WO2023162086A1 - 燃料噴射制御装置及び燃料噴射制御方法 - Google Patents

燃料噴射制御装置及び燃料噴射制御方法 Download PDF

Info

Publication number
WO2023162086A1
WO2023162086A1 PCT/JP2022/007594 JP2022007594W WO2023162086A1 WO 2023162086 A1 WO2023162086 A1 WO 2023162086A1 JP 2022007594 W JP2022007594 W JP 2022007594W WO 2023162086 A1 WO2023162086 A1 WO 2023162086A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
fuel
injection
temperature
amount
Prior art date
Application number
PCT/JP2022/007594
Other languages
English (en)
French (fr)
Inventor
知哉 舟橋
亮 草壁
義人 安川
匡行 猿渡
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/007594 priority Critical patent/WO2023162086A1/ja
Publication of WO2023162086A1 publication Critical patent/WO2023162086A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a fuel injection control device and a fuel injection control method for controlling a fuel injection device that injects fuel into the combustion chamber of an internal combustion engine.
  • Patent Document 1 fuel injection is performed at least twice in the compression stroke, thereby suppressing HC and PN emitted from the combustion chamber when the catalyst warms up after the engine starts, while improving combustion stability.
  • a control method for fuel injection is disclosed.
  • the environmental temperatures of the engine such as the temperature of the fuel, the temperature of the fuel injection device, the temperature of the cooling water, the temperature of the piston and the wall surface of the combustion chamber are lowered.
  • the viscosity of the fuel increases, resulting in a decrease in the penetration power and vaporization rate of the spray in the combustion chamber.
  • a decrease in the temperature of the cooling water, the temperature of the piston and the wall surface of the combustion chamber also decreases the temperature of the spray, resulting in a decrease in the penetration power and vaporization rate of the spray.
  • a fuel injection control device is a fuel injection control device that controls a fuel injection device capable of injecting fuel multiple times during one combustion cycle of an internal combustion engine. a control unit that controls the fuel injection amount in the direction of increasing the fuel injection amount in the latter part of the plurality of fuel injections in the compression stroke as the environmental temperature of the internal combustion engine becomes lower when the engine is started or restarted.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which showed an example of the fuel-injection system containing the fuel-injection apparatus and ECU which concern on the 1st Embodiment of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is the figure which showed the example of the vertical cross section of the fuel-injection apparatus which concerns on the 1st Embodiment of this invention, and the structural example of ECU connected to this fuel-injection apparatus. It is the figure which showed the cross-sectional enlarged view of the drive part structure of the fuel-injection apparatus in the 1st Embodiment of this invention.
  • FIG. 4 is a timing chart showing changes over time in general injection pulses, drive voltage, drive current, and valve body displacement amount when driving the fuel injection device.
  • FIG. 2 is a circuit diagram showing details of an ECU of the fuel injection device according to the first embodiment of the present invention
  • FIG. 1 is a schematic diagram showing a configuration example of the inside of a cylinder of an engine and the surroundings of the engine according to the first embodiment of the present invention
  • FIG. 1 is a configuration diagram showing part of an intake system and an exhaust system of an engine according to a first embodiment of the present invention
  • FIG. It is the figure which showed an example of the crank angle, the injection timing, and the lift amount of a fuel injection valve in the 1st Embodiment of this invention.
  • FIG. 1 is a schematic diagram showing a configuration example of the inside of a cylinder of an engine and the surroundings of the engine according to the first embodiment of the present invention
  • FIG. 1 is a configuration diagram showing part of an intake system and an exhaust system of an engine according to a first embodiment
  • FIG. 9 is a diagram showing in-cylinder equivalence ratio distributions when the outside air temperature is normal temperature and when the outside air temperature is low when the fuel injection control indicated by the solid line in FIG. 8 is performed.
  • FIG. 4 is a diagram showing the amount of fuel adhering to the combustion chamber wall surface and the piston crown surface by the fuel injection control according to the first embodiment of the present invention;
  • FIG. 9 is a diagram showing an in-cylinder equivalence ratio distribution near ignition timing at low temperatures when the fuel injection control according to the first embodiment of the present invention indicated by the dashed line in FIG. 8 is performed;
  • FIG. 4 is a diagram showing the amount of fuel adhering to the combustion chamber wall surface and the piston crown surface by the fuel injection control according to the first embodiment of the present invention
  • FIG. 9 is a diagram showing an in-cylinder equivalence ratio distribution near ignition timing at low temperatures when the fuel injection control according to the first embodiment of the present invention indicated by the dashed line in FIG. 8 is performed;
  • FIG. 9 is
  • FIG. 7 is a diagram showing an example of crank angles, injection timings, and lift amounts of fuel injection valves when PL injection in the latter half of a compression stroke is divided according to a second embodiment of the present invention
  • FIG. 13 is a diagram showing an in-cylinder equivalence ratio distribution near ignition timing when a low temperature is assumed when the fuel injection control indicated by the dashed line in FIG. 12 is performed according to the second embodiment of the present invention
  • FIG. 1 is a schematic diagram showing an example of a fuel injection system according to the first embodiment.
  • the fuel injection system 1 is an example in which the present invention is applied to a cylinder direct injection engine (an example of an internal combustion engine), but the present invention is not limited to this example.
  • the in-cylinder direct injection engine is simply referred to as "engine”.
  • the in-cylinder direct injection engine includes four cylinders 108 (engine cylinders).
  • the fuel injection system 1 includes four fuel injection devices 101A to 101D corresponding to the four cylinders 108, and an ECU (Engine Control Unit) 150 as an example of a fuel injection control device.
  • the fuel injection devices 101A to 101D are referred to as "fuel injection device 101" when not distinguished.
  • fuel injection devices 101A to 101D for side injection are provided so that atomized fuel is directly injected into the combustion chamber 107 from fuel injection holes 219 (see FIG. 2, which will be described later).
  • Fuel stored in a fuel tank (not shown) is pressurized by a fuel pump 106, sent to a rail-shaped fuel pipe 105 through a high-pressure pipe 120, and delivered from the fuel pipe 105 to each of the fuel injection devices 101A to 101D. It has become.
  • a pressure sensor 102 for measuring the pressure of fuel in the fuel pipe 105 is installed at one end of the fuel pipe 105 .
  • the fuel pressure in the fuel pipe 105 fluctuates depending on the balance between the flow rate of fuel discharged by the fuel pump 106 and the injection amount of fuel injected into each combustion chamber 107 by each fuel injection device 101 .
  • the ECU 150 controls the fuel pump 106 based on the sensor information (information indicating the fuel pressure value) output from the pressure sensor 102 so that the fuel pressure in the fuel pipe 105 reaches a predetermined target pressure value. to control the amount of fuel discharged.
  • Injection of fuel by the fuel injection device 101 is controlled by an injection pulse (see FIG. 4 described later) sent from the CPU 104 (an example of a control unit) of the ECU 150 .
  • a command based on an injection pulse (pulse signal) whose pulse width is adjusted is input to the drive circuit 103 provided for each fuel injection device 101 .
  • the drive circuit 103 determines the waveform of the drive current based on the command (injection pulse) from the CPU 104, and supplies the drive current having the above waveform to the fuel injection device 101 for a period of time based on the pulse width.
  • the control unit (CPU 104 of ECU 150) of the fuel injection control device controls the fuel injection device (fuel injection device 101) based on the pulse width of the injection pulse when changing the injection amount during fuel injection in one combustion cycle, which will be described later. Change the driving current waveform. By changing the current waveform based on the pulse width of the injection pulse in this way, the injection amount of the fuel injected by the fuel injection device can be adjusted. For example, by changing the current value of the driving current supplied to the fuel injection device, the lift amount of the fuel injection valve (valve element 214 in FIG. 2, which will be described later) is changed, and the injection amount is adjusted. Further, by changing the timing (off/on switching) of the injection pulse sent from the CPU 104 to the drive circuit 103, the timing at which the fuel injection device injects fuel can be adjusted.
  • the drive circuit 103 and the CPU 104 of the ECU 150 may be mounted as an integrated component or substrate. Also, the drive circuit 103 may be separate from the ECU 150 .
  • FIG. 2 is a diagram showing an example of a longitudinal section of the fuel injection device 101 and an example of the configuration of the ECU 150 connected to the fuel injection device 101.
  • FIG. 3 is an enlarged cross-sectional view of the driving portion structure of the fuel injection device 101. As shown in FIG.
  • the CPU 104 of the ECU 150 takes in various signals indicating the state of the engine from various sensors, and determines the width of the injection pulse and the driving current for controlling the injection amount of the fuel injected from the fuel injection device 101 according to the operating conditions of the engine. Calculate current value and injection timing.
  • CPU 104 outputs an ejection pulse corresponding to the calculation result to drive circuit 103 .
  • the CPU 104 is equipped with an A/D converter (not shown), an I/O port, etc. for capturing signals from various sensors.
  • Various sensors include, for example, a temperature sensor that measures the temperature of engine cooling water (an example of engine environmental temperature), a sensor that measures engine speed (rotational speed) (for example, rotation of a crankshaft (not shown) of engine) sensor for detecting the angle), a pressure sensor 102 for measuring the fuel pressure in the fuel pipe 105, and an exhaust temperature sensor for measuring the exhaust temperature.
  • An ejection pulse output from the CPU 104 is input to the drive circuit 103 through the signal line 110 .
  • the drive circuit 103 controls the voltage applied to the solenoid 205 (an example of a coil) of the fuel injection device 101 and supplies current to the solenoid 205 .
  • the CPU 104 can communicate with the driving circuit 103 (driving IC 502 in FIG. 5 described later) through the communication line 111 .
  • the CPU 104 controls to switch the drive current generated by the drive circuit 103, or changes the setting value of the drive current and the time for outputting the current, depending on the pressure of the fuel supplied to the fuel injection device 101, operating conditions, and the like. You can
  • the fuel injection device 101 is a normally closed solenoid valve (electromagnetic fuel injection device), and includes a solenoid 205 as an example of a coil, a mover 202, a fixed core 207, and a substantially rod-shaped valve body 214 ( An example of a fuel injection valve).
  • a solenoid 205 as an example of a coil
  • a mover 202 moves to a fixed core
  • a substantially rod-shaped valve body 214 An example of a fuel injection valve.
  • the valve body 214 is biased in the valve closing direction (downward in the drawing) by the spring 210, and the valve body 214 is brought into close contact with the valve seat 218 (valve closed state). state).
  • the mover 202 is biased in the valve opening direction by a return spring 212 .
  • the force acting on the valve body 214 by the spring 210 is greater than the force by the return spring 212, so the upper end surface 202A of the armature 202 contacts the flange portion 302 of the valve body 214, and the armature is closed. 202 becomes stationary.
  • the valve body 214 and the mover 202 are configured to be relatively displaceable, and both are included in the nozzle holder 201 .
  • the nozzle holder 201 has an end surface 303 inside which serves as a spring seat for the return spring 212 .
  • the biasing force of the spring 210 is adjusted at the time of assembly by adjusting the pressing amount of the spring retainer 224 fixed to the inner diameter of the fixed core 207 .
  • the fixed core 207, the mover 202, the nozzle holder 201, and the housing 203 constitute a magnetic circuit.
  • a gap 301 is provided between the mover 202 and the fixed core 207 .
  • a magnetic diaphragm 211 is formed by forming circumferential grooves on the outer peripheral surface of the nozzle holder 201.
  • the solenoid 205 is attached to the outer peripheral side of the nozzle holder 201 while being wound around the bobbin 204 .
  • a rod guide 215 is fixed to the nozzle holder 201 at a position near the tip of the valve body 214 on the valve seat 218 side.
  • the valve body 214 has two sliding locations, one where the flange portion 302 of the valve body 214 and the fixed core 207 slide and the other where the valve body 214 and the rod guide 215 slide. It is guided and moves in the valve shaft direction (vertical direction in the drawing).
  • An orifice 216 having a valve seat 218 and a fuel injection hole 219 is fixed to the tip of the nozzle holder 201 .
  • the contact between the tip of the valve body 214 and the valve seat 218 of the orifice 216 seals the internal space (fuel passage) between the nozzle holder 201 and the tip of the valve body 214. It is designed to be in a closed state (valve closed state).
  • the fuel supplied from the fuel pipe 105 to the fuel injection device 101 flows through the fuel passage hole 231 to the tip side of the valve body 214 when the fuel injection device 101 is in the valve closed state. Since the tip of the seat 218 and the valve seat 218 of the orifice 216 are in contact with each other to seal the fuel injection hole 219 , fuel is not injected to the outside through the fuel injection hole 219 .
  • a differential pressure is generated between the upper portion and the lower portion of the valve body 214 due to the fuel pressure.
  • the load of 210 pushes the valve body 214 in the valve closing direction.
  • the movable element 202 After the movable element 202 collides with the fixed core 207 , the movable element 202 bounces back due to the reaction force from the fixed core 207 . , and eventually stops, ending the valve opening operation. At this time, since the return spring 212 applies a force to the movable element 202 in the direction of the fixed core 207, it is possible to shorten the time until the rebound converges. Since the rebounding motion is small, the time during which the gap between the mover 202 and the fixed core 207 becomes large is shortened, and stable motion can be performed even for injection pulses with a shorter pulse width.
  • the mover 202 and the valve body 214 that have completed the valve opening operation in this way stand still in the valve open state.
  • the valve When the valve is open, there is a gap between the valve body 214 and the valve seat 218 , and fuel is injected from the fuel injection hole 219 .
  • the fuel supplied through the fuel passage hole 231 passes through the central hole provided in the fixed core 207 and the lower fuel passage hole 305 provided in the mover 202, and flows in the downstream direction (toward the fuel injection hole 219). ).
  • valve body 214 changes from the valve-open state to the valve-closed state
  • the valve body 214 comes into contact with the valve seat 218, and then the mover 202 separates from the valve body 214 and moves in the valve-closing direction.
  • the action of the return spring 212 returns the valve to the initial position of the closed state. That is, the mover 202 is separated from the valve body 214 at the moment when the valve body 214 is closed.
  • the mass of the movable member at the moment when the valve body 214 collides with the valve seat 218 can be reduced by the mass of the mover 202 , so that the movable member (substantially the valve body 214 ) can move between the valve seat 218 and the valve seat 218 . It is possible to reduce the collision energy when colliding. Therefore, the bouncing of the valve body 214 caused by the collision of the valve body 214 with the valve seat 218 can be suppressed.
  • the valve body 214 is in contact with the valve seat 218 for a short period of time at the moment when the movable element 202 collides with the fixed core 207 when the valve is opened and at the moment when the valve body 214 collides with the valve seat 218 when the valve is closed. and mover 202 .
  • the bounding of the mover 202 against the fixed core 207 and the bounding of the valve body 214 against the valve seat 218 can be suppressed.
  • FIG. 5 is a circuit diagram showing the details of the ECU 150 including the drive circuit 103 of the fuel injection device 101. As shown in FIG.
  • the ECU 150 includes a CPU 104 as an example of a control section and a drive circuit 103 .
  • the drive circuit 103 incorporates a drive IC (Integrated Circuit) 502 .
  • the CPU 501 and the drive IC 502 can also be called a control unit.
  • the CPU 104 monitors the state of the engine output by various sensors such as a temperature sensor that measures the temperature of engine cooling water, an A/F (Air Flow) sensor (not shown), an oxygen sensor, and a crank angle sensor. Capture the signal (information) that indicates
  • the pressure sensor 102 is attached to the fuel pipe 105 upstream of the fuel injection device 101 (see FIG. 1).
  • the A/F sensor measures the amount of air flowing into the cylinder 108 (air-fuel ratio).
  • the oxygen sensor detects the oxygen concentration of the exhaust gas discharged from cylinder 108 .
  • the CPU 104 determines the pulse width (injection pulse width Ti) of an injection pulse for controlling the injection amount of fuel injected from the fuel injection device 101 according to the operating conditions of the internal combustion engine, based on the signals received from various sensors, Calculations such as injection timing are performed.
