WO2023160252A1 - 电池和用电装置 - Google Patents

电池和用电装置 Download PDF

Info

Publication number
WO2023160252A1
WO2023160252A1 PCT/CN2023/070129 CN2023070129W WO2023160252A1 WO 2023160252 A1 WO2023160252 A1 WO 2023160252A1 CN 2023070129 W CN2023070129 W CN 2023070129W WO 2023160252 A1 WO2023160252 A1 WO 2023160252A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
battery according
carrier
wall
Prior art date
Application number
PCT/CN2023/070129
Other languages
English (en)
French (fr)
Inventor
姚鹏程
张文辉
陈兴地
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2022/077993 external-priority patent/WO2023159486A1/zh
Priority claimed from PCT/CN2022/077998 external-priority patent/WO2023159487A1/zh
Priority claimed from PCT/CN2022/098343 external-priority patent/WO2023240387A1/zh
Priority claimed from PCT/CN2022/098370 external-priority patent/WO2023240391A1/zh
Priority claimed from PCT/CN2022/098348 external-priority patent/WO2023240388A1/zh
Priority claimed from PCT/CN2022/098373 external-priority patent/WO2023240394A1/zh
Priority claimed from PCT/CN2022/098380 external-priority patent/WO2023240397A1/zh
Priority claimed from PCT/CN2022/098355 external-priority patent/WO2023240389A1/zh
Priority claimed from PCT/CN2022/101406 external-priority patent/WO2024000091A1/zh
Priority claimed from PCT/CN2022/101440 external-priority patent/WO2024000096A1/zh
Priority claimed from PCT/CN2022/101414 external-priority patent/WO2024000093A1/zh
Priority claimed from PCT/CN2022/101393 external-priority patent/WO2024000085A1/zh
Priority claimed from PCT/CN2022/101517 external-priority patent/WO2024000103A1/zh
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202380008506.4A priority Critical patent/CN116686151A/zh
Publication of WO2023160252A1 publication Critical patent/WO2023160252A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to battery technology, in particular to a battery and an electrical device.
  • Power batteries as a rechargeable battery, are the power source of new energy vehicles and are widely used in the field of new energy vehicles.
  • the energy density of the battery is not high, resulting in a waste of space, which in turn affects the performance of the electrical device; moreover, the existing battery is poor in rigidity and cannot directly bear the load brought by other parts of the electrical device, which is prone to safety hazards. Accidents affect the safety of electrical devices.
  • the present application aims to solve at least one of the technical problems existing in the related art. For this reason, the present application proposes a battery, which can improve the energy density and safety of the battery.
  • the present application also proposes an electric device having the above-mentioned battery.
  • the battery according to the embodiment of the first aspect of the present application includes: a box body, the box body is provided with an accommodating cavity, and the accommodating cavity includes a top wall and a bottom wall oppositely arranged in the vertical direction; a battery cell, the The battery cell is arranged in the accommodation cavity, the battery cell includes an electrode assembly and an electrode terminal, the electrode assembly is electrically connected to the electrode terminal, the battery cell is fixed in the accommodation cavity, and the The electrode terminals are disposed toward the bottom wall of the accommodating cavity.
  • the battery cells are arranged in the case, and the electrode terminals are arranged toward the bottom wall, which can improve the safety of the battery.
  • the battery cell has a connected first wall and a second wall, the first wall is the wall with the largest area in the battery cell, and the second wall and the first wall Intersect settings.
  • the electrode terminals are disposed on the first wall.
  • each of the battery cells is provided with a second wall opposite to the first wall.
  • One surface, the first surface is provided with an avoidance groove, and the avoidance groove of one of the two adjacent battery cells is used to accommodate the escape groove of the other battery cell.
  • the electrode terminal, the first direction is perpendicular to the first wall.
  • the electrode terminals are disposed on the second wall.
  • the battery cell includes two opposite first walls and two opposite second walls, at least two electrode terminals; at least two electrodes The terminals are arranged on the same second wall; or, at least one electrode terminal is arranged on each second wall.
  • the first wall is formed in a cylindrical shape.
  • both axial ends of the first wall are provided with the second walls, and at least one of the second walls is provided with the electrode terminals.
  • one of the second walls is provided with an exposed electrode terminal
  • the electrode assembly includes a positive electrode sheet and a negative electrode sheet, and one of the positive electrode sheet and the negative electrode sheet is connected to the electrode
  • the terminals are electrically connected, and the other of the positive electrode sheet and the negative electrode sheet is electrically connected to the first wall or the other second wall.
  • At least one of the battery cells is a pouch battery cell.
  • the battery cell further includes a pressure relief mechanism, and the pressure relief mechanism and the electrode terminals are disposed on the same wall of the battery cell.
  • the battery cell further includes a pressure relief mechanism, and the pressure relief mechanism and the electrode terminals are respectively disposed on two walls of the battery cell.
  • the box body includes a main body and a bottom cover disposed at the bottom of the main body, and the bottom cover is sealingly connected with the main body and jointly forms the closed accommodating chamber.
  • a wall of the bottom cover facing the battery cells constitutes the bottom wall of the accommodating cavity.
  • the bottom cover is detachably connected to the bottom of the main body.
  • the bottom cover has a characteristic surface facing the accommodating cavity, and the characteristic surface is configured as a plane.
  • a carrier is provided on the top of the box, and the battery cells are arranged on the surface of the carrier.
  • a wall of the carrier facing the battery cells constitutes the top wall of the containing cavity.
  • the minimum thickness H of the carrier and the weight M1 of the battery satisfy: 0.0002mm/kg ⁇ H/M1 ⁇ 0.2mm/kg.
  • the carrier is used to define the accommodating cavity, and the battery cells are suspended from the carrier.
  • the battery cells are bonded to the carrier.
  • the outer surface of the battery cell facing the carrier is a first outer surface
  • the electrode terminals are arranged on the outer surface of the battery cell except the first outer surface
  • the battery cell has a second outer surface opposite to the first outer surface, and the electrode terminals are arranged on the second outer surface.
  • the multiple battery cells there are multiple battery cells, and the multiple battery cells are arranged in a second direction, and the second direction is perpendicular to the vertical direction; the carrier and the multiple The top walls of the battery cells are connected, the battery cells are located under the carrier, and the relationship between the dimension N of the carrier in the vertical direction and the weight M2 of the battery cells satisfies : 0.04mm/kg ⁇ N/M2 ⁇ 100mm/kg.
  • the carrier is provided with a cavity inside.
  • the cavity is used for accommodating a heat exchange medium to regulate the temperature of the battery cells.
  • reinforcing ribs are provided on the surface of the carrier away from the battery cells.
  • the bearing member has a bearing surface facing the accommodating cavity, and the bearing surface is configured as a plane.
  • the bearing part has a bearing part and a connecting part, the connecting part surrounds the edge connected to the bearing part, the bearing part is used to define the accommodating cavity, and the connecting part is connected to The part of the box except the bearing part; wherein, the inner surface of the bearing part facing the accommodating cavity is configured to form the bearing surface.
  • the carrying portion protrudes in a direction away from the accommodating cavity compared with the connecting portion.
  • the box body includes a bottom cover and a frame, the frame encloses and forms an enclosed space penetrating at both ends in the vertical direction, and the bottom cover and the bearing member respectively cover Combining with the opposite ends of the enclosed space in the vertical direction, the bottom cover, the frame and the bearing member jointly enclose to form the accommodating cavity.
  • the battery cell is placed upside down in the box with the end cover facing the bottom wall, the end cover is provided with a pressure relief mechanism and the electrode terminals, the pressure relief mechanism and the The electrode terminals are all arranged towards the bottom wall.
  • the battery further includes a connection plate and a connector
  • the connection plate is provided on one side of the box and protrudes in the horizontal direction
  • the connection plate and the bottom wall are vertically connected to each other.
  • An accommodating portion is formed in the direction
  • the connector is arranged in the accommodating portion and connected to the connecting plate, and the connector is electrically connected with the battery cells.
  • the battery further includes a protective component disposed between the battery cell and the bottom wall to support and carry the battery cell.
  • the battery further includes a current confluence component for electrically connecting the electrode terminals of at least two of the battery cells, and the protection component is disposed on the bottom wall and the Between the confluence parts, the protection component is used to insulate the battery cells from the bottom wall.
  • the protection assembly includes a protection strip, and the protection strip abuts against the battery cell.
  • the protective strip is fixedly connected to the battery cell and/or the case.
  • the protective strip is bonded to the battery cell and/or the case.
  • a plurality of protective strips are provided, and the plurality of protective strips are arranged at intervals in the second direction and extend along the first direction, and the first direction, the second direction and the The vertical direction is two by two vertical.
  • the protective assembly further includes a main board, the protective bar is connected to the main board, and the main board is located between the protective bar and the bottom wall.
  • the main board abuts against the bottom wall.
  • the main board is fixedly connected to the bottom wall.
  • the main board and the protective strip are integrally formed or detachably connected.
  • the end cap of the battery cell includes a functional area and a shoulder, the functional area is provided with the electrode terminal, the shoulder is located on both sides of the functional area along the second direction, the The battery cell abuts against the protective strip through the shoulder, and the second direction is perpendicular to the vertical direction.
  • the thickness of the protective strip is greater than the extension height of the portion of the electrode terminal exposed to the battery cell.
  • the protection strip abuts against the electrode terminal, or the protection strip is spaced apart from the electrode terminal.
  • the orthographic projections of the electrode terminals on the bottom wall are located between the orthographic projections of adjacent protective strips on the bottom wall.
  • the electrode terminals of two adjacent battery cells are electrically connected through a bus component, and in the first direction, the extension length of one of the two adjacent protective bars The extension length of the other is smaller than that of the other to form a avoidance gap, and the avoidance gap is used to avoid the flow-combining component.
  • the battery cell further includes a pressure relief mechanism, the pressure relief mechanism is provided on the same side as the electrode terminal, and the pressure relief mechanism is located adjacent to the protective cover on the orthographic projection of the bottom wall.
  • the bars are between the orthographic projections of the bottom wall.
  • the first distance H1 in the vertical direction, there is a first distance H1 between the end cover of the battery cell and the bottom wall, and the first distance H1 satisfies 2mm ⁇ H1 ⁇ 30mm.
  • the ratio H1/M2 of the first distance H1 to the weight M2 of a single battery cell satisfies 0.2mm/Kg ⁇ H1/M2 ⁇ 50mm/Kg.
  • the battery cell further includes a battery box, the electrode assembly is accommodated in the battery box, the battery box is provided with a pressure relief mechanism, and the pressure relief mechanism is integrally formed with the battery box .
  • the battery box includes an integrally formed non-weakened area and a weakened area
  • the battery box is provided with a groove
  • the non-weakened area is formed around the groove
  • the weakened area is formed at The bottom of the groove portion
  • the weakened area is configured to be destroyed when the battery cell releases internal pressure
  • the pressure relief mechanism includes the weakened area
  • the average grain size of the weakened region is S 1
  • the average grain size of the non-weakened region is S 2 , satisfying: 0.05 ⁇ S 1 /S 2 ⁇ 0.9.
  • the minimum thickness of the weakened region is A 1 , which satisfies: 1 ⁇ A 1 /S 1 ⁇ 100.
  • the minimum thickness of the weakened area is A 1
  • the hardness of the weakened area is B 1 , satisfying: 5HBW/mm ⁇ B 1 /A 1 ⁇ 10000HBW /mm.
  • the hardness of the weakened area is B 1
  • the hardness of the non-weakened area is B 2 , satisfying: 1 ⁇ B 1 /B 2 ⁇ 5.
  • the minimum thickness of the weakened area is A 1
  • the minimum thickness of the non-weakened area is A 2 , satisfying: 0.05 ⁇ A 1 /A 2 ⁇ 0.95.
  • the electrode assembly includes a positive electrode sheet and a negative electrode sheet
  • the positive electrode sheet and/or the negative electrode sheet include a current collector and an active material layer
  • the current collector includes a support layer and a conductive layer
  • the support The layer is used to support the conductive layer
  • the conductive layer is used to support the active material layer.
  • the conductive layer is disposed on at least one side of the supporting layer along the thickness direction of the supporting layer.
  • the room temperature sheet resistance R S of the conductive layer satisfies: 0.016 ⁇ / ⁇ R S ⁇ 420 ⁇ / ⁇ .
  • the material of the conductive layer is selected from at least one of aluminum, copper, titanium, silver, nickel-copper alloy, and aluminum-zirconium alloy.
  • the material of the support layer includes one or more of polymer materials and polymer-based composite materials.
  • the thickness d1 of the support layer and the light transmittance k of the support layer satisfy: when 12 ⁇ m ⁇ d1 ⁇ 30 ⁇ m, 30% ⁇ k ⁇ 80%; or, when 8 ⁇ m ⁇ d1 ⁇ 12 ⁇ m , 40% ⁇ k ⁇ 90%; or, when 1 ⁇ m ⁇ d1 ⁇ 8 ⁇ m, 50% ⁇ k ⁇ 98%.
  • the electrode assembly includes a positive electrode sheet, the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer coated on the surface of the positive electrode current collector, the positive electrode active material layer includes a positive electrode active material, so
  • the positive electrode active material has an inner core and a shell covering the inner core, the inner core includes at least one of ternary material, dLi 2 MnO 3 ⁇ (1-d)LiMO 2 and LiMPO 4 , 0 ⁇ d ⁇ 1,
  • the M includes one or more selected from Fe, Ni, Co, and Mn, and the shell contains crystalline inorganic substances, and the full width at half maximum of the main peak of the crystalline inorganic substances measured by X-ray diffraction is 0-3 °, the crystalline inorganic substance includes one or more selected from metal oxides and inorganic salts.
