. . Further, if the ECU 150 is configured to store the operation history for each intersection based on the movement history of the leading vehicle 100, the operation ratio P1 may be calculated as the operation ratio at each intersection. In this case, depending on the intersection, it is considered that the presence or absence of the operation of the direction indicator 120 at the time of turning left is different. With this configuration, the turning of the leading vehicle 100 at the intersection can be accurately determined.
  • the operation history and the operation rate P1 acquired by the ECU 150 are output to the transmission / reception device 110, and are transmitted to the transmission / reception device 24 as history information of the preceding vehicle 100. That is, the history information includes the operation history and the operation rate P1. Then, the history information received by the transmission / reception device 24 is acquired by the ECU 10.
  • the history information may include the operation history of the leading vehicle 100, and the ECU 10 of the host vehicle 50 may calculate the operation ratio P1.
  • the ECU 10 calculates the left turn probability P2 based on the history information.
  • the left turn probability P2 is acquired based on, for example, a correlation map between the actuation rate P1 and the left turn probability P2, as shown in FIG. In FIG. 3, the left turn probability P2 is acquired as a smaller value as the actuation rate P1 is higher. That is, although the reliability of the operation of the turn indicator 120 of the leading vehicle 100 is higher as the operation rate P1 is higher, it is considered that the probability that the lead vehicle 100 turns left without operating the turn indicator 120 is lower.
  • the leading vehicle 100 does not have a configuration for acquiring the operation history, or when communication failure occurs in inter-vehicle communication with the leading vehicle 100, etc., the history information of the leading vehicle 100 is not acquired.
  • the ECU 10 obtains statistical information on the left turn of the intersection instead of the information (history information) on the leading vehicle 100, and calculates the left turn probability P2 based thereon.
  • the ECU 10 acquires, from the road system 200, a vehicle ratio indicating the ratio of straight going, left turning, right turning of the vehicle passing the intersection.
  • the road system 200 sequentially stores, for each intersection, a traveling pattern including straight driving, left turning, and right turning of a vehicle passing the intersection, and at each intersection, the proportion of vehicles going straight, the proportion of vehicles turning left, and the proportion of vehicles turning right Is accumulating. Then, the ECU 10 acquires the vehicle ratio of the left turn of the intersection ahead of the host vehicle 50 from the vehicle ratio at each intersection stored in the road system 200 via the transmission / reception device 24.
  • the ECU 10 acquires the vehicle speed of a predetermined distance before the intersection of the leading vehicle 100 based on the input of the radar device 21 or the like. Then, the ECU 10 obtains the vehicle ratio of the left turn of the intersection ahead of the host vehicle 50, taking into consideration the respective ratios at the relevant intersection based on the acquired vehicle speed.
  • the ECU 10 calculates the left turn probability P2 based on the acquired vehicle ratio of the left turn.
  • the left turn probability P2 is acquired based on, for example, the correlation map between the vehicle ratio of the left turn and the left turn probability P2 as shown in FIG. In FIG. 4, the left turn probability P2 is acquired as a larger value as the vehicle proportion of the left turn becomes higher.
  • the traveling pattern of the leading vehicle 100 at the intersection is correlated with the traveling pattern of the vehicle passing the intersection to some extent, so that the higher the ratio of vehicles turning left at the intersection, the higher the probability that the leading vehicle 100 also turns left Conceivable.
  • the ECU 10 determines whether the leading vehicle 100 turns left, based on the calculated left turn probability P2. Specifically, when the left turn probability P2 is larger than a predetermined threshold Th, it is determined that the preceding vehicle 100 turns left. Then, the ECU 10 sets the operating conditions of the safety devices 31 and 32 based on the determination result. Specifically, when it is determined that the preceding vehicle 100 turns left without operating the direction indicator 120, the operating conditions of the safety devices 31 and 32 are changed to a mode of loosening. In this case, the normal operation timing TTC1 of the alarm device 31 is changed to a larger side, and the normal operation timing TTC2 of the brake device 32 is changed to a larger side.
  • the operating condition is changed to the side where the safety device is easily activated.
  • the change of the operating condition to the loose side is not performed. That is, in this case, the ECU 10 operates the safety devices 31 and 32 based on the normal operation timings TTC1 and TTC2.
  • step S11 it is determined whether the leading vehicle 100 is detected.
  • the preceding vehicle 100 is detected based on, for example, the outputs of the radar device 21 and the imaging device 22. If step S11 is YES, it will progress to step S12.
  • step S12 it is determined whether or not an intersection is recognized in front of the host vehicle 50. Specifically, it is determined whether or not the distance between the host vehicle 50 and the intersection is equal to or less than a predetermined value Dth, and before the preceding vehicle 100 passes the intersection. For example, when the positional relationship between the host vehicle 50, the intersection and the leading vehicle 100 is as shown in FIG. 2, step S12 is affirmed. In addition, the intersection ahead of the own vehicle 50 is recognized based on the output of the navigation apparatus 23 or the imaging device 22, for example. Step S12 corresponds to the "recognition unit".
  • step S12 If step S12 is YES, it will progress to step S13.
  • step S13 history information of the leading vehicle 100 is acquired.
  • history information is acquired by information communication between the transmission / reception device 110 and the transmission / reception device 24. Note that if step S11 and step S12 are NO, this processing ends.
  • step S14 it is determined whether the direction indicator 120 of the leading vehicle 100 is operating. For example, operation of the direction indicator 120 is determined by detecting the blinking state of the left direction indicator of the preceding vehicle 100 based on the captured image.
  • step S20 If the step S14 is YES, it is judged that the leading vehicle 100 turns left, and the operation timing of the safety devices 31, 32 is set (step S20).
  • the operation timing is set to be later than the normal operation timing.
  • the normal operation timing TTC1 of the alarm device 31 is changed to a smaller side.
  • the driver of the own vehicle can grasp in advance that the leading vehicle 100 turns left, and it is considered that traveling based on that can be performed.
  • the host vehicle 50 may go straight through the intersection while overtaking the leading vehicle 100. In such a case, it is considered that the driver feels bothersome when the safety device is operated. Therefore, by setting the operation timing of the safety device to be later than the normal operation timing, the inconvenience of the driver is reduced.
  • step S14 is NO, that is, if it is determined that the direction indicator 120 of the preceding vehicle 100 is not operating, it is determined whether the preceding vehicle 100 turns left without operating the direction indicator 120. Proceed to the determination process.
  • step S15 it is determined whether the history information of the leading vehicle 100 has been acquired.
  • step S15 it progresses to step S16 and calculates left turn probability P2 based on the acquired historical information.
  • the left turn probability P2 is calculated based on the correlation map shown in FIG. 3 using the operation rate P1 as the history information.
  • step S15 the vehicle ratio of the left turn at the intersection recognized in step S12 is acquired.
  • the vehicle ratio of the left turn is acquired by, for example, information communication between the road system 200 and the transmission / reception device 24.
  • step S18 the left turn probability P2 is calculated based on the acquired left turn vehicle ratio. For example, the left turn vehicle percentage is applied to the correlation map shown in FIG. 4 to calculate the left turn probability P2.
  • Step S16 corresponds to the "acquisition unit”
  • step S17 corresponds to the "ratio acquisition unit”.
  • step S19 it is determined whether the calculated left turn probability P2 is larger than a predetermined threshold value Th. If step S19 is YES, it is judged that the preceding vehicle 100 turns left without operating the direction indicator 120, and the process proceeds to step S21.
  • step S21 the operation timings of the safety devices 31 and 32 are set. Here, the operation timings of the alarm device 31 and the brake device 32 are both set to be earlier than the normal operation timing. In other words, change the operating condition of the safety device to the side to be relaxed.
  • step S19 it will judge that the preceding vehicle 100 does not turn left, and will progress to step S22.
  • the operation timing is set to the normal operation timing.
  • the operation timing of the alarm device 31 is set to TTC1
  • the operation timing of the brake device 32 is set to TTC2.
  • Step S19 corresponds to a "determination unit”
  • steps S20 and S21 correspond to a "setting unit”.
  • the processing content in S19 and S21 may be changed.
