WO2023160592A1 - 含硫铂碳催化剂及其制备方法和应用 - Google Patents

含硫铂碳催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023160592A1
WO2023160592A1 PCT/CN2023/077761 CN2023077761W WO2023160592A1 WO 2023160592 A1 WO2023160592 A1 WO 2023160592A1 CN 2023077761 W CN2023077761 W CN 2023077761W WO 2023160592 A1 WO2023160592 A1 WO 2023160592A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
platinum
carbon
catalyst
carbon catalyst
Prior art date
Application number
PCT/CN2023/077761
Other languages
English (en)
French (fr)
Inventor
赵红
荣峻峰
程赟绿
张启
米万良
Original Assignee
中国石油化工股份有限公司
中石化石油化工科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211512322.5A external-priority patent/CN118117103A/zh
Application filed by 中国石油化工股份有限公司, 中石化石油化工科学研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2023160592A1 publication Critical patent/WO2023160592A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the sulfur-modified carbon material of the present invention and its preparation method and application.
  • Pt/C catalyst is a practical catalyst in the fields of fuel cells and electrolyzed water, and its cost, activity and stability are also one of the key factors restricting the development of fuel cells and electrolyzed water.
  • sulfur-containing platinum-carbon catalysts used in chemical catalysis Pt/C catalysts required in the field of electrochemistry usually require high Pt loading, uniform particle size, good dispersion, and strong binding force with carbon supports.
  • a sulfur-doped carbon material is prepared by using a sulfur-containing organic small molecule, which is mixed with a platinum precursor and heat-treated in a reducing atmosphere to obtain a sulfur-doped sulfur-containing platinum-carbon catalyst.
  • the catalyst Utilizing the anchoring effect of sulfur on platinum, the catalyst has good stability.
  • transition metal salts to catalyze the condensation and carbonization of sulfur-containing small molecules, only the surface of conductive carbon black is coated with sulfur-containing substances.
  • the dispersion of platinum particles on the catalyst is not uniform, especially when the loading changes When it is high, the particle size distribution is wide, resulting in a small electrochemically active area (ECSA) of the catalyst.
  • ECSA electrochemically active area
  • the rich pore structure of the carbon support cannot be fully utilized, making it difficult to effectively utilize platinum.
  • Pt/C catalyst and its preparation method are very important.
  • Carbon materials have a wide range of sources and rich properties, and have been widely used in various technical fields.
  • conductive carbon black is a practical carrier for electrocatalysts. Through proper modification of conductive carbon black, it is expected to break through the limitation of catalyst performance by using appropriate modified carbon materials as carriers.
  • An object of the present invention is to provide a sulfur-modified carbon material, which is particularly suitable as a carrier for platinum-carbon electrocatalysts, and can significantly improve the catalytic performance of platinum-carbon electrocatalysts.
  • Another object of the present invention is to provide a sulfur-containing platinum-carbon catalyst obtained by using the sulfur-modified carbon material, which has significantly better catalytic activity and stability than existing commercial catalysts.
  • Another object of the present invention is to provide the use of the sulfur-containing platinum-carbon catalyst in fuel cells or electrolysis of water.
  • Another object of the present invention is to provide the use of the sulfur-containing platinum-carbon catalyst in improving the resistance of the platinum-carbon catalyst to catalyst poisoning, wherein the poisoning is selected from SO x poisoning, CO poisoning and H 2 S poisoning.
  • a sulfur-containing platinum-carbon catalyst comprising sulfur-containing conductive carbon black as a carrier and platinum metal loaded thereon, characterized in that at least 70% by weight of platinum metal particles are loaded inside the sulfur-containing conductive carbon black, and the Compared with the benchmark platinum-carbon catalyst using sulfur-free conductive carbon black as a carrier, the sulfur-containing platinum-carbon catalyst has a Pt 4f 7/2 characteristic peak increase of at least 0.3eV in the XPS spectrum.
  • the sulfur-containing platinum-carbon catalyst does not have Pt characteristic peaks or Pt(111) characteristic peaks in the XRD spectrum
  • the ratio of the normalized peak intensity per unit weight of platinum to the full width at half maximum of the Pt(200) characteristic peak is not greater than 0.4.
  • step (2) (2) removing the solvent in the uniform mixture containing the sulfur-containing conductive carbon black obtained in step (1), the platinum source and the solvent, to obtain a precursor material;
  • step (3) 12. The method of alternative aspect 9, wherein the heat treatment of step (3) is performed at 80-200°C.
  • the method according to alternative aspect 9, wherein the dried The conditions include: the temperature is 20-100°C, and the time is 5-10h.
  • the present invention also provides the following alternative technical solutions:
  • a sulfur-modified carbon material comprising conductive carbon black and sulfur elements distributed therein, characterized in that the total sulfur content in the sulfur-modified carbon material is 1.2% of the surface sulfur content times or more, preferably 1.5 times or more.
  • the sulfur source used for impregnation is elemental sulfur, so that elemental sulfur is introduced into the conductive carbon black in the form of elemental sulfur. Further, after elemental sulfur is introduced into the conductive carbon black in the form of elemental sulfur, it is preferred that the elemental sulfur in the sulfur-modified carbon material exists in the form of elemental sulfur or substantially in the form of elemental sulfur in the conductive carbon black.
  • Impregnation step impregnate conductive carbon black with a solution containing sulfur at 10-80°C for 1-5h.
  • step B drying step: drying the impregnated product obtained in step A).
  • drying conditions include: a temperature of 20-100° C., and a time of 5-10 hours.
  • the purpose of one aspect of the present invention is in order to overcome the above-mentioned technical problem that prior art exists
  • the problem is to provide a sulfur-modified carbon material and its preparation method, a sulfur-containing platinum-carbon catalyst, and a fuel cell.
  • the sulfur-modified carbon material is suitable as a carrier for the sulfur-containing platinum-carbon catalyst, and can significantly improve the catalytic performance of the sulfur-containing platinum-carbon catalyst. performance and toxicity.
  • another aspect of the present invention provides a sulfur-modified carbon material
  • the sulfur-modified carbon material includes conductive carbon black and sulfur element compounded therein, and the total sulfur content in the sulfur-modified carbon material is greater than Or equal to the surface sulfur content, preferably the total sulfur content in the sulfur-modified carbon material is more than 1.2 times, more preferably 1.5 times or more of the surface sulfur content.
  • the total sulfur content in the sulfur-modified carbon material is 0.1-10 wt%, preferably 1-8 wt%, further preferably 1-4 wt%.
  • the sulfur-modified carbon material has a surface sulfur content of 0.1-6 wt%, preferably 0.5-3 wt%.
  • the oxygen content in the sulfur-modified carbon material is 4-15% by weight.
  • the specific surface area of the sulfur-modified carbon material is 200-2000m 2 /g.
  • the conductive carbon black is one or more of EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2.
  • Another aspect of the present invention provides a method for preparing a sulfur-modified carbon material, the method comprising: impregnating conductive carbon black with a solution containing sulfur at 10-80°C for 1-5 hours, and drying the impregnated product to obtain a sulfur-modified carbon material. permanent carbon material.
  • the solvent in the sulfur-containing solution is one or more of CCl 4 , CS 2 , cyclohexane and n-hexane.
  • the sulfur concentration in the sulfur-containing solution is 0.0004-0.02 g/mL.
  • the sulfur is used in an amount of 0.005-0.06 g.
  • the drying conditions include: a temperature of 20-100° C. and a time of 5-10 hours.
  • the conductive carbon black is one or more of EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2.
  • Another aspect of the present invention provides a sulfur-containing platinum-carbon catalyst, the sulfur-containing platinum-carbon catalyst includes a sulfur-modified carbon material and platinum metal supported thereon; wherein, the sulfur-modified carbon material is the above-mentioned sulfur of the present invention A modified carbon material, or a sulfur-modified carbon material obtained by the above-mentioned preparation method of the present invention.
  • the weight fraction of platinum is 0.1-70% by weight, according to different uses, the weight fraction of platinum can be 0.1-1%, 1-4%, 1-8%, 4-20% by weight, 20-40% by weight or 40-70% by weight.
  • the platinum particles with regular lattice stripes in the sulfur-containing platinum-carbon catalyst do not exceed 60% by weight.
  • Another aspect of the present invention provides the application of the above-mentioned sulfur-modified carbon material of the present invention, the sulfur-modified carbon material obtained by the above-mentioned preparation method of the present invention, or the above-mentioned sulfur-containing platinum-carbon catalyst of the present invention as electrode materials.
  • Another aspect of the present invention provides a fuel cell in which the above-mentioned sulfur-modified carbon material of the present invention, the sulfur-modified carbon material obtained by the above-mentioned preparation method of the present invention, or the above-mentioned sulfur-containing carbon material of the present invention are used in the fuel cell.
  • Platinum carbon catalyst is used in which the above-mentioned sulfur-modified carbon material of the present invention, the sulfur-modified carbon material obtained by the above-mentioned preparation method of the present invention, or the above-mentioned sulfur-containing carbon material of the present invention are used in the fuel cell.
  • the fuel cell is a hydrogen fuel cell.
  • Another aspect of the present invention provides a PEM electrolyzer, characterized in that, in the cathode of the PEM electrolyzer, the above-mentioned sulfur-modified carbon material of the present invention and the sulfur-modified carbon obtained by the above-mentioned preparation method of the present invention are used material, or the above-mentioned sulfur-containing platinum-carbon catalyst of the present invention.
  • the present invention can achieve the following beneficial technical effects.
  • the present invention manufactures a novel sulfur-modified carbon material through a simple method, and the sulfur in the sulfur-modified carbon material is more distributed inside the carbon material.
  • the sulfur-modified carbon material produced by the present invention is particularly suitable as a carrier of platinum-carbon electrocatalysts, which can significantly improve the catalytic performance of platinum-carbon electrocatalysts.
  • the sulfur-modified carbon material produced by the present invention can produce a platinum-carbon electrocatalyst with excellent anti-toxic performance, high activity and high stability.
  • Solution (2) Sulfur-containing platinum-carbon catalyst with high Pt content and its preparation method and application
  • the purpose of one aspect of the present invention is to solve the problem that the Pt/C catalyst synthesized in the prior art is difficult to take into account the high loading and high dispersion of Pt, and the weak interaction between the carrier and Pt. Strong interaction between the carrier and platinum by preparing sulfur-containing conductive carbon black to improve the dispersion of platinum, the development of a simple preparation method, high loading, high uniformity, high activity and high stability Pt /C catalyst; the second is to provide a greener and more environmentally friendly new catalyst preparation process for the problems of high temperature required by the current thermal reduction method, complex process of the liquid phase reduction method, and large waste water discharge.
  • the present invention provides a sulfur-containing platinum carbon catalyst, the sulfur-containing platinum carbon
  • the catalyst includes sulfur-containing conductive carbon black and platinum metal loaded thereon, wherein the total sulfur content in the sulfur-containing conductive carbon black is more than 1.2 times, and preferably more than 1.5 times, the total weight of the catalyst As a basis, the weight fraction of platinum is 20-70% by weight.
  • the sulfur-modified carbon material of the present invention can be used as the sulfur-containing conductive carbon black.
  • the "sulfur-containing conductive carbon black” can also be called “sulfur-modified conductive carbon black”.
  • the platinum metal particles with regular lattice stripes in the sulfur-containing platinum-carbon catalyst do not exceed 60% by weight.
  • At least 90% by weight of the platinum metal particles are supported inside the sulfur-containing conductive carbon black.
  • the weight fraction of platinum is 20-70% by weight, may be 20-40% by weight or 40-70% by weight.
  • the sulfur-containing platinum-carbon catalyst with high Pt content provided by the solution (2) of the present invention can be called a high platinum content (sulfur-containing platinum-carbon) catalyst.
  • the total sulfur content in the sulfur-containing conductive carbon black is 0.4-8 wt%, preferably 1-6 wt%.
  • the surface sulfur content in the sulfur-containing conductive carbon black is 0.1-6 wt%, preferably 0.5-4 wt%.
  • the Pt 4f 7/2 characteristic peak in the XPS spectrum of the sulfur-containing platinum-carbon catalyst is above 71.6eV.
  • the conductive carbon black in the sulfur-containing conductive carbon black is one or more of EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2 kind.
  • Another aspect of the present invention provides a sulfur-containing platinum-carbon catalyst
  • the sulfur-containing platinum-carbon catalyst comprises sulfur-containing conductive carbon black and platinum metal loaded thereon, wherein the total sulfur content in the sulfur-containing platinum-carbon catalyst is greater than Or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times, more preferably 1.5 times the surface sulfur content, based on the total weight of the catalyst, the weight fraction of platinum is 20-70% by weight.
  • the platinum metal particles with regular lattice stripes in the sulfur-containing platinum-carbon catalyst do not exceed 60% by weight.
  • At least 90% by weight of the platinum metal particles are supported inside the sulfur-containing conductive carbon black.
  • the weight fraction of platinum is 20-70% by weight, may be 20-40% by weight or 40-70% by weight.
  • the total sulfur content is 0.4-8% by weight, preferably 1-6% by weight.
  • the surface sulfur content is 0.1-6% by weight, preferably 0.5-4% by weight.
  • the Pt 4f 7/2 characteristic peak in the XPS spectrum of the sulfur-containing platinum-carbon catalyst is above 71.6eV.
  • the conductive carbon black in the sulfur-containing conductive carbon black is one or more of EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2 kind.
  • Another aspect of the present invention provides a method for preparing a sulfur-containing platinum-carbon catalyst, the method comprising:
  • step (2) (2) removing the solvent in the uniform mixture containing the sulfur-containing conductive carbon black obtained in step (1), the platinum source and the solvent, to obtain a precursor material;
  • step (3) In a reducing atmosphere, heat-treat the precursor material obtained in step (2) at 80-200° C. for 1-4 hours to obtain a sulfur-containing platinum-carbon catalyst;
  • step (2) relative to 1 g of the sulfur-containing conductive carbon black, the platinum source is used in an amount of 0.25-2.4 g in terms of platinum element.
  • the conductive carbon black is one or more of EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2 .
  • the oxygen content is greater than 4% by weight.
  • the specific surface area of the conductive carbon black is 200-2000m 2 /g.
  • the solvent in the sulfur-containing solution is one or more of CCl 4 , CS 2 , cyclohexane, and n-hexane.
  • step (1) relative to 1 g of the carbon support, the amount of sulfur used is 0.005-0.06 g.
  • the drying conditions include: a temperature of 20-100° C. and a time of 5-10 hours.
  • the platinum source is one or more of chloroplatinic acid, chloroplatinate, tetraammineplatinum acetate and platinum acetylacetonate.
  • the solvent is one or more of water, alcohol solvents or ketone solvents.
  • the solvent is water and/or ethanol, also preferably water and ethanol mixed solvents.
  • step (2) the solvent is removed after the homogeneous mixture is allowed to stand, and the standing time is more than 4 hours, preferably 16-30 hours.
  • the drying temperature when removing the solvent is below 100°C.
  • the reducing atmosphere includes hydrogen, preferably a mixed atmosphere of hydrogen and an inert gas, and preferably a mixed atmosphere of hydrogen and nitrogen; preferably, hydrogen accounts for 5-30 volumes of the total amount of gas %.
  • Another aspect of the present invention provides a sulfur-containing platinum-carbon catalyst, which is prepared by the above-mentioned preparation method of the present invention.
  • Another aspect of the present invention provides the application of the above-mentioned sulfur-containing platinum-carbon catalyst of the present invention in fuel cells or electrolyzed water.
  • the sulfur-containing platinum-carbon catalyst of the present invention is suitable as an anode catalyst in a fuel cell, and there is no particular limitation on the fuel cell, for example, it can be a hydrogen fuel cell (proton exchange membrane hydrogen fuel cell), a direct alcohol fuel cell (such as methanol or ethanol) direct alcohol fuel cell as the anode fuel), etc.
  • a hydrogen fuel cell proto exchange membrane hydrogen fuel cell
  • a direct alcohol fuel cell such as methanol or ethanol
  • Another aspect of the present invention provides a PEM electrolyzer, wherein the above-mentioned sulfur-containing platinum-carbon catalyst of the present invention is used in the cathode of the PEM electrolyzer.
  • the present invention has the following beneficial technical effects.
  • the overall sulfur content in the carbon carrier of the present invention is greater than the surface sulfur content, which is conducive to making full use of the rich pore structure, so that Pt is not only loaded on the surface of the carrier, thereby forming a better dispersion;
  • the preparation method of the present invention has low reduction temperature and low energy consumption
  • the sulfur-containing platinum-carbon catalyst prepared by the method of the present invention has significantly better ORR and HER catalytic activity and stability than commercial catalysts;
  • the sulfur-containing platinum-carbon catalyst prepared by the method of the present invention has a large electrochemically active area ECSA due to the small Pt particles, uniform distribution, and the formation of an incompletely regular special structure.
  • Solution (3) Sulfur-containing platinum-carbon catalyst with low Pt content and its preparation method and application
  • An object of the present invention is to provide a sulfur-containing platinum-carbon catalyst and its preparation method and application for the problem of low catalytic activity of the sulfur-containing platinum-carbon catalyst in the above-mentioned prior art.
  • Existing in the form of it is highly dispersed, and its weight specific activity and overpotential are far superior to those of commercial catalysts.
  • the invention also improves the wet impregnation method for manufacturing the sulfur-containing platinum-carbon catalyst, and realizes the preparation of the catalyst with lower energy consumption.
  • the present invention provides a sulfur-containing platinum-carbon catalyst, which comprises a sulfur-modified carbon carrier and platinum metal loaded thereon, wherein the sulfur-modified carbon carrier is sulfur Modified conductive carbon black, the total sulfur content in the sulfur-modified carbon carrier is greater than or equal to the surface sulfur content and the total sulfur content is 1-8% by weight, preferably the total sulfur content is more than 1.2 times the surface sulfur content, and preferably More than 1.5 times; based on the total weight of the sulfur-containing platinum-carbon catalyst, the weight fraction of platinum is 1-20% by weight.
  • the sulfur-containing platinum carbon catalyst does not have Pt characteristic peaks in the XRD spectrum, or the ratio of the unit weight platinum normalized peak intensity of the Pt(111) characteristic peak to the full width at half maximum is not greater than 0.8 and the Pt(200 ) The ratio of the platinum normalized peak intensity per unit weight of the characteristic peak to the full width at half maximum is not greater than 0.5.
  • the sulfur-containing platinum-carbon catalyst does not have Pt characteristic peaks in the XRD spectrum, or the unit weight platinum normalization of the Pt(111) characteristic peaks
  • the ratio of the peak intensity to the full width at half maximum is not greater than 0.6 and the ratio of the normalized peak intensity per unit weight of platinum of the characteristic peak of Pt(200) to the full width at half maximum is not greater than 0.4.
  • the weight fraction of platinum is 5-20% by weight, preferably 5-15%, and more preferably 7-10% by weight.
  • the sulfur-containing platinum-carbon catalyst with low Pt content provided by the solution (3) of the present invention can be called a low platinum content (sulfur-containing platinum-carbon) catalyst.
  • the total sulfur content in the sulfur-modified carbon support is 1-8% by weight, preferably 3-6% by weight.
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6% by weight, preferably 0.5-3% by weight.
  • the Pt 4f 7/2 characteristic peak in the XPS spectrum of the sulfur-containing platinum-carbon catalyst is above 71.7eV.
  • the conductive carbon black in the sulfur-modified conductive carbon black is EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, Black pearls 2000, PRINTEX XE2-B, One or more of PRINTEX L6 and HIBLAXK 40B2.
  • the oxygen content is greater than 4% by weight.
  • the specific surface area of the conductive carbon black is 200-2000m 2 /g.
  • Another aspect of the present invention provides a sulfur-containing platinum-carbon catalyst
  • the sulfur-containing platinum-carbon catalyst includes a sulfur-modified carbon carrier and platinum metal loaded thereon, wherein the sulfur-modified carbon carrier is sulfur-modified conductive carbon Black, the total sulfur content in the sulfur-containing platinum carbon catalyst is greater than or equal to the surface sulfur content and the total sulfur content is 1-8% by weight, preferably the total sulfur content is more than 1.2 times the surface sulfur content, and preferably more than 1.5 times; Based on the total weight of the sulfur-containing platinum-carbon catalyst, the weight fraction of platinum is 1-20% by weight.
  • the sulfur-containing platinum-carbon catalyst does not have a Pt characteristic peak in the XRD spectrum, or the ratio of the normalized peak intensity per unit weight of platinum of the Pt(111) characteristic peak to the full width at half maximum is not greater than 0.8 and the Pt(200 ) The ratio of the platinum normalized peak intensity per unit weight of the characteristic peak to the full width at half maximum is not greater than 0.5.
  • the sulfur-containing platinum-carbon catalyst does not have Pt characteristic peaks in the XRD spectrum, or the unit weight platinum normalization of the Pt(111) characteristic peaks
  • the ratio of the peak intensity to the full width at half maximum is not greater than 0.6 and the ratio of the normalized peak intensity per unit weight of platinum of the characteristic peak of Pt(200) to the full width at half maximum is not greater than 0.4.
  • the weight fraction of platinum is 5-20% by weight, preferably 5-15%, and more preferably 7-10% by weight.
  • the total sulfur content is 1-8% by weight, preferably 3-6% by weight.
  • the surface sulfur content is 0.1-6% by weight, preferably 0.5-3% by weight.
  • the Pt 4f 7/2 characteristic peak in the XPS spectrum of the sulfur-containing platinum-carbon catalyst is above 71.7eV.
  • the conductive carbon black in the sulfur-modified conductive carbon black is one or more of EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2 Various.
  • the oxygen content is greater than 4% by weight.
  • the specific surface area of the conductive carbon black is 200-2000m 2 /g.
  • Another aspect of the present invention provides a method for preparing a sulfur-containing platinum-carbon catalyst, the method comprising:
  • step (2) (2) removing the solvent in the homogeneous mixture containing the sulfur-modified carbon carrier obtained in step (1), the platinum source and the solvent, to obtain a precursor material;
  • step (3) In a reducing atmosphere, heat-treat the precursor material obtained in step (2) at 80-200° C. for 1-4 hours to obtain a sulfur-containing platinum-carbon catalyst;
  • the carbon carrier is conductive carbon black
  • step (2) relative to 1 g of the sulfur-modified carbon support, the platinum source is used in an amount of 0.01-0.25 g in terms of platinum element.
  • the conductive carbon black is one or more of EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2 .
  • the oxygen content is greater than 4% by weight.
  • the specific surface area of the conductive carbon black is 200-2000m 2 /g.
  • the solvent in the sulfur-containing solution is one or more of CCl 4 , CS 2 , cyclohexane, and n-hexane.
  • the concentration of sulfur in the sulfur-containing solution is 0.0004-0.02 g/mL.
  • step (1) relative to 1 g of the carbon support, the amount of sulfur used is 0.005-0.06 g.
  • the drying conditions include: a temperature of 20-100° C. and a time of 5-10 hours.
  • the platinum source is one or more of chloroplatinic acid, chloroplatinate, tetraammineplatinum acetate and platinum acetylacetonate.
  • the solvent is one or more of water, alcohol solvents or ketone solvents.
  • the solvent is water and/or ethanol, and is also preferably a mixed solvent of water and ethanol.
  • step (2) the solvent is removed after the homogeneous mixture is allowed to stand, and the standing time is more than 10 h, preferably 15-24 h.
  • the drying temperature when removing the solvent is below 100°C.
  • the reducing atmosphere includes hydrogen, preferably a mixed atmosphere of hydrogen and an inert gas, and preferably a mixed atmosphere of hydrogen and nitrogen; preferably, hydrogen accounts for 5-30 volumes of the total amount of gas %.
  • Another aspect of the present invention provides a sulfur-containing platinum-carbon catalyst, which is prepared by the above-mentioned preparation method of the present invention.
  • Another aspect of the present invention provides the application of the above-mentioned sulfur-containing platinum-carbon catalyst of the present invention in fuel cells or electrolyzed water.
  • Another aspect of the present invention provides a PEM electrolytic cell, the cathode of the PEM electrolytic cell uses the above-mentioned sulfur-containing platinum-carbon catalyst of the present invention.
  • the present invention has the following beneficial technical effects.
  • the present invention has produced a kind of novel carbon carrier by modifying conductive carbon black with elemental sulfur, and the sulfur-containing platinum-carbon catalyst manufactured with this carbon carrier can significantly improve the weight specific activity of the catalyst and reduce the overpotential.
  • a preferred embodiment of the present invention prepares a sulfur-modified carbon carrier by impregnating a simple solution without high-temperature roasting treatment.
  • the preparation process is simple and the energy consumption is low.
  • the overall sulfur content is much higher than that of Surface sulfur content, this new structure can disperse Pt to the greatest extent, so that Pt atomic cluster catalysts can still be obtained under higher Pt loading.
  • the reduction temperature is high and the energy consumption is high.
  • the improved method in this application has a low reduction temperature and can reduce the energy consumption of catalyst preparation.
  • the sulfur-containing platinum-carbon catalyst of the invention can be used to improve the platinum-carbon catalyst's resistance to SO x toxicity.
  • the sulfur-containing platinum-carbon catalyst of the present invention utilizes the strong interaction between sulfur and Pt, and prepares a sulfur-modified carbon support by simply modifying the carbon support, so that a strong interaction is formed between the support and platinum, which weakens the effect of Pt on SO The adsorption of x improves the tolerance of the catalyst to SO x .
  • the present invention provides a kind of cathodic reaction method of fuel cell, and this method comprises: under cathodic reaction condition, make O in raw material gas Contact with sulfur-containing platinum-carbon catalyst of the present invention; Wherein, described raw material gas
  • the content of SO x in the medium is 120 ppm or less, preferably 100 ppm or less, preferably 50 ppm or less.
  • the sulfur-containing platinum-carbon catalyst of the present invention is used as a cathode catalyst in a fuel cell.
  • the fuel cell is a hydrogen fuel cell.
  • the cathode reaction conditions include: the voltage is above 0V, preferably 0-1.1V.
  • the sulfur-containing platinum-carbon catalyst of the present invention has the following advantages: First, the preparation method is simple, easy for industrial scale-up, and the improvement of the catalyst's resistance to SO x toxicity can be achieved only through carrier modification; The second is that the Pt particles of the catalyst obtained by this method are uniformly dispersed, and there is an obvious interaction between Pt and the carrier, which not only helps to improve the anti-toxicity of the catalyst, but also improves the activity and stability of the catalyst.
  • the sulfur-containing platinum-carbon catalyst of the invention can be used to improve the resistance of the platinum-carbon catalyst to CO toxicity.
  • the sulfur-containing platinum-carbon catalyst of the present invention utilizes the strong interaction between sulfur and Pt, and prepares a sulfur-modified carbon support by simply modifying the carbon support, so that a strong interaction is formed between the support and platinum, and electrons are promoted from Pt The transfer to the support weakens the adsorption of Pt to CO and improves the tolerance of the catalyst to CO.
  • the present invention provides a kind of anode reaction method of fuel cell, and this method comprises: under anode reaction condition, make the H in raw material gas Contact with sulfur-containing platinum-carbon catalyst of the present invention; Wherein, described raw material gas
  • the content of CO is 1500ppm or less, preferably 1200ppm or less, preferably 1000ppm or less.
  • the sulfur-containing platinum-carbon catalyst of the present invention is used as an anode catalyst in a fuel cell.
  • the fuel cell is a hydrogen fuel cell.
  • the anode reaction conditions include: the voltage is above 0V, preferably 0-0.4V.
  • the present invention also provides a method for electrolyzing water, the method comprising: under the condition of electrolyzing water, making water contact with the sulfur-containing platinum-carbon catalyst of the present invention; wherein, at least part of the contact is in CO in the presence of.
  • the conditions for electrolyzing water include: the voltage is above -0.4V, preferably -0.4-1.0V.
  • the sulfur-containing platinum-carbon catalyst of the present invention has the following advantages: First, the preparation method is simple, easy for industrial scale-up, and the improvement of the catalyst’s resistance to CO toxicity can be realized only by carrier modification.
  • the in-situ infrared characterization of CO shows that the catalyst has no obvious CO chemical adsorption; the second is that the Pt particles of the catalyst obtained by this method are uniformly dispersed, and there is an obvious interaction between Pt and the support, which not only helps to improve the anti-toxicity of the catalyst, Pt
  • the XPS spectrum peak shifts to high electron volts, which can also improve the activity and stability of the catalyst.
  • the sulfur-containing platinum-carbon catalyst of the invention can be used to improve the platinum-carbon catalyst's resistance to H 2 S toxicity.
  • the sulfur-containing platinum-carbon catalyst of the present invention utilizes the strong interaction between sulfur and Pt, and prepares a sulfur-modified carbon support by simply modifying the carbon support, so that a strong interaction is formed between the support and platinum, and electrons are promoted from Pt The transfer to the support weakens the adsorption of Pt to H 2 S and improves the tolerance of the catalyst to H 2 S.
  • the present invention provides a kind of anode reaction method of fuel cell, and this method comprises: under anode reaction condition, make the H in raw material gas Contact with sulfur-containing platinum-carbon catalyst of the present invention; Wherein, described raw material gas
  • the content of H 2 S in the medium is 15 ppm or less, preferably 10 ppm or less, preferably 5 ppm or less.
  • the sulfur-containing platinum-carbon catalyst of the present invention is used as an anode catalyst in a fuel cell.
  • the fuel cell is a hydrogen fuel cell.
  • the anode reaction conditions include: the voltage is above 0V, preferably 0.01-0.4V.
  • the sulfur-containing platinum-carbon catalyst of the present invention has the following advantages: First, the preparation method is simple, easy for industrial scale-up, and the catalyst’s resistance to H 2 S toxicity can be improved only by carrier modification The second is that the Pt particles of the catalyst obtained by the method are uniformly dispersed, and there is an obvious interaction between Pt and the carrier, which not only helps to improve the anti-toxicity of the catalyst, but also improves the activity of the catalyst. and stability.
  • the present invention provides the following exemplary embodiments, or combinations thereof:
  • a sulfur-modified carbon material characterized in that the sulfur-modified carbon material comprises conductive carbon black and sulfur element compounded therein, and the total sulfur content in the sulfur-modified carbon material is greater than or equal to the surface sulfur content , preferably the total sulfur content in the sulfur-modified carbon material is at least 1.2 times, more preferably at least 1.5 times, the surface sulfur content.
  • the surface sulfur content in the sulfur-modified carbon material is 0.1-6% by mass, preferably 0.5-3% by mass;
  • the oxygen content in the sulfur-modified carbon material is 4-15% by mass.
  • the resistivity of the sulfur-modified carbon material is less than 10.0 ⁇ m.
  • a platinum-carbon catalyst characterized in that the platinum-carbon catalyst includes a sulfur-modified carbon material and platinum metal loaded thereon;
  • the sulfur-modified carbon material is the sulfur-modified carbon material described in any one of exemplary embodiments 1-4.
  • the platinum particles with regular lattice stripes in the platinum-on-carbon catalyst do not exceed 60%.
  • a fuel cell characterized in that the sulfur-modified carbon material described in any one of Exemplary Embodiments 1-4 or the platinum-carbon catalyst described in Exemplary Embodiments 5 or 6 are used in the fuel cell;
  • the fuel cell is a hydrogen fuel cell.
  • a PEM electrolytic cell characterized in that the sulfur-modified carbon material described in any one of the exemplary embodiments 1-4 or the sulfur-modified carbon material described in the exemplary embodiment 5 or 6 is used in the cathode of the PEM electrolytic cell platinum carbon catalyst.
  • a platinum-carbon catalyst characterized in that the platinum-carbon catalyst comprises sulfur-containing conductive carbon black and platinum metal loaded thereon,
  • the total sulfur content in the sulfur-containing conductive carbon black is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, more preferably 1.5 times or more,
  • the mass fraction of platinum is 20-70%.
  • At least 90% of the platinum metal particles are supported inside the sulfur-containing conductive carbon black;
  • the mass fraction of platinum is 20-60%, more preferably 20-40%;
  • the surface sulfur content in the sulfur-containing conductive carbon black is 0.1-6 mass%, preferably 0.5-4 mass%.
  • platinum-carbon catalyst according to any one of the exemplary embodiments 1-4, wherein the conductive carbon black in the sulfur-containing conductive carbon black is EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, Black One or more of pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2.
  • a platinum-carbon catalyst characterized in that the platinum-carbon catalyst comprises sulfur-containing conductive carbon black and platinum metal loaded thereon,
  • the total sulfur content in the platinum carbon catalyst is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, more preferably 1.5 times or more,
  • the mass fraction of platinum is 20-70%.
  • a method for preparing a platinum-carbon catalyst characterized in that the method comprises:
  • step (2) (2) removing the solvent in the uniform mixture containing the sulfur-containing conductive carbon black obtained in step (1), the platinum source and the solvent, to obtain a precursor material;
  • step (3) In a reducing atmosphere, heat-treat the precursor material obtained in step (2) at 80-200° C. for 1-4 hours to obtain a platinum-carbon catalyst;
  • step (2) relative to 1 g of the sulfur-containing conductive carbon black, the platinum source is used in an amount of 0.25-2.4 g in terms of platinum element.
  • step (1) the conductive carbon black is EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, One or more of Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2;
  • the oxygen content is greater than 4% by mass
  • the resistivity of the conductive carbon black is less than 10 ⁇ m;
  • the specific surface area of the conductive carbon black is 200-2000m 2 /g.
  • step (1) the solvent in the sulfur-containing solution is one of CCl 4 , CS 2 , cyclohexane, n-hexane or various;
  • the amount of sulfur is 0.005-0.06 g;
  • the drying conditions include: a temperature of 20-100° C. and a time of 5-10 hours.
  • step (2) the platinum source is chloroplatinic acid, chloroplatinate, tetraammine platinum acetate and platinum acetylacetonate one or more of.
  • step (2) the solvent is one or more of water, alcohol solvents or ketone solvents;
  • the solvent is water and/or ethanol, more preferably a mixed solvent of water and ethanol.
  • step (2) after the homogeneous mixture is left to stand, the solvent is removed, and the standing time is 4 hours Above, preferably 16-30h;
  • the drying temperature when removing the solvent is below 100°C.
  • the reducing atmosphere includes hydrogen, preferably a mixed atmosphere of hydrogen and an inert gas, more preferably hydrogen and A mixed atmosphere of nitrogen; preferably, hydrogen accounts for 5-30% by volume of the total gas.
  • a platinum-carbon catalyst characterized in that the platinum-carbon catalyst is prepared by the preparation method described in any one of the exemplary embodiments 7-13.
  • a PEM electrolyzer characterized in that the platinum carbon catalyst according to any one of embodiments 1-6 and 14 is used in the cathode of the PEM electrolyzer.
  • a platinum-carbon catalyst characterized in that the platinum-carbon catalyst comprises a sulfur-modified carbon carrier and platinum metal loaded thereon,
  • the sulfur-modified carbon carrier is sulfur-modified conductive carbon black
  • the total sulfur content in the sulfur-modified carbon carrier is greater than or equal to the surface sulfur content and the total sulfur content is 1-8% by mass, preferably the total sulfur content It is more than 1.2 times of the surface sulfur content, more preferably more than 1.5 times;
  • the mass fraction of platinum is 1-20%.
  • platinum-carbon catalyst according to Exemplary Embodiment 1 wherein the platinum-carbon catalyst does not have a Pt characteristic peak in the XRD spectrum, or the unit mass platinum normalized peak intensity and half-peak of the Pt(111) characteristic peak
  • the ratio of the full width is not greater than 0.8 and the ratio of the normalized peak intensity per unit mass of platinum of the characteristic peak of Pt(200) to the full width at half maximum is not greater than 0.5;
  • the platinum-carbon catalyst does not have a Pt characteristic peak in the XRD spectrum, or the unit mass platinum normalized peak intensity and half of the Pt(111) characteristic peak
  • the ratio of the full width of the peak is not greater than 0.6 and the ratio of the normalized peak intensity per unit mass of platinum of the characteristic peak of Pt(200) to the full width at half maximum is not greater than 0.4;
  • the mass fraction of platinum is 5-20%, preferably 5-15%, more preferably 7-10%.
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6 mass%, preferably 0.5-3 mass%.
  • platinum-carbon catalyst according to any one of the exemplary embodiments 1-4, wherein the conductive carbon black in the sulfur-modified conductive carbon black is EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, One or more of Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2;
  • the oxygen content is greater than 4% by mass
  • the resistivity of the conductive carbon black is less than 10 ⁇ m;
  • the specific surface area of the conductive carbon black is 200-2000m 2 /g.
  • a platinum-carbon catalyst characterized in that the platinum-carbon catalyst comprises a sulfur-modified carbon carrier and platinum metal loaded thereon,
  • the sulfur-modified carbon carrier is sulfur-modified conductive carbon black, and the platinum carbon catalyst
  • the total sulfur content is greater than or equal to the surface sulfur content and the total sulfur content is 1-8% by mass, preferably the total sulfur content is more than 1.2 times the surface sulfur content, more preferably 1.5 times or more;
  • the mass fraction of platinum is 1-20%.
  • a method for preparing a platinum-carbon catalyst characterized in that the method comprises:
  • step (2) (2) removing the solvent in the homogeneous mixture containing the sulfur-modified carbon carrier obtained in step (1), the platinum source and the solvent, to obtain a precursor material;
  • step (3) In a reducing atmosphere, heat-treat the precursor material obtained in step (2) at 80-200° C. for 1-4 hours to obtain a platinum-carbon catalyst;
  • the carbon carrier is conductive carbon black
  • step (2) relative to 1 g of the sulfur-modified carbon support, the platinum source is used in an amount of 0.01-0.25 g in terms of platinum element.
  • step (1) the conductive carbon black is EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, Black pearls 2000, PRINTEX XE2-B, One or more of PRINTEX L6 and HIBLAXK 40B2;
  • the oxygen content is greater than 4% by mass
  • the resistivity of the conductive carbon black is less than 10 ⁇ m;
  • the specific surface area of the conductive carbon black is 200-2000m 2 /g.
  • step (1) the solvent in the sulfur-containing solution is one of CCl 4 , CS 2 , cyclohexane, n-hexane or various;
  • the sulfur concentration in the sulfur-containing solution is 0.0004-0.02g/mL;
  • the amount of sulfur used is 0.005-0.06 g;
  • the drying conditions include: a temperature of 20-100° C. and a time of 5-10 hours.
  • step (2) the platinum source is chloroplatinic acid, chloroplatinate, tetraammine platinum acetate and platinum acetylacetonate one or more of.
  • step (2) the solvent is one or more of water, alcohol solvents or ketone solvents;
  • the solvent is water and/or ethanol, more preferably a mixed solvent of water and ethanol.
  • step (2) after the homogeneous mixture is allowed to stand still, the solvent is removed, and the standing time is 10 hours Above, preferably 15-24h;
  • the drying temperature when removing the solvent is below 100°C.
  • the reducing atmosphere includes hydrogen, preferably a mixed atmosphere of hydrogen and an inert gas, more preferably hydrogen and A mixed atmosphere of nitrogen; preferably, hydrogen accounts for 5-30% by volume of the total gas.
  • a platinum-carbon catalyst characterized in that the platinum-carbon catalyst is prepared by the preparation method described in any one of the exemplary embodiments 7-13.
  • a PEM electrolyzer characterized in that the platinum carbon catalyst according to any one of embodiments 1-6 and 14 is used in the cathode of the PEM electrolyzer.
  • the application of sulfur-containing platinum-carbon catalysts in improving the anti- SO toxicity of platinum-carbon catalysts characterized in that, the sulfur-containing platinum-carbon catalysts include sulfur-modified carbon supports and platinum metals loaded thereon, and the sulfur-modified
  • the total sulfur content in the carbon carrier is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times, more preferably 1.5 times or more of the surface sulfur content, based on the total mass of the catalyst, the mass fraction of platinum is 20-70 %.
  • the total sulfur content in the sulfur-modified carbon carrier is 0.4-8% by mass, preferably 1-6% by mass;
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6 mass%, preferably 0.5-4 mass%.
  • the conductive carbon black in the sulfur-modified conductive carbon black is one of EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2 or Various.
  • a cathode reaction method for a fuel cell characterized in that the method comprises: under cathode reaction conditions, making the O in the feed gas contact with the sulfur-containing platinum-carbon catalyst;
  • the content of SO x in the feed gas is below 120ppm;
  • the sulfur-containing platinum carbon catalyst includes a sulfur-modified carbon carrier and platinum metal loaded thereon, the sulfur-modified carbon carrier is sulfur-modified conductive carbon black, and the total sulfur content in the sulfur-modified carbon carrier is greater than Or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times, more preferably more than 1.5 times the surface sulfur content, based on the total mass of the catalyst, the mass fraction of platinum is 20-70%.
  • the cathode reaction conditions include: the voltage is above 0V, preferably 0-1.1V.
  • the total sulfur content in the sulfur-modified carbon carrier is 0.4-8% by mass, preferably 1-6% by mass;
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6 mass%, preferably 0.5-4 mass%.
  • the sulfur-containing platinum-carbon catalyst comprises a sulfur-modified carbon carrier and platinum metal loaded thereon, and the sulfur-modified carbon carrier is a sulfur-modified Conductive carbon black, the total sulfur content in the sulfur-modified carbon carrier is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, more preferably 1.5 times or more, based on the total mass of the catalyst , the mass fraction of platinum is 20-70%;
  • the content of SO x in the raw gas of the fuel cell is 120 ppm or less.
  • the sulfur-containing platinum-carbon catalyst is used as a cathode catalyst in a fuel cell.
  • the total sulfur content in the sulfur-modified carbon carrier is 0.4-8% by mass, preferably 1-6% by mass;
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6 mass%, preferably 0.5-4 mass%.
  • the application of sulfur-containing platinum-carbon catalysts in improving the anti- SOx toxicity of platinum-carbon catalysts characterized in that, the sulfur-containing platinum-carbon catalysts include sulfur-modified carbon supports and platinum metals loaded thereon, and the sulfur-modified
  • the carbon carrier is sulfur-modified conductive carbon black
  • the total sulfur content in the sulfur-containing platinum carbon catalyst is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, more preferably 1.5 times or more, with Based on the total mass of the catalyst, the mass fraction of platinum is 20-70 mass%.