  • the CPU 104 After calculating the injection pulse width Ti (that is, the injection amount), the injection timing, and the like, the CPU 104 outputs an injection pulse with the injection pulse width Ti to the drive IC 502 of the drive circuit 103 at an appropriate timing through the communication line 504 . After that, the driving IC 502 switches the energization/non-energization of the switching elements 505, 506, and 507 to supply the driving current to the fuel injection device 101 (solenoid 205).
  • the ECU 150 is equipped with a register and a memory for storing numerical data required for engine control, such as calculating the injection pulse width.
  • the registers and memory may be internal to CPU 104 or may be located external to CPU 104 .
  • FIG. 5 shows an example in which a memory 104M (an example of a storage medium) is arranged outside the CPU 104. As shown in FIG.
  • a computer program for the CPU 104 to control the driving of the fuel injection device 101 may be stored in the memory 104M.
  • the CPU 104 reads out and executes the computer program recorded in the memory 104M, thereby implementing all or part of the function of controlling the drive of the fuel injection device 101 .
  • another arithmetic processing device such as an MPU (Micro Processing Unit) may be used instead of the CPU 104.
  • the switching elements 505 , 506 , 507 are composed of, for example, FETs (Field Effect Transistors), bipolar transistors, or the like, and can switch energization/non-energization of the fuel injection device 101 .
  • FETs Field Effect Transistors
  • bipolar transistors bipolar transistors
  • the switching element 505 is connected between a booster circuit 514 (high voltage source) that supplies the boosted voltage VH and a high voltage side terminal (power supply side terminal 590) of the solenoid 205 provided in the fuel injection device 101.
  • the boosted voltage VH output by the booster circuit 514 is higher than the low voltage (battery voltage VB) supplied to the drive circuit 103 by a low voltage source (eg, battery) not shown.
  • the voltage value of the battery voltage VB is about 12 to 14V as an example.
  • Boosted voltage VH which is the initial voltage value of booster circuit 514 , is 60 V, for example, and is generated by boosting battery voltage VB by booster circuit 514 .
  • the booster circuit 514 may be composed of, for example, a DC/DC converter or the like, and as shown in FIG. can be In the booster circuit 514 shown in FIG. 5, when the transistor 531 is turned on, the current due to the battery voltage VB flows through the solenoid 530 to the ground potential 534 side. On the other hand, when the transistor 531 is turned off, the high voltage generated at the solenoid 530 is rectified through the diode 532 and the capacitor 533 is charged. By repeatedly turning ON/OFF the transistor 531, the voltage of the capacitor 533 rises to the boosted voltage VH.
  • the transistor 531 is connected to the driving IC 502 or the CPU 104 and controlled ON/OFF by the driving IC 502 or the CPU 104 .
  • the voltage output from the booster circuit 514 is configured to be detected by the driving IC 502 or the CPU 501 .
  • a diode 535 is provided between the power supply side terminal 590 of the solenoid 205 and the switching element 505 so that current flows from the booster circuit 514 (high voltage source) toward the solenoid 205 and the ground potential 515 .
  • a diode 511 is also provided between the power supply side terminal 590 of the solenoid 205 and the switching element 507 so that current flows from a low voltage source (such as a battery) to the solenoid 205 and the ground potential 515 . Therefore, while the switching element 506 is energized, no current flows from the ground potential 515 to the battery and the booster circuit 514 via the solenoid 205 .
  • the switching element 507 is connected between the battery, which is a low voltage source, and the power supply side terminal 590 of the fuel injection device 101 .
  • Switching element 506 is connected between the low voltage side terminal of fuel injector 101 and ground potential 515 .
  • the drive IC 502 detects the value of current flowing through the fuel injection device 101 (each portion of the drive circuit 103) by means of current detection resistors 508, 512, and 513, respectively.
  • the drive IC 502 switches between energization/non-energization of the switching elements 505, 506, and 507 according to the detected current value to generate a desired drive current.
  • Diodes 509 and 510 are provided to apply a reverse voltage to solenoid 205 of fuel injector 101 to rapidly reduce the current being supplied to solenoid 205 .
  • the CPU 104 communicates with the drive IC 502 through the communication line 503, and can switch the drive current generated by the drive IC 502 according to the pressure of the fuel supplied to the fuel injection device 101 and operating conditions. Both ends of the resistors 508 , 512 and 513 are connected to the A/D conversion port of the drive IC 502 so that the drive IC 502 can detect the voltage applied across the resistors 508 , 512 and 513 .
  • FIG. 4 is a timing chart showing changes over time in general injection pulses, drive voltage, drive current, and valve body displacement amount when driving the fuel injection device 101 .
  • the drive IC 502 When an injection pulse (ON) from the CPU 104 is input to the drive IC 502, the drive IC 502 energizes the switching elements 505 and 506 to generate a high voltage 401 higher than the battery voltage (boosted voltage VH boosted by the booster circuit 514). is applied to the solenoid 205 to start supplying current to the solenoid 205 .
  • the driving IC 502 stops applying the high voltage 401 when the current value to the solenoid 205 reaches the peak current value I peak previously determined by the CPU 104 .
  • the driving IC 502 makes the switching element 505, the switching element 506, and the switching element 507 non-energized.
  • the diode 509 and the diode 510 are energized by the back electromotive force due to the inductance of the fuel injection device 101, and the current is fed back to the high voltage power supply (booster circuit 514) side, and the current supplied to the fuel injection device 101 is reduced to , like the current 402, drops rapidly from the peak current value I peak .
  • the switching element 506 may be turned on during the transition period from the peak current value I peak to the current 403 (holding current). , a current is regenerated in the circuit, a voltage of approximately 0 V is applied to the solenoid 205, and the current gradually decreases.
  • the driving IC 502 When the current value becomes smaller than a predetermined current value 404, the driving IC 502 energizes the switching element 506 and applies the battery voltage VB by energizing/non-energizing the switching element 507 so that the predetermined current 403 is maintained. Provide a switching period to control.
  • the fluid force acting on the valve body 214 in the valve closing direction increases, and the time required for the valve body 214 to reach the target opening lengthens.
  • the timing of reaching the target opening may be delayed with respect to the arrival time of the peak current I peak , but when the current is rapidly reduced like the current 402, the magnetic attractive force acting on the mover 202 is also rapidly reduced.
  • the behavior of the valve element 214 becomes unstable, and in some cases, the valve may start to close even during the energization.
  • the switching element 505 is turned ON during the transition from the peak current I peak to the current 403 to gradually decrease the current, the rapid decrease in the magnetic attractive force can be suppressed.
  • the stability of the valve body 214 can be ensured at high fuel pressure, and variations in the injection amount can be suppressed.
  • Fuel injection device 101 is driven by such a drive current profile. From the application of the high voltage 401 until the peak current value I peak is reached, the mover 202 and the valve body 214 start displacing at timing t41 , after which the mover 202 and the valve body 214 reach the maximum height position. reach. At timing t42 when the movable element 202 reaches the maximum height position, the movable element 202 collides with the fixed core 207, and the movable element 202 performs a bound operation with the fixed core 207.
  • valve body 214 Since the valve body 214 is configured to be displaceable relative to the movable element 202, the valve body 214 is separated from the movable element 202, and the displacement of the valve body 214 overshoots beyond the maximum height position. After that, due to the magnetic attraction force generated by the current 403 and the force of the return spring 212 in the valve opening direction, the movable element 202 is stopped at a predetermined maximum height position, and the valve body 214 is seated on the movable element 202. It stops at the maximum height position and becomes an open valve state (timing t43 ).
  • the amount of displacement of the valve body does not become larger than the maximum height position, and after reaching the maximum height position
  • the amount of displacement of the movable element and the valve body are the same.
  • FIG. 6 is a schematic diagram showing a configuration example of the inside of the cylinder 108 of the engine and the surroundings of the engine according to the first embodiment.
  • FIG. 6 shows a schematic cross-section at the center within cylinder 108 of the engine.
  • the engine includes a fuel injector 101 , a spark plug 604 , an intake port 607 , an exhaust port 608 , a piston 609 , an intake valve 605 and an exhaust valve 610 .
  • a fuel injector 101 a spark plug 604 , an intake port 607 , an exhaust port 608 , a piston 609 , an intake valve 605 and an exhaust valve 610 .
  • the intake valves 605 and exhaust valves 610 are not visible in the cross section at the center of the cylinder 108, but FIG.
  • an intake valve 605 and an exhaust valve 610 are shown.
  • the fuel injection device 101 is arranged so as to inject fuel toward the combustion chamber 107 from a direction (angle) that intersects the stroke direction of the piston 609 on the intake port 607 side. Fuel is injected into cylinder 108 (combustion chamber 107 ) from the tip of orifice 216 of fuel injection device 101 . Fuel is injected directly into the cylinder 108 in a cylinder direct injection engine.
  • a cavity 606 (recess) that is lower than the upper end (right side in the figure) of the piston 609 on the side of the spark plug 604 is formed in the surface (crown surface) of the piston 609 on the side of the spark plug 604 .
  • This cavity 606 has the function of temporarily retaining at least part of the air-fuel mixture composed of the air taken in from the intake port 607 and the fuel injected from the fuel injection device 101 .
  • the cavity 606 refers to the deepest portion (farthest from the spark plug 604 side) from the upper end of the crown surface of the piston 609 on the spark plug 604 side.
  • the cavity 606 is formed so that an extension line 618 of a dashed line drawn from a center gap 617 between the negative electrode 612 and the positive electrode 613 of the spark plug 604 in the stroke direction (sliding direction) of the piston 609 is inside the cavity 606 . formed in a range.
  • Center gap 617 is the area containing the firing location where the spark between negative electrode 612 and positive electrode 613 occurs.
  • the cavity 606 extends from the intake port 607 side (left side in the drawing) to the exhaust port 608 side ( (right side of the drawing).
  • the air-fuel mixture held in cavity 606 is positioned directly below center gap 617 of spark plug 604 (on extension line 618).
  • the air-fuel mixture in the cavity 606 can be pushed up toward the spark plug 604 and ignited by the spark plug 604 to effectively burn the air-fuel mixture.
  • a fixed partition wall 602 is attached to the intake port 607 to divide the flow of air between the upper channel (first channel) 620 and the lower channel (second channel) 611 of the intake port 607 . ing.
  • a valve 601 for opening and closing (opening/blocking) the lower flow path 611 is provided upstream of the lower flow path 611 .
  • the valve 601 is configured so that the CPU 104 of the ECU 150 can control opening/closing of the valve.
  • FIG. 6 shows a state in which the valve 601 is closed.
  • FIG. 7 is a configuration diagram showing a part of the intake system and the exhaust system of the engine in the first embodiment.
  • Air is drawn into the cylinder 108 (combustion chamber 107 ) of the engine from an intake port (not shown) via an air cleaner 701 , a supercharger chamber 704 , an intercooler 705 , a throttle valve 706 and an intake port 607 .
  • An air cleaner 701 provided at the entrance of the supercharging chamber 704 removes dust from the sucked air to prevent dust from being sucked into the engine. As a result, it is possible to suppress the wear of the inside of the engine.
  • a supercharger 702 is provided in the supercharger chamber 704 .
  • the supercharger 702 includes a compressor 702A arranged on the intake side for compressing air, a turbine 702B arranged on the exhaust side and rotated by the flow of the exhaust gas, and a shaft 707 connecting the compressor 702A and the turbine 702B.
  • a turbine 702B is rotated according to the flow velocity of the exhaust gas, and a compressor 702A is rotated via a shaft 707.
  • the air that has passed through the air cleaner 701 is compressed by the rotation of the compressor 702A and flows to the intercooler 705 side.
  • the amount of air flowing into the combustion chamber 107 of the engine can be increased, and the output of the engine can be improved.
  • the air that has passed through the supercharging chamber 704 is compressed by the compressor 702A, so its temperature rises.
  • the intercooler 705 cools the air that has been compressed by the compressor 702A and raised in temperature.
  • Throttle valve 706 adjusts the amount of air that flows from intake port 607 into cylinder 108 (combustion chamber 107).
  • the degree of opening of the throttle valve 706 is controlled by the ECU 150 based on the degree of opening of an accelerator (not shown) or the like.
  • An intake valve 605 is provided in the intake port 607 .
  • the ECU 150 controls the lift amount of the intake valve 605 (and the exhaust valve 610) relative to the reference position. Air flows into the combustion chamber 107 of the engine by opening the intake valve 605 at a predetermined timing.
  • the inflowing air is mixed with the fuel injected from the fuel injection device 101 to form an air-fuel mixture.
  • a force generated by the combustion of this air-fuel mixture is transmitted to a crankshaft (not shown) via a piston 609 and a connecting rod (connecting rod) 710 .
  • the engine is equipped with a cooling device to cool the heat of the engine and keep it at an appropriate temperature.
  • a cooling device to cool the heat of the engine and keep it at an appropriate temperature.
  • a water-cooling type cooling device cooling water passes through a water jacket (reference numerals omitted) provided around cylinders 108 of the engine, thereby removing heat generated in the engine and maintaining an appropriate temperature.
  • the temperature of engine cooling water (hereinafter referred to as engine water temperature) is adjusted by a thermostat 711 provided in the water jacket.
  • Engine water temperature is an example of environmental temperature.
  • a temperature sensor coupler is attached to the top of the thermostat 711 .
  • a temperature sensor detects a change in the resistance value of thermostat 711 via a coupler and outputs the detection result (output signal) to ECU 150 . Cooling water is led to a radiator (not shown) via a water jacket, thermostat 711, and radiator hose 712, and is radiated.
  • the exhaust gas generated by combustion of the air-fuel mixture in the combustion chamber 107 passes through the exhaust port 608 and rotates the turbine 702B of the supercharger 702 when the exhaust valve 610 is opened during the expansion stroke.
  • the exhaust gas that has rotated the turbine 702B passes through the catalyst 703 to reduce HC, NOx, and CO (carbon monoxide) and is discharged to the outside.
  • Catalyst 703 is, for example, a three-way catalyst with catalysts made from palladium, rhodium, platinum, and the like.
  • the catalyst 703 removes HC, NOx, and CO contained in the exhaust gas by causing a reduction reaction and an oxidation reaction with the catalyst. Since the catalyst 703 has a low reduction ability when the temperature is low, combustion (catalyst warm-up) is required to quickly warm the temperature of the catalyst 703 under low-temperature conditions such as when the engine is started. .
  • FIG. 8 is a diagram showing an example of the crank angle, the injection timing, and the lift amount of the fuel injection valve (valve element 214) in the first embodiment.
  • the horizontal axis represents the top dead center of the intake stroke -360 [deg. ATDC (After Top Dead Center)] and the vertical axis represents the lift amount of the fuel injection valve.
  • the solid line indicates the fuel injection under normal temperature assumption according to the present embodiment, and the dashed line indicates the fuel injection under low temperature assumption according to the present embodiment.
  • the normal temperature of the outside air is 25°C and the low temperature is -7°C. The lower the outside air temperature, the lower the engine coolant temperature, which is an example of the environmental temperature.
  • the ECU 150 causes the intake valve 605 to open at the timing when the piston 609 reaches the top dead center (TDC) and at the timing immediately before or at the same time as the exhaust valve 610 closes. Start and draw air into the combustion chamber 107 .
  • the fuel injection device 101 performs fuel injection in the intake stroke 801 at timings t81 and t82 from when the intake valve 605 starts to open until it reaches the maximum lift position.
  • the fuel injection device 101 enters the compression stroke 802 when the piston 609 reaches the bottom dead center (BDC) and enters the compression stroke 802 at timings t83 and t84 before the piston 609 reaches the top dead center. perform fuel injection at As a result, the mixture composed of the spray and air injected from the fuel injection device 101 is introduced into the cavity 606 and pushed up from the cavity 606 toward the spark plug 604 .
  • BDC bottom dead center
  • stoichiometric stoichiometric air-fuel ratio
  • FIG. 8 it is assumed that the fuel is injected four times in total during the intake stroke and the compression stroke.
  • the technical idea of this embodiment is also applied to multi-stage fuel injection such that fuel injection is performed three times or more at least in the compression stroke.
  • the injection start timing t81 of the intake stroke 801 when the outside air temperature is normal temperature, the normal temperature assumed first fuel injection 803 is shown by the solid line, and when the outside air temperature is low, the low temperature assumption shown by the broken line is shown.
  • the first fuel injection 810 is executed.
  • timing t82 one fuel injection (timing t82) is performed in the intake stroke 801
  • two fuel injections (timings t83 and t84) are performed in the compression stroke 802