  • the threshold Th of S19 may be set to a different value, or in each of the above cases, the degree of advancing the operation timing of the safety devices 31 and 32 in step S21 may be different.
  • a left turn probability P2 indicating the rate at which the preceding vehicle 100 turns without operating the direction indicator 120 at that point is acquired. It is determined based on whether the leading vehicle 100 turns left. Specifically, when the left turn probability P2 is larger than a predetermined threshold value Th, it is determined that the preceding vehicle 100 turns left. Then, the operation timing of the safety devices 31 and 32 is set based on the determination result. In this case, by determining whether or not the preceding vehicle 100 turns left based on the left turn probability P2, if the left turn probability P2 is greater than a predetermined threshold Th, the turn indicator 120 of the preceding vehicle 100 is activated.
  • the left turn probability P2 is acquired based on the history information indicating the operation history of the direction indicator 120 at the time of turning to the left, so for example, the leading vehicle 100 does not operate the direction indicator 120 In consideration of the tendency of the direction indicator 120 of the preceding vehicle 100 that tends to turn left, it is possible to anticipate turning to the left.
  • the left turn probability P2 is acquired as a smaller value as the actuation rate P1 of the turn indicator 120 becomes higher, for example, when the actuation rate P1 of the turn indicator 120 of the leading vehicle 100 is lower than a predetermined value, If the vehicle 100 tends to turn left without activating the turn indicator 120, it can be determined that the leading vehicle 100 turns left. Thereby, even if the preceding vehicle 100 turns left without operating the direction indicator 120, the safety devices 31 and 32 can be operated correspondingly.
  • the traveling pattern of the leading vehicle 100 at the intersection correlates to some extent with the traveling pattern of the vehicle passing the intersection.
  • the parameter based on the vehicle ratio at the recognized intersection (the left turn probability P2 in step S18) is used instead of the left turn probability P2 in step S16. Since it is determined whether the leading vehicle 100 turns left or not, even if the history information of the leading vehicle 100 is not acquired, the safety device is expected to expect the turning of the leading vehicle 100 based on the statistics. 31 and 32 operating conditions can be set.
  • the operation timing of the safety devices 31 and 32 is set to be earlier than the normal operation timings TTC1 and TTC2. I made it. In this case, by setting the operation timing to be earlier, the safety devices 31 and 32 can be easily operated. Therefore, the safety devices 31 and 32 can be operated promptly even in the case of deceleration caused by the left turn of the leading vehicle 100.
  • the ECU 10 calculates the left turn probability P2 based on the operation history in step S16 of FIG. 5, but may add another parameter to the operation history to calculate the left turn probability P2.
  • a traveling direction ratio indicating the ratio of straight ahead, left turn, right turn of the leading vehicle 100 at the intersection is used. Depending on the intersection, it is considered that the tendency of the vehicle to go straight, left or right may be different.
  • the left turn probability P2 is calculated based on the history information of the leading vehicle 100 and the traveling direction ratio at the recognized intersection, so that the presence or absence of the left turn of the leading vehicle 100 at the intersection is more appropriate Can be determined. In this configuration, it is preferable that the left turn probability P2 be calculated as a large value when the ratio of the direction in which the leading vehicle 100 turns to the left is high, as compared with the case where it is lower.
  • behavior information of the leading vehicle 100 may be used as another parameter.
  • a lateral movement amount which is a change amount of a position in a lateral direction which is a direction crossing the traveling direction of the leading vehicle 100 is used.
  • the left turn probability P2 may be calculated using the lateral movement amount of the leading vehicle 100.
  • the ECU 10 acquires the operation history by inter-vehicle communication between the host vehicle 50 and the preceding vehicle 100.
  • the operation history may be acquired by communication between the host vehicle 50 and the road system 200 .
  • the road system 200 can communicate with each vehicle traveling on the road, and sequentially acquires the operation results of the turn signal indicator at the point where it is possible to turn right and left for each vehicle, and stores it in the memory (storage unit). It has become. Then, when detecting the leading vehicle 100, the ECU 10 transmits the vehicle number of the leading vehicle 100 recognized based on the captured image to the road system 200.
  • the operation record of the preceding vehicle 100 is collated from the operation record of each vehicle accumulated in the road system 200, and the operation record is acquired by the ECU 10 as history information.
  • the history information of the leading vehicle 100 can be stably acquired.
  • the operation timings of the alarm device 31 and the brake device 32 are changed to be faster, but either one may be changed to be faster. For example, only the operation timing of the alarm device 31 may be changed. It may be changed to make it faster.
  • the left turn probability P2 is calculated based on the information (history information) on the leading vehicle 100.
  • the left turn probability P2 is calculated based on the road form of the intersection.
  • the road form varies depending on the intersection.
  • the road L1 is orthogonal to the traveling path of the host vehicle 50 at the intersection Q.
  • the road L2 is not orthogonal to the traveling path.
  • the ECU 10 acquires the road form of the intersection ahead of the host vehicle 50, and calculates the left turn probability P2 based on the road form.
  • the road form of the intersection is acquired, for example, based on the map information of the navigation device 23.
  • the setting process of the operating conditions of the safety devices 31 and 32 implemented in the second embodiment will be described using the flowchart of FIG. 7.
  • the present process is repeatedly performed by the ECU 10 at a predetermined cycle in place of the above-described FIG. 5.
  • FIG. 7 the same processes as in FIG. 5 will be assigned the same step numbers to simplify the description.
  • step S31 the road form of the intersection recognized in step S12 is acquired.
  • the intersection angle ⁇ is acquired.
  • the intersection angle ⁇ is, for example, angles (for example, ⁇ q, ⁇ r in FIG. 6) corresponding to the turning angle of the host vehicle 50 when the host vehicle 50 turns left at the intersection.
  • step S32 the left turn probability P2 is calculated based on the road configuration.
  • the left turn probability P2 is acquired based on, for example, a correlation map between the intersection angle ⁇ and the left turn probability P2 as shown in FIG.
  • a predetermined value A for example, a value smaller than 90 °
  • the left turn probability P2 is constant.
  • the intersection angle ⁇ is smaller than the predetermined value A, that is, when the intersection angle ⁇ is an acute angle
  • the left turn probability P2 is acquired as a larger value as the intersection angle ⁇ decreases.
  • the smaller the intersection angle ⁇ the smaller the turning angle of the vehicle (the amount by which the steering device is operated). Therefore, it is considered that the probability that the driver turns left without operating the direction indicator increases.
  • step S19 it is determined whether the calculated left turn probability P2 is larger than a predetermined threshold value Th, and the operation timing of the safety devices 31 and 32 is set based on the determination result (S21, S22).
  • the left turn probability P2 is calculated based on the intersection angle ⁇ at the intersection as a road form, so the tendency of the operation situation of the turn indicator based on the intersection angle ⁇ is taken It is possible to judge the left turn.
  • the left turn probability P2 is calculated using the intersection angle ⁇ at the intersection as the road form, but the left turn probability P2 may be calculated using other parameters related to the road form by changing this. .
  • the left turn probability P2 may be calculated in a branch path such as Y-shape.
  • the operation timing is set to be earlier as the left turn probability P2 becomes higher.
  • the operation timing of the safety devices 31 and 32 is set to be advanced, but it is changed to the side to delay the operation timings of the safety devices 31 and 32 It may be set.
  • the normal operation timing TTC1 of the alarm device 31 is changed to a smaller side
  • the normal operation timing TTC2 of the brake device 32 is changed to a smaller side.
  • the operating conditions are changed to the side where the safety device becomes difficult to operate.
  • the preceding vehicle 100 does not operate the direction indicator 120, for example, when the preceding vehicle 100 moves laterally to the right in the traveling direction or to the left in the traveling direction while decelerating, It is considered possible to grasp the turn of the In such a case, it is conceivable that the host vehicle 50 goes straight through the intersection while overtaking the preceding vehicle 100, and the driver feels troublesome when the safety device is activated. Therefore, by changing the operating conditions of the safety devices 31 and 32 to a stricter side, the inconvenience of the driver is reduced.
  • the operation timing may be set to be delayed according to the left turn probability P2 in step S21.
  • the operation timing is set to be later as the left turn probability P2 becomes higher.