  • the application of sulfur-containing platinum-carbon catalysts in improving the CO toxicity of platinum-carbon catalysts characterized in that the sulfur-containing platinum-carbon catalysts include sulfur-modified carbon supports and platinum metals loaded thereon, and the sulfur-modified
  • the total sulfur content in the carbon carrier is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, more preferably 1.5 times or more, based on the total mass of the catalyst, the mass fraction of platinum is 20-70% .
  • the mass fraction of platinum is 20-60%, more preferably 20-40%;
  • the total sulfur content in the sulfur-modified carbon carrier is 0.4-8% by mass, preferably 1-6% by mass;
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6 mass%, preferably 0.5-4 mass%.
  • the conductive carbon black in the sulfur-modified conductive carbon black is one or more of EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2 Various.
  • An anode reaction method for a hydrogen fuel cell characterized in that the method comprises: under an anode reaction condition, making the H in the feed gas contact with the sulfur-containing platinum-carbon catalyst;
  • the content of CO in the raw material gas is below 1500ppm
  • the sulfur-containing platinum carbon catalyst includes a sulfur-modified carbon carrier and platinum metal loaded thereon, the sulfur-modified carbon carrier is sulfur-modified conductive carbon black, and the total sulfur content in the sulfur-modified carbon carrier is Greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times, more preferably more than 1.5 times the surface sulfur content, based on the total mass of the catalyst, the mass fraction of platinum is 20-70%.
  • the anode reaction conditions include: the voltage is above 0V, preferably 0-0.4V.
  • the total sulfur content in the sulfur-modified carbon carrier is 0.4-8% by mass, preferably 1-6% by mass;
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6 mass%, preferably 0.5-4 mass%.
  • the sulfur-containing platinum carbon catalyst includes a sulfur-modified carbon carrier and platinum metal loaded thereon, the sulfur-modified carbon carrier is sulfur-modified conductive carbon black, and the total sulfur content in the sulfur-modified carbon carrier is greater than Or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, more preferably more than 1.5 times, based on the total mass of the catalyst, the mass fraction of platinum is 20-70%;
  • the content of CO in the raw material gas of the fuel cell is 1500ppm or less.
  • the fuel cell is a hydrogen fuel cell
  • the sulfur-containing platinum-carbon catalyst is used as an anode catalyst in a fuel cell.
  • the total sulfur content in the sulfur-modified carbon carrier is 0.4-8% by mass, preferably 1-6% by mass;
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6 mass%, preferably 0.5-4 mass%.
  • a method for electrolyzing water characterized in that the method comprises: Under the conditions, water is contacted with sulfur-containing platinum carbon catalyst;
  • the sulfur-containing platinum carbon catalyst includes a sulfur-modified carbon carrier and platinum metal loaded thereon, the sulfur-modified carbon carrier is sulfur-modified conductive carbon black, and the total sulfur content in the sulfur-modified carbon carrier is greater than Or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times, more preferably more than 1.5 times the surface sulfur content, based on the total mass of the catalyst, the mass fraction of platinum is 20-70%.
  • the method for electrolyzing water is proton exchange membrane electrolyzing water.
  • the total sulfur content in the sulfur-modified carbon carrier is 0.4-8% by mass, preferably 1-6% by mass;
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6 mass%, preferably 0.5-4 mass%.
  • sulfur-containing platinum-carbon catalysts in improving the CO toxicity of platinum-carbon catalysts, characterized in that the sulfur-containing platinum-carbon catalysts include sulfur-modified carbon supports and platinum metal supported thereon, and the sulfur-modified
  • the carbon carrier is sulfur-modified conductive carbon black, and the total sulfur content in the sulfur-containing platinum carbon catalyst is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times, more preferably 1.5 times, the catalyst
  • the total mass of platinum is used as a benchmark, and the mass fraction of platinum is 20-70%.
  • the application of sulfur-containing platinum carbon catalysts in improving the resistance of platinum carbon catalysts to H 2 S toxicity characterized in that the sulfur-containing platinum carbon catalysts include sulfur-modified carbon supports and platinum metals loaded thereon, the sulfur
  • the total sulfur content in the modified carbon carrier is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, more preferably more than 1.5 times, based on the total mass of the catalyst, the mass fraction of platinum is 20- 70%.
  • the total sulfur content in the sulfur-modified carbon carrier is 0.4-8% by mass, preferably 1-6% by mass;
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6 mass%, preferably 0.5-4 mass%.
  • the conductive carbon black in the sulfur-modified conductive carbon black is one or more of EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R, Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2 Various.
  • An anode reaction method for a hydrogen fuel cell characterized in that the method comprises: under an anode reaction condition, making the H in the feed gas contact with the sulfur-containing platinum-carbon catalyst;
  • the content of H 2 S in the raw material gas is below 15ppm;
  • the sulfur-containing platinum carbon catalyst includes a sulfur-modified carbon carrier and platinum metal loaded thereon, the sulfur-modified carbon carrier is sulfur-modified conductive carbon black, and the total sulfur content in the sulfur-modified carbon carrier is greater than Or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times, more preferably more than 1.5 times the surface sulfur content, based on the total mass of the catalyst, the mass fraction of platinum is 20-70%.
  • the anode reaction conditions include: the voltage is above 0V, preferably 0.01-0.4V.
  • the total sulfur content in the sulfur-modified carbon carrier is 0.4-8% by mass, preferably 1-6% by mass;
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6 mass%, preferably 0.5-4 mass%.
  • the sulfur-containing platinum carbon catalyst includes a sulfur-modified carbon carrier and platinum metal loaded thereon, the sulfur-modified carbon carrier is sulfur-modified conductive carbon black, and the total sulfur content in the sulfur-modified carbon carrier is greater than Or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, more Preferably more than 1.5 times, based on the total mass of the catalyst, the mass fraction of platinum is 20-70%;
  • the content of H 2 S in the raw gas of the fuel cell is 15 ppm or less.
  • the fuel cell is a hydrogen fuel cell
  • the sulfur-containing platinum-carbon catalyst is used as an anode catalyst in a fuel cell.
  • the total sulfur content in the sulfur-modified carbon carrier is 0.4-8% by mass, preferably 1-6% by mass;
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6 mass%, preferably 0.5-4 mass%.
  • the application of sulfur-containing platinum-carbon catalysts in improving the resistance of platinum-carbon catalysts to H 2 S toxicity characterized in that the sulfur-containing platinum-carbon catalysts include sulfur-modified carbon supports and platinum metal supported thereon, and the sulfur The modified carbon carrier is sulfur-modified conductive carbon black, the total sulfur content in the sulfur-containing platinum carbon catalyst is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, more preferably 1.5 times or more, Based on the total mass of the catalyst, the mass fraction of platinum is 20-70%.
  • Fig. I.1 is the polarization curve of ORR reaction catalyzed by the sulfur-containing platinum carbon catalyst prepared by the sulfur-modified carbon material of embodiment I.1 and comparative example I.2 and the commercial platinum carbon catalyst of comparative example I.1;
  • Figure I.2 is the polarization curve before and after the stability of the HER reaction catalyzed by the sulfur-containing platinum carbon catalyst prepared by the sulfur-modified carbon material of embodiment I.1;
  • Figure I.3 is the polarization curve before and after the stability of the HER reaction catalyzed by the commercial platinum carbon catalyst of Comparative Example I.1;
  • Figure I.4 is a STEM photo of the platinum carbon catalyst made from the carbon material without composite elements of Comparative Example I.2;
  • Figure I.5 is the bond length information of the sample of test case I.5;
  • Figure I.6 shows the valence information of the samples of Test Example I.5.
  • Fig. II.1 is the XPS spectrum of the sulfur-containing platinum carbon catalyst of embodiment II.2 and comparative example II.3;
  • Fig. II.2 is the STEM photograph of the sulfur-containing platinum carbon catalyst of embodiment II.2;
  • Fig. II.3 is the STEM photograph of the sulfur-containing platinum carbon catalyst of embodiment II.3;
  • Fig. II.4 is the TEM photograph of the sulfur-containing platinum carbon catalyst of comparative example II.1;
  • Fig. II.5 is the TEM photograph of the sulfur-containing platinum carbon catalyst of comparative example II.2;
  • Figure II.6 is a STEM photo of the sulfur-containing platinum carbon catalyst of Comparative Example II.4;
  • Figure II.7 is a STEM photograph showing platinum particles with regular lattice fringes
  • Fig. II.8 is the TEM photograph of the sulfur-containing platinum carbon catalyst of embodiment II.2;
  • Figure II.9 is a TEM photo of the sulfur-containing platinum carbon catalyst of Comparative Example II.4.
  • Fig. III.1 is the XRD spectrogram of the sulfur-containing platinum carbon catalyst of embodiment III.1, 3-5 and comparative example III.1-2;
  • Fig. III.2 is the XPS spectrogram of the sulfur-containing platinum carbon catalyst of embodiment III.1 and comparative example III.1-3;
  • Figure III.3 is the LSV curves of the sulfur-containing platinum-carbon catalysts of Example III.1 and Comparative Examples III.1-3.
  • Figure IV.1 is the LSV curves of the ORR of the platinum carbon catalysts of Example 1 and Comparative Example 2 before and after SO x poisoning treatment.
  • Fig. V.1 is the XPS spectrogram of the platinum carbon catalyst of embodiment V.1 and comparative example V.1;
  • Figure V.2 is the LSV curve of HER before and after CO poisoning treatment for the platinum-carbon catalysts of Example V.1 and Comparative Example V.1;
  • Figure V.3 is the LSV curve of HOR before and after CO poisoning treatment for the platinum-carbon catalysts of Example V.1 and Comparative Example V.2;
  • Figure V.4 is the CO in-situ infrared curves of the platinum carbon catalysts of Example V.1 and Comparative Example V.1.
  • Figure V.5 is the LSV curves of the HOR of the platinum-carbon catalysts of Example V.2 and Comparative Example V.4 before and after CO poisoning treatment.
  • Figure VI.1 is the LSV curve of the platinum carbon catalyst of Example VI.2 before and after H 2 S poisoning
  • Figure VI.2 is the CV curve of the platinum carbon catalyst of Example VI.2 before and after H 2 S poisoning
  • Figure VI.3 is the LSV curves of the platinum carbon catalysts of Example VI.1 and Comparative Example VI.1 before and after being poisoned by H 2 S;
  • Figure VI.4 is the CV curves of the platinum carbon catalysts of Example VI.1 and Comparative Example VI.1 before and after H 2 S poisoning.
  • any matters or matters not mentioned are directly applicable to those known in the art without any change except for the contents explicitly stated.
  • any embodiment described herein can be freely combined with one or more other embodiments described herein, and the resulting technical solutions or technical ideas are regarded as a part of the original disclosure or record of the present invention, and should not be regarded as It is regarded as a new content that has not been disclosed or expected in this paper, unless those skilled in the art think that the combination is obviously unreasonable.
  • Numerical ranges defined in the present invention include the endpoints of the numerical range.
  • a "range” disclosed herein is given in terms of lower limits and upper limits, eg, one or more lower limits and one or more upper limits.
  • a given range may be defined by selecting a lower limit and an upper limit, the selected lower and upper limits delimiting the given range. All ranges defined in this manner are inclusive and combinable, ie, any lower limit can be combined with any upper limit to form a range.
  • a range of 60-110 and 80-120 is listed for a specific parameter, understood as 60-120 and 80-110 The range is also predictable.
  • the lower limits are listed as 1 and 2 and the upper limits are listed as 3, 4 and 5, the following ranges are contemplated: 1-3, 1-4, 1-5, 2-3, 2-4 and 2-5.
  • the terms “comprising”, “comprising”, “containing”, “having” and similar expressions represent an open type, but they should also be understood as explicitly disclosing a closed type at the same time.
  • “comprising” indicates that other elements not listed may also be included, but at the same time, it also explicitly discloses the situation that only the listed elements are included.
  • “comprising/comprising” is to be interpreted as expressly stating the presence of said features, integers, steps or components mentioned, but not excluding one or more other features, integers, steps, components or The presence or addition of groups.
  • the term “comprising” is intended to include embodiments covered by the terms “consisting essentially of” and “consisting of”.
  • the term “consisting essentially of is intended to include embodiments covered by the term “consisting of”.
  • carbon black and “carbon black” are interchangeable technical terms.
  • the "inert gas” in the present invention refers to a gas that does not cause any appreciable impact on the performance of the sulfur-containing conductive carbon black/sulfur-modified carbon material in the preparation method of the present invention.
  • surface sulfur content refers to the sulfur weight fraction measured by XPS analysis for the test object.
  • XPS analysis it can be used to characterize the sulfur concentration on the surface of the test object, which is based on the total weight of the surface layer of the test object.
  • total sulfur content refers to the sulfur weight fraction measured by a sulfur-carbon analyzer for the test object.
  • sulfur-carbon analyzer it can be used to characterize the sulfur concentration of the whole test, which is based on the total weight of the test object.
  • the sulfur-modified carbon material can generally be used as a support for the purpose of preparing catalysts, etc.; therefore, unless otherwise specified, the terms “sulfur-modified carbon material” and “sulfur-modified carbon support” in the present invention Can be used interchangeably.
  • the sulfur-modified carbon material of the present invention can be used as the sulfur-containing conductive carbon black; therefore, unless otherwise specified, the terms “sulfur-modified carbon material” and “sulfur-containing conductive carbon” in the present invention Black” can be used interchangeably.
  • the "sulfur-containing conductive carbon black” can also be called “sulfur-modified conductive carbon black”.
  • the platinum carbon catalyst provided by the present invention can be prepared using the sulfur-modified carbon material as a carrier.
  • the platinum carbon catalyst provided by the present invention is sulfur-containing, so it is called a sulfur-containing platinum carbon catalyst , which formed with a sulfur-free prior art platinum-on-carbon catalyst Compared. Therefore, when describing the technical solution of the present invention, sometimes the term "sulfur-containing platinum-carbon catalyst” and the term “platinum-carbon catalyst” are used interchangeably, unless those skilled in the art can clearly judge that they have different specific meanings, such as specifically using The term “platinum carbon catalyst” is used when describing prior art, and/or comparative sulfur-free platinum carbon catalysts.
  • Embodiment I Sulfur-modified carbon material and its preparation method and application
  • Embodiment 1 of the present invention provides a sulfur-modified carbon material, the sulfur-modified carbon material includes conductive carbon black and sulfur element compounded therein, the total sulfur content in the sulfur-modified carbon material is greater than or equal to the surface sulfur content.
  • the total sulfur content in the sulfur-modified carbon material can be more than 1.2 times, more than 1.5 times, more than 1.7 times, more than 2 times, or 3 times the surface sulfur content times or more, such as 1.2-10 times.
  • the surface sulfur content represents the sulfur weight fraction measured by XPS analysis
  • the total sulfur content represents the sulfur weight fraction measured by a sulfur-carbon analyzer.
  • the inventors found that by compounding more sulfur elements inside the carbon material, it is suitable to prepare a catalyst that is more conducive to platinum loading inside the conductive carbon black, and provides better electrocatalytic performance; on the other hand; the inventors have found that elemental sulfur can be impregnated, Introducing conductive carbon black in a dry manner can produce a sulfur-containing platinum-carbon catalyst with better performance.
  • elemental sulfur is introduced into the conductive carbon black in the form of elemental sulfur.
  • the sulfur source used for impregnation is elemental sulfur, so that elemental sulfur is introduced into the conductive carbon black in the form of elemental sulfur.
  • the elemental sulfur in the sulfur-modified carbon material exists in the form of elemental sulfur or substantially in the form of elemental sulfur in the conductive carbon black.
  • the total sulfur content in the sulfur-modified carbon material is 0.1-10% by weight, preferably 1-8% by weight, and more preferably 1-4% by weight.
  • the surface sulfur content in the sulfur-modified carbon material is 0.1-6 wt%, and preferably 0.5-3 wt%.
  • the sulfur-modified carbon material is sulfur-containing conductive carbon black, and it is also preferred that the sulfur-modified carbon material includes conductive carbon black and sulfur and oxygen elements compounded therein.
  • the oxygen content in the sulfur-modified carbon material of the present invention is 4-15% by weight, preferably 6-10% by weight.
  • the sulfur-modified carbon material of the present invention preferably does not contain other compounding elements except sulfur.
  • the "composite element" in the present invention refers to nitrogen, phosphorus, boron, sulfur, fluorine, chlorine, bromine, and iodine.
  • the sulfur-modified carbon material is composed of conductive carbon black and sulfur and oxygen elements compounded therein.
  • conductive carbon black that can be used in the present invention, one or more of ordinary conductive carbon black (Conductive Blacks), super conductive carbon black (Super Conductive Blacks) or special conductive carbon black (Extra Conductive Blacks) can be used, for example Ketjen black, Cabot conductive carbon black (Cabot, Black pearls, etc.), Orion conductive carbon black (HIBLACK, PRINTEX, etc.), etc., specifically EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R One or more of , Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2.
  • the present invention has no limitation on the preparation method and source of the conductive carbon black.
  • the conductive carbon black may be acetylene black, furnace carbon black and the like.
  • the specific surface area of the conductive carbon black may be 200-2000m 2 /g, preferably 220-1500m 2 /g.
  • the specific surface area can be measured by the BET method.
  • the electrical resistivity of the conductive carbon black may be less than 10 ⁇ m, preferably less than 5 ⁇ m, more preferably less than 3 ⁇ m, more preferably 0.01-1 ⁇ m.
  • Another aspect of the present invention provides a method for preparing a sulfur-modified carbon material, the method comprising: impregnating conductive carbon black with a sulfur-containing solution at 10-80° C. for 1-5 hours, and subjecting the impregnated product to After drying, a sulfur-modified carbon material is obtained.
  • the preparation method of the sulfur-modified carbon material in the present invention can be used to prepare the sulfur-containing platinum-carbon catalyst in the present invention.
  • the conductive carbon black is the same as above, and will not be repeated here.
  • the solvent in the sulfur-containing solution can dissolve sulfur.
  • it can be CCl 4 , CS 2 , cyclohexane and one or more of n-hexane, preferably cyclohexane, n-hexane, CCl 4 and the like.
  • the sulfur concentration in the sulfur-containing solution is 0.0004-0.02g/mL, preferably 0.0005-0.01g/mL.
  • the amount of the solution containing sulfur may be, for example, 5-15 mL relative to 1 g of the conductive carbon black.
  • the amount of sulfur used is preferably 0.005-0.06 g, more preferably 0.01-0.055 g.
  • the temperature of immersion is preferably 10-40°C, more preferably 20-30°C, particularly preferably room temperature (25°C), and the time is preferably 2-4h.
  • drying method is not particularly limited as long as the solvent in the sulfur-containing solution can be removed, and vacuum drying is preferably used. Drying conditions may include: a temperature of 20-100° C. and a time of 5-10 hours.
  • the sulfur-modified carbon material with the required sulfur distribution in the present invention can be obtained.
  • the prepared sulfur-modified carbon material can be more easily dispersed in the water phase.
  • Another aspect of the present invention provides a sulfur-containing platinum-carbon catalyst, which includes a sulfur-modified carbon material and platinum metal supported thereon; the sulfur-modified carbon material is the sulfur-modified carbon material described in the present invention.
  • the weight fraction of platinum may be 0.1-70% by weight. According to different uses, the weight fraction of platinum can be 0.1-1%, 1-4%, 1-8%, 4-20% by weight, 1-70% by weight, 5-60% by weight, 10-55%, 20- 40% by weight or 40-70% by weight.
  • the sulfur-containing platinum-carbon catalyst of the present invention preferably does not contain other metal elements except platinum.
  • the platinum particles with regular lattice stripes in the sulfur-containing platinum-carbon catalyst are no more than 60% by weight, preferably 50% by weight or less, more preferably 40% by weight or less, further preferably 20% by weight or less less than or 10% by weight or less.
  • having lattice fringes means that the Pt particles exist in the form of nanocrystals, while not having lattice fringes means that the Pt particles exist in the original form. exist in the form of subunits or clusters of atoms.
  • lattice fringes can be confirmed by observation under TEM or STEM (preferably AC-TEM or AC-STEM).
  • the sulfur-containing platinum-carbon catalyst of the present invention preferably, more than 70% by weight (preferably more than 80% by weight, more than 90% by weight, or more than 95% by weight) of platinum metal particles are supported inside the carbon material.
  • the distribution position of the platinum metal particles can be determined by the following method: in the TEM image, randomly count the relative positions of 200 metal platinum particles along the edge of the carbon support and the carbon material, and calculate the proportion of the metal platinum particles protruding from the carbon material A%, and (100-A)% represents the proportion of platinum metal particles loaded inside the carbon material. It can be understood that, in the TEM image, "protruding from the carbon material” means that the metal platinum particles are located on the surface of the carbon material, while “not protruding from the carbon material” means that the metal platinum particles are located inside the carbon material.
  • the Pt 4f 7/2 characteristic peak in the XPS spectrum of the sulfur-containing platinum-carbon catalyst is located above 71.6eV, for example located at 71.6-72.2eV.
  • the above XPS spectrum refers to the XPS spectrum corrected with the C1s peak at 284.3eV.
  • the Pt 4f 7/2 characteristic peak is located near 71.3eV, which shows that the Pt 4f 7/2 characteristic peak in the XPS spectrum of the sulfur-containing platinum-carbon catalyst of the present invention is towards High electron volts shifted above 0.3eV.
  • the sulfur-containing platinum-carbon catalyst of the present invention can be obtained by supporting platinum on the basis of the sulfur-modified carbon material of the present invention.
  • As the preparation method of above-mentioned sulfur-containing platinum-carbon catalyst for example, can include as follows:
  • step (2) In a reducing atmosphere, heat-treat the precursor material obtained in step (1) at 80-200° C. for 1-4 hours to obtain a sulfur-containing platinum-carbon catalyst;
  • the platinum source may be one or more of chloroplatinic acid, chloroplatinate, tetraammine platinum acetate and platinum acetylacetonate.
  • the chloroplatinate can be potassium chloroplatinate or sodium chloroplatinate.
  • the platinum source is used in an amount of 0.01-2.4 g, preferably 0.05-1.5 g, in terms of platinum element.
  • the precursor material is obtained by dissolving the sulfur-modified carbon material and the platinum source in a solvent to form a homogeneous mixed solution, and then removing the solvent in the homogeneous mixed solution.
  • the kind of the solvent is not particularly limited. Described solvent can be one or more in water, alcoholic solvent or ketone solvent; Described alcoholic solvent can be ethanol, for example, The ketone solvent may be, for example, acetone.
  • the solvent is also preferably water, ethanol or a mixture of ethanol and water (the volume ratio of ethanol and water can be selected arbitrarily, for example, it can be 0.1-10:1, preferably 1-5:1).
  • the present invention also has no special limitation on the amount of the solvent used, for example, it may be 3-20 mL relative to 1 g of the sulfur-modified carbon material.
  • the sulfur-modified carbon material, the platinum source and the solvent can be mixed to obtain the above-mentioned homogeneous mixture, preferably with stirring.
  • the stirring rate and time are not particularly limited, as long as the homogeneous mixture can be formed.
  • the dissolution can be further accelerated by heating.
  • the drying temperature for removing the solvent is below 100° C., for example, it can be dried in an oven at 60-95° C. for 12-24 hours to remove the solvent in the homogeneous mixture.
  • step (1) after the homogeneous mixture is allowed to stand still, the solvent is removed, and the standing time is more than 4 hours, preferably 16-30 hours.
  • the temperature of the heat treatment is preferably 100-180° C., and the time is preferably 2-3 hours.
  • the heating rate of the heat treatment may be 4-15°C/min, generally 5°C/min.
  • the heat treatment is carried out in a reducing atmosphere.
  • the reducing atmosphere preferably includes hydrogen, preferably a mixed atmosphere of hydrogen and an inert gas, wherein the inert atmosphere may be nitrogen and/or argon, specifically a mixed atmosphere of hydrogen and nitrogen.
  • hydrogen accounts for 5-30% by volume of the total gas.
  • the heat treatment can be performed in any device that provides the above-mentioned heat treatment conditions, for example, it can be performed in a tube furnace.
  • Another aspect of the present invention provides the application of the above-mentioned sulfur-modified carbon material, the sulfur-modified carbon material obtained by the above-mentioned preparation method, or the above-mentioned sulfur-containing platinum-carbon catalyst as an electrode material.
  • the sulfur-containing platinum-carbon catalyst of the present invention is suitable as an anode catalyst in a fuel cell, and is not particularly limited for the fuel cell, such as a hydrogen fuel cell (such as a proton exchange membrane hydrogen fuel cell), a direct alcohol fuel cell (such as methanol or direct alcohol fuel cells with ethanol as the anode fuel), etc.
  • a hydrogen fuel cell such as a proton exchange membrane hydrogen fuel cell
  • a direct alcohol fuel cell such as methanol or direct alcohol fuel cells with ethanol as the anode fuel
  • Another aspect of the present invention provides a fuel cell in which the above-mentioned The sulfur-modified carbon material described in the invention, the sulfur-modified carbon material obtained by the preparation method described in the present invention, or the sulfur-containing platinum-carbon catalyst described in the present invention.
  • the fuel cell is a hydrogen fuel cell.
  • Another aspect of the present invention provides a PEM electrolyzer.
  • the sulfur-modified carbon material described in the present invention and the sulfur-modified carbon obtained by the preparation method described in the present invention are used. material, or the sulfur-containing platinum-carbon catalyst described in the present invention.
  • the sulfur-modified carbon material and sulfur-containing platinum-carbon catalyst of the present invention can be applied to hydrogen fuel cell anode hydrogen oxidation reaction, cathode oxygen reduction reaction and PEM water electrolysis cathode hydrogen evolution reaction, and have excellent catalyst activity and stability.
  • Embodiment II Sulfur-containing platinum-carbon catalyst with high Pt content and its preparation method and application
  • Embodiment II of the present invention provides a sulfur-containing platinum-carbon catalyst, the sulfur-containing platinum-carbon catalyst includes the sulfur-containing conductive carbon black of the present invention and platinum metal supported thereon, wherein, in the sulfur-containing conductive carbon black
  • the total sulfur content is greater than or equal to the surface sulfur content, preferably the total sulfur content in the sulfur-containing conductive carbon black is more than 1.2 times the surface sulfur content, and preferably more than 1.5 times, based on the total weight of the catalyst, the weight fraction of platinum It is 20-70% by weight.
  • sulfur-containing conductive carbon black is used as the sulfur-containing carbon carrier.
  • the sulfur element inside the carbon carrier is more favorable for platinum to be loaded inside the carbon carrier, so that the sulfur-containing platinum-carbon catalyst has better electrocatalytic performance.
  • the total sulfur content in the sulfur-containing conductive carbon black is more than 1.7 times, more than 2 times, more than 3 times, etc., such as 1.2-10 times, of the surface sulfur content.
  • the surface sulfur content represents the sulfur weight fraction measured by XPS analysis
  • the total sulfur content represents the sulfur weight fraction measured by a sulfur-carbon analyzer.
  • the total sulfur content in the sulfur-containing conductive carbon black is 0.4-8 wt%, preferably 1-6 wt%.
  • the surface sulfur content in the sulfur-containing conductive carbon black is 0.1-6 wt%, preferably 0.5-4 wt%.
  • the sulfur element in the sulfur-containing conductive carbon black exists in the form of elemental sulfur.
  • the distribution position of the platinum metal particles can be determined by the following method: in the TEM image, randomly count the relative positions of 200 metal platinum particles along the edge of the carbon support and the carbon support, and calculate the proportion of the metal platinum particles protruding from the carbon support A%, and use (100-A)% represents the proportion of platinum metal particles supported inside the carbon carrier. It can be understood that in the TEM image, "protruding from the carbon support” means that the metal platinum particles are located on the surface of the carbon support, while “not protruding from the carbon support” means that the metal platinum particles are located inside the carbon support.
  • the platinum metal particles with regular lattice stripes in the sulfur-containing platinum-carbon catalyst are not more than 60% by weight, preferably 50% by weight or less, and preferably 40% by weight or less , and more preferably 20% by weight or less or 10% by weight or less.
  • Having lattice fringes means that the Pt particles exist in the form of nanocrystals, while not having lattice fringes means that the Pt particles exist in the form of atoms or atomic clusters.
  • lattice fringes can be confirmed by observation under TEM or STEM (preferably AC-TEM or AC-STEM).
  • the Pt 4f 7/2 characteristic peak in the XPS spectrum of the sulfur-containing platinum-carbon catalyst is above 71.6eV, for example, at 71.6-72.2eV, such as 71.7eV.
  • the above XPS spectrum refers to the XPS spectrum corrected with the C1s peak at 284.3eV.
  • the Pt 4f 7/2 characteristic peak is located near 71.3eV, which shows that the sulfur-containing platinum-carbon catalyst of the present invention has a Pt 4f 7/2 characteristic peak in the XPS spectrum Shifts to high electron volts by more than 0.3eV.
  • the weight fraction of platinum is 20-70 wt%, preferably 20-60 wt%, 20-40 wt% or 40-70 wt%.
  • the sulfur-containing platinum-carbon catalyst of the present invention does not contain other metal elements except platinum.
  • the sulfur-containing conductive carbon black includes conductive carbon black and sulfur and oxygen elements compounded therein.
  • the sulfur-containing conductive carbon black of the present invention preferably does not contain other compound elements except sulfur.
  • the "composite element" in the present invention refers to nitrogen, phosphorus, boron, sulfur, fluorine, chlorine, bromine, and iodine.
  • the sulfur-containing conductive carbon black is composed of conductive carbon black and sulfur and oxygen elements compounded therein.
  • conductive carbon black that can be used in the present invention, one or more of ordinary conductive carbon black (Conductive Blacks), super conductive carbon black (Super Conductive Blacks) or special conductive carbon black (Extra Conductive Blacks) can be used, for example Ketjen black, Cabot conductive carbon black (Cabot, Black pearls, etc.), Orion conductive carbon black (HIBLACK, PRINTEX, etc.), etc., specifically EC-300J, EC-600JD, ECP600JD, VXC72, VXC72R One or more of , Black pearls 2000, PRINTEX XE2-B, PRINTEX L6 and HIBLAXK 40B2.
  • the present invention has no limitation on the preparation method and source of the conductive carbon black.
  • the conductive carbon black may be acetylene black, furnace carbon black and the like.
  • the oxygen content is greater than 4% by weight, such as 5-12% by weight.
  • the specific surface area of the conductive carbon black is 200-2000m 2 /g, preferably 220-1500m 2 /g.
  • This embodiment II also provides a sulfur-containing platinum-carbon catalyst, which includes sulfur-containing conductive carbon black and platinum metal supported thereon, wherein the total sulfur content in the sulfur-containing platinum-carbon catalyst is greater than Or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times, more preferably 1.5 times the surface sulfur content, based on the total weight of the catalyst, the weight fraction of platinum is 20-70% by weight.
  • This embodiment II also provides a method for preparing a sulfur-containing platinum-carbon catalyst, the method comprising:
  • step (2) (2) removing the solvent in the homogeneous mixture containing the sulfur-containing carbon carrier obtained in step (1), the platinum source and the solvent, to obtain a precursor material;
  • step (3) In a reducing atmosphere, heat-treat the precursor material obtained in step (2) at 80-200° C. for 1-4 hours to obtain a sulfur-containing platinum-carbon catalyst;
  • step (2) relative to 1 g of the sulfur-containing conductive carbon black, the platinum source is used in an amount of 0.25-2.4 g in terms of platinum element.
  • the solvent in the sulfur-containing solution can dissolve sulfur.
  • it can be CCl 4 , CS 2 , cyclohexane, One or more of n-hexane, preferably cyclohexane, n-hexane, etc.
  • the sulfur concentration in the sulfur-containing solution is 0.0004-0.02g/mL, preferably 0.0005-0.01g/mL.
  • the amount of the sulfur-containing solution is 5-15 mL relative to 1 g of the carbon support.
  • the amount of sulfur used is preferably 0.005-0.06 g, more preferably 0.01-0.055 g.
  • the temperature of immersion is preferably 10-40°C, more preferably 20-30°C, particularly preferably at room temperature (25°C), and the time is preferably 2-4h.
  • drying method is not particularly limited as long as the solvent in the sulfur-containing solution can be removed, and vacuum drying is preferably used.
  • the desired sulfur distribution of the present invention can be obtained
  • the carbon carrier of the situation Through the step (1), the prepared sulfur-containing carbon carrier can be easily dispersed in the water phase.
  • the carbon carrier that has not been treated in step (1) such as Ketjen Black, is difficult to disperse directly in the water phase, and it is usually necessary to add ethanol to help disperse.
  • the platinum source may be one or more of chloroplatinic acid, chloroplatinate, tetraammine platinum acetate and platinum acetylacetonate.
  • the chloroplatinate can be potassium chloroplatinate or sodium chloroplatinate.
  • the platinum source is used in an amount of 0.25-2.4 g, preferably 0.25-0.67 g in terms of platinum element.
  • the precursor material is obtained by dissolving the sulfur-containing carbon carrier and the platinum source in a solvent to form a homogeneous mixed solution, and then removing the solvent in the homogeneous mixed solution.
  • the kind of the solvent is not particularly limited.
  • the solvent may be one or more of water, alcohol solvent or ketone solvent; the alcohol solvent may be ethanol, for example, and the ketone solvent may be acetone.
  • the solvent is also preferably water, ethanol or a mixture of ethanol and water (the volume ratio of ethanol and water can be selected arbitrarily, for example, it can be 0.1-10:1, preferably 1-5:1).
  • the amount of the solvent used in the present invention is not particularly limited, for example, it may be 3-20 mL relative to 1 g of the sulfur-containing carbon support.
  • the sulfur-containing carbon carrier, the platinum source and the solvent can be mixed to obtain the above-mentioned homogeneous mixture, preferably with stirring.
  • the stirring rate and time are not particularly limited, as long as the homogeneous mixture can be formed.
  • the dissolution can be further accelerated by heating.
  • the drying temperature for removing the solvent is below 100° C., for example, it can be dried in an oven at 60-95° C. for 12-24 hours to remove the solvent in the homogeneous mixture.
  • step (2) after the homogeneous mixture is allowed to stand still, the solvent is removed, and the standing time is more than 4 hours, preferably 16-30 hours.
  • the temperature of the heat treatment is preferably 100-180° C., and the time is preferably 2-3 hours.
  • the heating rate of the heat treatment may be 4-15°C/min, generally 5°C/min.
  • the heat treatment is carried out in a reducing atmosphere.
  • the reducing atmosphere preferably includes hydrogen, preferably a mixed atmosphere of hydrogen and an inert gas, wherein the The inert atmosphere may be nitrogen and/or argon, etc., specifically a mixed atmosphere of hydrogen and nitrogen.
  • hydrogen accounts for 5-30% by volume of the total gas.
  • the heat treatment can be performed in any device that provides the above-mentioned heat treatment conditions, for example, it can be performed in a tube furnace.
  • the electrical resistivity of the conductive carbon black or sulfur-modified carbon material of the present invention is less than 10 ⁇ m, such as less than 5 ⁇ m, such as less than 3 ⁇ m, such as 0.01-1 ⁇ m.
  • This embodiment II provides a sulfur-containing platinum-carbon catalyst, which is prepared by the above-mentioned preparation method of the present invention.
  • This embodiment II provides the application of the sulfur-containing platinum-carbon catalyst described in the present invention in fuel cells or electrolyzed water.
  • the sulfur-containing platinum-carbon catalyst of the present invention is suitable as an anode catalyst in a fuel cell, and is not particularly limited for the fuel cell, such as a hydrogen fuel cell (such as a proton exchange membrane hydrogen fuel cell), a direct alcohol fuel cell (such as methanol or direct alcohol fuel cells with ethanol as the anode fuel), etc.
  • a hydrogen fuel cell such as a proton exchange membrane hydrogen fuel cell
  • a direct alcohol fuel cell such as methanol or direct alcohol fuel cells with ethanol as the anode fuel
  • the embodiment II provides a PEM electrolyzer, in which the cathode of the PEM electrolyzer uses the sulfur-containing platinum-carbon catalyst described in the present invention.
  • the sulfur-containing platinum carbon catalyst of the invention can be applied to hydrogen fuel cell anode hydrogen oxidation reaction, cathode oxygen reduction reaction and PEM water electrolysis cathode hydrogen evolution reaction, and has excellent catalyst activity and stability.
  • Embodiment III Sulfur-containing platinum-carbon catalyst with low Pt content and its preparation method and application
  • Embodiment III of the present invention provides a sulfur-containing platinum-carbon catalyst, which includes the sulfur-modified carbon support of the present invention and platinum metal supported thereon, wherein the sulfur-modified carbon support is Sulfur-modified conductive carbon black, the total sulfur content in the sulfur-modified carbon carrier is greater than or equal to the surface sulfur content and the total sulfur content is 1-8% by weight, preferably the total sulfur content is more than 1.2 times the surface sulfur content, and also Preferably more than 1.5 times; based on the total weight of the sulfur-containing platinum-carbon catalyst, the weight fraction of platinum is 1-20% by weight.
  • the sulfur-containing platinum-carbon catalyst of the present invention by constructing a new carbon support structure modified by elemental sulfur, it is more favorable for platinum to be loaded inside the carbon support, so that the sulfur-containing platinum-carbon catalyst has better electrocatalytic performance.
  • the total sulfur content in the sulfur-modified carbon support is more than 1.7 times, more than 2 times, more than 3 times, etc., such as 1.5-10 times, of the surface sulfur content.
  • the surface sulfur content represents the sulfur weight fraction measured by XPS analysis
  • the total sulfur content represents the sulfur weight fraction measured by a sulfur-carbon analyzer.
  • the total sulfur content in the sulfur-modified carbon support is 0.1-8 wt%, preferably 0.5-6 wt%.
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6% by weight, preferably 0.5-3% by weight.
  • the total sulfur content can be, for example, 1.2 times, 1.3 times, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2 times, 2.5 times, 3 times, 3.5 times, 4 times, 4.5 times, 5 times, 6 times, 7 times, 8 times, 9 times or 10 times, etc.
  • the total sulfur content may be 0.4%, 0.5%, 1%, 1.5%, 2%, 3%, 4%, 5%, 6%, 7%, or 8% by weight etc.; the surface sulfur content can be 0.1 wt%, 0.5 wt%, 1 wt%, 1.5 wt%, 2 wt%, 3 wt%, 4 wt%, 5 wt% or 6 wt%, etc.
  • the modified sulfur element in the sulfur-modified carbon support exists in the form of elemental sulfur.
  • the platinum in the synthesized sulfur-containing platinum-carbon catalyst is supported inside the carbon carrier in the form of atomic clusters, thereby improving the catalytic activity.
  • at least 70% by weight, preferably 70-80% by weight, of the platinum metal particles are supported inside the carbon support.
  • the sulfur-containing platinum-carbon catalyst of the present invention does not have a Pt characteristic peak in the XRD spectrum, or the difference between the normalized peak intensity per unit weight of platinum and the full width at half maximum of the Pt(111) characteristic peak
  • the ratio is not greater than 0.8 and the ratio of the platinum normalized peak intensity per unit weight of the Pt(200) characteristic peak to the full width at half maximum is not greater than 0.5.
  • the sulfur-containing platinum-carbon catalyst does not have Pt characteristic peaks in the XRD spectrum, or the unit weight platinum normalization of the Pt(111) characteristic peaks
  • the ratio of the peak intensity to the full width at half maximum is not greater than 0.6 and the ratio of the normalized peak intensity per unit weight of platinum of the characteristic peak of Pt(200) to the full width at half maximum is not greater than 0.4.
  • the ratio of the normalized peak intensity per unit weight of platinum to the full width at half maximum represents the normalized peak intensity
  • the calculation method is as follows: (1) under the working conditions of the powder X-ray diffractometer (tube voltage 40kV, tube current 40mA, Cu target K ⁇ radiation), collect the X-ray diffraction spectrum at 2 ⁇ in the range of 20-70° for the catalyst to be tested , after deducting the background signal and K ⁇ 2, the maximum value of the intensity data in the range of 2 ⁇ is 22-28° is 1, and the minimum value of the intensity data in the range of 65-70° is 0, and the normalization process is carried out to obtain the catalyst to be tested respectively Normalized peak intensities of Pt(111) and Pt(200) characteristic peaks.
  • the Pt 4f 7/2 characteristic peak in the XPS spectrum of the sulfur-containing platinum-carbon catalyst is located above 71.7eV, preferably above 71.9eV.
  • the above XPS spectrum refers to the XPS spectrum corrected with the C1s peak at 284.3eV.
  • the Pt 4f 7/2 characteristic peak is located near 71.4eV, which shows that the sulfur-containing platinum-carbon catalyst of the present invention has a Pt 4f 7/2 characteristic peak in the XPS spectrum
  • the shift to high electron volts is 0.3 eV or more, preferably 0.5 eV or more.
  • the weight fraction of platinum is 5-20% by weight, more preferably 5-15% by weight, further preferably 7-10% by weight.
  • the sulfur-containing platinum-carbon catalyst of the present invention does not contain other metal elements except platinum.
  • the sulfur-modified carbon carrier includes conductive carbon black and sulfur and oxygen elements compounded therein.
  • the sulfur-modified carbon support of the present invention preferably does not contain other composite elements except sulfur.
  • the "composite element" in the present invention refers to nitrogen, phosphorus, boron, sulfur, fluorine, chlorine, bromine, and iodine.
  • the sulfur-modified carbon carrier is composed of conductive carbon black and sulfur and oxygen elements compounded therein.
  • the sulfur-modified carbon carrier may be sulfur-modified conductive carbon black.
  • This embodiment III also provides a preparation method of a sulfur-containing platinum-carbon catalyst, the preparation method comprising:
  • step (2) (2) removing the solvent in the homogeneous mixture containing the sulfur-modified carbon carrier obtained in step (1), the platinum source and the solvent, to obtain a precursor material;
  • step (3) In a reducing atmosphere, heat-treat the precursor material obtained in step (2) at 80-200° C. for 1-4 hours to obtain a sulfur-containing platinum-carbon catalyst;
  • the carbon carrier is conductive carbon black
  • step (2) relative to 1 g of the sulfur-modified carbon support, the platinum source is used in an amount of 0.01-0.25 g in terms of platinum element.
  • the platinum source is used in an amount of 0.01-0.25 g, preferably 0.05-0.18 g in terms of platinum element.
  • step (2) after the homogeneous mixture is allowed to stand still, the solvent is removed, and the standing time is more than 10 h, preferably 12-72 h, and more preferably 15-24 h.
  • Embodiment IV Application of Sulfur-Containing Platinum Carbon Catalyst in Anti-SOx Poisoning
  • Embodiment IV of the present invention provides an application of a sulfur-containing platinum carbon catalyst in improving the anti- SOx toxicity of the platinum carbon catalyst, the sulfur-containing platinum carbon catalyst comprising the sulfur-modified carbon carrier described in the present invention and the Platinum metal, the total sulfur content in the sulfur-modified carbon carrier is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, and preferably 1.5 times or more, based on the total weight of the catalyst, platinum The weight fraction is 20-70% by weight.