  • ignition is performed at timing t85 after top dead center in the compression stroke 802.
  • the period of the first injection 810 in the intake stroke 801 assuming a low temperature is shorter than the period of the first injection 803 when assuming a normal temperature.
  • the period of the second injection 811 in the intake stroke 801 assuming a low temperature is shorter than the period of the second injection 804 assuming a normal temperature.
  • the period of the first injection 805 and the lift amount of the valve body 214 in the compression stroke 802 assuming a normal temperature are the same as those of the first injection 812 in the compression stroke 802 assuming a low temperature. Therefore, fuel injection 805 and fuel injection 812 overlap in FIG.
  • the lift amount of the valve body 214 by the second injection 813 when assuming a low temperature in the compression stroke 802 is larger than the lift amount by the second injection 806 when assuming a normal temperature.
  • fuel injections 803-805 and 811-812 are full lift (hereinafter referred to as FL) injections in which the valve body 214 is displaced to the maximum lift amount.
  • Fuel injections 806 and 813 are partial lift (PL) injections in which the valve element 214 is not displaced to the maximum lift amount.
  • FIG. 9 is a diagram showing in-cylinder equivalence ratio distributions when the outside air temperature is normal temperature and when the outside air temperature is low when the fuel injection control indicated by the solid line in FIG. 8 is performed.
  • the total third fuel injection the first time during the compression stroke
  • the fourth fuel injection the second time during the compression stroke
  • the equivalence ratio is a value that indicates how many times the stoichiometric air-fuel ratio of fuel exists with respect to the amount of air in the cylinder.
  • the larger the numerical value the higher the equivalence ratio and the richer the air-fuel mixture.
  • the penetration power of the third spray 902 decreases as the fuel viscosity increases as the environmental temperature decreases, and even if the fourth injection is performed, the air-fuel mixture 903 is not pushed up around the spark plug 604. can be considered.
  • fuel injections 810, 811, 812, 813 indicated by broken lines in FIG. fuel injection control are performed in order to solve the problem that the rich air-fuel mixture 903 does not rise to the vicinity of the spark plug 604 when the engine water temperature is low.
  • the reason why multiple (for example, two) fuel injections are performed in the compression stroke is that the compression raises the temperature of the air-fuel mixture, making it easier for the air-fuel mixture to evaporate.
  • the ECU 150 applies the current value of the driving current supplied to the fuel injection device 101 and the driving voltage to the fuel injection device 101 rather than the fuel injection 806 assumed at room temperature. Control is performed to increase the pulse width of the injection pulse or the number of injections.
  • the first fuel injection in the plurality of fuel injections during the compression stroke 802 is referred to as “early fuel injection in the compression stroke", and the second and subsequent fuel injections are referred to as “late fuel injection in the compression stroke”. .
  • the injection amount is adjusted by changing the current value of the drive current.
  • the fuel injection control device (ECU 150) according to the present embodiment changes the injection amount in the latter half of the compression stroke 802 according to the engine water temperature, and appropriately maintains the penetration power.
  • the rich air-fuel mixture 903 can be pushed up to the vicinity of the spark plug 604 and the rich and stratified air-fuel mixture 903 can be gathered under the spark plug 604 even if the engine water temperature changes.
  • the relationship between the engine water temperature and the fuel injection amount is obtained in advance by experiment or simulation, and is stored in the memory 104M (FIG. 5) or a non-volatile recording medium as reference table (map data) or function data. ing.
  • the lower the engine water temperature the more the current value of the drive current during the latter fuel injection in the compression stroke 802 or the pulse width of the injection pulse is increased.
  • 804 is controlled to decrease the current value or pulse width. That is, in this embodiment, the fuel injection amount in the intake stroke 801 is decreased when the ambient temperature is relatively low.
  • FIG. 10 is a diagram showing the amount of fuel adhering to the combustion chamber wall surface and the piston crown surface by the fuel injection control according to the first embodiment.
  • the horizontal axis indicates the crank angle [deg] with the top dead center of the intake stroke being 0 degrees
  • the vertical axis indicates the amount of adhered fuel [mg].
  • the left side of FIG. 10 shows the amount of fuel adhesion when injections 803, 804, 805, and 806 (see FIG. 8) are performed assuming normal temperature when the outside air temperature is low ( ⁇ 7° C.).
  • the right side of FIG. 10 shows the amount of adhered fuel when fuel injections 810, 811, 812, and 813 assuming low temperatures are performed when the outside air temperature is low ( ⁇ 7° C.).
  • the solid lines 1001B and 1002B represent the amount of fuel adhering to the wall surface 614 of the combustion chamber 107
  • the dashed lines 1001P and 1002P represent the amount of adhering fuel to the crown surface of the piston 609
  • the dashed line represents the sum of these adhering amounts of fuel. 1001A and 1002A.
  • the pulse width of the injection pulse at the time of fuel injection in the intake stroke (0 to 180 degrees) is reduced, so that the fuel adhesion to the wall surface of the combustion chamber 107 and the crown surface of the piston 609 can reduce the amount.
  • the amount of fuel adhering to the crown surface of the piston 609 during the intake stroke is large.
  • the fuel adhesion amount is reduced by decreasing the injection amount in the intake stroke and increasing the injection amount in the compression stroke (180 to 360 degrees).
  • solid line 1002B the amount of fuel adhering to the wall surface of combustion chamber 107 is almost zero.
  • One of the factors that reduces the amount of adhered fuel is that the temperature and pressure in the combustion chamber 107 rise during compression and the sprayed fuel tends to evaporate.
  • the amount is equal to the increase in fuel injection amount in the later fuel injection in compression stroke 802 . That is, the fuel injection amount in one combustion cycle is made equal regardless of the engine water temperature.
  • the injection amount is adjusted by changing the pulse width of the injection pulse.
  • the fuel injection amount is increased in the compression stroke to push up the air-fuel mixture.
  • a rich air-fuel mixture can be secured around the spark plug 604, and combustion stability can be improved.
  • the engine is operated while sufficiently ensuring combustion stability that enables ignition retard. Is possible.
  • late fuel injections 806 and 813 in the compression stroke 802 are performed by partial lift (PL) injection.
  • PL partial lift
  • the geometric distance between the fuel injector 101 and the crown surface of the piston 609 becomes closer.
  • FL full lift
  • the rich air-fuel mixture passes around the spark plug 604 when pushing up the air-fuel mixture around the spark plug 604. put away. Not only cannot a rich air-fuel mixture be secured around the spark plug 604 , but also fuel adheres to the upper side of the combustion chamber 107 .
  • the PL injection is performed to suppress the penetration force of the spray.
  • the PL injection it is possible to appropriately maintain the penetration power of the spray and maintain around the spark plug 604 a rich air-fuel mixture that contributes to combustion stability.
  • the fuel injections 805 and 812 by FL injection performed in the first time of the compression stroke 802 also use the cavity 606, so that the surroundings of the spark plug 604 are rich. It becomes easier to collect an air-fuel mixture. Therefore, it is desirable that the fuel injections 805 and 812 by FL injection start after the middle of the compression stroke 802 .
  • the middle period of the compression stroke here is the second period when the compression stroke is divided into three periods based on the crank angle.
  • the injection timing of the fuel injection in the latter half of the compression stroke is not changed regardless of the engine water temperature.
  • the injection timing t84 is the same between the fuel injection 806 assuming normal temperature and the fuel injection 813 assuming low temperature.
  • FIG. 11 is a diagram showing the in-cylinder equivalence ratio distribution near the ignition timing at low temperatures when the fuel injection control according to the first embodiment of the present invention indicated by the dashed line in FIG. 8 is performed.
  • the fuel injections 810, 811, 812, and 813 assuming low temperatures can be performed to maintain a rich and stratified air-fuel mixture around the spark plug 604. 1101 can be collected.
  • the reason for not changing the injection timing is that the PL injection is in the latter half of the compression stroke as shown in FIG. 8 and the distance between the fuel injection device 101 and the piston 609 is short.
  • the latter half of the compression stroke means the latter half when the compression stroke is divided into two parts based on the crank angle. That is, this is to eliminate changes due to spray angle, penetration force, and spray roll-up due to cylinder pressure and flow velocity. If the fuel injection pattern shown in FIG. increase the injection amount of Therefore, in this embodiment, it is possible to ensure combustion stability even when the engine water temperature is low.
  • the fuel injection control device (ECU 150) is a fuel injection device capable of injecting fuel multiple times during one combustion cycle of an internal combustion engine (for example, an engine consisting of four cylinders 108). It controls the fuel injection device 101). Then, when the internal combustion engine is started or restarted, the lower the environmental temperature (for example, the engine water temperature) of the internal combustion engine, the later the fuel injection (fuel injection 813) in the plurality of fuel injections in the compression stroke. At times, a control unit (CPU 104) is provided to control in the direction of increasing the injection amount.
  • an internal combustion engine for example, an engine consisting of four cylinders 108. It controls the fuel injection device 101). Then, when the internal combustion engine is started or restarted, the lower the environmental temperature (for example, the engine water temperature) of the internal combustion engine, the later the fuel injection (fuel injection 813) in the plurality of fuel injections in the compression stroke.
  • a control unit (CPU 104) is provided to control in the direction of increasing the injection amount.
  • the fuel injection control device configured as described above increases the current value of the driving current or the pulse width of the injection pulse during the latter fuel injection (for example, PL injection) in the compression stroke, thereby increasing the injection amount. increase.
  • This fuel injection controlled spray pushes up the air-fuel mixture in cylinder 108 from cavity 606 around spark plug 604 .
  • the rich air-fuel mixture 903 does not reach around the spark plug 604 at low temperature start, and the equivalence ratio of the air-fuel mixture 904 near the end of the combustion chamber 107 is was declining.
  • the equivalence ratio of Therefore in this embodiment, even when the engine water temperature drops, the ignition can be stably retarded, and exhaust emissions can be reduced during cold start or restart.
  • ignition retard is not performed to avoid engine stall immediately after the engine is started under extremely low temperatures (for example, below a predetermined outside air temperature). This is because under this condition, the fuel is difficult to vaporize, and the combustion stability necessary for retarding the ignition cannot be sufficiently ensured.
  • the ignition retard control is interrupted in order to avoid engine stall.
  • the engine water temperature is used as an example of the engine environment temperature, but the environment temperature may be, for example, the intake air temperature of the engine, the temperature of the cylinder 108 of the engine, or the temperature of the fuel.
  • the temperature of the fuel may drop significantly.
  • the fuel viscosity decreases and the spray penetration decreases.
  • the lower the fuel temperature the greater the current value of the drive current or the pulse width of the injection pulse in the latter fuel injection 806 in the compression stroke.
  • two or more of the engine water temperature, the intake air temperature of the engine, the temperature of the cylinder 108 of the engine, and the fuel temperature may be used to comprehensively determine the environmental temperature.
  • the environmental temperature may be at least one of the engine water temperature, the intake air temperature of the engine, the temperature of the cylinder 108 of the engine, and the fuel temperature.
  • FIG. 12 A fuel injection system to which a fuel injection control device according to a second embodiment of the invention is applied will be described with reference to FIGS. 12 and 13.
  • FIG. The fuel injection control according to the second embodiment differs from the fuel injection control according to the first embodiment in that the lower the engine water temperature, the more the number of fuel injections by PL injection in the latter half of the compression stroke. be.
  • Configurations other than the characteristic configuration of the second embodiment are the same as those of the first embodiment, and overlapping descriptions are omitted.
  • FIG. 12 is a diagram showing an example of the crank angle, the injection timing, and the lift amount of the fuel injection valve (valve element 214) when splitting the late PL injection during the compression stroke in the second embodiment.
  • the horizontal axis represents the top dead center of the intake stroke -360 [deg. ATDC] and the vertical axis is the lift amount of the fuel injection valve.
  • a solid line indicates fuel injection assuming normal temperature, and a dashed line indicates fuel injection assuming low temperature according to the present embodiment.
  • FIG. 12 shows that, like fuel injection 1201 performed at timing t121 of compression stroke 802, the second fuel injection by PL injection is performed as fuel injection in the latter half of the compression stroke.
  • the fuel injection control in the intake stroke 801 is the same as the method of increasing the fuel injection amount of the PL injection shown in FIG. Decrease the injection amount like 811 .
  • the fuel injection control in the compression stroke 802 does not change the fuel injection 812 by FL injection, and the fuel injection 813 ′ by PL injection is performed in the same manner as the fuel injection 806 assuming normal temperature.
  • the injection timing (timing t84) is not changed, but the fuel injection amount is the same as in fuel injection 806 assuming room temperature.
  • Fuel injection 1201 is performed at timing t121 after timing t83 of fuel injection 812 by FL injection in compression stroke 802 and before timing t84 of fuel injection 813' by PL injection.
  • the current value of the drive current or the pulse width of the injection pulse in the fuel injection 1201, that is, the fuel injection amount is the same as in the case of the fuel injection 813′.
  • Penetration force equivalent to the case of increasing penetration force (see FIG. 8) is required. Therefore, even if either of the injection amounts of fuel injection 813' and fuel injection 1201 is increased, there is no problem as long as the same penetration force as in the case of increasing the penetration force during PL injection can be obtained.
  • the decrease amount of the fuel injection amount in the intake stroke 801 and the increase amount of the fuel injection amount in the compression stroke 802 can be performed equally. This is the same idea as in the first embodiment.
  • FIG. 13 is a diagram showing the in-cylinder equivalence ratio distribution near the ignition timing at low temperatures when the fuel injection control according to the second embodiment of the present invention indicated by the dashed line in FIG. 12 is performed.
  • the fuel injection 810, 811, 812, 1201, 813′ assuming a low temperature is performed so that the rich air-fuel mixture 1301 is generated around the spark plug 604.
  • a stratified air-fuel mixture is formed in the combustion chamber 107 . That is, in the present embodiment, even under conditions where the engine water temperature is low and the spray penetration is low, the injection quantity is increased by increasing the number of PL injections, and the spray penetration can be improved.
  • the air-fuel mixture formed by FL injection (fuel injection 812) during the compression stroke can be pushed up around the spark plug 604.
  • the present embodiment has the effect of providing a rich air-fuel mixture around the spark plug 604 in the same manner as the method of increasing the current value of the drive current or the pulse width of the injection pulse during the latter fuel injection in the compression stroke. can be obtained. Therefore, in the present embodiment, by increasing the number of times of fuel injection by PL injection in the latter half of the compression stroke, it is possible to stably retard ignition at low temperature start.
  • two fuel injections 1201 and 813' are performed by PL injection during the latter fuel injection in the compression stroke 802, and the timing of the second PL injection (timing t84 ) is not changed, but a configuration that changes the timing is not excluded. That is, the lower the engine water temperature, the later the timing of the second PL injection, which is performed as the late fuel injection 813' in the compression stroke, may be delayed within a range in which the amount of adhered fuel does not exceed a predetermined amount.
  • the present invention is not limited to the above-described embodiments, and it goes without saying that various other applications and modifications can be made without departing from the gist of the present invention described in the claims.
  • the above-described embodiments are detailed and specific descriptions of the configurations of the fuel injection device and the fuel injection system in order to explain the present invention in an easy-to-understand manner. not.
  • each of the above configurations, functions, processing units, etc. may be realized by hardware, for example, by designing a part or all of them with an integrated circuit.
  • a broadly defined processor device such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit) may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

