WO2023160541A1 - 一种含氮杂环化合物的制备方法 - Google Patents

一种含氮杂环化合物的制备方法 Download PDF

Info

Publication number
WO2023160541A1
WO2023160541A1 PCT/CN2023/077408 CN2023077408W WO2023160541A1 WO 2023160541 A1 WO2023160541 A1 WO 2023160541A1 CN 2023077408 W CN2023077408 W CN 2023077408W WO 2023160541 A1 WO2023160541 A1 WO 2023160541A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
compound
solution
acetonitrile
salt
Prior art date
Application number
PCT/CN2023/077408
Other languages
English (en)
French (fr)
Inventor
范江
窦赢
朱凤飞
汪成涛
甘满
Original Assignee
四川海思科制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川海思科制药有限公司 filed Critical 四川海思科制药有限公司
Publication of WO2023160541A1 publication Critical patent/WO2023160541A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D267/00Heterocyclic compounds containing rings of more than six members having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D267/02Seven-membered rings
    • C07D267/08Seven-membered rings having the hetero atoms in positions 1 and 4
    • C07D267/10Seven-membered rings having the hetero atoms in positions 1 and 4 not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the invention relates to a preparation method of a nitrogen-containing heterocyclic compound.
  • DPP1 Dipeptidyl peptidase 1
  • cathepsin C Dipeptidyl peptidase 1
  • NSPs neutrophil serine proteases
  • NE neutrophil elastase
  • proteinase 3 proteinase 3, Pr3
  • cathepsin G cathepsin G, CatG
  • DPP1 is associated with a variety of inflammatory diseases, including: Wegener's granulomatosis, rheumatoid arthritis, lung inflammation and viral infection.
  • DPP1 can have a good therapeutic effect on highly inflammatory lung diseases caused by neutrophils, such as bronchiectasis, chronic obstructive pulmonary disease (COPD), acute lung injury, etc. Therefore, inhibiting the hyperactivation of NSPs by targeting DPP1 may have a potential therapeutic effect on bronchiectasis.
  • neutrophils such as bronchiectasis, chronic obstructive pulmonary disease (COPD), acute lung injury, etc. Therefore, inhibiting the hyperactivation of NSPs by targeting DPP1 may have a potential therapeutic effect on bronchiectasis.
  • COPD chronic obstructive pulmonary disease
  • Patent application PCT/CN2020/114500 prepared a DPP1 small molecule inhibitor of formula (I), the compound shows high DPP1 inhibitory activity, has excellent bioavailability and pharmacokinetic characteristics, and has low toxicity, It has high safety and is intended to be used for the treatment of lung diseases such as non-cystic fibrosis bronchiectasis, chronic obstructive pulmonary disease (COPD), acute lung injury and cystic fibrosis bronchiectasis.
  • lung diseases such as non-cystic fibrosis bronchiectasis, chronic obstructive pulmonary disease (COPD), acute lung injury and cystic fibrosis bronchiectasis.
  • COPD chronic obstructive pulmonary disease
  • the preparation method described in this patent has the disadvantages of difficult purification of intermediates, multi-step column purification, many reaction conditions are not conducive to scale-up production, low yield, and high cost. Therefore, it is necessary to improve its preparation process to adapt
  • the invention provides a preparation method of a compound of formula (I),
  • the starting compounds 2a and 1A can be synthesized by referring to methods described in existing chemical reference books, documents, patents, etc., or purchased from commercial sources.
  • the preparation method of compound 1A is described in patent WO2015110826A1 (50 pages)
  • the preparation method of compound 2a is described in WO2016139355A1 (52 pages).
  • the coupling reaction of the first step can generally adopt catalysts such as palladium or nickel to carry out the reaction under basic conditions
  • the palladium or nickel reagents include but are not limited to NiCl 2 , NiCl 2 diglyme (diglyme dichloride Nickel), Ni(COD) 2 , Pd(OAc) 2 , PdCl 2 , Pd(PPh 3 ) 2 Cl 2 , Pd(dppf)Cl 2 , Pd(PPh 3 ) 4 , Pd 2 (dba) 3 , Pd( PhCN) 2 Cl 2 , PEPPSI-iPr, PdCl 2 [P(Cy) 3 ] 2 or [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium dichloromethane complex (Pd One or more of (dppf)Cl 2 ⁇ CH 2 Cl 2 ); alkaline reagents for making alkaline conditions include but not limited to K 3 PO 4
  • the first step includes dissolving compound 2a and compound 1A in an organic solvent that can dissolve the reactants, including but not limited to acetonitrile, toluene, dichloromethane, ethyl acetate Esters, acetone, methanol, ethanol, isopropanol, 2-methyltetrahydrofuran, tetrahydrofuran, 1,4-dioxane One or more of them, and then add K 3 PO 4 , K 2 HPO 4 , K 2 CO 3 , KHCO 3 , Cs 2 CO 3 , Na 2 CO 3 , NaHCO 3 , KF, sodium acetate, potassium acetate, Pyridine, triethylamine or N,N-diisopropylethylamine, or one or more of their aqueous solutions, add NiCl 2 , NiCl 2 diglyme, Ni(COD) 2 , Pd(OAc ) 2 , PdCl 2
  • alcohol solvents include but are not limited to methanol, ethanol, propanol, isopropanol, n-butanol, and the like. Under this reaction condition, this step has fast reaction speed, high conversion rate, simple post-treatment and high purity.
  • the first step is to replace the catalyst with nitrogen before adding the catalyst, and then replace it with nitrogen once after adding the catalyst.
  • the purpose of this is to fully remove the oxygen in the reaction system and avoid catalyst deactivation.
  • the second step add intermediate 1B and acid to an organic solvent, and fully react at a temperature of 20-55°C; then filter to obtain intermediate 1C or its salt, and optionally add the filter cake to the organic solvent
  • a solvent heat up to 80 ⁇ 5°C, stir for 1 to 5 hours, cool down to 20 ⁇ 5°C, stir, filter, and dry to obtain intermediate 1C or its salt
  • the acid is selected from sulfuric acid, phosphoric acid, formic acid, One or more of trifluoroacetic acid, benzenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid monohydrate
  • the organic solvent is selected from methanol, ethanol, isopropanol, acetonitrile, isopropyl acetate, ethyl acetate
  • the de-Boc protection reaction usually dissolves the intermediate and the acid in an organic solvent and controls the reaction at a certain temperature.
  • the acid includes but is not limited to sulfuric acid, phosphoric acid, formic acid, trifluoroacetic acid, benzenesulfonic acid, methanesulfonic acid, p- Toluenesulfonic acid monohydrate, etc.
  • the organic solvents include but not limited to methanol, ethanol, isopropanol, acetonitrile, isopropyl acetate, ethyl acetate, toluene, acetone, methyl isobutyl ketone, tetrahydrofuran, 2-methyl Tetrahydrofuran, methyl tert-butyl ether, acetonitrile, etc., the temperature is roughly 0°C to 80°C.
  • intermediate 1B and p-toluenesulfonic acid monohydrate are added to acetonitrile, and the temperature is controlled at 25 ⁇ 5°C to fully react; then filter, then add the filter cake to acetonitrile, and heat up to 80 ⁇ 5°C, Stir for 1-5 hours, cool down to 20 ⁇ 5°C, stir, filter, and dry to obtain intermediate 1C or its salt.
  • the second step reaction of the present invention preferably adopts p-toluenesulfonic acid monohydrate to be added as an acid, and reacts in acetonitrile.
  • the advantage is that the reaction speed is fast, and the product after the reaction is directly separated out.
  • the advantage of high-temperature stirring in acetonitrile is that the impurity removal effect is good after hot beating, and the product is not easy to absorb moisture.
  • the preparation method of formula (I) of the present invention also includes
  • intermediate 1C or its salt is subjected to amidation reaction with compound INT-3 or its salt to obtain intermediate 1D;
  • intermediate 1D is deprotected under acidic conditions to obtain compound (I) or its salt
  • the third step amidation reaction is usually dehydration reaction under condensing agent and alkaline conditions.
  • the intermediate 1C or its salt, and the compound INT-3 or its salt are added to the organic solvent, and then the organic amine is added.
  • the temperature is controlled for 5 ⁇ Add acid amine condensing agent at 20°C, after adding, keep warm at 25 ⁇ 5°C for full reaction; then, wash the reaction solution with sodium chloride solution, separate liquid, add medicinal charcoal or activated carbon to the organic phase, stir, filter, organic phase Add anhydrous sodium sulfate to dry, filter and concentrate to obtain intermediate 1D;
  • the organic solvent is selected from tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide , dichloromethane, acetone, methyl isobutyl ketone, isopropyl acetate, ethyl acetate or one or more;
  • the organic amine is selected from one or more of triethylamine, 2,6-lutidine, pyridine, DBU, N,N-diisopropylethylamine;
  • the acid amine condensing agent is selected from one or more of HATU, COMU, EDCI, BOP, and propylphosphoric anhydride.
  • the reaction solution in the third step, is washed with an alkaline aqueous solution and an acidic aqueous solution before being washed with a sodium chloride solution;
  • the alkaline aqueous solution is selected from potassium phosphate solution, potassium carbonate solution, carbonic acid
  • potassium hydrogen solution, sodium carbonate solution, and sodium bicarbonate solution The purpose of this washing step is to remove unreacted 1C or INT-3 by acid washing and alkaline washing.
  • the fourth step of the deprotection reaction usually takes place under acidic conditions in an organic solvent.
  • the intermediate 1D and the acidic reagent are added to the organic solvent, after the addition is completed, the reaction is fully reacted at 25 ⁇ 5°C, and then the reaction solution is controlled to keep the material temperature below 25°C and the alkali is added dropwise. After adding, cool down to 10 ⁇ 5°C for crystallization, filter, and dry to obtain compound (I); alternatively, after filtering, the filter cake is washed with purified water, and then the filter cake is added to ethanol, at 20 ⁇ 5 Stir at °C, filter and dry to obtain compound (I) or its salt.