Abstract

車両制御装置(10)は、自車両(50)に搭載され、自車両の前方の先行車(100)に対し、所定の作動条件に基づき安全装置(31,32)を作動させる。車両制御装置(10)は、自車両の前方の右左折可能な地点を認識する認識部と、認識部により右左折可能な地点が認識された場合に、先行車が当該地点において方向指示器を作動させずに曲がる割合を示す割合パラメータを取得する取得部と、割合パラメータに基づいて先行車が右左折するか否かを判定する判定部と、判定部による判定結果に基づいて安全装置の所定の作動条件を設定する設定部と、を備える。

Description

車両制御装置 関連出願の相互参照
 本出願は、2017年7月5日に出願された日本出願番号2017-132108号に基づくもので、ここにその記載内容を援用する。
 本開示は、物体に対して安全装置を作動させる車両制御装置に関する。
 従来、自車両と、自車両の進行方向前方に位置する先行車との衝突を回避するため、警報装置やブレーキ装置等の安全装置を作動させる衝突回避制御が実現されている。
 例えば、特許文献1の運転支援装置は、先行車が走行している車線から右左折が可能な交差点又は分岐点の有無と先行車の方向指示器の作動状態(点滅状態)とを判定し、先行車の右左折を予測している。そして、先行車が右左折を行うと予測された場合に、運転支援が実施される。具体的には、現在の車間距離が自車両の減速終了時に所定の車間距離を確保するために現時点で必要とされる車間距離より短い場合に、ドライバに回避行動要求メッセージを提示させることとしている。これにより、先行車との追突の回避を図っている。
特開2008-257350号公報
 ところで、車両によっては、方向指示器を作動させずに右左折を行う場合がある。かかる場合、上記運転支援装置では右左折を予測することが難しく、先行車の右左折に対応した運転支援の実施が困難となると考えられる。その結果、方向指示器を作動させずに右左折を行う先行車に対し、安全装置が適正に作動されないことが懸念される。
 本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、先行車が方向指示器を作動させていない場合であっても、先行車の右左折の状況に応じて安全装置を適正に作動させることができる車両制御装置を提供することにある。
 第1の手段では、
 自車両に搭載され、前記自車両の前方の先行車に対し、所定の作動条件に基づき安全装置を作動させる車両制御装置であって、
 前記自車両の前方の右左折可能な地点を認識する認識部と、
 前記認識部により前記右左折可能な地点が認識された場合に、前記先行車が当該地点において方向指示器を作動させずに曲がる割合を示す割合パラメータを取得する取得部と、
 前記割合パラメータに基づいて前記先行車が右左折するか否かを判定する判定部と、
 前記判定部による判定結果に基づいて前記安全装置の前記所定の作動条件を設定する設定部と、
を備える。
 自車ドライバは、先行車の方向指示器の作動を見て、先行車が右左折することを認識するが、方向指示器を作動させずに右左折する場合もあり、その先行車に対しても右左折に応じて適正に安全装置を作動させることが望ましい。
 この点、上記構成では、右左折可能な地点が認識された場合に、先行車が当該地点において方向指示器を作動させずに曲がる割合を示す割合パラメータを取得し、その割合パラメータに基づいて先行車が右左折するか否かを判定する。そして、その判定結果に基づいて安全装置の作動条件を設定するようにした。この場合、先行車が当該地点において方向指示器を作動させずに曲がる割合(割合パラメータ)に基づいて先行車が右左折するか否かを判定することで、例えば、割合パラメータが高い場合には、先行車の方向指示器が作動されていなくても、先行車の右左折を予期して安全装置の作動条件を設定することができる。これにより、先行車が方向指示器を作動させていない場合であっても、先行車の右左折の状況に応じて安全装置を適正に作動させることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車両制御装置の概略構成を示すブロック図であり、 図2は、交差点において先行車が方向指示器を作動させている状態を示す図であり、 図3は、作動率と左折確率との関係を示す相関図であり、 図4は、左折の車両割合と左折確率との関係を示す相関図であり、 図5は、ECUが実行する作動条件の設定処理の手順を示すフローチャートであり、 図6は、交差点の道路形態を説明するための図であり、 図7は、第2実施形態におけるECUが実行する処理手順を示すフローチャートであり、 図8は、交差角度と左折確率との関係を示す相関図である。
 (第1実施形態)
 図1は、車両制御装置を適用したプリクラッシュセーフティシステム(以下、PCSS:Pre-crash safety systemと記載する。)を示している。本実施形態において、PCSSは、自車両の進行方向前方に存在する他車両(先行車)を検出し、検出した先行車と自車両とが衝突する可能性がある場合に、先行車に対する自車両の衝突の回避動作、又は衝突の緩和動作を実施する。
 図1に示す自車両50は、物体検出センサとしてレーダ装置21及び撮像装置22と、ナビゲーション装置23と、送受信装置24と、ECU10と、安全装置として警報装置31及びブレーキ装置32を備えている。図1に示す実施形態において、ECU10が車両制御装置として機能する。
 レーダ装置21は、自車両50の前部においてその光軸が車両前方を向くように取り付けられており、ミリ波やレーザ等の指向性のある電磁波を送信波として車両前方に送信し、この送信波に対応する反射波に基づいて自車両前方の先行車の相対位置を所定周期で取得する。相対位置は、自車両50を原点とした場合に、自車両50の車幅方向をX軸とし、自車両50の進行方向をY軸とする相対座標上の位置として取得される。取得された相対位置は、所定周期でECU10へ出力される。
 撮像装置22は、車載カメラであって、例えばCCDカメラ、CMOSイメージセンサ、近赤外線カメラ等を用いて構成されている。撮像装置22は、自車両50の車幅方向中央の所定高さ(例えば、フロントガラス上端付近)に取り付けられ、自車前方へ向けて所定角度範囲で広がる領域を俯瞰視点から撮像する。撮像された撮像画像は、所定周期毎にECU10へ出力される。撮像装置22は、単眼カメラであってもよく、ステレオカメラであってもよい。
 ナビゲーション装置23は、自車両50が走行する道路の道路情報をECU10に提供する。例えば、ナビゲーション装置23は、地図情報を記録するメモリと、GPS(Global Positioning System)衛星から送信される測位情報により地図上での自車両50の位置を特定するための位置特定部とを備えている。そして、ナビゲーション装置23は、特定した地図上での自車位置に基づいて、この自車位置周囲の道路情報を参照する。道路情報には、右左折可能な地点の情報が含まれる。右左折可能な地点は、例えば交差点や店舗等の出入り口である。ナビゲーション装置23は、参照した道路情報をECU10に送信する。
 送受信装置24は、送受信装置等のシステムと情報の送受信が可能な装置である。送受信装置24は、例えば、先行車100に備わった送受信装置110から発信される情報を受信したり、送受信装置110に向けて情報を発信したりする。この場合、自車両50と先行車100とで車車間通信が可能となっている。また、送受信装置24は、自車両50や先行車100を含む複数の車両の走行データが蓄積された道路システム200と情報の送受信が可能となっている。
 警報装置31は、ECU10からの制御指令により、ドライバに対して自車前方に物体が存在することを警報する。警報装置31は、例えば、車室内に設けられたスピーカや、画像を表示する表示部により構成されている。
 ブレーキ装置32は、自車両50を制動する制動装置である。ブレーキ装置32は、前方物体に衝突する可能性が高まった場合に作動する。具体的には、ドライバによるブレーキ操作に対する制動力をより強くしたり(ブレーキアシスト機能)、ドライバによりブレーキ操作が行われてなければ自動制動を行ったりする(自動ブレーキ機能)。
 ECU10は、CPU、各種メモリ(ROM、RAM)を備える周知のマイクロコンピュータとして構成されており、ROM内の演算プログラムや制御データを参照して、自車両50における制御を実施する。ECU10は、レーダ装置21及び撮像装置22から出力される検出結果に基づいて、警報装置31やブレーキ装置32を作動させる。