内燃機関の1燃焼サイクル中に燃料を複数回噴射可能な燃料噴射装置を制御する燃料噴射制御装置であって、内燃機関の始動時又は再始動時に内燃機関の環境温度が低いほど、圧縮行程の複数の燃料噴射における後期の燃料噴射時に、噴射量を増加させる方向に制御する制御部、を備える。

Description

燃料噴射制御装置及び燃料噴射制御方法
 本発明は内燃機関の燃焼室内に燃料を噴射する燃料噴射装置を制御する燃料噴射制御装置及び燃料噴射制御方法に関する。
 内燃機関では、排気規制への対応が必要であり、今後、排気規制値の厳格化と排気計測温度の拡張が見込まれる。すなわち、従来の排気規制よりも低温での排気削減(未燃焼粒子等の低減)が求められている。エンジン始動後の触媒暖機運転を行う条件では、点火時期の遅角を行うための燃焼安定性を十分に確保しなければならない。例えば、外気温度が-7℃といった低温でのエンジン始動時においても排気低減のため、早期触媒暖機が必須であることが知られている。
 触媒暖機時の点火時期の遅角は、圧縮上死点以降の膨張行程で点火を実施し、混合気を燃焼させる。そのため、触媒暖機時の点火時期の遅角は燃焼が不安定になりやすい。そこで、点火プラグ周りにリッチな混合気を配置し、燃焼室の壁面(燃焼室終端)に向けて成層化した混合気を形成することで、燃焼安定性を向上させることができる。点火プラグ周りにリッチな成層化された混合気を形成するためには、ピストンにキャビティを設け、圧縮行程中に燃料を噴射する方法が有効である。キャビティへの噴霧により混合気が巻き上げられ、点火プラグ周りにリッチな混合気を集めることが可能である。
 特許文献1には、燃料噴射を圧縮行程に少なくとも2回以上噴射を行うことで、エンジン始動後の触媒暖機時に燃焼室から排出されるHCやPNを抑制しつつ、燃焼安定性を向上させる燃料噴射に関する制御方法が開示されている。
特開2018―204447号公報
 上述したように、今後の排気規制の厳格化に伴い、低温での排気削減が求められる。低温始動時は、燃料温度や燃料噴射装置の温度、冷却水の温度、ピストンや燃焼室壁面の温度といったエンジンの環境温度が低下している。特に、燃料や燃料噴射装置の温度低下により、燃料の粘度が増加することで燃焼室内の噴霧の貫徹力や気化率が低下する。冷却水の温度、ピストンや燃焼室壁面の温度が低下することでも、噴霧の温度が低下し、結果として噴霧の貫徹力や気化率の低下につながる。低温始動時に特許文献1に開示されている燃料噴射制御を行うと、噴霧の貫徹力不足や気化率低下のため、混合気の成層化はされているものの、燃焼室内の混合気の当量比が全体的に低下する。また、点火プラグ周りまで燃料が濃い(以降、リッチと称する)混合気が到達せず、低温始動時には、触媒暖機時の点火時期の遅角化に必要な燃焼安定性が十分に確保できない課題があった。
 上記の状況から、エンジンの環境温度が低い場合でも、エンジン始動時や再始動時に触媒暖機のための点火時期の遅角を安定して実施できるよう、燃焼安定性を確保することが望まれていた。
 上記課題を解決するために、本発明の一態様の燃料噴射制御装置は、内燃機関の1燃焼サイクル中に燃料を複数回噴射可能な燃料噴射装置を制御する燃料噴射制御装置であって、内燃機関の始動時又は再始動時に内燃機関の環境温度が低いほど、圧縮行程の複数の燃料噴射における後期の燃料噴射時に、噴射量を増加させる方向に制御する制御部、を備える。
 本発明の少なくとも一態様によれば、エンジンの環境温度が低い場合でも、エンジン始動時や再始動時の燃焼安定性を確保し、触媒暖機のための点火時期の遅角を安定して実施することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の第1の実施形態に係る燃料噴射装置とECUを含む燃料噴射システムの一例を示した概略図である。 本発明の第1の実施形態に係る燃料噴射装置の縦断面の例と、この燃料噴射装置に接続されるECUの構成例を示した図である。 本発明の第1の実施形態における燃料噴射装置の駆動部構造の断面拡大図を示した図である。 燃料噴射装置を駆動する際における一般的な、噴射パルス、駆動電圧、駆動電流、及び弁体変位量についての時間変化を示したタイミングチャートである。 本発明の第1の実施形態における燃料噴射装置のECUの詳細を示した回路図である。 本発明の第1の実施形態におけるエンジンの気筒内及びエンジン周囲の構成例を示した模式図である。 本発明の第1の実施形態におけるエンジンの吸気系及び排気系の一部を示した構成図である。 本発明の第1の実施形態におけるクランク角度と噴射タイミング、燃料噴射弁のリフト量の一例を示した図である。 図8の実線で示す燃料噴射制御を実施した際の、外気温度が常温の場合と低温の場合の筒内当量比分布を示した図である。 本発明の第1の実施形態に係る燃料噴射制御による、燃焼室壁面及びピストン冠面への燃料の付着量を示した図である。 図8の破線で示す本発明の第1の実施形態に係る燃料噴射制御を実施した場合の、低温時の点火時期付近の筒内当量比分布を示した図である。 本発明の第2の実施形態における圧縮行程中の後期のPL噴射を分割する場合の、クランク角度と噴射タイミング、燃料噴射弁のリフト量の一例を示した図である。 本発明の第2の実施形態における図12の破線で示す燃料噴射制御を実施した場合の、低温想定時の点火時期付近の筒内当量比分布を示した図である。
 以下、本発明を実施するための形態の例について、添付図面を参照して説明する。本明細書及び添付図面において実質的に同一の機能又は構成を有する構成要素については、同一の符号を付して重複する説明を省略する。
<第1の実施形態>
[燃料噴射システムの構成]
 本発明の第1の実施形態に係る燃料噴射制御装置が適用された燃料噴射システムについて、図1~図11を用いて説明する。
 始めに、図1を用いて、第1の実施形態に係る燃料噴射システムの概略を説明する。
 図1は、第1の実施形態に係る燃料噴射システムの一例を示した概略図である。燃料噴射システム1は、本発明を筒内直接噴射式エンジン(内燃機関の一例)に適用した例であるが、本発明はこの例に限らない。本明細書において、筒内直接噴射式エンジンを単に「エンジン」と称する。
 本実施形態に係る筒内直接噴射式エンジンは、4つの気筒108(エンジンシリンダ)を備える。燃料噴射システム1は、4つの気筒108に対応して、4つの燃料噴射装置101A~101Dと、燃料噴射制御装置の一例としてのECU(Engine Control Unit)150を備える。以下の説明において、燃料噴射装置101A~101Dを区別しない場合には、「燃料噴射装置101」と称する。
 燃料噴射システム1の各気筒108には、サイド噴射用の燃料噴射装置101A~101Dが、その燃料噴射孔219(後述する図2参照)から霧状の燃料が燃焼室107に直接噴射されるように設置されている。図示しない燃料タンクに貯留された燃料は、燃料ポンプ106によって昇圧されて高圧配管120を介してレール状の燃料配管105に送出され、燃料配管105から各燃料噴射装置101A~101Dに配送されるようになっている。燃料配管105の一端部には、燃料配管105内の燃料の圧力を測定する圧力センサ102が設置されている。
 燃料配管105内の燃料圧力は、燃料ポンプ106によって吐出された燃料の流量と、各燃料噴射装置101によって各燃焼室107内に噴射された燃料の噴射量とのバランスによって変動する。
 本実施形態では、ECU150が、圧力センサ102から出力されるセンサ情報(燃料圧力値を示す情報)に基づいて、燃料配管105内の燃料圧力が所定の目標圧力値となるように、燃料ポンプ106の燃料の吐出量を制御する。
 燃料噴射装置101による燃料の噴射は、ECU150のCPU104(制御部の一例)から送出される噴射パルス(後述する図4参照)によって制御される。例えば、パルス幅が調整された噴射パルス(パルス信号)による指令が、燃料噴射装置101ごとに設けられた駆動回路103に入力される。駆動回路103は、CPU104からの指令(噴射パルス)に基づいて駆動電流の波形を決定し、パルス幅に基づく時間だけ燃料噴射装置101に上記波形の駆動電流を供給する。
 燃料噴射制御装置の制御部(ECU150のCPU104)は、後述する1燃焼サイクルにおける燃料噴射時の噴射量を変更するときに、噴射パルスのパルス幅に基づいて燃料噴射装置(燃料噴射装置101)を駆動する電流波形を変更する。このように、噴射パルスのパルス幅に基づいて電流波形を変更することで、燃料噴射装置が噴射する燃料の噴射量を調整することができる。例えば、燃料噴射装置に供給する駆動電流の電流値を変更することで、燃料噴射弁(後述する図2の弁体214)のリフト量が変わり、噴射量が調整される。また、CPU104から駆動回路103に送出する噴射パルスのタイミング(オフ/オンの切り替わり)を変更することで、燃料噴射装置が燃料を噴射するタイミングを調整することができる。
 なお、ECU150の駆動回路103とCPU104とは、一体の部品や基板として実装されてもよい。また、駆動回路103が、ECU150とは別体でもよい。
 次に、燃料噴射装置101及びECU150の構成と基本的な動作について、図2及び図3を参照して説明する。
 図2は、燃料噴射装置101の縦断面の例と、この燃料噴射装置101に接続されるECU150の構成例を示す図である。
 図3は、燃料噴射装置101の駆動部構造の断面拡大図である。
 ECU150のCPU104は、エンジンの状態を示す各種信号を各種センサから取り込んで、エンジンの運転条件に応じて燃料噴射装置101から噴射する燃料の噴射量を制御するための噴射パルスの幅や駆動電流の電流値、噴射タイミングの演算を行う。CPU104は、演算結果に対応する噴射パルスを駆動回路103に出力する。
 CPU104は、各種センサからの信号を取り込むための図示しないA/D変換器、I/Oポート等を備えている。各種センサとしては、例えば、エンジンの冷却水の温度(エンジンの環境温度の一例)を測定する温度センサ、エンジンの回転数(回転速度)を測定するセンサ(例えば、エンジンの図示しないクランク軸の回転角を検出するセンサ)、燃料配管105内の燃料圧力を測定する圧力センサ102、及び排気温度を測定する排気温度センサ等がある。
 CPU104から出力される噴射パルスは、信号線110を通して駆動回路103に入力される。駆動回路103は、燃料噴射装置101のソレノイド205(コイルの一例)に印加する電圧を制御し、ソレノイド205に電流を供給する。CPU104は、通信ライン111を通して、駆動回路103(後述する図5の駆動IC502)と通信可能である。CPU104は、燃料噴射装置101に供給されている燃料の圧力や運転条件等によって、駆動回路103により生成する駆動電流を切り替えるように制御したり、駆動電流及び電流を出力する時間の設定値を変更したりすることができる。
 燃料噴射装置101は、通常時閉弁型の電磁弁(電磁式燃料噴射装置)であり、コイルの一例としてのソレノイド205と、可動子202と、固定コア207と、略棒状の弁体214(燃料噴射弁の一例)とを備える。燃料噴射装置101は、ソレノイド205が通電されていない状態では、スプリング210によって弁体214が閉弁方向(図面下方向)に付勢され、弁体214が弁座218に密着した状態(閉弁状態)となっている。
 可動子202は、戻しばね212によって開弁方向へ付勢されている。閉弁状態においては、スプリング210により弁体214に作用する力が、戻しばね212による力に比べて大きいため、可動子202の上端面202Aが弁体214のつば部302に接触し、可動子202は静止した状態となる。
 弁体214と可動子202とは、相対変位可能に構成されており、共にノズルホルダ201に内包されている。ノズルホルダ201は、その内部に戻しばね212のばね座となる端面303を有している。スプリング210による付勢力は、固定コア207の内径に固定されるバネ押さえ224の押し込み量によって組み立て時に調整されている。
 燃料噴射装置101においては、固定コア207、可動子202、ノズルホルダ201、及びハウシング203によって磁気回路が構成されている。可動子202と、固定コア207との間には、空隙301が設けられている。ノズルホルダ201の空隙301に対応する部分(空隙301の外周側)には、ノズルホルダ201の外周面に周方向の溝部が形成されてなる磁気絞り211が形成されている。
 ソレノイド205は、ボビン204に巻き付けられた状態でノズルホルダ201の外周側に取り付けられている。ノズルホルダ201には、弁体214の弁座218側の先端部の近傍となる位置に、ロッドガイド215が固定されている。このような構成により、弁体214は、弁体214のつば部302と固定コア207とが摺動する箇所と、弁体214とロッドガイド215とが摺動する箇所との2つの摺動箇所により、弁軸方向(図面上下方向)にガイドされて動くようになっている。
 ノズルホルダ201の先端部には、弁座218と燃料噴射孔219とが形成されたオリフィス216が固定されている。このような構成により、弁体214の先端部と、オリフィス216の弁座218とが接触することにより、ノズルホルダ201と弁体214の先端部との間の内部空間(燃料通路)を封止した状態(閉弁状態)にできるようになっている。
 燃料配管105から燃料噴射装置101に供給された燃料は、燃料噴射装置101が閉弁状態の場合においては、燃料通路孔231を通って弁体214の先端側まで流れるが、弁体214の弁座218側の先端部分とオリフィス216の弁座218とが接触して燃料噴射孔219を封止しているので、燃料噴射孔219を介して外部に噴射されない。燃料噴射装置101が閉弁状態の場合には、燃料圧力によって弁体214の上部と下部との間に差圧が生じ、燃料圧力と弁座位置における受圧面積とを乗じて求まる差圧力及びスプリング210の荷重によって弁体214が閉弁方向に押されている。
 そして、燃料噴射装置101が閉弁状態の場合において、ソレノイド205への電流の供給が開始されると、磁気回路に磁界が生じ、固定コア207と可動子202との間に磁束が通過して、可動子202に磁気吸引力が作用する。可動子202に作用する磁気吸引力が、差圧力及びスプリング210による荷重を超えるタイミングで、可動子202は、固定コア207に向かう方向に変位を開始する。そして、可動子202の移動に伴い弁体214が開弁動作を開始した後、可動子202は固定コア207に近づくように移動し、可動子202が固定コア207に衝突する。