  • the advantage of using the above conditions in the fourth step reaction is that after the deprotection is completed, the base is adjusted, the product is directly precipitated, and the product is obtained by filtration, and the post-treatment is simple.
  • the acid reagent described in the fourth step is selected from one or more of hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, trifluoroacetic acid, benzenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid monohydrate
  • the organic solvent is selected from acetonitrile, acetonitrile, methanol, ethanol, isopropanol, isopropyl acetate, ethyl acetate, acetone, methyl isobutyl ketone, tetrahydrofuran, 2-methyltetrahydrofuran, methyl tert-butyl
  • the base is selected from dilute ammonia, LiOH, NaOH, KOH, K 3 PO 4 , K 2 CO 3 , KHCO 3 , Cs 2 CO 3 , Na 2 CO 3 , NaHCO 3 one or several.
  • the fourth step also includes a refining step: the obtained compound (I) is recrystallized, and available recrystallization reagents include but are not limited to acetonitrile, methanol, ethanol, isopropanol, isopropyl acetate, Ethyl acetate, acetone, methyl isobutyl ketone, tetrahydrofuran, 2-methyltetrahydrofuran, n-heptane, methyl tert-butyl ether, dimethyl sulfoxide, N-methylpyrrolidone and their mixed solvents.
  • available recrystallization reagents include but are not limited to acetonitrile, methanol, ethanol, isopropanol, isopropyl acetate, Ethyl acetate, acetone, methyl isobutyl ketone, tetrahydrofuran, 2-methyltetrahydrofuran, n-heptane, methyl
  • the fourth refining step is: adding the obtained compound (I) to absolute ethanol -Water, acetonitrile-water, acetonitrile-methanol, acetonitrile-isopropanol, acetonitrile-tert-butanol, acetonitrile-n-butanol, or acetonitrile-absolute ethanol mixed solution, heated to 75 ⁇ 5°C, stirred until dissolved , optionally perform hot filtration, and the filtrate is crystallized under stirring and cooling down, filtered, and dried to obtain refined compound (I).
  • the volume ratio of the crude product to the solvent in the refining step ranges from 1.0:10.0 to 40.0, preferably 1.0:12.0 to 20.0.
  • the fourth step is carried out in two steps with stirring and lowering the temperature and crystallization. First, the temperature is lowered to 35 ⁇ 5°C, and the crystallization is kept for 20 minutes to 1.5 hours, and then the temperature is lowered to 5 ⁇ 5°C for 1 to 3 hours. Hour.
  • the advantages of fractional crystallization are good impurity removal effect and high yield.
  • the full reaction in the present invention refers to a reaction state in which the main raw material content is ⁇ 1.0% after sampling and monitoring by HPLC.
  • the salt of the present invention refers to the salt formed by acidic compound and organic base or inorganic base, or the salt formed by basic compound and organic acid or inorganic acid, such as triethanolamine salt, diethanolamine salt, monoethanolamine salt, carbonate, bicarbonate Salt, hydrobromide, hydrochloride, sulfate, malate, fumarate, tartrate, oxalate, citrate, benzenesulfonate, p-toluenesulfonate, etc.
  • salts are well known in the art, for example, the compound is reacted with an acid or base in a solvent, and the corresponding salt is separated by precipitation and filtration. Similarly, it is also well known in the art to use salts instead of free acids or free bases to carry out chemical reactions.
  • the present invention elaborates that a certain compound undergoes a type of reaction to prepare another substance, it includes the use of its salt form to participate in the reaction, and the product also includes Available in salt form. If the product is a salt, it is dissolved in a solvent, and the corresponding acid or base is added for neutralization. After the compound is freed, the free compound can be obtained by using some conventional post-treatments.
  • the operation of the whole process route is very simple, the intermediate synthesis yield of each step is relatively high, the total yield is greatly improved, and the production cost is further reduced.
  • the intermediate products of the whole synthesis process can be crystallized and purified, have high purity and high yield, and are suitable for large-scale industrial production.
  • references books and monographs in the field have introduced in detail the synthesis of reactants that can be used to prepare the compounds described herein, or provide articles describing the preparation method. for reference.
  • These reference books and monographs include: “Synthetic Organic Chemistry”, John Wiley & Sons, Inc., New York; SRSandler et al., “Organic Functional Group Preparations,” 2nd Ed., Academic Press, New York, 1983; HOHouse, "Modern Synthetic Reactions", 2nd Ed., WA Benjamin, Inc. Menlo Park, Calif.
  • NMR nuclear magnetic resonance
  • MS mass spectroscopy
  • Agilent 1260DAD high pressure liquid chromatograph (Zorbax SB-C18 100 ⁇ 4.6mm, 3.5 ⁇ M) was used for the determination of HPLC.
  • compound 1A and compound 2a are subjected to a coupling reaction, followed by deprotection, amidation and deprotection reactions, and a total of four steps are used to obtain the target compound.
  • the route is short, the conditions are mild, the operation is simple, the post-treatment is convenient, and the yield High, high purity, suitable for industrial scale-up production.
  • the target compound I has good activity, high bioavailability, less toxic and side effects, and has the potential of being a drug.
  • the filter cake was washed with 1.670 kg of acetonitrile, and the filter cake was collected.
  • Add 2.1381kg of acetonitrile and filter cake into the reaction kettle raise the temperature to 80 ⁇ 5°C, and stir for 3 hours. Then lower the temperature to 20 ⁇ 5°C and stir for 1 hour.
  • the filter cake was washed with 1.670 kg of acetonitrile, and the filter cake was collected.
  • reaction solution was washed successively with sodium bicarbonate solution, citric acid solution and sodium chloride. Add 1.0 kg of anhydrous sodium sulfate to the organic phase, and dry for about 0.5 hours. Filter, wash the filter cake with 1.905 kg of dichloromethane, and combine the filtrates.
  • reaction solution was washed successively with sodium bicarbonate solution, citric acid solution and sodium chloride. Add 200 g of anhydrous sodium sulfate to the organic phase, and dry for about 0.5 hours. Filter, wash the filter cake with 50 g of ethyl acetate, and combine the filtrates.
  • Refining In a 100L reaction kettle, add 9.100kg of acetonitrile, 9.220kg of absolute ethanol and 1.6627kg of crude compound I under stirring, heat to an internal temperature of 75 ⁇ 5°C, stir until dissolved, and filter while hot. Transfer the filtrate to a 100L reaction kettle (if the filtrate has product precipitation, it should be heated to dissolve), stir and cool down to 35 ⁇ 5°C, keep warm until obvious solids are precipitated, and then keep warm and stir for about 0.5 hours. Then lower the temperature to 5 ⁇ 5° C. and keep it warm for crystallization for 2 hours. Filter, wash the filter cake with 1.300kg ethanol, and collect the filter cake.
  • reaction solution Concentrate the reaction solution to a reaction volume of about 20L, cool down to 10 ⁇ 5°C, and add dilute ammonia (4.0kg of ammonia mixed with 56.00kg of purified water). After the addition, the temperature was lowered to 10 ⁇ 5°C for 0.5 hours to crystallize. Filter and wash the filter cake with 5kg of purified water to collect the filter cake. The filter cake was dried at 55 ⁇ 5°C and vacuum degree ⁇ -0.07MPa for about 72 hours to obtain 2.552kg of crude compound I.
  • Refining In a 100L reactor, add 19.63kg of isopropanol and 1.6627kg of crude compound I under stirring, heat to an internal temperature of 75 ⁇ 5°C, stir for about 2 hours, then cool down to 25 ⁇ 5°C for about 16 hours for crystallization. Filter and wash the filter cake with 1.300kg of isopropanol to collect the filter cake.
  • Drying Dry the filter cake at 55 ⁇ 5°C and vacuum ⁇ -0.07MPa for about 24 hours to obtain 2.344.2kg of compound 1, yield 82.3%.
  • Recombinant human DPP1 enzyme (R&D Systems, Cat.No 1071-CY) at a final concentration of 100 ⁇ g/mL was mixed with recombinant human cathepsin L (R&D Systems, Cat.No 952-CY) at a final concentration of 20 ⁇ g/mL, and incubated at room temperature for 1 hour , to activate the DPP1 enzyme.
  • the activated DPP1 enzyme was diluted 100 times, and 5 ⁇ L of different concentrations of compounds and 5 ⁇ L of the diluted DPP1 enzyme were added to a 384-well plate, and incubated at room temperature for 30 minutes. After adding 10 ⁇ L of 20 ⁇ M substrate Gly-Arg-AMC (bachem, Cat.
  • the compound of the present invention shows very high inhibitory activity for DPP1 receptor.
  • Test animals male SD rats, about 220 g, 6-8 weeks old, 6 rats/compound. purchased from Chengdu Dashuo Experimental Animal Co., Ltd.
  • Vehicle for intravenous administration 5% DMA + 5% Solutol + 90% Saline; vehicle for intragastric administration: 0.5% MC; the reference compound INS1007, which is compound 2 in patent WO2015110826A1, was prepared according to the patent method.
  • the compound of the present invention has good bioavailability and pharmacokinetic characteristics.
  • the SD rats were randomly divided into groups according to body weight, respectively vehicle control group (0.5% MC), INS1007 (30, 100, 300mg/kg) group, compound I (30, 100, 300mg/kg) group, each group of administration group 16 rats, 10 rats in the vehicle control group, half male and half male.
  • Drugs or vehicles of corresponding concentrations were given by oral gavage every day for 14 consecutive days, and the recovery period was 7 days.
  • the dosing period the general symptoms, body weight and food intake of each group were observed, and at the end of the dosing period and the recovery period, hematology, serum biochemistry and gross anatomy tests were carried out for each group.
  • the toxicity of the compound of the present invention is less than that of INS1007, and the safety is higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