 以下に、ECU10により実施されるPCSについて説明する。まず、ECU10は、レーダ装置21から出力される相対位置及び撮像装置22から出力される撮像画像に基づいて、先行車の相対位置(横位置、相対距離を含む)を取得する。ECU10は、撮像画像と予め用意された自動車識別用の辞書情報とに基づいて、撮像画像内の先行車を検出する。自動車識別用の辞書情報として、少なくとも後部パターンの辞書情報が用意されており、ECU10は、撮像画像と辞書情報とをパターンマッチングにより照合することで、先行車を検出する。また、ECU10は、物体情報に基づくレーダ位置と撮像画像に基づく画像位置とが近接する場合は、これらを融合して、フュージョン位置を物体の相対位置として取得する。
 ECU10は、取得した先行車の相対位置に基づいて自車両50が衝突する可能性があるか否かを判定する。具体的には、衝突回避制御の対象となる衝突予測領域内に先行車の横位置が属する場合に、先行車と自車両50とが衝突する可能性があると判定する。
 そして、ECU10は、衝突する可能性があると判定した先行車100に対し、所定の作動条件に基づいて安全装置31,32を作動させる。具体的には、自車両50と先行車100とが衝突するまでの余裕時間(TTC)を算出し、このTTCに応じて安全装置を作動させる。例えば、ECU10は、算出されたTTCが警報装置31の通常の作動タイミングTTC1以下となれば、ドライバに対して先行車が進行方向前方に存在することを警報する。また、算出されたTTCがブレーキ装置32の通常の作動タイミングTTC2以下となれば、自車両50を所定量だけ減速させる自動ブレーキを実施する。
 ところで、先行車100に対する衝突回避では、先行車の右左折の状況に応じてPCS制御が実施されることが望ましいと考えられる。例えば、図2では、交差点において先行車100が方向指示器120を作動させて左折する状態を示している。この場合、自車両50のドライバは先行車100の左の方向指示器の作動を見て先行車100の左折を把握する。そして、ドライバはそれに合わせて自車両50を減速させたり、右側に自車両50を寄せつつ先行車100を追い抜いたりすると考えられる。
 従来のPCS制御では、例えば先行車100の方向指示器120の作動の有無を検出することで先行車100の右左折を事前に判定し、それに応じて警報装置31を作動させたりする。一方、先行車100が方向指示器120を作動させずに交差点を右左折する場合も考えられ、かかる場合に、従来のPCS制御では先行車100の右左折を事前に判定することが困難となる。そのため、そのような車両に対しても右左折の状況に応じてPCS制御が実施されることが望ましい。
 そこで、本実施形態では、自車両50の前方に交差点が認識された場合に、先行車100が当該交差点において方向指示器120を作動させずに曲がる割合を示す割合パラメータ(左折確率P2)を取得し、その左折確率P2に基づいて先行車100が左折するか否かを判定する。そして、その判定結果に基づいて安全装置31,32の作動条件を設定するようにした。すなわち、方向指示器120を作動させずに左折する先行車100に対しても、それを予期して安全装置31,32が適切に作動されるようにした。なお、以下においては先行車100の左折について説明するが、右折についても同様に適用することができる。
 本実施形態において、ECU10は、先行車100の左折時における方向指示器120の履歴情報に基づいて、左折確率P2を算出する。先行車100の履歴情報は、送受信装置24で受信することによって取得される。ここで、図1を用いて、先行車100における履歴情報の取得について説明する。
 図1において、先行車100を含め道路走行する各車両は、送受信装置110に加え、方向指示器120と、旋回運動検出センサ130と、ナビゲーション装置140と、ECU150とを有している。
 方向指示器120は、ドライバによる操作位置が「右指示位置」、「左指示位置」及び「非作動位置」のいずれであるかを示す操作信号をECU150に出力する。
 旋回運動検出センサ130は、車両の進行方向から変化する旋回角速度を検出して、その検出信号をECU150に出力する。この場合、旋回角速度が大きいほど、車両が大きく曲がることを示す。旋回運動検出センサ130は、例えば、旋回角速度を検出するヨーレートセンサや、図示しない操舵装置による操舵角を検出する操舵角センサにより構成される。
 ナビゲーション装置140は、上述のナビゲーション装置23と同様にして構成される。なお、先行車100の都度の走行における移動軌跡は、ナビゲーション装置23の地図情報に逐次反映され、移動履歴として記憶される。
 ECU150は、CPU、各種メモリ(ROM、RAM)を備える周知のマイクロコンピュータとして構成されており、ROM内の演算プログラムや制御データを参照して、先行車100における制御を実施する。
 ECU150は、旋回運動検出センサ130からの検出信号に基づいて、先行車100が旋回運動(例えば左折)しているか否かを判定する。そして、先行車100が左折していると判定された場合、ECU150は、その判定回数を左折した回数として逐次記憶する。また、ECU150は、左折していると判定した時点から所定時間以内前に方向指示器120が作動されたか否か、つまり方向指示器120の操作位置が「左指示位置」であるか否かを判定する。そして、方向指示器120が作動されたと判定された場合、ECU150は、その判定回数を左折時において方向指示器120が作動された回数として逐次記憶する。なお、これらの判定結果が「作動履歴」に相当する。
 ECU150は、作動履歴に基づいて、左折時に方向指示器120が作動される割合(作動率P1)を算出する。作動率P1は、下記の式(1)に基づいて、算出される。
作動率P1=左折時に方向指示器120が作動された回数/左折した回数 … (1)
つまり、作動率P1が高いほど先行車100は左折時に方向指示器120を作動させる傾向があるといえ、作動率P1が低いほど先行車100は方向指示器120を作動さない傾向があるといえる。
 なお、作動率P1は、先行車100の過去全ての走行における作動履歴に基づいて算出されてもよく、イグニッションオンからイグニッションオフまでのワントリップ中の走行における作動履歴に基づいて算出されてもよい。また、ECU150が先行車100の移動履歴に基づき交差点ごとに作動履歴を記憶する構成であれば、作動率P1は、各交差点における作動率として算出されてもよい。この場合、交差点によっては、左折する際における方向指示器120の作動の有無が異なると考えられ、かかる構成とすることで、当該交差点における先行車100の左折を精度良く判定することができる。
 ECU150により取得された作動履歴や作動率P1は、送受信装置110へ出力され、先行車100の履歴情報として送受信装置24に送信される。つまり、履歴情報には、作動履歴や作動率P1が含まれる。そして、送受信装置24によって受信された履歴情報は、ECU10により取得される。なお、履歴情報には、先行車100の作動履歴が含まれていればよく、自車両50のECU10が作動率P1を算出してもよい。
 ECU10は、履歴情報に基づいて左折確率P2を算出する。左折確率P2は、例えば、図3に示すように作動率P1と左折確率P2との相関マップに基づいて取得される。図3では、作動率P1が高くなるほど左折確率P2が小さい値として取得される。つまり、作動率P1が高いほど、先行車100の方向指示器120の作動の信頼性は高いといえ、先行車100が方向指示器120を作動させずに左折する確率は低くなると考えられる。
 一方、先行車100が作動履歴を取得する構成を有していない場合や、先行車100との車車間通信において通信障害が生じた場合等には、先行車100の履歴情報が取得されない。この場合、ECU10は、先行車100に関する情報(履歴情報)に代えて、交差点の左折に関する統計情報を取得し、それに基づいて左折確率P2を算出する。この場合、ECU10は、道路システム200から、当該交差点を通過する車両の直進、左折、右折の割合を示す車両割合を取得する。
 道路システム200は、交差点ごとに、当該交差点を通過する車両の直進、左折、右折を含む走行パターンを逐次記憶しており、各交差点において、直進の車両割合、左折の車両割合、右折の車両割合を蓄積している。そして、ECU10は、送受信装置24を介して、道路システム200に記憶された各交差点における各車両割合から、自車両50前方の交差点の左折の車両割合を取得する。
 なお、左折の車両割合の取得に際し、さらに、当該交差点における、車速に応じた直進、左折、右折の各割合を示す統計情報を加味してもよい。この統計情報では、交差点に進入する直前の車速が大きいほど直進の割合が大きくなり、交差点に進入する直前の車速が小さいほど左折及び右折の割合が大きくなると考えられる。かかる構成において、ECU10は、レーダ装置21の入力等に基づいて、先行車100の交差点の所定距離手前の車速を取得する。そして、ECU10は、取得した車速に基づく当該交差点における各割合を加味して、自車両50前方の交差点の左折の車両割合を取得する。