 可動子202が固定コア207に衝突した後には、可動子202は固定コア207からの反力を受けて跳ね返る動作をするが、可動子202に作用する磁気吸引力によって可動子202は固定コア207に吸引され、やがて停止し開弁動作を終了する。このとき、可動子202には、戻しばね212によって固定コア207の方向に力が作用しているため、跳ね返りが収束するまでの時間を短縮できる。跳ね返り動作が小さいことで、可動子202と固定コア207との間のギャップが大きくなってしまう時間が短くなり、より短いパルス幅の噴射パルスに対しても安定した動作が行えるようになる。
 このようにして開弁動作を終えた可動子202及び弁体214は、開弁状態で静止する。開弁状態では、弁体214と弁座218との間には隙間が生じており、燃料噴射孔219より燃料が噴射される。なお、燃料通路孔231を通って供給される燃料は、固定コア207に設けられた中心孔と、可動子202に設けられた下部燃料通路孔305を通過して下流方向(燃料噴射孔219側)へ流れる。
 この後、燃料噴射装置101のソレノイド205への通電が断たれると、磁気回路中に生じていた磁束が消滅し、可動子202に作用する磁気吸引力も消滅する。このように可動子202に作用する磁気吸引力が消滅すると、可動子202及び弁体214は、スプリング210の荷重と、差圧力とによって、弁座218に接触する閉弁位置に押し戻される。
 このように、弁体214が開弁状態から閉弁状態となる際には、弁体214が弁座218と接触した後、可動子202が弁体214から分離して閉弁方向に移動して、ある程度の時間運動した後に、戻しばね212の作用によって、閉弁状態の初期位置まで戻される。すなわち、弁体214が閉弁状態となる瞬間に可動子202が、弁体214から離間する。これにより、弁体214が弁座218と衝突する瞬間の可動部材の質量を可動子202の質量分だけ低減することができるため、可動部材(実質的には弁体214)が弁座218と衝突する際の衝突エネルギーを小さくすることが可能である。したがって、弁体214が弁座218に衝突することによって生じる弁体214のバウンドを抑制できる。
 本実施形態に係る燃料噴射装置101では、開弁時に可動子202が固定コア207と衝突した瞬間、及び、閉弁時に弁体214が弁座218と衝突した瞬間の短い時間において、弁体214と可動子202との間で相対的な変位を生じる。それにより、可動子202の固定コア207に対するバウンドや、弁体214の弁座218に対するバウンドを抑制することができる。
 次に、第1の実施形態に係るECU150の構成について図5を参照して説明する。
 図5は、燃料噴射装置101の駆動回路103を含むECU150の詳細を示した回路図である。
 ECU150は、制御部の一例としてのCPU104と、駆動回路103とを備えている。例えば、駆動回路103には、駆動IC(Integrated Circuit)502が内蔵されている。CPU501と駆動IC502を含めて、制御部と言うこともできる。CPU104は、圧力センサ102に加え、エンジンの冷却水の温度を測定する温度センサ、図示しないA/F(Air Flow)センサ、酸素センサ、及びクランク角センサ等の各種センサが出力するエンジンの状態を示す信号(情報)を取り込む。
 圧力センサ102は、燃料噴射装置101の上流の燃料配管105に取り付けられている(図1参照)。A/Fセンサは、気筒108への流入空気量(空燃比)を測定する。酸素センサは、気筒108から排出された排気ガスの酸素濃度を検出する。CPU104は、各種センサから取り込んだ信号に基づいて、内燃機関の運転条件に応じて燃料噴射装置101から噴射する燃料の噴射量を制御するための噴射パルスのパルス幅(噴射パルス幅Ti)や、噴射タイミング等の演算を行う。
 そして、CPU104は、噴射パルス幅Ti(すなわち噴射量)や噴射タイミング等を演算後、通信ライン504を通して駆動回路103の駆動IC502に、適切なタイミングで噴射パルス幅Tiの噴射パルスを出力する。その後、駆動IC502によって、スイッチング素子505,506,507の通電/非通電を切り替えて燃料噴射装置101(ソレノイド205)へ駆動電流を供給する。
 ECU150には、噴射パルス幅の演算等、エンジンの制御に必要な数値データを記憶させるために、レジスタ及びメモリが搭載されている。レジスタ及びメモリは、CPU104に内包されていてもよいし、CPU104の外部に配置されてもよい。図5では、CPU104の外部にメモリ104M(記憶媒体の一例)が配置された例が示されている。
 メモリ104Mには、CPU104が燃料噴射装置101の駆動を制御するためのコンピュータープログラムが格納されていてもよい。この場合、CPU104が、メモリ104Mに記録されたコンピュータープログラムを読み出して実行することにより、燃料噴射装置101の駆動を制御する機能の全部又は一部が実現される。なお、CPU104に代えてMPU(Micro Processing Unit)等の他の演算処理装置を用いてもよい。
 スイッチング素子505,506,507は、例えばFET(Field Effect Transistor)やバイポーラトランジスタ等によって構成され、燃料噴射装置101への通電/非通電を切り替えることができる。
 スイッチング素子505は、昇圧電圧VHを供給する昇圧回路514(高電圧源)と、燃料噴射装置101が備えるソレノイド205の高電圧側の端子(電源側端子590)との間に接続されている。昇圧回路514が出力する昇圧電圧VHは、不図示の低電圧源(例えばバッテリ)が駆動回路103に供給する低電圧(バッテリ電圧VB)よりも高い。ここで、バッテリ電圧VBの電圧値は、一例として12~14V程度である。昇圧回路514の初期電圧値である昇圧電圧VHは、一例として60Vであり、バッテリ電圧VBを昇圧回路514によって昇圧することで生成される。
 昇圧回路514は、例えばDC/DCコンバータ等により構成するようにしてもよく、図5に示すように、ソレノイド530(コイル)、トランジスタ531(スイッチング素子)、ダイオード532、及びコンデンサ533で構成するようにしてもよい。図5に示す昇圧回路514の場合、トランジスタ531をONにすると、バッテリ電圧VBによる電流はソレノイド530を介して接地電位534側へ流れる。一方、トランジスタ531をOFFにすると、ソレノイド530に発生する高い電圧がダイオード532を通して整流され、コンデンサ533に電荷が蓄積される。トランジスタ531のON/OFFが繰り返し実行されることで、コンデンサ533の電圧が昇圧電圧VHまで上昇する。トランジスタ531は、駆動IC502もしくはCPU104と接続されて、駆動IC502もしくはCPU104によりON/OFFが制御される。昇圧回路514から出力される電圧は、駆動IC502もしくはCPU501で検出できるように構成されている。
 ソレノイド205の電源側端子590とスイッチング素子505との間には、昇圧回路514(高電圧源)から、ソレノイド205及び接地電位515の方向へ電流が流れるようにダイオード535が設けられている。また、ソレノイド205の電源側端子590とスイッチング素子507との間にも、低電圧源(例えばバッテリ)から、ソレノイド205及び接地電位515の方向へ電流が流れるようにダイオード511が設けられている。したがって、スイッチング素子506が通電している間は、接地電位515からソレノイド205を介して、バッテリ及び昇圧回路514へ向けては電流が流れない構成となっている。
 また、スイッチング素子507は、低電圧源であるバッテリと燃料噴射装置101の電源側端子590との間に接続されている。スイッチング素子506は、燃料噴射装置101の低電圧側の端子と接地電位515との間に接続されている。駆動IC502は、電流検出用の抵抗508,512,513の各々により、燃料噴射装置101(駆動回路103の各部)に流れている電流値を検出する。駆動IC502は、検出した電流値によって、スイッチング素子505,506,507の通電/非通電を切り替え、所望の駆動電流を生成している。
 ダイオード509,510は、燃料噴射装置101のソレノイド205に逆電圧を印加して、ソレノイド205に供給されている電流を急速に低減するために備え付けられている。CPU104は、通信ライン503を通して、駆動IC502と通信を行っており、燃料噴射装置101に供給する燃料の圧力や運転条件に応じて、駆動IC502によって生成する駆動電流を切り替えることが可能である。また、抵抗508,512,513の両端は、駆動IC502のA/D変換ポートに接続されており、抵抗508,512,513の両端にかかる電圧を駆動IC502で検出できるように構成されている。
 次に、CPU104から出力される噴射パルスと、燃料噴射装置101が備えるソレノイド205の端子両端の駆動電圧と、駆動電流(励磁電流)と、燃料噴射装置101の弁体214の変位量(弁体挙動)との関係について図4を参照して説明する。
 図4は、燃料噴射装置101を駆動する際における一般的な、噴射パルス、駆動電圧、駆動電流、及び弁体変位量についての時間変化を示したタイミングチャートである。
 駆動IC502にCPU104からの噴射パルス(ON)が入力されると、駆動IC502は、スイッチング素子505,506を通電してバッテリ電圧よりも高い高電圧401(昇圧回路514により昇圧された昇圧電圧VH)をソレノイド205に印加して、ソレノイド205への電流の供給を開始する。駆動IC502は、ソレノイド205への電流値が予めCPU104において定められたピーク電流値Ipeakに到達すると、高電圧401の印加を停止する。
 その後、駆動IC502は、スイッチング素子505、スイッチング素子506、及びスイッチング素子507を非通電にする。この結果、燃料噴射装置101のインダクタンスによる逆起電力によって、ダイオード509とダイオード510とが通電し、電流が高圧電源(昇圧回路514)側へ帰還され、燃料噴射装置101に供給されていた電流は、電流402のようにピーク電流値Ipeakから急速に低下する。
 なお、ピーク電流値Ipeakから電流403(保持電流)への移行期間にスイッチング素子506をONにするようにしてもよく、このようにすると、逆起電力エネルギーによる電流は接地電位515側に流れ、電流が回路内を回生し、ソレノイド205には、ほぼ0Vの電圧が印加されて電流は緩やかに低下する。
 電流値が所定の電流値404より小さくなると、駆動IC502は、スイッチング素子506を通電し、スイッチング素子507の通電/非通電によってバッテリ電圧VBの印加を行い、所定の電流403が保たれるように制御するスイッチング期間を設ける。
 ここで、燃料噴射装置101に供給される燃料圧力が大きくなると、弁体214に作用する閉弁方向の流体力が増加し、弁体214が目標開度に到達するまでの時間が長くなる。この結果、ピーク電流Ipeakの到達時間に対して目標開度への到達タイミングが遅れる場合があるが、電流を電流402のように急速に低減すると、可動子202に働く磁気吸引力も急速に低下するため、弁体214の挙動が不安定となり、場合によっては通電中にも関わらず閉弁を開始してしまう場合がある。これに対し、ピーク電流Ipeakから電流403への移行中にスイッチング素子505をONにして電流を緩やかに減少させるようにすると、磁気吸引力の急速な低下を抑制できる。それにより、高燃料圧力での弁体214の安定性を確保でき、噴射量のばらつきを抑制することが可能となる。
 このような駆動電流のプロファイルにより、燃料噴射装置101は駆動される。高電圧401の印加からピーク電流値Ipeakに達するまでの間に、可動子202及び弁体214がタイミングt41で変位を開始し、その後、可動子202及び弁体214が最大高さ位置に到達する。可動子202が最大高さ位置に到達したタイミングt42で、可動子202が固定コア207に衝突し、可動子202が固定コア207との間でバウンド動作を行う。弁体214は可動子202に対して相対変位可能に構成されているため、弁体214は可動子202から離間し、弁体214の変位は、最大高さ位置を超えてオーバーシュートする。その後、電流403によって生成される磁気吸引力と戻しばね212の開弁方向への力によって、可動子202は、所定の最大高さ位置で静止し、弁体214は可動子202に着座して最大高さ位置で静止し、開弁状態となる(タイミングt43)。
 なお、弁体と可動子とが一体となっている可動弁を持つ燃料噴射装置の場合には、弁体の変位量は、最大高さ位置よりも大きくならず、最大高さ位置に到達後の可動子と弁体の変位量は同等となる。
 次に、第1の実施形態に係るエンジンの気筒108内及びエンジン周囲の構成について図6を参照して説明する。
 図6は、第1の実施形態におけるエンジンの気筒108内及びエンジン周囲の構成例を示した模式図である。図6には、エンジンの気筒108内の中心における概略断面が示されている。
 エンジンは、燃料噴射装置101と、点火プラグ604と、吸気ポート607と、排気ポート608と、ピストン609と、吸気バルブ605と、排気バルブ610とを備える。なお、吸気バルブ605を2個、及び排気バルブ610を2個備えている筒内直接噴射式エンジンでは、気筒108内の中心における断面では、吸気バルブ605及び排気バルブ610は見えないが、図6では、説明上、吸気バルブ605と排気バルブ610とを図示している。
 エンジンにおいて、吸気ポート607側のピストン609のストローク方向と交わる方向(角度)から燃焼室107に向けて燃料を噴射するように、燃料噴射装置101が配置されている。燃料噴射装置101のオリフィス216の先端部から気筒108内(燃焼室107)に燃料が噴射される。筒内直接噴射式エンジンでは、気筒108内に直接燃料が噴射される。
 ピストン609の点火プラグ604側の面(冠面)には、ピストン609の点火プラグ604側の上端部(図中右側)よりも低いキャビティ606(凹部)が形成されている。このキャビティ606は、吸気ポート607から吸気された空気と燃料噴射装置101から噴射された燃料とで構成される混合気の少なくとも一部を、一時的に保持する機能を有している。
 ここで、本実施形態では、キャビティ606とは、ピストン609の点火プラグ604側の冠面において、上端部から最も深い(点火プラグ604側から最も遠い)部分のことをいう。キャビティ606は、点火プラグ604のマイナス電極612とプラス電極613との間の中心ギャップ617から、ピストン609のストローク方向(摺動方向)へ引いた一点鎖線の延長線618がキャビティ606内となるような範囲に形成されている。中心ギャップ617は、マイナス電極612とプラス電極613との間の火花が発生する発火位置を含む領域である。