  • the shell includes at least one of the metal oxide and the inorganic salt, and carbon.
  • the electrode assembly includes a positive electrode sheet, the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer coated on the surface of the positive electrode current collector, the positive electrode active material layer includes a positive electrode active material, so
  • the positive electrode active material has LiMPO 4 , the M includes Mn, and a non-Mn element, and the non-Mn element satisfies at least one of the following conditions: the ionic radius of the non-Mn element is a, and the ionic radius of the manganese element is b ,
  • the non-Mn element includes one or both of a first doping element and a second doping element, the first doping element is manganese-site doped, and the second doping element The element is phosphorus doped.
  • the first doping element satisfies at least one of the following conditions: the ionic radius of the first doping element is a, the ionic radius of the manganese element is b, and
  • the second doping element satisfies at least one of the following conditions: the chemical activity of the chemical bond formed between the second doping element and O is not less than the chemical activity of the P-O bond; the second doping element The highest valence of an element is not greater than 6.
  • the positive electrode active material further has a coating layer.
  • the coating includes carbon
  • the carbon in the coating layer is a mixture of SP2 carbon and SP3 carbon.
  • the molar ratio of the SP2 form carbon to the SP3 form carbon is any value within the range of 0.1-10.
  • the electric device includes the battery according to the embodiment of the first aspect of the present application, and the battery is used to provide electric energy.
  • FIG. 1 is a schematic diagram of an electrical device according to an embodiment of the present application.
  • Figure 2 is an exploded view of a battery according to an embodiment of the present application.
  • FIG. 3 is an exploded view of a battery according to another embodiment of the present application.
  • FIG. 4 is an exploded view of a battery cell according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the battery cell shown in FIG. 4;
  • FIG. 6 is a schematic diagram of the arrangement of battery cells according to another embodiment of the present application.
  • Figure 7 is an exploded view of a battery according to one embodiment of the present application.
  • FIG. 8 is a schematic diagram of the arrangement of the battery cells shown in FIG. 7;
  • FIG. 9 is a schematic diagram of a battery cell according to an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a battery provided in some embodiments of the present application.
  • Figure 11 is an exploded view of the battery shown in Figure 10;
  • Figure 12 is a schematic structural view of the bottom cover provided in some embodiments of the present application.
  • Fig. 13 is a top view of the bottom cover described in Fig. 12;
  • Figure 14 is a front view of the bottom cover shown in Figure 12;
  • Fig. 15 is a schematic structural view of a bottom cover provided in another embodiment of the present application.
  • Figure 16 is a cross-sectional view of the battery shown in Figure 10;
  • Fig. 17 is a schematic diagram of an orthographic projection of the bottom cover shown in Fig. 14 in the vertical direction;
  • Fig. 18 is a schematic diagram of the appearance of a battery cell in some embodiments of the present application.
  • Fig. 19 is a front view of the battery cell shown in Fig. 18;
  • Fig. 20 is a schematic structural diagram of a carrier in some embodiments of the present application.
  • Fig. 21 is a schematic structural diagram of a carrier in other embodiments of the present application.
  • Figure 22 is an orthographic view of the carrier shown in Figure 21 in the vertical direction;
  • Figure 23 is a front view of the battery shown in Figure 10;
  • Fig. 24 is a schematic diagram of a battery applied to a vehicle body in some embodiments of the present application.
  • Figure 25 is a schematic diagram of the battery shown in Figure 24;
  • Fig. 26 is a first exploded state diagram of the structure shown in Fig. 24;
  • Fig. 27 is a second exploded state diagram of the structure shown in Fig. 24;
  • Figure 28 is a schematic diagram of the installation relationship between the battery and the vehicle body in some embodiments of the present application.
  • Figure 29 is a schematic diagram of a battery provided by some embodiments of the present application.
  • Fig. 30 is a schematic structural diagram of a carrier in some embodiments of the present application.
  • Fig. 31 is a schematic structural diagram of a carrier in some embodiments of the present application.
  • Fig. 32 is a schematic structural diagram of a carrier in some embodiments of the present application.
  • Fig. 33 is a schematic structural diagram of a carrier in some embodiments of the present application.
  • Fig. 34 is a schematic structural diagram of a carrier in some embodiments of the present application.
  • Figure 35 is a schematic structural view of a battery in some embodiments of the present application.
  • Fig. 36 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • FIG. 37 is a schematic diagram of the battery module shown in FIG. 36;
  • Fig. 38 is a schematic diagram of the cooperation of battery cells and reinforcements in some embodiments of the present application.
  • Fig. 39 is a schematic diagram of cooperation between battery cells and reinforcements in some embodiments of the present application.
  • Fig. 40 is a schematic diagram of cooperation between a battery cell and a reinforcing member in some embodiments of the present application.
  • Figure 41 is an exploded view of the battery of some embodiments of the present application.
  • Fig. 42 is a schematic structural view of the protective assembly of the battery shown in Fig. 41;
  • Figure 43 is a schematic cross-sectional view of the battery shown in Figure 41;
  • Fig. 44 is an enlarged schematic diagram at the circle B of Fig. 43;
  • Fig. 45 is a structural schematic diagram of a crash test device A for crash testing a battery according to some embodiments of the present application.
  • Figure 46 is a schematic diagram of the arrangement of electrode terminals in some embodiments of the present application.
  • Fig. 47 is a schematic diagram of the coordination of battery cells and reinforcements in some embodiments of the present application.
  • Fig. 48 is a schematic structural diagram of a shell provided by some embodiments of the present application.
  • Figure 49 is a C-C sectional view of the housing shown in Figure 48;
  • Figure 50 is a grain diagram (schematic diagram) of the shell shown in Figure 49;
  • Fig. 51 is a partial enlarged view of the E place of the shell shown in Fig. 49;
  • Fig. 52 is a partial enlarged view of the housing provided by other implementations of the present application.
  • Fig. 53 is a schematic structural view of the shell provided by some other embodiments of the present application (showing the first-level scoring groove);
  • Figure 54 is an E-E sectional view of the housing shown in Figure 53;
  • Fig. 55 is a schematic structural view of the shell provided by some further embodiments of the present application (showing a first-level scoring groove);
  • Figure 56 is a F-F sectional view of the housing shown in Figure 55;
  • Fig. 57 is a schematic structural view of the shell provided by other embodiments of the present application (showing a first-level scoring groove);
  • Figure 58 is a G-G sectional view of the housing shown in Figure 57;
  • Fig. 59 is a schematic structural view of the housing provided by some other embodiments of the present application (showing two-stage scoring grooves);
  • Figure 60 is a K-K sectional view of the housing shown in Figure 59;
  • Fig. 61 is a schematic structural view of the housing provided by some further embodiments of the present application (showing two-stage scoring grooves);
  • Figure 62 is an M-M sectional view of the housing shown in Figure 61;
  • Fig. 63 is a schematic structural view of the housing provided by other embodiments of the present application (showing two-stage scoring grooves);
  • Figure 64 is an N-N sectional view of the housing shown in Figure 63;
  • Figure 65 is an axonometric view of the housing provided by some embodiments of the present application.
  • Fig. 66 is a schematic structural view of the shell shown in Fig. 65 (showing a first-level scoring groove and a first-level sinking groove);
  • Figure 67 is an O-O sectional view of the housing shown in Figure 66;
  • Figure 68 is a schematic structural view of the shell provided by some other embodiments of the present application (showing a first-level scoring groove and a first-level sinking groove);
  • Figure 69 is a P-P sectional view of the housing shown in Figure 68;
  • Fig. 70 is a schematic structural view of the housing provided by other embodiments of the present application (showing a first-level scoring groove and a first-level sinking groove);
  • Figure 71 is a Q-Q cross-sectional view of the housing part shown in Figure 70;
  • Figure 72 is a schematic structural view of the shell provided by some embodiments of the present application (showing a first-level scoring groove and a two-level sinking groove);
  • Figure 73 is a R-R sectional view of the housing components shown in Figure 72;
  • Fig. 74 is a schematic structural diagram of the housing provided by some further embodiments of the present application (showing a first-level scoring groove and a two-level sinking groove);
  • Figure 75 is an S-S sectional view of the housing shown in Figure 74;
  • Fig. 76 is a schematic structural diagram of shell components provided by other embodiments of the present application (showing a first-level scoring groove and a two-level sinking groove);
  • Figure 77 is a T-T sectional view of the housing shown in Figure 76;
  • Fig. 78 is a schematic structural diagram of the housing provided by other embodiments of the present application.
  • Fig. 79 is a grain diagram (schematic diagram) of the housing provided by other embodiments of the present application.
  • Fig. 80 is a schematic structural diagram of an end cap provided by some embodiments of the present application.
  • Fig. 81 is a schematic structural diagram of a housing provided by some embodiments of the present application.
  • Fig. 82 is a schematic structural diagram of a housing provided by another embodiment of the present application.
  • Fig. 83 is a schematic structural view of a battery cell provided by some embodiments of the present application.
  • Fig. 84 is a schematic structural view of a positive electrode collector according to a specific embodiment of the present application.
  • Fig. 85 is a schematic structural view of a positive electrode collector according to another specific embodiment of the present application.
  • Fig. 86 is a schematic structural diagram of a negative electrode collector according to a specific embodiment of the present application.
  • Fig. 87 is a schematic structural view of a negative electrode current collector according to another specific embodiment of the present application.
  • Fig. 88 is a schematic structural diagram of a positive electrode sheet according to a specific embodiment of the present application.
  • Fig. 89 is a schematic structural view of a positive electrode sheet according to another specific embodiment of the present application.
  • Fig. 90 is a schematic structural diagram of a negative electrode sheet according to a specific embodiment of the present application.
  • Fig. 91 is a schematic structural view of a negative electrode sheet according to another specific embodiment of the present application.
  • Figure 92 is a schematic diagram of a nail-piercing experiment of the present application.
  • Figure 93 is the temperature change curve of Li-ion battery 1# and Li-ion battery 4# after a nail-piercing experiment;
  • Figure 94 is the voltage variation curve of Li-ion battery 1# and Li-ion battery 4# after a nail-piercing experiment;
  • Fig. 95 is the X-ray diffraction spectrum (XRD) pattern of undoped LiMnPO 4 and the cathode active material that embodiment 2 prepares;
  • Figure 96 is an X-ray energy dispersive spectrum (EDS) figure of the positive electrode active material prepared in Example 2;
  • Figure 97 is a schematic diagram of a positive electrode active material with a core-shell structure described in the present application.
  • FIG. 98 is a schematic diagram of a positive electrode active material with a core-shell structure according to an embodiment of the present application.
  • first, second, third, etc. are used for descriptive purposes only and should not be construed as indicating or implying relative importance. “Vertical” is not strictly vertical, but within the allowable range of error. “Parallel” is not strictly parallel, but within the allowable range of error.
  • connection should be interpreted in a broad sense, for example, it can be a fixed connection or a flexible connection. Disassembled connection, or integral connection; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • the “comprising” and “comprising” mentioned in this application mean open or closed.
  • the “comprising” and “comprising” may mean that other components not listed may also be included or included, or only listed components may be included or included.
  • a "range” disclosed herein is defined in terms of lower and upper limits, and a given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive and may be combined arbitrarily, ie any lower limit may be combined with any upper limit to form a range. Any lower limit can be combined with any upper limit to form an unspecified range; and any lower limit can be combined with any other lower limit to form an unexpressed range, and likewise any upper limit can be combined with any other upper limit to form an unexpressed range.
  • every point or individual value between the endpoints of a range is included within that range, although not expressly stated herein. Thus, each point or individual value may serve as its own lower or upper limit in combination with any other point or individual value or with other lower or upper limits to form a range not expressly recited.
  • ranges of 60-120 and 80-110 are listed for a particular parameter, it is understood that ranges of 60-110 and 80-120 are contemplated. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range "a-b" represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers. For example, the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • a certain parameter when expressing that a certain parameter is an integer ⁇ 2, it is equivalent to disclosing that the parameter is an integer such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, etc.
  • "about" a certain numerical value represents a range, which means the range of ⁇ 10% of the numerical value.
  • all the implementation modes and optional implementation modes of the present application can be combined with each other to form new technical solutions. If there is no special description, all the technical features and optional technical features of the present application can be combined with each other to form a new technical solution.
  • all steps in the present application can be performed sequentially or randomly, preferably sequentially.
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed in sequence, and may also include steps (b) and (a) performed in sequence.
  • step (c) means that step (c) may be added to the method in any order, for example, the method may include steps (a), (b) and (c) , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b) and so on.
  • coating layer and “coating” refer to a material layer coated on core materials such as lithium manganese phosphate, and the material layer can completely or partially cover the core, using “Cover layer” is for convenience of description only, and is not intended to limit the present application.
  • each cladding layer can be fully clad or partially clad.
  • thickness of the coating layer refers to the thickness of the material layer coated on the inner core in the radial direction of the inner core.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • batteries mentioned in this application may include battery packs and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the box body 10 may include a first part 101 and a second part 102 (as shown in FIGS. 2 and 3 ), the first part 101 and the second part 102 cover each other, and the first part 101 and the second part 102 jointly define a box for accommodating The accommodating cavity 10 a of the battery cell 20 .