 ECU10は、取得された左折の車両割合に基づいて左折確率P2を算出する。この場合、左折確率P2は、例えば図4に示すように左折の車両割合と左折確率P2との相関マップに基づいて取得される。図4では、左折の車両割合が高くなるほど左折確率P2が大きい値として取得される。この場合、交差点における先行車100の走行パターンは、交差点を通過する車両の走行パターンにある程度相関すると考えられるため、交差点において左折する車両の割合が高いほど、先行車100も左折する確率も高くなると考えられる。
 そして、ECU10は、算出された左折確率P2に基づいて、先行車100が左折するか否かを判定する。具体的には、左折確率P2が所定の閾値Thよりも大きい場合に、先行車100が左折すると判定する。そして、ECU10は、この判定結果に基づいて、安全装置31,32の作動条件を設定する。具体的には、先行車100が方向指示器120を作動させずに左折すると判定された場合は、安全装置31,32の作動条件を緩くする側に変更する。この場合、警報装置31の通常の作動タイミングTTC1を大きくする側に変更し、ブレーキ装置32の通常の作動タイミングTTC2を大きくする側に変更する。つまり、安全装置が作動されやすくなる側に作動条件を変更する。一方、先行車100が左折しないと判定された場合は、作動条件についての緩くする側への変更を行わない。つまりこの場合、ECU10は、通常の作動タイミングTTC1,TTC2に基づいて安全装置31,32を作動させる。
 図5のフローチャートを用いて、ECU10により実施される安全装置31,32の作動条件の設定処理について説明する。この処理は、ECU10により所定周期で繰り返し実施される。
 ステップS11では、先行車100を検出しているか否かを判定する。先行車100は、例えばレーダ装置21や撮像装置22の出力に基づいて検出される。ステップS11がYESであれば、ステップS12に進む。
 ステップS12では、自車両50の前方に交差点が認識されたか否かを判定する。具体的には、自車両50と交差点との距離が所定値Dth以下であって、かつ、先行車100が当該交差点を通過する前の状態であるか否かを判定する。例えば、自車両50と交差点と先行車100との位置関係が図2に示すような場合に、ステップS12が肯定される。なお、自車両50前方の交差点は、例えばナビゲーション装置23や撮像装置22の出力に基づいて認識される。ステップS12が「認識部」に相当する。
 ステップS12がYESであればステップS13に進む。ステップS13では、先行車100の履歴情報を取得する。ここでは、送受信装置110と送受信装置24との情報通信によって、履歴情報を取得する。なお、ステップS11及びステップS12がNOであれば、そのまま本処理を終了する。
 ステップS14では、先行車100の方向指示器120が作動しているか否かを判定する。例えば、撮像画像に基づいて先行車100の左の方向指示器の点滅状態を検出することで、方向指示器120の作動を判定する。
 ステップS14がYESであれば、先行車100は左折すると判断して、安全装置31,32の作動タイミングを設定する(ステップS20)。ここでは、作動タイミングを通常の作動タイミングよりも遅くする側に設定する。例えば、警報装置31の通常の作動タイミングTTC1を小さくする側に変更する。先行車100の方向指示器120が作動している場合、自車ドライバは先行車100が左折することを事前に把握することができ、それに基づいた走行を実施すると考えられる。例えば、自車両50が先行車100を追い抜きながら交差点を直進する場合もあり、かかる場合に安全装置が作動されるとドライバは煩わしさを感じると考えられる。そこで、安全装置の作動タイミングが通常の作動タイミングよりも遅くする側に設定されることでドライバの煩わしさが軽減される。
 一方、ステップS14がNOの場合、つまり先行車100の方向指示器120が作動していないと判定された場合は、先行車100が方向指示器120を作動させずに左折するか否かを判定する判定処理に進む。
 ステップS15では、先行車100の履歴情報が取得されたか否かを判定する。ステップS15がYESの場合、ステップS16へ進み、取得された履歴情報に基づいて左折確率P2を算出する。ここでは、履歴情報として作動率P1を用い、図3に示す相関マップに基づいて左折確率P2を算出する。
 一方、ステップS15がNOの場合、つまり先行車100の履歴情報が取得されない場合は、ステップS17に進む。ステップS17では、ステップS12で認識された交差点における左折の車両割合を取得する。左折の車両割合は、例えば道路システム200と送受信装置24との情報通信によって取得される。ステップS18では、取得された左折の車両割合に基づいて、左折確率P2を算出する。例えば、左折の車両割合を図4に示す相関マップに適用し左折確率P2を算出する。ステップS16が「取得部」に相当し、ステップS17が「割合取得部」に相当する。
 ステップS19では、算出された左折確率P2が所定の閾値Thよりも大きいか否かを判定する。ステップS19がYESであれば、方向指示器120を作動させずに先行車100が左折すると判断し、ステップS21に進む。ステップS21では、安全装置31,32の作動タイミングを設定する。ここでは警報装置31及びブレーキ装置32の作動タイミングをいずれも通常の作動タイミングよりも早くする側に設定する。つまり安全装置の作動条件を緩くする側に変更する。
 一方、ステップS19がNOであれば、先行車100は左折しないと判断し、ステップS22に進む。ここでは作動タイミングを通常の作動タイミングに設定する。例えば、警報装置31の作動タイミングをTTC1に設定し、ブレーキ装置32の作動タイミングをTTC2に設定する。ステップS19が「判定部」に相当し、ステップS20,S21が「設定部」に相当する。
 なお、ステップS16にて先行車100の履歴情報に基づいて左折確率P2を取得した場合と、ステップS18にて交差点における左折の車両割合に基づいて左折確率P2を取得した場合とで、後続のステップS19,S21における処理内容を変更してもよい。例えば、上記の各場合においてS19の閾値Thを異なる値としてもよく、又、上記の各場合においてステップS21の安全装置31,32の作動タイミングを早くする程度を異なるものとしてもよい。
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。
 上記構成では、右左折可能な地点として交差点が認識された場合に、先行車100が当該地点において方向指示器120を作動させずに曲がる割合を示す左折確率P2を取得し、その左折確率P2に基づいて先行車100が左折するか否かを判定する。具体的には、左折確率P2が所定の閾値Thよりも大きい場合に先行車100が左折すると判定する。そして、その判定結果に基づいて安全装置31,32の作動タイミングを設定するようにした。この場合、左折確率P2に基づいて先行車100が左折するか否かを判定することで、左折確率P2が所定の閾値Thよりも大きい場合には、先行車100の方向指示器120が作動されていなくても、先行車100の左折を予期して安全装置31,32の作動条件を設定することができる。これにより、先行車100が方向指示器120を作動させていない場合であっても、先行車100の左折の状況に応じて安全装置31,32を適正に作動させることができる。
 具体的には、先行車100について右左折時における方向指示器120の作動履歴を示す履歴情報に基づいて左折確率P2を取得するようにしたため、例えば先行車100が方向指示器120を作動させずに左折する傾向があるといった先行車100の方向指示器120の傾向を加味した上で、右左折を予期することができる。
 また、方向指示器120の作動率P1が高くなるほど、左折確率P2は小さい値として取得するようにしたため、例えば先行車100の方向指示器120の作動率P1が所定値よりも低い場合、つまり先行車100が方向指示器120を作動させずに左折する傾向がある場合は、先行車100が左折すると判定されやすくなる。これにより、先行車100が方向指示器120を作動させずに左折した場合であっても、それに対応して安全装置31,32を作動させることができる。