  • the sulfur-containing platinum-carbon catalyst used in Embodiment IV of the present invention is preferably the sulfur-containing platinum-carbon catalyst described in Embodiment II of the present invention.
  • the sulfur-containing platinum-carbon catalyst of the present invention by using the above-mentioned sulfur-containing platinum-carbon catalyst of the present invention, based on the existing platinum-carbon catalyst, better anti-SO x toxicity effects can be provided, thereby achieving the effect of prolonging the life of the platinum-carbon catalyst.
  • the sulfur-containing platinum-carbon catalyst is particularly suitable as a cathode catalyst in a fuel cell.
  • SO x As a source of SO x that causes SO x toxicity, currently, oxidizers used in fuel cells It is generally O 2 in the air, but the air often contains SO x (such as SO 2 , SO 3 ), and its source is mainly automobile exhaust. Especially in the environment of heavy traffic roads, the concentration of SO x may reach more than 15ppm.
  • the sulfur-containing platinum-carbon catalyst of the present invention by compounding sulfur element inside the carbon carrier, it is more favorable for platinum to be loaded inside the carbon carrier, so that the sulfur-containing platinum-carbon catalyst has better electrocatalytic performance.
  • the total sulfur content in the sulfur-modified carbon support is greater than the surface sulfur content.
  • the surface sulfur content represents the sulfur weight fraction measured by XPS analysis, and the total sulfur content represents the sulfur weight fraction measured by a sulfur-carbon analyzer.
  • the total sulfur content in the sulfur-modified carbon support is 0.4-8 wt%, preferably 1-6 wt%.
  • the surface sulfur content in the sulfur-modified carbon support is 0.1-6 wt%, preferably 0.5-4 wt%.
  • the distribution position of the platinum metal particles can be determined by the following method: in the TEM image, randomly count the relative positions of 200 metal platinum particles along the edge of the carbon support and the carbon support, and calculate the proportion of the metal platinum particles protruding from the carbon support A%, and (100-A)% represents the proportion of platinum metal particles loaded inside the carbon support. It can be understood that in the TEM image, "protruding from the carbon support” means that the metal platinum particles are located on the surface of the carbon support, while “not protruding from the carbon support” means that the metal platinum particles are located inside the carbon support.
  • the weight fraction of platinum is 20-70 wt%, preferably 20-60 wt%, and more preferably 40-60 wt%.
  • the sulfur-containing platinum-carbon catalyst of the present invention does not contain other metal elements except platinum.
  • the preparation method of the sulfur-containing platinum-carbon catalyst of the present invention only needs to make it have the above-mentioned properties.
  • the preparation method of the above-mentioned sulfur-containing platinum-carbon catalyst for example, it can be as follows:
  • step (2) (2) removing the solvent in the homogeneous mixture containing the sulfur-modified carbon carrier obtained in step (1), the platinum source and the solvent, to obtain a precursor material;
  • step (3) In a reducing atmosphere, heat-treat the precursor material obtained in step (2) at 80-200° C. for 1-4 hours to obtain a sulfur-containing platinum-carbon catalyst.
  • the amount of the platinum source in terms of platinum element is 0.25-2.4 g, preferably 0.67-1.5 g.
  • This embodiment IV also provides a cathode reaction method of a fuel cell, the method comprising: Under cathodic reaction conditions, make the O in raw material gas Contact with sulfur-containing platinum carbon catalyst; Wherein, the content of SO in the described raw material gas is below 120ppm; Described sulfur-containing platinum carbon catalyst includes sulfur-modified carbon carrier and Platinum metal loaded thereon, the sulfur-modified carbon carrier is sulfur-modified conductive carbon black, the total sulfur content in the sulfur-modified carbon carrier is greater than or equal to the surface sulfur content, preferably the total sulfur content is the surface sulfur content More than 1.2 times, preferably more than 1.5 times, based on the total weight of the catalyst, the weight fraction of platinum is 20-70% by weight.
  • oxygen-containing gas can be used, such as pure oxygen or air, and air is generally used as the raw material gas in the present invention.
  • the sulfur-containing platinum-carbon catalyst of the present invention By using the sulfur-containing platinum-carbon catalyst of the present invention, even if SO x is contained in the raw material gas, as long as the content is not more than a predetermined amount, the catalyst activity can be maintained and the cathode reaction can be carried out for a long time.
  • the content of SO x in the raw material gas is preferably less than 100 ppm, more preferably less than 50 ppm, for example, it may be 5-50 ppm.
  • the content of SO x in the raw gas may be 10, 20, 30, 40 or 50 ppm.
  • the cathode reaction conditions only need to allow the cathode reaction to proceed.
  • the cathode reaction conditions include: the voltage is above 0V, preferably 0-1.5V, and more preferably 0-1.1V.
  • the cathodic reaction can be carried out, for example, in an acidic electrolyte solution, and various organic and/or inorganic acid solutions, such as perchloric acid solution or sulfuric acid solution, can be used.
  • the cathodic reaction conditions may include: the concentration of hydrogen ions in the electrolytic solution is above 0.0001M, preferably 0.001-1.0M.
  • This embodiment IV also provides the application of a sulfur-containing platinum-carbon catalyst in a fuel cell.
  • the sulfur-containing platinum-carbon catalyst includes a sulfur-modified carbon carrier and platinum metal supported thereon.
  • Conductive carbon black, the total sulfur content in the sulfur-modified carbon carrier is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, and preferably more than 1.5 times, based on the total weight of the catalyst , the weight fraction of platinum is 20-70% by weight; wherein, the content of SO x in the feed gas of the fuel cell is below 120ppm.
  • the fuel cell can be, for example, a hydrogen fuel cell (such as a proton exchange membrane hydrogen fuel cell), a direct alcohol fuel cell (such as a direct alcohol fuel cell with methanol or ethanol as the anode fuel), etc.
  • the fuel cell is a hydrogen fuel cell.
  • the sulfur-containing platinum carbon catalyst can be used as an anode catalyst and/or a cathode catalyst in a fuel cell, preferably as a cathode catalyst.
  • the cathode reaction conditions only need to allow the cathode reaction to proceed.
  • the cathode reaction conditions also include: the voltage is above 0V, preferably 0-1.5V, and more preferably 0-1.1V.
  • the cathode reaction can be carried out in an acidic electrolyte solution, and various organic and/or inorganic acid solutions, such as perchloric acid solution or sulfuric acid solution, can be used.
  • the cathodic reaction conditions may include: the concentration of hydrogen ions in the electrolytic solution is above 0.01M, preferably 0.05-1.0M.
  • This embodiment IV also provides the application of sulfur-containing platinum-carbon catalysts in improving the anti- SOx toxicity of platinum-carbon catalysts.
  • the sulfur-containing platinum-carbon catalysts include sulfur-modified carbon supports and platinum metals loaded thereon.
  • the carbon carrier is sulfur-modified conductive carbon black, and the total sulfur content in the sulfur-containing platinum carbon catalyst is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, and is also preferably more than 1.5 times, with Based on the total weight of the catalyst, the weight fraction of platinum is 20-70% by weight.
  • Embodiment V Application of Sulfur-Containing Platinum Carbon Catalyst in Anti-CO Toxicity
  • Embodiment V of the present invention provides an application of a sulfur-containing platinum-carbon catalyst in improving the CO toxicity of the platinum-carbon catalyst, the sulfur-containing platinum-carbon catalyst comprising the sulfur-modified carbon carrier of the present invention and the platinum supported thereon Metal, the total sulfur content in the sulfur-modified carbon carrier is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times, and preferably 1.5 times or more, based on the total weight of the catalyst, the platinum The weight fraction is 20-70% by weight.
  • the sulfur-containing platinum-carbon catalyst used in Embodiment V of the present invention is preferably the sulfur-containing platinum-carbon catalyst described in Embodiment II of the present invention.
  • the sulfur-containing platinum-carbon catalyst of the present invention by using the sulfur-containing platinum-carbon catalyst of the present invention, based on the existing platinum-carbon catalyst, better anti-CO toxicity effects can be provided, thereby achieving the effect of prolonging the life of the platinum-carbon catalyst.
  • the sulfur-containing platinum-carbon catalyst can be used as an anode catalyst in a fuel cell, a cathode catalyst for water electrolysis, and the like.
  • the source of CO that causes CO toxicity for example, it can be impurity CO that is mixed or difficult to remove in the raw material gas from the aspects of preparation process, cost, etc., or it can be generated by the oxidation of CO such as carbon carrier and carbon paper during the reaction process.
  • the sulfur-containing platinum-carbon catalyst of the present invention by compounding sulfur elements inside the carbon carrier, it is more beneficial for platinum to be loaded inside the carbon carrier, so that the sulfur-containing platinum-carbon catalyst has more Good electrocatalytic performance.
  • the total sulfur content in the sulfur-modified carbon support is more than 1.7 times, more than 2 times, more than 3 times, etc., such as 1.5-10 times, of the surface sulfur content.
  • the surface sulfur content represents the sulfur weight fraction measured by XPS analysis
  • the total sulfur content represents the sulfur weight fraction measured by a sulfur-carbon analyzer.
  • the Pt 4f 7/2 characteristic peak in the XPS spectrum of the sulfur-containing platinum-carbon catalyst is above 71.6eV, for example, at 71.6-72.2eV, such as 71.7eV.
  • the above XPS spectrum refers to the XPS spectrum corrected with the C1s peak at 284.3eV.
  • the Pt 4f 7/2 characteristic peak is located near 71.3eV, which shows that the sulfur-containing platinum-carbon catalyst of the present invention has a Pt 4f 7/2 characteristic peak in the XPS spectrum Shifts to high electron volts by more than 0.3eV.
  • the weight fraction of platinum is 20-70% by weight, such as 20-60% by weight, 20-40% by weight or 40- 70% by weight etc.
  • the sulfur-containing platinum-carbon catalyst of the present invention does not contain other metal elements except platinum.
  • the preparation method of the sulfur-containing platinum-carbon catalyst of the present invention only needs to make it have the above-mentioned properties.
  • the preparation method of the above-mentioned sulfur-containing platinum-carbon catalyst it may include:
  • step (2) (2) removing the solvent in the homogeneous mixture containing the sulfur-modified carbon carrier obtained in step (1), the platinum source and the solvent, to obtain a precursor material;
  • step (3) In a reducing atmosphere, heat-treat the precursor material obtained in step (2) at 80-200° C. for 1-4 hours to obtain a sulfur-containing platinum-carbon catalyst;
  • the platinum source in the step (2), relative to 1 g of the sulfur-modified carbon support, is used in an amount of 0.25-2.4 g in terms of platinum element.
  • the platinum source is used in an amount of 0.25-2.4 g, preferably 0.25-0.67 g in terms of platinum element.
  • This embodiment V also provides an anode reaction method for a hydrogen fuel cell, the method comprising: under an anode reaction condition, making the H in the feed gas contact with the sulfur-containing platinum-carbon catalyst;
  • the content of CO in the raw material gas is below 1500ppm
  • the sulfur-containing platinum carbon catalyst includes a sulfur-modified carbon carrier and platinum metal loaded thereon, the sulfur-modified carbon carrier is sulfur-modified conductive carbon black, and the total sulfur content in the sulfur-modified carbon carrier is greater than Or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, and Preferably more than 1.5 times, based on the total weight of the catalyst, the weight fraction of platinum is 20-70% by weight.
  • a raw material gas with a hydrogen content of 99.5% by weight can be used, for example, hydrogen production by steam reforming of methane, hydrogen production from coal, hydrogen production from methanol, ammonia decomposition Hydrogen produced by methods such as hydrogen production, recovery and purification of hydrogen, and hydrogen production from biomass can also use the hydrogen produced by the reaction device, such as the hydrogen-containing gas produced by the catalytic cracking unit of the refinery.
  • the sulfur-containing platinum-carbon catalyst of the present invention By using the sulfur-containing platinum-carbon catalyst of the present invention, even if CO is contained in the raw material gas, as long as the content is below a predetermined amount, the catalyst activity can be maintained, and the anode reaction can be carried out for a long time.
  • the content of CO in the raw material gas is preferably less than 1200 ppm, more preferably less than 1000 ppm, for example, it may be 100-800 ppm.
  • the content of CO in the raw material gas may be 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100 or 1200 ppm.
  • the anode reaction conditions only need to allow the anode reaction to proceed.
  • the anode reaction conditions may include: the voltage is above 0V, preferably 0-0.4V, and more preferably 0-0.2V.
  • the anode reaction can be carried out, for example, in an acidic electrolyte solution, and various organic and/or inorganic acid solutions, such as perchloric acid solution or sulfuric acid solution, can be used.
  • the anode reaction conditions may include: the concentration of hydrogen ions in the electrolytic solution is above 0.0001M, preferably 0.001-1.0M.
  • This embodiment V also provides the application of a sulfur-containing platinum-carbon catalyst in a fuel cell.
  • the sulfur-containing platinum-carbon catalyst includes a sulfur-modified carbon carrier and platinum metal supported thereon, and the sulfur-modified carbon carrier is a sulfur-modified carbon carrier.
  • Conductive carbon black, the total sulfur content in the sulfur-modified carbon carrier is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, and preferably more than 1.5 times, based on the total weight of the catalyst , the weight fraction of platinum is 20-70% by weight; wherein, the content of CO in the feed gas of the fuel cell is below 1500ppm.
  • the fuel cell can be, for example, a hydrogen fuel cell (such as a proton exchange membrane hydrogen fuel cell), a direct alcohol fuel cell (such as a direct alcohol fuel cell with methanol or ethanol as the anode fuel), and the like.
  • the fuel cell is a hydrogen fuel cell.
  • the sulfur-containing platinum carbon catalyst can be used as an anode catalyst or a cathode catalyst in a fuel cell, preferably as an anode catalyst.
  • the content of CO in the feed gas is preferably below 1200ppm, and is also preferably 1000ppm or less, for example, 100-1000ppm.
  • the content of CO in the raw material gas may be 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100 or 1200 ppm.
  • the raw material gas used and its properties may be the same as those in the second aspect, which will not be repeated here.
  • the anode reaction conditions only need to allow the anode reaction to proceed.
  • the anode reaction conditions may include: the voltage is above 0V, preferably 0-0.4V.
  • the anode reaction can be carried out in an acidic electrolyte solution, and various organic and/or inorganic acid solutions, such as perchloric acid solution or sulfuric acid solution, can be used.
  • the anode reaction conditions may include: the concentration of hydrogen ions in the electrolytic solution is above 0.01M, preferably 0.05-1.0M.
  • This embodiment V also provides a method for electrolyzing water, the method comprising: under the condition of electrolyzing water, contacting water with a sulfur-containing platinum-carbon catalyst; wherein at least part of the contacting is performed in the presence of CO; the The sulfur-containing platinum carbon catalyst includes a sulfur-modified carbon carrier and platinum metal loaded thereon, the sulfur-modified carbon carrier is sulfur-modified conductive carbon black, and the total sulfur content in the sulfur-modified carbon carrier is greater than or Equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times, and preferably more than 1.5 times the surface sulfur content, based on the total weight of the catalyst, the weight fraction of platinum is 20-70% by weight.
  • the conditions for the electrolysis of water are not particularly limited, preferably, it may include: a voltage of -0.4V or more, preferably -0.4-1.0V, and more preferably -0.4-0V.
  • the method for electrolyzing water is proton exchange membrane electrolyzing water.
  • This embodiment V also provides the application of sulfur-containing platinum carbon catalysts in improving the resistance of platinum carbon catalysts to CO toxicity.
  • the carbon carrier is sulfur-modified conductive carbon black, and the total sulfur content in the sulfur-containing platinum carbon catalyst is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times, and preferably 1.5 times, the surface sulfur content. Based on the total weight of the platinum, the weight fraction of platinum is 20-70% by weight.
  • Embodiment VI Application of Sulfur-Containing Platinum Carbon Catalyst in Anti-H 2 S Poisoning
  • Embodiment VI of the present invention provides a sulfur-containing platinum-carbon catalyst in improving the efficiency of the platinum-carbon catalyst
  • the sulfur-containing platinum carbon catalyst includes a sulfur-modified carbon carrier and platinum metal loaded thereon, the total sulfur content in the sulfur-modified carbon carrier is greater than or equal to the surface sulfur content, Preferably, the total sulfur content is more than 1.2 times, more preferably 1.5 times or more than the surface sulfur content, and the weight fraction of platinum is 20-70% by weight based on the total weight of the catalyst.
  • the sulfur-containing platinum-carbon catalyst used in Embodiment V of the present invention is preferably the sulfur-containing platinum-carbon catalyst described in Embodiment II of the present invention.
  • the sulfur-containing platinum-carbon catalyst of the present invention by using the sulfur-containing platinum-carbon catalyst of the present invention, based on the existing platinum-carbon catalyst, better anti -H2S toxicity effects can be provided, thereby achieving the effect of prolonging the life of the platinum-carbon catalyst.
  • the sulfur-containing platinum-carbon catalyst can be used as an anode catalyst in a fuel cell and the like.
  • the source of H 2 S that causes H 2 S toxicity may be, for example, impurity H 2 S that is mixed or difficult to remove in the raw material gas from the aspects of production process and composition.
  • the preparation method of the sulfur-containing platinum-carbon catalyst of the present invention only needs to make it have the above-mentioned properties.
  • the preparation method of the above-mentioned sulfur-containing platinum-carbon catalyst it may include:
  • step (2) (2) removing the solvent in the homogeneous mixture containing the sulfur-modified carbon carrier obtained in step (1), the platinum source and the solvent, to obtain a precursor material;
  • step (3) In a reducing atmosphere, heat-treat the precursor material obtained in step (2) at 80-200° C. for 1-4 hours to obtain a sulfur-containing platinum-carbon catalyst;
  • the platinum source in the step (2), relative to 1 g of the sulfur-modified carbon support, is used in an amount of 0.25-2.4 g in terms of platinum element.
  • This embodiment VI also provides an anode reaction method for a hydrogen fuel cell, the method comprising: under an anode reaction condition, making the H in the feed gas contact with the sulfur-containing platinum-carbon catalyst;
  • the content of H 2 S in the raw material gas is below 15ppm;
  • the sulfur-containing platinum carbon catalyst includes a sulfur-modified carbon carrier and platinum metal loaded thereon, the sulfur-modified carbon carrier is sulfur-modified conductive carbon black, and the total sulfur content in the sulfur-modified carbon carrier is greater than Or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times, more preferably 1.5 times the surface sulfur content, based on the total weight of the catalyst, the weight fraction of platinum is 20-70% by weight.
  • a raw material gas with a hydrogen content of 99.5% by weight can be used, for example, steam reforming of methane to produce hydrogen, coal to produce hydrogen, Hydrogen produced by methanol hydrogen production, ammonia decomposition hydrogen production, hydrogen recovery and purification, biomass hydrogen production and other methods can also use hydrogen produced by other reactions, such as hydrogen-containing gas produced by catalytic cracking units in refineries.
  • the sulfur-containing platinum-carbon catalyst of the present invention By using the sulfur-containing platinum-carbon catalyst of the present invention, even if H 2 S is contained in the raw material gas, as long as the content is not more than a predetermined amount, the catalyst activity can be maintained and the anode reaction can be performed for a long time.
  • the content of H 2 S in the raw material gas is preferably less than 15 ppm, more preferably less than 10 ppm, for example, it may be 0.4-5 ppm.
  • the content of H 2 S in the feed gas may be 0.4, 0.6, 0.8, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8 , 8.5, 9, 9.5, 10, 11, 12, 13, 14 or 15ppm, etc.
  • the anode reaction conditions only need to allow the anode reaction to proceed.
  • the anode reaction conditions further include: the voltage is above 0V, preferably 0.01-0.4V.
  • the anode reaction can be carried out, for example, in an acidic electrolyte solution, and various organic and/or inorganic acid solutions, such as perchloric acid solution or sulfuric acid solution, can be used.
  • the anode reaction conditions may include: the concentration of hydrogen ions in the electrolyte is above 0.01M, preferably 0.05-1.0M.
  • This embodiment VI also provides the application of a sulfur-containing platinum-carbon catalyst in a fuel cell.
  • the sulfur-containing platinum-carbon catalyst includes a sulfur-modified carbon carrier and platinum metal supported thereon, and the sulfur-modified carbon carrier is a sulfur-modified carbon carrier.
  • Conductive carbon black, the total sulfur content in the sulfur-modified carbon carrier is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, and preferably more than 1.5 times, based on the total weight of the catalyst , the weight fraction of platinum is 20-70% by weight; wherein, the content of H 2 S in the feed gas of the fuel cell is less than 15ppm, preferably 0.4-5ppm.
  • the fuel cell can be, for example, a hydrogen fuel cell (such as a proton exchange membrane hydrogen fuel cell), a direct alcohol fuel cell (such as a direct alcohol fuel cell with methanol or ethanol as the anode fuel), and the like.
  • the fuel cell is a hydrogen fuel cell.
  • the sulfur-containing platinum carbon catalyst can be used as an anode catalyst or a cathode catalyst in a fuel cell, preferably as an anode catalyst.
  • the content of H 2 S in the raw material gas is less than 10 ppm, preferably less than 5 ppm.
  • the content of H 2 S in the feed gas may be 0.4, 0.6, 0.8, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8 , 8.5, 9, 9.5, 10, 11, 12, 13, 14 or 15ppm, etc.
  • the raw material gas used and its properties can be the same as those in the second aspect, and will not be repeated here.
  • This embodiment VI also provides the application of sulfur-containing platinum-carbon catalysts in improving the resistance of platinum-carbon catalysts to H 2 S toxicity.
  • the sulfur-containing platinum-carbon catalysts include sulfur-modified carbon supports and platinum metals supported thereon.
  • the modified carbon carrier is sulfur-modified conductive carbon black, the total sulfur content in the sulfur-containing platinum carbon catalyst is greater than or equal to the surface sulfur content, preferably the total sulfur content is more than 1.2 times the surface sulfur content, and preferably 1.5 times or more, Based on the total weight of the catalyst, the weight fraction of platinum is 20-70% by weight.
  • the reagents used in the present invention are analytically pure, and all reagents used are commercially available.
  • the model of the high-resolution transmission electron microscope is JEM-2100 (HRTEM) (Japan Electronics Co., Ltd.), and the test condition is: accelerating voltage 200kV.
  • the X-ray photoelectron spectrum analyzer is the ESCALab220i-XL X-ray electron spectrometer equipped with Avantage V5.926 software produced by VG Scientifc.
  • the X-ray photoelectron spectrum analysis test conditions are: the excitation source is monochromatic A1K ⁇ X-ray, It is 330W, and the basic vacuum is 3 ⁇ 10 -9 mbar during analysis and test.
  • the electronic binding energy was corrected by the C1s peak (284.3eV) of elemental carbon, and the post-peak processing software was XPSPEAK.
  • the specific method of using XPS analysis to detect surface sulfur content is as follows: the scanning range of full-spectrum scanning is 0-1200eV, the band-pass energy (pass energy) is 100eV, the analysis energy step is 1.0eV, the number of channels is 1211, and the number of scanning cycles is 1 .
  • the narrow-spectrum scanning energy is 30.0eV, the analysis energy step is 0.05eV, the number of channels is 401, and the number of scanning circles is 16.
  • the sulfur-carbon analyzer is the CS-844 model of American LECO Company.
  • the spherical aberration-corrected transmission electron microscope is the ARM200F model of JEOL Company.
  • Instruments, methods, and conditions for testing the weight fraction of platinum in sulfur-containing platinum-carbon catalysts take 30 mg of the prepared Pt/C catalyst, add 30 mL of aqua regia, reflux at 120 ° C for 12 h, cool to room temperature, take the supernatant and dilute, The Pt content was tested by ICP-AES.
  • HER electrochemical performance test instrument model Solartron analytical EnergyLab and Princeton Applied Research (Model 636A), method and test conditions: the polarization curve LSV of the catalyst is tested in 0.5M H 2 SO 4 saturated with N 2 at a speed of 2500 rpm, and the electric Chemically active area ECSA was tested in N2 saturated 0.5M H2SO4 .
  • N 2 saturated 0.5M H 2 SO 4 within the range of -0.1V-0.2V (vs.RHE), 2500rpm scanning, after a certain number of cycles of cyclic scanning, test LSV and ECSA according to the above method.
  • the catalyst was made into a uniformly dispersed slurry and coated on a glassy carbon electrode with a diameter of 5mm.
  • the platinum content of the catalyst on the electrode was controlled within the range of 1-4 ⁇ g, and no iR correction was made during the calculation.
  • Ketjenblack ECP600JD (Ketjen black, produced by Lion Corporation of Japan). The aforementioned instrument method is used to test, and the results show that the specific surface area is 1362m 2 /g, the pore volume is 2.29mL/g, the oxygen weight fraction is 6.9%, and the ID / IG is 1.25.
  • the commercial platinum carbon catalyst 2 (brand name TEC10F50E, produced by Tanaka Precious Metal Industry Co., Ltd.) was tested by the aforementioned instrument method, and the result showed that the platinum loading was 46% by weight.
  • VXC72 (Vulcan XC72, produced by Cabot, USA) was purchased from Suzhou Yilongsheng Energy Technology Co., Ltd. The aforementioned instrument method is used to test, and the results show that the specific surface area is 258m 2 /g, the pore volume is 0.388mL/g, the oxygen weight fraction is 8.72%, and the ID / IG is 1.02.
  • X-ray diffraction analysis was carried out on a Shimadzu XRD-6000 X-ray diffractometer, and the test conditions included: tube voltage 40kV, tube current 40mA, Cu target K ⁇ radiation, 2 ⁇ scanning Range 10° to 70°.
  • the calculation method of NI/(FWHM*m Pt ) is as follows: (1) Under the working conditions of powder X-ray diffractometer (tube voltage 40kV, tube current 40mA, Cu target K ⁇ radiation), the catalyst to be tested is collected at 2 ⁇ at 20-70° For the X-ray diffraction spectrum within the range, after deducting the background signal and K ⁇ 2, the maximum value of the intensity data in the range of 2 ⁇ is 22-28° is 1, and the minimum value of the intensity data in the range of 65-70° is 0, and the normalization process is performed , respectively obtain the normalized peak intensity of the Pt(111) characteristic peak at 39.8 ⁇ 0.2° and the Pt(200) characteristic peak at 46.2 ⁇ 0.2° of the catalyst to be tested.
  • CO in-situ infrared curve test instrument and method Infrared spectrometer, Thermo Fisher is50, nitrogen purging at room temperature, and then reduction in H2 atmosphere at 250°C for 1 hour and then vacuuming. 5% CO/He was introduced to carry out CO adsorption at room temperature for 1 h, and after vacuum desorption to remove physically adsorbed CO, the test was carried out at 25°C.
  • the method of characterization of sulfur element synchrotron radiation X-ray fine spectrum is used to characterize the sulfur in carbon carrier, and the equipment is Beijing Electron Positron Collider 4B7A-Medium Energy X-ray Experimental Station. Elemental sulfur and 2,2'-bithiophene were used as standards.
  • the carbon material was prepared according to the method of Example I.1, the only difference being that sulfur was not used, that is, a carbon material without compounding elements was used.
  • the surface sulfur content represents the sulfur weight fraction measured by XPS analysis
  • the total sulfur content represents the sulfur weight fraction measured by a sulfur-carbon analyzer.
  • the preparation platinum loading is the sulfur-containing platinum carbon catalyst of 40% by weight, and the method for supporting platinum is as follows:
  • the sulfur-containing platinum-carbon catalyst was prepared according to the method in Test Example 2-2.
  • the platinum loading used is shown in Table I.3.
  • the performance of the sulfur-containing platinum-carbon catalyst prepared above and the commercial catalyst of Comparative Example I.1 was measured, and the obtained HER performance is shown in Table 3 below.
  • Figure I.2 shows the polarization curves before and after the stability of the HER reaction catalyzed by the sulfur-containing platinum-carbon catalyst prepared by the sulfur-modified carbon material of Example I.1
  • Figure I.3 shows the polarization curve using the sulfur-modified carbon material of Example I.1 Polarization curves before and after stability of HER reaction catalyzed by commercial platinum-carbon catalysts.
  • the sulfur-containing platinum-carbon catalyst of the sulfur-modified carbon material of the embodiment of the present invention I.1 has a lower overpotential and higher than the commercial catalyst of Comparative Example I.1 Gravity-specific activity, and performance degradation in overpotential and gravimetric activity after 12,000 cycles of stability is less.
  • the platinum particles with regular lattice stripes in the sulfur-containing platinum carbon catalyst are about 100% by weight.
  • the sulfur in the sulfur-modified carbon material of Example I.3 was characterized by synchrotron radiation X-ray fine spectrum, and the equipment was Beijing Electron Positron Collider 4B7A-Medium Energy X-ray Experimental Station. Elemental sulfur and 2,2'-bithiophene were used as standards.
  • Figure 1.5 reflects the bond length information of two standard substances and the total three samples of the sulfur-modified carbon material. The comparison shows that S in the carbon carrier D is between about 0.93 and There is a bond at the place, which completely overlaps with elemental sulfur, which proves that it is elemental sulfur.
  • Figure I.6 reflects the valence information of the three samples. Similarly, the sulfur in carbon carrier D overlaps with elemental sulfur, which is completely different from thiophene sulfur, which further proves that it is elemental sulfur.
  • Dissolve 0.40g of sulfur in 70ml of cyclohexane to form a homogeneous solution, disperse 9.60g of Ketjenblack ECP600JD in it, stir evenly, impregnate for 5h, and dry in vacuum at 50°C to obtain sulfur-containing conductive carbon black as a sulfur-containing carbon carrier; Dissolve 0.15 g of platinum chloroplatinic acid in 20 mL of water: ethanol with a volume ratio of 10: 1, disperse 0.6 g of the above-mentioned sulfur-containing carbon carrier in the chloroplatinic acid solution, stir and disperse evenly, and let stand for 24 hours, then place Dry in a vacuum oven; place the dried precursor in a tube furnace, raise it to 100°C at a rate of 4°C/min, and reduce it for 2 hours in an atmosphere of N 2 : H 2 5:1, N 2 The temperature of the atmosphere is lowered to obtain a sulfur-containing platinum-carbon catalyst.
  • the sulfur-containing platinum-carbon catalyst was prepared according to the method of Example II.1, the only difference being that the heat treatment temperature was 240°C.
  • the platinum carbon catalyst was prepared according to the method of Example II.1, the only difference being that the carbon carrier was Ketj enblack ECP600JD without composite elements.
  • the platinum carbon catalyst was prepared according to the method of Example II.3, the only difference being that the carbon carrier was Ketj enblack ECP600JD without composite elements.
  • the sulfur-containing platinum-carbon catalyst was prepared according to the method of Example II.4, the only difference being that the carbon carrier used a sulfur-doped carbon material prepared according to the method of the literature "Nature Communications, 2019, 10: 4977".
  • the surface sulfur content represents the sulfur weight fraction measured by XPS analysis
  • the total sulfur content represents the sulfur weight fraction measured by a sulfur-carbon analyzer.
  • Fig. II.2 shows the STEM photo of the sulfur-containing platinum carbon catalyst of embodiment II.2
  • Fig. II.3 shows the STEM photo of the sulfur-containing platinum carbon catalyst of embodiment II.3
  • Fig. II.2 shows the STEM photo of the sulfur-containing platinum carbon catalyst of embodiment II.2
  • Fig. II.3 shows the STEM photo of the sulfur-containing platinum carbon catalyst of embodiment II.3
  • Fig. II.2 shows the STEM photo of the sulfur-containing platinum carbon catalyst of embodiment II.2
  • Fig. II.3 shows the STEM photo of the sulfur-containing platinum carbon catalyst of embodiment II.3
  • the platinum particles have a lattice and the lattice fringes are parallel, as shown by the black parallel lines in Figure II.7, they are considered to contain regular lattice fringes.
  • the number of regular lattice stripes among 100 platinum metal particles was randomly counted, and the ratio thereof was obtained.
  • the platinum metal particles with regular lattice stripes account for 6% and 9% respectively in the sulfur-containing platinum carbon catalysts of embodiment II.2 and embodiment II.3, while the sulfur-containing platinum carbon catalysts of comparative examples II.1 and 1-4 sulfur Platinum metal particles with regular lattice stripes accounted for no less than 70% by weight and 99% respectively in the platinum-carbon catalyst.
  • Comparative Example II.2 due to too little Pt content, the amount counted was not enough and had no statistical significance.
  • the sulfur-containing platinum-carbon catalysts of Examples II.1, II.3 and II.4 were observed and counted using the same method, wherein at least 94% of the platinum metal particles were loaded inside the carbon carrier.
  • Examples II.1-II.4 use the sulfur-containing carbon carrier of the present invention, compared with Comparative Examples II.2-II.4 using a carbon carrier without compounding elements. II.3 has better electrochemical performance.
  • the sulfur-doped carbon material D1 was prepared according to the method of the literature "Nature Communications, 2019, 10: 4977".
  • the sulfur-modified carbon carrier was prepared according to the method of Preparation Example III.1, the only difference being: the amount of sulfur was 0.9 g, and the amount of Ketjenblack ECP600JD was 9.1 g.
  • the sulfur-modified carbon support D2 was obtained.
  • the surface sulfur content represents the sulfur weight fraction measured by XPS analysis
  • the total sulfur content represents the sulfur weight fraction measured by a sulfur-carbon analyzer.
  • the sulfur-containing platinum-carbon catalyst was prepared according to the method of Example III.1, the only difference being that: using the carbon carrier A prepared in Preparation Example III.1, 1.28 mmol of chloroplatinic acid was added to each gram of carbon carrier, and the reduction temperature was 140° C., and the supported 20% by weight sulfur-containing platinum-carbon catalyst.
  • the sulfur-containing platinum-carbon catalyst was prepared according to the method of Example III.1, except that the carbon carrier B prepared in Preparation Example III.2 was used, and the reduction temperature was 160° C. to obtain a sulfur-containing platinum-carbon catalyst with a loading of 10% by weight.
  • the sulfur-containing platinum-carbon catalyst was prepared according to the method of Example III.1, the only difference being: using the carbon carrier B prepared in Preparation Example III.2, adding 0.27 mmol of chloroplatinic acid per gram of carbon carrier, and the reduction temperature was 100 ° C, and the supported 5% by weight sulfur-containing platinum-on-carbon catalyst.
  • the sulfur-containing platinum-carbon catalyst was prepared according to the method of Example III.2, except that 0.27 mmol of chloroplatinic acid was added per gram of carbon support, and the heat treatment temperature was 100° C. to obtain a sulfur-containing platinum-carbon catalyst with a loading of 5% by weight.
  • the sulfur-containing platinum-carbon catalyst was prepared according to the method of Example III.2, except that 0.27 mmol of chloroplatinic acid was added to each gram of carbon carrier, and the heat treatment temperature was 180° C. to obtain a sulfur-containing platinum-carbon catalyst with a loading of 5% by weight.
  • the sulfur-containing platinum-carbon catalyst was prepared according to the method of Example III.2, except that the carrier was Ketjenblack ECP600JD, and 0.57 mmol of chloroplatinic acid was added to each gram of carbon carrier to obtain a sulfur-containing platinum-carbon catalyst with a loading of 10% by weight.
  • the platinum carbon catalyst is a purchased commercial catalyst, brand name HISPEC4000.
  • the sulfur-containing platinum-carbon catalyst was prepared according to the method of Example III.1, the only difference being that the sulfur-doped carbon material D1 of Comparative Preparation Example III.1 was used as a carrier to obtain a platinum-carbon cluster catalyst with a loading of 6.24% by weight.
  • absent means that there is no corresponding Pt characteristic peak in the sulfur-containing platinum carbon catalyst.
  • the sulfur-containing platinum carbon catalysts of the present invention all satisfy the absence of Pt characteristic peaks, or the NI/(FWHM*m Pt ) of Pt(111) characteristic peaks is not greater than 0.8 and the Pt(200) characteristics
  • the NI/(FWHM*m Pt ) of the peak is not more than 0.5, and when the platinum content of the sulfur-containing platinum-carbon catalyst is less than 10% by weight, the sulfur-containing platinum-carbon catalyst of the present invention does not have a Pt characteristic peak in the XRD spectrum, or
  • the NI/(FWHM*m Pt ) of the Pt(111) characteristic peak is not greater than 0.6 and the NI/(FWHM*m Pt ) of the Pt(200) characteristic peak is not greater than 0.4.
  • the heat treatment temperature is 100-140° C., which can further reduce the overpotential and increase the weight specific activity.
  • Dissolve platinum acid in 20mL of water: ethanol volume ratio of 10:1 solution, disperse 0.6g of the above-mentioned sulfur-modified carbon carrier in the chloroplatinic acid solution, stir and disperse evenly, after standing for 24h, place in a vacuum oven to dry dry; place the dried precursor in a tube furnace, raise it to 160°C at a rate of 6°C/min, reduce it in an atmosphere of N 2 : H 2 5:1 for 2 hours, then lower the temperature in an atmosphere of N 2 , A sulfur-containing platinum-carbon catalyst is obtained.
  • the carbon carrier was unmodified Ketjenblack ECP600JD, and the loading process and loading amount of Pt were the same as in Example IV.1 to obtain a platinum-carbon catalyst.
  • the platinum carbon catalyst was purchased commercial TEC10F50E with a platinum loading of 46% by weight.
  • the surface sulfur content represents the sulfur weight fraction measured by XPS analysis
  • the total sulfur content represents the sulfur weight fraction measured by a sulfur-carbon analyzer.
  • ORR activity test method (i) In N2- saturated 0.1M HClO4 , in the potential range of 0-1.1V, the catalyst was electrochemically pretreated by scanning the triangle wave at a speed of 50mV s -1 for 10 cycles. (ii) In N2 - saturated 0.1M HClO4 , within the potential range of 0-1.1V, cycle scanning at a speed of 50mV s -1 for 10 cycles, and test the cyclic voltammetry curve of the catalyst.
  • Figure IV.1 shows the LSV curves of the ORR of the platinum carbon catalysts synthesized in Example IV.1 and Comparative Example IV.2 before and after SO x poisoning treatment.
  • Example IV.1-2 has significantly better electrochemical performance than Comparative Example IV.2 under SO x poisoning conditions by using the sulfur-containing platinum-carbon catalyst of the present invention , such as higher gravimetric activity and SO x tolerance.
  • the sulfur-containing platinum carbon catalyst of the present invention has the effect of improving the platinum carbon catalyst's resistance to SO x toxicity.
  • Dissolve platinum acid in 20mL of water: ethanol volume ratio of 10:1 solution, disperse 0.6g of the above-mentioned sulfur-modified carbon carrier in the chloroplatinic acid solution, stir and disperse evenly, after standing for 24h, place in a vacuum oven to dry dry; place the dried precursor in a tube furnace, raise it to 160°C at a rate of 6°C/min, reduce it in an atmosphere of N 2 : H 2 5:1 for 2 hours, then lower the temperature in an atmosphere of N 2 , A sulfur-containing platinum-carbon catalyst is obtained.
  • the carbon carrier was unmodified Ketjenblack ECP600JD, and the loading process and loading amount of Pt were the same as in Example V.1 to obtain a platinum-carbon catalyst.
  • Sulfur-doped carbon materials were prepared according to the method of the literature "Nature Communications, 2019, 10: 4977", and platinum was loaded according to the method of Example V.1 to prepare sulfur-containing platinum carbon catalysts.
  • a commercially available platinum-carbon catalyst, brand HISPEC4000, with a platinum loading of 40% by weight was used.
  • the surface sulfur content represents the sulfur weight fraction measured by XPS analysis
  • the total sulfur content represents the sulfur weight fraction measured by a sulfur-carbon analyzer.
  • HOR activity test method (i) In 0.1M HClO 4 or 0.5M H 2 SO 4 saturated with N 2 , within the potential range of 0.05-1.0V, scan 10 cycles at a speed of 50mV s Perform electrochemical pretreatment. (ii) In N2 - saturated 0.1M HClO4 , within the potential range of 0.05-1.1V, the cyclic voltammetry curve of the catalyst was tested at a rate of 50 mV s -1 for 10 cycles. (iii) In H2 - saturated HClO4 , in the potential range of 0-0.2V, set the rotation speed of the rotating disk at 1600rpm, and scan 10 cycles at a speed of 10mV s- 1 to test the polarization curve of the catalyst.
  • the apparent current value (i) at the specified electrode potential divided by the Pt at the electrode surface The apparent weight activity (MA, calculated by Pt weight) obtained from the content (mPt) etc., evaluates the HOR activity of the catalyst.
  • HER test method The polarization curve LSV of the catalyst is tested in 0.1M HClO 4 saturated with N 2 at a speed of 2500rpm, the potential range is -0.2 ⁇ 0.2V, and the electrochemical active area ECSA is tested in 0.1M HClO 4 saturated with N 2 test.
  • the catalyst was formulated into a uniformly dispersed slurry, and coated on a glassy carbon electrode with a diameter of 5 mm, and the platinum content of the catalyst on the electrode was controlled within the range of 1-4 ⁇ g.
  • Figure V.1 is the XPS spectrogram of the platinum carbon catalyst of embodiment V.1 and comparative example V.1;
  • Figure V.2 is the platinum carbon catalyst of embodiment V.1 and comparative example V.1 before and after CO poisoning treatment
  • Fig. V.3 is the LSV curve of HOR before and after CO poisoning treatment of the platinum carbon catalyst of embodiment V.1 and comparative example V.2;
  • Fig. V.4 is embodiment V.1 and comparative example V.
  • Figure V.5 is the LSV curve of the HOR of the platinum-carbon catalyst of Example V.2 and Comparative Example V.4 before and after CO poisoning treatment.
  • the raw material gas flow rate is 200mL/min
  • the raw material gas flow rate is 100mL/min.
  • Example V.1-2 uses the sulfur-containing platinum-carbon catalyst of the present invention, under CO poisoning conditions, has more Excellent electrochemical performance, such as higher gravimetric activity and CO tolerance.
  • the sulfur-containing platinum-carbon catalyst of the present invention has the effect of improving the resistance of the platinum-carbon catalyst to CO toxicity.
  • the sulfur-doped carbon material was prepared according to the method of the literature "Nature Communications, 2019, 10: 4977", and platinum was loaded according to the method of Example VI.1 to prepare a platinum-carbon catalyst.
  • the surface sulfur content represents the sulfur weight fraction measured by XPS analysis
  • the total sulfur content represents the sulfur weight fraction measured by a sulfur-carbon analyzer.
  • the polarization curve LSV of the catalyst is tested in 0.1M HClO 4 saturated with H 2 at a speed of 2500 rpm, and the scan speed 10mV/s
  • the electrochemical active area ECSA is tested in N 2 saturated 0.1M HClO 4 , and the scan speed is 50mV/s.
  • the catalyst was formulated into a uniformly dispersed slurry, and 10 ⁇ l was applied to a glassy carbon electrode with a diameter of 5 mm.
  • H 2 S resistance test method 1 Mix H 2 with 0.4ppm H 2 S, and test HOR activity again in 0.1M HClO 4 saturated with H 2 + 0.4ppm H 2 S, and compare the activity before and after H 2 S introduction The change.
  • H 2 S toxicity test method 2 add 10 ⁇ mol/L Na 2 S to 0.5M H 2 SO 4 , poison at a constant voltage of 0.1V for 5 hours, and test the performance change of the catalyst before and after poisoning.
  • Method 1 was used to test the HOR activity of the platinum carbon catalyst of Example VI.2 before and after H 2 S poisoning treatment
  • Method 2 was used to test the platinum carbon catalyst of Example VI.1 and Comparative Example VI.1-2 before and after H 2 S poisoning treatment HOR activity.
  • Table VI.2 Figure VI.1 and Figure VI.2 respectively show the LSV curve and CV curve of the platinum carbon catalyst of Example VI.2 before and after being poisoned by H 2 S
  • Figure VI.3 and Figure VI.4 respectively show the embodiment VI. 1 and the LSV curves and CV curves of the platinum-carbon catalysts of Comparative Example VI.1 before and after being poisoned by H 2 S.
  • Example VI.1-2 has better electrical performance than Comparative Example VI.1-2 under H 2 S poisoning conditions. Chemical properties and resistance to sulfide toxicity.
  • the sulfur-containing platinum-carbon catalyst of the present invention has the effect of improving the resistance of the platinum-carbon catalyst to H 2 S toxicity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及电化学技术领域,公开了一种含硫铂碳催化剂及其制备方法和应用。该含硫铂碳催化剂包括含硫导电炭黑和负载于其上的铂金属,其中,所述含硫导电炭黑中的总硫含量大于或等于表面硫含量,以催化剂的总重量为基准,铂的重量分数为20-70重量%。本发明的含硫铂碳催化剂具有更低的过电势和更高的重量比活性。