 本実施形態では、キャビティ606は、ストローク方向に垂直な方向については、吸気ポート607側(図面左側)から、点火プラグ604の中心ギャップ617を通る延長線618との交点よりも排気ポート608側(図面右側)となる範囲まで形成されている。このような構成により、キャビティ606に保持された混合気が、点火プラグ604の中心ギャップ617の直下(延長線618上)に位置することとなる。このような構成により、キャビティ606の混合気を点火プラグ604側に押し上げ、点火プラグ604による点火によって混合気を効果的に燃焼させることができる。
 吸気ポート607には、当該吸気ポート607の上部流路(第1流路)620と下部流路(第2流路)611との間の空気の流れを分断する固定式の隔壁602が取り付けられている。下部流路611の上流には、下部流路611側の開閉(開放/遮断)を行うバルブ601が設けられている。このバルブ601は、ECU150のCPU104により開弁/閉弁を制御できるように構成されている。図6においては、バルブ601が閉弁している状態を示している。
 次に、エンジンにおける吸気及び排気に関わる構成の一部について図7を参照して説明する。図7は、第1の実施形態におけるエンジンの吸気系及び排気系の一部を示す構成図である。
 エンジンの気筒108内(燃焼室107)には、図示しない吸気口から、エアークリーナー701、過給室704、インタークーラー705、スロットルバルブ706、及び吸気ポート607を介して、空気が吸入される。過給室704の入り口に設けられるエアークリーナー701は、吸入した空気中のごみを取り除き、エンジンにごみが吸入されることを防止する。これにより、エンジン内部が摩耗等することが抑制される。
 過給室704には、過給機702が備えられている。過給機702は、吸気側に配置されて空気を圧縮するコンプレッサ702Aと、排気側に配置されて排気ガスの流れにより回転されるタービン702Bと、コンプレッサ702Aとタービン702Bとを接続するシャフト707とを備える。過給機702においては、タービン702Bが排気ガスの流速に応じて回転され、さらにシャフト707を介してコンプレッサ702Aが回転される。その結果、エアークリーナー701を通過した空気が、コンプレッサ702Aの回転により圧縮されてインタークーラー705側に流される。これにより、エンジンの燃焼室107への流入空気量を増加することができ、エンジンの出力を向上することができる。なお、過給室704を通過した空気は、コンプレッサ702Aにより圧縮されるので、温度が上昇する。
 インタークーラー705は、コンプレッサ702Aで圧縮されて温度が上昇した空気を冷却する。スロットルバルブ706は、吸気ポート607から気筒108内(燃焼室107)へ流入する空気量を調整する。スロットルバルブ706の開度は、図示しないアクセルの開度等に基づいて、ECU150により制御される。
 吸気ポート607には、吸気バルブ605が設けられている。吸気バルブ605(及び排気バルブ610)の基準位置に対するリフト量は、ECU150により制御される。所定のタイミングで吸気バルブ605が開弁することにより、エンジンの燃焼室107内に空気が流入する。
 エンジンの燃焼室107では、流入した空気と、燃料噴射装置101から噴射された燃料とが混合されて混合気となり、点火プラグ604による着火により、混合気が燃焼される。この混合気の燃焼により発生する力がピストン609、及びコンロッド(コネクティングロッド)710を介して、図示しないクランクシャフトに伝達される。
 エンジンには、エンジンの熱を冷却し適温に保つための冷却装置が設けられている。例えば、水冷式の冷却装置は、冷却水がエンジンの気筒108の周囲に設けられたウォータージャケット(符号省略)を通過することでエンジンに発生した熱を奪い、適温を維持する。エンジンの冷却水の温度(以下、エンジン水温と称す)は、ウォータージャケットに設けられたサーモスタット711により調整される。エンジン水温は、環境温度の一例である。サーモスタット711の上部には、温度センサ用のカプラーが取り付けられている。温度センサ(図示略)は、カプラーを介してサーモスタット711の抵抗値の変化を検知し、検知結果(出力信号)をECU150へ出力する。冷却水は、ウォータージャケット、サーモスタット711、及びラジエータホース712を経由して不図示のラジエータに導かれ放熱される。
 燃焼室107において混合気が燃焼して発生した排気ガスは、膨張行程に排気バルブ610が開弁された際に、排気ポート608を通過して、過給機702のタービン702Bを回転させる。タービン702Bを回転させた排気ガスは、触媒703を通過して、HC,NOx,CO(一酸化炭素)が低減されて外部に排出される。触媒703は、例えば、パラジウム、ロジウム、及びプラチナなどにより作製された触媒を有する3元触媒である。触媒703は、排ガス中に含まれるHC、NOx、COを、触媒により還元反応及び酸化反応を生じさせることにより除去する。この触媒703は、温度が低い場合では、還元能力が低いため、例えば、エンジン始動時などの低温の条件においては、触媒703の温度を早期に暖めるための燃焼(触媒暖機)が必要となる。
 次に、第1の実施形態における燃料噴射装置101の燃料噴射の制御方法について図8を用いて説明する。
 図8は、第1の実施形態におけるクランク角度と噴射タイミング、燃料噴射弁(弁体214)のリフト量の一例を示した図である。図8において、横軸は吸気行程の上死点を-360[deg.ATDC(After Top Dead Center)]としたクランク角度、縦軸は燃料噴射弁のリフト量を表す。なお、実線は本実施形態による常温想定時の燃料噴射を示し、破線は本実施形態による低温想定時の燃料噴射を示している。本実施形態では、一例として、外気温度の常温を25℃、低温を-7℃とする。外気温度が低いほど、環境温度の一例であるエンジン水温も低下する。
 触媒暖機時の燃料噴射制御について図8の実線を用いて説明する。触媒暖機の条件では、ECU150は、ピストン609が上死点(TDC:Top Dead Center)に到達するタイミングかつ、排気バルブ610が閉弁する直前又は同時のタイミングにおいて、吸気バルブ605の開弁を開始させ、燃焼室107内に空気を取り込む。燃料噴射装置101は、吸気バルブ605が開弁を開始し、最大リフト位置に到達するまでの間において、タイミングt81,t82で吸気行程801における燃料噴射を行う。そして、燃料噴射装置101は、ピストン609が下死点(BDC:Bottom Dead Center)に到達し、圧縮行程802に入り、ピストン609が上死点に到達する前のタイミングt83,t84において圧縮行程802における燃料噴射を行う。これにより、燃料噴射装置101から噴射した噴霧と空気とで構成される混合気をキャビティ606内に入れて、キャビティ606から混合気を点火プラグ604の方向へ押し上げる。
 このように燃料の噴射タイミングを制御することで、点火プラグ604の付近に理論空燃比(以降、ストイキと称する)よりもリッチな混合気が形成されるようにすることが望ましい。すなわち、点火プラグ604のマイナス電極612とプラス電極613の間(図6の中心ギャップ617)の周辺にリッチな混合気を形成し、上死点後のタイミングt85において点火を行い、混合気に着火させて燃焼させる。
 一方、エンジンの冷却水の温度が低い場合では、燃料粘度の増加に伴い噴霧の貫徹力の低下、燃焼室壁面及びピストン609の冠面への燃料付着が起こり、点火プラグ604周りにリッチな混合気を確保できない場合があった。
 本発明の第1の実施形態における燃料噴射制御及びその作用効果について図8~図11を用いて説明する。本実施形態においては、例として吸気行程及び圧縮行程での計4回の燃料噴射を想定する。ただし、本実施形態における技術思想は、少なくとも圧縮行程で3回以上の燃料噴射を行うような、燃料噴射の多段化にも適用される。図8に示す例では、例えば、吸気行程801の噴射開始のタイミングt81において、外気温度が常温のときには実線で示す常温想定の1回目の燃料噴射803、外気温度が低温のときには破線で示す低温想定の1回目の燃料噴射810を実行する。その後、吸気行程801で1回の燃料噴射(タイミングt82)、圧縮行程802で2回の燃料噴射(タイミングt83,t84)を行い、圧縮行程802上死点後にt85のタイミングで点火を行う。
 なお、本実施形態では、吸気行程801における低温想定時の1回目噴射810の期間は、常温想定時の1回目噴射803の期間よりも短い。同様に、吸気行程801における低温想定時の2回目噴射811の期間は、常温想定時の2回目噴射804の期間よりも短い。また、圧縮行程802における常温想定時の1回目噴射805の期間と弁体214のリフト量は、圧縮行程802における低温想定時の1回目噴射812のそれらと同じである。そのため、図8では、燃料噴射805と燃料噴射812が重なっている。また、圧縮行程802における低温想定時の2回目噴射813による弁体214のリフト量は、常温想定時の2回目噴射806によるリフト量よりも大きい。図8に示す例では、燃料噴射803~805,811~812は、弁体214が最大リフト量まで変位するフルリフト(以下、FL)噴射である。また、燃料噴射806,813は、弁体214が最大リフト量まで変位しないパーシャルリフト(以下、PL)噴射である。
 次に、環境温度が低い場合に、常温想定の燃料噴射制御を実施した際の筒内混合気の解析結果について図9を参照して説明する。
 図9は、図8の実線で示す燃料噴射制御を実施した際の、外気温度が常温の場合と低温の場合の筒内当量比分布を示した図である。図9に示す例では、1燃焼サイクル中の通算3回目(圧縮行程中の1回目)の燃料噴射後、同じく4回目(圧縮行程中の2回目)の燃料噴射後、及び点火時のそれぞれについて筒内の混合気の当量比分布を示している。当量比は、筒内の空気量に対して、理論空燃比の何倍の燃料が存在するかを示す値である。図9において、数値が大きいほど当量比が高い、リッチな混合気であることを表している。
 エンジン始動時に、図8の燃料噴射803,804,805,806で示される燃料噴射制御を行うと、常温(25℃)を想定した図9左側では、点火時にリッチで成層化された混合気901が点火プラグ604周りに形成される。一方、低温(-7℃)を想定した図9右側では、同様の燃料噴射制御を行うと、リッチで成層化された混合気903が点火プラグ604の下に集まるが、点火プラグ604まで持ち上がらない。その結果、低温時は、常温時と比較して燃焼安定性が低下してしまう。この要因として、環境温度の低下に伴う燃料粘度の増加に伴い、3回目の噴霧902の貫徹力が低下し、4回目の噴射を行っても、混合気903が点火プラグ604周りへ押し上げられないことが考えられる。
 そこで、本実施形態では、エンジン水温が低い場合に、リッチな混合気903が点火プラグ604付近へ持ち上がらない課題を解決するため、図8の破線で示す燃料噴射810,811,812,813のような燃料噴射制御を行う。圧縮行程で複数(例えば2回)の燃料噴射を行う理由は、圧縮により混合気の温度が上昇して混合気が気化しやすくなるからである。このとき、ECU150は、圧縮行程802における後期の燃料噴射813では、常温想定の燃料噴射806よりも、燃料噴射装置101に供給する駆動電流の電流値、燃料噴射装置101に駆動電圧を印加するための噴射パルスのパルス幅、又は噴射回数を増加させる制御を行う。本明細書では、圧縮行程802中の複数の燃料噴射における1回目の燃料噴射を「圧縮行程における前期の燃料噴射」とし、2回目以降の燃料噴射を「圧縮行程における後期の燃料噴射」とする。図8の例では、圧縮行程802の燃料噴射806,813において、駆動電流の電流値を変更することで噴射量を調整している。
 以上の制御を行うことで、エンジン水温が低い場合に、常温想定の燃料噴射806の場合よりも低温想定の燃料噴射813の噴射量を増加させることで、貫徹力を増加させる。このように、本実施形態に係る燃料噴射制御装置(ECU150)は、エンジン水温に応じて圧縮行程802における後期の噴射量を変更し、貫徹力を適切に保つ。これにより、本実施形態では、エンジン水温が変化してもリッチな混合気903を点火プラグ604付近へ押し上げ、リッチで成層化された混合気903を点火プラグ604の下に集めることができる。なお、エンジン水温と燃料の噴射量との関係は、事前に実験又はシミュレーションにより求められ、参照テーブル(マップデータ)又は関数のデータとして、メモリ104M(図5)又は不揮発性の記録媒体に保存されている。
 さらに、本実施形態では、エンジン水温が低いほど、圧縮行程802における後期の燃料噴射時の駆動電流の電流値、又は噴射パルスのパルス幅を増加させる制御に加えて、吸気行程801の燃料噴射803,804時の電流値又はパルス幅を減少させる制御を行っている。すなわち、本実施形態では、環境温度が相対的に低い場合、吸気行程801における燃料噴射量を減少させる。
 ここで、本発明者らの混合気解析により明らかになった、燃焼室107の壁面及びピストン609の冠面への燃料の付着量について図10を用いて説明する。
 図10は、第1の実施形態に係る燃料噴射制御による、燃焼室壁面及びピストン冠面への燃料の付着量を示した図である。図10において、横軸は吸気行程の上死点を0度としたクランク角度[deg]を示し、縦軸は燃料の付着量[mg]を示している。図10左側は、外気温度が低温(-7℃)時に、常温想定の噴射803,804,805,806(図8参照)を行った際の燃料付着量を示す。また、図10右側は、外気温度が低温(-7℃)時に、低温想定の燃料噴射810,811,812,813を行った際の燃料付着量を示している。具体的には、燃焼室107の壁面614への燃料付着量を実線1001B,1002Bで、ピストン609の冠面への燃料付着量を波線1001P,1002Pで、これらの燃料付着量の合計を一点鎖線1001A,1002Aで示している。
 図10に示すように、エンジン水温が低下するほど、吸気行程(0~180deg)における燃料噴射時の噴射パルスのパルス幅を減少させることで、燃焼室107壁面やピストン609冠面への燃料付着量を減らすことができる。図10左側のグラフでは、吸気行程でのピストン609冠面への燃料付着量が多い。図10右側のグラフでは、吸気行程での噴射量を減らし、圧縮行程(180~360deg)での噴射量を増加させることで、燃料付着量が減少している。例えば、実線1002Bで示すように、燃焼室107壁面への燃料付着量はほぼゼロである。燃料付着量が減る要因として、圧縮中は燃焼室107内の温度と圧力が上昇し燃料の噴霧が気化しやすいことが挙げられる。
