WO2023160643A9 - 显示模组和显示装置 - Google Patents

显示模组和显示装置 Download PDF

Info

Publication number
WO2023160643A9
WO2023160643A9 PCT/CN2023/078078 CN2023078078W WO2023160643A9 WO 2023160643 A9 WO2023160643 A9 WO 2023160643A9 CN 2023078078 W CN2023078078 W CN 2023078078W WO 2023160643 A9 WO2023160643 A9 WO 2023160643A9
Authority
WO
WIPO (PCT)
Prior art keywords
light
film layer
display panel
close
quantum dot
Prior art date
Application number
PCT/CN2023/078078
Other languages
English (en)
French (fr)
Other versions
WO2023160643A1 (zh
Inventor
钟维
石海军
付常佳
殷凡文
万海燕
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023160643A1 publication Critical patent/WO2023160643A1/zh
Publication of WO2023160643A9 publication Critical patent/WO2023160643A9/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0095Light guides as housings, housing portions, shelves, doors, tiles, windows, or the like
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements

Definitions

  • Embodiments of the present disclosure relate to a display module and a display device.
  • the backlight-type liquid crystal display device includes a casing, a liquid crystal display panel and a backlight module arranged in the casing.
  • the liquid crystal display panel includes a color filter substrate (Color Filter), a thin film transistor array substrate (Thin Film Transistor Array Substrate, TFT Array Substrate), and a liquid crystal layer (Liquid) sandwiched between the color filter substrate and the thin film transistor array substrate.
  • Crystal Layer the working principle of the liquid crystal display panel is to apply a driving voltage on the color filter substrate and the thin film transistor array substrate to control the rotation of the liquid crystal molecules in the liquid crystal layer, and refract the light of the backlight module for display. Since the LCD panel itself does not emit light, it requires the light source provided by the backlight module for normal display.
  • backlight modules are divided into edge-type backlight modules and direct-type backlight modules.
  • a direct backlight module places a light source (such as a cathode fluorescent lamp, Cold Cathode Fluorescent Lamp, CCFL) or a light emitting diode (Light Emitting Diode, LED) behind the LCD panel to directly form a surface light source to provide the liquid crystal display panel, and the edge-type backlight module is to set the backlight LED light bar (Light bar) at the edge of the back panel at the side and rear of the LCD panel.
  • the light emitted by the LED light bar is emitted from the light guide plate (LGP).
  • the light incident surface on one side enters the light guide plate, is reflected and diffused, and then emits from the light exit surface of the light guide plate, and then passes through the optical film group to form a surface light source and provides it to the liquid crystal panel.
  • At least one embodiment of the present disclosure provides a display module and a display device including a display module.
  • the display module moves the first strip portion included in the middle frame from a position close to the display panel to away from the display panel.
  • the position of the display panel extends above the optical element, and makes the orthographic projection of the first strip portion on the display panel at least overlap with the orthographic projection of the edge of the optical element close to the light-emitting element on the display panel, so that the display can be solved.
  • the splicing screen formed by module splicing has the problem of bright and dark bands at the edges, and the thickness of the splicing screen is thinner than the mainstream direct-type splicing screen.
  • At least one embodiment of the present disclosure provides a display module, which includes a backlight module and a display panel, wherein the backlight module includes: a backplane, including a bottom plate and a side plate; and an optical element disposed on the The side of the base plate close to the display panel; the light-emitting element is disposed on the side of the side plate close to the optical element; the middle frame is disposed between the base plate and the display panel, wherein the The middle frame includes a first strip portion extending from a position close to the display panel to a position away from the display panel to above the optical element; at least one portion of the first strip portion There is a first included angle between the portion and the surface of the optical element close to the display panel, and the first included angle is an acute angle or a right angle; the orthographic projection of the first strip portion on the display panel is at least Overlaps with the orthographic projection of the edge of the optical element close to the light-emitting element on the display panel.
  • the backlight module includes: a backplane,
  • the optical element includes a light guide plate configured to receive light emitted from the light-emitting element and conduct the light to the display panel.
  • a surface of the light guide plate away from the display panel has an auxiliary scattering structure, and the auxiliary scattering structure is configured to absorb all the light incident on the light guide plate. The light is scattered.
  • the auxiliary scattering structure includes a plurality of protruding structures protruding toward a side close to the display panel.
  • the optical element further includes a quantum dot film layer disposed on a side of the light guide plate close to the display panel, and the first strip portion Extends to the top of the quantum dot film layer and is connected with the quantum dot film layer.
  • the quantum dot film layer includes a first quantum dot film layer, a second quantum dot film layer, and a second quantum dot film layer that are arranged adjacently in a direction parallel to the main surface of the display panel.
  • the quantum dot film layer and the third quantum dot film layer, and the colors of the light emitted from the first quantum dot film layer, the second quantum dot film layer and the third quantum dot film layer are all different.
  • the direction perpendicular to the main surface of the display panel is the first direction
  • the middle frame further includes a frame substantially parallel to the first direction and along the A second strip-shaped portion extends in the first direction from a position close to the display panel to a position away from the display panel, and the second strip-shaped portion is connected to the first strip-shaped portion.
  • the cross-sectional shape of the first bar-shaped part is a straight line
  • the first bar-shaped part is inclined relative to the second bar-shaped part
  • the The first included angle is an acute angle
  • the cross-sectional shape of the first bar-shaped part is a fold line, and the part of the first bar-shaped part close to the optical element is connected with the main part of the bottom plate.
  • the first angle between the surfaces is a right angle.
  • the light-emitting element and the surface of the side plate close to the optical element are connected through a first adhesive.
  • the optical element further includes a reflective structure disposed on a side of the light guide plate close to the bottom plate, and a reflective structure disposed on a side of the light guide plate away from the bottom plate.
  • the light diffusion structure on one side of the bottom plate, the reflective structure and the bottom plate are bonded over the entire surface through a second adhesive glue
  • the reflective structure and the light guide plate are bonded over the entire surface through a third adhesive glue
  • the light guide plate and the light diffusion structure are bonded over the entire surface through a fourth adhesive glue.
  • the surface of the first strip portion close to the light guide plate is in direct contact with the light diffusion structure, or the surface of the first strip portion close to the light guide plate is in direct contact with the light diffusion structure.
  • the surface of the light guide plate and the light diffusion structure are connected through a sixth adhesive glue.
  • the optical element further includes a reflective structure disposed on a side of the light guide plate close to the bottom plate, and a reflective structure disposed between the light guide plate and the quantum
  • the light diffusion structure between the dot film layers, the reflective structure and the bottom plate are bonded over the entire surface through a second adhesive glue, and the reflective structure and the light guide plate are bonded over the entire surface through a third adhesive glue , the light guide plate and the light diffusion structure are bonded over the entire surface through a fourth adhesive glue, and the quantum dot film layer and the light diffusion structure are bonded over the entire surface through a fifth adhesive glue.
  • the surface of the first strip portion close to the quantum dot film layer is in direct contact with the quantum dot film layer, or the first strip portion is in direct contact with the quantum dot film layer.
  • Part of the surface close to the quantum dot film layer and the quantum dot film layer are connected through a sixth adhesive glue.
  • the middle frame and the back panel are fixedly connected through buckles.
  • the display panel includes a liquid The crystal cell and the optical film layer are provided on the side of the liquid crystal cell close to the optical element, and the optical film layer and the liquid crystal cell are bonded through a seventh adhesive glue.
  • the optical film layer includes a stacked light-enhancing film and a diffusion film, and the diffusion film is provided on a side of the light-enhancing film close to the liquid crystal cell. side.
  • an outer frame is provided on a side of the middle frame away from the optical element, and the optical film layer is connected to the middle frame through a first connector. connected, and the liquid crystal box and the outer frame are connected through a second connecting piece.
  • At least one embodiment of the present disclosure also provides a display device, which includes a splicing screen composed of a plurality of display modules as described in any one of the above.
  • adjacent display modules are spliced through connecting tapes.
  • Figure 1 is a schematic three-dimensional structural diagram of a display module using a direct backlight
  • Figure 2 is a distribution diagram of edge brightness of the display module shown in Figure 1;
  • Figure 3 is a schematic diagram of the optical path of the light emitted by a direct-type single light-emitting diode lamp bead after refraction;
  • Figure 4 is a schematic diagram of the distribution of light intensity of light emitted by a single light-emitting diode lamp bead along with the luminous angle ⁇ ;
  • Figure 5 is a distribution curve of the light emitted by a single light-emitting diode bead corresponding to the spot's illumination Ev as the plane position x changes;
  • Figure 6 is a one-dimensional distribution diagram of superimposed light spots of direct-type LED lamp beads after superposition
  • Figure 7 is a display rendering of a splicing screen formed by splicing display modules with dimmed edges
  • Figure 8 is a schematic cross-sectional structural diagram of a display module provided by at least one embodiment of the present disclosure.
  • Figure 9 is a schematic cross-sectional structural diagram of yet another display module provided by at least one embodiment of the present disclosure.
  • Figure 10 is a schematic cross-sectional structural diagram of yet another display module provided by at least one embodiment of the present disclosure.
  • Figure 11 is an optical path diagram of light passing through a light guide plate according to at least one embodiment of the present disclosure.
  • Figure 12 is a schematic cross-sectional structural diagram of yet another display module provided by at least one embodiment of the present disclosure.
  • Figure 13 is a schematic cross-sectional structural diagram of yet another display module provided by at least one embodiment of the present disclosure.
  • Figure 14 is a schematic cross-sectional structural diagram of yet another display module provided by at least one embodiment of the present disclosure.
  • Figure 15 is a schematic cross-sectional structural diagram of yet another display module provided by at least one embodiment of the present disclosure.
  • FIG. 16 is a schematic plan view of a display device according to at least one embodiment of the present disclosure.
  • Figure 1 is a schematic diagram of the three-dimensional structure of a display module using a direct-type backlight.
  • a light-emitting diode light bar ( LED)01 is placed at the bottom of the back plate 02.
  • the LED strip 01 is combined with a diffusion plate and film material to form the required surface light source.
  • the structure shown in Figure 1 is usually prone to darkening around the display screen.
  • Figure 2 is a distribution diagram of the edge brightness of the display module shown in Figure 1.
  • the brightness curve shows a trend of first declining and then rising, that is, it finally appears as follows:
  • the tendency is to be concave, resulting in the problem of darkening of the edge area of the display module.
  • the phenomenon of darkening at the edge of the display module is related to the spatial angular distribution characteristics of the light intensity of the lamp beads of the direct-type LED light strip. It is related to the nature, light spot superposition effect and the reflection of the edge bevel.
  • Figure 3 is a schematic diagram of the optical path of light emitted by a direct-type single LED lamp bead after refraction.
  • h is the distance between the LED lamp bead and the display panel;
  • is the luminous angle;
  • r is the diagonal distance from the LED lamp bead to the viewing point along the viewing angle under the condition that the luminous angle is ⁇ ;
  • x is the direction parallel to the main surface of the display panel, and the luminous angle is ⁇
  • the distance between the orthographic projection of the center of the LED lamp bead on the display panel and the viewing point along the viewing angle, and cos ⁇ h/r.
  • Figure 4 is a schematic diagram showing the distribution of the light intensity of the light emitted by a single LED lamp bead with the luminous angle ⁇ .
  • Figure 5 is a schematic diagram showing the distribution of the light intensity Ev of the light spot corresponding to the light emitted by a single LED lamp bead as the Distribution curve of changes in plane position x.
  • the luminous intensity Iv of the light emitted by a single LED lamp bead after being refracted by a prism increases with the increase of the luminous angle ⁇ .
  • Figure 6 shows a superimposed light spot distribution of a direct-type LED lamp bead after superposition.
  • the dimensional distribution diagram, as shown in Figure 6, is superimposed by the light spots of 4 LED lamp beads, that is, 1# LED lamp beads, 2# LED lamp beads, 3# LED lamp beads and 4# LED lamp The light spots of the bead are superimposed.
  • the illumination of the 1# LED bead remains stable in the position range of 0-100mm, and shows a downward trend in the position range of 100mm-300mm;
  • the illumination of the 2# LED bead is The illumination of the lamp bead shows an upward trend in the position range of 0-50mm, remains stable in the position range of 50mm-180mm, and shows a downward trend in the position range of 180mm-350mm;
  • the illumination of the 3# LED lamp bead is in There is an upward trend in the position range of 0-120mm, it remains stable in the position range of 120mm-220mm, and there is a downward trend in the position range of 220mm-410mm;
  • the illumination of the 4# LED lamp bead is in the position of 0-180mm.
  • Figure 7 is a display rendering of a splicing screen formed by splicing display modules with dimming edges. As shown in Figure 7, dimming will occur at the seams of adjacent display modules, thus causing Ultimately, the display effect of the splicing screen becomes worse. How to eliminate the darkening defect at the edges of the splicing units is a problem that needs to be solved in the field of splicing display.