公开了一种式(I)所示的含氮杂环化合物的制备方法,该方法由化合物1A和化合物2a发生偶联反应后,依次进行脱保护、酰胺化和脱保护反应,共四步制得目标化合物。该方法反应路线短、条件温和、操作简单、后处理方便、收率高、纯度高,适合工业化放大生产。

Description

一种含氮杂环化合物的制备方法 技术领域
本发明涉及一种含氮杂环化合物的制备方法。
背景技术
二肽基肽酶1(Dipeptidyl peptidase 1,DPP1),又名组织蛋白酶C,是溶酶体木瓜蛋白酶家族的一种半胱氨酰蛋白酶,参与细胞内蛋白质降解。在中性粒细胞成熟过程中,DPP1通过切割目标蛋白N末端二肽从而激活中性粒细胞丝氨酸蛋白酶(NSPs),包括中性粒细胞弹性蛋白酶(neutrophil elastase,NE),蛋白酶3(proteinase 3,Pr3)和组织蛋白酶G(cathepsin G,CatG)。DPP1与多种炎症性疾病相关,包括:Wegener肉芽肿病,类风湿性关节炎,肺部炎症和病毒感染等疾病。研究显示抑制DPP1可对由中性粒细胞引起的高度炎症性肺部疾病具有很好的治疗效果,如支气管扩张症,慢性阻塞性肺病(COPD),急性肺损伤等。因此,通过靶向DPP1,抑制NSPs的过度活化,可能对支气管扩张症具有潜在的治疗作用。
专利申请PCT/CN2020/114500制备了一种式(I)的DPP1小分子抑制剂,该化合物显示了很高的DPP1抑制活性,具有优异的生物利用度和药代动力学特征,并且毒性小、安全性高,拟用于治疗非囊性纤维化支气管扩张症、慢性阻塞性肺疾病(COPD)、急性肺损伤和囊性纤维化支气管扩张症等肺部疾病。但是,该专利记载的制备方法存在中间体纯化难度大,需要多步过柱纯化,很多反应条件不利于放大生产,收率低,成本高昂等缺点。因此,有必要对其制备工艺进行改进,以适应工业上的大规模生产。
发明内容
本发明提供了一种式(I)的化合物的制备方法,
其包括第一步:将化合物2a和化合物1A进行偶联反应制得中间体1B;
以及第二步:将中间体1B进行脱保护制得中间体1C或其盐;
起始物化合物2a和1A可以参照现有的化学工具书、文献、专利等记载的方法加以合成,或者从商业中进行购买。例如专利WO2015110826A1(50页)中记载了化合物1A的制备方法,WO2016139355A1(52页)中记载了化合物2a的制备方法。
第一步的偶联反应通常可以采用钯或者镍等催化剂在碱性条件下进行反应,所述钯或者镍试剂包括但不限于NiCl2、NiCl2·diglyme(二甘醇二甲醚二氯化镍)、Ni(COD)2、Pd(OAc)2、PdCl2、Pd(PPh3)2Cl2、Pd(dppf)Cl2、Pd(PPh3)4、Pd2(dba)3、Pd(PhCN)2Cl2、PEPPSI-iPr、PdCl2[P(Cy)3]2或[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(Pd(dppf)Cl2·CH2Cl2)中的一种或几种;制造碱性条件的碱性试剂包括但不限K3PO4、K2HPO4、K2CO3、KHCO3、Cs2CO3、Na2CO3、NaHCO3、KF、乙酸钠、乙酸钾、吡啶、三乙胺或N,N-二异丙基乙胺、或它们的水溶液中的一种或几种;
在一些具体实施方式中,所述第一步包括将化合物2a和化合物1A溶于有机溶剂中,所述有机溶剂能够溶解反应物即可,包括但不限于乙腈、甲苯、二氯甲烷、乙酸乙酯、丙酮、甲醇、乙醇、异丙醇、2-甲基四氢呋喃、四氢呋喃、1,4-二氧六环中 的一种或几种,再加入选自K3PO4、K2HPO4、K2CO3、KHCO3、Cs2CO3、Na2CO3、NaHCO3、KF、乙酸钠、乙酸钾、吡啶、三乙胺或N,N-二异丙基乙胺、或其水溶液的一种或几种,加毕,加入选自NiCl2、NiCl2·diglyme、Ni(COD)2、Pd(OAc)2、PdCl2、Pd(PPh3)2Cl2、Pd(dppf)Cl2、Pd(PPh3)4、Pd2(dba)3、Pd(PhCN)2Cl2、PEPPSI-iPr、PdCl2[P(Cy)3]2、和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(Pd(dppf)Cl2·CH2Cl2)中的一种或几种催化剂,氮气保护下,升温至80±5℃充分反应;然后,向反应液中加入纯化水或乙醇,或直接降温到5-55℃,过滤,干燥,得到中间体1B;可选地,在过滤后将滤饼加入醇类溶剂,搅拌10min~2h,再过滤、干燥,得到中间体1B。未特殊说明时,醇类溶剂包括但不限于甲醇、乙醇、丙醇、异丙醇、正丁醇等。在此反应条件下,该步骤反应速度快、转化率高、后处理简单、纯度高。
在一些具体实施方式中,第一步在加催化剂前先氮气置换,加完后再氮气置换一次,这样的目的在于充分除去反应体系中氧气、避免催化剂失活。
在一些具体实施方式中,第一步反应的投料比范围为2a:1A:钯剂=1:1.0~3.0:0.001~0.2,优选为2a:1A:钯剂=1:0.95~1.20:0.001~0.03,碳酸钾的加入量范围为2a:K2CO3=1.0:1.5~8.0,优选为2a:K2CO3=1.0:2.0~3.0。
在一些具体实施方式中,第二步:将中间体1B和酸加入有机溶剂中,控温20~55℃充分反应;然后过滤得到中间体1C或其盐,可选地再将滤饼加入有机溶剂中,升温至80±5℃,搅拌1~5小时,降温至20±5℃,搅拌,过滤,干燥,得到中间体1C或其盐;其中,所述酸选自硫酸、磷酸、甲酸、三氟乙酸、苯磺酸、甲磺酸、对甲苯磺酸一水合物中的一种或几种,所述有机溶剂选自甲醇、乙醇、异丙醇、乙腈、醋酸异丙酯、乙酸乙酯、甲苯、丙酮、甲基异丁酮、四氢呋喃、2-甲基四氢呋喃、甲基叔丁基醚、乙腈中的一种或几种;
脱Boc保护反应通常将中间体和酸溶于有机溶剂中,控制在一定温度反应即可,所述酸包括但不限于硫酸、磷酸、甲酸、三氟乙酸、苯磺酸、甲磺酸、对甲苯磺酸一水合物等,所述有机溶剂包括但不限于甲醇、乙醇、异丙醇、乙腈、醋酸异丙酯、乙酸乙酯、甲苯、丙酮、甲基异丁酮、四氢呋喃、2-甲基四氢呋喃、甲基叔丁基醚、乙腈等,所述温度大致为0℃~80℃。
在本发明一些具体实施方式中,第二步将中间体1B和对甲苯磺酸一水合物加入乙腈中,控温25±5℃充分反应;然后过滤,再将滤饼加入乙腈中,升温至80±5℃, 搅拌1~5小时,降温至20±5℃,搅拌,过滤,干燥,得到中间体1C或其盐。
本发明第二步反应优选采用对甲苯磺酸一水合物加为酸,在乙腈中反应,其优点在于反应速度快,反应结束产物直接析出,过滤即可得到产物,操作简单,其后处理再次在乙腈中高温搅拌的优点在于热打浆后除杂效果好,产品不易吸潮。
在一些具体实施方式中,第二步反应的投料摩尔比为1B:酸=1:1.0~5.0;在一些实施例中优选为1B:酸=1:1.5~3.0。
在一些具体实施方式中,本发明式(I)的制备方法还包括
第三步:将中间体1C或其盐、与化合物INT-3或其盐进行酰胺化反应制得中间体1D;
或/和
第四步:中间体1D在酸性条件下脱保护得到化合物(I)或其盐;
第三步酰胺化反应通常在缩合剂和碱性条件下脱水反应即可。
在一些具体实施方式中,所述第三步将中间体1C或其盐、与化合物INT-3或其盐加入到有机溶剂中,再加入有机胺,加毕,氮气保护下,控温5~20℃加入酸胺缩合剂,加毕,保温25±5℃充分反应;然后,将反应液用氯化钠溶液洗涤,分液,有机相中加入药用炭或活性炭,搅拌,过滤,有机相加入无水硫酸钠干燥,过滤,浓缩,得到中间体1D;
所述有机溶剂选自四氢呋喃、2-甲基四氢呋喃、二氧六环、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜、二氯甲烷、丙酮、甲基异丁酮、醋酸异丙酯、乙酸乙酯中的一种或几种;
所述有机胺选自三乙胺、2,6-二甲基吡啶、吡啶、DBU、N,N-二异丙基乙胺中的一种或几种;
所述酸胺缩合剂选自HATU、COMU、EDCI、BOP、丙基磷酸酐中的一种或几种。
在一些具体实施方式中,所述第三步的物料比范围为1C:INT-3=1:0.9~3.0,优选为1C:INT-3=1:1.0~1.5,缩合剂用量范围通常为1C:缩合剂=1:1.0~5.0,优选为1C:缩合剂=1:1.2~2.0。