  • the second part 102 can be a hollow structure with an open end, and the first part 101 is a plate-like structure, and the first part 101 covers the opening side of the second part 102 to form a box with an accommodating cavity 10a; the first part 101 and the second
  • Each part 102 can also be a hollow structure with one side open, and the open side of the first part 101 is covered with the open side of the second part 102 to form a box body with a receiving cavity 10a.
  • the box body 10 may be in various shapes, such as a cylinder, a cuboid, and the like.
  • a sealing member such as a sealant, a sealing ring, etc., may also be provided between the first part 101 and the second part 102 .
  • the material of the box body 10 can be alloy materials such as aluminum alloy and iron alloy, polymer materials such as polycarbonate and polyisocyanurate foam, or composite materials such as glass fiber and epoxy resin.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector not coated with the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon. In order to ensure that a large current is passed without fusing, the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • any known porous structure separator with electrochemical stability and chemical stability can be selected, such as glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride Single-layer or multi-layer films of one or more of them.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the above electrolytic solution includes an organic solvent and an electrolyte salt, wherein the electrolyte salt plays the role of transporting ions between the positive and negative poles, and the organic solvent serves as a medium for transporting ions.
  • the electrolyte salt may be an electrolyte salt known in the art for the electrolyte of a battery cell, such as LiPF 6 (lithium hexafluorophosphate), LiBF 4 (lithium tetrafluoroborate), LiClO 4 (lithium perchlorate), LiAsF 6 (hexa Lithium fluoroarsenate), LiFSI (lithium bisfluorosulfonyl imide), LiTFSI (lithium bistrifluoromethanesulfonyl imide), LiTFS (lithium trifluoromethanesulfonate), LiDFOB (lithium difluorooxalate borate), LiBOB One or more of (lithium dioxalate borate), LiPO 2 F 2 (lith
  • the battery cells may not include electrolyte.
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections.
  • a plurality of battery cells can be connected in series, parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or can first form a battery module or a battery pack, and the battery module or battery pack can then form a battery.
  • the battery is further arranged in the electric device to provide electric energy for the electric device.
  • Power batteries are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power plants, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields . With the continuous expansion of power battery application fields, its market demand is also constantly expanding.
  • the opening of the battery box usually faces upward in the vertical direction
  • the battery cells are fixed at the bottom of the battery box
  • the electrode terminals face the cover covering the opening of the box.
  • the embodiment of the present application provides a technical solution.
  • the battery cells are arranged in the battery to be accommodated in the accommodation cavity of the box body, and the battery cells are fixed in the accommodation cavity, and the battery The electrode terminals of the single body are arranged towards the bottom wall of the containing chamber. In this way, the safety of the battery can be effectively improved.
  • batteries such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spaceships, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1000 according to an embodiment of the present application.
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 101 , a controller 102 and a battery 100 may be provided inside the vehicle 1000 , and the controller 102 is used to control the battery 100 to supply power to the motor 101 .
  • the battery 100 may be provided at the bottom or front or rear of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 , for a circuit system of the vehicle 1000 , for example, for starting, navigating, and working power requirements of the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • the battery 100 may include one or more battery cells 20 .
  • the battery 100 may include a plurality of battery cells 20 .
  • the battery 100 may further include a box body 10 , the inside of which is a hollow structure, and a plurality of battery cells 20 are accommodated in the box body 10 .
  • multiple battery cells 20 are placed in the case 10 after being connected in parallel, in series or in parallel.
  • the battery 100 may also include other structures, which will not be repeated here.
  • the battery 100 may also include a confluence part, which is used to realize the electrical connection between a plurality of battery cells 20 , such as parallel connection, series connection or mixed connection.
  • the current-combining component can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus member may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the conduction means can also belong to the current-collecting part.
  • the number of battery cells 20 can be set to any value, for example, there can be one battery cell 20 .
  • Multiple battery cells 20 can be connected in series, in parallel or in parallel to achieve greater capacity or power. Since the number of battery cells 20 included in each battery 100 may be large, for the convenience of installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 constitutes a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • a battery may include a plurality of battery modules, which may be connected in series, in parallel or in parallel.
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and an end cap 212 .
  • the housing 211 and the end cap 212 form the housing or battery compartment 21 of the battery cell 20 .
  • the walls of the casing 211 and the end caps 212 are called the walls of the battery cell 20 , wherein for the rectangular parallelepiped battery cell 20 , the walls of the casing 211 include a bottom wall and four side walls.
  • the housing 211 depends on the combined shape of one or more electrode assemblies 22.
  • the housing 211 can be a hollow cuboid or cube or cylinder, and one of the surfaces of the housing 211 has an opening so that one or more electrodes Assembly 22 may be placed within housing 211 .
  • one of the planes of the housing 211 is an open surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 communicate.
  • the casing 211 can be a hollow cylinder, the end surface of the casing 211 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the casing 211 communicate.
  • the end cap 212 covers the opening 10 and is connected with the casing 211 to form a closed cavity for placing the electrode assembly 22 .
  • the casing 211 is filled with electrolyte, such as electrolyte solution; the casing 211 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • the battery cell 20 may further include two electrode terminals 214 , and the two electrode terminals 214 may be disposed on the end cap 212 .
  • the end cap 212 is usually in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat surface of the end cap 212, and the two electrode terminals 214 are positive electrode terminals 214a and negative electrode terminals 214b respectively.
  • Each electrode terminal 214 is respectively provided with a connecting member 23 , or also called a current collecting member, which is located between the end cap 212 and the electrode assembly 22 for electrically connecting the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has a first tab 221a and a second tab 222a.
  • the polarities of the first tab 221a and the second tab 222a are opposite.
  • the first tab 221a is a positive tab
  • the second tab 222a is a negative tab.
  • the first tabs 221a of one or more electrode assemblies 22 are connected to one electrode terminal through one connection member 23
  • the second tabs 222a of one or more electrode assemblies 22 are connected to another electrode terminal through another connection member 23 .
  • the positive electrode terminal 214 a is connected to the positive electrode tab through one connection member 23
  • the negative electrode terminal 214 b is connected to the negative electrode tab through the other connection member 23 .
  • the electrode assembly 22 can be set as single or multiple, as shown in FIG. 4 , four independent electrode assemblies 22 are arranged in the battery cell 20 .
  • a pressure relief mechanism 213 may also be provided on the battery cell 20 .
  • the pressure relief mechanism 213 is used for actuating to release the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the pressure relief mechanism 213 refers to an element or component that is activated to release the internal pressure when the internal pressure of the battery cell 20 reaches a predetermined threshold. That is, when the internal pressure of the battery cell 2 reaches a predetermined threshold, the pressure relief mechanism 213 is activated or activated to a certain state, so that the internal pressure of the battery cell 20 can be released.
  • Actions generated by the pressure relief mechanism 213 may include but not limited to: at least a part of the pressure relief mechanism 213 is ruptured, broken, torn or opened, thereby forming an opening or channel for internal pressure relief. At this time, the high-temperature and high-pressure substances inside the battery cell 20 will be discharged from the actuated part as discharge. In this manner, the battery cell 20 can be depressurized under controllable pressure, thereby avoiding potential more serious accidents.
  • the pressure relief mechanism 213 may take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, and may specifically use a pressure sensitive element or structure.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or, the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • FIG. 10 and FIG. 11 show a schematic structural view of a battery 100 according to an embodiment of the present application.
  • the battery 100 includes a box body 10 and a battery cell 20.
  • the box body 10 is provided with an accommodating chamber 10a.
  • the accommodating chamber 10a includes a top wall 101 and a bottom wall 102 oppositely arranged in the vertical direction z.
  • the top wall 101 and the bottom wall 102 are Arranged in sequence from top to bottom in the vertical direction, the battery cell 20 is arranged in the accommodation chamber 10a, the battery cell 20 includes an electrode assembly 22 and an electrode terminal 214, the electrode assembly 22 is electrically connected to the electrode terminal 214, so that the battery cell 20 for providing electric energy.
  • the battery cell 20 is fixed in the housing cavity 10a, and the electrode terminals 214 are arranged toward the bottom wall 102 of the housing cavity 10a, so as to provide a large electrical connection space for the electrode terminals 214, which can increase the energy density of the battery 100 and improve the battery 100. availability and security.
  • the battery cells 20 are fixed on the top of the box body 10 , which can increase the rigidity of the top of the battery 100 to further increase the safety of the battery 100 .
  • the vertical direction is taken as the up-down direction. It should be understood that when the battery 100 is in use, the vertical direction may also be other directions, which are not specifically limited here.
  • the battery cell 20 has a connected first wall 201 and a second wall 202, the first wall 201 is the wall with the largest area in the battery cell, the second wall 202 and the first wall The walls 201 are intersected. Then the first wall 201 and the second wall 202 are not parallel, and the first wall 201 and the second wall 202 have a common line.
  • the battery cell 20 is roughly formed as a cuboid structure, and the length of the battery cell 20 is greater than the width of the battery cell 20 and the height of the battery cell 20, and the first wall 201 is located at the first direction of the battery cell 20
  • the second wall 202 and the electrode terminal 214 can be arranged on the second wall 202 of the battery cell 20 in the vertical direction z; of course, as shown in FIG.
  • the second wall 202 in two directions y.
  • the electrode terminal 214 is arranged on the second wall 202, and the electrode terminal 214 is arranged on the wall of the battery cell 20 except the first wall 201 and intersecting with the first wall 201, so as to facilitate the arrangement of the electrode terminal 214, At the same time, it is convenient to avoid the electrode terminal 214 and the reinforcing member 30 (described below), so that the reinforcing member 30 does not need to provide a avoiding portion avoiding the electrode terminal 214 , which is beneficial to simplify the structure of the reinforcing member 30 .
  • the battery cell 20 may be a blade battery, the length of the battery cell 20>the width of the battery cell 20>the height of the battery cell 20, and the battery cell 20 is in the second direction y
  • the first wall 201 is located at one end of the battery cell 20 in the height direction
  • the electrode terminal 214 is set
  • the electrode terminals 214 may be located at one or both ends of the battery cell 20 in the length direction, and/or, the electrode terminals 214 may be located at one or both ends of the battery cell 20 in the width direction.
  • the arrangement position of the electrode terminal 214 is not limited thereto.
  • the electrode terminals 214 can also be provided on the first wall 201 , which also facilitates the arrangement of the electrode terminals 214 ; for example, the battery cell 20 is a One-Stop battery cell. It can be seen that in the battery 100 in the embodiment of the present application, the location of the electrode terminals 214 has good flexibility.
  • each battery cell 20 there are multiple battery cells 20, and the multiple battery cells 20 are arranged in a first direction x, and in the first direction x, each battery cell 20 is set There is a first surface 203 opposite to the first wall 201, and the first surface 203 is provided with an avoidance groove 203a, and the avoidance groove 203a of one of the two adjacent battery cells 20 is used to accommodate the other
  • the first direction x of the electrode terminals 214 of the battery cells 20 is perpendicular to the first wall 201 , so that a plurality of battery cells 20 can be arranged compactly in the first direction to save space.
  • the electrode terminal 214 is disposed on the second wall 202, and the battery cell 20 includes two first walls 201 opposite to each other and two second walls 202 opposite to each other. There are at least two electrode terminals 214, and the plurality of electrode terminals 214 includes a positive electrode terminal 214a and a negative electrode terminal 214b.
  • At least two electrode terminals 214 are arranged on the same second wall 202, so as to save the occupied space of the battery cell 20 under the premise of ensuring that the adjacent electrode terminals 214 have a suitable distance; or, each second wall The 202 is provided with at least one electrode terminal 214 , so that the electrode terminals 214 on different second walls 202 have sufficient spacing.
  • the battery cell 20 includes two first walls 201 oppositely arranged along the first direction x and two second walls 202 oppositely arranged along the vertical direction z, the vertical direction z is not parallel to the first direction x, for example, the vertical direction z is perpendicular to the first direction x; the plurality of electrode terminals 214 are located on the same second wall 202 of the battery cell 20 in the vertical direction z.
  • the electrode terminal 214 is disposed on the second wall 202 of the battery cell 20 in the second direction y, or the electrode terminal 214 is disposed on the second wall 202 of the battery cell 20 in the vertical direction z.
  • the electrode terminal 214 is provided on the second wall 202 of the battery cell 20 facing the bottom wall 102 in the vertical direction.
  • the battery cell 20 may also include two second walls 202 oppositely disposed along the second direction y, and the second direction y is not parallel to the first direction, for example, the second direction y is parallel to the first direction.
  • the first direction x is vertical; the plurality of electrode terminals 214 are all located on the same second wall 202 of the battery cell 20 in the second direction y.
  • the plurality of electrode terminals 214 are located on one side of the battery cell 20 in the second direction y or on one side of the battery cell 20 in the vertical direction z, when there are multiple battery cells 20 and multiple batteries When the cells 20 are arranged in sequence along the second direction y, the second walls 202 of two adjacent battery cells 20 face each other in the second direction y.
  • first wall 201 may be a plane or a curved surface
  • second wall 202 may be a plane or a curved surface
  • the first wall 201 is formed in a cylindrical shape; at this time, the battery cell 20 may be approximately a cylindrical battery cell.
  • second walls 202 are provided at both ends of the first wall 201 in the axial direction, at least one second wall 202 is provided with electrode terminals 214 , and all electrode terminals of the battery cell 20 214 are all set on one of the second walls 202, or at least one electrode terminal 214 of the battery cell 20 is set on one of the second walls 202, and the remaining electrode terminals 214 of the battery cell 20 are set on the other second wall 202. wall 202.