  • the LED light strip can be pasted on the side of the back panel, and the light emitted by the LED passes through the light guide plate provided at the bottom of the back panel to form a uniform primary surface light source, and then uses a large inclination angle
  • the inclined part of the middle frame blocks the edge of the primary surface light source and mixes light in the area between the light guide plate and the display panel, so that the periphery of the secondary surface light source finally has the same picture display effect as the primary surface light source.
  • applying the final display module to a splicing screen can ensure the uniformity of brightness around the splicing screen, thereby improving the splicing screen
  • the final display visual effect can also reduce the thickness of the final splicing screen and save the cost of light-emitting diodes.
  • Applying a display module with this structure to a splicing display can also solve the problem of bright and dark edges at the edges, and the thickness of the splicing screen is thinner than that of mainstream direct-type splicing screens, and based on this structure, the quantum dot film Place it on the side of the light guide plate close to the display panel so that the inclined part of the middle frame blocks the edge of the quantum dot film, and match it with a blue light-emitting diode light bar to achieve a high color gamut and extremely narrow frame splicing screen display, and also solve the problem of quantum dots
  • the problem that the film is prone to failure is that the blue luminescent area enters the visible area.
  • the display module includes a backlight module and a display panel.
  • the backlight module includes: a backplane, optical elements, light-emitting elements and a middle frame.
  • the backplane includes a bottom plate and a side panel.
  • the optical element is disposed on a side of the base plate close to the display panel
  • the light-emitting element is disposed on a side of the side plate close to the optical element
  • the middle frame is disposed between the base plate and the display panel
  • the middle frame includes a first A strip-shaped portion, the first strip-shaped portion extends from a position close to the display panel to a position away from the display panel to above the optical element, and there is a first strip-shaped portion between at least part of the first strip-shaped portion and a surface of the optical element close to the display panel.
  • the included angle, the first included angle is an acute angle or a right angle
  • the orthographic projection of the first strip portion on the display panel at least overlaps with the orthographic projection of the edge of the optical element close to the light-emitting element on the display panel.
  • FIG. 8 is a schematic cross-sectional structural diagram of a display module provided by at least one embodiment of the present disclosure.
  • the display module 10 includes a backlight module 100 and a display panel 200.
  • the backlight module 100 includes : back plate 101, optical element 102, light emitting element 103 and middle frame 104.
  • the back plate 101 includes a bottom plate 1011 and a side plate 1012.
  • the optical element 102 is disposed on the side of the bottom plate 1011 close to the display panel 200.
  • the light emitting element 103 Disposed on the side of the side plate 1012 close to the optical element 102, the middle frame 104 is disposed between the base plate 1011 and the display panel 200, and the middle frame 104 includes a first strip portion 1041.
  • the first strip portion 1041 is adjacent to The position of the display panel 200 extends away from the display panel 200 and above the optical element 102 .
  • the direction perpendicular to the main surface of the display panel 200 is the first direction Z
  • the second direction X is perpendicular to the first direction Z.
  • the extending direction of the optical element 102 is parallel to the second direction X or substantially parallel to the second direction X
  • the extending direction of the side plate 1012 is parallel to the first direction Z or substantially parallel to the first direction Z.
  • the orthographic projection of the first strip portion 1041 on the display panel 200 at least overlaps with the orthographic projection of the edge of the optical element 102 close to the light-emitting element 103 on the display panel 200 .
  • the display module 100 combines the advantages of edge-type peripheral screen uniformity and direct-type structure to achieve ultra-narrow borders. Applying the display module 200 to splicing screen products can ensure the uniformity of brightness around the splicing screen, and can It improves the visual effect of the splicing screen when displaying it, and at the same time reduces the thickness of the final splicing screen product, thereby saving the cost of light-emitting components.
  • the middle frame 104 also includes a second strip portion 1042 that is substantially parallel to the first direction Z and extends from a position close to the display panel 200 to a position away from the display panel 200 , and the The second strip portion 1042 is connected to the first strip portion 1041 at one end close to the display panel 200 .
  • the second strip-shaped portion 1042 has a long strip-shaped cross-section
  • the first strip-shaped portion 1041 has a long strip-shaped cross-section.
  • the present disclosure is not limited to the cross-sectional shape of the first strip portion 1041 being a long strip.
  • the cross-sectional shape of the first strip portion 1041 can also be a polygonal shape, an arc shape, etc. The implementation of the present disclosure This example does not limit this.
  • the first strip portion 1041 of the middle frame 104 can block the edge of the optical element 102 to improve the problem of poor uniformity of peripheral light of the display panel 200 .
  • the edge of the optical element 102 close to the light-emitting element 103 refers to the area within the length range of 0-180 mm extending from the end of the optical element 102 close to the light-emitting element 103 to the side away from the light-emitting element 103. After this partial area is blocked by the first strip portion 1041, the uniformity of the display module screen display can be improved.
  • the optical element 102 includes a light guide plate 1021 configured to receive light emitted from the light emitting element 103 and conduct the light to the display panel 200 , and another portion of the first strip portion 1041 One end extends to the side of the light guide plate 1021 close to the display panel 200 to be connected with the light guide plate 1021 , that is, no other layer structure is provided on the side of the light guide plate 1021 close to the display panel 200 .
  • the light guide plate 1021 can distribute the light emitted from the light-emitting element 103 to the entire surface of the optical element 102 through total reflection, which is beneficial to improving the utilization of the light-emitting element 103 of the display module 10 Rate.
  • the light guide plate 1021 can also ensure the uniformity of the light emitted, and the emitted light can be reflected by the first strip portion 1041 of the middle frame 104, and can eventually be reduced in the direction perpendicular to the main surface of the display panel 200, the display panel 200
  • the vertical distance between the optical element 102 and the optical element 102 can reduce the light mixing distance of the outgoing light, thereby reducing the thickness of the final display module.
  • the back plate 101 is made of iron sheet metal, and the thickness of the back plate 101 is 0.6 mm to 1.2 mm.
  • the light-emitting element 103 includes a plurality of LED lights arranged side by side, or may be an LED light bar, which is not limited in the embodiments of the present disclosure.
  • the display panel 200 may include an array substrate and a color filter substrate arranged opposite each other, with liquid crystals disposed between the array substrate and the color filter substrate.
  • a plurality of gate lines and a plurality of gate lines are disposed on the array substrate.
  • Data lines, multiple gate lines and multiple data lines define multiple pixel units.
  • Each pixel unit is provided with a thin film transistor and a pixel electrode. The gate electrode of the thin film transistor is electrically connected to the gate line, and the source electrode is electrically connected to the data line.
  • the drain electrode is electrically connected to the pixel electrode;
  • the color filter substrate includes a grid-shaped black matrix, and a plurality of color resistors arranged in an array in the black matrix opening, and the color resistors include red Color resistance, green color resistance and blue color resistance.
  • the deflection of liquid crystal molecules is controlled by the electric field between the pixel electrode and the common electrode to achieve the display effect.
  • other structures included in the display panel 200 may refer to conventional designs and will not be described again here.
  • FIG. 9 is a schematic cross-sectional structural diagram of yet another display module provided by at least one embodiment of the present disclosure.
  • the difference between the display module 10 shown in FIG. 9 and the display module 10 shown in FIG. 8 is that
  • the cross-sectional shape of the first strip portion 1041 included in the frame 104 is a polygonal shape.
  • at least part of the first strip portion 1041 has a first included angle ⁇ with the first direction Z, and the first included angle ⁇ is an acute angle.
  • the first included angle ⁇ is an acute angle, that is, the portion of the first strip portion 1041 close to the optical element 102 There is a first included angle ⁇ with the surface of the optical element 102 close to the display panel 200 .
  • the first strip portion 1041 also includes a portion that is substantially parallel to the main surface of the optical element 102 , and the orthographic projection of the first strip portion 1041 on the display panel 200 is at least consistent with the edge of the optical element 102 close to the light-emitting element 103 in the display. Orthographic projections on panel 200 overlap.
  • the display module 100 combines the advantages of edge-type peripheral screen uniformity and direct-type structure to achieve ultra-narrow borders.
  • Applying the display module 200 to splicing screen products can ensure the uniformity of brightness around the splicing screen, and can It improves the visual effect of the splicing screen when displaying it, and at the same time reduces the thickness of the final splicing screen product, thereby saving the cost of light-emitting components.
  • the first strip portion 1041 of the middle frame 104 can block the edge of the optical element 102 to improve the problem of poor peripheral light uniformity of the display panel 200 .
  • the edge of the optical element 102 close to the light-emitting element 103 refers to the area within the length range of 0-180 mm extending from the end of the optical element 102 close to the light-emitting element 103 to the side away from the light-emitting element 103.
  • FIG. 10 is a schematic cross-sectional structural diagram of another display module provided by at least one embodiment of the present disclosure.
  • the cross-sectional shape of the first strip portion 1041 included in the frame 104 is a polygonal shape.
  • the first included angle ⁇ between at least part of the first strip portion 1041 and the first direction Z is a right angle, that is, the portion of the first strip portion 1041 close to the optical element 102 and the portion of the optical element 102 close to the display panel
  • the first included angle ⁇ between the surfaces of 200 is a right angle.
  • the first strip portion 1041 also includes a portion that is substantially parallel to the main surface of the optical element 102 .
  • the display module 100 combines the advantages of edge-type peripheral screen uniformity and direct-type structure to achieve ultra-narrow borders.
  • Applying the display module 200 to splicing screen products can ensure the uniformity of brightness around the splicing screen, and can It improves the visual effect of the splicing screen when displaying it, and at the same time reduces the thickness of the final splicing screen product, thereby saving the cost of light-emitting components.
  • the first strip portion 1041 of the middle frame 104 can block the edge of the optical element 102 to improve the problem of poor peripheral light uniformity of the display panel 200 .
  • the edge of the optical element close to the light-emitting element refers to the area within a length range of 0-180 mm extending from the end of the optical element close to the light-emitting element to the side away from the light-emitting element. This partial area is first After the bar portion 1041 is blocked, the display uniformity of the display module can be improved.
  • FIG. 11 is a light path diagram of light passing through a light guide plate according to at least one embodiment of the present disclosure, and FIG. 11 takes the display module shown in FIG. 8 as an example.
  • the light guide plate 1021 is far away from the display panel.
  • the surface of 200 has an auxiliary scattering structure 1021a.
  • the auxiliary scattering structure 1021a is configured to scatter the light incident on the light guide plate 1021.
  • the scattered light is reflected by the first strip portion 1041 included in the middle frame 104, and then is The reflected light directly irradiates the optical film layer 201 on the side of the display panel 200 close to the light guide plate 1021, thereby increasing the brightness of the periphery, thereby improving the uniformity of the edge-type peripheral picture.
  • the auxiliary scattering structure 1021 a includes a plurality of protruding structures protruding toward a side close to the display panel 200 .
  • the auxiliary scattering structure 1021a includes a plurality of protruding structures arranged in an array on the surface of the light guide plate 1021 away from the display panel 200, and the plurality of protruding structures are evenly distributed, so that the light incident on the light guide plate 1021 can be uniformly distributed. Ground scattering, thereby making the distribution of the outgoing light more uniform.
  • the auxiliary scattering structure 1021a can also be other structures besides the protruding structure, as long as the light can be scattered, the implementation of the present disclosure This example does not limit this.
  • the light guide plate 1021 is a plate-shaped component formed of a transparent optical material such as polymethylmethacrylate, and the auxiliary scattering structure 1021a is disposed on a surface of the light guide plate 1021 away from the display panel 200 .
  • the three-dimensional shape of the auxiliary scattering structure 1021a is spherical, and its surface has a fixed curvature.
  • the auxiliary scattering structure 1021a may have a spherical structure with a surface curvature of approximately 0.1 mm, a maximum height of approximately 0.004 mm, and a refractive index of approximately 1.5.
  • the center spacing between adjacent auxiliary scattering structures 1021a may be set to 0.075 mm.
  • the material of the light guide plate 1021 is not limited to polymethylmethacrylate.
  • the material of the light guide plate 1021 only needs to meet the requirements of high light transmittance and excellent molding processability.
  • the material of the light guide plate 1021 can also be poly(methylmethacrylate).
  • Other resin materials such as carbonate resin or tempered glass materials can be used to replace polymethylmethacrylate.
  • the light emitted by the light-emitting element 103 is incident into the interior of the light-guide plate 1021 from the surface of the light-emitting element 1021 close to the light-emitting element 103 .
  • the light emitted by the light-emitting element 103 propagates inside the light guide plate 1021.