 交差点における先行車100の走行パターンは、交差点を通過する車両の走行パターンにある程度相関すると考えられる。この点を考慮し、先行車100の履歴情報が取得されていない場合に、ステップS16における左折確率P2に代えて、認識された交差点における車両割合に基づくパラメータ(ステップS18における左折確率P2)に基づいて、先行車100が左折するか否かを判定するようにしたため、先行車100の履歴情報が取得されていない場合であっても、統計に基づいて先行車100の左折を予期して安全装置31,32の作動条件を設定することができる。
 先行車100が方向指示器120を作動させずに曲がる場合、自車ドライバは、先行車100の右左折を事前に予測することが困難なため、例えば先行車100の右左折に伴う減速に対応できず、自車両50の減速が遅れることが考えられる。この点を考慮し、方向指示器120を作動させずに交差点を左折すると判定された場合に、安全装置31,32の作動タイミングを通常の作動タイミングTTC1,TTC2よりも早くする側に設定するようにした。この場合、作動タイミングを早くする側に設定することで、安全装置31,32が作動されやすくなる。そのため、先行車100の左折に伴う減速に対しても、安全装置31,32を速やかに作動させることができる。
 (第1実施形態の変形例)
 ・上記実施形態では、図5のステップS16において、ECU10は、作動履歴に基づいて左折確率P2を算出したが、作動履歴に他のパラメータを加えて左折確率P2を算出してもよい。他のパラメータとして、例えば、交差点における先行車100の直進、左折、右折の割合を示す進行方向割合が用いられる。交差点によっては、車両における直進、左折、右折の傾向が異なると考えられる。この点を考慮し、先行車100の履歴情報と認識された交差点での進行方向割合とに基づいて、左折確率P2が算出されることで、当該交差点における先行車100の左折の有無をより適切に判定することができる。なお、かかる構成では、先行車100の左折の進行方向割合が高い場合は、それよりも低い場合に比べて左折確率P2が大きい値として算出されるとよい。
 また、その他のパラメータとして、先行車100の挙動情報を用いてもよい。挙動情報として、例えば、先行車100の進行方向に交差する方向である横方向についての位置の変化量である横移動量が用いられる。一般に車両が交差点を左折する際には、交差点に進入する前に車両の横方向についての位置が左寄りに変化すると考えられる。この点を考慮し、先行車100の横移動量を用いて左折確率P2を算出してもよい。
 ・上記実施形態では、ECU10は、作動履歴を自車両50と先行車100との車車間通信によって取得したが、例えば、作動履歴を自車両50と道路システム200との通信によって取得してもよい。この場合、道路システム200は、道路走行する各車両と通信可能となっており、各車両について右左折可能な地点における方向指示器の作動実績を逐次取得し、メモリ(記憶部)に記憶するシステムとなっている。そして、ECU10は、先行車100を検出すると、撮像画像に基づいて認識される先行車100の車両ナンバを道路システム200に送信する。そして、道路システム200において蓄積された各車両の作動実績から先行車100の作動実績が照合され、その作動実績が履歴情報としてECU10に取得される。上記構成では、先行車100の履歴情報を安定して取得することができると考えられる。
 ・上記実施形態では、警報装置31及びブレーキ装置32の作動タイミングをいずれも早くする側に変更したが、いずれか一方のみを早くする側に変更してもよく、例えば警報装置31の作動タイミングのみを早くする側に変更してもよい。
 (第2実施形態)
 上記第1実施形態では、先行車100に関する情報(履歴情報)に基づいて、左折確率P2を算出する構成とした。これに対し、第2実施形態では、交差点の道路形態に基づいて左折確率P2を算出する構成としている。
 交差点によって道路形態は様々であると考えられる。例えば、図6において、自車両50が交差点Q,Rを矢印の方向で直進する場合、交差点Qでは自車両50の走行路に対し道路L1が直交するのに対し、交差点Rでは自車両50の走行路に対し道路L2が直交していない。ここで、車両が交差点Rを左折する場合と交差点Qを左折する場合とを比較すると、交差点Rを左折する場合の方が車両の旋回角度が小さくなるため、方向指示器を作動させない車両の数が増加すると考えられる。
 そこで、ECU10は、自車両50の前方の交差点の道路形態を取得し、その道路形態に基づいて左折確率P2を算出する。交差点の道路形態は、例えばナビゲーション装置23の地図情報に基づいて取得される。
 第2実施形態において実施される安全装置31,32の作動条件の設定処理について、図7のフローチャートを用いて説明する。本処理は、上述の図5に置き換えてECU10により所定周期で繰り返し実施される。なお図7では、図5と同様の処理について同一のステップ番号を付して説明を簡略にする。
 図7において、自車両50の前方に先行車100が検出され、かつ交差点が認識されていると判定された場合(ステップS11,S12が共にYESの場合)、ステップS31に進む。ステップS31では、ステップS12で認識された交差点の道路形態を取得する。道路形態として、例えば交差角度θを取得する。交差角度θは、例えば、交差点を自車両50が左折するとした場合における自車両50の旋回角度に対応した角度(例えば、図6のθq,θr)である。
 続くステップS14において、先行車100の方向指示器が作動していないと判定されると(ステップS14:NO)、ステップS32に進む。ステップS32では、道路形態に基づいて左折確率P2を算出する。左折確率P2は、例えば、図8に示すように交差角度θと左折確率P2との相関マップに基づいて取得される。図8では、交差角度θが所定値A(例えば90°よりも小さい値)よりも大きい場合は、左折確率P2が一定となっている。一方、交差角度θが所定値Aよりも小さい場合、つまり交差角度θが鋭角の場合は、交差角度θが小さくなるほど左折確率P2が大きい値として取得される。この場合、交差角度θが小さくなるほど、車両の旋回角度(操舵装置を操作する量)は小さくすむため、ドライバが方向指示器を作動させずに左折する確率は高くなると考えられる。
 ステップS19では、算出された左折確率P2が所定の閾値Thよりも大きいか否かを判定し、その判定結果に基づいて安全装置31,32の作動タイミングを設定する(S21,S22)。
 道路形態によっては、車両において方向指示器を作動させるか否かの傾向に違いがあることが考えられる。例えば、右左折地点である交差点で道路が直交しておらず、鋭角をなす角度で道路が交差している場合、当該地点において方向指示器を出さない車両が増えると考えられる。この点を考慮し、上記構成では、道路形態として交差点における交差角度θに基づいて左折確率P2を算出するようにしたため、交差角度θに基づく方向指示器の作動状況の傾向を加味して、右左折の判定を実施することができる。
 (第2実施形態の変形例)
 ・上記第2実施形態では、道路形態として交差点における交差角度θを用いて左折確率P2を算出したが、これを変更し、道路形態に関する他のパラメータを用いて左折確率P2を算出してもよい。例えば、Y字状等の分岐路において左折確率P2を算出してもよい。
 (変形例)
 ・上記実施形態の図5及び図7のステップS21において、左折確率P2に応じて作動タイミングを早くする側に設定してもよい。この場合、例えば左折確率P2が高くなるほど作動タイミングがより早くなる側に設定される。
 ・上記実施形態の図5及び図7のステップS21では、安全装置31,32の作動タイミングを早くする側に設定したが、これを変更し、安全装置31,32の作動タイミングを遅くする側に設定してもよい。この場合、例えば警報装置31の通常の作動タイミングTTC1を小さくする側に変更し、ブレーキ装置32の通常の作動タイミングTTC2を小さくする側に変更する。つまり、安全装置が作動されにくくなる側に作動条件を変更する。
 ここで、先行車100が方向指示器120を作動させていなくても、例えば先行車100が減速しながら進行方向右側や進行方向左側に横移動する場合には、自車ドライバは、先行車100の右左折を把握することができると考えられる。かかる場合には自車両50が先行車100を追い抜きながら交差点を直進することが考えられ、その際に安全装置が作動されるとドライバは煩わしさを感じる。そこで、安全装置31,32の作動条件を厳しくする側に変更することで、ドライバの煩わしさが軽減される。
 なお、かかる構成において、ステップS21にて左折確率P2に応じて作動タイミングを遅くする側に設定してもよい。この場合、例えば左折確率P2が高くなるほど作動タイミングがより遅くなる側に設定される。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (9)