Description

含硫铂碳催化剂及其制备方法和应用 技术领域
本发明硫改性碳材料及其制备方法和应用。
背景技术
近年来,世界各主要国家纷纷提出“碳达峰”、“碳中和”的目标,发展氢能及燃料电池技术是重要的方式。Pt/C催化剂是燃料电池和电解水领域的实用催化剂,其成本、活性和稳定性也是制约燃料电池和电解水发展的关键因素之一。与化学催化中所用含硫铂碳催化剂不同,电化学领域内所需的Pt/C催化剂通常需要Pt载量高,颗粒尺寸均一,分散性好,且与碳载体的结合力强。而要在保持Pt颗粒高度分散、与载体结合力强的前提下,实现高载量Pt/C催化剂的规模化制备,十分困难。
在CN109904474A中利用含硫有机小分子制备了硫掺杂碳材料,与铂的前驱体混合后,通过还原性气氛热处理后得到硫掺杂含硫铂碳催化剂。利用硫对铂的锚定作用,该催化剂具有较好的稳定性。但由于其采用过渡金属盐催化含硫小分子缩合碳化,仅在导电炭黑表面包覆含硫物质,一方面由于包覆不均匀,导致催化剂上铂颗粒分散并不均匀,尤其是当载量变高时,颗粒尺寸分布较宽,导致催化剂的电化学活性面积(ECSA)很小,另一方面也无法充分利用碳载体丰富的孔道结构,导致铂难以得到有效利用。
Nature Communications,(2019)10:4977中以二氧化硅为模板剂,通过钴辅助热解制造了噻吩硫和氧化态硫掺杂的介孔碳载体,湿法浸渍后,得到6.24%载量的Pt/C单原子催化剂;但其载量和催化剂活性均较低,难以满足实际应用的需求。
此外,对于所述Pt/C催化剂,尤其是用于燃料电池时,H2中的杂质CO、痕量杂质H2S,以及空气中的杂质SOx,在贵金属Pt表面吸附很强,使得Pt基催化剂容易受到毒化,存在催化剂活性降低的问题。常用的解决方法是从控制氢气纯度入手,或者引入其它金属组分,但这样的合金催化剂存在制备过程复杂,稳定性差的问题。
因此,开发易于工业放大的高载量、高均一度、高活性和高稳定性 Pt/C催化剂及其制备方法十分重要。碳材料的来源广泛、性质丰富,已广泛用于各技术领域。在电催化剂领域,导电炭黑是电催化剂的实用载体,通过对导电炭黑的适当改性,有望通过适当的改性碳材料作为载体来突破对催化剂性能的限制。
发明内容
本发明的一个目的是提供一种硫改性碳材料,其特别适合作为铂碳电催化剂的载体,可以显著提高铂碳电催化剂的催化性能。本发明的另一目的是提供使用所述硫改性碳材料得到的含硫铂碳催化剂,其具有显著优于现有商业催化剂的催化活性和稳定性。本发明的再一目的是提供所述的含硫铂碳催化剂在燃料电池或电解水中的用途。本发明的又一目的是提供所述的含硫铂碳催化剂在提高铂碳催化剂抗催化剂中毒中的用途,其中所述中毒选自SOx中毒、CO中毒和H2S中毒。
为了实现前述目的中的一个或多个,本发明提供了如下例示方面的技术方案:
1、一种含硫铂碳催化剂,包括含硫导电炭黑作为载体和负载于其上的铂金属,其特征在于,至少70重量%的铂金属颗粒负载于含硫导电炭黑内部,且所述含硫铂碳催化剂与使用不含硫的导电炭黑作为载体的基准铂碳催化剂相比,其具有的XPS图谱中的Pt 4f 7/2特征峰升高至少0.3eV。
2、根据替代性方面1所述的含硫铂碳催化剂,其中,所述基准铂碳催化剂具有的Pt 4f 7/2特征峰在XPS图谱中位于约71.3eV处;所述含硫铂碳催化剂具有的Pt 4f 7/2特征峰在XPS图谱中位于约71.6eV或以上、约71.7eV或以上、或约71.9eV或以上,优选所述含硫铂碳催化剂具有的Pt 4f 7/2特征峰在XPS图谱中位于约72.2eV或以下。
3、根据替代性方面1所述的含硫铂碳催化剂,其中,所述含硫铂碳催化剂在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.8且Pt(200)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.5;
优选地,当含硫铂碳催化剂的铂含量为10重量%或以下时,所述含硫铂碳催化剂在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰 的单位重量铂归一化峰强度与半峰全宽之比不大于0.6且Pt(200)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.4。
4、根据替代性方面1所述的含硫铂碳催化剂,其中,所述含硫导电炭黑的总体平均硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上、优选1.5倍以上。
5、根据替代性方面1所述的含硫铂碳催化剂,其中,所述含硫导电炭黑的总硫含量为0.1-10重量%,优选为1-8重量%,还优选为1-4重量%。
6、根据替代性方面1所述的含硫铂碳催化剂,其中,以含硫铂碳催化剂的总重量为基准,铂的含量为1-20重量%,优选为5-20重量%,优选为5-15重量%,还优选为7-10重量%。
7、根据替代性方面1所述的含硫铂碳催化剂,其中,以含硫铂碳催化剂的总重量为基准,铂的含量为20-70重量%,优选为20-60重量%,还优选为40-60重量%
8、根据替代性方面1所述的含硫铂碳催化剂,其中,具有规则晶格条纹的铂金属颗粒不超过60%,优选为40重量%或以下,还优选为10重量%或以下。
9、制备替代性方面1所述含硫铂碳催化剂的方法,其特征在于,该方法包括:
(1)用含有硫磺的溶液在10-80℃下浸渍导电炭黑1-5h,并将浸渍产物进行干燥后得到含硫导电炭黑;
(2)将含有步骤(1)得到的含硫导电炭黑、铂源和溶剂的均匀混合液中的溶剂除去,得到前驱体材料;
(3)在还原性气氛中,将所述前驱体材料进行热处理,得到所述含硫铂碳催化剂。
10、根据替代性方面9所述的方法,其中所述含有硫磺的溶液中的硫磺的浓度为0.0004-0.02g/mL。
11、根据替代性方面9所述的方法,其中相对于1g所述导电炭黑,所述硫磺的用量为0.005-0.06g。
12、根据替代性方面9所述的方法,其中在80-200℃下进行所述步骤(3)的热处理。
13、根据替代性方面9所述的方法,其中所述步骤(1)的干燥的 条件包括:温度为20-100℃,时间为5-10h。
14、替代性方面1-8中任一项所述的含硫铂碳催化剂在燃料电池或电解水中的用途,优选为质子交换膜燃料电池或质子交换膜电解水中的用途。
15、替代性方面1-8中任一项所述的含硫铂碳催化剂在提高铂碳催化剂抗催化剂中毒中的用途,其中所述中毒选自SOx中毒、CO中毒和H2S中毒。
16、根据替代性方面15所述的用途,所述含硫铂碳催化剂用于燃料电池的阴极反应中,其中使原料气中的O2与所述含硫铂碳催化剂接触,所述原料气中SOx的含量为120ppm或以下,优选为100ppm或以下,还优选为50ppm或以下。
17、根据替代性方面15所述的用途,所述含硫铂碳催化剂用于氢燃料电池的阳极反应中,其中使原料气中的H2与所述含硫铂碳催化剂接触,所述原料气中CO的含量为1500ppm或以下,优选为1200ppm或以下,还优选为1000ppm或以下。
18、根据替代性方面15所述的用途,所述含硫铂碳催化剂用于氢燃料电池的阳极反应中,其中使原料气中的H2与所述含硫铂碳催化剂接触,所述原料气中H2S的含量为15ppm或以下,优选为10ppm或以下,还优选为5ppm或以下。
替代性地,或者与前述各方面技术方案结合,本发明还提供了如下替代性方面的技术方案:
1、一种硫改性碳材料,该硫改性碳材料包括导电炭黑和分布于其中的硫元素,其特征在于,所述硫改性碳材料中的总硫含量为表面硫含量的1.2倍以上、优选1.5倍以上。
2、根据例示方面1所述的硫改性碳材料,其中,所述硫改性碳材料中的总硫含量为0.1-10重量%,优选为1-8重量%,还优选为1-4重量%,基于该硫改性碳材料的总重量。
3、根据例示方面1所述的硫改性碳材料,其中,所述硫改性碳材料中的表面硫含量为0.1-6重量%,优选为0.5-3重量%,基于该硫改性碳材料的表面层的总重量。
4、根据例示方面1所述的硫改性碳材料,其中,所述硫改性碳材料的比表面积为200-2000m2/g。
5、根据例示方面1所述的硫改性碳材料,其中,所述导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
6、根据例示方面1所述的硫改性碳材料,其中所述硫改性碳材料通过浸渍制备,其中由含有硫源的溶液浸渍导电炭黑。
7、根据例示方面1所述的硫改性碳材料,其中的硫元素以单质硫的形态引入所述导电炭黑中。
相应地,结合方面6和7,优选浸渍所用的硫源为单质硫,从而将硫元素以单质硫的形态引入所述导电炭黑中。进一步地,硫元素以单质硫的形态引入所述导电炭黑中后,优选该硫改性碳材料中的硫元素以单质硫的形态或者基本以单质的形态存在于所述导电炭黑中。
8、制备例示方面1-7中任一项所述硫改性碳材料的方法,其包括:
A)浸渍步骤:用含有硫磺的溶液在10-80℃下浸渍导电炭黑1-5h,知
B)干燥步骤:将步骤A)得到的浸渍产物进行干燥。
9、根据例示方面8所述的方法,其中,所述含有硫磺的溶液中的溶剂为CCl4、CS2、环己烷、正己烷中的一种或多种。
10、根据例示方面8所述的方法,其中,所述含有硫磺的溶液中的硫磺的浓度为0.0004-0.02g/mL。
11、根据例示方面8所述的方法,其中,相对于所述导电炭黑1g,硫磺的用量为0.005-0.06g;
12、根据例示方面8所述的方法,其中,浸渍的温度为10-40℃,还优选为20-30℃,特别优选为室温(25℃),时间优选为2-4h。
13、根据例示方面8所述的方法,其中,所述干燥的条件包括:温度为20-100℃,时间为5-10h。
14、例示方面1所述硫改性碳材料作为载体制备催化剂的用途。
15、根据例示方面14所述的用途,其中,所述催化剂为用于电极催化剂的铂碳催化剂。
由此,本发明提供了以下解决方案:
解决方案(一):硫改性碳材料及其制备方法和应用
本发明的一个方面的目的是为了克服现有技术存在的上述技术问 题,提供一种硫改性碳材料及其制备方法、含硫铂碳催化剂和燃料电池,该硫改性碳材料适合作为含硫铂碳催化剂的载体,可以显著提高含硫铂碳催化剂的催化性能及抗毒性。
为了实现上述目的,本发明另一方面提供一种硫改性碳材料,该硫改性碳材料包括导电炭黑和复合于其中的硫元素,所述硫改性碳材料中的总硫含量大于或等于表面硫含量,优选所述硫改性碳材料中的总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上。
优选地,所述硫改性碳材料中的总硫含量为0.1-10重量%,优选为1-8重量%,还优选为1-4重量%。
优选地,所述硫改性碳材料中的表面硫含量为0.1-6重量%,优选为0.5-3重量%。
优选地,所述硫改性碳材料中的氧含量为4-15重量%。
优选地,所述硫改性碳材料的比表面积为200-2000m2/g。
优选地,所述导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
本发明另一方面提供一种硫改性碳材料的制备方法,该方法包括:用含有硫磺的溶液在10-80℃下浸渍导电炭黑1-5h,并将浸渍产物进行干燥后得到硫改性碳材料。
优选地,所述含有硫磺的溶液中的溶剂为CCl4、CS2、环己烷和正己烷中的一种或多种。
优选地,所述含有硫磺的溶液中的硫磺的浓度为0.0004-0.02g/mL。
优选地,相对于1g所述导电炭黑,所述硫磺的用量为0.005-0.06g。
优选地,所述干燥的条件包括:温度为20-100℃,时间为5-10h。
优选地,所述导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
本发明另一方面提供一种含硫铂碳催化剂,该含硫铂碳催化剂包括硫改性碳材料以及负载于其上的铂金属;其中,所述硫改性碳材料为上述本发明的硫改性碳材料、或者利用上述本发明的制备方法得到的硫改性碳材料。
优选地,以含硫铂碳催化剂的总重量为基准,铂的重量分数为 0.1-70重量%,根据不同用途,铂的重量分数可以为0.1-1%、1-4%、1-8%、4-20重量%、20-40重量%或40-70重量%。
优选地,所述含硫铂碳催化剂中具有规则晶格条纹的铂颗粒不超过60重量%。
本发明另一方面提供上述本发明的硫改性碳材料、利用上述本发明的制备方法得到的硫改性碳材料、或者上述本发明的含硫铂碳催化剂作为电极材料的应用。
本发明另一方面提供一种燃料电池,所述燃料电池中使用了上述本发明的硫改性碳材料、利用上述本发明的制备方法得到的硫改性碳材料、或者上述本发明的含硫铂碳催化剂。
优选地,所述的燃料电池为氢燃料电池。
本发明另一方面提供一种PEM电解槽,其特征在于,所述PEM电解槽的阴极中,使用了上述本发明的硫改性碳材料、利用上述本发明的制备方法得到的硫改性碳材料、或者上述本发明的含硫铂碳催化剂。
通过上述技术方案,与现有技术相比,本发明可实现以下有益技术效果。
1、本发明通过简单方法制造了一种新颖的硫改性碳材料,该硫改性碳材料中硫更多地分布在碳材料的内部。
2、本发明制造的硫改性碳材料特别适合作为铂碳电催化剂的载体,可以显著提高铂碳电催化剂的催化性能。
3、本发明制造的硫改性碳材料能够制造抗毒性能优异、高活性、高稳定性的铂碳电催化剂。
解决方案(二):Pt含量高的含硫铂碳催化剂及其制备方法和应用
本发明的一个方面的目的一是解决现有技术中合成的Pt/C催化剂难以兼顾Pt的高载量和高分散,以及载体与Pt之间相互作用力弱的难题,利用硫与Pt之间的强相互作用,通过制备含硫导电炭黑,使载体与铂之间形成强相互作用,改善铂的分散性,开发制备方法简单、高载量、高均一度、高活性和高稳定性Pt/C催化剂;二是针对目前热还原法所需温度高,液相还原法工艺复杂、废水排放多的问题,提供更为绿色环保的催化剂制备新工艺。
为了实现上述目的,本发明提供一种含硫铂碳催化剂,该含硫铂碳 催化剂包括含硫导电炭黑和负载于其上的铂金属,其中,所述含硫导电炭黑中的总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
对于本发明目的,可使用本发明所述硫改性碳材料作为所述含硫导电炭黑。相应地,该“含硫导电炭黑”也可称作“硫改性导电炭黑”。
优选地,所述含硫铂碳催化剂中具有规则晶格条纹的铂金属颗粒不超过60重量%。
优选地,至少90重量%的铂金属颗粒负载于含硫导电炭黑内部。
根据本发明,以催化剂的总重量为基准,铂的重量分数为20-70重量%,可以为20-40重量%或40-70重量%。相应地,本发明该解决方案(二)提供的Pt含量高的含硫铂碳催化剂可称为高铂含量(含硫铂碳)催化剂。
优选地,所述含硫导电炭黑中的总硫含量为0.4-8重量%,优选为1-6重量%。
优选地,所述含硫导电炭黑中的表面硫含量为0.1-6重量%,优选为0.5-4重量%。
优选地,所述含硫铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰位于71.6eV以上。
优选地,所述含硫导电炭黑中的导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
本发明另一方面提供一种含硫铂碳催化剂,该含硫铂碳催化剂包括含硫导电炭黑和负载于其上的铂金属,其中,所述含硫铂碳催化剂中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
优选地,所述含硫铂碳催化剂中具有规则晶格条纹的铂金属颗粒不超过60重量%。
优选地,至少90重量%的铂金属颗粒负载于含硫导电炭黑内部。
根据本发明,以催化剂的总重量为基准,铂的重量分数为20-70重量%,可以为20-40重量%或40-70重量%。
优选地,所述总硫含量为0.4-8重量%,优选为1-6重量%。
优选地,所述表面硫含量为0.1-6重量%,优选为0.5-4重量%。
优选地,所述含硫铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰位于71.6eV以上。
优选地,所述含硫导电炭黑中的导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
本发明另一方面提供一种含硫铂碳催化剂的制备方法,该方法包括:
(1)用含有硫磺的溶液在10-80℃下浸渍导电炭黑1-5h,并将浸渍产物进行干燥后得到含硫导电炭黑;
(2)将含有步骤(1)得到的含硫导电炭黑、铂源和溶剂的均匀混合液中的溶剂除去,得到前驱体材料;
(3)在还原性气氛中,将步骤(2)得到的前驱体材料在80-200℃下进行1-4h的热处理,得到含硫铂碳催化剂;
其中,步骤(2)中,相对于所述含硫导电炭黑1g,以铂元素计所述铂源的用量为0.25-2.4g。
优选地,步骤(1)中,所述导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
优选地,步骤(1)中,所述导电炭黑的XPS分析中,氧含量大于4重量%。
优选地,步骤(1)中,所述导电炭黑的比表面积为200-2000m2/g。
优选地,步骤(1)中,所述含有硫磺的溶液中的溶剂为CCl4、CS2、环己烷、正己烷中的一种或多种。
优选地,步骤(1)中,相对于所述碳载体1g,硫磺的用量为0.005-0.06g。
优选地,步骤(1)中,所述干燥的条件包括:温度为20-100℃,时间为5-10h。
优选地,步骤(2)中,所述铂源为氯铂酸、氯铂酸盐、醋酸四氨合铂和乙酰丙酮铂中的一种或多种。
优选地,步骤(2)中,所述溶剂为水、醇类溶剂或酮类溶剂中的一种或多种。还优选地,所述溶剂为水和/或乙醇,还优选为水和乙醇 的混合溶剂。
优选地,步骤(2)中,将所述均匀混合液静置后,再将溶剂除去,所述静置的时间为4h以上,优选16-30h。
优选地,步骤(2)中,去除溶剂时的干燥温度为100℃以下。
优选地,步骤(3)中,所述还原性气氛包括氢气,优选为氢气与惰性气体的混合气氛,还优选为氢气和氮气的混合气氛;优选地,氢气占气体总量的5-30体积%。
本发明另一方面提供一种含硫铂碳催化剂,该含硫铂碳催化剂由上述本发明的制备方法制得。
本发明另一方面提供上述本发明的含硫铂碳催化剂在燃料电池或电解水中的应用。
本发明的含硫铂碳催化剂适合作为燃料电池中的阳极催化剂,对于燃料电池没有特别的限定,例如可以为氢燃料电池(质子交换膜氢燃料电池)、直接醇类燃料电池(例如甲醇或乙醇为阳极燃料的直接醇类燃料电池)等。
本发明另一方面提供一种PEM电解槽,所述PEM电解槽的阴极中,使用上述本发明的含硫铂碳催化剂。
通过上述技术方案,与现有技术相比,本发明具有以下有益技术效果。
1、本发明的碳载体中的整体硫含量大于表面硫含量,有利于充分利用丰富的孔道结构,使Pt不仅负载于载体表面,从而形成更好的分散;
2、本发明的制备方法还原温度低,能耗小;
3、与采用液相还原法制备得到的硫改性含硫铂碳催化剂相比,该含硫铂碳催化剂制备过程简单,易于工业放大,且Pt和载体之间有明显的相互作用,Pt的XPS谱峰向高电子伏特偏移,而通过液相还原法所得催化剂无此偏移;据信该相互作用大大有利于提高催化剂性能;
4、以本发明的方法制备的含硫铂碳催化剂,具有显著优于商业催化剂的ORR及HER催化活性和稳定性;
5、以本发明的方法制备的含硫铂碳催化剂由于Pt颗粒小,分布均一,并形成不完全规整的特殊结构,因此电化学活性面积ECSA大。
解决方案(三):Pt含量低的含硫铂碳催化剂及其制备方法和应用
本发明的一个目的在于针对上述现有技术中含硫铂碳催化剂的催化活性低的问题,提供一种含硫铂碳催化剂及其制备方法和应用,该含硫铂碳催化剂中Pt以原子簇的形式存在,具有高度分散性,重量比活性和过电势均远优于商业催化剂。并且,本发明还改进了制造含硫铂碳催化剂的湿法浸渍法,以更低的能耗实现催化剂的制备。
为了实现上述目的,本发明一方面提供一种含硫铂碳催化剂,该含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,其中,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量且总硫含量为1-8重量%,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上;以含硫铂碳催化剂的总重量为基准,铂的重量分数为1-20重量%。
优选地,所述含硫铂碳催化剂在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.8且Pt(200)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.5。
优选地,当含硫铂碳催化剂的铂含量为10重量%以下时,所述含硫铂碳催化剂在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.6且Pt(200)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.4。
优选地,以含硫铂碳催化剂的总重量为基准,铂的重量分数为5-20重量%,优选为5-15%,还优选为7-10重量%。相应地,本发明该解决方案(三)提供的Pt含量低的含硫铂碳催化剂可称为低铂含量(含硫铂碳)催化剂。
优选地,所述硫改性碳载体中的总硫含量为1-8重量%,优选为3-6重量%。
优选地,所述硫改性碳载体中的表面硫含量为0.1-6重量%,优选为0.5-3重量%。
优选地,所述含硫铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰位于71.7eV以上。
优选地,所述硫改性导电炭黑中的导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、 PRINTEX L6和HIBLAXK 40B2中的一种或多种。
优选地,所述导电炭黑的XPS分析中,氧含量大于4重量%。
优选地,所述导电炭黑的比表面积为200-2000m2/g。
本发明另一方面提供一种含硫铂碳催化剂,该含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,其中,所述硫改性碳载体为硫改性导电炭黑,所述含硫铂碳催化剂中的总硫含量大于或等于表面硫含量且总硫含量为1-8重量%,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上;以含硫铂碳催化剂的总重量为基准,铂的重量分数为1-20重量%。
优选地,所述含硫铂碳催化剂在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.8且Pt(200)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.5。
优选地,当含硫铂碳催化剂的铂含量为10重量%以下时,所述含硫铂碳催化剂在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.6且Pt(200)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.4。
优选地,以含硫铂碳催化剂的总重量为基准,铂的重量分数为5-20重量%,优选为5-15%,还优选为7-10重量%。
优选地,所述总硫含量为1-8重量%,优选为3-6重量%。
优选地,所述表面硫含量为0.1-6重量%,优选为0.5-3重量%。
优选地,所述含硫铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰位于71.7eV以上。
优选地,所述硫改性导电炭黑中的导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
优选地,所述导电炭黑的XPS分析中,氧含量大于4重量%。
优选地,所述导电炭黑的比表面积为200-2000m2/g。
本发明另一方面提供一种含硫铂碳催化剂的制备方法,该方法包括:
(1)用含有硫磺的溶液在10-80℃下浸渍碳载体1-5h,并将浸渍产物进行干燥后得到硫改性碳载体;
(2)将含有步骤(1)得到的硫改性碳载体、铂源和溶剂的均匀混合液中的溶剂除去,得到前驱体材料;
(3)在还原性气氛中,将步骤(2)得到的前驱体材料在80-200℃下进行1-4h的热处理,得到含硫铂碳催化剂;
其中,步骤(1)中,所述碳载体为导电炭黑;
步骤(2)中,相对于所述硫改性碳载体1g,以铂元素计所述铂源的用量为0.01-0.25g。
优选地,步骤(1)中,所述导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
优选地,步骤(1)中,所述导电炭黑的XPS分析中,氧含量大于4重量%。
优选地,步骤(1)中,所述导电炭黑的比表面积为200-2000m2/g。
优选地,步骤(1)中,所述含有硫磺的溶液中的溶剂为CCl4、CS2、环己烷、正己烷中的一种或多种。
优选地,步骤(1)中,所述含有硫磺的溶液中的硫磺的浓度为0.0004-0.02g/mL。
优选地,步骤(1)中,相对于所述碳载体1g,硫磺的用量为0.005-0.06g。
优选地,步骤(1)中,所述干燥的条件包括:温度为20-100℃,时间为5-10h。
优选地,步骤(2)中,所述铂源为氯铂酸、氯铂酸盐、醋酸四氨合铂和乙酰丙酮铂中的一种或多种。
优选地,步骤(2)中,所述溶剂为水、醇类溶剂或酮类溶剂中的一种或多种。还优选地,所述溶剂为水和/或乙醇,还优选为水和乙醇的混合溶剂。
优选地,步骤(2)中,将所述均匀混合液静置后,再将溶剂除去,所述静置的时间为10h以上,优选15-24h。
优选地,步骤(2)中,去除溶剂时的干燥温度为100℃以下。
优选地,步骤(3)中,所述还原性气氛包括氢气,优选为氢气与惰性气体的混合气氛,还优选为氢气和氮气的混合气氛;优选地,氢气占气体总量的5-30体积%。
本发明另一方面提供一种含硫铂碳催化剂,该含硫铂碳催化剂由上述本发明的制备方法制得。
本发明另一方面提供上述本发明的含硫铂碳催化剂在燃料电池或电解水中的应用。
本发明第另一面提供一种PEM电解槽,所述PEM电解槽的阴极中,使用上述本发明的含硫铂碳催化剂。
通过上述技术方案,与现有技术相比,本发明具有以下有益技术效果。
一、本发明通过对导电炭黑用单质硫改性,制造了一种新型的碳载体,以该碳载体制造的含硫铂碳催化剂能够明显提高催化剂的重量比活性并降低过电势。
二、本发明的一种优选实施方式以简单的溶液浸渍制备硫改性碳载体,无需高温焙烧处理,制备工艺简单,能耗低,所制备的碳载体结构中,总体硫含量要远高于表面硫含量,这种新型结构能够以最大限度起到分散Pt的作用,使得在较高Pt载量下依然可以得到Pt原子簇催化剂。
三、常用的湿法浸渍法制备Pt基催化剂时,还原温度高,能耗大,而本申请中的改进方法,还原温度低,可降低催化剂制备能耗。
解决方案(四):含硫铂碳催化剂在抗SOx毒性中的应用
本发明的含硫铂碳催化剂可用于提高铂碳催化剂抗SOx毒性。本发明的含硫铂碳催化剂利用硫与Pt之间的强相互作用,通过对碳载体进行简单改性,制备硫改性碳载体,使载体与铂之间形成强相互作用,削弱Pt对SOx的吸附,提升催化剂对SOx的耐受性。
相应地,本发明提供一种燃料电池的阴极反应方法,该方法包括:在阴极反应条件下,使原料气中的O2与本发明所述含硫铂碳催化剂接触;其中,所述原料气中SOx的含量为120ppm以下,优选为100ppm以下,优选为50ppm以下。
优选地,本发明所述含硫铂碳催化剂在燃料电池中作为阴极催化剂。
优选地,所述燃料电池为氢燃料电池。
优选地,所述阴极反应条件包括:电压为0V以上,优选为0-1.1V。
通过上述技术方案,与现有技术相比较,本发明的含硫铂碳催化剂具有以下优点:一是制备方法简单,易于工业放大,仅通过载体改性即可实现催化剂抗SOx毒性的提升;二是该方法所得催化剂Pt颗粒分散均一,Pt和载体之间有明显的相互作用,既有助于提升催化剂的抗毒性,也可提升催化剂活性和稳定性。
解决方案(五):含硫铂碳催化剂在抗CO毒性中的应用
本发明的含硫铂碳催化剂可用于提高铂碳催化剂抗CO毒性。本发明的含硫铂碳催化剂利用硫与Pt之间的强相互作用,通过对碳载体进行简单改性,制备硫改性碳载体,使载体与铂之间形成强相互作用,促进电子由Pt向载体转移,削弱Pt对CO的吸附,提升催化剂对CO的耐受性。
相应地,本发明提供一种燃料电池的阳极反应方法,该方法包括:在阳极反应条件下,使原料气中的H2与本发明所述含硫铂碳催化剂接触;其中,所述原料气中CO的含量为1500ppm以下,优选为1200ppm以下,优选为1000ppm以下。
优选地,本发明所述含硫铂碳催化剂在燃料电池中作为阳极催化剂。
优选地,所述燃料电池为氢燃料电池。
优选地,所述阳极反应条件包括:电压为0V以上,优选为0-0.4V。
相应地,本发明还提供一种电解水的方法,该方法包括:在电解水的条件下,使水与本发明所述的含硫铂碳催化剂接触;其中,所述接触的至少部分在CO的存在下进行。
优选地,所述电解水的条件包括:电压为-0.4V以上,优选为-0.4~1.0V。
通过上述技术方案,与现有技术相比较,本发明的含硫铂碳催化剂具有以下优点:一是制备方法简单,易于工业放大,仅通过载体改性即可实现催化剂抗CO毒性的提升,在经CO原位红外表征中显示,催化剂无明显的CO化学吸附;二是该方法所得催化剂Pt颗粒分散均一,Pt和载体之间有明显的相互作用,既有助于提升催化剂的抗毒性,Pt的XPS谱峰向高电子伏特偏移,也可提升催化剂活性和稳定性。
解决方案(六):含硫铂碳催化剂在抗H2S毒性中的应用
本发明的含硫铂碳催化剂可用于提高铂碳催化剂抗H2S毒性。本发明的含硫铂碳催化剂利用硫与Pt之间的强相互作用,通过对碳载体进行简单改性,制备硫改性碳载体,使载体与铂之间形成强相互作用,促进电子由Pt向载体转移,削弱Pt对H2S的吸附,提升催化剂对H2S的耐受性。
相应地,本发明提供一种燃料电池的阳极反应方法,该方法包括:在阳极反应条件下,使原料气中的H2与本发明所述含硫铂碳催化剂接触;其中,所述原料气中H2S的含量为15ppm以下,优选为10ppm以下,优选为5ppm以下。
优选地,本发明所述含硫铂碳催化剂在燃料电池中作为阳极催化剂。
优选地,所述燃料电池为氢燃料电池。
优选地,所述阳极反应条件包括:电压为0V以上,优选为0.01-0.4V。
通过上述技术方案,与现有技术相比较,本发明的含硫铂碳催化剂具有以下优点:一是制备方法简单,易于工业放大,仅通过载体改性即可实现催化剂抗H2S毒性的提升;二是该方法所得催化剂Pt颗粒分散均一,Pt和载体之间有明显的相互作用,既有助于提升催化剂的抗毒性,Pt的XPS谱峰向高电子伏特偏移,也可提升催化剂活性和稳定性。
作为例子,本发明提供了以下的例示实施方式,或它们之间的组合:
本发明第一系列的例示实施方式包括:
1、一种硫改性碳材料,其特征在于,该硫改性碳材料包括导电炭黑和复合于其中的硫元素,所述硫改性碳材料中的总硫含量大于或等于表面硫含量,优选所述硫改性碳材料中的总硫含量为表面硫含量的1.2倍以上、更优选1.5倍以上。
2、根据权利要求1所述的硫改性碳材料,其中,所述硫改性碳材料中的总硫含量为0.1-10质量%,优选为1-8质量%,更优选为1-4质量%;
优选地,所述硫改性碳材料中的表面硫含量为0.1-6质量%,优选 为0.5-3质量%;
优选地,所述硫改性碳材料中的氧含量为4-15质量%。
3、根据例示实施方式1或2所述的硫改性碳材料,其中,所述硫改性碳材料的比表面积为200-2000m2/g;
优选地,所述硫改性碳材料的电阻率小于10.0Ω·m。
4、根据例示实施方式1-3中任意一项所述的硫改性碳材料,其中,所述导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
5、一种铂碳催化剂,其特征在于,该铂碳催化剂包括硫改性碳材料以及负载于其上的铂金属;
其中,所述硫改性碳材料为例示实施方式1-4中任意一项所述的硫改性碳材料。
6、根据例示实施方式5所述的铂碳催化剂,其中,以铂碳催化剂的总质量为基准,铂的质量分数为0.1-70质量%;
优选地,所述铂碳催化剂中具有规则晶格条纹的铂颗粒不超过60%。
7、例示实施方式1-4中任意一项所述的硫改性碳材料或者例示实施方式5或6所述的铂碳催化剂作为电极材料的应用。
8、一种燃料电池,其特征在于,所述燃料电池中使用了例示实施方式1-4中任意一项所述的硫改性碳材料或者例示实施方式5或6所述的铂碳催化剂;
优选地,所述的燃料电池为氢燃料电池。
9、一种PEM电解槽,其特征在于,所述PEM电解槽的阴极中,使用了例示实施方式1-4中任意一项所述的硫改性碳材料或者例示实施方式5或6所述的铂碳催化剂。
本发明第二系列的例示实施方式包括:
1、一种铂碳催化剂,其特征在于,该铂碳催化剂包括含硫导电炭黑和负载于其上的铂金属,
其中,所述含硫导电炭黑中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,
以催化剂的总质量为基准,铂的质量分数为20-70%。
2、根据例示实施方式1所述的铂碳催化剂,其中,所述铂碳催化剂中具有规则晶格条纹的铂金属颗粒不超过60%;
优选地,至少90%的铂金属颗粒负载于含硫导电炭黑内部;
优选地,以催化剂的总质量为基准,铂的质量分数为20-60%,更优选为20-40%;
3、根据例示实施方式1或2所述的铂碳催化剂,其中,所述含硫导电炭黑中的总硫含量为0.4-8质量%,优选为1-6质量%;
优选地,所述含硫导电炭黑中的表面硫含量为0.1-6质量%,优选为0.5-4质量%。
4、根据例示实施方式1-3中任意一项所述的铂碳催化剂,其中,所述铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰位于71.6eV以上。
5、根据例示实施方式1-4中任意一项所述的铂碳催化剂,其中,所述含硫导电炭黑中的导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
6、一种铂碳催化剂,其特征在于,该铂碳催化剂包括含硫导电炭黑和负载于其上的铂金属,
其中,所述铂碳催化剂中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,
以催化剂的总质量为基准,铂的质量分数为20-70%。
7、一种铂碳催化剂的制备方法,其特征在于,该方法包括:
(1)用含有硫磺的溶液在10-80℃下浸渍导电炭黑1-5h,并将浸渍产物进行干燥后得到含硫导电炭黑;
(2)将含有步骤(1)得到的含硫导电炭黑、铂源和溶剂的均匀混合液中的溶剂除去,得到前驱体材料;
(3)在还原性气氛中,将步骤(2)得到的前驱体材料在80-200℃下进行1-4h的热处理,得到铂碳催化剂;
其中,步骤(2)中,相对于所述含硫导电炭黑1g,以铂元素计所述铂源的用量为0.25-2.4g。
8、根据例示实施方式7所述的制备方法,其中,步骤(1)中,所述导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、 Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种;
优选地,所述导电炭黑的XPS分析中,氧含量大于4质量%;
优选地,所述导电炭黑的电阻率小于10Ω·m;
优选地,所述导电炭黑的比表面积为200-2000m2/g。
9、根据例示实施方式7或8所述的制备方法,其中,步骤(1)中,所述含有硫磺的溶液中的溶剂为CCl4、CS2、环己烷、正己烷中的一种或多种;
优选地,相对于所述导电炭黑1g,硫磺的用量为0.005-0.06g;
优选地,所述干燥的条件包括:温度为20-100℃,时间为5-10h。
10、根据例示实施方式7-9中任意一项所述的制备方法,其中,步骤(2)中,所述铂源为氯铂酸、氯铂酸盐、醋酸四氨合铂和乙酰丙酮铂中的一种或多种。
11、根据例示实施方式7-10中任意一项所述的制备方法,其中,步骤(2)中,所述溶剂为水、醇类溶剂或酮类溶剂中的一种或多种;
优选地,所述溶剂为水和/或乙醇,更优选为水和乙醇的混合溶剂。
12、根据例示实施方式7-11中任意一项所述的制备方法,其中,步骤(2)中,将所述均匀混合液静置后,再将溶剂除去,所述静置的时间为4h以上,优选16-30h;
优选地,步骤(2)中,去除溶剂时的干燥温度为100℃以下。
13、根据例示实施方式7-12中任意一项所述的制备方法,其中,步骤(3)中,所述还原性气氛包括氢气,优选为氢气与惰性气体的混合气氛,更优选为氢气和氮气的混合气氛;优选地,氢气占气体总量的5-30体积%。
14、一种铂碳催化剂,其特征在于,该铂碳催化剂由例示实施方式7-13中任意一项所述的制备方法制得。
15、例示实施方式1-6和14中任意一项所述的铂碳催化剂在燃料电池或电解水中的应用。
16、一种PEM电解槽,其特征在于,所述PEM电解槽的阴极中,使用了例示实施方式1-6和14中的任意一项的铂碳催化剂。
本发明第三系列的例示实施方式包括:
1、一种铂碳催化剂,其特征在于,该铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,
其中,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量且总硫含量为1-8质量%,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上;
以铂碳催化剂的总质量为基准,铂的质量分数为1-20%。
2、根据例示实施方式1所述的铂碳催化剂,其中,所述铂碳催化剂在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰的单位质量铂归一化峰强度与半峰全宽之比不大于0.8且Pt(200)特征峰的单位质量铂归一化峰强度与半峰全宽之比不大于0.5;
优选地,当铂碳催化剂的铂含量为10质量%以下时,所述铂碳催化剂在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰的单位质量铂归一化峰强度与半峰全宽之比不大于0.6且Pt(200)特征峰的单位质量铂归一化峰强度与半峰全宽之比不大于0.4;
优选地,以铂碳催化剂的总质量为基准,铂的质量分数为5-20%,优选为5-15%,更优选为7-10%。
3、根据例示实施方式1所述的铂碳催化剂,其中,所述硫改性碳载体中的总硫含量为3-6质量%;
优选地,所述硫改性碳载体中的表面硫含量为0.1-6质量%,优选为0.5-3质量%。
4、根据例示实施方式1-3中任意一项所述的铂碳催化剂,其中,所述铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰位于71.7eV以上。
5、根据例示实施方式1-4中任意一项所述的铂碳催化剂,其中,所述硫改性导电炭黑中的导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种;
优选地,所述导电炭黑的XPS分析中,氧含量大于4质量%;
优选地,所述导电炭黑的电阻率小于10Ω·m;
优选地,所述导电炭黑的比表面积为200-2000m2/g。
6、一种铂碳催化剂,其特征在于,该铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,
其中,所述硫改性碳载体为硫改性导电炭黑,所述铂碳催化剂中的 总硫含量大于或等于表面硫含量且总硫含量为1-8质量%,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上;
以铂碳催化剂的总质量为基准,铂的质量分数为1-20%。
7、一种铂碳催化剂的制备方法,其特征在于,该方法包括:
(1)用含有硫磺的溶液在10-80℃下浸渍碳载体1-5h,并将浸渍产物进行干燥后得到硫改性碳载体;
(2)将含有步骤(1)得到的硫改性碳载体、铂源和溶剂的均匀混合液中的溶剂除去,得到前驱体材料;
(3)在还原性气氛中,将步骤(2)得到的前驱体材料在80-200℃下进行1-4h的热处理,得到铂碳催化剂;
其中,步骤(1)中,所述碳载体为导电炭黑;
步骤(2)中,相对于所述硫改性碳载体1g,以铂元素计所述铂源的用量为0.01-0.25g。
8、根据例示实施方式7所述的制备方法,其中,步骤(1)中,所述导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种;
优选地,所述导电炭黑的XPS分析中,氧含量大于4质量%;
优选地,所述导电炭黑的电阻率小于10Ω·m;
优选地,所述导电炭黑的比表面积为200-2000m2/g。
9、根据例示实施方式7或8所述的制备方法,其中,步骤(1)中,所述含有硫磺的溶液中的溶剂为CCl4、CS2、环己烷、正己烷中的一种或多种;
优选地,所述含有硫磺的溶液中的硫磺的浓度为0.0004-0.02g/mL;
优选地,相对于所述碳载体1g,硫磺的用量为0.005-0.06g;
优选地,所述干燥的条件包括:温度为20-100℃,时间为5-10h。
10、根据例示实施方式7-9中任意一项所述的制备方法,其中,步骤(2)中,所述铂源为氯铂酸、氯铂酸盐、醋酸四氨合铂和乙酰丙酮铂中的一种或多种。
11、根据例示实施方式7-10中任意一项所述的制备方法,其中,步骤(2)中,所述溶剂为水、醇类溶剂或酮类溶剂中的一种或多种;
优选地,所述溶剂为水和/或乙醇,更优选为水和乙醇的混合溶剂。
12、根据例示实施方式7-11中任意一项所述的制备方法,其中,步骤(2)中,将所述均匀混合液静置后,再将溶剂除去,所述静置的时间为10h以上,优选15-24h;
优选地,步骤(2)中,去除溶剂时的干燥温度为100℃以下。
13、根据例示实施方式7-12中任意一项所述的制备方法,其中,步骤(3)中,所述还原性气氛包括氢气,优选为氢气与惰性气体的混合气氛,更优选为氢气和氮气的混合气氛;优选地,氢气占气体总量的5-30体积%。
14、一种铂碳催化剂,其特征在于,该铂碳催化剂由例示实施方式7-13中任意一项所述的制备方法制得。
15、例示实施方式1-6和14中任意一项所述的铂碳催化剂在燃料电池或电解水中的应用。
16、一种PEM电解槽,其特征在于,所述PEM电解槽的阴极中,使用了例示实施方式1-6和14中的任意一项的铂碳催化剂。
本发明第四系列的例示实施方式包括:
1、含硫铂碳催化剂在提高铂碳催化剂抗SOx毒性中的应用,其特征在于,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,以催化剂的总质量为基准,铂的质量分数为20-70%。
2、根据例示实施方式1所述的应用,其中,以催化剂的总质量为基准,铂的质量分数为20-60%,优选为40-60%;
优选地,所述硫改性碳载体中的总硫含量为0.4-8质量%,优选为1-6质量%;
优选地,所述硫改性碳载体中的表面硫含量为0.1-6质量%,优选为0.5-4质量%。
3、根据例示实施方式1或2所述的应用,其中,所述硫改性碳载体为硫改性导电炭黑;
优选地,所述硫改性导电炭黑中的导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
4、一种燃料电池的阴极反应方法,其特征在于,该方法包括:在阴极反应条件下,使原料气中的O2与含硫铂碳催化剂接触;
其中,所述原料气中SOx的含量为120ppm以下;
所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,以催化剂的总质量为基准,铂的质量分数为20-70%。
5、根据例示实施方式4所述的阴极反应方法,其中,所述原料气中SOx的含量为100ppm以下,优选为50ppm以下;
优选地,所述阴极反应条件包括:电压为0V以上,优选为0-1.1V。
6、根据例示实施方式4或5所述的阴极反应方法,其中,以催化剂的总质量为基准,铂的质量分数为20-60%,优选为40-60%;
优选地,所述硫改性碳载体中的总硫含量为0.4-8质量%,优选为1-6质量%;
优选地,所述硫改性碳载体中的表面硫含量为0.1-6质量%,优选为0.5-4质量%。
7、根据例示实施方式4-6中任意一项所述的阴极反应方法,其中,所述硫改性导电炭黑中的导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
8、含硫铂碳催化剂在燃料电池中的应用,其特征在于,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,以催化剂的总质量为基准,铂的质量分数为20-70%;
其中,所述燃料电池的原料气中SOx的含量为120ppm以下。
9、根据例示实施方式8所述的应用,其中,所述原料气中SOx的含量为100ppm以下,优选为50ppm以下;
优选地,所述含硫铂碳催化剂在燃料电池中作为阴极催化剂。
10、根据例示实施方式8或9所述的应用,其中,以催化剂的总质量为基准,铂的质量分数为20-60%,优选为40-60%;
优选地,所述硫改性碳载体中的总硫含量为0.4-8质量%,优选为 1-6质量%;
优选地,所述硫改性碳载体中的表面硫含量为0.1-6质量%,优选为0.5-4质量%。
11、含硫铂碳催化剂在提高铂碳催化剂抗SOx毒性中的应用,其特征在于,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述含硫铂碳催化剂中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,以催化剂的总质量为基准,铂的质量分数为20-70质量%。
本发明第五系列的例示实施方式包括:
1、含硫铂碳催化剂在提高铂碳催化剂抗CO毒性中的应用,其特征在于,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,以催化剂的总质量为基准,铂的质量分数为20-70%。
2、根据例示实施方式1所述的应用,其中,以催化剂的总质量为基准,铂的质量分数为20-60%,更优选为20-40%;