  • the electrode terminals 214 is facilitated.
  • one of the second walls 202 is provided with an exposed electrode terminal 214
  • the electrode assembly 22 includes a positive electrode sheet 221 and a negative electrode sheet 222, one of which is connected to the positive electrode sheet 221 and the negative electrode sheet 222.
  • the electrode terminal 214 is electrically connected, and the other of the positive electrode sheet 221 and the negative electrode sheet 222 is electrically connected to the first wall 201 , so as to realize normal power supply of the battery cell 20 .
  • the above-mentioned other one of the positive electrode sheet 221 and the negative electrode sheet 222 can also be electrically connected with another second wall 202, that is to say, the second wall 202 with the exposed electrode terminal 214 is connected with the positive electrode sheet 221 and the negative electrode sheet.
  • the second wall 202 of the other electrical connection in 222 is not the same wall, which is also convenient for the normal power supply of the battery cell 20 .
  • At least one battery cell 20 is a soft-pack battery cell, and when the battery 100 includes one battery cell 20, the battery cell 20 is a soft-pack battery cell; the battery 100 includes a plurality of battery cells At 20 o'clock, at least one of the plurality of battery cells 20 is a pouch battery cell.
  • the battery 100 it is convenient to enrich the types and structures of the battery 100 and the layout of the battery cells 20 , so that the battery 100 can meet the actual differentiated requirements.
  • the battery cell 20 further includes a pressure relief mechanism 213, and the pressure relief mechanism 213 and the electrode terminal 214 are arranged on the same wall of the battery cell 20, for example, the pressure relief mechanism 213 Both the electrode terminals 214 are disposed on the second wall 202 .
  • the battery cell 20 further includes a pressure relief mechanism 213 , and the pressure relief mechanism 213 and the electrode terminal 214 are respectively disposed on two walls of the battery cell 20 .
  • the position of the pressure relief mechanism 213 relative to the electrode terminal 214 has certain flexibility.
  • Batteries are not only used in energy storage power systems such as hydropower, firepower, wind power and solar power plants, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields. With the continuous expansion of battery application fields, its market demand is also constantly expanding.
  • an additional sealing structure (such as a sealing plate) is provided inside the box for sealing, but the additional sealing structure will increase the structural complexity of the battery, and the cost is high.
  • the box itself can be designed as a closed structure to reduce the complexity of the battery structure and the cost of the battery.
  • the box body 10 includes a main body 11 and a bottom cover 12 disposed at the bottom of the main body 11 , and the bottom cover 12 and the main body 11 jointly enclose to form an accommodating cavity 10 a.
  • the main body 11 may be an integrally formed structure, or may be formed by assembling a plurality of parts.
  • the main body 11 may be a hollow shell structure, which itself defines a first space, the bottom of the first space is open, and the bottom cover 12 covers the opening of the first space.
  • the bottom cover 12 may be a hollow structure with one side open, and may itself have a second space.
  • the second space provided by the bottom cover 12 and the first space provided by the main body 11 integrally form an accommodating cavity 10a.
  • the bottom cover 12 itself may not have a space for forming the accommodating cavity 10a.
  • the bottom cover 12 When the bottom cover 12 covers the opening of the first space provided by the main body 11, the bottom cover 12 seals the first space provided by the main body 11 and the two surround An accommodating cavity 10a equivalent to the first space is formed, and the bottom cover 12 may be in a flat plate shape at this time.
  • the accommodating cavity 10a of the box body 10 may also be formed by a part of the first space provided by the main body 11.
  • the bottom cover 12 may be closed in the opening of the first space and recessed toward the first space to occupy the second space. A part of the first space, except the part occupied by the bottom cover 12 of the first space, forms the accommodating cavity 10 a of the box body 10 .
  • the bottom cover 12 is located at the bottom of the box body 10 at this time, and is used to define the accommodating cavity 10 a together with the main body 11 .
  • the bottom cover 12 may be, but not limited to, a plate-shaped structure, a block-shaped structure, etc., may be a flat plate shape, a bent plate shape, etc., and is not specifically limited.
  • the battery cell 20 When the battery cell 20 is located in the receiving chamber 10 a, the battery cell 20 may be disposed on the bottom cover 12 and/or the main body 11 .
  • the main body 11 When the main body 11 is formed by assembling a plurality of components, the battery cell 20 may be disposed on one of the components, or may be disposed on all the components.
  • the main body 11 may include a top cover, a surrounding plate and a supporting plate, the surrounding plate encloses and forms a third space with openings at both ends in the vertical direction, and the top cover and the bottom cover 12 are respectively sealed and closed on the third space.
  • the main body 11 may include a carrier 11a and a frame 11b described below, see below for details; in this application, the carrier 11a may also be called a support plate or a top plate, and the frame 11b may also be called a side plate.
  • the bottom cover 12 and the main body 11 can be fixed by means of welding, hot-melt connection, bonding, fastening connection, clamping and the like.
  • fastening connection refers to realizing connection through fasteners 13
  • fasteners 13 include components such as bolts, bolts, rivets, pins, and screws.
  • snap-fitting refers to fixing through a snap-fit structure.
  • the bottom cover 12 has a hook and the main body 11 has a bayonet.
  • the connection manner between the bottom cover 12 and the main body 11 is not limited thereto, and is not exhaustive in this application.
  • the bottom cover 12 is sealingly connected with the main body 11 and jointly forms a closed receiving chamber 10a.
  • the box body 10 is surrounded by its own bottom cover 12 and its own main body 11 to form a sealed accommodating cavity 10a, so as to ensure the airtightness of the battery 100 through the sealing of the box body 10 itself, without resorting to other sealing structures , there is no need to additionally arrange other sealing structures in the box body 10 , the structure of the battery 100 can be simplified, the cost of the battery 100 can be reduced, and the safety and service life of the battery 100 can be ensured at the same time.
  • a seal is provided between the bottom cover 12 and the main body 11, and the bottom cover 12 and the main body 11 are sealed and connected through the seal; the bottom cover 12 and the main body 11 are sealed and connected by sealant; the bottom cover 12 and the main body 11 are plugged into each other and sealed and connected by the blocking structure formed by the plugging surface.
  • the bottom cover 12 of the battery 100 is located at the bottom of the main body 11 , that is, the bottom cover 12 is located at the bottom of the main body 11 in the up and down vertical orientation z indicated in FIG. 10 and FIG. 11 .
  • the up and down directions shown in FIG. 10 and FIG. 11 may be, but not limited to, vertical, depending on the actual installation of the battery 100 . It should be pointed out that in the following description of this application, the positional relationship and size of each structure of the battery 100 are described with reference to the vertical direction, which is not to limit the use of the battery 100 junction, but only for clarity Clearly describe and explain the plan.
  • the bottom cover 12 is hermetically connected to the main body 11 via a seal.
  • the seal refers to a component that can prevent fluid or solid particles from leaking from adjacent bonding surfaces, and can prevent external impurities such as dust and moisture from intruding into the battery 100 .
  • the sealing member sealingly connects the main body 11 and the bottom cover 12 means that the sealing member is connected between the two opposite surfaces of the main body 11 and the bottom cover 12, and has a ring-shaped contact interface with the two surfaces, which can prevent external moisture It enters into the interior of the battery 100 through the contact section between itself and the two surfaces, thereby achieving a sealing effect.
  • the sealing element can be optionally a sealing ring and a sealing gasket.
  • the sealing member may be made of materials such as rubber and silica gel.
  • the seal can be an O-shaped seal, a square seal, a special-shaped seal, and the like.
  • the specific shape of the sealing member can match the shapes of the two opposite surfaces of the bottom cover 12 and the main body 11 .
  • the seal can be an O-shaped seal.
  • the bottom cover 12 is sealed and connected to the main body 11 through the sealing member, and the sealing is reliable and the cost is low.
  • the bottom cover 12 after the bottom cover 12 is sealed with the main body 11 through the sealing member, it can also be fixedly connected with the main body 11 in other ways.
  • Other methods include but are not limited to clamping, plugging, screw connection, riveting, welding, bonding and the like. Understandably, when the bottom cover 12 is sealed with the main body 11 by the sealant, according to the adhesiveness of the sealant, when the adhesive performance of the sealant is good enough to meet the requirements (that is, the bottom cover 12 and the main body 11 are fixed and not separated) It is also possible not to use other methods to fix the connection between the two.
  • the bottom cover 12 is detachably connected to the bottom of the main body 11 .
  • the main body 11 can be directly installed on the mounting body, and the bottom cover 12 and the main body 11 together form a housing cavity 10a.
  • the components inside the battery 100 can be exposed and maintained or replaced without dismantling the entire battery 100 from the mounting body, which greatly improves the convenience of maintenance of the battery 100 .
  • the detachable connection between the bottom cover 12 and the main body 11 means that when the bottom cover 12 is connected with the main body 11, the bottom cover 12 has the first state of being completely connected with the main body 11 and forming the accommodation cavity 10a relative to the main body 11, and has incomplete connection or separation with the main body 11.
  • the second state in which the battery cell 20 is open can be exposed, and the bottom cover 12 can be switched from the first state to the second state, and can be switched from the second state to the first state under the operation of an external force, without damaging any parts during the process .
  • the installation method of the bottom cover 12 and the main body 11 can be: the bottom cover 12 is rotatably connected with the main body 11 and can be connected via The fastening member 13 or the snap-fit method realizes the fixed connection.
  • the bottom cover 12 is rotated relative to the main body 11 to close the accommodating cavity 10a, the bottom cover 12 and the main body 11 can be fixedly connected with the main body 11 by means of fasteners 13 or engagement, and the battery cells 20 are accommodated in the accommodating cavity 10a and cannot be seen. , at this time the bottom cover 12 is in the first state.
  • the bottom cover 12 When the fastening member 13 is removed or the snap connection is released, the bottom cover 12 can be rotated relative to the main body 11 to open the accommodating chamber 10 a and expose the battery cells 20 , and the bottom cover 12 is in the second state.
  • the rotatable connection between the bottom cover 12 and the main body 11 may be but not limited to the rotatable connection between the bottom cover 12 and the main body 11 through a rotating shaft.
  • the installation method of the bottom cover 12 and the main body 11 can be: the bottom cover 12 and the main body 11 are only connected by the fastener 13 or way to achieve a fixed connection.
  • the fastener 13 is installed on the bottom cover 12 and the main body 11 or the engaging structure of the bottom cover 12 and the main body 11 is engaged, the bottom cover 12 and the main body 11 are completely fixed and jointly form the accommodating cavity 10a, and the battery cell 20 It is accommodated in the accommodating chamber 10a and cannot be seen, and the bottom cover 12 is in the first state at this time.
  • the fastening member 13 is removed or all snap connections are released, the bottom cover 12 can be separated from the main body 11, thereby exposing the battery cells 20. At this time, the bottom cover 12 is in the second state.
  • the accommodating cavity 10 a formed with the main body 11 can protect the battery cells 20 .
  • the bottom cover 12 is in the second state, the body of the battery 100 is exposed, which makes it convenient for relevant personnel to maintain or replace the battery cells 20 .
  • the bottom cover 12 is detachably connected to the main body 11 via a fastener 13 .
  • Fastener 13 refers to a component that can fasten and connect two or more parts (or components) into a whole, which can be, but not limited to: screws, bolts, rivets, pins, pins, welding nails, etc. .
  • the bottom cover 12 is detachably connected to the main body 11 via the fastener 13, which is not only convenient for disassembly and assembly, but also simple in structure and economical.
  • the minimum thickness h of the bottom cover 12 satisfies: 0.2mm ⁇ h ⁇ 20mm.
  • the thickness of the bottom cover 12 refers to the distance between the vertical side surfaces of the bottom cover 12 on the vertical section.
  • the minimum thickness h of the bottom cover 12 is the shortest distance between the two vertical sides of the bottom cover 12 .
  • the bottom cover 12 can be flat (as shown in FIG. 15 ), and the minimum thickness of the bottom cover 12 is the equal thickness of the bottom cover 12 everywhere.
  • the minimum thickness of the bottom cover 12 is the thickness of the thinnest part of the bottom cover 12 .
  • the minimum thickness h of the bottom cover 12 can be selected as 0.3mm, 0.5mm, 0.8mm, 1mm, 1.5mm, 1.8mm, 2mm, 2.5mm, 2.8mm, 3mm, 3.5mm, 3.8mm, 4mm, 4.5mm , 4.7mm, 5mm, 5.5mm, 5.8mm, 6mm, 6.5mm, 7mm, 7.5mm, 8mm, 8.5mm, 9mm, 9.5mm, 10mm, 10.5mm, 11mm, 11.5mm, 12mm, 12.5mm, 13mm, 13.5 mm, 14mm, 14.5mm, 15mm, 16mm, 16.5mm, 17mm, 17.5mm, 18mm, 18.5mm, 19mm, 19.5mm, etc.
  • the "thickness" of a certain structure refers to the distance between the two sides of the structure in the vertical direction on the vertical cross-section.
  • the “thickness” is not explained too much in the above description, please refer to the description here.
  • the vertical direction is only for more convenient description of the solution of the present application, and is not a limitation on the usage of the battery 100 .
  • the weight M2 of the battery cell 20 and the minimum thickness h of the bottom cover 12 satisfy: 0.03mm/Kg ⁇ h/M2 ⁇ 100mm/Kg.