  • the auxiliary scattering structure 1021a provided in the light guide plate 1021 has a difference in refractive index with the air layer, the light emitted by the light-emitting element 103 can be auxiliary scattering structure.
  • 1021a is totally reflected, and then the light emerges from the surface of the light guide plate 1021 close to the display panel 200 toward the display panel 200 .
  • the auxiliary scattering structures 1021a can be set to be denser as they are farther away from the light-emitting element 103 and more dense as they are closer to the light-emitting element 103 . Sparse, embodiments of the present disclosure are not limited to this. In order to make the brightness distribution of the display module reach a desired value, the auxiliary scattering structure 1021a can also be configured to be evenly distributed in the middle area corresponding to the display panel.
  • FIG. 12 is a schematic cross-sectional structural diagram of yet another display module provided by at least one embodiment of the present disclosure.
  • the first strip portion 1041 extends to above the quantum dot film layer 1023 and is connected to the quantum dot film layer 1023 .
  • the first strip portion 1041 and the quantum dot film layer 1023 can be connected through direct contact, or the first strip portion 1041 and the quantum dot film layer 1023 can be connected through adhesive glue, as long as the first strip portion 1041 and the quantum dot film layer 1023 are connected.
  • the portion 1041 can be stably formed above the quantum dot film layer 1023, and the non-disclosed embodiments do not limit this.
  • the quantum dot film layer 1023 can improve the color gamut displayed by the display module.
  • the optical element 102 extends along the second direction X, or extends generally along the second direction X, and the quantum dot film layer 1023 is included in a direction parallel to the main surface of the display panel 200 ,
  • the first quantum dot film layer 1023a, the second quantum dot film layer 1023b and the third quantum dot film layer 1023c are arranged adjacently in sequence along the second direction
  • the colors of the light emitted from the film layer 1023b and the third quantum dot film layer 1023c are different.
  • the first quantum dot film layer 1023a can convert the light emitted by the light-emitting element 103 into The first light ray having a color different from the light
  • the second quantum dot film layer 1023b can convert the light into a second light having a color different from the light ray and a color different from the first light ray
  • the third quantum dot film layer 1023c The color of the light emitted from the light-emitting element 103 can be kept unchanged so that the light can be transmitted.
  • the first quantum dot film layer 1023a includes red quantum dots and a light-transmitting matrix
  • the second quantum dot film layer 1023b includes a green quantum dot light-transmitting matrix
  • the third quantum dot film layer 1023c Includes scattering particles and light-transmitting matrix.
  • the light-emitting element is a blue LED
  • the light emitted by the light-emitting element is blue light. The blue light passes through the first quantum dot film layer 1023a, the second quantum dot film layer 1023b, and the third quantum dot film layer 1023c.
  • the color of the light emitted from the first quantum dot film layer 1023a is red
  • the color of the light emitted from the second quantum dot film layer 1023b is green
  • the color of the light emitted from the third quantum dot film layer 1023c is blue.
  • the matrix includes a transparent resin
  • the material of the scattering particles includes a transparent metal oxide.
  • the main function of the third quantum dot film layer 1023c is to disperse blue light.
  • embodiments of the present disclosure are not limited thereto, and light-emitting elements that emit light of other colors may also be used.
  • FIG. 13 is a schematic cross-sectional structural diagram of yet another display module provided by at least one embodiment of the present disclosure.
  • a convex arc-shaped structure on one side which can uniformly reflect the light incident on it.
  • the surface of the first strip portion 1041 away from the side plate 1012 is arc-shaped, the surface of the first strip portion 1041 close to the side plate 1012 is in the shape of a zigzag line, and the surface of the first strip portion 1041 close to the optical element 102
  • the first included angle ⁇ between the portion and the main surface of the bottom plate 1011 is a right angle, that is, there is a first included angle ⁇ between the portion of the first strip portion 1041 close to the optical element 102 and the second direction X.
  • the angle ⁇ is a right angle.
  • the second included angle ⁇ between at least part of the first strip portion 1041 and the first direction Z is an acute angle.
  • the optical element 102 further includes a quantum dot film layer 1023 disposed on the side of the light guide plate 1021 close to the display panel 200 , and the first strip portion 1041 extends to above the quantum dot film layer 1023 . And connected with the quantum dot film layer 1023.
  • the first strip portion 1041 and the quantum dot film layer 1023 can be connected through direct contact, or the first strip portion 1041 and the quantum dot film layer 1023 can be connected through adhesive glue, as long as the first strip portion 1041 and the quantum dot film layer 1023 are connected.
  • the portion 1041 can be stably formed above the quantum dot film layer 1023, and the embodiments of the present disclosure are not limited to this.
  • the relevant characteristics of the quantum dot film layer 1023 can be found in the relevant descriptions above and will not be discussed here. Again.
  • the greater the angle between the portion of the first strip portion 1041 close to the optical element 102 and the main surface of the base plate 1011 the greater the angle between the first strip portion 1041 and the main surface of the base plate 1011 along the second direction X.
  • the distance between the contact position of 1041 and the optical element 102 to the edge of the optical element 102 close to the light-emitting element 103 is smaller. The smaller the distance, the greater the uniformity of light emission around the display module.
  • the light-emitting element 103 includes a light-emitting strip 103a and a lamp bead 103b.
  • the light-emitting strip 103a is connected to the surface of the side plate 1012 close to the optical element 102 through a first adhesive 105.
  • the third The first adhesive glue 105 is an optical glue.
  • the material of the first adhesive glue 105 is not limited, as long as it can connect the light strip 103a to the side panel 1012 and allow light to pass through.
  • FIG. 14 is a schematic cross-sectional structural diagram of yet another display module provided by at least one embodiment of the present disclosure.
  • the optical element 102 also includes a reflective structure disposed on the side of the light guide plate 1021 close to the base plate 1011 1024, and a light diffusion structure 1025 provided on the side of the light guide plate 1021 away from the base plate 1011.
  • the reflective structure 1024 can reflect light incident thereon.
  • the reflective structure 1024 is configured to reflect light emitted from a surface of the light guide plate 1021 away from the display panel 200 and reuse it as illumination light illuminating the display panel 200 .
  • the reflective structure 1024 may be a light reflective sheet based on a resin such as polyethylene terephthalate or a light reflective sheet formed by evaporating a metal material.
  • the reflective structure 1024 and the bottom plate 1011 are bonded over the entire surface through the second adhesive glue 106, and the reflective structure 1024 and the light guide plate 1021 are bonded over the entire surface through the third adhesive glue 107.
  • the light guide plate 1021 and the light diffusion structure 1025 are bonded over the entire surface through the fourth adhesive glue 108 .
  • embodiments of the present disclosure do not limit the materials of the second adhesive glue 106 , the third adhesive glue 107 , the fourth adhesive glue 108 and the sixth adhesive glue 109 .
  • the adhesive glue 107, the fourth adhesive glue 108 and the sixth adhesive glue 109 can be double-sided tape or OCA optical glue, as long as they can connect the corresponding layer structures and allow light to pass through.
  • the surface of the first strip portion 1041 close to the light guide plate 1021 and the light diffusion structure 1025 are connected through a sixth adhesive 109 .
  • the The surface of the strip portion 1041 close to the light guide plate 1021 and the light diffusion structure 1025 may also be in direct contact.
  • FIG. 15 is a schematic cross-sectional structural diagram of yet another display module provided by at least one embodiment of the present disclosure.
  • the optical element 102 also includes a reflective structure disposed on the side of the light guide plate 1021 close to the base plate 1011 1024, and a light diffusion structure 1025 disposed between the light guide plate 1021 and the quantum dot film layer 1023.
  • the reflective structure 1024 and the bottom plate 1011 are bonded over the entire surface through the second adhesive glue 106.
  • the reflective structure 1024 and the light guide plate 1021 The entire surface of the light guide plate 1021 and the light diffusion structure 1025 are bonded through the third adhesive glue 107.
  • the entire surface of the light guide plate 1021 and the light diffusion structure 1025 are bonded through the fourth adhesive glue 108.
  • the quantum dot film layer 1023 and the light diffusion structure 1025 are bonded together through the fifth adhesive glue. Glue 110 for full surface bonding.
  • embodiments of the present disclosure do not limit the materials of the second adhesive glue 106 , the third adhesive glue 107 , the fourth adhesive glue 108 , the fifth adhesive glue 110 and the sixth adhesive glue 109 .
  • the adhesive glue 106, the third adhesive glue 107, the fourth adhesive glue 108, the fifth adhesive glue 110 and the sixth adhesive glue 109 can be double-sided tape or OCA optical glue, etc., as long as the corresponding layers can be The structures are connected and can allow light to pass through.
  • the surface of the first strip portion 1041 close to the light guide plate 1021 and the quantum dot film layer 1023 are connected through a sixth adhesive 109 .
  • the surface of the first strip portion 1041 close to the light guide plate 1021 and the quantum dot film layer 1023 may also be in direct contact.
  • the middle frame 104 and the back panel 1012 are connected by buckles.
  • the buckle-fixed connection may refer to a conventional design, and the embodiments of the present disclosure are not limited to this.
  • the display panel 200 includes a liquid crystal cell 201 and an optical film layer 202.
  • the optical film layer 202 is disposed on a side of the liquid crystal cell 201 close to the middle frame 104, and the optical film layer 202 and The liquid crystal cell 201 is bonded by the seventh adhesive glue 111 .
  • the optical film layer 202 may also include a stacked light-enhancing film 2021 and a diffusion film 2022 , and the diffusion film 2022 is provided on a side of the light-enhancing film 2021 close to the liquid crystal cell 201 .
  • the diffusion film 2022 may include a double-layer structure in which a first diffusion film and a second diffusion film are stacked and arranged, and the light-enhancing film 2021 is sandwiched between the first diffusion film and the second diffusion film of the double-layer structure. between film layers.
  • the diffusion film 2022 when the diffusion film 2022 has a single-layer structure, the diffusion film 2022 includes a diffusion layer, a substrate, and a protective layer; when the diffusion film 2022 includes a double-layer structure formed by a stack of a first diffusion film and a second diffusion film,
  • the first diffusion film and the second diffusion film respectively include a diffusion layer, a base material and a protective layer.
  • the base material is made of materials such as polyethylene terephthalate (PET) or polycarbonate (PC) with high light transmittance
  • the diffusion layer and protective layer are made of acrylic resin.
  • the diffusion film 2022 can cause diffuse reflection of light incident on it, so that the light can be evenly distributed to ensure the uniformity of display brightness of the display module.
  • the light-enhancing film 2021 can ensure the uniformity of brightness of the display module as a whole.
  • the light reflected by the diffusion film 2022 and the light-enhancing film 2021 is mixed between the optical film layer 202 and the light guide plate 1021, and the light finally emerges from the upper surface of the optical film layer 202 to provide a surface light source for the display panel 200.
  • the optical film layer 202 may also include upper prisms and lower prisms to improve the formal brightness or axial brightness of the display module.
  • the upper prisms and lower prisms may be of conventional design, and the embodiments of the present disclosure are not limited thereto. .
  • the optical film layer 202 (including the laminated diffusion film 2022 and the light-enhancing film 2021) is connected to the middle frame 104 through a first connecting member 301, and the liquid crystal cell 201 and the outer frame 302 are connected through a second connecting member. 303 to connect.
  • FIG. 16 is a schematic plan view of a display device provided by at least one embodiment of the present disclosure.
  • the display device 40 includes a plurality of any of the above embodiments.
  • the example provides a splicing screen formed by the display module 20.
  • the display device 40 shown in FIG. 16 includes a splicing screen formed by six display modules 20, the embodiment of the present disclosure is not limited to this and may also include More display modules 20 , for example, 2, 4, 9, etc.
  • the display device 40 further includes a display panel driving part (not shown in the drawings) and a light-emitting element driving part (not shown in the drawings).
  • the display panel driving part can drive the display panel 200 to display, and the light-emitting element
  • the driving unit can drive the light emitting element 103 to emit light.
  • Other structures included in the display device 40 may refer to conventional designs, and the embodiments of the present disclosure are not limited thereto.
  • the display device includes any of the above display modules.
  • the display device in the embodiment of the present disclosure can be: a television, a monitor, an electronic paper, a mobile phone, a tablet computer, a notebook computer, a digital photo frame, a navigator, or any other device with a display. Functional products or components.
  • each display module includes light-shielding tape splicing.
  • the display device provided by the embodiments of the present disclosure has the same technical features and working principles as the above-mentioned display module, which will not be described again in the embodiments of the present disclosure.
  • the display module provided by at least one embodiment of the present disclosure can solve the problem of bright and dark bands at the edges of the display module.
  • the display module provided by at least one embodiment of the present disclosure combines the advantages of edge-type peripheral screen uniformity and direct-type structure to achieve ultra-narrow borders. Applying this display module to splicing screen products can ensure splicing.
  • the brightness uniformity around the screen can improve the visual effect of the splicing screen display, and can also reduce the thickness of the splicing screen product.
  • the quantum dot film is placed on the side of the light guide plate close to the display panel so that the inclined part of the middle frame blocks the edge of the quantum dot film, and is matched with blue light LED light strips can realize high color gamut and extremely narrow frame splicing screen displays, and can also solve the problem of quantum dot film prone to failure of the blue luminescent area entering the visible area.