优选地,所述硫改性碳载体中的总硫含量为0.4-8质量%,优选为1-6质量%;
优选地,所述硫改性碳载体中的表面硫含量为0.1-6质量%,优选为0.5-4质量%。
3、根据例示实施方式1或2所述的应用,其中,所述硫改性碳载体为硫改性导电炭黑;
优选地,所述硫改性导电炭黑中的导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
4、一种氢燃料电池的阳极反应方法,其特征在于,该方法包括:在阳极反应条件下,使原料气中的H2与含硫铂碳催化剂接触;
其中,所述原料气中CO的含量为1500ppm以下;
所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量 大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,以催化剂的总质量为基准,铂的质量分数为20-70%。
5、根据例示实施方式4所述的阳极反应方法,其中,所述原料气中CO的含量为1200ppm以下,优选为1000ppm以下;
优选地,所述阳极反应条件包括:电压为0V以上,优选为0-0.4V。
6、根据例示实施方式4或5所述的阳极反应方法,其中,以催化剂的总质量为基准,铂的质量分数为20-60%,更优选为20-40%;
优选地,所述硫改性碳载体中的总硫含量为0.4-8质量%,优选为1-6质量%;
优选地,所述硫改性碳载体中的表面硫含量为0.1-6质量%,优选为0.5-4质量%。
7、根据例示实施方式4-6中任意一项所述的阳极反应方法,其中,所述硫改性导电炭黑中的导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
8、含硫铂碳催化剂在燃料电池中的应用,其特征在于,
所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,以催化剂的总质量为基准,铂的质量分数为20-70%;
其中,所述燃料电池的原料气中CO的含量为1500ppm以下。
9、根据例示实施方式8所述的应用,其中,所述原料气中CO的含量为1200ppm以下,优选为1000ppm以下;
优选地,所述燃料电池为氢燃料电池;
优选地,所述含硫铂碳催化剂在燃料电池中作为阳极催化剂。
10、根据例示实施方式8或9所述的应用,其中,以催化剂的总质量为基准,铂的质量分数为20-60%,更优选为20-40%;
优选地,所述硫改性碳载体中的总硫含量为0.4-8质量%,优选为1-6质量%;
优选地,所述硫改性碳载体中的表面硫含量为0.1-6质量%,优选为0.5-4质量%。
11、一种电解水的方法,其特征在于,该方法包括:在电解水的条 件下,使水与含硫铂碳催化剂接触;
其中,所述接触的至少部分在CO的存在下进行;
所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,以催化剂的总质量为基准,铂的质量分数为20-70%。
12、根据例示实施方式11所述的方法,其中,所述电解水的条件包括:电压为-0.4V以上,优选为-0.4~1.0V;
优选地,所述电解水的方法为质子交换膜电解水。
13、根据例示实施方式11或12所述的方法,其中,以催化剂的总质量为基准,铂的质量分数为20-60%,更优选为20-40%;
优选地,所述硫改性碳载体中的总硫含量为0.4-8质量%,优选为1-6质量%;
优选地,所述硫改性碳载体中的表面硫含量为0.1-6质量%,优选为0.5-4质量%。
14、含硫铂碳催化剂在提高铂碳催化剂抗CO毒性中的应用,其特征在于,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述含硫铂碳催化剂中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,以催化剂的总质量为基准,铂的质量分数为20-70%。
本发明第六系列的例示实施方式包括:
1、含硫铂碳催化剂在提高铂碳催化剂抗H2S毒性中的应用,其特征在于,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,以催化剂的总质量为基准,铂的质量分数为20-70%。
2、根据例示实施方式1所述的应用,其中,以催化剂的总质量为基准,铂的质量分数为20-60%,更优选为40-60%;
优选地,所述硫改性碳载体中的总硫含量为0.4-8质量%,优选为1-6质量%;
优选地,所述硫改性碳载体中的表面硫含量为0.1-6质量%,优选为0.5-4质量%。
3、根据例示实施方式1或2所述的应用,其中,所述硫改性碳载体为硫改性导电炭黑;
优选地,所述硫改性导电炭黑中的导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
4、一种氢燃料电池的阳极反应方法,其特征在于,该方法包括:在阳极反应条件下,使原料气中的H2与含硫铂碳催化剂接触;
其中,所述原料气中H2S的含量为15ppm以下;
所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,以催化剂的总质量为基准,铂的质量分数为20-70%。
5、根据例示实施方式4所述的阳极反应方法,其中,所述原料气中H2S的含量为10ppm以下,优选为5ppm以下;
优选地,所述阳极反应条件包括:电压为0V以上,优选为0.01-0.4V。
6、根据例示实施方式4或5所述的阳极反应方法,其中,以催化剂的总质量为基准,铂的质量分数为20-60%,更优选为40-60%;
优选地,所述硫改性碳载体中的总硫含量为0.4-8质量%,优选为1-6质量%;
优选地,所述硫改性碳载体中的表面硫含量为0.1-6质量%,优选为0.5-4质量%。
7、根据例示实施方式4-6中任意一项所述的阳极反应方法,其中,所述硫改性导电炭黑中的导电炭黑为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
8、含硫铂碳催化剂在燃料电池中的应用,其特征在于,
所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更 优选1.5倍以上,以催化剂的总质量为基准,铂的质量分数为20-70%;
其中,所述燃料电池的原料气中H2S的含量为15ppm以下。
9、根据例示实施方式8所述的应用,其中,所述原料气中H2S的含量为10ppm以下,优选为0.4-10ppm;
优选地,所述燃料电池为氢燃料电池;
优选地,所述含硫铂碳催化剂在燃料电池中作为阳极催化剂。
10、根据例示实施方式8或9所述的应用,其中,以催化剂的总质量为基准,铂的质量分数为20-60%,更优选为40-60%;
优选地,所述硫改性碳载体中的总硫含量为0.4-8质量%,优选为1-6质量%;
优选地,所述硫改性碳载体中的表面硫含量为0.1-6质量%,优选为0.5-4质量%。
11、含硫铂碳催化剂在提高铂碳催化剂抗H2S毒性中的应用,其特征在于,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述含硫铂碳催化剂中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,更优选1.5倍以上,以催化剂的总质量为基准,铂的质量分数为20-70%。
附图说明
实施方式I
图I.1是用实施例I.1和对比例I.2的硫改性碳材料制得的含硫铂碳催化剂以及对比例I.1的商业铂碳催化剂催化ORR反应的极化曲线;
图I.2是用实施例I.1的硫改性碳材料制得的含硫铂碳催化剂催化HER反应稳定性前后的极化曲线;
图I.3是用对比例I.1的商业铂碳催化剂催化HER反应稳定性前后的极化曲线;
图I.4是用对比例I.2的无复合元素的碳材料制得的铂碳催化剂的STEM照片;
图I.5为测试例I.5的样品的键长信息;
图I.6为测试例I.5的样品的价态信息。
实施方式II
图II.1为实施例II.2与对比例II.3的含硫铂碳催化剂的XPS图谱;
图II.2为实施例II.2的含硫铂碳催化剂的STEM照片;
图II.3为实施例II.3的含硫铂碳催化剂的STEM照片;
图II.4为对比例II.1的含硫铂碳催化剂的TEM照片;
图II.5为对比例II.2的含硫铂碳催化剂的TEM照片;
图II.6为对比例II.4的含硫铂碳催化剂的STEM照片;
图II.7为示出具有规则晶格条纹的铂颗粒的STEM照片;
图II.8为实施例II.2的含硫铂碳催化剂的TEM照片;
图II.9为对比例II.4的含硫铂碳催化剂的TEM照片。
实施方式III
图III.1为实施例III.1、3-5和对比例III.1-2的含硫铂碳催化剂的XRD谱图;
图III.2为实施例III.1和对比例III.1-3的含硫铂碳催化剂的XPS谱图;
图III.3为实施例III.1和对比例III.1-3的含硫铂碳催化剂的LSV曲线。
实施方式IV
图IV.1为实施例1和对比例2的铂碳催化剂在SOx毒化处理前后ORR的LSV曲线。
实施方式V
图V.1为实施例V.1和对比例V.1的铂碳催化剂的XPS谱图;
图V.2为实施例V.1和对比例V.1的铂碳催化剂在CO毒化处理前后HER的LSV曲线;
图V.3为实施例V.1和对比例V.2的铂碳催化剂在CO毒化处理前后HOR的LSV曲线;
图V.4为实施例V.1和对比例V.1的铂碳催化剂的CO原位红外曲线。
图V.5为实施例V.2和对比例V.4的铂碳催化剂在CO毒化处理前后HOR的LSV曲线。
实施方式VI
图VI.1为实施例VI.2的铂碳催化剂经H2S毒化前后的LSV曲线;
图VI.2为实施例VI.2的铂碳催化剂经H2S毒化前后的CV曲线;
图VI.3为实施例VI.1和对比例VI.1的铂碳催化剂经H2S毒化前后的LSV曲线;
图VI.4为实施例VI.1和对比例VI.1的铂碳催化剂经H2S毒化前后的CV曲线。
具体实施方式
以下结合具体实施方式详述本发明,但需说明的是,本发明的保护范围不受这些具体实施方式和原理性解释的限制,而是由例示实施方式书来确定。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本发明原始公开或记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
本发明所公开的所有特征可以任意组合,这些组合应被理解为本发明所公开或记载的内容,除非本领域技术人员认为该组合明显不合理,均应被视为被本发明所具体公开和记载。本说明书所公开的数值点,不仅包括实施例中具体公开的数值点,还包括说明书中各数值范围的端点,这些数值点所任意组合的范围都应被视为本发明已公开或记载的范围。
本发明中限定的数值范围包括数值范围的端点。本文所公开的“范围”以下限和上限的形式,例如一个或多个下限与一个或多个上限的形式给出。给定范围可通过选择一个下限和一个上限来进行限定,选定的下限和上限限定了给定范围的边界。所有以这种方式限定的范围是包含和可组合的,即任何下限可与任何上限组合形成一个范围。例如,针对特定参数列出了60-110和80-120的范围,理解为60-120和80-110 的范围也是可预料到的。此外,如果列出的下限为1和2而列出的上限为3,4和5,则下面的范围都是可预料到的:1-3、1-4、1-5、2-3、2-4和2-5。
在本发明中,除非有其他说明,术语“包括”、“包含”、“含有”、“具有”和类似措词表示开放式,但是也应当理解为同时明确公开了封闭式的情形。例如,“包括”表示还可以包含没有列出的其他要素,但是也同时明确公开了仅包括所列出的要素的情形。此外,如本文所用,将“包含/包括”解释为明确说明存在提及的所述特征、整数、步骤或组分,但是不排除一种或多种其它特征、整数、步骤、组分或其组的存在或添加。另外,术语“包含”旨在包括由术语“基本上由...组成”和“由...组成”涵盖的实施方式。相似地,术语“基本上由...组成”旨在包括由术语“由...组成”涵盖的实施方式。
本发明中,“炭黑”与“碳黑”为可相互替换的技术术语。
本发明中的“惰性气体”是指,在本发明的制备方法中,对含硫导电炭黑/硫改性碳材料的性能不造成任何可察觉影响的气体。
本发明中,“表面硫含量”是指对于测试对象,通过XPS分析测得的硫重量分数。本领域技术人员能够理解,根据XPS分析的原理和测试方法,其可用于表征处于测试对象表面上的硫浓度,其基于该测试对象的表面层的总重量。
本发明中,“总硫含量”是指对于测试对象,通过硫碳分析仪测得的硫重量分数。本领域技术人员能够理解,根据硫碳分析仪的原理和测试方法,其可用于表征测试整体的硫浓度,其基于该测试对象的总重量。
对于本发明目的,所述硫改性碳材料一般可用作载体以用于制备催化剂等目的;因此,除非特别指明,本发明中术语“硫改性碳材料”和“硫改性碳载体”可互换使用。此外,对于本发明目的,可使用本发明所述硫改性碳材料作为所述含硫导电炭黑;因此,除非特别指明,本发明中术语“硫改性碳材料”和“含硫导电炭黑”可互换使用。相应地,该“含硫导电炭黑”也可称作“硫改性导电炭黑”。
根据本发明的技术方案,本发明提供的铂碳催化剂可使用所述硫改性碳材料作为载体制备,相应地,本发明提供的铂碳催化剂是含硫的,因而称为含硫铂碳催化剂,其与不含硫的现有技术的铂碳催化剂形成 对比。由此,当描述本发明技术方案时,有时术语“含硫铂碳催化剂”和术语“铂碳催化剂”可互换使用,除非本领域技术人员能清楚判断其具有不同的具体含义,例如专门使用术语“铂碳催化剂”来描述现有技术的、和/或作为对比的不含硫的铂碳催化剂时。
在本发明中,除非有其他说明,本文所提到的所有解决方案、实施方式、系列、例示实施方式以及优选实施方式及其所含各个特征可以相互组合形成新的技术方案。特别地,例如对于本发明所涵盖的实施方式I-VI,它们之中提到的技术特征和技术方案可以在内部和相互之间进行组合,除非这样的组合对于本发明的目的而言是相悖的;再如,对于本发明所涵盖的所述第一至第六系列的例示实施方式,它们之中提到的技术特征和技术方案可以在内部和相互之间进行组合,还可与实施方式I-VI相互之间进行组合,除非这样的组合对于本发明的目的而言是相悖的。
同时,本发明对于解决方案、实施方式、系列、例示实施方式以及优选实施方式给出的编号,例如第一、第二等,以及I-VI等,仅仅是为了便于描述、阅读和理解的目的,而并不意味着他们之间存在顺序或主次关系,也并不需要顺序编号。同时,除非专门指明,对于术语、特征、编号等的引述优选指向同一解决方案、实施方式、系列、例示实施方式以及优选实施方式内部的对象。
实施方式I:硫改性碳材料及其制备方法和应用
本发明的实施方式I提供一种硫改性碳材料,该硫改性碳材料包括导电炭黑和复合于其中的硫元素,所述硫改性碳材料中的总硫含量大于或等于表面硫含量。
根据本发明的硫改性碳材料,优选的情况下,所述硫改性碳材料中的总硫含量可以为表面硫含量的1.2倍以上、1.5倍以上、1.7倍以上、2倍以上、3倍以上等,例如1.2-10倍。其中,表面硫含量表示通过XPS分析测得的硫重量分数,总硫含量表示通过硫碳分析仪测得的硫重量分数。
根据本发明,一方面,发明人发现通过更多地在碳材料的内部复合硫元素,从而适合制备更加有利于铂负载在导电炭黑内部的催化剂,并且提供更好的电催化性能;另一方面,发明人发现将单质硫以浸渍、 干燥的方式引入导电炭黑中,能够制造出性能更优异的含硫铂碳催化剂。
优选的情况下,硫元素以单质硫的形态引入所述导电炭黑中。相应地,在制备所述硫改性碳材料的过程中,优选浸渍所用的硫源为单质硫,从而将硫元素以单质硫的形态引入所述导电炭黑中。进一步地,硫元素以单质硫的形态引入所述导电炭黑中后,优选该硫改性碳材料中的硫元素以单质硫的形态或者基本以单质的形态存在于所述导电炭黑中。
优选的情况下,所述硫改性碳材料中的总硫含量为0.1-10重量%,优选为1-8重量%,还优选为1-4重量%。并且,优选所述硫改性碳材料中的表面硫含量为0.1-6重量%,还优选为0.5-3重量%。
根据本发明,优选所述硫改性碳材料为含硫导电炭黑,还优选所述硫改性碳材料包括导电炭黑和复合于其中的硫元素和氧元素。本发明的硫改性碳材料中的氧含量为4-15重量%,优选为6-10重量%。并且,本发明的硫改性碳材料中优选不含除硫外的其他复合元素。在此,本发明中的“复合元素”是指氮、磷、硼、硫、氟、氯、溴和碘。还优选地,所述硫改性碳材料由导电炭黑和复合于其中的硫元素和氧元素构成。
作为本发明中可使用的导电炭黑,可以使用普通导电炭黑(Conductive Blacks)、超导电炭黑(Super Conductive Blacks)或特导电炭黑(Extra Conductive Blacks)中的一种或多种,例如科琴黑(Ketjen black)、卡博特导电炭黑(Cabot、Black pearls等)、欧励隆导电碳黑(HIBLACK、PRINTEX等)等,具体可以为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
本发明对导电炭黑的制法、来源没有限制。所述导电炭黑可以为乙炔黑、炉法炭黑等。
优选地,所述导电炭黑的比表面积可以为200-2000m2/g,优选为220-1500m2/g。比表面积可以通过BET法测定。
优选地,所述导电炭黑的电阻率可以为小于10Ω·m,优选小于5Ω·m,还优选小于3Ω·m,进一步优选为0.01-1Ω·m。
本发明另一方面提供一种硫改性碳材料的制备方法,该方法包括:用含有硫磺的溶液在10-80℃下浸渍导电炭黑1-5h,并将浸渍产物进行 干燥后得到硫改性碳材料。
本发明所述硫改性碳材料的制备方法可以用于制备本发明所述的含硫铂碳催化剂。其中,导电炭黑与上述相同,在此不再赘述。
在上述制备方法中,所述含有硫磺的溶液中的溶剂能够溶解硫磺即可,优选地,从更好地制备硫改性碳材料的角度考虑,例如可以为CCl4、CS2、环己烷和正己烷中的一种或多种,还优选为环己烷、正己烷、CCl4等。所述含有硫磺的溶液中的硫磺的浓度为0.0004-0.02g/mL,优选为0.0005-0.01g/mL。相对于1g所述导电炭黑,含有硫磺的溶液的用量例如可以为5-15mL。
为了得到合适的硫载量和硫分布,相对于1g所述导电炭黑,优选硫磺的用量为0.005-0.06g,还优选为0.01-0.055g。并且,浸渍的温度优选为10-40℃,还优选为20-30℃,特别优选为室温(25℃),时间优选为2-4h。
另外,干燥的方式没有特别的限定,只要能够除去含有硫磺的溶液中的溶剂即可,优选采用真空干燥。干燥的条件可以包括:温度为20-100℃,时间为5-10h。
通过在上述条件下制备硫改性碳材料,可以得到本发明所需的硫分布情况的硫改性碳材料。通过本发明的制备方法,制得的硫改性碳材料可以更容易分散于水相。
本发明另一方面提供一种含硫铂碳催化剂,该含硫铂碳催化剂包括硫改性碳材料以及负载于其上的铂金属;该硫改性碳材料为本发明所述的硫改性碳材料、或者利用本发明所述的制备方法得到的硫改性碳材料。
根据本发明,以含硫铂碳催化剂的总重量为基准,铂的重量分数可以为0.1-70重量%。根据不同用途,铂的重量分数可以为0.1-1%、1-4%、1-8%、4-20重量%、1-70重量%、5-60重量%、10-55%、20-40重量%或40-70重量%。并且,本发明的含硫铂碳催化剂中优选不含除铂外的其他金属元素。
根据本发明,所述含硫铂碳催化剂中具有规则晶格条纹的铂颗粒不超过60重量%,优选为50重量%或以下,还优选为40重量%或以下,进一步优选为20重量%或以下或10重量%或以下。其中,具有晶格条纹表示Pt颗粒以纳米晶形式存在,而不具有晶格条纹表示Pt颗粒以原 子或原子簇形式存在。具体地,晶格条纹可以通过在TEM或STEM(优选AC-TEM或AC-STEM)下观察确认。
在本发明的含硫铂碳催化剂中,优选地,70重量%以上(优选80重量%以上、90重量%以上或优选95%以上)的铂金属颗粒负载于碳材料内部。铂金属颗粒的分布位置可以通过如下方法确定:在TEM图中,随机统计200个沿着碳载体边缘的金属铂颗粒与碳材料的相对位置,计算突出于碳材料的金属铂颗粒所占的比例A%,并用(100-A)%表示负载于碳材料内部的铂金属颗粒所占的比例。可以理解的是,在TEM图中,“突出于碳材料”表示金属铂颗粒位于碳材料的表面,而“不突出于碳材料”表示金属铂颗粒位于碳材料的内部。
根据本发明一些优选的实施方式,所述含硫铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰位于71.6eV以上,例如位于71.6-72.2eV。上述XPS图谱是指以C1s峰位于284.3eV校正后的XPS图谱。通常情况下,比如用无复合元素的碳载体负载铂时,Pt 4f 7/2特征峰位于71.3eV附近,这说明本发明的含硫铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰向高电子伏特偏移0.3eV以上。
本发明的含硫铂碳催化剂,可以在本发明的硫改性碳材料基础上,通过负载铂得到。作为上述含硫铂碳催化剂的制备方法,例如可以包括如下:
(1)将含有硫改性碳材料、铂源和溶剂的均匀混合液中的溶剂除去,得到前驱体材料;
(2)在还原性气氛中,将步骤(1)得到的前驱体材料在80-200℃下进行1-4h的热处理,得到含硫铂碳催化剂;
根据本发明,步骤(1)中,所述铂源可以为氯铂酸、氯铂酸盐、醋酸四氨合铂和乙酰丙酮铂中的一种或多种。其中氯铂酸盐可以为氯铂酸钾或氯铂酸钠等。
优选地,相对于所述1g硫改性碳材料,以铂元素计所述铂源的用量为0.01-2.4g,优选为0.05-1.5g。
根据本发明,步骤(2)中,所述前驱体材料是将硫改性碳材料和铂源在溶剂中溶解形成均匀的混合液,然后除去均匀混合液中的溶剂而得到的。对所述溶剂的种类没有特别的限定。所述溶剂可以为水、醇类溶剂或酮类溶剂中的一种或多种;所述醇类溶剂例如可以为乙醇, 所述酮类溶剂例如可以为丙酮。所述溶剂还优选为水、乙醇或者乙醇和水的混合液(乙醇和水的体积比例可以任意选择,例如可以为0.1-10∶1,优选为1-5∶1)。本发明对所述溶剂的用量也没有特别的限定,例如相对于1g硫改性碳材料可以为3-20mL。
本发明可以将硫改性碳材料、铂源和溶剂进行混合,得到上述均匀混合液,优选配合搅拌进行。本发明对搅拌的速率和时间也没有特别的限定,能够形成所述均匀混合液即可。另外,为了形成所述均匀混合液,也可以进一步通过加热的方式加速溶解。
作为除去所述均匀混合液中的溶剂的方法,可以采用蒸发的方式除去所述均匀混合液中的溶剂,蒸发的温度和工艺可以采用本领域技术人员所公知的现有技术。根据本发明,步骤(1)中,去除溶剂时的干燥温度为100℃以下,例如可以在60-95℃烘箱中干燥12-24h以除去所述均匀混合液中的溶剂。
根据本发明优选的实施方式,步骤(1)中,将所述均匀混合液静置后,再将溶剂除去,所述静置的时间为4h以上,优选16-30h。
根据本发明,步骤(2)中,所述热处理的温度优选为100-180℃,所述时间优选为2-3h。并且,热处理的升温速率可以为4-15℃/min,一般为5℃/min。
根据本发明,步骤(2)中,热处理在还原性气氛中进行。所述还原性气氛优选包括氢气,优选为氢气与惰性气体的混合气氛,其中所述惰性气氛可以为氮气和/或氩气等,具体可以为氢气和氮气的混合气氛。优选地,氢气占气体总量的5-30体积%。热处理可以在提供上述热处理条件的任意装置中进行,例如可以在管式炉中进行。
通过在上述条件下进行铂的负载,可以得到以本发明所需的形式负载铂的含硫铂碳催化剂。
本发明另一方面提供上述硫改性碳材料、利用上述制备方法得到的硫改性碳材料、或者上述含硫铂碳催化剂作为电极材料的应用。
本发明的含硫铂碳催化剂适合作为燃料电池中的阳极催化剂,对于燃料电池没有特别的限定,例如可以为氢燃料电池(例如质子交换膜氢燃料电池)、直接醇类燃料电池(例如甲醇或乙醇为阳极燃料的直接醇类燃料电池)等。
本发明另一方面提供一种燃料电池,所述燃料电池中使用了上述本 发明所述的硫改性碳材料、利用上述本发明所述的制备方法得到的硫改性碳材料、或者上述本发明所述的含硫铂碳催化剂。
优选地,所述的燃料电池为氢燃料电池。
本发明另一方面提供一种PEM电解槽,所述PEM电解槽的阴极中,使用了上述本发明所述的硫改性碳材料、利用上述本发明所述的制备方法得到的硫改性碳材料、或者上述本发明所述的含硫铂碳催化剂。
本发明的硫改性碳材料和含硫铂碳催化剂可以应用于氢燃料电池阳极氢氧化反应、阴极氧还原反应和PEM电解水阴极氢析出反应,具有优异的催化剂活性和稳定性。
实施方式II:Pt含量高的含硫铂碳催化剂及其制备方法和应用
本发明的实施方式II提供一种含硫铂碳催化剂,该含硫铂碳催化剂包括本发明所述含硫导电炭黑和负载于其上的铂金属,其中,所述含硫导电炭黑中的总硫含量大于或等于表面硫含量,优选所述含硫导电炭黑中总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
在本发明中,使用含硫导电炭黑作为含硫碳载体。
在本发明的含硫铂碳催化剂中,通过在碳载体内部的硫元素,更加有利于铂负载在碳载体的内部,从而使得含硫铂碳催化剂具有更好的电催化性能。优选地,所述含硫导电炭黑中的总硫含量为表面硫含量的1.7倍以上、2倍以上、3倍以上等,例如1.2-10倍。其中,表面硫含量表示通过XPS分析测得的硫重量分数,总硫含量表示通过硫碳分析仪测得的硫重量分数。
根据本发明,优选地,所述含硫导电炭黑中的总硫含量为0.4-8重量%,优选为1-6重量%。优选地,所述含硫导电炭黑中的表面硫含量为0.1-6重量%,优选为0.5-4重量%。
优选的情况下,在含硫导电炭黑中的硫元素以单质硫的形式存在。
根据本发明,优选地,至少90重量%、优选95%以上的铂金属颗粒负载于碳载体内部。铂金属颗粒的分布位置可以通过如下方法确定:在TEM图中,随机统计200个沿着碳载体边缘的金属铂颗粒与碳载体的相对位置,计算突出于碳载体的金属铂颗粒所占的比例A%,并用 (100-A)%表示负载于碳载体内部的铂金属颗粒所占的比例。可以理解的是,在TEM图中,“突出于碳载体”表示金属铂颗粒位于碳载体的表面,而“不突出于碳载体”表示金属铂颗粒位于碳载体的内部。
在本发明的含硫铂碳催化剂中,所述含硫铂碳催化剂中具有规则晶格条纹的铂金属颗粒不超过60重量%,优选为50重量%或以下,还优选为40重量%或以下,进一步优选为20重量%或以下或10重量%或以下。具有晶格条纹表示Pt颗粒以纳米晶形式存在,而不具有晶格条纹表示Pt颗粒以原子或原子簇形式存在。具体地,晶格条纹可以通过在TEM或STEM(优选AC-TEM或AC-STEM)下观察确认。
在本发明的含硫铂碳催化剂中,所述含硫铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰位于71.6eV以上,例如位于71.6-72.2eV,如71.7eV。上述XPS图谱是指以C1s峰位于284.3eV校正后的XPS图谱。通常情况下,比如用不含复合元素的碳载体负载铂时,Pt 4f 7/2特征峰位于71.3eV附近,这说明本发明的含硫铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰向高电子伏特偏移0.3eV以上。
在本发明的含硫铂碳催化剂中,以催化剂的总重量为基准,铂的重量分数为20-70重量%,优选为20-60重量%、20-40重量%或40-70重量%。优选地,本发明的含硫铂碳催化剂中不含除铂外的其他金属元素。
根据本发明,优选地,所述含硫导电炭黑包括导电炭黑和复合于其中的硫元素和氧元素。并且,本发明的含硫导电炭黑中优选不含除硫外的其他复合元素。在此,本发明中的“复合元素”是指氮、磷、硼、硫、氟、氯、溴和碘。还优选地,所述含硫导电炭黑由导电炭黑和复合于其中的硫元素和氧元素构成。
作为本发明中可使用的导电炭黑,可以使用普通导电炭黑(Conductive Blacks)、超导电炭黑(Super Conductive Blacks)或特导电炭黑(Extra Conductive Blacks)中的一种或多种,例如科琴黑(Ketjen black)、卡博特导电炭黑(Cabot、Black pearls等)、欧励隆导电碳黑(HIBLACK、PRINTEX等)等,具体可以为EC-300J、EC-600JD、ECP600JD、VXC72、VXC72R、Black pearls 2000、PRINTEX XE2-B、PRINTEX L6和HIBLAXK 40B2中的一种或多种。
本发明对导电炭黑的制法、来源没有限制。所述导电炭黑可以为乙炔黑、炉法炭黑等。
优选地,所述导电炭黑的XPS分析中,氧含量大于4重量%,例如为5-12重量%。
优选地,所述导电炭黑的比表面积为200-2000m2/g,优选为220-1500m2/g。
该实施方式II还提供一种含硫铂碳催化剂,该含硫铂碳催化剂包括含硫导电炭黑和负载于其上的铂金属,其中,所述含硫铂碳催化剂中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
该实施方式II还提供一种含硫铂碳催化剂的制备方法,该方法包括:
(1)用含有硫磺的溶液在10-80℃下浸渍碳载体(导电炭黑)1-5h,并将浸渍产物进行干燥后得到含硫碳载体(也称为含硫导电炭黑);
(2)将含有步骤(1)得到的含硫碳载体、铂源和溶剂的均匀混合液中的溶剂除去,得到前驱体材料;
(3)在还原性气氛中,将步骤(2)得到的前驱体材料在80-200℃下进行1-4h的热处理,得到含硫铂碳催化剂;
其中,步骤(2)中,相对于所述含硫导电炭黑1g,以铂元素计所述铂源的用量为0.25-2.4g。
优选地,步骤(1)中,所述含有硫磺的溶液中的溶剂能够溶解硫磺即可,从更好地制备含硫碳载体的角度考虑,例如可以为CCl4、CS2、环己烷、正己烷中的一种或多种,还优选为环己烷、正己烷等。所述含有硫磺的溶液中的硫磺的浓度为0.0004-0.02g/mL,优选为0.0005-0.01g/mL。相对于所述碳载体1g,所述含有硫磺的溶液的用量为5-15mL。
为了得到合适的硫载量和硫分布,相对于所述碳载体1g,优选硫磺的用量为0.005-0.06g,还优选为0.01-0.055g。并且,浸渍的温度优选为10-40℃,还优选为20-30℃,特别优选在室温(25℃)下,时间优选为2-4h。
另外,干燥的方式没有特别的限定,只要能够除去含有硫磺的溶液中的溶剂即可,优选采用真空干燥。
通过在上述条件下制备含硫碳载体,可以得到本发明所需的硫分布 情况的碳载体。通过步骤(1),制得的含硫碳载体可以容易的分散于水相。而未经过步骤(1)的处理的碳载体,比如科琴黑,很难直接分散于水相,通常需要添加乙醇等容易以帮助分散。
根据本发明,步骤(2)中,所述铂源可以为氯铂酸、氯铂酸盐、醋酸四氨合铂和乙酰丙酮铂中的一种或多种。其中氯铂酸盐可以为氯铂酸钾或氯铂酸钠等。
优选地,相对于所述含硫碳载体1g,以铂元素计所述铂源的用量为0.25-2.4g,优选为0.25-0.67g。
根据本发明,步骤(2)中,所述前驱体材料是将含硫碳载体和铂源在溶剂中溶解形成均匀的混合液,然后除去均匀混合液中的溶剂而得到的。对所述溶剂的种类没有特别的限定。所述溶剂可以为水、醇类溶剂或酮类溶剂中的一种或多种;所述醇类溶剂例如可以为乙醇,所述酮类溶剂例如可以为丙酮。所述溶剂还优选为水、乙醇或者乙醇和水的混合液(乙醇和水的体积比例可以任意选择,例如可以为0.1-10∶1,优选为1-5∶1)。本发明对所述溶剂的用量也没有特别的限定,例如可以为相对于1g含硫碳载体3-20mL。
本发明可以将含硫碳载体、铂源和溶剂进行混合,得到上述均匀混合液,优选配合搅拌进行。本发明对搅拌的速率和时间也没有特别的限定,能够形成所述均匀混合液即可。另外,为了形成所述均匀混合液,也可以进一步通过加热的方式加速溶解。
作为除去所述均匀混合液中的溶剂的方法,可以采用蒸发的方式除去所述均匀混合液中的溶剂,蒸发的温度和工艺可以采用本领域技术人员所公知的现有技术。根据本发明,步骤(2)中,去除溶剂时的干燥温度为100℃以下,例如可以在60-95℃烘箱中干燥12-24h以除去所述均匀混合液中的溶剂。
根据本发明优选的实施方式,步骤(2)中,将所述均匀混合液静置后,再将溶剂除去,所述静置的时间为4h以上,优选16-30h。
根据本发明,步骤(3)中,所述热处理的温度优选为100-180℃,所述时间优选为2-3h。并且,热处理的升温速率可以为4-15℃/min,一般为5℃/min。
根据本发明,步骤(3)中,热处理在还原性气氛中进行。所述还原性气氛优选包括氢气,优选为氢气与惰性气体的混合气氛,其中所 述惰性气氛可以为氮气和/或氩气等,具体可以为氢气和氮气的混合气氛。优选地,氢气占气体总量的5-30体积%。热处理可以在提供上述热处理条件的任意装置中进行,例如可以在管式炉中进行。
通过在上述条件下进行铂的负载,可以得到以本发明所需的形式负载铂的含硫铂碳催化剂。
在一个可选方案中,本发明所述导电炭黑或硫改性碳材料的电阻率小于10Ω·m,例如小于5Ω·m,例如小于3Ω·m,例如为0.01-1Ω·m。
该实施方式II提供一种含硫铂碳催化剂,该含硫铂碳催化剂由上述本发明所述的制备方法制得。
该实施方式II提供上述本发所述的含硫铂碳催化剂在燃料电池或电解水中的应用。
本发明的含硫铂碳催化剂适合作为燃料电池中的阳极催化剂,对于燃料电池没有特别的限定,例如可以为氢燃料电池(例如质子交换膜氢燃料电池)、直接醇类燃料电池(例如甲醇或乙醇为阳极燃料的直接醇类燃料电池)等。
该实施方式II提供一种PEM电解槽,所述PEM电解槽的阴极中,使用上述本发明所述的含硫铂碳催化剂。
本发明的含硫铂碳催化剂可以应用于氢燃料电池阳极氢氧化反应、阴极氧还原反应和PEM电解水阴极氢析出反应,具有优异的催化剂活性和稳定性。
实施方式III:Pt含量低的含硫铂碳催化剂及其制备方法和应用
本发明的实施方式III提供一种含硫铂碳催化剂,该含硫铂碳催化剂包括本发明所述硫改性碳载体和负载于其上的铂金属,其中,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量且总硫含量为1-8重量%,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上;以含硫铂碳催化剂的总重量为基准,铂的重量分数为1-20重量%。
在本发明的含硫铂碳催化剂中,通过构建单质硫改性的新型碳载体结构,更加有利于铂负载在碳载体的内部,从而使得含硫铂碳催化剂具有更好的电催化性能。还优选地,所述硫改性碳载体中的总硫含量为表面硫含量的1.7倍以上、2倍以上、3倍以上等,例如1.5-10倍。 其中,表面硫含量表示通过XPS分析测得的硫重量分数,总硫含量表示通过硫碳分析仪测得的硫重量分数。
优选的情况下,所述硫改性碳载体中的总硫含量为0.1-8重量%,优选为0.5-6重量%。优选地,所述硫改性碳载体中的表面硫含量为0.1-6重量%,优选为0.5-3重量%。
作为本发明的含硫铂碳催化剂,总硫含量例如可以为表面硫含量的1.2倍、1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2倍、2.5倍、3倍、3.5倍、4倍、4.5倍、5倍、6倍、7倍、8倍、9倍或10倍等。另外,总硫含量可以为0.4重量%、0.5重量%、1重量%、1.5重量%、2重量%、3重量%、4重量%、5重量%、6重量%、7重量%或8重量%等;表面硫含量可以为0.1重量%、0.5重量%、1重量%、1.5重量%、2重量%、3重量%、4重量%、5重量%或6重量%等。
优选的情况下,在硫改性碳载体中的改性硫元素以单质硫的形式存在。通过采用本发明的硫改性碳载体,合成的含硫铂碳催化剂中铂以原子簇的形式负载在碳载体的内部,从而提高催化活性。优选地,至少70重量%、优选70-80重量%的铂金属颗粒负载于碳载体内部。
在本发明的含硫铂碳催化剂中,所述含硫铂碳催化剂在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.8且Pt(200)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.5。优选地,当含硫铂碳催化剂的铂含量为10重量%以下时,所述含硫铂碳催化剂在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.6且Pt(200)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.4。
具体地,“在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.8且Pt(200)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.5”表示本发明的含硫铂碳催化剂中铂至少大部分以非晶相存在,但是不排除含有少量晶相。如上这样,少量晶相的存在并不影响含硫铂碳催化剂的性能。通过球差电镜分析表明,本发明的含硫铂碳催化剂中铂大部分以原子簇形式存在。
上述单位重量铂归一化峰强度与半峰全宽之比表示归一化峰强度 (NormalizationIntensity,NI)与半峰全宽(Full Width At Half Maxima,FWHM)和催化剂中的铂重量含量的比值,即归一化峰强度/(半峰全宽*铂重量含量),以下也以NI/(FWHM*mPt)表示。其计算方法如下:(1)在粉末X射线衍射仪工作条件(管电压40kV,管电流40mA,Cu靶Kα辐射)下,对待测催化剂收集2θ在20-70°范围内的X射线衍射谱图,扣除背景信号及Kα2后,以2θ为22-28°范围内强度数据最大值为1、65-70°范围内强度数据最小值为0,进行归一化处理,分别得到该待测催化剂的Pt(111)特征峰和Pt(200)特征峰的归一化峰强度。(2)对归一化处理后的X射线衍射谱图进行分峰拟合,分别得到Pt(111)特征峰和Pt(200)特征峰的半峰全宽(单位为°)。上述Pt(111)特征峰和Pt(200)特征峰通常是指2θ分别在39.8±0.2°、46.2±0.2°处特征峰。(3)分别用Pt(111)特征峰和Pt(200)特征峰的归一化峰强度除以对应的半峰全宽及催化剂中的铂重量含量,得到该催化剂Pt(111)特征峰和Pt(200)特征峰的单位重量铂归一化峰强度与半峰全宽之比。
在本发明的含硫铂碳催化剂中,所述含硫铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰位于71.7eV以上,优选71.9eV以上。上述XPS图谱是指以C1s峰位于284.3eV校正后的XPS图谱。通常情况下,比如用不含复合元素的碳载体负载铂时,Pt 4f 7/2特征峰位于71.4eV附近,这说明本发明的含硫铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰向高电子伏特偏移0.3eV以上,优选0.5eV以上。
在本发明的含硫铂碳催化剂中,优选地,以催化剂的总重量为基准,铂的重量分数为5-20重量%,还优选为5-15%,进一步优选为7-10重量%。优选地,本发明的含硫铂碳催化剂中不含除铂外的其他金属元素。
根据本发明,优选地,所述硫改性碳载体包括导电炭黑和复合于其中的硫元素和氧元素。并且,本发明的硫改性碳载体中优选不含除硫外的其他复合元素。在此,本发明中的“复合元素”是指氮、磷、硼、硫、氟、氯、溴和碘。还优选地,所述硫改性碳载体由导电炭黑和复合于其中的硫元素和氧元素构成。
根据本发明,所述硫改性碳载体可以为硫改性导电炭黑。
该实施方式III还提供一种含硫铂碳催化剂的制备方法,该制备方法包括:
(1)用含有硫磺的溶液在10-80℃下浸渍碳载体1-5h,并将浸渍 产物进行干燥后得到硫改性碳载体;
(2)将含有步骤(1)得到的硫改性碳载体、铂源和溶剂的均匀混合液中的溶剂除去,得到前驱体材料;
(3)在还原性气氛中,将步骤(2)得到的前驱体材料在80-200℃下进行1-4h的热处理,得到含硫铂碳催化剂;
其中,步骤(1)中,所述碳载体为导电炭黑;
步骤(2)中,相对于所述硫改性碳载体1g,以铂元素计所述铂源的用量为0.01-0.25g。
优选地,相对于所述硫改性碳载体1g,以铂元素计所述铂源的用量为0.01-0.25g,优选为0.05-0.18g。
根据本发明优选的实施方式,步骤(2)中,将所述均匀混合液静置后,再将溶剂除去,所述静置的时间为10h以上,优选12-72h,还优选15-24h。
通过在上述条件下进行铂的负载,可以得到以本发明所需的形式负载铂的含硫铂碳催化剂。
该实施方式III中未具体提及的关于各个组分、碳材料、催化剂及其制备方法、用途等的特征和技术方案均可参考其它各个实施方式,尤其是可参考实施方式I和II;只要不与本实施方式的具体公开相悖。
实施方式IV:含硫铂碳催化剂在抗SOx毒性中的应用
本发明的实施方式IV提供一种含硫铂碳催化剂在提高铂碳催化剂抗SOx毒性中的应用,所述含硫铂碳催化剂包括本发明所述硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
换言之,本发明该实施方式IV所使用的所述含硫铂碳催化剂优选可为本发明实施方式II中所述的含硫铂碳催化剂。
根据本发明,通过使用上述本发明的含硫铂碳催化剂,可以在现有的铂碳催化剂的基础上,提供更好的抗SOx毒性效果,从而达到延长铂碳催化剂寿命的效果。具体地,所述含硫铂碳催化剂特别适合作为燃料电池中的阴极催化剂。
作为导致SOx毒性的SOx的来源,目前,燃料电池使用的氧化剂 一般为空气中的O2,而空气中多含有SOx(例如SO2、SO3),其来源主要是汽车尾气,尤其在交通繁忙的公路环境中,SOx浓度可能达到15ppm以上。
在本发明的含硫铂碳催化剂中,通过在碳载体的内部复合硫元素,更加有利于铂负载在碳载体的内部,从而使得含硫铂碳催化剂具有更好的电催化性能。优选地,所述硫改性碳载体中的总硫含量大于表面硫含量。其中,表面硫含量表示通过XPS分析测得的硫重量分数,总硫含量表示通过硫碳分析仪测得的硫重量分数。
根据本发明,优选地,所述硫改性碳载体中的总硫含量为0.4-8重量%,优选为1-6重量%。优选地,所述硫改性碳载体中的表面硫含量为0.1-6重量%,优选为0.5-4重量%。
根据本发明,优选地,至少90重量%、优选95%以上的铂金属颗粒负载于碳载体内部。铂金属颗粒的分布位置可以通过如下方法确定:在TEM图中,随机统计200个沿着碳载体边缘的金属铂颗粒与碳载体的相对位置,计算突出于碳载体的金属铂颗粒所占的比例A%,并用(100-A)%表示负载于碳载体内部的铂金属颗粒所占的比例。可以理解的是,在TEM图中,“突出于碳载体”表示金属铂颗粒位于碳载体的表面,而“不突出于碳载体”表示金属铂颗粒位于碳载体的内部。
在本发明的含硫铂碳催化剂中,以催化剂的总重量为基准,铂的重量分数为20-70重量%,优选为20-60重量%,还优选为40-60重量%。优选地,本发明的含硫铂碳催化剂中不含除铂外的其他金属元素。
本发明的含硫铂碳催化剂的制备方法只要使得其具有上述性质即可。具体地,作为上述含硫铂碳催化剂的制备方法,例如可以为如下:
(1)用含有硫磺的溶液在10-80℃下浸渍碳载体1-5h,并将浸渍产物进行干燥后得到硫改性碳载体;
(2)将含有步骤(1)得到的硫改性碳载体、铂源和溶剂的均匀混合液中的溶剂除去,得到前驱体材料;
(3)在还原性气氛中,将步骤(2)得到的前驱体材料在80-200℃下进行1-4h的热处理,得到含硫铂碳催化剂。
优选地,步骤(2)中,相对于所述硫改性碳载体1g,以铂元素计所述铂源的用量为0.25-2.4g,优选为0.67-1.5g。
该实施方式IV还提供一种燃料电池的阴极反应方法,该方法包括: 在阴极反应条件下,使原料气中的O2与含硫铂碳催化剂接触;其中,所述原料气中SOx的含量为120ppm以下;所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
作为本发明中的原料气,可以使用含氧气体,例如纯氧气或者空气,一般使用空气作为本发明的原料气。
通过使用本发明的含硫铂碳催化剂,即使原料气中含有SOx,只要其含量在规定量以下,也可以保持催化剂活性,长时间地进行阴极反应。
优选地,所述原料气中SOx的含量优选为100ppm以下,还优选50ppm以下,例如可以为5-50ppm。具体地,所述原料气中SOx的含量可以为10、20、30、40或者50ppm。
根据本发明,所述阴极反应条件只要使得阴极反应可以进行即可。具体地,所述阴极反应条件包括:电压为0V以上,优选为0-1.5V,还优选为0-1.1V。所述阴极反应例如可以在酸性电解质溶液中进行,可以使用各种有机酸和/或无机酸溶液,例如高氯酸溶液或者硫酸溶液。另外,在电解质溶液中进行阴极反应的情况下,所述阴极反应条件可以包括:电解质溶液中氢离子浓度为0.0001M以上,优选为0.001-1.0M。
该实施方式IV还提供含硫铂碳催化剂在燃料电池中的应用,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%;其中,所述燃料电池的原料气中SOx的含量为120ppm以下。
根据本发明,所述燃料电池例如可以为氢燃料电池(例如质子交换膜氢燃料电池)、直接醇类燃料电池(例如甲醇或乙醇为阳极燃料的直接醇类燃料电池)等。优选的情况下,所述燃料电池为氢燃料电池。具体地,所述含硫铂碳催化剂可以在燃料电池中作为阳极催化剂和/或阴极催化剂,优选作为阴极催化剂。
根据本发明,所述阴极反应条件只要使得阴极反应可以进行即可。 具体地,所述阴极反应条件还包括:电压为0V以上,优选为0-1.5V,还优选为0-1.1V。所述阴极反应可以在酸性电解质溶液中进行,可以使用各种有机酸和/或无机酸溶液,例如高氯酸溶液或者硫酸溶液。另外,在电解质溶液中进行阴极反应的情况下,所述阴极反应条件可以包括:电解质溶液中氢离子浓度为0.01M以上,优选为0.05-1.0M。