  • the weight M2 of the battery cell 20 refers to the weight M2 of a single battery cell 20 .
  • the weight of the battery cells 20 is the weight of each battery cell 20 .
  • the ratio of the minimum wall thickness h of the bottom cover 12 to the weight M2 of the battery cell 20 can be selected as 0.04mm/Kg, 0.05mm/Kg, 0.1mm/Kg, 0.4mm/Kg, 0.8mm/Kg, 1mm /Kg, 1.5mm/Kg, 2mm/Kg, 2.5mm/Kg, 3mm/Kg, 3.5mm/Kg, 4mm/Kg, 5mm/Kg, 6mm/Kg, 8mm/Kg, 10mm/Kg, 12mm/Kg, 13mm/Kg, 15mm/Kg, 16mm/Kg, 18mm/Kg, 20mm/Kg, 30mm/Kg, 35mm/Kg, 40mm/Kg, 45mm/Kg, 50mm/Kg, 55/Kg, 60mm/Kg, 65mm/Kg Kg, 68mm/Kg, 70mm/Kg, 75mm/Kg, 80mm/Kg, 85mm/Kg, 90mm/Kg, 50
  • Table 1 shows the influence of the ratio of the minimum thickness h of several groups of bottom covers 12 to the weight m2 of the battery cell 20 on the safety performance of the battery 100 when tested according to the standard of GB38031-2020 "Safety Requirements for Traction Batteries for Electric Vehicles" test results. It can be seen from Table 1 that when h/m2 is equal to 0.02mm/Kg, the battery 100 is prone to fire and explosion, and the reason is that the structural strength of the battery 100 cannot meet the requirements.
  • h/M2 When h/M2 is greater than 0.02mm/Kg, the structural strength of the bottom cover 12 is better, and the battery 100 is not easy to catch fire and explode, but if h/m2 is too large, it will easily cause space waste and low energy density, so it is better not to use h/M2 More than 100mm/Kg.
  • the battery 100 not only has better structural strength, but also has a relatively high energy density. High, not easy to catch fire and explode.
  • the bottom cover 12 has a cover portion 12a and a mounting portion 12b, the mounting portion 12b surrounds the edge connected to the cover portion 12a, and the cover portion 12a is used to define the accommodating cavity 10a , the mounting portion 12b is connected to the main body 11 .
  • the cover part 12a is used to define the accommodating cavity 10a, which means that the cover part 12a and the main body 11 together form the accommodating cavity 10a, and the mounting part 12b is connected with the main body 11 without participating in the definition of the accommodating cavity 10a.
  • the cover part 12a may be a plate-shaped or block-shaped member, may be a flat-plate-shaped or bent-plate-shaped member, and is not specifically limited. It can be seen from Figs. 10-12 that the installation part 12b is surrounded by the edge of the cover part 12a, which means that the installation part 12b is arranged continuously along the edge of the cover part 12a to form a closed connection structure from end to end.
  • the installation part 12b has a certain width, so that it can have an appropriate contact area with the main body 11, which not only facilitates the positioning and installation between the installation part 12b and the main body 11, but also facilitates the sealing It is also helpful to improve the sealing performance between the mounting portion 12b and the main body 11 .
  • the cover part 12a and the mounting part 12b can be integrally formed.
  • the cover portion 12a and the mounting portion 12b can be integrally formed by die-casting, forging, hot pressing, cold pressing, and the like.
  • the cover part 12a and the mounting part 12b can be integrally formed by injection molding.
  • the cover part 12a and the mounting part 12b can also be formed separately and connected together.
  • the cover part 12a and the installation part 12b are made of metal, the cover part 12a and the installation part 12b can be welded or glued together.
  • cover part 12a and the installation part 12b are made of plastic material
  • the cover part 12a and the installation part 12b can be glued together.
  • the cover part 12a and the installation part 12b can also be fixedly connected together by clamping, riveting or other means.
  • the cover part 12a and the installation part 12b may be located in the same plane. Specifically, optionally, the two surfaces of the cover part 12a and the installation part 12b facing the main body 11 are in the same plane, and/or the two surfaces of the cover part 12a and the installation part 12b facing away from the main body 11 are in the same plane. When the two surfaces of the cover part 12a and the installation part 12b facing the main body 11 and the two surfaces facing away from the main body 11 are respectively on the same plane, the cover part 12a and the installation part 12b can form a flat bottom cover 12 ( as shown in Figure 15).
  • the cover part 12a and the attachment part 12b may not be located in the same plane. Specifically, the cover portion 12a is recessed toward the main body 11 relative to the installation portion 12b, or the cover portion 12a protrudes away from the installation portion 12b toward the main body 11, which is not specifically limited.
  • the thicknesses of the cover part 12a and the mounting part 12b may be equal or different, and are not specifically limited.
  • the bottom cover 12 defines the accommodating cavity 10a via the cover portion 12a, and realizes connection with the main body 11 via the mounting portion 12b, which has a clear structure and is convenient for installation.
  • the bottom cover 12 when the bottom cover 12 is sealingly connected to the main body 11 , the bottom cover 12 is sealingly connected to the main body 11 via the installation part 12 b, that is, the installation part 12 b is sealed to the main body 11 .
  • the sealing connection between the installation part 12b and the main body 11 may be a sealing connection, a sealing glue sealing connection, etc., and the specific examples are not exhaustive.
  • the sealing member may be the sealing member mentioned in the above description, and the setting method of the sealing member may refer to the above description, except that the sealing member is arranged between the installation portion 12 b and the main body 11 .
  • the sealant When the sealant is used to seal the connection between the installation part 12b and the main body 11 , the sealant can be coated on all surfaces of the installation part 12b in contact with the main body 11 .
  • the bottom cover 12 when the bottom cover 12 is detachably connected to the main body 11 , the bottom cover 12 is detachably connected to the main body 11 via the installation portion 12 b, that is, the installation portion 12 b is detachably connected to the main body 11 .
  • the detachable connection between the installation part 12b and the main body 11 can refer to the detachable method between the bottom cover 12 and the main body 11 recorded in the above description, only the part of the bottom cover 12 that is detachably connected with the main body 11 is set as the installation part 12b That is enough, so the detachable connection between the installation part 12b and the main body 11 will not be repeated here.
  • the installation part 12b is detachably connected to the main body 11 .
  • the bottom cover 12 further includes a fixing hole 12c disposed on the installation portion 12b, and the fastener 13 passes through the fixing hole 12c on the installation portion 12b and is fastened on the main body 11.
  • the fixing hole 12c is a through hole that passes through the mounting portion 12b in the vertical direction.
  • the fixing hole 12c can be a smooth through hole (such as when the fastener 13 is a rivet), or a through hole with threads (such as a fastening rivet).
  • the firmware 13 is a screw
  • other through holes such as hexagonal holes, square holes, waist-shaped holes, etc.
  • the specific form of the fixing hole 12c depends on the specific form and specific setting method of the fastener 13, and will not be repeated here.
  • the thickness of the cover portion 12a is equal to that of the mounting portion 12b.
  • the two can be integrally formed in the manner described above, such as integral molding by die-casting, integrally formed by cold pressing, integrally formed by hot pressing, integrally formed by injection molding, etc., which will not be described here. Since the thickness of the cover part 12a and the installation part 12b are equal, they can be quickly processed based on the same metal plate by stamping, cutting and other methods during forming.
  • the thickness of the cover part 12a and the installation part 12b are equal, and the stress in each place is equal during molding, which can improve the molding rate of the integral molding, and can also be quickly processed by simple methods such as plate cutting.
  • the structure of the bottom cover 12 Simpler and more convenient to process.
  • the cover portion 12a is protrudingly arranged in a direction away from the accommodating cavity 10a compared with the installation portion 12b.
  • the cover portion 12 a defines the receiving cavity 10 a
  • the cover portion 12 a protruding away from the receiving cavity 10 a means that the cover portion 12 a protrudes away from the main body 11 . That is to say, the cover part 12 a and the installation part 12 b are arranged vertically in a staggered manner, and the cover part 12 a is at the lowest point of the bottom cover 12 .
  • a certain redundant space can be formed between the cover part 12a and the installation part 12b, and the redundant space can increase the distance between the cover part 12a and the battery cell 20.
  • the external force can be reduced through the redundant space, reducing or avoiding the external force acting on the battery cell 20 and causing damage to the battery cell 20, especially when the battery 100 is installed in the vehicle 1000
  • the stones on the ground are likely to fly to the bottom of the battery 100, that is, the bottom cover 12 during the driving of the vehicle 1000, and hit the bottom cover 12.
  • the redundant space can be reduced Impact of external impact on battery cell 20 .
  • the cover portion 12 a protrudes relative to the mounting portion 12 b, and the cover portion 12 a of the bottom cover 12 can be used as a reinforcement structure of the bottom cover 12 to improve the bending resistance of the bottom cover 12 .
  • the bottom cover 12 is located at the bottom of the box body 10 and is used to define the accommodating cavity 10a, and the wall of the bottom cover facing the battery cells constitutes the bottom wall of the accommodating cavity.
  • the bottom cover 12 is spaced apart from the battery cells 20 .
  • the spacing between the bottom cover 12 and the battery cells 20 means that in the vertical direction, there is a set interval r between the bottom cover 12 and the battery cells 20 .
  • a buffer space is formed between the bottom cover 12 and the battery cell 20, which can prevent the external force acting on the bottom cover 12 from being transmitted to the battery cell 20 and damage the battery cell 20, especially when When the battery 100 is installed at the bottom of the vehicle 1000 and the bottom cover 12 is at the lowest point of the battery 100, stones on the ground are likely to fly to the bottom of the battery 100 and hit the bottom cover 12 during the driving of the vehicle 1000.
  • the buffer space can interrupt the transmission of external force to the battery cell 20 and affect the battery cell 20 .
  • the manner in which the bottom cover 12 and the battery cell 20 are spaced apart may be formed by the redundant space formed between the protruding cover portion 12a and the mounting portion 12b in the above embodiment, or it may be formed by the battery cell 20 located in the main body 11 A set distance is maintained between the end facing the bottom cover 12 and the end of the main body 11 facing the bottom cover 12, that is to say, the battery cell 20 is only located in a part of the accommodating cavity 10a defined by the main body 11, and not Located within the scope of the accommodation cavity 10 a defined by the bottom cover 12 , it is ensured that a set distance r is maintained between the battery cells 20 and the bottom cover 12 to form a buffer space.
  • the battery 100 includes a plurality of battery cells 20 , all the battery cells 20 are spaced apart from the bottom cover 12 . Further, in order to unify the size of the battery cells 20 , the distances between the battery cells 20 and the bottom cover 12 are equal.
  • the bottom cover 12 has a characteristic surface 12d facing the accommodating cavity 10a, and the characteristic surface 12d is configured as a plane to reduce the occupation of the accommodating cavity 10a by the bottom cover 12 itself. , use as much space as possible to install the battery cells 20, so as to improve the energy density and battery life of the battery.
  • the characteristic surface 12d facing the accommodating cavity 10a indicates that the characteristic surface 12d is an inner surface of the bottom cover 12 capable of defining the accommodating cavity 10a.
  • the characteristic surface 12d being configured as a plane means that in the arrangement direction of the main body 11 and the bottom cover 12 , the characteristic surface 12d is a plane perpendicular to the arrangement direction. In an actual situation, when the main body 11 and the bottom cover 12 are arranged vertically, the characteristic surface 12d of the bottom cover 12 is a plane parallel to the horizontal plane. When the main body 11 and the bottom cover 12 are arranged in the horizontal direction, the characteristic surface 12d of the bottom cover 12 is a plane parallel to the vertical surface.
  • the characteristic surface 12d When the characteristic surface 12d is a plane, the characteristic surface 12d can maintain a relatively uniform distance (the distance can be zero) from each battery cell 20 accommodated in the accommodation chamber 10a. When the distance between the characteristic surface 12d and the battery cells 20 is relatively equal, the accommodation cavity 10a can accommodate more battery cells 20, that is, the space utilization rate of the accommodation cavity 10a is higher, and the battery 100 can have higher energy. Density, battery 100 has a higher battery life.
  • the characteristic surface 12d may be formed by the inner surface of the cover portion 12a facing the accommodating cavity 10a. It is further understandable that when the bottom cover 12 is spaced from the battery cell 20 , the characteristic surface 12 d is spaced from the battery cell 20 .
  • the outer surface of the cover portion 12a facing away from the accommodating cavity 10a is parallel to the characteristic surface 12d.
  • the outer surface of the cover portion 12a facing away from the accommodating cavity 10a is arranged opposite to the characteristic surface 12d along the vertical direction.
  • the outer surface of the cover part 12a is used to be in contact with the atmospheric environment, and to withstand external impact.
  • the cover 12a When the outer surface of the cover 12a is a plane flush with the characteristic surface 12d, especially when the bottom cover 12 and the main body 11 are vertically arranged at the bottom of the vehicle 1000 and the bottom cover 12 is located at the lowest point of the battery 100, the cover 12a When the outer surface is flat, the wind resistance generated by the battery 100 can be greatly reduced, which helps to reduce the driving resistance of the vehicle 1000 , reduce the energy consumption of the vehicle 1000 and improve the endurance of the battery 100 .
  • FIG. 17 is a schematic diagram of an orthographic projection of the bottom cover 12 shown in FIG. 13 in the vertical direction.
  • S1 represents the projected area of the characteristic surface 12 d
  • S2 represents the projected area of the bottom cover 12 .