Abstract

本公开的实施例提供一种显示模组和显示装置,该显示模组(10)包括:背光模组(100)和显示面板(200),其中,背光模组(100)包括:背板(101),包括底板(1011)和侧板(1012);光学元件(102),设置在底板(1011)的靠近显示面板(200)的一侧;发光元件(103),设置在侧板(1012)的靠近光学元件(102)的一侧;中框(104),设置在底板(1011)与显示面板(200)之间,其中,该中框(104)包括第一条形部分(1041),第一条形部分(1041)从靠近显示面板(200)的位置向远离显示面板(200)的位置延伸至光学元件(102)的上方;该第一条形部分(1041)的至少部分与光学元件(102)的靠近显示面板(200)的表面之间具有第一夹角(β),第一夹角(β)为锐角或者直角;第一条形部分(1041)在显示面板(200)上的正投影至少与光学元件(102)的靠近发光元件(103)的边缘在显示面板(200)上的正投影交叠,当该显示模组(10)应用于拼接屏中时,可以解决拼接屏出现的边缘亮暗带的问题。

Description

显示模组和显示装置
本申请要求于2022年2月28日递交的中国专利申请第202210191400.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种显示模组和显示装置。
背景技术
目前,大部分的液晶显示装置为背光型液晶显示装置,背光型液晶显示装置包括壳体、设置在壳体内的液晶显示面板和背光模组(Backlight module)。液晶显示面板包括彩色滤光片基板(Color Filter)、薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)以及夹设在彩色滤光片基板和薄膜晶体管阵列基板之间的液晶层(Liquid Crystal Layer),液晶显示面板的工作原理为在彩色滤光片基板和薄膜晶体管阵列基板上施加驱动电压来控制液晶层中的液晶分子的旋转,并将背光模组的光线折射以进行显示。由于液晶显示面板本身不发光,需要借助背光模组提供的光源来进行正常的显示。
根据光源入射位置的不同,背光模组被分成侧入式背光模组与直下式背光模组。直下式背光模组是将发光光源(例如阴极萤光灯管,Cold Cathode Fluorescent Lamp,CCFL)或者发光二极管(Light Emitting Diode,LED)设置在液晶显示面板的后方,直接形成面光源以提供给液晶显示面板,而侧入式背光模组是将背光源LED灯条(Light bar)设置在液晶显示面板的侧后方的背板边缘处,LED灯条发出的光线从导光板(Light Guide Plate,LGP)一侧的入光面进入导光板,经反射和扩散后从导光板的出光面射出,再经由光学膜片组以形成面光源提供给液晶面板。
发明内容
本公开至少一实施例提供一种显示模组和包括显示模组的显示装置,该显示模组通过将中框包括的第一条形部分从靠近显示面板的位置向远离显 示面板的位置延伸至光学元件的上方,且使得第一条形部分在显示面板上的正投影至少与光学元件的靠近发光元件的边缘在显示面板上的正投影交叠,从而可以解决该显示模组拼接形成的拼接屏出现的边缘亮暗带的问题,而且该拼接屏的厚度比主流直下式的拼接屏的厚度薄。
本公开至少一实施例提供一种显示模组,该显示模组包括背光模组和显示面板,其中,所述背光模组包括:背板,包括底板和侧板;光学元件,设置在所述底板的靠近所述显示面板的一侧;发光元件,设置在所述侧板的靠近所述光学元件的一侧;中框,设置在所述底板与所述显示面板之间,其中,所述中框包括第一条形部分,所述第一条形部分从靠近所述显示面板的位置向远离所述显示面板的位置延伸至所述光学元件的上方;所述第一条形部分的至少部分与所述光学元件的靠近所述显示面板的表面之间具有第一夹角,所述第一夹角为锐角或者直角;所述第一条形部分在所述显示面板上的正投影至少与所述光学元件的靠近所述发光元件的边缘在所述显示面板上的正投影交叠。
例如,在本公开至少一实施例提供的显示模组中,所述光学元件包括导光板,所述导光板配置为接收从所述发光元件发射的光线,并将所述光线传导至所述显示面板。
例如,在本公开至少一实施例提供的显示模组中,所述导光板的远离所述显示面板的表面具有辅助散射结构,所述辅助散射结构配置为将入射至所述导光板中的所述光线进行散射。
例如,在本公开至少一实施例提供的显示模组中,所述辅助散射结构包括向靠近所述显示面板的一侧凸起的多个凸起结构。
例如,在本公开至少一实施例提供的显示模组中,所述光学元件还包括设置在所述导光板的靠近所述显示面板的一侧的量子点膜层,所述第一条形部分延伸至所述量子点膜层的上方,并与所述量子点膜层连接。
例如,在本公开至少一实施例提供的显示模组中,所述量子点膜层包括在平行于所述显示面板的主表面的方向上依次相邻设置的第一量子点膜层、第二量子点膜层和第三量子点膜层,且从所述第一量子点膜层、所述第二量子点膜层和所述第三量子点膜层出射的光的颜色均不相同。
例如,在本公开至少一实施例提供的显示模组中,垂直于所述显示面板的主表面的方向为第一方向,所述中框还包括大致平行于所述第一方向并沿 着所述第一方向从靠近所述显示面板的位置向远离所述显示面板的位置延伸的第二条形部分,且所述第二条形部分与所述第一条形部分连接。
例如,在本公开至少一实施例提供的显示模组中,所述第一条形部分的截面形状为直线,所述第一条形部分相对于所述第二条形部分倾斜设置,且所述第一夹角为锐角。
例如,在本公开至少一实施例提供的显示模组中,所述第一条形部分的截面形状为折线,所述第一条形部分的靠近所述光学元件的部分与所述底板的主表面之间的所述第一夹角为直角。
例如,在本公开至少一实施例提供的显示模组中,所述发光元件与所述侧板的靠近所述光学元件的表面通过第一粘结胶进行连接。
例如,在本公开至少一实施例提供的显示模组中,所述光学元件还包括设置在所述导光板的靠近所述底板一侧的反射结构,以及设置在所述导光板的远离所述底板一侧的光扩散结构,所述反射结构和所述底板通过第二粘结胶进行整面贴合,所述反射结构和所述导光板通过第三粘结胶进行整面贴合,且所述导光板和所述光扩散结构通过第四粘结胶进行整面贴合。
例如,在本公开至少一实施例提供的显示模组中,所述第一条形部分的靠近所述导光板的表面和所述光扩散结构直接接触,或者所述第一条形部分的靠近所述导光板的表面和所述光扩散结构通过第六粘合胶进行连接。
例如,在本公开至少一实施例提供的显示模组中,所述光学元件还包括设置在所述导光板的靠近所述底板一侧的反射结构,以及设置在所述导光板和所述量子点膜层之间的光扩散结构,所述反射结构和所述底板通过第二粘结胶进行整面贴合,所述反射结构和所述导光板通过第三粘结胶进行整面贴合,所述导光板和所述光扩散结构通过第四粘结胶进行整面贴合,所述量子点膜层和所述光扩散结构通过第五粘结胶进行整面贴合。
例如,在本公开至少一实施例提供的显示模组中,所述第一条形部分的靠近所述量子点膜层的表面和所述量子点膜层直接接触,或者所述第一条形部分的靠近所述量子点膜层的表面和所述量子点膜层通过第六粘合胶进行连接。
例如,在本公开至少一实施例提供的显示模组中,所述中框与所述背板通过卡扣固定连接。
例如,在本公开至少一实施例提供的显示模组中,所述显示面板包括液 晶盒和光学膜层,所述光学膜层设置在所述液晶盒的靠近所述光学元件的一侧,且所述光学膜层和所述液晶盒通过第七粘合胶粘结。
例如,在本公开至少一实施例提供的显示模组中,所述光学膜层包括层叠设置的增光膜和扩散膜,且所述扩散膜设置在所述增光膜的靠近所述液晶盒的一侧。
例如,在本公开至少一实施例提供的显示模组中,在所述中框的远离所述光学元件的一侧设置有外框,所述光学膜层通过第一连接件与所述中框连接,且所述液晶盒和所述外框通过第二连接件连接。
本公开至少一实施例还提供一种显示装置,该显示装置包括多个如上任一项所述的显示模组组成的拼接屏。
例如,在本公开至少一实施例提供的显示装置中,相邻的所述显示模组通过连接胶带拼接。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种采用直下式背光源的显示模组的立体结构示意图;
图2为图1所示显示模组的边缘亮度的分布图;
图3为一种直下式单颗发光二极管灯珠发射的光线经过折射后的光路示意图;
图4为一种单颗发光二极管灯珠发射的光线的光强随着发光角度θ的分布的示意图;
图5为一种单颗发光二极管灯珠发射的光线对应光斑的照度Ev随着平面位置x的变化的分布曲线图;
图6为经过叠加之后直下式发光二极管灯珠光斑叠加的一维分布图;
图7为边缘亮度发暗的显示模组拼接后形成的拼接屏的显示效果图;
图8为本公开至少一实施例提供的一种显示模组的截面结构示意图;
图9为本公开至少一实施例提供的再一种显示模组的截面结构示意图;
图10为本公开至少一实施例提供的又一种显示模组的截面结构示意图;
图11为本公开至少一实施例提供的一种光线经过导光板后的光路图;
图12为本公开至少一实施例提供的又一种显示模组的截面结构示意图;
图13为本公开至少一实施例提供的又一种显示模组的截面结构示意图;
图14为本公开至少一实施例提供的又一种显示模组的截面结构示意图;
图15为本公开至少一实施例提供的又一种显示模组的截面结构示意图;以及
图16为本公开至少一实施例提供的显示装置的平面结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
目前,拼接屏所采用的背光源基本都采用直下式的结构设计,例如,图1为一种采用直下式背光源的显示模组的立体结构示意图,如图1所示,发光二极管灯条(LED)01放置在背板02的底部,经过30mm左右的混光距离后,发光二极管灯条01搭配扩散板和膜材之后形成所需要的面光源。但是,图1所示的结构通常容易出现显示画面周边发暗的现象。例如,图2为图1所示显示模组的边缘亮度的分布图,如图2所示,距离显示边缘20mm~120mm的区域范围内,亮度曲线呈现先下降后上升的趋势,即最终呈现下凹的趋势,从而出现显示模组的边缘区域发暗的问题。例如,显示模组的边缘发暗的现象与直下式发光二极管灯条的灯珠的光强空间角度分布特 性、光斑叠加效应以及边缘斜面的反射情况有关。
例如,图3为一种直下式单颗发光二极管灯珠发射的光线经过折射后的光路示意图,如图3所示,h为发光二极管灯珠与显示面板之间的距离;θ为发光角度;r为在发光角度为θ的条件下沿着观看视角从发光二极管灯珠到观看点之间的斜线距离;x为在平行于显示面板的主表面的方向上,在发光角度为θ的条件下,发光二极管灯珠的中心在显示面板上的正投影到沿着观看视角的观看点之间的距离,且cosθ=h/r。