在一些具体实施方式中,所述第三步,将反应液用氯化钠溶液洗涤前先依次用碱性水溶液和酸性水溶液洗涤;所述碱性水溶液选自磷酸钾溶液、碳酸钾溶液、碳酸氢钾溶液、碳酸钠溶液、碳酸氢钠溶液中的一种或几种。该洗涤步骤的目的在于通过酸洗和碱性洗涤除去未反应完1C或INT-3。
第四步脱保护反应通常用在有机溶剂中酸性条件下发生脱保护反应即可。
在一些具体实施方式中,所述第四步将中间体1D和酸性试剂加入有机溶剂中,加毕,保温25±5℃充分反应,然后将反应液控制料温在25℃以下滴加碱,加毕,再降温至10±5℃析晶,过滤,干燥,得到化合物(I);可选地,在过滤后,滤饼用纯化水洗涤,再将滤饼加入乙醇中,于20±5℃搅拌,过滤,干燥,得到化合物(I)或其盐。
第四步反应采用上述条件的优点在于脱保护结束后,调碱,产物直接析出,过滤即得,后处理简单。
在一些具体实施方式中,第四步所述的酸性试剂选自盐酸、硫酸、磷酸、甲酸、三氟乙酸、苯磺酸、甲磺酸、对甲苯磺酸一水合物中的一种或几种,所述有机溶剂选自乙腈、乙腈、甲醇、乙醇、异丙醇、醋酸异丙酯、乙酸乙酯、丙酮、甲基异丁酮、四氢呋喃、2-甲基四氢呋喃、甲基叔丁基醚中的一种或几种,所述碱选自稀氨水、LiOH、NaOH、KOH、K3PO4、K2CO3、KHCO3、Cs2CO3、Na2CO3、NaHCO3中的一种或几种。
在一些具体实施方式中,第四步物料比范围为1D:酸=1.0:1.0~6.0,优选为1D:酸=1.0:2.0~4.0,滴加碱的用量为1D:碱=1.0:2.0~10.0,优选为1D:碱=1.0:3.0~6.0。
在一些具体实施方式中,第四步还包括精制步骤:将得到的化合物(I)进行重结晶,可用的重结晶试剂包括但不限于乙腈、甲醇、乙醇、异丙醇、醋酸异丙酯、乙酸乙酯、丙酮、甲基异丁酮、四氢呋喃、2-甲基四氢呋喃、正庚烷、甲基叔丁基醚、二甲基亚砜、N-甲基吡咯烷酮及其混合溶剂。
在一些具体实施方式中,第四步精制步骤为:将得到的化合物(I)加入到无水乙醇 -水、乙腈-水、乙腈-甲醇、乙腈-异丙醇、乙腈-叔丁醇、乙腈-正丁醇、或乙腈-无水乙醇混合溶液中,加热至75±5℃,搅拌至溶清,可选地进行热过滤,滤液在搅拌下降温析晶,过滤,干燥,得到精制的化合物(I)。
在一些具体实施方式中,精制步骤粗品和溶剂的料液体积比范围为1.0:10.0~40.0,优选为1.0:12.0~20.0。
在一些具体实施方式中,第四步在搅拌下降温析晶分两步进行,先降温至35±5℃,保温析晶20min~1.5小时,再降温至5±5℃保温析晶1~3小时。分步析晶的优点在于除杂效果好、收率高。
本发明所述的充分反应是指,取样进行HPLC监控,主要原料含量≤1.0%的一种反应状态。
本发明的盐是指酸性化合物与有机碱或无机碱形成的、或者碱性化合物与有机酸或无机酸形成的盐,例如三乙醇胺盐、二乙醇胺盐、单乙醇胺盐、碳酸盐、碳酸氢盐、氢溴酸盐、盐酸盐、硫酸盐、苹果酸盐、富马酸盐、酒石酸盐、草酸盐、柠檬酸盐、苯磺酸盐、对甲苯磺酸盐等。
盐的制备是本领域所熟知的,例如将化合物在溶剂中与酸或碱反应,通过析出、过滤等方式分离出相应的盐即可。同样地,采用盐替代游离酸或游离碱进行化学反应也是本领域所熟知的,本发明在阐述某一化合物进行一类反应制备另一物质时,包括采用其盐形式参与反应,产物也包括以盐形式获得。如果产物是盐,将其溶于溶剂中,加入相对应的酸或碱进行中和,游离出化合物后,采用常规的一些后处理即可获得游离的化合物。
本发明的制备方法,整个工艺路线操作十分简便,每步中间体合成收率较高,大大提高总收率,进而缩减了生产成本。整个合成工艺中间产品都可结晶纯化,纯度高,收率高,适宜大规模工业化生产。
未特殊说明时,本发明的操作按照本领域常规操作完成,本领域的参考书和专著,详细介绍了可用于制备本文所述化合物的反应物的合成,或提供了描述该制备方法的文章以供参考。这些参考书和专著包括:“Synthetic Organic Chemistry”,John Wiley & Sons,Inc.,New York;S.R.Sandler et al.,“Organic Functional Group Preparations,”2nd Ed.,Academic Press,New York,1983;H.O.House,“Modern Synthetic Reactions”,2nd Ed.,W.A.Benjamin,Inc.Menlo Park,Calif.1972;T.L.Gilchrist,“Heterocyclic Chemistry”,2nd Ed.,John Wiley & Sons,New York,1992;J.March,“Advanced Organic  Chemistry:Reactions,Mechanisms and Structure”,4th Ed.,Wiley-Interscience,New York,1992;Fuhrhop,J.and Penzlin G.“Organic Synthesis:Concepts,Methods,Starting Materials”,Second,Revised and Enlarged Edition(1994)John Wiley & Sons ISBN:3-527-29074-5;Hoffman,R.V.“Organic Chemistry,An Intermediate Text”(1996)Oxford University Press,ISBN 0-19-509618-5;Larock,R.C.“Comprehensive Organic Transformations:A Guide to Functional Group Preparations”2nd Edition(1999)Wiley-VCH,ISBN:0-471-19031-4;March,J.“Advanced Organic Chemistry:Reactions,Mechanisms,and Structure”4th Edition(1992)John Wiley & Sons,ISBN:0-471-60180-2;Otera,J.(editor)“Modern Carbonyl Chemistry”(2000)Wiley-VCH,ISBN:3-527-29871-1;Patai,S.“Patai’s 1992 Guide to the Chemistry of Functional Groups”(1992)Interscience ISBN:0-471-93022-9;Solomons,T.W.G.“Organic Chemistry”7th Edition(2000)John Wiley & Sons,ISBN:0-471-19095-0;Stowell,J.C.,“Intermediate Organic Chemistry”2nd Edition(1993)Wiley-Interscience,ISBN:0-471-57456-2;“Industrial Organic Chemicals:Starting Materials and Intermediates:An Ullmann’s Encyclopedia”(1999)John Wiley & Sons,ISBN:3-527-29645-X,in 8 volumes;“Organic Reactions”(1942-2000)John Wiley & Sons,in over 55 volumes;and“Chemistry of Functional Groups”John Wiley & Sons,in 73 volumes。
具体实施方式
以下将通过实施例对本发明的内容进行详细描述。实施例中未注明具体条件的,按照常规条件的实验方法进行。所举实施例是为了更好地对本发明的内容进行说明,但并不能理解为本发明的内容仅限于所举实例。本领域常规技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