  • the area S1 of the orthographic projection of the characteristic surface 12d and the area S2 of the orthographic projection of the bottom cover 12 satisfy: S1/S2 ⁇ 0.2. Further, S1/S2 ⁇ 0.5.
  • the characteristic surface 12d is formed by end-to-end connection of the first characteristic side d1, the second characteristic side d2, the third characteristic side d3, and the fourth characteristic side d4.
  • the area S1 of the orthographic projection of the characteristic surface 12d is the area defined by the first characteristic side d1, the second characteristic side d2, the third characteristic side d3 and the fourth characteristic side d4.
  • the area S2 of the orthographic projection of the bottom cover 12 is the area defined by the edges of the bottom cover 12 .
  • the ratio of the area S1 of the orthographic projection of the feature surface 12 d to the area S2 of the orthographic projection of the bottom cover 12 may be 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.
  • Table 2 shows the impact of the ratio of the area S1 of the orthographic projection of several groups of characteristic surfaces 12d to the area S2 of the orthographic projection of the bottom cover 12 tested according to the NEDC (New European Driving Cycle) standard on the cruising range of the battery 100.
  • S1/S2 is less than 0.2
  • the cruising range of the battery 100 is poor.
  • the reason is that when the characteristic surface 12d is small, the space utilization rate of the accommodating cavity 10a is low, and the number of battery cells 20 accommodated in the battery 100 is small.
  • the energy density of the battery 100 is relatively low, resulting in a short cruising range of the battery 100 and poor test results.
  • the characteristic surface 12d is a plane, the larger the area of the bottom cover 12 occupied by the characteristic surface 12d, the smaller the area of the inner surface of the bottom cover 12 that is concave or protruding relative to the characteristic surface 12d.
  • the recessed inner surface relative to the characteristic surface 12d will make part of the space in the receiving cavity 10a irregular and unable to install the battery cells 20, resulting in a low space utilization rate of the receiving cavity 10a.
  • Part of the space of the accommodating cavity 10a formed by the inner surface protruding from the characteristic surface 12d is also irregular and cannot accommodate the battery cell 20, resulting in a low space utilization rate of the accommodating cavity 10a.
  • the space utilization rate of the accommodation cavity 10 a When the space utilization rate of the accommodation cavity 10 a is low, the volume occupied by the battery cells 20 per unit space in the battery 100 is small, and the energy density of the battery 100 is low. Therefore, the larger the area of the bottom cover 12 occupied by the characteristic surface 12 d is, the greater the space utilization rate of the battery 100 is, the higher the energy density of the battery 100 is, and the better the cruising range of the battery 100 is.
  • the orthographic projection of the characteristic surface 12d is rectangular.
  • the rectangular characteristic surface 12 d is an area surrounded by the first characteristic side d1 , the second characteristic side d2 , the third characteristic side d3 and the fourth characteristic side d4 .
  • a plurality of battery cells 20 are mostly assembled to form a rectangular structure, and the characteristic surface 12d is configured in a rectangular shape, which can adapt to the overall structure formed by the battery cells 20 in the battery 100 and facilitates the arrangement in the accommodating cavity 10a. More battery cells 20 increase the energy density of the battery 100 .
  • the orthographic projection of the characteristic surface 12d may also be in other shapes, such as circle, polygon, ellipse and other irregular shapes.
  • the main body 11 includes a carrier 11a.
  • the carrier 11a may be a part of the main body 11 used to define the accommodating cavity 10a (for example, the carrier 11a is the top cover or frame mentioned above), or it may be a component not used to define the accommodating cavity 10a but located in the accommodating cavity 10a (For example, the bearing member 11a is the above-mentioned support plate), not specifically limited.
  • the carrier 11a can be a part directly connected to the bottom cover 12 in the main body 11 (such as the frame mentioned above), or a part not connected to the bottom cover 12 (as above cover mentioned in the text).
  • the top of the box body 10 is provided with a bearing 11a, and the battery cells 20 are disposed on the surface of the bearing 11a.
  • the bearing member 11 a is a component capable of bearing the weight of the battery cell 20 , and may be a bearing plate, a bearing rod, a bearing block, a bearing sheet, a bearing frame, a bearing rope, etc., and is not specifically limited.
  • the battery cell 20 may be supported on the carrier 11a, and at this time, the battery cell 20 may be arranged above the carrier 11a.
  • the battery cell 20 may be hung on the carrier 11a, and at this time, the battery cell 20 may be hung on the wall of the carrier 11a parallel to the direction of gravity of the battery cell 20 .
  • the battery cell 20 can be arranged above the carrier 11a (for example, when the carrier 11a is used as a support plate in the accommodation chamber 10a), and the battery cell 20 can also be arranged below the carrier 11a (for example, the carrier 11a is used as a When defining the top cover of the accommodating cavity 10a), the battery cells 20 can also be arranged on the side of the carrier 11a (such as when the carrier 11a serves as a frame for defining the accommodating cavity 10a).
  • the battery cell 20 is bonded to the carrier 11a, and the size required in the vertical direction Z when the battery cell 20 is connected to the carrier 11a can be reduced through adhesive connection, reducing the overall size of the battery. thickness.
  • the carrier 11a is used to define the accommodation chamber 10a, and the battery cells 20 are suspended from the carrier 11a.
  • the bonding between the battery cell 20 and the carrier 11 a can be achieved by adhesive such as epoxy glue, acrylate glue, etc., which is not limited.
  • adhesive such as epoxy glue, acrylate glue, etc., which is not limited.
  • the bonding between the battery cells 20 and the carrier 11 a not only facilitates the connection, but also simplifies the structure of the battery 100 .
  • the wall of the carrier 11a facing the battery cell 20 constitutes the top wall 101 of the containing cavity 10a, for example, the battery cell 20 may be disposed on the top wall 101 of the containing cavity 10a.
  • the battery cells 20 are disposed on the surface of the carrier 11a, and the minimum thickness H of the carrier 11a and the weight M1 of the battery 100 satisfy: 0.0002mm/kg ⁇ H/M1 ⁇ 0.2mm /kg.
  • the supporting member 11a can be used to bear the weight of the battery cell 20, and the battery 100 has good structural strength, and there will be no problem of fire and explosion. Meanwhile, the energy density of the battery is higher, and the battery life is stronger.
  • the thickness of the carrier 11 a refers to the distance between one side surface of the carrier 11 a for disposing the battery cells 20 and the opposite side surface thereof.
  • the minimum thickness H of the carrier 11a refers to the minimum distance between the two sides of the carrier 11a in the vertical direction.
  • the thickness of the carrier 11a refers to the point where the distance between the two sides of the carrier 11a in the horizontal direction is the smallest.
  • the weight of the battery 100 includes the entire weight of the main body 11 , the bottom cover 12 , the battery cells 20 and other components (such as wiring harness, thermal management system, power management system, etc.).
  • the ratio between the minimum thickness H of the carrier 11a and the weight M1 of the battery 100 can be designed as: 0.0003mm/kg, 0.0005mm/kg, 0.0008mm/kg, 0.001mm/kg, 0.003mm/kg, 0.005 mm/kg, 0.008mm/kg, 0.01mm/kg, 0.03mm/kg, 0.05mm/kg, 0.06mm/kg, 0.08mm/kg, 0.1mm/kg, 0.12mm/kg, 0.15mm/kg, 0.16 mm/kg, 0.19mm/kg, 0.02mm/kg.
  • Table 3 shows the results of the influence of the ratio of the minimum thickness H of several groups of bearing members 11a to the weight M1 of the battery 100 on the safety performance of the battery 100 tested under the standard of GB38031-2020 "Safety Requirements for Traction Batteries for Electric Vehicles". It can be seen from Table 3 that when the ratio of H/M does not exceed 0.0002mm/Kg, the battery 100 will catch fire and explode, and the reason is that the structural strength of the battery 100 does not meet the requirements. When the ratio of H/M exceeds 0.0002mm/Kg, the battery 100 will not catch fire and explode.
  • H/M is too large (such as exceeding 0.1)
  • the proportion of the battery cells 20 in the unit volume of the battery 100 is low, and the space utilization rate is low.
  • the battery 100 The energy density is too low, and the use cost of the battery 100 is relatively high.
  • 0.0005mm/Kg ⁇ H/M ⁇ 0.1mm/Kg at this time, the structural strength of the battery 100 meets the requirements and the energy density of the battery 100 is high, the endurance of the battery 100 is stronger, and safety such as fire and explosion does not occur.
  • the minimum thickness H of the bearing member 11a satisfies: 0.2mm ⁇ H ⁇ 20mm.
  • the minimum thickness H of the carrier 11a may be: 0.3mm, 0.5mm, 0.8mm, 0.9mm, 1.0mm, 1.2mm, 1.5mm, 2mm, 2.5mm, 3mm, 3.5mm, 4mm, 4.5mm, 5mm , 5.5mm, 6mm, 6.5mm, 7mm, 7.5mm, 8mm, 9mm, 10mm, 12mm, 15mm, 16mm, 18mm, 19mm.
  • 0.5mm ⁇ H ⁇ 10mm at this time, the supporting member 11a has better structural strength, the overall strength of the battery 100 is better, and the battery 100 is not easy to catch fire and explode.
  • the overall volume of the battery 100 occupied by the carrier 11 a is small, the space utilization rate of the battery 100 is high, and the energy density of the battery 100 is high.
  • the battery cells 20 are suspended from the carrier 11a.
  • the carrier 11a is used to define the accommodation chamber 10a, and the battery cells 20 are suspended from the carrier 11a.
  • Suspending the battery cell 20 from the carrier 11a means that the battery cell 20 is arranged vertically below the carrier 11a, and the weight of the battery cell 20 is borne by the carrier 11a.
  • the manner of suspending the battery cell 20 on the carrier 11a includes: the battery cell 20 is directly bonded to the lower surface of the carrier 11a, the battery cell 20 is connected to the carrier 11a through the fastener 13 and positioned on the carrier 11a. Below, the battery cells 20 are hung on the carrier 11 a through hooks or the like and are located below the carrier 11 a.
  • the battery cell 20 is suspended below the carrier 11a, and the bottom cover 12 is located at the bottom of the box body 10.
  • the battery cell 20 can be exposed without removing the bottom cover 12.
  • the maintenance of the battery 100 is more convenient by removing the carrying member 11a.
  • the battery cell 20 can be disassembled on the carrier 11a from below, especially when the carrier 11a is stressed as at least a part of the chassis of the vehicle 1000, it only needs to be removed from the bottom of the carrier 11a. Installing the battery cell 20 does not need to dismantle the carrier 11a, which facilitates the maintenance of the battery 100 .
  • the outer surface of the battery cell 20 facing the carrier 11a is the first outer surface m1 (which can also be understood as the top wall of the battery cell 20 described in this application. 204 ), the electrode terminal 214 is arranged on the outer surface of the battery cell 20 except the first outer surface m1 .
  • the electrode terminal 214 is used to electrically connect with the electrode assembly 23 inside the battery cell 20 for outputting or inputting electric energy of the battery cell 20 .
  • the electrode terminal 214 at least partially protrudes from the battery cell 20 to be electrically connected to the outside. Both the series connection and the parallel connection between the battery cells 20 are realized by the series connection and the parallel connection between the respective electrode terminals 214 .
  • the electrode terminal 214 has conductivity to realize electrical transmission, and may be an aluminum electrode, a copper electrode, or the like.
  • the electrode terminal 214 is arranged on an outer surface of the battery cell 20 other than the first outer surface m1.
  • the first outer surface m1 faces the carrier 11a, and is generally a smooth surface, on which structures such as electrode terminals 214 and liquid injection holes are not protruded or depressed.
  • the first outer surface m1 is an upward outer surface of the battery cell 20 .
  • the battery cell 20 includes the casing 211 and the end cap 212 mentioned above, and the casing 211 and the end cap 212 form an internal environment of the battery cell 20 containing the electrode assembly 23 .
  • the end cover 212 is located at one end of the housing 211 , and the electrode terminals 214 are arranged on the end cover 212 . At this time, any outer surface of the housing 211 can be used as the first outer surface m1 of the battery cell 20 .
  • the electrode terminal 214 includes a positive terminal and a negative terminal, the positive terminal is used for electrical connection with the positive sheet in the electrode assembly 23 , and the negative terminal is used for electrical connection with the negative sheet in the electrode assembly 23 .
  • the positive terminal and the negative terminal can be arranged on the same outer surface of the battery cell 20 (such as a square battery cell 20), or they can be arranged on two different outer surfaces of the battery cell 20 (such as a cylindrical battery monomer 20).
  • the first outer surface m1 is a surface of the battery cell 20 that is different from the two outer surfaces.
  • the battery 100 is usually provided with components such as a sampling harness electrically connected to each battery cell 20, a high-voltage line speed, and a protective structure for protecting the battery cells 20.
  • the electrode terminals 214 are arranged on the The other surfaces of the battery cell 20 except the first outer surface m1 can pass through the battery cell 20 and the main body without being restricted by the carrier 11a when sampling wire harnesses, high-voltage wire harnesses, protective structures and other components on the electrode terminal 214.
  • the space between other structures except the carrier 11a (such as through the space between the battery cell and the bottom cover and/or the space between the battery cell and the inner side of the main body) arranges various components, which is more convenient for each component setting.
  • the first outer surface m1 is a smooth surface, the first outer surface m1 can be attached to the carrier 11a, so that the battery cell 20 and the carrier 11a can be attached and installed, and there is no need to install the battery cell 20 A space is reserved between the carrier 11 a and the space utilization rate of the battery 100 is improved.