  1.  自車両(50)に搭載され、前記自車両の前方の先行車(100)に対し、所定の作動条件に基づき安全装置(31,32)を作動させる車両制御装置(10)であって、
     前記自車両の前方の右左折可能な地点を認識する認識部と、
     前記認識部により前記右左折可能な地点が認識された場合に、前記先行車が当該地点において方向指示器を作動させずに曲がる割合を示す割合パラメータを取得する取得部と、
     前記割合パラメータに基づいて前記先行車が右左折するか否かを判定する判定部と、
     前記判定部による判定結果に基づいて前記安全装置の前記所定の作動条件を設定する設定部と、
    を備える車両制御装置。
  2.  前記取得部は、前記割合パラメータを、前記先行車について右左折時における方向指示器の作動履歴を示す履歴情報に基づくパラメータとして取得する請求項1に記載の車両制御装置。
  3.  前記取得部は、前記作動履歴より求められる右左折時における方向指示器の作動率が所定値よりも小さい場合は、前記所定値よりも大きい場合に比べて前記割合パラメータを大きい値として取得し、
     前記判定部は、前記割合パラメータが所定の閾値よりも大きい場合に前記先行車が右左折すると判定する請求項2に記載の車両制御装置。
  4.  前記認識部は、前記右左折可能な地点として、前記自車両の前方の交差点を認識し、
     前記履歴情報は、前記認識部により認識された交差点における右左折時の方向指示器の作動履歴を示す情報である請求項2又は3に記載の車両制御装置。
  5.  前記取得部は、前記割合パラメータを、前記履歴情報と、前記認識部により認識された交差点における前記先行車の直進、右折、左折の割合を示す進行方向割合とに基づくパラメータとして取得する請求項4に記載の車両制御装置。
  6.  道路走行する各車両について前記右左折可能な地点における各車両の方向指示器の作動実績を逐次取得し記憶部に記憶する道路システム(200)に適用され、
     前記取得部は、前記記憶部に記憶された各車両の前記作動実績より前記先行車についての前記履歴情報を取得する請求項2乃至5のいずれか1項に記載の車両制御装置。
  7.  前記認識部は、前記右左折可能な地点として、前記自車両の前方の交差点を認識し、
     交差点ごとに、当該交差点を通過する車両の直進、左折、右折の割合を示す車両割合を取得する割合取得部を備え、
     前記判定部は、前記履歴情報が取得されない場合に、前記割合パラメータに代えて、前記認識部により認識された交差点における前記車両割合に基づくパラメータに基づいて、前記先行車が右左折するか否かを判定する請求項2乃至6のいずれか1項に記載の車両制御装置。
  8.  前記取得部は、前記割合パラメータを、前記認識部により認識された右左折可能な地点における道路形態に基づくパラメータとして取得する請求項1又は2に記載の車両制御装置。
  9.  前記認識部は、前記右左折可能な地点として、前記自車両の前方の交差点を認識し、
     前記設定部は、前記判定部により前記先行車が前記交差点を右左折すると判定された場合に、前記安全装置の前記所定の作動条件を緩くする側に設定する請求項1乃至8のいずれか1項に記載の車両制御装置。
PCT/JP2018/022593 2017-07-05 2018-06-13 車両制御装置 WO2019009032A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-132108 2017-07-05
JP2017132108A JP6662351B2 (ja) 2017-07-05 2017-07-05 車両制御装置