 また、燃料噴射量に関しては、図8の燃料噴射803と燃料噴射804に対し、燃料噴射810と燃料噴射811のように、エンジン始動時に前述した吸気行程801の燃料噴射での燃料噴射量の減少量を、圧縮行程802における後期の燃料噴射での燃料噴射量の増加量と等しくすることが考えられる。すなわち、エンジン水温によらず、一燃焼サイクル中の燃料噴射量を等しくする。図8の例では、吸気行程801の燃料噴射において、噴射パルスのパルス幅を変更することで噴射量を調整している。このような燃料噴射制御とすることにより、エンジン水温が低下しても、燃料の総噴射量を変化させることなく圧縮行程における後期の燃料噴射による燃料噴射量を増加させる制御を実施可能とする。それにより、本実施形態では、環境温度低下に伴うエンジン始動時の燃費の悪化を抑制したエンジン運転を実現することができる。
 つまり、数式で示すと、「吸気行程での燃料噴射量の減少量=圧縮行程での燃料噴射量の増加量」となる。図8を用いると、燃料噴射量に関して、[「燃料噴射803-燃料噴射810」+「燃料噴射804-燃料噴射811」]=[燃料噴射813-燃料噴射806]と表すことができる。本実施形態では、エンジン水温が低下するに従い、圧縮行程で燃料噴射量を増加させ、混合気を押し上げる。それにより、点火プラグ604周りにリッチな混合気を確保し、燃焼安定性を向上させることができる。さらに、本実施形態では、圧縮行程の燃料噴射量の増加量と吸気行程の燃料噴射量の減少量を等しくすることで、点火リタードが実施可能な燃焼安定性を十分確保してエンジンを運転することが可能である。
 続いて、圧縮行程における後期の燃料噴射の制御方法の詳細について説明する。図8に示した例では、圧縮行程802における後期の燃料噴射806,813をパーシャルリフト(PL)噴射により実施する。圧縮行程802における後期の燃料噴射では、燃料噴射装置101とピストン609冠面との幾何学的な距離が近くなる。圧縮行程802における後期の燃料噴射時にフルリフト(FL)噴射等の噴霧の貫徹力が高い噴射を行うと、点火プラグ604周りへ混合気を押し上げる際、リッチな混合気が点火プラグ604周りを通り越してしまう。点火プラグ604周りにリッチな混合気を確保できないばかりか、燃焼室107の上側に燃料が付着してしまう。そのため、本実施形態では、圧縮行程802における後期の混合気を押し上げる燃料噴射806,813において、PL噴射を実施することにより噴霧の貫徹力を抑える。PL噴射を行うことで、噴霧の貫徹力を適切に保ち、燃焼安定性に寄与するリッチな混合気を点火プラグ604周りに保持することができる。
 ただし、フルリフト(FL)噴射であっても噴霧の貫徹力が所定値よりも高くない場合には、圧縮行程の後期の燃料噴射をPL噴射で実施しなくてもよい。
 触媒暖機時は、点火プラグ604周りにリッチで成層化された混合気を作成するため、キャビティ606を用いて、点火プラグ604周りまで混合気を巻き上げる必要がある。よって、圧縮行程802における後期のPL噴射による燃料噴射806,813と同様に、圧縮行程802の1回目に行うFL噴射による燃料噴射805,812でもキャビティ606を用いることで、点火プラグ604周りにリッチな混合気を集めやすくなる。したがって、FL噴射による燃料噴射805,812は圧縮行程802の中期以降で噴射を開始することが望ましい。ここでの圧縮行程中期とは、クランク角度に基づいて圧縮行程を三区分した場合の2番目の期間である。
 さらに、本実施形態おける圧縮行程における後期のPL噴射時の燃料噴射量制御では、エンジン水温が低くなるほど、駆動電流の電流値、又は噴射パルスのパルス幅を増加させる。その際、本実施形態では、エンジン水温に関わらず、圧縮行程における後期の燃料噴射の噴射時期の変更は行わない。例えば、常温想定の燃料噴射806と、低温想定の燃料噴射813とで、噴射のタイミングt84が同じである。上記の制御を行うことで、エンジン水温が低くても、噴霧の貫徹力を増加させ、圧縮行程中のFL噴射により形成された混合気を押し上げることができる。また、本実施形態によれば、ECU150は、エンジン水温に応じて圧縮行程における後期の燃料噴射時の噴射量のみを演算すればよく、この演算に加えて新たに燃料噴射のタイミングを演算する必要がない。
 次に、第1の実施形態における外気温が低温時の筒内混合気の解析結果について図11を参照して説明する。
 図11は、図8の破線で示す本発明の第1の実施形態に係る燃料噴射制御を実施した場合の、低温時の点火時期付近の筒内当量比分布を示した図である。図11に示すように、エンジン始動時のエンジン水温が低下しても、低温想定の燃料噴射810,811,812,813を実施することで、点火プラグ604周りにリッチで成層化された混合気1101を集めることができる。また、エンジン水温が低下した場合でも、図9右側の低温時の解析結果と比較して、燃焼室107の終端(燃焼室107の壁面)付近の混合気1102の当量比も上昇していることが分かる。
 噴射時期を変更しない理由として、図8に示すようにPL噴射時は圧縮行程後半であり、燃料噴射装置101とピストン609との距離が近いということがある。ここで、圧縮行程後半とは、圧縮行程をクランク角度に基づいて2分割したときの後半を意味する。すなわち、筒内圧力や流速による噴霧角、貫徹力並びに噴霧の巻き上がりによる変化を排除するためである。図8に示した燃料噴射のパターンで説明すると、エンジン水温が低い場合は、燃料噴射806のタイミングで駆動電流の電流値又は噴射パルスのパルス幅を増加させることで、燃料噴射813のように燃料の噴射量を増やす。よって、本実施形態では、エンジン水温が低い場合でも、燃焼安定性を確保することが可能である。
 以上のとおり、第1の実施形態に係る燃料噴射制御装置(ECU150)は、内燃機関(例えば、4つの気筒108からなるエンジン)の1燃焼サイクル中に燃料を複数回噴射可能な燃料噴射装置(燃料噴射装置101)を制御する。そして、燃料噴射制御装置は、内燃機関の始動時又は再始動時に当該内燃機関の環境温度(例えば、エンジン水温)が低いほど、圧縮行程の複数の燃料噴射における後期の燃料噴射(燃料噴射813)時に、噴射量を増加させる方向に制御する制御部(CPU104)、を備える。
 上記のように構成された燃料噴射制御装置(ECU150)は、圧縮行程における後期の燃料噴射(例えばPL噴射)時の駆動電流の電流値、又は噴射パルスのパルス幅を増加させて、噴射量を増加させる。この燃料噴射制御による噴霧により、気筒108内の混合気をキャビティ606から点火プラグ604周りに押し上げる。図9右側に示したように、常温想定の燃料噴射制御では、低温始動時にリッチな混合気903が点火プラグ604周りまで到達しておらず、燃焼室107終端付近の混合気904の当量比は低下していた。しかし、低温想定の燃料噴射制御を行うことで、これらの問題は改善され、図11に示すように、点火プラグ604周りまでリッチな混合気1101が到達し、燃焼室107終端付近の混合気1102の当量比も上昇している。したがって、本実施形態では、エンジン水温が低下した場合でも、安定して点火リタードを実施することができ、低温始動時又は再始動時の排気を低減することが可能となる。
 本実施形態では、極低温下(例えば、所定の外気温度以下)でのエンジン始動直後などでは、エンジンストールを回避するために点火リタードを行わない。この条件では、燃料が気化されにくく、点火リタードを行うために必要な燃焼安定性を十分に確保できないためである。触媒暖機中にフルスロットル加速をするときなど、エンジントルクが多く要求される場合はエンジンストールを回避することを目的とし、点火リタード制御を中断する。
 なお、本実施形態において、エンジンの環境温度の例としてエンジン水温を挙げたが、例えば、環境温度は、エンジンの吸気の温度、エンジンの気筒108の温度、又は、燃料の温度などでもよい。例えば、燃料を補給(給油)した直後は燃料の温度が大きく低下する場合がある。燃料温度が低下すると燃料粘度が低下し、噴霧の貫徹力が低下する。給油直後は低温始動時と同様の課題が発生するため、燃料温度が低いほど、圧縮行程における後期の燃料噴射806における駆動電流の電流値又は噴射パルスのパルス幅を増加させる。以上の燃料噴射制御を行うことで、給油直後でも十分な燃焼安定性を確保し、点火リタードを行うことができる。
 また、本実施形態では、エンジン水温、エンジンの吸気の温度、エンジンの気筒108の温度、及び、燃料の温度の2つ以上を用いて、環境温度を総合的に判断してもよい。つまり、環境温度は、エンジン水温、エンジンの吸気の温度、エンジンの気筒108の温度、及び、燃料の温度のうち少なくとも一つ以上であればよい。
<第2の実施形態>
 本発明の第2の実施形態に係る燃料噴射制御装置が適用された燃料噴射システムについて、図12~図13を用いて説明する。第2の実施形態に係る燃料噴射制御が、第1の実施形態に係る燃料噴射制御と異なる点は、エンジン水温が低いほど、圧縮行程における後期のPL噴射による燃料噴射の回数を増加させることである。この第2の実施形態の特徴的な構成以外の構成は、第1の実施形態と同様とし、重複する説明を省略する。
 図12は、第2の実施形態における圧縮行程中の後期のPL噴射を分割する場合の、クランク角度と噴射タイミング、燃料噴射弁(弁体214)のリフト量の一例を示した図である。図8と同様に、図12において、横軸は吸気行程の上死点を-360[deg.ATDC]としたクランク角度、及び縦軸は燃料噴射弁のリフト量である。実線は常温想定の燃料噴射を示し、破線は本実施形態による低温想定の燃料噴射を示している。図12では、圧縮行程802のタイミングt121において実施される燃料噴射1201のように、圧縮行程における後期の燃料噴射としてPL噴射による2回目の燃料噴射を行うことが示されている。
 第2の実施形態の具体的な一例として、PL噴射を2回実施する際の燃料噴射制御について説明する。吸気行程801での燃料噴射制御は、図8に示したPL噴射の燃料噴射量を増加させる方法と変わらず、エンジン水温が低いほど、燃料噴射803,804のタイミングt81,t82において燃料噴射810,811のように噴射量を減少させる。また、圧縮行程802での燃料噴射制御は、FL噴射による燃料噴射812は変わらず、PL噴射による燃料噴射813’も常温想定の燃料噴射806と同様に実施する。PL噴射による燃料噴射813’では、噴射タイミング(タイミングt84)は変更しないが、燃料噴射量は常温想定の燃料噴射806の場合と同様とする。そして、圧縮行程802のFL噴射による燃料噴射812のタイミングt83よりも後、かつPL噴射による燃料噴射813’のタイミングt84よりも前のタイミングt121で、燃料噴射1201を実施する。
 本実施形態では、燃料噴射1201での駆動電流の電流値又は噴射パルスのパルス幅、すなわち燃料噴射量は、燃料噴射813’の場合と同等であることを想定しているが、PL噴射時の貫徹力を増加させる場合(図8参照)と同等の貫徹力が必要である。したがって、燃料噴射813’と燃料噴射1201の噴射量の分割比は、どちらかが大きくなってもPL噴射時の貫徹力を増加させる場合と同等の貫徹力が得られれば問題ない。また、吸気行程801での燃料噴射量の減少量と圧縮行程802での燃料噴射量の増加量とは、同等で実施することができる。これは第1の実施形態と同様の考え方である。
 次に、第2の実施形態における外気温が低温時の筒内混合気の解析結果について図13を参照して説明する。
 図13は、図12の破線で示す本発明の第2の実施形態に係る燃料噴射制御を実施した場合の、低温時の点火時期付近の筒内当量比分布を示した図である。図13に示すように、エンジン始動時のエンジン水温が低下しても、低温想定の燃料噴射810,811,812,1201,813’を実施することで、リッチな混合気1301が点火プラグ604周りまで到達しており、成層化された混合気が燃焼室107内に形成されている。すなわち、本実施形態は、エンジン水温が低く、噴霧の貫徹力が低下する条件でも、PL噴射の噴射回数の増加により、噴射量を増加させ、噴霧の貫徹力を向上させることができる。
 よって、本実施形態は、圧縮行程中のFL噴射(燃料噴射812)により形成された混合気を点火プラグ604周りへ押し上げることができる。このように、本実施形態は、圧縮行程における後期の燃料噴射時の駆動電流の電流値又は噴射パルスのパルス幅を増加させる方法と同様に、点火プラグ604周りにリッチな混合気を与える効果を得ることが可能となる。したがって、本実施形態は、圧縮行程における後期のPL噴射による燃料噴射の噴射回数を増加させることで、低温始動時に安定して点火リタードを実施することが可能である。
 なお、上記のとおり、本実施形態では、圧縮行程802における後期の燃料噴射時に、PL噴射により2回の燃料噴射1201,813’を実施し、その際に2回目のPL噴射のタイミング(タイミングt84)を変更しない構成としたが、当該タイミングを変更する構成を排除しない。すなわち、エンジン水温が低いほど、圧縮行程における後期の燃料噴射813’として実施する2回目のPL噴射のタイミングを、燃料付着量が所定量よりも増えない範囲で遅らせてもよい。
 本発明は上述した各実施形態に限られるものではなく、請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、その他種々の応用例、変形例を取り得ることは勿論である。例えば、上述した各実施形態は本発明を分かりやすく説明するために燃料噴射装置及び燃料噴射システムの構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成要素を備えるものに限定されない。また、ある実施形態の構成の一部を他の実施形態の構成要素に置き換えることが可能である。また、ある実施形態の構成に他の実施形態の構成要素を加えることも可能である。また、各実施形態の構成の一部について、他の構成要素の追加又は置換、削除をすることも可能である。
 また、上記の各構成、機能、処理部等は、それらの一部又は全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。ハードウェアとして、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などの広義のプロセッサデバイスを用いてもよい。
 1…燃料噴射システム、 101…燃料噴射装置、 104…CPU、 104M…メモリ、 107…燃焼室、 108…気筒、 150…ECU、 606…キャビティ、 609…ピストン、 711…サーモスタット、 801…吸気行程、 802…圧縮行程、 803~806…(常温想定の)燃料噴射、 810~813,813’,1201…(低温想定の)燃料噴射、 t81~t85,t121…タイミング