  • the battery cell 20 has a second outer surface m2 opposite to the first outer surface m1 (also can be understood as the bottom wall of the battery cell 20 described in this application. 205), the electrode terminal 214 is arranged on the second outer surface m2.
  • the second outer surface m2 is an outer surface of the battery cell 20 opposite to the first outer surface m1 , and when the battery cell 20 is suspended from the carrier 11 a , the second outer surface m2 is opposite to the bottom cover 12 .
  • the battery cells 20 and the bottom cover 12 may be spaced apart.
  • the buffer space can also prevent the external force hitting the bottom cover 12 from acting on the battery cell 20 and damaging the battery cell 20 as mentioned above. Therefore, the buffer space can not only interrupt the influence of external force, but also carry out the layout of wiring harness, etc., killing two birds with one stone.
  • the buffer space and the space utilization rate of the battery 100 are also improved.
  • the electrode terminals 214 may also be arranged on the third outer surface m3 intersecting the first outer surface m1 of the battery cell 20 .
  • the bearing member 11 a is located on the top of the box body 10 and is used to define the receiving chamber 10 a. Since the bottom cover 12 is located at the bottom of the box body 10 , the bearing member 11 a is arranged opposite to the bottom cover 12 .
  • the bearing part 11a serves as the top structure of the box body 10, and the box body 10 can be installed on the mounting body via the bearing part 11a.
  • the battery cells 20 arranged on the carrier 11a can strengthen the strength of the carrier 11a, thereby increasing the rigidity of the top of the battery 100, so that the application scenario of the battery 100 can be extended to the scene where the top is stressed, such as being used as a vehicle Part of the 1000 chassis used.
  • the bearing member 11 a has a bearing surface 12 f facing the accommodating cavity 10 a, and the bearing surface 12 f is configured as a plane.
  • the bearing surface 12f is an inner surface of the bearing member 11a facing the receiving chamber 10a, and is used to define the receiving chamber 10a.
  • the carrying surface 12f being configured as a plane means that in the arrangement direction of the main body 11 and the bottom cover 12 , the carrying surface 12f is a plane perpendicular to the arrangement direction.
  • the bearing part 11a is vertically opposite to the bottom cover 12
  • the bearing surface 12f of the bearing part 11a is a plane parallel to the horizontal plane.
  • the supporting part 11a is arranged opposite to the bottom cover 12 in the horizontal direction
  • the supporting surface 12f of the supporting part 11a is a plane parallel to the vertical plane.
  • the carrier 11 a may be all of the inner surface of the carrier 11 a facing the accommodating cavity 10 a, and the carrier 11 a may be in the shape of a flat plate at this time. As shown in Figures 21 and 22, the carrier 11a may also be a part of the inner surface of the carrier 11a facing the accommodating cavity 10a, and at this time the bearing surface 12f is only a part of the inner surface of the carrier 11a used to define the accommodating cavity 10a .
  • the bearing surface 12f When the bearing surface 12f is a plane, the bearing surface 12f can maintain a relatively equal distance (the distance can be zero) from each battery cell 20 accommodated in the accommodation chamber 10a.
  • the distance between the carrying surface 12f and the battery cells 20 is relatively uniform, more battery cells 20 can be accommodated in the accommodation cavity 10a, that is to say, the space utilization rate of the accommodation cavity 10a is higher, and the battery 100 can have a larger capacity. With high energy density, the endurance of the battery 100 is higher.
  • the battery cells 20 are disposed on the carrying surface 12f.
  • the battery cells 20 are mounted on the carrier 11a via the carrier surface 12f.
  • the carrier can be installed first, and then the battery cell can be hoisted from bottom to top.
  • the battery cell is hoisted from bottom to top, which is more convenient for battery assembly.
  • the battery cell suspended on the carrier can strengthen the strength of the carrier, thereby increasing the rigidity of the top of the battery, so that the application scenario of the battery can be extended to the scene where the top is stressed, such as being used as a part of the vehicle chassis.
  • the battery cell 20 may be bonded to the bearing surface 12f, or fixedly connected to the bearing surface 12f via fasteners 13, or welded or clipped to the bearing surface 12f, which is not specifically limited.
  • the carrying surface 12f is a plane, the carrying surface 12f can have a larger contact area with the battery cell 20 disposed on itself, and the installation of the battery cell 20 is more stable. At the same time, when the carrying surface 12f is flat, compared with an uneven surface such as a curved surface, the carrying surface 12f can be connected to a greater number of battery cells 20, which can increase the number of battery cells 20 installed in the battery 100, thereby improving the battery life. 100% space utilization and energy density.
  • the battery cell 20 is suspended on the carrier 11a, the battery cell 20 is suspended on the carrier surface 12f.
  • the area N1 of the orthographic projection of the bearing surface 12f and the area N2 of the orthographic projection of the bearing member 11a satisfy: N1/N2 ⁇ 0.2. Further, N1/N2 ⁇ 0.5.
  • the load-bearing surface 12f is formed by end-to-end connection of the first load-bearing side f1, the second load-bearing side f2, the third load-bearing side f3 and the fourth load-bearing side f4
  • the area N1 of the orthographic projection of the bearing surface 12f is the area defined by the first bearing side f1 , the second bearing side f2 , the third bearing side f3 and the fourth bearing side f4 .
  • the area N2 of the orthographic projection of the carrier 11a is the area defined by the edges of the carrier 11a.
  • the ratio of the area N1 of the orthographic projection of the bearing surface 12f to the area N2 of the orthographic projection of the bearing member 11a may be 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.
  • Table 4 shows the influence of the ratio of the area N1 of the orthographic projection of several groups of bearing surfaces 12f to the area N2 of the orthographic projection of the bearing member 11a on the cruising range of the battery 100 when testing according to the NEDC (New European Driving Cycle) standard.
  • N1/N2 is less than 0.2
  • the cruising range of the battery 100 is poor.
  • the reason is that when the carrying surface 12f is small, the number of battery cells 20 carried on the carrying member 11a is small, and the space utilization rate of the accommodating cavity 10a is low. , the energy density of the battery 100 is relatively low, resulting in a short cruising range of the battery 100 and poor test results.
  • the ratio of N1/N2 reaches 0.2 or above (especially when N1/N2 reaches 0.5 or above), the larger the ratio, the better the cruising range of the battery 100.
  • the carrier 11a is a flat plate structure as shown in FIG. 20
  • the orthographic area N1 of the carrier surface 12f is equal to the orthographic area N2 of the carrier 11a, and the battery 100 has the best battery life.
  • the orthographic projection of the carrying surface 12f is rectangular.
  • the rectangular bearing surface 12 f is an area enclosed and defined by the first bearing side f1 , the second bearing side f2 , the third bearing side f3 and the fourth bearing side f4 .
  • a plurality of battery cells 20 are mostly assembled to form a rectangular structure, and the carrying surface 12f is configured in a rectangular shape, which can adapt to the overall structure of the battery and facilitates the arrangement of more battery cells in the accommodating cavity 10a 20. Increase the energy density of the battery 100 .
  • the orthographic projection of the bearing surface 12f may also be in other shapes, such as circle, polygon, ellipse and other irregular shapes.
  • the bearing member 11a has a bearing portion 11a1 and a connecting portion 11a2, the connecting portion 11a2 surrounds and connects to the edge of the bearing portion 11a1, the bearing portion 11a1 is used to define the accommodating cavity 10a, and the connecting portion 11a2 is connected to on the part of the box body 10 other than the carrier 11a.
  • the bearing part 11a1 is used to define the receiving chamber 10a, and the connecting part 11a2 is used to connect with the part of the box body 10 except the bearing part 11a, and does not participate in defining the receiving chamber 10a.
  • the carrying portion 11a1 may be a plate-shaped or block-shaped member, may be a flat-plate-shaped or bent-plate-shaped member, and is not specifically limited. It can be seen from FIG. 21 that the connection part 11a2 enclosing the edge of the bearing part 11a1 refers to a structure in which the connection part 11a2 is continuously connected along the edge of the bearing part 11a1 to form an end-to-end closed connection.
  • the connecting portion 11a2 has a certain width, so that it can have an appropriate contact area with other structures of the box body 10 except the carrier 11a, and realize a more square edge between the connecting portion 11a2 and the box body 10. Installation and connection of other structures than the carrier 11a.
  • the bearing part 11a1 and the connecting part 11a2 can be integrally formed.
  • the supporting part 11a is made of metal (such as aluminum, iron, stainless steel, etc.)
  • the supporting part 11a1 and the connecting part 11a2 can be integrally formed by die-casting, forging, hot pressing, or cold pressing.
  • the supporting part 11a is made of plastic material (such as PP, PE, ABS, etc.)
  • the supporting part 11a1 and the connecting part 11a2 can be integrally formed by injection molding.
  • the bearing part 11a1 and the connecting part 11a2 can also be formed separately and connected together.
  • the carrying portion 11a1 and the connecting portion 11a2 are made of metal, the carrying portion 11a1 and the connecting portion 11a2 can be welded or glued together.
  • the cover part 12a and the installation part 12b can be glued together.
  • the bearing part 11a1 and the connecting part 11a2 may also be fixedly connected together by clamping, riveting or other means.
  • connection part 11a2 is connected to the part of the main body 11 except the carrier part 11a, and the connection method can be integrally formed or fixedly connected.
  • the connection part 11a2 is integrally formed with the part of the main body 11 except the carrier 11a, that is to say, the main body 11 is an integrally formed product, which can be integrally formed by die-casting, forging, hot pressing, cold pressing, injection molding and the like.
  • the connection part 11a2 is fixedly connected to the part of the main body 11 other than the carrier part 11a, it can be fixedly connected by means of a fastening connection with a fastener 13, a clip connection with a snap-fit structure, etc., which is not specifically limited.
  • the bearing part 11a1 and the connecting part 11a2 may be located in the same plane. Specifically, optionally, the two surfaces of the bearing part 11a1 and the connecting part 11a2 facing the bottom cover 12 are in the same plane, and/or the two surfaces of the bearing part 11a1 and the connecting part 11a2 facing away from the bottom cover 12 are in the same plane.
  • the carrying portion 11a1 and the connecting portion 11a2 facing the bottom cover 12 and the two surfaces facing away from the bottom cover 12 are respectively on the same plane, the carrying portion 11a1 and the connecting portion 11a2 can form a flat plate-shaped carrying member 11a (as shown in Figure 20).
  • the bearing part 11a1 and the connecting part 11a2 may not be located in the same plane. Specifically, the carrying portion 11a1 protrudes away from the accommodating cavity 10a relative to the connecting portion 11a2, or the carrying portion 11a1 is recessed toward the accommodating cavity 10a relative to the connecting portion 11a2, which is not specifically limited.
  • the thicknesses of the carrying portion 11a1 and the connecting portion 11a2 may be equal or different, and are not specifically limited.
  • the bearing part 11a defines the accommodating cavity 10a through the bearing part 11a1, and realizes the structural connection with the main body 11 except the bearing part 11a through the connecting part 11a2, and the structure is distinct.
  • the carrier 11a includes the above-mentioned carrying portion 11a1 and the above-mentioned connecting portion 11a2, the battery cells 20 are disposed on the carrying portion 11a1.
  • the carrier 11a includes the above-mentioned carrying portion 11a1 and the above-mentioned connecting portion 11a2, the inner surface of the carrying portion 11a1 facing the accommodating cavity 10a is configured to form a carrying surface 12f.
  • the carrying portion 11a1 protrudes in a direction away from the accommodating cavity 10a compared with the connecting portion 11a2 .
  • the carrying portion 11a1 defines the receiving cavity 10a, and the carrying portion 11a1 protruding away from the containing cavity 10a means that the carrying portion 11a1 and the connecting portion 11a2 are vertically staggered.
  • the carrying portion 11a1 is located at the highest point of the carrying member 11a. At this time, a certain space may be formed between the carrying portion 11 a 1 and the connecting portion 11 a 2 as a part of the receiving chamber 10 a, and the space can accommodate the battery cells 20 .
  • the bearing part 11a1 When the bearing part 11a1 protrudes away from the receiving cavity 10a compared with the connecting part 11a2, the bearing part 11a1 can serve as a strengthening structure of the bearing part 11a, improving the bending resistance of the bearing part 11a.
  • the bearing portion 11a1 and the connecting portion 11a2 have the same thickness.
  • the bearing part 11a1 and the connecting part 11a2 can be integrally formed by die-casting, cold pressing, or hot pressing through the same plate, and the forming of the supporting part 11a is more convenient.
  • the thickness of the bearing part 11a1 and the connection part 11a2 are equal, and the stress is equalized everywhere during molding, which can improve the molding rate of the bearing part 11a.
  • the outer surface of the carrying portion 11a1 facing away from the accommodating cavity 10a is parallel to the carrying surface 12f.
  • the outer surface of the carrying portion 11a1 facing away from the accommodating cavity 10a is vertically opposite to the carrying surface 12f.
  • the outer surface of the bearing part 11a1 can be in contact with the atmospheric environment.
  • the main body 11 includes a frame 11b and a carrier 11a, the frame 11b encloses and forms an enclosed space 10q penetrating at both ends in the vertical direction, the bottom cover 12 and the carrier
  • the pieces 11a respectively cover opposite ends of the enclosed space 10q in the vertical direction, and the bottom cover 12 , the frame 11b and the supporting piece 11a jointly enclose to form the accommodating cavity 10a.