例如,图4为一种单颗发光二极管灯珠发射的光线的光强随着发光角度θ的分布的示意图,图5为一种单颗发光二极管灯珠发射的光线对应光斑的照度Ev随着平面位置x的变化的分布曲线图。例如,如图4所示,单颗发光二极管灯珠发射的光线经过棱镜折射后的发光强度Iv随着发光角度θ的增加而增加,单颗发光二极管灯珠正上方单个光斑的照度Ev可由如下公式计算得出:
Ev=Iv*cosθ/r2
经过计算可以得出单颗发光二极管灯珠的光斑照度随着平面位置x分布,从分布曲线上可以看出光斑在中心区域的照度较大,越远离中心区域光斑的照度逐渐减弱。将单颗发光二极管灯珠对应的光斑分布曲线按照一定间距进行排列叠加,可以得到直下式蓝光发光表面的一维照度分布,例如,图6为经过叠加之后直下式发光二极管灯珠光斑叠加的一维分布图,如图6所示,由4个发光二极管灯珠的光斑进行叠加,即由1#发光二极管灯珠、2#发光二极管灯珠、3#发光二极管灯珠和4#发光二极管灯珠的光斑进行叠加,从图6中可以看出,1#发光二极管灯珠的照度在0-100mm的位置范围内保持稳定,在100mm-300mm的位置范围内出现下降的趋势;2#发光二极管灯珠的照度在0-50mm的位置范围内出现上升的趋势,在50mm-180mm的位置范围内保持稳定,在180mm-350mm的位置范围内出现下降的趋势;3#发光二极管灯珠的照度在0-120mm的位置范围内出现上升的趋势,在120mm-220mm的位置范围内保持稳定,在220mm-410mm的位置范围内出现下降的趋势;4#发光二极管灯珠的照度在0-180mm的位置范围内出现上升的趋势,在180mm-300mm的位置范围内保持稳定,在300mm-420mm的位置范围内出现下降的趋势;4个发光二极管灯珠的照度经过叠加之后得到的照度曲线中,距离显示面板的边缘的距离越近,直下式发光二极管灯珠的 光斑的照度越弱,以最终在显示模组的边缘形成边缘发暗的区域。例如,在图6中,在经过叠加之后得到的照度曲线中,在中间区域光斑照度保持稳定趋势,在两端处曲线呈现下降趋势。且由于显示模组的边缘区域发暗,多个显示模组拼接之后形成的拼接屏的显示效果也会受到影响,且拼接屏整体的均一性较差。例如,图7为边缘亮度发暗的显示模组拼接后形成的拼接屏的显示效果图,如图7所示,在相邻的显示模组的拼缝处会出现亮度发暗的现象,从而最终使得形成的拼接屏的显示效果变差,如何消除拼接单元边缘发暗的缺陷,是拼接显示领域需要解决的问题。
本公开的发明人注意到,可以将发光二极管灯条粘贴于背板的侧面,由发光二极管发射的光线经过设置在背板的底部的导光板后形成均匀的一级面光源,然后采用大倾角中框的倾斜部分遮挡一级面光源的边缘并在导光板和显示面板之间间隔的区域中进行混光,以使得最终二级面光源的周边具有和一级面光源同等的画面显示效果,结合侧入式周边画面具有均一性的特点和直下式结构可实现超窄边框的优点,将最终形成的显示模组应用于拼接屏中可以确保拼接屏周边亮度的均一性,从而可以提升拼接屏最终的显示视觉效果,同时还可以降低最终形成的拼接屏的厚度,并节省了发光二极管的成本。将具有该种结构的显示模组应用于拼接显示屏中还可以解决边缘亮暗带的问题,而且该拼接屏的厚度比主流直下式的拼接屏的厚度薄,并且基于该结构将量子点膜放置在导光板的靠近显示面板的一侧并使得中框的倾斜部分遮挡量子点膜的边缘,并搭配蓝光发光二极管灯条,以实现高色域极窄边框拼接屏显示,还能解决量子点膜容易出现的失效蓝色发光区域进入可视区的问题。
本公开至少一实施例提供一种显示模组,该显示模组包括背光模组和显示面板,该背光模组包括:背板、光学元件、发光元件和中框,该背板包括底板和侧板,该光学元件设置在底板的靠近显示面板的一侧,该发光元件设置在侧板的靠近光学元件的一侧,该中框设置在底板与显示面板之间,且该中框包括第一条形部分,第一条形部分从靠近显示面板的位置向远离显示面板的位置延伸至光学元件的上方,第一条形部分的至少部分与光学元件的靠近显示面板的表面之间具有第一夹角,该第一夹角为锐角或者直角,该第一条形部分在显示面板上的正投影至少与光学元件的靠近发光元件的边缘在显示面板上的正投影交叠。该显示模组结合了侧入式周边画面均一性和直下 式结构可以实现超窄边框的优点,将该显示模组应用于拼接屏产品中可以确保拼接屏周边亮度的均一性,并且可以提升拼接屏进行显示的视觉效果,同时还可以减小拼接屏产品的厚度,从而可以节省发光元件的成本。
例如,图8为本公开至少一实施例提供的一种显示模组的截面结构示意图,如图8所示,该显示模组10包括背光模组100和显示面板200,该背光模组100包括:背板101、光学元件102、发光元件103和中框104,该背板101包括底板1011和侧板1012,该光学元件102设置在底板1011的靠近显示面板200的一侧,该发光元件103设置在侧板1012的靠近光学元件102的一侧,该中框104设置在底板1011与显示面板200之间,且该中框104包括第一条形部分1041,第一条形部分1041从靠近显示面板200的位置向远离显示面板200的位置延伸至光学元件102的上方,垂直于显示面板200的主表面的方向为第一方向Z,第二方向X垂直于第一方向Z,例如,该光学元件102的延伸方向平行于第二方向X或者大致平行于第二方向X,该侧板1012的延伸方向平行于第一方向Z或者大致平行于第一方向Z。第一条形部分1041的至少部分与光学元件102的靠近显示面板200的表面之间具有第一夹角β,该第一夹角β为锐角或者直角。该第一条形部分1041在显示面板200上的正投影至少与光学元件102的靠近发光元件103的边缘在显示面板200上的正投影交叠。该显示模组100结合了侧入式周边画面均一性和直下式结构可实现超窄边框的优点,将该显示模组200应用于拼接屏产品中可以确保拼接屏周边亮度的均一性,并可以提升拼接屏进行显示时的视觉效果,同时还可以减小最终形成的拼接屏产品的厚度,从而可以节省发光元件的成本。
例如,在图8所示的结构中,该中框104还包括大致平行于第一方向Z并从靠近显示面板200的位置向远离显示面板200的位置延伸的第二条形部分1042,且该第二条形部分1042在靠近显示面板200的一端与第一条形部分1041连接。该第二条形部分1042的截面形状为长条形,该第一条形部分1041的截面形状也呈长条形,该第二条形部分1042的一端和该第一条形部分1041的一端连接,以使得该第一条形部分1041相对于第二条形部分1042倾斜设置,且使得该第二条形部分1042和该第一条形部分1041之间具有第二夹角α,该第二夹角α为锐角,该第一条形部分1041的另一端延伸至光学元件102的靠近显示面板200的一侧以与光学元件102连接,本公开的实 施例不限于该第一条形部分1041的截面形状呈长条形,在其他的示例中,该第一条形部分1041的截面形状还可以呈折线型、弧线形等,本公开的实施例对此不作限定。
例如,如图8所示,该中框104的第一条形部分1041可以对光学元件102的边缘进行遮挡以改善显示面板200的周边光线均一性差的问题。需要说明的是,光学元件102的靠近发光元件103的边缘是指从光学元件102的靠近发光元件103的端部向远离发光元件103的一侧延伸的长度范围为0-180mm之内的区域,该部分区域被第一条形部分1041遮挡后,可以提高显示模组画面显示的均一性。
例如,在一个示例中,该光学元件102包括导光板1021,该导光板1021配置为接收从发光元件103发射的光线,并将该光线传导至显示面板200,且第一条形部分1041的另一端延伸至导光板1021的靠近显示面板200的一侧以与导光板1021连接,即在导光板1021的靠近显示面板200的一侧未设置其他的层结构。
例如,如图8所示,该导光板1021能够将从发光元件103发射的光线通过全反射的方式分布到光学元件102的整个面上,从而有利于提高显示模组10的发光元件103的利用率。该导光板1021还可以保证出光的均匀性,且出射的光线可以通过中框104的第一条形部分1041反射,并最终可以减小在垂直于显示面板200主表面的方向上,显示面板200与光学元件102之间的垂直距离,即可以减小出射光线混光的距离,使得最终形成的显示模组的厚度减薄。
例如,该背板101由铁板金制备而成,且该背板101的厚度为0.6mm~1.2mm。
例如,该发光元件103包括并排设置的多个LED灯,也可以是LED灯条,本公开的实施例对此不作限定。
例如,该显示面板200可以包括相对设置的阵列基板和彩膜基板,在阵列基板和彩膜基板之间设置有液晶,例如,在显示面板200中阵列基板上设置有多条栅线和多条数据线,多条栅线和多条数据线限定出多个像素单元,每个像素单元内设置有薄膜晶体管和像素电极,薄膜晶体管的栅极与栅线电连接,源极与数据线电连接,漏极与像素电极电连接;彩膜基板包括网格状的黑矩阵,以及设置于黑矩阵开口内的阵列排布的多个色阻,色阻包括红色 色阻、绿色色阻和蓝色色阻。通过像素电极和公共电极之间的电场控制液晶分子的偏转,从而达到显示效果。例如,该显示面板200包括的其他结构可以参见常规的设计,在此不再赘述。
例如,图9为本公开至少一实施例提供的再一种显示模组的截面结构示意图,图9所示的显示模组10与图8所示的显示模组10的不同之处在于该中框104包括的第一条形部分1041的截面形状呈折线型。例如,第一条形部分1041的至少部分与第一方向Z之间具有第一夹角β,该第一夹角β为锐角。该第一条形部分1041的靠近光学元件102部分与第二方向X之间具有第一夹角β,该第一夹角β为锐角,即该第一条形部分1041的靠近光学元件102部分与光学元件102的靠近显示面板200的表面之间具有该第一夹角β。该第一条形部分1041还包括大致平行于光学元件102的主表面的部分,该第一条形部分1041在显示面板200上的正投影至少与光学元件102的靠近发光元件103的边缘在显示面板200上的正投影交叠。该显示模组100结合了侧入式周边画面均一性和直下式结构可实现超窄边框的优点,将该显示模组200应用于拼接屏产品中可以确保拼接屏周边亮度的均一性,并可以提升拼接屏进行显示时的视觉效果,同时还可以减小最终形成的拼接屏产品的厚度,从而可以节省发光元件的成本。