该实施方式IV还提供含硫铂碳催化剂在提高铂碳催化剂抗SOx毒性中的应用,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述含硫铂碳催化剂中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
该实施方式IV中未具体提及的关于各个组分、碳材料、催化剂及其制备方法、用途等的特征和技术方案均可参考其它各个实施方式,尤其是可参考实施方式I和II;只要不与本实施方式的具体公开相悖。
实施方式V:含硫铂碳催化剂在抗CO毒性中的应用
本发明的实施方式V提供一种含硫铂碳催化剂在提高铂碳催化剂抗CO毒性中的应用,所述含硫铂碳催化剂包括本发明所述硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
换言之,本发明该实施方式V所使用的所述含硫铂碳催化剂优选可为本发明实施方式II中所述的含硫铂碳催化剂。
根据本发明,通过使用上述本发明的含硫铂碳催化剂,可以在现有的铂碳催化剂的基础上,提供更好的抗CO毒性效果,从而达到延长铂碳催化剂寿命的效果。具体地,所述含硫铂碳催化剂可以作为燃料电池中的阳极催化剂、电解水的阴极催化剂等。
作为引起CO毒性的CO的来源,例如可以为原料气中从制备工艺、成本等方面考虑混入或者难以除去的杂质CO,也可以为在反应过程中产生的CO例如碳载体、碳纸被氧化生成的CO等。
在本发明的含硫铂碳催化剂中,通过在碳载体的内部复合硫元素,更加有利于铂负载在碳载体的内部,从而使得含硫铂碳催化剂具有更 好的电催化性能。优选地,所述硫改性碳载体中的总硫含量为表面硫含量的1.7倍以上、2倍以上、3倍以上等,例如1.5-10倍。其中,表面硫含量表示通过XPS分析测得的硫重量分数,总硫含量表示通过硫碳分析仪测得的硫重量分数。
在本发明的含硫铂碳催化剂中,所述含硫铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰位于71.6eV以上,例如位于71.6-72.2eV,如71.7eV。上述XPS图谱是指以C1s峰位于284.3eV校正后的XPS图谱。通常情况下,比如用不含复合元素的碳载体负载铂时,Pt 4f 7/2特征峰位于71.3eV附近,这说明本发明的含硫铂碳催化剂在XPS图谱中Pt 4f 7/2特征峰向高电子伏特偏移0.3eV以上。
在本发明的含硫铂碳催化剂中,优选地,以催化剂的总重量为基准,铂的重量分数为20-70重量%,例如可以为20-60重量%、20-40重量%或40-70重量%等。优选地,本发明的含硫铂碳催化剂中不含除铂外的其他金属元素。
本发明的含硫铂碳催化剂的制备方法只要使得其具有上述性质即可。具体地,作为上述含硫铂碳催化剂的制备方法,可以包括:
(1)用含有硫磺的溶液在10-80℃下浸渍碳载体1-5h,并将浸渍产物进行干燥后得到硫改性碳载体;
(2)将含有步骤(1)得到的硫改性碳载体、铂源和溶剂的均匀混合液中的溶剂除去,得到前驱体材料;
(3)在还原性气氛中,将步骤(2)得到的前驱体材料在80-200℃下进行1-4h的热处理,得到含硫铂碳催化剂;
其中,步骤(2)中,相对于所述硫改性碳载体1g,以铂元素计所述铂源的用量为0.25-2.4g。
优选地,相对于所述硫改性碳载体1g,以铂元素计所述铂源的用量为0.25-2.4g,优选为0.25-0.67g。
该实施方式V还提供一种氢燃料电池的阳极反应方法,该方法包括:在阳极反应条件下,使原料气中的H2与含硫铂碳催化剂接触;
其中,所述原料气中CO的含量为1500ppm以下;
所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还 优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
作为本发明中的原料气,例如使用氢气含量为99.5重量%(优选99.85重量%以上)的原料气即可,例如可以为甲烷水蒸气重整制氢、煤制氢、甲醇制氢、氨分解制氢、氢的回收提纯、生物质制氢等方法制得的氢气,也可以使用反应装置副产的氢气,例如炼厂的催化裂化装置产出的含氢气体。
通过使用本发明的含硫铂碳催化剂,即使原料气中含有CO,只要其含量在规定量以下,也可以保持催化剂活性,长时间地进行阳极反应。
优选地,所述原料气中CO的含量优选为1200ppm以下,还优选1000ppm以下,例如可以为100-800ppm。具体地,所述原料气中CO的含量可以为100、200、300、400、500、600、700、800、900、1000、1100或者1200ppm。
根据本发明,所述阳极反应条件只要使得阳极反应可以进行即可。具体地,所述阳极反应条件可以包括:电压为0V以上,优选为0-0.4V,还优选为0-0.2V。所述阳极反应例如可以在酸性电解质溶液中进行,可以使用各种有机酸和/或无机酸溶液,例如高氯酸溶液或者硫酸溶液。另外,在电解质溶液中进行阳极反应的情况下,所述阳极反应条件可以包括:电解质溶液中氢离子浓度为0.0001M以上,优选为0.001-1.0M。
该实施方式V还提供含硫铂碳催化剂在燃料电池中的应用,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%;其中,所述燃料电池的原料气中CO的含量为1500ppm以下。
所述燃料电池例如可以为氢燃料电池(例如质子交换膜氢燃料电池)、直接醇类燃料电池(例如甲醇或乙醇为阳极燃料的直接醇类燃料电池)等。优选的情况下,所述燃料电池为氢燃料电池。具体地,所述含硫铂碳催化剂可以在燃料电池中作为阳极催化剂或者阴极催化剂,优选作为阳极催化剂。
优选地,所述原料气中CO的含量优选为1200ppm以下,还优选 1000ppm以下,例如可以为100-1000ppm。具体地,所述原料气中CO的含量可以为100、200、300、400、500、600、700、800、900、1000、1100或者1200ppm。另外,本发明第三方面的应用中,使用的原料气及其性质可以与第二方面相同,在此不在赘述。
根据本发明,所述阳极反应条件只要使得阳极反应可以进行即可。具体地,所述阳极反应条件可以包括:电压为0V以上,优选为0-0.4V。所述阳极反应可以在酸性电解质溶液中进行,可以使用各种有机酸和/或无机酸溶液,例如高氯酸溶液或者硫酸溶液。另外,在电解质溶液中进行阳极反应的情况下,所述阳极反应条件可以包括:电解质溶液中氢离子浓度为0.01M以上,优选为0.05-1.0M。
该实施方式V还提供一种电解水的方法,该方法包括:在电解水的条件下,使水与含硫铂碳催化剂接触;其中,所述接触的至少部分在CO的存在下进行;所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
所述电解水的条件没有特别的限定,优选地,可以包括:电压为-0.4V以上,还优选为-0.4~1.0V,进一步优选为-0.4~0V。
优选地,所述电解水的方法为质子交换膜电解水。
该实施方式V还提供含硫铂碳催化剂在提高铂碳催化剂抗CO毒性中的应用,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述含硫铂碳催化剂中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
该实施方式V中未具体提及的关于各个组分、碳材料、催化剂及其制备方法、用途等的特征和技术方案均可参考其它各个实施方式,尤其是可参考实施方式I和II;只要不与本实施方式的具体公开相悖。
实施方式VI:含硫铂碳催化剂在抗H2S毒性中的应用
本发明的实施方式VI提供一种含硫铂碳催化剂在提高铂碳催化剂 抗H2S毒性中的应用,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
换言之,本发明该实施方式V所使用的所述含硫铂碳催化剂优选可为本发明实施方式II中所述的含硫铂碳催化剂。
根据本发明,通过使用上述本发明的含硫铂碳催化剂,可以在现有的铂碳催化剂的基础上,提供更好的抗H2S毒性效果,从而达到延长铂碳催化剂寿命的效果。具体地,所述含硫铂碳催化剂可以作为燃料电池中的阳极催化剂等。
作为引起H2S毒性的H2S的来源,例如可以为原料气中从制备工艺、成分等方面考虑混入或者难以除去的杂质H2S等。
本发明的含硫铂碳催化剂的制备方法只要使得其具有上述性质即可。具体地,作为上述含硫铂碳催化剂的制备方法,可以包括:
(1)用含有硫磺的溶液在10-80℃下浸渍碳载体1-5h,并将浸渍产物进行干燥后得到硫改性碳载体;
(2)将含有步骤(1)得到的硫改性碳载体、铂源和溶剂的均匀混合液中的溶剂除去,得到前驱体材料;
(3)在还原性气氛中,将步骤(2)得到的前驱体材料在80-200℃下进行1-4h的热处理,得到含硫铂碳催化剂;
其中,步骤(2)中,相对于所述硫改性碳载体1g,以铂元素计所述铂源的用量为0.25-2.4g。
该实施方式VI还提供提供一种氢燃料电池的阳极反应方法,该方法包括:在阳极反应条件下,使原料气中的H2与含硫铂碳催化剂接触;
其中,所述原料气中H2S的含量为15ppm以下;
所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
作为本发明中的原料气,例如使用氢气含量为99.5重量%(99.98重量%以上)的原料气即可,例如可以为甲烷水蒸气重整制氢、煤制氢、 甲醇制氢、氨分解制氢、氢的回收提纯、生物质制氢等方法制得的氢气,也可以使用其他反应副产的氢气,例如炼厂的催化裂化装置产出的含氢气体等。
通过使用本发明的含硫铂碳催化剂,即使原料气中含有H2S,只要其含量在规定量以下,也可以保持催化剂活性,长时间地进行阳极反应。
优选地,所述原料气中H2S的含量优选为15ppm以下,还优选10ppm以下,例如可以为0.4-5ppm。具体地,所述原料气中H2S的含量可以为0.4、0.6、0.8、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、11、12、13、14或者15ppm等。
根据本发明,所述阳极反应条件只要使得阳极反应可以进行即可。具体地,所述阳极反应条件还包括:电压为0V以上,优选为0.01-0.4V。所述阳极反应例如可以在酸性电解质溶液中进行,可以使用各种有机酸和/或无机酸溶液,例如高氯酸溶液或者硫酸溶液。另外,在电解质溶液中进行阳极反应时,所述阳极反应条件可以包括:电解质中氢离子浓度为0.01M以上,优选为0.05-1.0M。
该实施方式VI还提供含硫铂碳催化剂在燃料电池中的应用,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述硫改性碳载体中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%;其中,所述燃料电池的原料气中H2S的含量为15ppm以下,优选为0.4-5ppm。
所述燃料电池例如可以为氢燃料电池(例如质子交换膜氢燃料电池)、直接醇类燃料电池(例如甲醇或乙醇为阳极燃料的直接醇类燃料电池)等。优选的情况下,所述燃料电池为氢燃料电池。具体地,所述含硫铂碳催化剂可以在燃料电池中作为阳极催化剂或者阴极催化剂,优选作为阳极催化剂。
优选地,所述原料气中H2S的含量为10ppm以下,优选5ppm以下。具体地,所述原料气中H2S的含量可以为0.4、0.6、0.8、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、11、12、13、14或者15ppm等。另外,本发明第三方面的应用中, 使用的原料气及其性质可以与第二方面相同,在此不在赘述。
该实施方式VI还提供含硫铂碳催化剂在提高铂碳催化剂抗H2S毒性中的应用,所述含硫铂碳催化剂包括硫改性碳载体和负载于其上的铂金属,所述硫改性碳载体为硫改性导电炭黑,所述含硫铂碳催化剂中的总硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上,还优选1.5倍以上,以催化剂的总重量为基准,铂的重量分数为20-70重量%。
该实施方式VI中未具体提及的关于各个组分、碳材料、催化剂及其制备方法、用途等的特征和技术方案均可参考其它各个实施方式,尤其是可参考实施方式V,也可参考实施方式I和II及其他实施方式;只要不与本实施方式的具体公开相悖。
实施例
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。
如无特殊说明,本发明所采用试剂均为分析纯,所用试剂均为市售可得。
试剂、仪器与测试
高分辨透射电镜(HRTEM)的型号为JEM-2100(HRTEM)(日本电子株式会社),测试条件为:加速电压200kV。
X射线光电子能谱分析仪为VG Scientifc公司生产配备有Avantage V5.926软件的ESCALab220i-XL型射线电子能谱仪,X射线光电子能谱分析测试条件为:激发源为单色化A1KαX射线,功率为330W,分析测试时基础真空为3×10-9mbar。另外,电子结合能用单质碳的C1s峰(284.3eV)校正,后期分峰处理软件为XPSPEAK。
利用XPS分析检测表面硫含量的具体方法如下:全谱扫描的扫描范围为0-1200eV,带通能量(通能)为100eV,分析能量步长为1.0eV,通道数1211,扫描圈数为1。窄谱扫描通能为30.0eV,分析能量步长为0.05eV,通道数401,扫描圈数16。
硫碳分析仪为美国力可(LECO)公司的CS-844型号。
球差校正透射电镜(AC-STEM)为JEOL公司ARM200F型号。
测试含硫铂碳催化剂中铂重量分数的仪器、方法、条件:取30mg制备好的Pt/C催化剂,加入30mL王水,120℃冷凝回流12h,冷却至室温后,取上清液稀释后,用ICP-AES测试其中Pt含量。
ORR电化学性能测试,仪器型号Solartron analytical EnergyLab和Princeton Applied Research(Model 636A),方法及测试条件:催化剂的极化曲线LSV在1600rpm的转速下,O2饱和的0.1M HClO4中测试,电化学活性面积ECSA在Ar饱和的0.1M HClO4中测试。稳定性测试时在O2饱和的0.1M HClO4中,0.6V-0.95V(vs.RHE)范围内扫描5000个循环后,按上述方法测试LSV和ECSA。以上测试时将催化剂配成均匀分散的浆液,涂于直径5mm的玻碳电极上,电极上催化剂的铂用量控制在1-4μg的范围内,计算时不做iR校正。
HER电化学性能测试,仪器型号Solartron analytical EnergyLab和Princeton Applied Research(Model 636A),方法及测试条件:催化剂的极化曲线LSV在2500rpm的转速下,N2饱和的0.5M H2SO4中测试,电化学活性面积ECSA在N2饱和的0.5M H2SO4中测试。稳定性测试时在N2饱和的0.5M H2SO4中,-0.1V-0.2V(vs.RHE)范围内,2500rpm扫描,经一定圈数的循环扫描后,按上述方法测试LSV和ECSA。以上测试时将催化剂配成均匀分散的浆液,涂于直径5mm的玻碳电极上,电极上催化剂的铂用量控制在1-4μg的范围内,计算时不做iR校正。
Ketjenblack ECP600JD(科琴黑,日本Lion公司生产)。采用前述的仪器方法测试,结果表明:比表面积1362m2/g,孔体积2.29mL/g,氧重量分数6.9%,ID/IG为1.25。
商业铂碳催化剂1(牌号HISPEC4000,Johnson Matthey公司生产),采用前述的仪器方法测试,结果表明:铂的重量分数为40.2%。
商业铂碳催化剂2(牌号TEC10F50E,田中贵金属工业株式会社生产),采用前述的仪器方法测试,结果表明:铂载量46重量%。
VXC72(Vulcan XC72,美国卡博特公司生产)购自苏州翼隆晟能源科技有限公司。采用前述的仪器方法测试,结果表明:比表面积258m2/g,孔体积0.388mL/g,氧重量分数8.72%,ID/IG为1.02。
XRD分析的仪器、方法和条件:X射线衍射分析(XRD)在日本岛津XRD-6000型X射线衍射仪上进行,测试条件包括:管电压40kV,管电流40mA,Cu靶Kα辐射,2θ扫描范围10°至70°。
NI/(FWHM*mPt)的计算方法如下:(1)在粉末X射线衍射仪工作条件(管电压40kV,管电流40mA,Cu靶Kα辐射)下,对待测催化剂收集2θ在20-70°范围内的X射线衍射谱图,扣除背景信号及Kα2后,以2θ为22-28°范围内强度数据最大值为1、65-70°范围内强度数据最小值为0,进行归一化处理,分别得到该待测催化剂的39.8±0.2°处的Pt(111)特征峰和46.2±0.2°处的Pt(200)特征峰的归一化峰强度。(2)对归一化处理后的X射线衍射谱图进行分峰拟合,分别得到Pt(111)特征峰和Pt(200)特征峰的半峰全宽(单位为°)。(3)分别用Pt(111)特征峰和Pt(200)特征峰的归一化峰强度除以对应的半峰全宽及催化剂中的铂重量含量,得到该催化剂Pt(111)特征峰和Pt(200)特征峰的NI/(FWHM*mPt)。
CO原位红外曲线的测试仪器和方法:红外光谱仪,赛默飞is50,测试时先常温氮气吹扫,然后H2气氛下250℃还原1h后抽真空。通入5%CO/He在常温下进行CO吸附1h,真空脱附除去物理吸附的CO后,25℃下进行测试。
硫单质进行表征的方法:采用同步辐射X射线精细谱对碳载体中的硫进行表征,设备为北京正负电子对撞机4B7A-中能X射线实验站。以单质硫和2,2′-联二噻吩为标准物。
实施方式I
实施例I.1
将0.1g硫磺溶解于70ml环己烷中形成均相溶液,将9.9g Ketjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到硫改性碳材料A。
实施例I.2
将0.40g硫磺溶解于70ml环己烷中形成均相溶液,将9.60g Ketjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到硫改性碳材料C。
实施例I.3
将0.55g硫磺溶解于70ml环己烷中形成均相溶液,将9.45g  Ketjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到硫改性碳材料D。
对比例I.1
使用商购的铂碳催化剂,牌号HISPEC4000。
对比例I.2
按照实施例I.1的方法制备碳材料,区别仅在于:不使用硫磺,即使用无复合元素的碳材料。
对比例I.3
按照文献“Nature Communications,2019,10:4977”的方法制备硫掺杂碳材料。
测试例I.1
测定如上实施例I.1~I.3和对比例I.3制得的硫改性碳材料的表面硫含量、总硫含量,结果如表I.1所示。
表I.1
表I.1中,表面硫含量表示通过XPS分析测得的硫重量分数,总硫含量表示通过硫碳分析仪测得的硫重量分数。
测试例I.2
分别利用上述实施例I.1~I.3和对比例I.2的碳材料负载铂,制备铂载量为40重量%的含硫铂碳催化剂,负载铂的方法如下:
将以铂计0.40g的氯铂酸溶解于20mL水∶乙醇体积比10∶1的溶液中,将0.6g上述各碳材料分散于氯铂酸溶液中,其中搅拌分散均匀, 静置24h后,置于真空干燥箱内烘干;将烘干后的前驱体置于管式炉内,以5℃/min的速度升至140℃,在N2∶H2=5∶1的气氛下还原2h,N2气氛下降温,得到含硫铂碳催化剂。
测定如上制得的含硫铂碳催化剂以及对比例I.1的商业铂碳催化剂的性能,所得ORR性能下如下表I.2所示。图I.1示出用实施例I.1、对比例I.2的碳材料制得的含硫铂碳催化剂以及对比例I.1的商业铂碳催化剂催化ORR反应的极化曲线。
表I.2
通过表I.2的结果可知,通过使用本发明的硫改性碳材料,可以达到提高制得的含硫铂碳催化剂的重量比活性的作用。
测试例I.3
分别利用上述实施例I.1和对比例I.3的碳载体,按照测试例2-2中的方法制备含硫铂碳催化剂,使用的铂载量见表I.3。测定如上制得的含硫铂碳催化剂以及对比例I.1的商业催化剂的性能,所得HER性能如下表3所示。
图I.2示出用实施例I.1的硫改性碳材料制得的含硫铂碳催化剂催化HER反应稳定性前后的极化曲线,图I.3示出用对比例I.1的商业铂碳催化剂催化HER反应稳定性前后的极化曲线。
表I.3
通过表I.3的结果可以看出,本发明实施例I.1的硫改性碳材料的含硫铂碳催化剂,具有比对比例I.1的商业催化剂更低的过电势和更高的重量比活性,并且在12000圈稳定性后的过电势和重量比活性的性能降低程度更小。
测试例I.4
用STEM观察上述测试例I.2中利用对比例I.2的碳材料制得的铂载量40重量%的含硫铂碳催化剂,得到图I.4的STEM照片。
通过对图I.4的STEM照片进行统计可知,该含硫铂碳催化剂中具有规则晶格条纹的铂颗粒约为100重量%。
用同样的方法观察利用实施例I.3的碳材料制得的铂载量40重量%的含硫铂碳催化剂,其中具有规则晶格条纹的铂颗粒不超过40重量%。
测试例I.5
采用同步辐射X射线精细谱对实施例I.3的硫改性碳材料中的硫进行表征,设备为北京正负电子对撞机4B7A-中能X射线实验站。以单质硫和2,2′-联二噻吩为标准物。图I.5反映两个标准物和所述硫改性碳材料总计三个样品的键长信息,对比可知,碳载体D中S在约0.93和处有键,与单质硫完全重合,证明了其为单质硫。图I.6反映三个样品的价态信息,同样碳载体D中硫与单质硫重合,与噻吩硫完全不同,进一步证明了为单质硫。
实施方式II
实施例II.1
将0.1g硫磺溶解于70ml环己烷中形成均相溶液,将9.9g Ketjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到作为含硫碳载体的含硫导电炭黑;将以铂计1.4g的氯铂酸溶解于100mL的水∶乙醇体积比10∶1的溶液中,将0.6g上述含硫碳载体分散于氯铂酸溶液中,搅拌分散均匀,静置24h后,过滤除去未被吸附的氯铂酸溶液,将得到的固体置于真空干燥箱内烘干;将烘干后的前驱体置于管式炉内,8℃/min的速度升至180℃,在N2∶H2=5∶1的气氛下还原2h,N2气氛下降温,得到含硫铂碳催化剂。
实施例II.2
将0.25g硫磺溶解于70ml环己烷中形成均相溶液,将9.75g Ketjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到作为含硫碳载体的含硫导电炭黑;将以铂计0.52g的氯铂酸溶解于20mL水∶乙醇体积比10∶1的溶液中,将0.6g上述含硫碳载体分散于氯铂酸溶液中,搅拌分散均匀,静置24h后,置于真空干燥箱内烘干;将烘干后的前驱体置于管式炉内,以6℃/min的速度升至160℃,在N2∶H2=5∶1的气氛下还原2h,N2气氛下降温,得到含硫铂碳催化剂。
实施例II.3
将0.40g硫磺溶解于70ml环己烷中形成均相溶液,将9.60g Ketjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到作为含硫碳载体的含硫导电炭黑;将以铂计0.15g的氯铂酸溶解于20mL水∶乙醇体积比10∶1的溶液中,将0.6g上述含硫碳载体分散于氯铂酸溶液中,搅拌分散均匀,静置24h后,置于真空干燥箱内烘干;将烘干后的前驱体置于管式炉内,以4℃/min的速度升至100℃,在N2∶H2=5∶1的气氛下还原2h,N2气氛下降温,得到含硫铂碳催化剂。
实施例II.4
将0.55g硫磺溶解于70ml环己烷中形成均相溶液,将9.45g Ketjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干 燥得到作为含硫碳载体的含硫导电炭黑;将以铂计0.40g的氯铂酸溶解于20mL水∶乙醇体积比10∶1的溶液中,将0.6g上述含硫碳载体分散于氯铂酸溶液中,其中搅拌分散均匀,静置24h后,置于真空干燥箱内烘干;将烘干后的前驱体置于管式炉内,以5℃/min的速度升至140℃,在N2∶H2=5∶1的气氛下还原2h,N2气氛下降温,得到含硫铂碳催化剂。
对比例II.1
按照实施例II.1的方法制备含硫铂碳催化剂,区别仅在于:热处理温度为240℃。
对比例II.2
按照实施例II.1的方法制备铂碳催化剂,区别仅在于:碳载体采用无复合元素的Ketj enblack ECP600JD。
对比例II.3
按照实施例II.3的方法制备铂碳催化剂,区别仅在于:碳载体采用无复合元素的Ketj enblack ECP600JD。
对比例II.4
按照实施例II.4的方法制备含硫铂碳催化剂,区别仅在于:碳载体使用按照文献“Nature Communications,2019,10:4977”的方法制备的硫掺杂碳材料。
测试例II.1
测定如上实施例II.1~II.4和对比例II.4制得的碳载体的表面硫含量、总硫含量,结果如表II.1所示。
表II.1
表II.1中,表面硫含量表示通过XPS分析测得的硫重量分数,总硫含量表示通过硫碳分析仪测得的硫重量分数。
测试例1-2
测定实施例II.2与对比例II.3的含硫铂碳催化剂的XPS图谱,如图II.1所示。从图II.1可知,实施例II.2的含硫铂碳催化剂的Pt 4f 7/2特征峰位于71.72eV,相对于对比例II.3向高电子伏特偏移约0.4eV。
按照上述相同的方法测定实施例II.1、II.3和II.4的XPS谱图,其Pt 4f 7/2特征峰均位于71.6eV以上。
测试例1-3
通过TEM和STEM观察实施例II.2、II.3和对比例II.1、II.2、II.4的含硫铂碳催化剂。其中,图II.2示出实施例II.2的含硫铂碳催化剂的STEM照片;图II.3示出实施例II.3的含硫铂碳催化剂的STEM照片;图II.4示出对比例II.1的含硫铂碳催化剂的TEM照片;图II.5示出对比例II.2的含硫铂碳催化剂的TEM照片;图II.6示出对比例II.4的含硫铂碳催化剂的STEM照片;图II.7示出具有规则晶格条纹的铂颗粒的STEM照片;图II.8示出实施例II.2的含硫铂碳催化剂的TEM照片;图II.9示出对比例II.4的含硫铂碳催化剂的TEM照片。
当铂颗粒有晶格,且晶格条纹平行,如图II.7中黑色平行线所示,则认为含有规则晶格条纹。针对各含硫铂碳催化剂,随机计数100个铂金属颗粒中具有规则晶格条纹的数量,并求得其比例。
结果如下:实施例II.2和实施例II.3的含硫铂碳催化剂中具有规则晶格条纹的铂金属颗粒分别占6%和9%,而对比例II.1和1-4的含硫 铂碳催化剂中具有规则晶格条纹的铂金属颗粒分别占不少于70重量%和99%,对比例II.2中由于Pt含量太少,计数量不够,不具有统计意义。
采用同样的方法观察并统计实施例II.1和II.4的含硫铂碳催化剂,其中具有规则晶格条纹的铂金属颗粒均不超过20重量%。
在TEM图中,随机统计200个沿着碳载体边缘的金属铂颗粒与碳载体的相对位置,计算突出于碳载体的金属铂颗粒所占的比例A%,并用(100-A)%表示负载于碳载体内部的铂金属颗粒所占的比例。对图II.8和图II.9的样品进行统计,实施例II.2中98%以上铂颗粒均位于碳载体内部,而对比例II.4中仅约70重量%铂颗粒均位于碳载体内部。
采用同样的方法观察并统计实施例II.1、II.3和II.4的含硫铂碳催化剂,其中均有至少94%的铂金属颗粒负载于碳载体内部。
测试例II.4
测定如上实施例II.1~II.4和对比例II.1~II.4制得的含硫铂碳催化剂的性能,结果如表II.2和表II.3所示。
表II.2 ORR结果
表II.3 HER结果
通过表II.2和表II.3的结果可以看出,实施例II.1~II.4通过使用本发明的含硫碳载体,比使用无复合元素的碳载体的对比例II.2~II.3具有更优的电化学性能。
通过实施例II.1与对比例II.1的对比可知,通过采用本发明的方法制得的含硫碳载体,在更低的温度下进行热处理,能够达到更优的电化学性能。
实施方式III
制备例III.1
将0.55g硫磺溶解于70ml环己烷中形成均相溶液,将9.45gKetjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到硫改性碳载体A。
制备例III.2
将0.1g硫磺溶解于40ml环己烷中形成均相溶液,将9.9g Vulcan XC72分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到硫改性碳载体B。
对比制备例III.1
按照文献“Nature Communications,2019,10:4977”的方法制备硫掺杂碳材料D1。
对比制备例III.2
按照制备例III.1的方法制备硫改性碳载体,区别仅在于:硫磺用量0.9g,Ketjenblack ECP600JD用量9.1g。得到硫改性碳载体D2。
测试例III.1
测定如上制备例III.和对比制备例III.制得的碳载体的表面硫含量、总硫含量,结果如表III.1所示。
表III.1
表III.1中,表面硫含量表示通过XPS分析测得的硫重量分数,总硫含量表示通过硫碳分析仪测得的硫重量分数。
实施例III.1
以相对于每克碳载体使用0.57mmol氯铂酸的比例,首先将氯铂酸溶解于15ml水-乙醇为1∶1(体积比)的溶液中,将1g碳载体A分散于氯铂酸溶液中,分散均匀,静置16h后,60℃烘箱内干燥得到催化剂前驱体。将前驱体研磨后置于管式炉内,升温至160℃,在N2∶H2=4∶1的气氛下热处理2h,N2气氛下降温,得到载量10重量%的含硫铂碳催化剂。
实施例III.2
按照实施例III.1的方法制备含硫铂碳催化剂,区别仅在于:使用制备例III.1制备的碳载体A,每克碳载体加入1.28mmol氯铂酸,还原温度为140℃,得到载量20重量%的含硫铂碳催化剂。
实施例III.3
按照实施例III.1的方法制备含硫铂碳催化剂,区别仅在于:使用制备例III.2制备的碳载体B,还原温度为160℃,得到载量10重量%的含硫铂碳催化剂。
实施例III.4
按照实施例III.1的方法制备含硫铂碳催化剂,区别仅在于:使用制备例III.2制备的碳载体B,每克碳载体加入0.27mmol氯铂酸,还原温度为100℃,得到载量5重量%的含硫铂碳催化剂。
实施例III.5
按照实施例III.2的方法制备含硫铂碳催化剂,区别仅在于:每克碳载体加入0.27mmol氯铂酸,热处理的温度为100℃,得到载量5重量%的含硫铂碳催化剂。
实施例III.6
按照实施例III.2的方法制备含硫铂碳催化剂,区别仅在于:每克碳载体加入0.27mmol氯铂酸,热处理的温度为180℃,得到载量5重量%的含硫铂碳催化剂。
对比例III.1
按照实施例III.2的方法制备含硫铂碳催化剂,区别仅在于:载体为Ketjenblack ECP600JD,每克碳载体加入0.57mmol氯铂酸,得到载量10重量%的含硫铂碳催化剂。
对比例III.2
铂碳催化剂为购买的商业催化剂,牌号HISPEC4000。
对比例III.3
按照实施例III.1的方法制备含硫铂碳催化剂,区别仅在于:使用对比制备例III.1的硫掺杂碳材料D 1作为载体,得到载量6.24重量%的铂碳原子簇催化剂。
测试例III.2
测定实施例III.1、3-5和对比例III.1-2的含硫铂碳催化剂的XRD谱图,如图III.1所示。从图III.1的各XRD谱图中计算得出Pt(111)特征峰和Pt(200)特征峰的NI/(FWHM*mPt),结果如表III.2所示。
表III.2
上表中,“不存在”表示含硫铂碳催化剂不存在相应的Pt特征峰。
通过表III.2的结果可知,本发明的含硫铂碳催化剂均满足不存在Pt特征峰、或者Pt(111)特征峰的NI/(FWHM*mPt)不大于0.8且Pt(200)特征峰的NI/(FWHM*mPt)不大于0.5,并且当含硫铂碳催化剂的铂含量为10重量%以下时,本发明的含硫铂碳催化剂在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰的NI/(FWHM*mPt)不大于0.6且Pt(200)特征峰的NI/(FWHM*mPt)不大于0.4。
按照上述相同的方法测定实施例III.2的XRD谱图,结果得到与实施例III.1相似的结果,计算Pt(111)特征峰和Pt(200)特征峰的NI/(FWHM*mPt),也满足上述关系。
测试例III.3
测定实施例III.1和对比例III.1-3的含硫铂碳催化剂的XPS图谱,如图III.2所示。从图III.2可知,实施例III.2的含硫铂碳催化剂的Pt 4f 7/2特征峰位于72.2eV,相对于对比例III.1向高电子伏特偏移约0.8eV。
按照上述相同的方法测定实施例III.2-6的XPS谱图,其Pt 4f 7/2特征峰均位于71.9eV以上。
测试例III.4
测定如上实施例和对比例制得的含硫铂碳催化剂的性能,结果如表III.3和图III.3所示。图III.3示出实施例III.1、对比例III.1-3的含硫铂碳催化剂的LSV曲线。
表III.3
通过表III.3的结果可以看出,采用本发明的含硫铂碳催化剂的实施例III.1-6比对比例III.2的商业催化剂具有更低的过电势和更高的重量比活性。
通过实施例III.1-6与对比例III.3的对比可知,本发明的含硫铂碳催化剂通过使用本发明的硫改性碳载体,可以大幅度降低过电势同时提高重量比活性。
通过实施例III.2和5-6的对比可知,热处理温度为100-140℃,可以进一步降低过电势同时提高重量比活性。
实施方式IV
实施例IV.1
将0.1g硫磺溶解于70ml环己烷中形成均相溶液,将9.9g Ketjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到硫改性碳载体;将以铂计0.4g的氯铂酸溶解于20mL的水∶乙醇体积比10∶1的溶液中,将0.6g上述硫改性碳载体分散于氯铂酸溶液中,搅拌分散均匀,静置24h后,置于真空干燥箱内烘干;将烘干后的前驱体置于管式炉内,以8℃/min的速度升至140℃,在N2∶H2=5∶1的气氛下还原2h,N2气氛下降温,得到含硫铂碳催化剂。
实施例IV.2
将0.55g硫磺溶解于70rml环己烷中形成均相溶液,将9.45g Ketjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到硫改性碳载体;将以铂计0.4g的氯铂酸溶解于20mL水∶乙醇体积比10∶1的溶液中,将0.6g上述硫改性碳载体分散于氯铂酸溶液中,搅拌分散均匀,静置24h后,置于真空干燥箱内烘干;将烘干后的前驱体置于管式炉内,以6℃/min的速度升至160℃,在N2∶H2=5∶1的气氛下还原2h,N2气氛下降温,得到含硫铂碳催化剂。
对比例IV.1
碳载体采用未改性的Ketjenblack ECP600JD,Pt的负载过程及负载量与实施例IV.1相同,得到铂碳催化剂。
对比例IV.2
铂碳催化剂为购买的商业TEC10F50E,铂载量46重量%。
测试例IV.1
测定如上各实施例IV.中制得的碳载体的表面硫含量、总硫含量,结果如表1所示。
表IV.1
表IV.1中,表面硫含量表示通过XPS分析测得的硫重量分数,总硫含量表示通过硫碳分析仪测得的硫重量分数。
测试例IV.2
按照如下方法测试实施例IV.和对比例IV.中制得的各铂碳催化剂在SOx毒化处理前后的ORR活性。测试方法如下:
电化学性能测试,仪器型号Solartron analytical EnergyLab和 Princeton Apphed Research(Model 636A)。
ORR活性测试方法:(i)在N2饱和的0.1M HClO4中,在0-1.1V电势范围内,以50mV·s-1的速度三角波扫描10个循环,对催化剂进行电化学预处理。(ii)在N2饱和的0.1M HClO4中,在0-1.1V电势范围内,以50mV·s-1的速度循环扫描10个循环,测试催化剂的循环伏安曲线。(iii)在O2饱和的0.1M HClO4中,在0-1.1V电势范围内,设置旋转圆盘转速为1600rpm,以10mV·s-1的速度循环扫描10个循环,测试催化剂的极化曲线。通过K-L方程计算动力学电流值,将动力学电流分别除以电化学活性面积或电极表面的Pt含量,即可得到催化剂的面积比活性或重量比活性。
ORR中SOx耐受性测试方法:将催化电极置于N2气流中进行电化学预处理,再置于O2气流中记录初始状态的ORR极化曲线。扫描完成后,将该电极插入含0.1mmol/L Na2SO3的0.1mol/L HClO4溶液(相当于以SO2计6.4ppm的SOx)中,N2饱和条件下0.65V(vs RHE)恒电压下毒化120s后,取出电极,置于无毒化物的0.1M HClO4溶液中,按照活性测试方法测试毒化处理后催化剂的ORR活性。每项测试均保持气体饱和状态,极化曲线扫速均为10mV·s-1。
测试结果见图IV.1及表IV.2。图IV.1示出了实施例IV.1和对比例IV.2合成的铂碳催化剂在SOx毒化处理前后ORR的LSV曲线。
表IV.2 ORR测试结果
通过表IV.2的结果可以看出,实施例IV.1-2通过使用本发明的含硫铂碳催化剂,在SOx毒化条件下,比对比例IV.2具有明显更优的电化学性能,如更高的重量比活性和SOx耐受性。
从上述结果可以看出,本发明的含硫铂碳催化剂具有提高铂碳催化剂抗SOx毒性的作用。
实施方式V
实施例V.1
将0.1g硫磺溶解于70ml环己烷中形成均相溶液,将9.9g Ketjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到硫改性碳载体;将以铂计0.4g的氯铂酸溶解于20mL的水∶乙醇体积比10∶1的溶液中,将0.6g上述硫改性碳载体分散于氯铂酸溶液中,搅拌分散均匀,静置24h后,置于真空干燥箱内烘干;将烘干后的前驱体置于管式炉内,以8℃/min的速度升至140℃,在N2∶H2=5∶1的气氛下还原2h,N2气氛下降温,得到含硫铂碳催化剂。
实施例V.2
将0.55g硫磺溶解于70ml环己烷中形成均相溶液,将9.45g Ketjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到硫改性碳载体;将以铂计0.35g的氯铂酸溶解于20mL水∶乙醇体积比10∶1的溶液中,将0.6g上述硫改性碳载体分散于氯铂酸溶液中,搅拌分散均匀,静置24h后,置于真空干燥箱内烘干;将烘干后的前驱体置于管式炉内,以6℃/min的速度升至160℃,在N2∶H2=5∶1的气氛下还原2h,N2气氛下降温,得到含硫铂碳催化剂。
对比例V.1
碳载体采用未改性的Ketjenblack ECP600JD,Pt的负载过程及负载量与实施例V.1相同,得到铂碳催化剂。
对比例V.2
使用商购的铂碳催化剂,牌号TEC10F50E,铂载量46重量%。
对比例V.3
按照文献“Nature Communications,2019,10:4977”的方法制备硫掺杂碳材料,并按照实施例V.1的方法负载铂从而制备含硫铂碳催化剂。
对比例V.4
使用商购的铂碳催化剂,牌号HISPEC4000,铂载量40重量%。
测试例V.1
测定如上实施例和对比例V.3中制得的碳载体的表面硫含量、总硫含量,结果如表1所示。
表V.1
表V.1中,表面硫含量表示通过XPS分析测得的硫重量分数,总硫含量表示通过硫碳分析仪测得的硫重量分数。
测试例V.2
按照如下方法测试实施例V.和对比例V.的铂碳催化剂在CO毒化处理前后的HOR和HER活性。测试方法如下:
电化学性能测试,仪器型号Solartron analytical EnergyLab和Princeton Applied Research(Model 636A)。
HOR活性测试方法:(i)在N2饱和的0.1M HClO4或0.5M H2SO4中,在0.05-1.0V电势范围内,以50mV·s-1的速度三角波扫描10个循环,对催化剂进行电化学预处理。(ii)在N2饱和的0.1M HClO4中,在0.05-1.1V电势范围内,以50mV·s-1的速度循环扫描10个循环,测试催化剂的循环伏安曲线。(iii)在H2饱和的HClO4中,在0-0.2V电势范围内,设置旋转圆盘转速为1600rpm,以10mV·s-1的速度循环扫描10个循环,测试催化剂的极化曲线。通过计算极化曲线中指定电流密度(j)处的过电位、指定电极电位处表观电流值(i)除以电极表面的Pt 含量(mPt)得到的表观重量活性(MA,以Pt重量计算)等,评估催化剂的HOR活性。
HOR中CO耐受性测试方法:将催化电极置于N2气流中进行电化学预处理,再置于H2气流中记录初始状态的HOR极化曲线。之后将催化电极置于混有1000ppmCO的H2气流中,记录体系中混入高浓度CO时的HOR极化曲线。每项测试均保持气体饱和状态,极化曲线扫速均为10mV·s-1
HER测试方法:催化剂的极化曲线LSV在2500rpm的转速下,N2饱和的0.1M HClO4中测试,电势范围为-0.2~0.2V,电化学活性面积ECSA在N2饱和的0.1M HClO4中测试。以上测试时将催化剂配成均匀分散的浆液,涂于直径5mm的玻碳电极上,电极上催化剂的铂用量控制在1-4μg的范围内。
HER中CO耐受性测试方法同HOR。
测试结果见图V.1-5及表V.2-3。图V.1为实施例V.1和对比例V.1的铂碳催化剂的XPS谱图;图V.2为实施例V.1和对比例V.1的铂碳催化剂在CO毒化处理前后HER的LSV曲线;图V.3为实施例V.1和对比例V.2的铂碳催化剂在CO毒化处理前后HOR的LSV曲线;图V.4为实施例V.1和对比例V.1的铂碳催化剂的CO原位红外曲线;图V.5为实施例V.2和对比例V.4的铂碳催化剂在CO毒化处理前后HOR的LSV曲线。其中,实施例V.1和对比例V.1-3测试时,原料气流速为200mL/min,实施例V.2和对比例V.4测试时,原料气流速为100mL/min。
表V.2HOR测试结果
[a]“未达到”指在所测电势范围内,该样品的电流密度一直未达到2mA/cm2
表V.3HER测试结果
通过表V.2和表V.3的结果可以看出,实施例V.1-2通过使用本发明的含硫铂碳催化剂,在CO毒化条件下,比对比例V.1-4具有更优的电化学性能,如更高的重量比活性和CO耐受性。
通过图V.4可以看出通过使用本发明的硫改性碳载体,所得含硫铂碳催化剂对CO基本无CO化学吸附,因此,具有CO耐受性。
从上述结果可以看出,本发明的含硫铂碳催化剂具有提高铂碳催化剂抗CO毒性的作用。
实施方式VI
实施例VI.1
将0.1g硫磺溶解于70ml环己烷中形成均相溶液,将9.9g Ketjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到硫改性碳载体;将以铂计0.4g的氯铂酸溶解于20mL的水∶乙醇体积比10∶1的溶液中,将0.6g上述硫改性碳载体分散于氯铂酸溶液中,搅拌分散均匀,静置24h后,置于真空干燥箱内烘干;将烘干后的前驱体置于管式炉内,以8℃/min的速度升至140℃,在N2∶H2=5∶1的气氛下还原2h,N2气氛下降温,得到含硫铂碳催化剂。
实施例VI.2
将0.25g硫磺溶解于70ml环己烷中形成均相溶液,将9.75g Ketjenblack ECP600JD分散于其中,搅拌均匀,浸渍5h,50℃真空干燥得到硫改性碳载体;将以铂计0.52g的氯铂酸溶解于20mL水∶乙醇体积比10∶1的溶液中,将0.6g上述硫改性碳载体分散于氯铂酸溶液中,搅拌分散均匀,静置24h后,置于真空干燥箱内烘干;将烘干后的前驱体置于管式炉内,以6℃/min的速度升至160℃,在N2∶H2=5∶1的气氛下还原2h,N2气氛下降温,得到含硫铂碳催化剂。
对比例VI.1
商业催化剂,牌号HISPEC4000,铂载量40重量%。
对比例VI.2
按照文献“Nature Communications,2019,10:4977”的方法制备硫掺杂碳材料,并按照实施例VI.1的方法载铂从而制备铂碳催化剂。
测试例VI.1
测定如上实施例和对比例中制得的碳载体的表面硫含量、总硫含量,结果如表VI.1所示。
表VI.1
表V1.1中,表面硫含量表示通过XPS分析测得的硫重量分数,总硫含量表示通过硫碳分析仪测得的硫重量分数。
测试例VI.2
HOR电化学性能测试,仪器型号Solartron analytical EnergyLab和Princeton Applied Research(Model 636A),方法及测试条件:催化剂的极化曲线LSV在2500rpm的转速下,H2饱和的0.1M HClO4中测试,扫描速度10mV/s,电化学活性面积ECSA在N2饱和的0.1M HClO4中测试,扫描速度50mV/s。以上测试时将催化剂配成均匀分散的浆液,取10μl涂于直径5mm的玻碳电极上。H2S耐毒性测试方法一:将H2中混入0.4ppm的H2S,在H2+0.4ppmH2S饱和的0.1M HClO4中,再次测试HOR活性,对比H2S通入前后活性的变化。H2S耐毒性测试方法二:在0.5M H2SO4中添加10μmol/L Na2S,在0.1V恒电压下毒化5h,测试毒化前后催化剂性能变化。
采用方法一测试实施例VI.2的铂碳催化剂H2S毒化处理前后的HOR活性,采用方法二测试实施例VI.1和对比例VI.1-2的铂碳催化剂H2S毒化处理前后的HOR活性。结果如表VI.2所示。图VI.1和图VI.2分别示出实施例VI.2的铂碳催化剂经H2S毒化前后的LSV曲线和CV曲线;图VI.3和图VI.4分别示出实施例VI.1和对比例VI.1的铂碳催化剂经H2S毒化前后的LSV曲线和CV曲线。
表VI.2
通过表VI.2的结果可以看出,实施例VI.1-2通过使用本发明的硫改性碳载体,在H2S毒化条件下,比对比例VI.1-2具有更优的电化学性能和耐受硫化物毒性的性能。
从上述结果可以看出,本发明的含硫铂碳催化剂具有提高铂碳催化剂抗H2S毒性的作用。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (18)