Claims (9)

  1.  内燃機関の1燃焼サイクル中に燃料を複数回噴射可能な燃料噴射装置を制御する燃料噴射制御装置であって、
     前記内燃機関の始動時又は再始動時に前記内燃機関の環境温度が低いほど、圧縮行程の複数の燃料噴射における後期の燃料噴射時に、噴射量を増加させる方向に制御する制御部、を備える
     燃料噴射制御装置。
  2.  前記制御部は、前記燃料噴射装置に供給する駆動電流の電流値、又は前記燃料噴射装置に駆動電圧を印加するためのパルス信号のパルス幅、又は噴射回数を増加させる
     請求項1に記載の燃料噴射制御装置。
  3.  前記内燃機関の始動時又は再始動時に前記環境温度が低いほど、吸気行程の燃料噴射による噴射量を減少させる
     請求項2に記載の燃料噴射制御装置。
  4.  前記吸気行程の燃料噴射による噴射量の減少量と、前記圧縮行程の燃料噴射による噴射量の増加量とを等しくする
     請求項3に記載の燃料噴射制御装置。
  5.  前記圧縮行程中の複数の燃料噴射における1回目の燃料噴射を前期の燃料噴射とし、2回目以降の燃料噴射を後期の燃料噴射とした場合、前記圧縮行程中の前期の燃料噴射は、燃料噴射弁を最大リフト量まで変位させるフルリフト噴射であり、前記圧縮行程中の後期の燃料噴射は、燃料噴射弁を最大リフト量まで変位させないパーシャルリフト噴射である
     請求項1に記載の燃料噴射制御装置。
  6.  前記制御部は、前記圧縮行程中の後期の燃料噴射において前記パーシャルリフト噴射により噴射量を増加させる場合、前記内燃機関の始動時又は再始動時の前記環境温度により噴射時期を変えることなく、前記燃料噴射装置に供給する駆動電流の電流値又は前記燃料噴射装置に駆動電圧を印加するためのパルス信号のパルス幅を増加させる
     請求項5に記載の燃料噴射制御装置。
  7.  前記制御部は、前記内燃機関の始動時又は再始動時に前記環境温度が低いほど、前記圧縮行程中の後期の燃料噴射における前記パーシャルリフト噴射の回数を増加させる
     請求項5に記載の燃料噴射制御装置。
  8.  前記環境温度は、前記内燃機関を冷却する冷却水の温度、前記内燃機関の吸気の温度、前記内燃機関の円筒の温度、又は、前記燃料の温度のうち少なくとも一つ以上である
     請求項1に記載の燃料噴射制御装置。
  9.  内燃機関の1燃焼サイクル中に燃料を複数回噴射可能な燃料噴射装置を制御する燃料噴射制御装置による燃料噴射制御方法であって、
     前記燃料噴射制御装置は、前記内燃機関の始動時又は再始動時に前記内燃機関の環境温度が低いほど、圧縮行程の複数の燃料噴射における後期の燃料噴射時に、噴射量を増加させる方向に制御する
     燃料噴射制御方法。
PCT/JP2022/007594 2022-02-24 2022-02-24 燃料噴射制御装置及び燃料噴射制御方法 WO2023162086A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007594 WO2023162086A1 (ja) 2022-02-24 2022-02-24 燃料噴射制御装置及び燃料噴射制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007594 WO2023162086A1 (ja) 2022-02-24 2022-02-24 燃料噴射制御装置及び燃料噴射制御方法

Publications (1)

Publication Number Publication Date
WO2023162086A1 true WO2023162086A1 (ja) 2023-08-31

Family

ID=87765006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007594 WO2023162086A1 (ja) 2022-02-24 2022-02-24 燃料噴射制御装置及び燃料噴射制御方法

Country Status (1)

Country Link
WO (1) WO2023162086A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183576A (ja) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd 筒内噴射式内燃機関
JP2015101986A (ja) * 2013-11-22 2015-06-04 トヨタ自動車株式会社 筒内噴射内燃機関の始動制御装置
JP2016020649A (ja) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 筒内噴射式内燃機関の制御装置
WO2019207903A1 (ja) * 2018-04-27 2019-10-31 日立オートモティブシステムズ株式会社 燃料噴射制御装置
JP2021046846A (ja) * 2019-09-20 2021-03-25 日立Astemo株式会社 燃料噴射制御装置及び燃料噴射制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183576A (ja) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd 筒内噴射式内燃機関
JP2015101986A (ja) * 2013-11-22 2015-06-04 トヨタ自動車株式会社 筒内噴射内燃機関の始動制御装置
JP2016020649A (ja) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 筒内噴射式内燃機関の制御装置
WO2019207903A1 (ja) * 2018-04-27 2019-10-31 日立オートモティブシステムズ株式会社 燃料噴射制御装置
JP2021046846A (ja) * 2019-09-20 2021-03-25 日立Astemo株式会社 燃料噴射制御装置及び燃料噴射制御方法

Similar Documents

Publication Publication Date Title
RU2694562C2 (ru) Система и способ выборочной деактивации цилиндров (варианты)
US10288005B2 (en) Gasoline particulate reduction using optimized port and direct injection
RU2706872C2 (ru) Способ (варианты) и система для впрыска топлива при постоянном и переменном давлении
US9376982B2 (en) Control apparatus for fuel injector
JP2006336509A (ja) 燃料噴射式内燃機関の制御装置
JPH08319865A (ja) 筒内噴射式内燃機関における燃料噴射制御装置
JP2013113163A (ja) 圧縮自己着火式エンジンの始動制御装置
US20210140388A1 (en) Fuel Injection Control Device
US20170030299A1 (en) Lpg direct injection engine
JP2014020211A (ja) 筒内噴射式エンジンの燃料噴射制御装置
WO2023162086A1 (ja) 燃料噴射制御装置及び燃料噴射制御方法
JP6524206B2 (ja) 燃料噴射装置、燃料噴射装置の制御装置、燃料噴射装置の制御方法、燃料噴射システム
US20210363937A1 (en) Injector control device
EP2067954A1 (en) Pre-combustion chamber engine having combustion-initiated starting
EP3267018A1 (en) Fuel injection valve, control device for fuel injection valve, and control method
WO2021053935A1 (ja) 燃料噴射制御装置及び燃料噴射制御方法
EP3460223A1 (en) Internal combustion engine control device
JP2014098375A (ja) 燃料噴射弁
JP7177458B2 (ja) 燃料噴射装置を制御する制御装置
JP5196028B2 (ja) 内燃機関の燃料噴射制御装置
US11143122B2 (en) Control of an internal combustion engine in transient operating mode
JP2001082232A (ja) 直噴式ディーゼルエンジン
JP5948815B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP6063793B2 (ja) 内燃機関の制御装置
JP2002054479A (ja) 筒内噴射エンジン制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024502331

Country of ref document: JP

Kind code of ref document: A