检测方法
化合物的结构是通过核磁共振(NMR)或(和)质谱(MS)来确定的。NMR位移(δ)以10-6(ppm)的单位给出。NMR的测定是用(Bruker Avance III 400和Bruker Avance 300)核磁仪,测定溶剂为氘代二甲基亚砜(DMSO-d6),氘代氯仿(CDCl3),氘代甲醇(CD3OD),内标为四甲基硅烷(TMS);
MS的测定用(Agilent 6120B(ESI)和Agilent 6120B(APCI));
HPLC的测定使用Agilent 1260DAD高压液相色谱仪(Zorbax SB-C18 100×4.6mm,3.5μM)。
化合物的制备
本发明通过将化合物1A和化合物2a发生偶联反应后,依次进行脱保护、酰胺化和脱保护反应,共四步制得目标化合物,路线短、条件温和、操作简单、后处理方便、收率高、纯度高,适合工业化放大生产。目标化合物I活性好,生物利用度高,毒副作用小,具有成药潜能。
实施例1
叔丁基(S)-(1-氰基-2-(2-氟-4-(3-甲基-2-氧代-2,3-二氢苯并[d]恶唑-5-基)苯基)乙基)氨基甲酸酯(1B)
tert-butyl(S)-(1-cyano-2-(2-fluoro-4-(3-methyl-2-oxo-2,3-dihydrobenzo[d]oxazol-5-yl)phenyl)ethyl)carbamate(1B)
方法一:
向50L反应釜中,搅拌下加入10.005kg 1,4-二氧六环、1.600kg化合物1A(参考专利WO2015110826A1的方法)和2.000kg化合物2a(参考专利WO2016139355A1的方法),再加入6.605kg碳酸钾水溶液(1.600kg碳酸钾溶于5.005kg纯化水中)。加毕,氮气置换三次。加入100.0g[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物,氮气置换一次。氮气保护下,将反应液升温至80±5℃反应约2小时后,取样HPLC 监控,中控目标值化合物2a含量≤1.0%,停止反应。
向反应液中加入5.000kg纯化水,降温至10±5℃,加入10.005kg纯化水,10±5℃搅拌析晶约1小时,过滤,滤饼用2.500kg纯化水/次洗涤两次,收集滤饼。将12.605kg无水乙醇及滤饼加入到50L反应釜中,于20±5℃搅拌约0.5小时,过滤,滤饼用1.000kg无水乙醇/次洗涤两次,收集滤饼。
干燥:滤饼于55±5℃、真空≤-0.07MPa干燥约16小时,收料得2.143kg中间体1B,收率为89.4%,HPLC:95.91%。
1H NMR(400MHz,DMSO)δ7.90(s,1H),7.72–7.30(m,6H),4.72(s,1H),3.41(d,3H),3.09-3.21(m,2H),1.37(s,9H)。
LCMS m/z=356.1[M-56+H]+
方法二:
向1L反应瓶中,搅拌下加入100g乙腈、20.15g化合物1A和16.02g化合物2a,再加入16.57g碳酸钾水溶液(16.53g碳酸钾溶于40g纯化水中)。加毕,氮气置换三次。加入0.83g[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物。氮气保护下,将反应液升温至80±5℃反应约2小时后,停止反应。
将反应液降温至50±5℃,加入80g无水乙醇,析晶约1小时,过滤,滤饼用20g无水乙醇洗涤,收集滤饼。
干燥:滤饼于55±5℃、真空≤-0.07MPa干燥约16小时,收料得24.41g中间体1B,收率为83.0%。
方法三:
向20L反应釜中,搅拌下加入5.5kg 1,4-二氧六环、0.551kg化合物1A和0.434kg化合物2a,再加入1.744kg碳酸钾水溶液(0.444kg碳酸钾溶于1.30kg纯化水中)。加毕,氮气置换三次。加入208g[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物。氮气保护下,将反应液升温至80±5℃反应约3小时后,停止反应。
向反应液降温至20±5℃,搅拌析晶约1小时,过滤,滤饼用1.0kg纯化水/次洗涤两次,收集滤饼。将3.2kg无水乙醇及滤饼加入到20L反应釜中,升温70±5℃搅拌约1.5小时,降至室温,过滤,滤饼用1.20kg无水乙醇洗涤,收集滤饼。
干燥:滤饼于55±5℃、真空≤-0.07MPa干燥约18小时,收料得0.435kg中间体1B,收率为74.0%。
实施例2
(S)-2-氨基-3-(2-氟-4-(3-甲基-2-氧代-2,3-二氢苯并[d]恶唑-5-基)苯基)丙腈4-甲基苯磺酸盐(1C的甲磺酸盐)
(S)-2-amino-3-(2-fluoro-4-(3-methyl-2-oxo-2,3-dihydrobenzo[d]oxazol-5-yl)phenyl)propanenitrile 4-methylbenzenesulfonic acid(1C 4-methylbenzenesulfonic acid)
方法一:
向50L玻璃反应釜中,搅拌下加入16.785kg乙腈、2.1381kg中间体1B和2.950kg对甲苯磺酸一水合物。加毕,控温25±5℃反应约2小时后取样HPLC监控,中控目标值中间体1B含量≤1.0%,停止反应。
过滤,滤饼用1.670kg乙腈洗涤,收集滤饼。将2.1381kg乙腈及滤饼加入到反应釜中,升温至80±5℃,搅拌3小时。再降温至20±5℃,搅拌1小时。过滤,滤饼用1.670kg乙腈洗涤,收集滤饼。
干燥:滤饼于55±5℃、真空≤-0.07MPa干燥约16小时。收料得2.141kg中间体1C的甲磺酸盐,收率为85.5%,HPLC:99.43%。
1H NMR(400MHz,DMSO)δ9.04(s,3H),7.70–7.37(m,8H),7.13(d,2H),4.90(dd,1H),3.41(s,3H),3.29(t,2H),2.29(s,3H)。
LCMS m/z=312.2[M-172+H]+
方法二:
向1L反应瓶中,搅拌下加入400g乙腈、50.30g中间体1B和69.30g对甲苯磺酸一水合物。加毕,控温50±5℃反应约1小时后取样HPLC监控,中控中间体1B含量≤1.0%,停止反应。过滤,滤饼用10g乙腈洗涤,收集滤饼。
干燥:滤饼于55±5℃、真空≤-0.07MPa干燥约24小时。收料得55.70g中间体1C的甲磺酸盐,收率为95.0%。
方法三:
向0.5L反应瓶中,搅拌下加入160g乙腈、20.3g中间体1B和17.8g浓盐酸。 加毕,控温25±5℃反应约2小时后取样HPLC监控,中控中间体1B含量≤1.0%,停止反应。过滤,滤饼用10g乙腈洗涤,收集滤饼。
干燥:滤饼于55±5℃、真空≤-0.07MPa干燥约18小时。收料得14.4g中间体1C的盐酸盐,收率为85.0%,易吸潮。
实施例3
叔丁基(S)-2-(((S)-1-氰基-2-(2-氟-4-(3-甲基-2-氧代-2,3-二氢苯并[d]恶唑-5-基)苯基)乙基)氨基甲酰基)-1,4-氧杂氮杂环庚烷-4-羧酸酯(1D)
tert-butyl(S)-2-(((S)-1-cyano-2-(2-fluoro-4-(3-methyl-2-oxo-2,3-dihydrobenzo[d]oxazol-5-yl)phenyl)ethyl)carbamoyl)-1,4-oxazepane-4-carboxylate(1D)
方法一:
向50L反应釜中,搅拌下加入19.060kg乙酸乙酯、2.1413kg中间体1C和1.1300kg INT-3(购买于南京药石科技股份有限公司),再加入1.725kg N,N-二异丙基乙胺。加毕,氮气保护下,将反应液降温到5±5℃,控温10±5℃滴加4.240kg丙基磷酸酐,加毕,保温25±5℃反应约2小时后,取样HPLC监控,中控目标值中间体1C含量≤1.0%,停止反应。