  1. 一种含硫铂碳催化剂,包括含硫导电炭黑作为载体和负载于其上的铂金属,其特征在于,至少70重量%的铂金属颗粒负载于含硫导电炭黑内部,且所述含硫铂碳催化剂与使用不含硫的导电炭黑作为载体的基准铂碳催化剂相比,其具有的XPS图谱中的Pt 4f 7/2特征峰升高至少0.3eV,任选地升高至多1.3eV。
  2. 根据权利要求1所述的含硫铂碳催化剂,其中,所述基准铂碳催化剂具有的Pt 4f 7/2特征峰在XPS图谱中位于约71.3eV处;所述含硫铂碳催化剂具有的Pt 4f 7/2特征峰在XPS图谱中位于约71.6eV或以上、约71.7eV或以上、或约71.9eV或以上,优选所述含硫铂碳催化剂具有的Pt 4f 7/2特征峰在XPS图谱中位于约72.6eV或以下,优选约72.2eV或以下。
  3. 根据权利要求1所述的含硫铂碳催化剂,其中,所述含硫铂碳催化剂在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.8且Pt(200)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.5;
    优选地,当含硫铂碳催化剂的铂含量为10重量%或以下时,所述含硫铂碳催化剂在XRD图谱中不存在Pt特征峰、或者Pt(111)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.6且Pt(200)特征峰的单位重量铂归一化峰强度与半峰全宽之比不大于0.4。
  4. 根据权利要求1所述的含硫铂碳催化剂,其中,所述含硫导电炭黑的总体平均硫含量大于或等于表面硫含量,优选总硫含量为表面硫含量的1.2倍以上、优选1.5倍以上。
  5. 根据权利要求1所述的含硫铂碳催化剂,其中,所述含硫导电炭黑的总硫含量为0.1-10重量%,优选为1-8重量%,还优选为1-4重量%。
  6. 根据权利要求1所述的含硫铂碳催化剂,其中,以含硫铂碳催化剂的总重量为基准,铂的含量为1-20重量%,优选为5-20重量%,优选为5-15重量%,还优选为7-10重量%。
  7. 根据权利要求1所述的含硫铂碳催化剂,其中,以含硫铂碳催化剂的总重量为基准,铂的含量为20-70重量%,优选为20-60重量%, 还优选为40-60重量%
  8. 根据权利要求1所述的含硫铂碳催化剂,其中,具有规则晶格条纹的铂金属颗粒不超过60%,优选为40重量%或以下,还优选为10重量%或以下。
  9. 制备权利要求1所述含硫铂碳催化剂的方法,其特征在于,该方法包括:
    (1)用含有硫磺的溶液在10-80℃下浸渍导电炭黑1-5h,并将浸渍产物进行干燥后得到含硫导电炭黑;
    (2)将含有步骤(1)得到的含硫导电炭黑、铂源和溶剂的均匀混合液中的溶剂除去,得到前驱体材料;
    (3)在还原性气氛中,将所述前驱体材料进行热处理,得到所述含硫铂碳催化剂。
  10. 根据权利要求9所述的方法,其中所述含有硫磺的溶液中的硫磺的浓度为0.0004-0.02g/mL。
  11. 根据权利要求9所述的方法,其中相对于1g所述导电炭黑,所述硫磺的用量为0.005-0.06g。
  12. 根据权利要求9所述的方法,其中在80-200℃下进行所述步骤(3)的热处理。
  13. 根据权利要求9所述的方法,其中所述步骤(1)的干燥的条件包括:温度为20-100℃,时间为5-10h。
  14. 权利要求1-8中任一项所述的含硫铂碳催化剂在质子交换膜燃料电池或质子交换膜电解水中的用途。
  15. 权利要求1-8中任一项所述的含硫铂碳催化剂在提高铂碳催化剂抗催化剂中毒中的用途,其中所述中毒选自SOx中毒、CO中毒和H2S中毒。
  16. 根据权利要求15所述的用途,所述含硫铂碳催化剂用于燃料电池的阴极反应中,其中使原料气中的O2与所述含硫铂碳催化剂接触,所述原料气中SOx的含量为120ppm或以下,优选为100ppm或以下,还优选为50ppm或以下。
  17. 根据权利要求15所述的用途,所述含硫铂碳催化剂用于氢燃料电池的阳极反应中,其中使原料气中的H2与所述含硫铂碳催化剂接触,所述原料气中CO的含量为1500ppm或以下,优选为1200ppm或 以下,还优选为1000ppm或以下。
  18. 根据权利要求15所述的用途,所述含硫铂碳催化剂用于氢燃料电池的阳极反应中,其中使原料气中的H2与所述含硫铂碳催化剂接触,所述原料气中H2S的含量为15ppm或以下,优选为10ppm或以下,还优选为5ppm或以下。
PCT/CN2023/077761 2022-02-23 2023-02-23 含硫铂碳催化剂及其制备方法和应用 WO2023160592A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202210168795 2022-02-23
CN202210167782 2022-02-23
CN202210167772.9 2022-02-23
CN202210168790.9 2022-02-23
CN202210167784.1 2022-02-23
CN202210167784 2022-02-23
CN202210167772 2022-02-23
CN202210168790 2022-02-23
CN202210168795.1 2022-02-23
CN202210167782.2 2022-02-23
CN202211512322.5A CN118117103A (zh) 2022-11-29 含硫铂碳催化剂在提高铂碳催化剂抗SOx毒性中的应用
CN202211512322.5 2022-11-29