Publications (1)

Publication Number Publication Date
WO2019009032A1 true WO2019009032A1 (ja) 2019-01-10

Family

ID=64949869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022593 WO2019009032A1 (ja) 2017-07-05 2018-06-13 車両制御装置

Country Status (2)

Country Link
JP (1) JP6662351B2 (ja)
WO (1) WO2019009032A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111731241A (zh) * 2020-06-28 2020-10-02 浙江梧斯源通信科技股份有限公司 一种卡车右转弯防撞设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7313298B2 (ja) * 2020-02-13 2023-07-24 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7444702B2 (ja) 2020-05-29 2024-03-06 株式会社デンソーテン 車両制御装置および車両制御方法
JP2022110687A (ja) * 2021-01-19 2022-07-29 株式会社日立製作所 安全制御装置および安全ルール調整方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221573A (ja) * 2010-04-02 2011-11-04 Denso Corp 運転支援装置および運転支援システム
WO2017110002A1 (ja) * 2015-12-25 2017-06-29 パイオニア株式会社 予測装置、予測システム、予測方法および予測プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221573A (ja) * 2010-04-02 2011-11-04 Denso Corp 運転支援装置および運転支援システム
WO2017110002A1 (ja) * 2015-12-25 2017-06-29 パイオニア株式会社 予測装置、予測システム、予測方法および予測プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111731241A (zh) * 2020-06-28 2020-10-02 浙江梧斯源通信科技股份有限公司 一种卡车右转弯防撞设备

Also Published As

Publication number Publication date
JP6662351B2 (ja) 2020-03-11
JP2019016104A (ja) 2019-01-31

Similar Documents

Publication Publication Date Title
EP3208165B1 (en) Vehicle safety assist system
US9896094B2 (en) Collision avoidance control system and control method
US9815459B2 (en) Collision avoidance support device
EP2803546B1 (en) Collision mitigation apparatus
JP5886185B2 (ja) 自動車の運転操縦を自動認識するための方法及びこの方法を含む運転者援助システム
JP6550795B2 (ja) 車両制御装置
EP2878507A1 (en) Drive assist device
US11400936B2 (en) Travel assistance device
JP4602277B2 (ja) 衝突判定装置
WO2019009032A1 (ja) 車両制御装置
JP2012519346A5 (ja)
JP5692098B2 (ja) 車両用装置
JP2019093764A (ja) 車両制御装置
EP3524935B1 (en) Vehicle perception-data gathering system and method
US11244179B2 (en) Stop line position estimation device and vehicle control system
CN113771867A (zh) 一种行驶状态的预测方法、装置和终端设备
JP2020097346A (ja) 車両の走行制御装置
EP3709279A1 (en) Target detection device for vehicle
JP4946212B2 (ja) 走行支援装置
CN110979277A (zh) 基于前方车辆状态的防追尾系统及方法
JP6733616B2 (ja) 車両制御装置
JP2012118874A (ja) 車両の制御装置
EP4080307A1 (en) Remote function selection device
US20230030310A1 (en) Control device for collision avoidance assistance, and collision avoidance assistance method
WO2023054197A1 (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828972

Country of ref document: EP

Kind code of ref document: A1