将反应液依次用碳酸氢钠溶液(1.070kg碳酸氢钠溶于20.350kg水)、柠檬酸溶液(2.150kg柠檬酸一水合物溶于19.275kg水)、氯化钠洗涤(4.300kg氯化钠溶于17.135kg水)。有机相中加入0.210kg药用炭,搅拌约0.5小时。垫0.540kg硅藻土过滤,滤饼用乙酸乙酯1.905kg洗涤。向有机相加入1.070kg无水硫酸钠,干燥约0.5小时。过滤,用乙酸乙酯1.905kg洗涤滤饼,合并滤液。
滤液在50±5℃减压浓缩至无明显馏分流出,得到2.385kg中间体1D(超重、按照收率100%计算此量)。直接用于下一步反应,HPLC:99.09%。
1H NMR(400MHz,CDCl3)δ7.54–7.01(m,7H),5.18(s,1H),4.25–3.94(m,3H),3.54(dd,2H),3.46(s,3H),3.39–3.04(m,4H),1.99(d,2H),1.54–1.39(m,9H)。
LCMS m/z=483.2[M-56+1]+
方法二:
向2L反应瓶中,搅拌下加入1.3kg二氯甲烷、120.03g中间体1C和108.76g INT-3,再加入149.55g N,N-二异丙基乙胺。加毕,将反应液降温到15±5℃,分批加入190.47g HATU,加毕,保温25±5℃反应约16小时后停止反应。
将反应液依次用碳酸氢钠溶液、柠檬酸溶液、氯化钠洗涤。向有机相加入1.0kg无水硫酸钠,干燥约0.5小时。过滤,用二氯甲烷1.905kg洗涤滤饼,合并滤液。
滤液在50±5℃减压浓缩至无明显馏分流出,得到221.30g中间体1D(超重、按照收率100%计算此量)。直接用于下一步反应。
方法三:
向1L反应瓶中,搅拌下加入800g乙酸乙酯、100.0g中间体1C和53.26g INT-3,再加入80.11g N,N-二异丙基乙胺。加毕,氮气保护下,将反应液降温到5±5℃,控温10±5℃滴加197.66g丙基磷酸酐,加毕,保温25±5℃反应约2小时后,取样HPLC监控,中控目标值中间体1C含量≤1.0%,停止反应。
将反应液依次用碳酸氢钠溶液、柠檬酸溶液、氯化钠洗涤。向有机相加入200g无水硫酸钠,干燥约0.5小时。过滤,用乙酸乙酯50g洗涤滤饼,合并滤液。
滤液在50±5℃减压浓缩至无明显馏分流出,得到115.08g中间体1D(超重、按照收率100%计算此量)。直接用于下一步反应。
实施例4
(S)-N-((S)-1-氰基-2-(2-氟-4-(3-甲基-2-氧代-2,3-二氢苯并[d]恶唑-5-基)苯基)乙基)-1,4-氧杂氮杂环庚烷-2-甲酰胺(化合物I)
(S)-N-((S)-1-cyano-2-(2-fluoro-4-(3-methyl-2-oxo-2,3-dihydrobenzo[d]oxazol-5-yl)phenyl)ethyl)-1,4-oxazepane-2-carboxamide(化合物I)
方法一:
向装有中间体1D(实施例3方法一)浓缩物的50L双层玻璃反应釜中,搅拌下加入9.305kg乙腈、2.530kg对甲苯磺酸一水合物。加毕,保温25±5℃反应约2小时 后取样HPLC监控,中控目标值中间体1D含量≤1.0%,停止反应。
将反应液降温到10±5℃,滴加稀氨水(1.075kg氨水与36.000kg纯化水混合),滴加过程中控制料温25℃以下。加毕,再降温至10±5℃析晶2小时。过滤,滤饼用11.930kg纯化水洗涤。将滤饼和14.890kg乙醇加入至50L双层玻璃反应釜中,于20±5℃搅拌0.5小时,过滤,滤饼用1.860kg乙醇洗涤,收集滤饼。滤饼于55±5℃、真空度≤-0.07MPa干燥约13小时,收料得1.6627kg化合物I粗品,收率为85.6%。
精制:100L反应釜中,搅拌下加入9.100kg乙腈、9.220kg无水乙醇和1.6627kg化合物I粗品,加热至内温75±5℃,搅拌至溶清,趁热过滤。滤液转入100L反应釜中(滤液若有产品析出,应加热溶清),搅拌下降温至35±5℃,保温至析出明显固体,再保温搅拌约0.5小时。再降温至5±5℃保温析晶2小时。过滤,滤饼用1.300kg乙醇洗涤,收集滤饼。
干燥:滤饼于55±5℃、真空度≤-0.07MPa干燥约25小时,得1.4060kg化合物I,收率84.6%。总收率55.0%(以化合物2a计),HPLC:99.93%。
1H NMR(400MHz,DMSO)δ8.69(d,1H),7.64(d,1H),7.61–7.51(m,2H),7.46(t,2H),7.39(d,1H),5.06(q,1H),4.01(dd,1H),3.87(ddd,1H),3.73(ddd,1H),3.40(s,3H),3.34–3.28(m,1H),3.20(dd,1H),3.06(dd,1H),2.78(ddd,1H),2.69–2.54(m,2H),2.21(s,1H),1.84–1.63(m,2H)。
LCMS m/z=439.2[M+1]+
方法二:
100L双层玻璃反应釜中,搅拌下加入19.26kg乙腈、3.712kg对甲苯磺酸一水合物和3.500kg中间体1D。加毕,保温25±5℃反应约2小时后取样HPLC监控,中控目标值中间体1D含量≤1.0%,停止反应。
将反应液浓缩至约20L反应体积,降温到10±5℃,加入稀氨水(4.0kg氨水与56.00kg纯化水混合)。加毕,再降温至10±5℃析晶0.5小时。过滤,滤饼用5kg纯化水洗涤,收集滤饼。滤饼于55±5℃、真空度≤-0.07MPa干燥约72小时,收料得2.552kg化合物I粗品。
精制:100L反应釜中,搅拌下加入19.63kg异丙醇和1.6627kg化合物I粗品,加热至内温75±5℃,搅拌约2小时,再降温至25±5℃保温析晶约16小时。过滤,滤饼用1.300kg异丙醇洗涤,收集滤饼。
干燥:滤饼于55±5℃、真空度≤-0.07MPa干燥约24小时,得2.344.2kg化合物 I,收率82.3%。
生物测试
1、体外DPP1酶活检测实验
终浓度100μg/mL的重组人DPP1酶(R&D Systems,Cat.No 1071-CY)与终浓度20μg/mL重组人组织蛋白酶L(R&D System,Cat.No 952-CY)混合后于室温孵育1小时,使DPP1酶活化。活化后的DPP1酶稀释100倍,于384孔板中加入5μL不同浓度的化合物和5μL稀释后的DPP1酶,室温孵育30分钟。加入10μL浓度为20μM的底物Gly-Arg-AMC(bachem,Cat.No I-1215)后,继续室温孵育60分钟,酶标仪检测荧光强度,其中激发光为380nm,发射光为460nm。运用Origin2019软件DosResp函数计算IC50值。
表1 DPP1抑制活性
结论:本发明化合物对于DPP1受体显示出很高的抑制活性。
2、大鼠药代动力学测试
1.1试验动物:雄性SD大鼠,220g左右,6~8周龄,6只/化合物。购于成都达硕实验动物有限公司。
1.2试验设计:试验当天,6只SD大鼠按体重随机分组。给药前1天禁食不禁水12~14h,给药后4h给食。
表2 给药信息
静脉给药溶媒:5%DMA+5%Solutol+90%Saline;灌胃给药溶媒:0.5%MC;对照化合物INS1007即专利WO2015110826A1中的化合物2,按照专利方法制备。
于给药前及给药后异氟烷麻醉经眼眶取血0.1ml,置于EDTAK2离心管中, 5000rpm,4℃离心10min,收集血浆。静脉组采血时间点:0,5,15,30min,1,2,4,6,8,24h;灌胃组采血时间点:0,5,15,30min,1,2,4,6,8,24h。分析检测前,所有样品存于-80℃。
表3 测试化合物在大鼠血浆中的药代动力学参数
结论:本发明化合物具有良好的生物利用度和药代动力学特征。
3.大鼠14天口服重复给药毒性试验测试
将SD大鼠按体重随机分组,分别为溶媒对照组(0.5%MC)、INS1007(30、100、300mg/kg)组、化合物I(30、100、300mg/kg)组,给药组每组16只,溶媒对照组10只,雌雄各半。每天经口灌胃给予相应浓度药物或溶媒,连续给药14天,恢复期7天。给药期间对各组进行一般症状观察,体重和摄食量的检测,给药期结束和恢复期结束,分别对各组进行血液学、血清生化和大体解剖检测。
结论:同等剂量下,本发明化合物的毒性小于INS1007,安全性更高。