例如,如图9所示,该中框104的第一条形部分1041可以对光学元件102的边缘进行遮挡以改善显示面板200的周边光线均一性差的问题。需要说明的是,光学元件102的靠近发光元件103的边缘是指从光学元件102的靠近发光元件103的端部向远离发光元件103一侧延伸的长度范围为0-180mm之内的区域,该部分区域被第一条形部分1041遮挡后,可以提高显示模组画面显示的均一性。
例如,图10为本公开至少一实施例提供的又一种显示模组的截面结构示意图,图10所示的显示模组10与图8所示的显示模组10的不同之处在于该中框104包括的第一条形部分1041的截面形状呈折线型。例如,第一条形部分1041的至少部分与第一方向Z之间具有的第一夹角β为直角,即该第一条形部分1041的靠近光学元件102部分与光学元件102的靠近显示面板200的表面之间具有的该第一夹角β为直角。该第一条形部分1041还包括大致平行于光学元件102的主表面的部分,该第一条形部分1041的大致平行于光学元件102的主表面的部分与第二条形部分1042之间具有的第 二夹角α为直角。该第一条形部分1041在显示面板200上的正投影至少与光学元件102的靠近发光元件103的边缘在显示面板200上的正投影交叠。该显示模组100结合了侧入式周边画面均一性和直下式结构可实现超窄边框的优点,将该显示模组200应用于拼接屏产品中可以确保拼接屏周边亮度的均一性,并可以提升拼接屏进行显示时的视觉效果,同时还可以减小最终形成的拼接屏产品的厚度,从而可以节省发光元件的成本。
例如,如图10所示,该中框104的第一条形部分1041可以对光学元件102的边缘进行遮挡以改善显示面板200的周边光线均一性差的问题。需要说明的是,光学元件的靠近发光元件的边缘是指从光学元件的靠近发光元件的端部向远离发光元件一侧延伸的长度范围为0-180mm之内的区域,该部分区域被第一条形部分1041遮挡后,可以提高显示模组画面显示的均一性。
例如,图11为本公开至少一实施例提供的一种光线经过导光板后的光路图,且图11以图8中所示的显示模组为例进行说明,该导光板1021的远离显示面板200的表面具有辅助散射结构1021a,该辅助散射结构1021a配置为将入射至导光板1021中的光线进行散射,经过散射后的光线通过中框104包括的第一条形部分1041进行反射,然后被反射后的光线直接照射至显示面板200的靠近导光板1021一侧的光学膜层201,从而使得周边的亮度提高,进而可以改善侧入式周边画面的均一性。
例如,如图11所示,该辅助散射结构1021a包括向靠近显示面板200的一侧凸起的多个凸起结构。该辅助散射结构1021a包括的多个凸起结构在导光板1021的远离显示面板200的表面呈阵列排布,且多个凸起结构均匀分布,这样可以对入射至导光板1021中的光线进行均匀地散射,从而使得出射光线的分布更加均匀,需要说明的是,该辅助散射结构1021a还可以是除了凸起结构之外的其他的结构,只要能够实现对光线进行散射即可,本公开的实施例对此不作限定。
例如,在一个示例中,该导光板1021是由聚甲基丙烯酸甲酯等透明光学材料形成的板状部件,该辅助散射结构1021a设置在导光板1021的远离显示面板200的表面。例如,该辅助散射结构1021a的立体形状呈球面状,其表面具有固定的曲率。例如,该辅助散射结构1021a可以具有其表面的曲率约为0.1mm、最大高度约为0.004mm、折射率约为1.5的球面状结构。此外,相邻的辅助散射结构1021a的中心间隔可以设置为0.075mm。需要说明 的是,该导光板1021的材料不限于聚甲基丙烯酸甲酯,该导光板1021的材料只要满足光透射率高、成型加工性优异即可,例如,该导光板1021的材料还可以使用聚碳酸酯树脂等其它树脂材料或者使用钢化玻璃材料,来替代聚甲基丙烯酸甲酯。
例如,如图11所示,发光元件103发射的光线从导光板1021的靠近发光元件103的表面入射到导光板1021的内部。该发光元件103发射的光线在导光板1021的内部传播,由于设置在导光板1021中的辅助散射结构1021a与空气层的折射率具有差值而使得该发光元件103发射的光线能够被辅助散射结构1021a全反射,然后该光线从导光板1021的靠近显示面板200的表面向显示面板200的方向出射。
例如,在一个示例中,为了使得从导光板1021的靠近显示面板200的表面出射的光线的亮度分布均匀,可以将辅助散射结构1021a设置为越远离发光元件103越密集,越靠近发光元件103越稀疏,本公开的实施例不限于此,为了使得显示模组的亮度分布成为期望的值,还可以将辅助散射结构1021a配置为在对应与显示面板的中间区域均匀分布。
例如,图12为本公开至少一实施例提供的又一种显示模组的截面结构示意图,如图12所示,该光学元件102还包括设置在导光板1021的靠近显示面板200一侧的量子点膜层1023,该第一条形部分1041延伸至量子点膜层1023的上方,并与该量子点膜层1023连接。例如,可以通过第一条形部分1041和量子点膜层1023直接接触进行连接,也可以通过粘结胶将第一条形部分1041和量子点膜层1023进行连接,只要使得该第一条形部分1041能够稳定地形成在量子点膜层1023的上方即可,不公开的实施例对此不作限定。
例如,该量子点膜层1023可以提高显示模组显示的色域。
例如,如图12所示,该光学元件102沿着第二方向X延伸,或者大致沿着第二方向X延伸,该量子点膜层1023包括在平行于显示面板200的主表面的方向上,例如,沿着第二方向X依次相邻设置的第一量子点膜层1023a、第二量子点膜层1023b和第三量子点膜层1023c,从第一量子点膜层1023a、第二量子点膜层1023b和第三量子点膜层1023c出射的光线的颜色均不相同。
例如,第一量子点膜层1023a可以将该发光元件103发射的光线转换为 不同于该光线的颜色的第一光线,第二量子点膜层1023b可以将该光线转换为不同于该光线的颜色和不同于第一光线的颜色的第二光线,第三量子点膜层1023c可以使得从该发光元件103发射的光线的颜色保持不变而使得该光线透过。
例如,在一个示例中,该第一量子点膜层1023a包括红色量子点和透光的基质,第二量子点膜层1023b包括绿色量子点透光的基质,该第三量子点膜层1023c中包括散射粒子和透光的基质。在一个示例中,该发光元件为蓝光LED,该发光元件发射的光线为蓝色光线,蓝色光线经过第一量子点膜层1023a、第二量子点膜层1023b和第三量子点膜层1023c之后,从第一量子点膜层1023a出射的光线的颜色为红色,从第二量子点膜层1023b出射的光线的颜色为绿色,从第三量子点膜层1023c出射的光线的颜色为蓝色。
例如,该基质包括透明树脂,该散射粒子的材料包括透明金属氧化物。该第三量子点膜层1023c的主要作用是对蓝色光线进行分散。
当然,本公开的实施例不限于此,还可以采用发射其他颜色光线的发光元件。
例如,图13为本公开至少一实施例提供的又一种显示模组的截面结构示意图,如图13所示,该中框104的第一条形部分1041的截面形状具有向远离侧板1012的一侧凸起的弧形结构,该弧形结构可以对入射至其上的光线进行均匀的反射。该第一条形部分1041的远离侧板1012的表面为弧线形,该第一条形部分1041的靠近侧板1012的表面为折线形,且第一条形部分1041的靠近光学元件102的部分与底板1011的主表面之间的第一夹角β为直角,也即该第一条形部分1041的靠近光学元件102部分与第二方向X之间具有第一夹角β,该第一夹角β为直角。该第一条形部分1041的至少部分与第一方向Z之间具有的第二夹角α为锐角。
例如,如图13所示,该光学元件102还包括设置在导光板1021的靠近显示面板200一侧的量子点膜层1023,该第一条形部分1041延伸至量子点膜层1023的上方,并与该量子点膜层1023连接。例如,可以通过第一条形部分1041和量子点膜层1023直接接触进行连接,也可以通过粘结胶将第一条形部分1041和量子点膜层1023进行连接,只要使得该第一条形部分1041能够稳定地形成在量子点膜层1023的上方即可,本公开的实施例对此不作限定。该量子点膜层1023的相关特征可以参见上述中的相关描述,在此不 再赘述。
例如,结合图8-图13,该第一条形部分1041的靠近光学元件102的部分与底板1011的主表面之间的夹角越大,沿着第二方向X,该第一条形部分1041与光学元件102的接触位置到光学元件102的靠近发光元件103的边缘的距离越小,该第一条形部分1041与光学元件102的接触位置到侧板1012的最靠近发光元件103的边缘的距离越小,从而可以使得显示模组周边出光的均匀性得到更大的提升。
例如,如图13所示,该发光元件103包括发光条103a和灯珠103b,该发光条103a与侧板1012的靠近光学元件102的表面通过第一粘结胶105进行连接,例如,该第一粘结胶105为光学胶,本公开的实施例对第一粘结胶105的材料不作限定,只要能够满足将发光条103a与侧板1012进行连接,且能够使得光线通过即可。
例如,图14为本公开至少一实施例提供的又一种显示模组的截面结构示意图,如图14所示,该光学元件102还包括设置在导光板1021的靠近底板1011一侧的反射结构1024,以及设置在导光板1021的远离底板1011一侧的光扩散结构1025。例如,该反射结构1024可以对入射至其上的光线进行反射。
例如,该反射结构1024配置为将从导光板1021的远离显示面板200的表面出射的光线进行反射而作为照射显示面板200的照明光再次加以利用。例如,该反射结构1024可以采用以聚对苯二甲酸乙二醇酯等树脂为基础材料的光反射片或者通过蒸镀金属材料而形成的光反射片。
例如,如图14所示,该反射结构1024和底板1011通过第二粘结胶106进行整面贴合,该反射结构1024和导光板1021通过第三粘结胶107进行整面贴合,该导光板1021和光扩散结构1025通过第四粘结胶108进行整面贴合。
例如,本公开的实施例对第二粘结胶106、第三粘结胶107、第四粘结胶108和第六粘合胶109的材料不作限定,该第二粘结胶106、第三粘结胶107、第四粘结胶108和第六粘合胶109可以为双面胶或者OCA光学胶等,只要能够满足将对应的层结构进行连接,且能够使得光线通过即可。
例如,如图14所示,该第一条形部分1041的靠近导光板1021的表面和光扩散结构1025通过第六粘合胶109进行连接。在其他的示例中,该第 一条形部分1041的靠近导光板1021的表面和光扩散结构1025还可以直接接触。