Publications (1)

Publication Number Publication Date
WO2023160592A1 true WO2023160592A1 (zh) 2023-08-31

Family

ID=87764767

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/077761 WO2023160592A1 (zh) 2022-02-23 2023-02-23 含硫铂碳催化剂及其制备方法和应用
PCT/CN2023/077817 WO2023160605A1 (zh) 2022-02-23 2023-02-23 硫改性碳材料及其制备方法和应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077817 WO2023160605A1 (zh) 2022-02-23 2023-02-23 硫改性碳材料及其制备方法和应用

Country Status (1)

Country Link
WO (2) WO2023160592A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817998A (zh) * 2018-12-24 2019-05-28 岭南师范学院 一种S掺杂碳材料负载Pt复合催化剂及其制备方法和应用
CN109904474A (zh) * 2019-03-18 2019-06-18 中国科学技术大学 一种硫掺杂的导电炭黑载体及其制备方法和硫掺杂的导电炭黑负载的铂基催化剂及其应用
CN110538651A (zh) * 2019-09-10 2019-12-06 沈阳化工研究院有限公司 一种铂炭催化剂及其制备方法
CN112186207A (zh) * 2020-10-29 2021-01-05 上海交通大学 低铂/非铂复合催化剂及其制备方法
CN112619667A (zh) * 2020-12-17 2021-04-09 中国科学技术大学 一种硫掺杂碳负载的铂基金属氧化物界面材料、其制备方法及应用
CN112808288A (zh) * 2019-11-18 2021-05-18 郑州大学 一种氮磷或氮磷硫共掺杂碳负载金属单原子的催化剂及其微波辅助制备方法
CN113089136A (zh) * 2021-03-25 2021-07-09 华北电力大学 一种铂负载氮/硫共掺杂多孔碳纳米纤维材料及其制备和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190428B1 (en) * 1996-03-25 2001-02-20 The United States Of America As Represented By The Secretary Of The Navy Electrochemical process for removing low-valent sulfur from carbon
JP2007048526A (ja) * 2005-08-08 2007-02-22 Nissan Motor Co Ltd 二次電池および組電池、並びにこれらを搭載した車両
US7867941B2 (en) * 2006-12-29 2011-01-11 Samsung Sdi Co., Ltd. Sulfur-containing mesoporous carbon, method of manufacturing the same, and fuel cell using the mesoporous carbon
CN103066248B (zh) * 2012-12-21 2015-11-18 中南大学 一种超级电池用负极炭材料表面化学掺杂Pb的方法
JP2014216240A (ja) * 2013-04-26 2014-11-17 住友大阪セメント株式会社 電極活物質と電極材料及び電極、リチウムイオン電池並びに電極材料の製造方法
CN106006599B (zh) * 2016-05-11 2018-06-12 浙江工业大学 一种高s含量的p,s,n共掺杂的介孔碳材料的合成方法及其应用
CN115708180A (zh) * 2021-08-19 2023-02-21 中国石油化工股份有限公司 氮、硫掺杂纳米碳材料及其制备方法、电容器电极材料、电容器电极及其制备方法和电容器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817998A (zh) * 2018-12-24 2019-05-28 岭南师范学院 一种S掺杂碳材料负载Pt复合催化剂及其制备方法和应用
CN109904474A (zh) * 2019-03-18 2019-06-18 中国科学技术大学 一种硫掺杂的导电炭黑载体及其制备方法和硫掺杂的导电炭黑负载的铂基催化剂及其应用
CN110538651A (zh) * 2019-09-10 2019-12-06 沈阳化工研究院有限公司 一种铂炭催化剂及其制备方法
CN112808288A (zh) * 2019-11-18 2021-05-18 郑州大学 一种氮磷或氮磷硫共掺杂碳负载金属单原子的催化剂及其微波辅助制备方法
CN112186207A (zh) * 2020-10-29 2021-01-05 上海交通大学 低铂/非铂复合催化剂及其制备方法
CN112619667A (zh) * 2020-12-17 2021-04-09 中国科学技术大学 一种硫掺杂碳负载的铂基金属氧化物界面材料、其制备方法及应用
CN113089136A (zh) * 2021-03-25 2021-07-09 华北电力大学 一种铂负载氮/硫共掺杂多孔碳纳米纤维材料及其制备和应用

Also Published As

Publication number Publication date
WO2023160605A1 (zh) 2023-08-31

Similar Documents

Publication Publication Date Title
Chen et al. Cobalt sulfide/N, S codoped porous carbon core–shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions
Wang et al. Co single-atoms on ultrathin N-doped porous carbon via a biomass complexation strategy for high performance metal–air batteries
Zheng et al. UIO‐66‐NH2‐Derived Mesoporous Carbon Catalyst Co‐Doped with Fe/N/S as Highly Efficient Cathode Catalyst for PEMFCs
Prithi et al. Nitrogen doped mesoporous carbon supported Pt electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells
Liu et al. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon
Ren et al. PtCo bimetallic nanoparticles encapsulated in N-doped carbon nanorod arrays for efficient electrocatalysis
Duan et al. Enhanced methanol oxidation and CO tolerance using oxygen-passivated molybdenum phosphide/carbon supported Pt catalysts
Vinayan et al. Synthesis and investigation of mechanism of platinum–graphene electrocatalysts by novel co-reduction techniques for proton exchange membrane fuel cell applications
Kruusenberg et al. Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell
Son et al. N, S-doped nanocarbon derived from ZIF-8 as a highly efficient and durable electro-catalyst for oxygen reduction reaction
Chao et al. Varying N content and N/C ratio of the nitrogen precursor to synthesize highly active Co-Nx/C non-precious metal catalyst
CN109675552B (zh) 一种介孔碳负载贵金属催化剂及其制备方法和用途
US20130149632A1 (en) Electrode catalyst for a fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including the electrode catalyst
KR101624641B1 (ko) 연료전지용 전극 촉매, 그 제조방법, 및 이 전극 촉매를 이용한 막 전극 접합체와 연료전지
Li et al. ZIF-8@ ZIF-67–derived ZnCo2O4@ nitrogen–doped carbon/carbon nanotubes wrapped by a carbon layer: a stable oxygen reduction catalyst with a competitive strength in acid media
Singh Palladium selenides as active methanol tolerant cathode materials for direct methanol fuel cell
Jing et al. Nanoporous carbon supported platinum-copper nanocomposites as anode catalysts for direct borohydride-hydrogen peroxide fuel cell
CN114335523A (zh) 一种高能量密度钠离子电池用硬碳负极的制备方法
Yan et al. S, N co-doped rod-like porous carbon derived from S, N organic ligand assembled Ni-MOF as an efficient electrocatalyst for oxygen reduction reaction
Wu et al. Electrocatalytic oxygen reduction by a Co/Co 3 O 4@ N-doped carbon composite material derived from the pyrolysis of ZIF-67/poplar flowers
JP6757933B2 (ja) 白金担持体とそれを用いた酸素還元触媒およびその製造方法ならびに燃料電池、金属空気電池
Miao et al. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction
JP4620341B2 (ja) 燃料電池用電極触媒
Zheng et al. Tuning the catalytic activity of Ir@ Pt nanoparticles through controlling Ir core size on cathode performance for PEM fuel cell application
KR102357700B1 (ko) 황 및 질소 이중 도핑 고흑연성 다공성 탄소체, 이를 포함하는 촉매 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759216

Country of ref document: EP

Kind code of ref document: A1