Claims (9)

  1. 一种式(I)所示的化合物的制备方法,
    包括第一步:将化合物2a和化合物1A进行偶联反应制得中间体1B;
    以及第二步:包括将中间体1B和酸加入有机溶剂中,控温20~55℃充分反应,然后过滤得到中间体1C或其盐,可选地再将滤饼加入有机溶剂中,升温至80±5℃,搅拌1~5小时,降温至20±5℃,搅拌,过滤,干燥,得到中间体1C或其盐,
    其中,所述酸选自硫酸、磷酸、甲酸、三氟乙酸、苯磺酸、甲磺酸和对甲苯磺酸一水合物中的一种或几种;所述有机溶剂选自甲醇、乙醇、异丙醇、乙腈、醋酸异丙酯、乙酸乙酯、甲苯、丙酮、甲基异丁酮、四氢呋喃、2-甲基四氢呋喃、甲基叔丁基醚和乙腈中的一种或几种;
  2. 根据权利要求1所述的制备方法,其特征在于,所述第一步包括将化合物2a和化合物1A溶于有机溶剂中,再加入碱,加毕,氮气保护下,加入催化剂,升温至80±5℃充分反应;然后,降温到5~55℃,搅拌析晶,过滤,干燥,得到中间体1B;可选地,在过滤后将滤饼加入醇类溶剂,搅拌10min~2h,再过滤、干燥,得到中间 体1B;
    其中,所述有机溶剂选自乙腈、甲苯、二氯甲烷、乙酸乙酯、丙酮、甲醇、乙醇、异丙醇、2-甲基四氢呋喃、四氢呋喃和1,4-二氧六环中的一种或几种;
    所述碱选自K3PO4、K2HPO4、K2CO3、KHCO3、Cs2CO3、Na2CO3、NaHCO3、KF、乙酸钠、乙酸钾、吡啶、三乙胺或N,N-二异丙基乙胺、或它们的水溶液中的一种或几种;
    所述催化剂选自NiCl2、NiCl2·diglyme、Ni(COD)2、Pd(OAc)2、PdCl2、Pd(PPh3)2Cl2、Pd(dppf)Cl2、Pd(PPh3)4、Pd2(dba)3、Pd(PhCN)2Cl2、PEPPSI-iPr、PdCl2[P(Cy)3]2、和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物中的一种或几种。
  3. 根据权利要求1或2所述的制备方法,其特征在于,还包括
    第三步:将中间体1C或其盐、与化合物INT-3或其盐进行酰胺化反应制得中间体1D;
    或/和
    第四步:中间体1D在酸性条件下脱保护得到化合物(I)或其盐;
  4. 根据权利要求3所述的制备方法,其特征在于,所述第三步包括将中间体1C或其盐、与化合物INT-3或其盐加入到有机溶剂中,再加入有机胺,加毕,氮气保护下,控温5~20℃滴加酸胺缩合剂,加毕,保温25±5℃充分反应;然后,将反应液用氯化钠溶液洗涤,分液,有机相中加入活性炭或药用炭,搅拌,过滤,有机相加入无水硫酸钠干燥,过滤,浓缩,得到中间体1D或其盐;
    所述有机溶剂选自四氢呋喃、2-甲基四氢呋喃、二氧六环、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜、二氯甲烷、丙酮、甲基异丁酮、醋酸异丙酯和乙酸乙酯中的一种或几种;
    所述有机胺选自三乙胺、2,6-二甲基吡啶、吡啶、DBU和N,N-二异丙基乙胺中的一种或几种;
    所述酸胺缩合剂选自HATU、COMU、EDCI、BOP和丙基磷酸酐中的一种或几种。
  5. 根据权利要求4所述的制备方法,其特征在于,所述第三步,将反应液用氯化钠溶液洗涤前先依次用碱性水溶液和酸性水溶液洗涤;
    所述碱性水溶液选自磷酸钾溶液、碳酸钾溶液、碳酸氢钾溶液、碳酸钠溶液和碳酸氢钠溶液中的一种或几种;
    所述酸性水溶液选自盐酸溶液、硫酸溶液、磷酸溶液和柠檬酸溶液中的一种或几种。
  6. 根据权利要求3所述的制备方法,其特征在于,所述第四步包括将中间体1D和酸性试剂加入有机溶剂中,加毕,保温25±5℃充分反应,然后将反应液控制料温在25℃以下滴加碱,加毕,再降温至10±5℃析晶,过滤,干燥,得到化合物(I);可选地,在过滤后,滤饼用纯化水洗涤,再将滤饼加入醇类试剂中,于20±5℃搅拌,过滤,干燥,得到化合物(I)或其盐。
  7. 根据权利要求6所述的制备方法,其特征在于,第四步所述的酸性试剂选自盐酸、硫酸、磷酸、甲酸、三氟乙酸、苯磺酸、甲磺酸和对甲苯磺酸一水合物中的一种或几种,所述有机溶剂选自乙腈、甲醇、乙醇、异丙醇、醋酸异丙酯、乙酸乙酯、丙酮、甲基异丁酮、四氢呋喃、2-甲基四氢呋喃和甲基叔丁基醚中的一种或几种,所述碱选自稀氨水、LiOH、NaOH、KOH、K3PO4、K2CO3、KHCO3、Cs2CO3、Na2CO3、NaHCO3、或它们的水溶液中的一种或几种。
  8. 根据权利要求6或7所述的制备方法,其特征在于,还包括精制步骤:将得到的化合物(I)加入到无水乙醇-水、乙腈-水、乙腈-无水乙醇、乙腈-甲醇、乙腈-异丙醇、乙腈-叔丁醇、或乙腈-正丁醇溶液中,加热至75±5℃,搅拌至溶清,可选地进行热过滤,滤液在搅拌下降温析晶,过滤,干燥,得到精制的化合物(I)。
  9. 根据权利要求8所述的制备方法,其特征在于,所述在搅拌下降温析晶分两步进行,先降温至35±5℃,保温析晶20min~1.5小时,再降温至5±5℃保温析晶1~3小时。
PCT/CN2023/077408 2022-02-22 2023-02-21 一种含氮杂环化合物的制备方法 WO2023160541A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210160847.0 2022-02-22
CN202210160847 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023160541A1 true WO2023160541A1 (zh) 2023-08-31