例如,图15为本公开至少一实施例提供的又一种显示模组的截面结构示意图,如图15所示,该光学元件102还包括设置在导光板1021的靠近底板1011一侧的反射结构1024,以及设置在导光板1021和量子点膜层1023之间的光扩散结构1025,该反射结构1024和底板1011通过第二粘结胶106进行整面贴合,该反射结构1024和导光板1021通过第三粘结胶107进行整面贴合,该导光板1021和该光扩散结构1025通过第四粘结胶108进行整面贴合,该量子点膜层1023和光扩散结构1025通过第五粘结胶110进行整面贴合。
例如,本公开的实施例对第二粘结胶106、第三粘结胶107、第四粘结胶108、第五粘结胶110和第六粘合胶109的材料不作限定,该第二粘结胶106、第三粘结胶107、第四粘结胶108、第五粘结胶110和第六粘合胶109可以为双面胶或者OCA光学胶等,只要能够满足将对应的层结构进行连接,且能够使得光线通过即可。
例如,如图15所示,该第一条形部分1041的靠近导光板1021的表面和量子点膜层1023通过第六粘合胶109进行连接。在其他的示例中,该第一条形部分1041的靠近导光板1021的表面和量子点膜层1023还可以直接接触。
例如,在一个示例中,该中框104与背板1012通过卡扣固定连接,该通过卡扣固定连接的方式可以参见常规的设计,本公开的实施例对此不作限定。
例如,如图8~15所示,该显示面板200包括液晶盒201和光学膜层202,该光学膜层202设置在液晶盒201的靠近中框104的一侧,且该光学膜层202和液晶盒201通过第七粘合胶111粘结。
例如,如图15所示,在一个示例中,该光学膜层202还可以包括层叠设置的增光膜2021和扩散膜2022,且该扩散膜2022设置在增光膜2021的靠近液晶盒201的一侧。
例如,在另一个示例中,该扩散膜2022可以包括第一扩散膜和第二扩散膜层叠设置形成的双层结构,该增光膜2021夹置在双层结构的第一扩散膜和第二扩散膜层之间。
例如,当扩散膜2022为单层结构时,该扩散膜2022包括扩散层、基材和保护层;当该扩散膜2022包括第一扩散膜和第二扩散膜层叠设置形成的双层结构时,该第一扩散膜和第二扩散膜分别包括扩散层、基材和保护层。例如,基材采用光透过率高的聚对苯二甲酸乙二醇酯(PET)或者聚碳酸酯(PC)等材料形成,扩散层和保护层采用亚克力树脂形成。
例如,该扩散膜2022可以使得入射至其上的光线产生漫反射,使得光线均匀分布,以保证显示模组显示亮度的均匀性。
例如,该增光膜2021可以从整体上保证显示模组亮度的均一性。
例如,经过扩散膜2022和增光膜2021反射的光线在光学膜层202和导光板1021之间进行混光,光线最终从光学膜层202的上表面出射,以为显示面板200提供面光源。
例如,该光学膜层202还可以包括上棱镜和下棱镜,以提高显示模组的正式亮度或者轴向亮度,该上棱镜和下棱镜可以参见常规的设计,本公开的实施例对此不作限定。
例如,在一个示例中,该光学膜层202(包括叠层的扩散膜2022和增光膜2021)通过第一连接件301与中框104连接,该液晶盒201和外框302通过第二连接件303进行连接。
本公开至少一实施例还提供一种显示装置,例如,图16为本公开至少一实施例提供的显示装置的平面结构示意图,如图16所示,该显示装置40包括多个上述任一实施例提供的显示模组20形成的拼接屏,尽管图16中示出的是该显示装置40包括6个显示模组20拼接形成的拼接屏,但是本公开的实施例不限于此,还可以包括更多个的显示模组20,例如,2个、4个、9个等。
例如,该显示装置40还包括显示面板驱动部(附图中未示出)和发光元件驱动部(附图中未示出),该显示面板驱动部可以驱动显示面板200进行显示,该发光元件驱动部可以驱动发光元件103进行发光。该显示装置40包括的其他的结构可以参见常规的设计,本公开的实施例对此不作限定。
例如,该显示装置包括上述任一显示模组,本公开的实施例中的显示装置可以为:电视机、显示器、电子纸、手机、平板电脑、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
例如,在本公开至少一实施例提供的显示装置中,相邻的显示模组通过 每个显示模组包括的遮光胶带拼接。
本公开的实施例提供的显示装置与上述的显示模组具有相同的技术特征和工作原理,本公开的实施例对此不再赘述。
本公开至少一实施例提供的显示模组和包括该显示模组的显示装饰,具有以下至少一项有益技术效果:
(1)本公开至少一实施例提供的显示模组,可以解决显示模组边缘亮暗带的问题。
(2)本公开至少一实施例提供的显示模组,结合了侧入式周边画面均一性和直下式结构可以实现超窄边框的优点,将该显示模组应用于拼接屏产品中可以确保拼接屏周边亮度的均一性,并且可以提升拼接屏进行显示的视觉效果,同时还可以减小拼接屏产品的厚度。
(3)本公开至少一实施例提供的显示模组,基于该结构将量子点膜放置在导光板的靠近显示面板的一侧并使得中框的倾斜部分遮挡量子点膜的边缘,并搭配蓝光发光二极管灯条,可以实现高色域极窄边框拼接屏显示,还能解决量子点膜容易出现的失效蓝色发光区域进入可视区的问题。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种显示模组,包括:背光模组和显示面板,其中,
    所述背光模组包括:
    背板,包括底板和侧板;
    光学元件,设置在所述底板的靠近所述显示面板的一侧;
    发光元件,设置在所述侧板的靠近所述光学元件的一侧;
    中框,设置在所述底板与所述显示面板之间,其中,所述中框包括第一条形部分,所述第一条形部分从靠近所述显示面板的位置向远离所述显示面板的位置延伸至所述光学元件的上方;所述第一条形部分的至少部分与所述光学元件的靠近所述显示面板的表面之间具有第一夹角,所述第一夹角为锐角或者直角;所述第一条形部分在所述显示面板上的正投影至少与所述光学元件的靠近所述发光元件的边缘在所述显示面板上的正投影交叠。
  2. 根据权利要求1所述的显示模组,其中,所述光学元件包括导光板,所述导光板配置为接收从所述发光元件发射的光线,并将所述光线传导至所述显示面板。
  3. 根据权利要求2所述的显示模组,其中,所述导光板的远离所述显示面板的表面具有辅助散射结构,所述辅助散射结构配置为将入射至所述导光板中的所述光线进行散射。
  4. 根据权利要求3所述的显示模组,其中,所述辅助散射结构包括向靠近所述显示面板的一侧凸起的多个凸起结构。
  5. 根据权利要求2~4中任一项所述的显示模组,其中,所述光学元件还包括设置在所述导光板的靠近所述显示面板的一侧的量子点膜层,所述第一条形部分延伸至所述量子点膜层的上方,并与所述量子点膜层连接。
  6. 根据权利要求5所述的显示模组,其中,所述量子点膜层包括在平行于所述显示面板的主表面的方向上依次相邻设置的第一量子点膜层、第二量子点膜层和第三量子点膜层,且从所述第一量子点膜层、所述第二量子点膜层和所述第三量子点膜层出射的光的颜色均不相同。
  7. 根据权利要求1~6中任一项所述的显示模组,其中,垂直于所述显示面板的主表面的方向为第一方向,所述中框还包括大致平行于所述第一方向并沿着所述第一方向从靠近所述显示面板的位置向远离所述显示面板的 位置延伸的第二条形部分,且所述第二条形部分与所述第一条形部分连接。
  8. 根据权利要求7所述的显示模组,其中,所述第一条形部分的截面形状为直线,所述第一条形部分相对于所述第二条形部分倾斜设置,且所述第一夹角为锐角。
  9. 根据权利要求7所述的显示模组,其中,所述第一条形部分的截面形状为折线,所述第一条形部分的靠近所述光学元件的部分与所述底板的主表面之间的所述第一夹角为直角。
  10. 根据权利要求1~9中任一项所述的显示模组,其中,所述发光元件与所述侧板的靠近所述光学元件的表面通过第一粘结胶进行连接。
  11. 根据权利要求2~4中任一项所述的显示模组,其中,所述光学元件还包括设置在所述导光板的靠近所述底板一侧的反射结构,以及设置在所述导光板的远离所述底板一侧的光扩散结构,所述反射结构和所述底板通过第二粘结胶进行整面贴合,所述反射结构和所述导光板通过第三粘结胶进行整面贴合,且所述导光板和所述光扩散结构通过第四粘结胶进行整面贴合。
  12. 根据权利要求11所述的显示模组,其中,所述第一条形部分的靠近所述导光板的表面和所述光扩散结构直接接触,或者所述第一条形部分的靠近所述导光板的表面和所述光扩散结构通过第六粘合胶进行连接。
  13. 根据权利要求5所述的显示模组,其中,所述光学元件还包括设置在所述导光板的靠近所述底板一侧的反射结构,以及设置在所述导光板和所述量子点膜层之间的光扩散结构,所述反射结构和所述底板通过第二粘结胶进行整面贴合,所述反射结构和所述导光板通过第三粘结胶进行整面贴合,所述导光板和所述光扩散结构通过第四粘结胶进行整面贴合,所述量子点膜层和所述光扩散结构通过第五粘结胶进行整面贴合。
  14. 根据权利要求13所述的显示模组,其中,所述第一条形部分的靠近所述量子点膜层的表面和所述量子点膜层直接接触,或者所述第一条形部分的靠近所述量子点膜层的表面和所述量子点膜层通过第六粘合胶进行连接。
  15. 根据权利要求1~14中任一项所述的显示模组,其中,所述中框与所述背板通过卡扣固定连接。
  16. 根据权利要求1~15中任一项所述的显示模组,其中,所述显示面板包括液晶盒和光学膜层,所述光学膜层设置在所述液晶盒的靠近所述光学 元件的一侧,且所述光学膜层和所述液晶盒通过第七粘合胶粘结。
  17. 根据权利要求16所述的显示模组,其中,所述光学膜层包括层叠设置的增光膜和扩散膜,且所述扩散膜设置在所述增光膜的靠近所述液晶盒的一侧。
  18. 根据权利要求16所述的显示模组,其中,在所述中框的远离所述光学元件的一侧设置有外框,所述光学膜层通过第一连接件与所述中框连接,且所述液晶盒和所述外框通过第二连接件连接。
  19. 一种显示装置,包括多个如权利要求1~18中任一项所述的显示模组组成的拼接屏。
  20. 根据权利要求19所述的显示装置,其中,相邻的所述显示模组通过连接胶带拼接。
PCT/CN2023/078078 2022-02-28 2023-02-24 显示模组和显示装置 WO2023160643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210191400.X 2022-02-28
CN202210191400.XA CN114488619B (zh) 2022-02-28 2022-02-28 显示模组和显示装置