Family

ID=87764784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077408 WO2023160541A1 (zh) 2022-02-22 2023-02-21 一种含氮杂环化合物的制备方法

Country Status (2)

Country Link
TW (1) TW202342467A (zh)
WO (1) WO2023160541A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945851A (zh) * 2007-12-12 2011-01-12 阿斯利康(瑞典)有限公司 肽基腈和其作为二肽基肽酶i抑制剂的用途
CN102574830A (zh) * 2009-05-07 2012-07-11 阿斯利康(瑞典)有限公司 取代的1-氰基乙基杂环基甲酰胺化合物750
CN105980367A (zh) * 2014-01-24 2016-09-28 阿斯利康(瑞典)有限公司 (2s)-n-[(1s)-1-氰基-2-苯基乙基]-1,4-氧杂氮杂环庚烷-2-甲酰胺作为二肽基肽酶i抑制剂
CN114106005A (zh) * 2020-08-26 2022-03-01 四川海思科制药有限公司 一种作为二肽基肽酶1抑制剂的腈衍生物及其用途
WO2022042591A1 (zh) * 2020-08-26 2022-03-03 四川海思科制药有限公司 一种作为二肽基肽酶1抑制剂的腈衍生物及其用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945851A (zh) * 2007-12-12 2011-01-12 阿斯利康(瑞典)有限公司 肽基腈和其作为二肽基肽酶i抑制剂的用途
CN102574830A (zh) * 2009-05-07 2012-07-11 阿斯利康(瑞典)有限公司 取代的1-氰基乙基杂环基甲酰胺化合物750
CN105980367A (zh) * 2014-01-24 2016-09-28 阿斯利康(瑞典)有限公司 (2s)-n-[(1s)-1-氰基-2-苯基乙基]-1,4-氧杂氮杂环庚烷-2-甲酰胺作为二肽基肽酶i抑制剂
CN114106005A (zh) * 2020-08-26 2022-03-01 四川海思科制药有限公司 一种作为二肽基肽酶1抑制剂的腈衍生物及其用途
WO2022042591A1 (zh) * 2020-08-26 2022-03-03 四川海思科制药有限公司 一种作为二肽基肽酶1抑制剂的腈衍生物及其用途

Also Published As

Publication number Publication date
TW202342467A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
ES2208265T3 (es) Polimorfos de telmisartan, procedimiento para su preparacion y su empleo para la preparacion de un medicamento.
CN109721527B (zh) 一种新型抗pd-l1化合物、其应用及含其的组合物
CA3153297A1 (en) Antiviral heterocyclic compounds
AU2002211464B2 (en) Aminopyridinyl-, aminoguanidinyl- and alkoxyguanidinyl- substituted phenyl acetamides as protease inhibitors
US20090082366A1 (en) Deuterium-enriched telaprevir
BRPI0916995B1 (pt) Compostos orgânicos, seu uso, e composição farmacêutica
WO2011113366A1 (zh) 制备氘代二苯基脲的方法
BRPI0610336B1 (pt) Processo para preparar 5-(4-[4-(5-ciano-3-indolil)butil]-1-piperazinil)benzofuran-2-carboxa-mida ou seu sal fisiologicamente aceitável.
JP2012503607A (ja) アミノ置換ベンゾイル誘導体及びそれらの製造方法と使用
TW201125566A (en) Antimicrobial compounds and methods of making and using the same
CN112062767A (zh) 一种卢美哌隆的制备方法及其中间体
US6730689B2 (en) N-[4-(1H-imidazol-1-yl)-2-fluorophenyl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamides as factor Xa inhibitors
WO2023160541A1 (zh) 一种含氮杂环化合物的制备方法
KR20150047134A (ko) N-[2-({2-[(2S)-2-시아노피롤리딘-1-일]-2-옥소에틸}아미노)-2-메틸프로필]-2-메틸피라졸로[1, 5-a]피리미딘-6-카르복사미드의 결정
EP1397348B1 (en) Factor xa inhibitor
CN114524812A (zh) 1,4-二氢-1,6-萘啶化合物的晶型制备以及合成方法
HRP980291A2 (en) Crystalline roxifiban
US20080319064A1 (en) Deuterium-enriched oseltamivir
CN115850240B (zh) 一种治疗急性髓系白血病药物奥卢他西尼的合成方法
CN115043782B (zh) 4h-3,1-苯并噁嗪-4-酮衍生物及其制备方法和应用
CN111560021B (zh) 一种德高替尼中间体及其制备方法
JPS632274B2 (zh)
CN113105385B (zh) 一种左布比卡因的制备方法
CN112961081A (zh) 一种联苯甲酰胺脲类化合物及其制备方法和应用
CN117551039A (zh) 一种芳基甲酰胺类化合物及其制备方法与抗肠道病毒ev71型的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759166

Country of ref document: EP

Kind code of ref document: A1