Publications (2)

Publication Number Publication Date
WO2023160643A1 WO2023160643A1 (zh) 2023-08-31
WO2023160643A9 true WO2023160643A9 (zh) 2024-01-11

Family

ID=81485210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078078 WO2023160643A1 (zh) 2022-02-28 2023-02-24 显示模组和显示装置

Country Status (2)

Country Link
CN (1) CN114488619B (zh)
WO (1) WO2023160643A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488619B (zh) * 2022-02-28 2023-10-27 京东方科技集团股份有限公司 显示模组和显示装置
CN117192825A (zh) * 2022-05-31 2023-12-08 京东方科技集团股份有限公司 显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879949B (zh) * 2012-10-23 2015-03-04 深圳市华星光电技术有限公司 液晶显示模组
CN106597747A (zh) * 2017-01-03 2017-04-26 京东方科技集团股份有限公司 背光源、显示基板及显示装置
CN207457653U (zh) * 2017-08-28 2018-06-05 信利半导体有限公司 一种背光模组及显示装置
CN209328399U (zh) * 2019-02-12 2019-08-30 合肥惠科金扬科技有限公司 一种背光模组及显示装置
CN209880030U (zh) * 2019-06-25 2019-12-31 北京京东方显示技术有限公司 显示装置、拼接屏
CN210865431U (zh) * 2020-02-26 2020-06-26 北京京东方显示技术有限公司 一种背光模组、拼接屏及显示装置
CN113947995B (zh) * 2020-07-17 2023-08-15 海信视像科技股份有限公司 一种显示装置
CN112068353A (zh) * 2020-09-09 2020-12-11 深圳创维-Rgb电子有限公司 一种液晶显示模组及液晶拼接屏
CN215116870U (zh) * 2021-05-24 2021-12-10 惠州市瀚达美电子有限公司 改善超窄边框大视角漏灯的侧入式背光源模组和车载显示装置
CN113885255B (zh) * 2021-11-01 2023-12-29 厦门天马微电子有限公司 背光模组和显示装置
CN114488619B (zh) * 2022-02-28 2023-10-27 京东方科技集团股份有限公司 显示模组和显示装置

Also Published As

Publication number Publication date
WO2023160643A1 (zh) 2023-08-31
CN114488619A (zh) 2022-05-13
CN114488619B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
KR101340604B1 (ko) 백라이트 유닛 및 이를 구비한 액정표시장치모듈
WO2023160643A9 (zh) 显示模组和显示装置
KR101493706B1 (ko) 액정표시장치용 백라이트 유닛
WO2011077866A1 (ja) 照明装置、表示装置、及びテレビ受信装置
KR20100097515A (ko) 액정표시장치용 백라이트 유닛
JP5337882B2 (ja) 照明装置、表示装置、及びテレビ受信装置
KR20110136645A (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
US20110025950A1 (en) Light guide plate and liquid crystal display device including the same
KR20120122654A (ko) 백라이트 유닛 및 액정표시장치
KR102090457B1 (ko) 액정표시장치
US20110157518A1 (en) Light shaping film and liquid crystal display device including the same
KR101415683B1 (ko) 액정표시장치
US20190391316A1 (en) Lighting device and display device
KR20110012433A (ko) 반사판 및 이를 포함하는 액정표시장치
KR100880217B1 (ko) 백라이트
KR20120050171A (ko) 듀얼패널 타입 액정표시장치
KR102118080B1 (ko) 직하형 백라이트 유닛을 구비한 표시장치 및 그 제조방법
KR20130055204A (ko) 백라이트 유닛 및 액정표시장치
KR20120075115A (ko) 도광판, 이를 구비한 백라이트 유닛 및 이들을 포함하는 액정표시장치
KR101816314B1 (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
KR20100028458A (ko) 도광판 및 이를 이용한 액정표시장치용 백라이트 유닛
JPH10153776A (ja) 液晶パネル及び当該液晶パネルの製造方法、液晶パネル用基板並びに液晶表示装置
KR102053597B1 (ko) 액정표시장치
KR102664505B1 (ko) 액정표시장치
KR101921166B1 (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759265

Country of ref document: EP

Kind code of ref document: A1