  • the frame 11b itself encloses and forms an enclosed space 10q penetrating at both ends in the vertical direction, the carrier 11a covers the top of the enclosed space 10q, and the bottom cover 12 covers the bottom of the enclosed space 10q, that is, the carrier 11a is located on the top of the box body 10 and is used to define the receiving cavity 10a, and the bottom cover 12 is located on the bottom of the box body 10 and is used to define the receiving cavity 10a.
  • the frame 11b, the carrier 11a and the bottom cover 12 surround and form the receiving chamber 10a.
  • the frame 11b, the supporting member 11a and the bottom cover 12 can be made of the same material, such as aluminum alloy, copper alloy, steel, plastic and so on.
  • the frame 11b, the carrier 11a and the bottom cover 12 can also be made of different materials, which is not limited in detail.
  • the frame 11b may be in the shape of a rectangle, a circle, a polygon, etc., which is not specifically limited.
  • the frame 11b is parallel to the vertical direction, the frame 11b is arranged around the battery cell 20 , and the frame 11b connects the carrier 11a and the bottom cover 12 .
  • the carrying part 11a includes the above-mentioned carrying part 11a1 and the connecting part 11a2
  • the carrying part 11a is connected to the frame 11b via the connecting part 11a2.
  • the bottom cover 12 includes the above-mentioned cover part 12a and the above-mentioned installation part 12b
  • the bottom cover 12 is connected to the frame 11b via the installation part 12b.
  • the receiving cavity 10a of the battery 100 can be formed by connecting the carrier 11a and the bottom cover 12 to the vertical ends of the frame 11b on the basis of the frame 11b, and the structure of the box body 10 is relatively simple.
  • the bearing member 11a is fixedly connected (eg, detachably connected) or integrally formed with the frame 11b.
  • the carrier 11a and the frame 11b can be integrally formed by means of injection molding, die-casting, forging, cold pressing, or hot pressing.
  • the bearing part 11a and the frame 11b can be fixedly connected via the fasteners 13, clamping, welding, bonding, hot-melt connection and the like.
  • the main body 11 When the supporting part 11a and the frame 11b are integrally formed, and the main body 11 is integrally formed, the main body 11 only needs to be connected with the bottom cover 12 to realize the assembly of the box body 10 , and the box body 10 is easy to assemble.
  • the carrier 11 a When the carrier 11 a is fixedly connected to the frame 11 b , the forming process of the carrier 11 a and the frame 11 b is relatively easy, which can reduce the process cost of the box body 10 .
  • the carrier 11a has a carrier part 11a1 and a connecting part 11a2
  • the connecting part 11a2 is connected to the frame 11b.
  • the bottom cover 12 has a cover portion 12a and a mounting portion 12b
  • the mounting portion 12b is connected to the frame 11b.
  • the height Hc of the battery cell 20 and the height Hp of the battery 100 satisfy: 0.02 ⁇ Hc/Hp ⁇ 0.98.
  • the height Hc of the battery cell 20 refers to the maximum length of the battery cell 20 in the vertical direction when the main body 11 and the bottom cover 12 are arranged in the vertical direction.
  • the maximum length of the battery cell 20 refers to the electrode terminal 214.
  • the height Hc of the battery cell 20 refers to the first outer surface m1 of the battery cell 20 to the surface facing away from it. Sets the distance between outer surfaces.
  • the height Hp of the battery 100 refers to the maximum length of the battery 100 in the vertical direction z when the main body 11 and the bottom cover 12 are arranged along the vertical direction z.
  • the ratio of the height Hc of the battery cell 20 to the height Hp of the battery 100 may be 0.02, 0.03, 0.05, 0.08, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.98.
  • Table 5 shows the influence of the ratio of the height Hc of the battery cell 20 to the height Hp of the battery 100 of several groups of battery cells 20 tested under the standard of GB38031-2020 "Safety Requirements for Traction Batteries for Electric Vehicles" on the safety of the battery 100 . It can be seen from Table 5 that when Hc/Hp exceeds 0.98, the height of the battery 100 occupied by the structure of the box 10 is very small, the strength of the box 10 cannot meet the requirements, and safety accidents such as fire and explosion may occur. When 0.02 ⁇ Hc/Hp, the structural strength of the box body 10 can meet the requirements, and there will be no fire or explosion. When Hc/Hp is less than 0.02, although the structural strength of the box body 10 can meet the requirements, the space utilization rate of the battery 100 is low, and the energy density is too low.
  • the electrical device includes a vehicle 1000 , and the battery 100 is disposed at the bottom of the vehicle body 200 .
  • the vehicle 1000 refers to the records in the above description, and details are not repeated here.
  • the body 200 of the vehicle 1000 refers to the part of the vehicle 1000 used for carrying people and loading goods, including a cockpit, a passenger compartment, an engine compartment, a luggage compartment, and the like.
  • the vehicle body 200 generally includes a body shell and doors, windows, decorations, seats, air conditioning devices and the like disposed on the body shell.
  • the body shell usually refers to the structure composed of main load-bearing components such as vehicle longitudinal beams, cross beams, chassis and pillars, and the sheet metal parts connected to them.
  • the battery 100 is disposed at the bottom of the vehicle body 200 mainly means that the battery 100 is disposed at the bottom of the body shell. At this time, disposing the battery 100 at the bottom of the vehicle body 200 will not occupy the space inside the vehicle body 200 , which helps to reduce the volume and weight of the vehicle body 200 .
  • the main body 11 includes a carrier 11a located on the top of the box body 10, the carrier 11a is used to define the accommodating cavity 10a, and in the vertical direction, the distance L between the carrier 11a and the vehicle body 200 satisfies: L ⁇ 0.
  • the distance L between the carrier 11a and the vehicle body 200 refers to the distance between the highest point of the carrier 11a and the vehicle body 200 above itself in the vertical direction.
  • the bearing part 11a includes the above-mentioned bearing part 11a1 and the above-mentioned connecting part 11a2
  • the distance L between the bearing part 11a and the vehicle body 200 is the distance between the outer surface of the bearing part 11a1 away from the accommodating cavity 10a and the vehicle body 200 above it.
  • the bearing part 11a When the distance L between the bearing part 11a and the vehicle body 200 is equal to 0, the bearing part 11a is attached to the vehicle body 200; Understandably, at this time the bottom cover 12 is at the bottom of the carrier 11a, and the distance g between the bottom cover 12 and the vehicle body 200 is greater than zero.
  • the battery 100 When the battery 100 is installed under the vehicle body 200 , the range within the distance from the bottom of the battery 100 to the vehicle body 200 is the installation space occupied by the battery 100 .
  • the carrier 11a When the carrier 11a is spaced from the vehicle body 200, there will be a certain amount of wasted space between the battery 100 and the vehicle body 200.
  • the battery 100 and the vehicle body 200 can be attached to increase the volume of the battery 100 , thereby increasing the power and energy density of the battery 100 .
  • the battery 100 can have relatively large power and high energy density, and the vehicle 1000 has a strong battery life.
  • the distance L between the carrier 11a and the vehicle body 200 is greater than zero, the installation of the carrier 11a is more flexible.
  • the main body 11 includes a carrier 11 a on the top of the box body 10 , the carrier 11 a is used to define the accommodating cavity 10 a, and the battery 100 is mounted on the vehicle body 200 via the carrier 11 a.
  • the carrier 11a in the battery 100 is the closest to the vehicle body 200, and the battery 100 is installed on the vehicle body 200 via the carrier 11a, specifically, the carrier 11a can be Fasteners 13 (such as screws, bolts, rivets, etc.), welding, etc. are fixed on the vehicle body 200 .
  • the structure formed by the battery cell 20 and the carrier 11 a is connected to the vehicle body 200 , which can increase the top strength of the battery 100 and further increase the installation strength of the battery 100 .
  • the carrier 11a is configured to form at least a portion of the chassis of the vehicle body 200 .
  • the chassis is a combination of four parts: the transmission system, the driving system, the steering system and the braking system.
  • Engine power ensures normal driving.
  • the chassis is located at the bottom of the vehicle body 200, and the carrier 11a directly serves as at least a part of the chassis. That is, the carrier 11 a serves to form at least a part of the chassis of the vehicle body 200 .
  • the carrier 11a is integrated with the chassis of the vehicle body 200, so that the space occupied by the gap between the traditional chassis and the battery 100 can be divided into the battery 100 to increase the space of the battery 100, which helps to improve the battery 100. energy, thereby improving the battery life of the vehicle 1000.
  • the electrical device includes a vehicle 1000 , and a battery 100 is provided at the bottom of the body 200 of the vehicle 1000 .
  • the battery 100 includes a box body 10 and a battery cell 20.
  • the box body 10 includes a carrier 11a on the top thereof.
  • the battery cell 20 is located in the box body 10 and suspended on the carrier 11a.
  • 214 is located on the outer surface of the battery cell 20 facing away from the carrier 11 a forming at least part of the chassis of the vehicle 1000 .
  • the battery cell 20 is suspended on the carrier 11a, which can increase the strength of the carrier 11a and the strength of the top of the battery cell 20, so that the carrier 11a can meet certain force requirements when used as a chassis.
  • the electrode terminal 214 of the battery cell 20 is away from the carrier 11a, the battery cell 20 can be directly installed on the carrier 11a, the space between the battery cell 20 and the carrier 11a is saved, and the saved space is used.
  • the multiple battery cells 20 are arranged in a second direction y, and the second direction is perpendicular to the vertical direction Z;
  • the top wall 204 is connected, the top wall 204 of the battery cell 20 is parallel to the second direction y, the vertical direction Z is perpendicular to the top wall 204 of the battery cell 20, and the battery cell 20 is located under the carrier 11a, so that the carrier 11a and The battery cell 20 is in direct surface contact, and the carrier 11a is directly connected to the top wall 201 of the battery cell 20 without leaving any space in between, which can improve the space utilization rate of the battery 100, thereby increasing the energy density of the battery 100, and at the same time
  • the cell 20 is connected with the carrier 11 a as a whole, which can improve the structural strength of the battery 100 .
  • the top wall 204 of the battery cell 20 is connected to the bottom surface of the carrier 11a, the bottom surface of the carrier 11a may be a side close to the battery cell 20 in the vertical direction, and the top wall 204 of the battery cell 20 may be a battery cell 20 is close to one side of the carrier 11a in the vertical direction.
  • the relationship between the size N of the bearing member 11a in the vertical direction Z and the weight M2 of the battery cell 20 satisfies: 0.04mm/kg ⁇ N/M2 ⁇ 100mm/kg, so that the bearing member 11a can be vertically
  • the dimension N in the direction Z is kept within a reasonable range, avoiding the waste of the internal space of the battery caused by excessive N, and making the connection between the battery cell 20 and the carrier 11a stronger, enhancing the structural strength of the battery, and improving the battery capacity. performance.
  • the dimension N of the bearing part 11a in the vertical direction may be the thickness of the bearing part 11a in the vertical direction.
  • the carrier 11a may be the upper cover of the battery box, or a part of the electrical device, such as the chassis of a vehicle.
  • the battery cells 20 are connected to the carrier 11a, that is, the battery cells 20 are connected to the chassis of the vehicle.
  • the battery cell 20 is directly connected to the chassis surface of the vehicle. In this way, it is not necessary to arrange a battery box upper cover, which saves the space occupied by the battery box upper cover, improves the space utilization rate of the battery, and thereby improves the battery life. Energy Density.
  • the vertical dimension N of the carrier 11a is relatively large.
  • the carrier 11a also occupies a larger space, resulting in The reduction of the space utilization rate of the battery leads to the reduction of the energy density of the battery.
  • the supporting member 11a cannot meet the structural strength requirements of the battery. During the use of the battery, the supporting member 11a may deform or even break in the direction of gravity, and the battery cell 20 may also It will detach from the carrier 11a, and further safety accidents such as fire and explosion will occur.
  • Table 6 shows the test results for different sizes of bearings and different weights of battery cells.
  • the carrier 11a may also be called a mounting wall.
  • the top wall 204 of the battery cell 20 can be the wall with the largest surface area of the battery cell 20, so that the contact area between the carrier 11a and the battery cell 20 is relatively large, which can ensure that the carrier 11a and the battery cell The connection strength between bodies 20.
  • the bearing member 11a may also be connected to the wall of the battery cell 20 with a smaller surface area, which is not limited in this embodiment of the present application.
  • the electrode terminal 214 is arranged on the bottom wall 205 of the battery cell 20, and the bottom wall 205 and the top wall 204 are vertically separated and arranged opposite to each other; or, the electrode terminal 214 is arranged on the bottom wall of the battery cell 20.
  • the side wall, the side wall is connected to the top wall 204, and the side wall is parallel to the vertical direction.
  • the vertical direction may be parallel to the direction of gravity, and the electrode terminal 214 may face the ground along the direction of gravity.
  • the battery 100 includes a carrier 11a and a box body 10, the box 10 is located below the carrier 11a, the top wall 204 of the battery cell 20 faces the carrier 11a and is connected to the carrier 11a, and the bottom wall 205 of the battery cell 20 Towards the bottom of the box body 10 , the electrode terminals 214 also face to the bottom of the box body 10 , that is, to the ground.
  • the top wall 204 not provided with the electrode terminals 214 can be directly connected to the carrier 11a, and the battery cell 20 and the carrier 11a are connected as a whole, which enhances the overall structural strength of the battery 100.
  • the top wall 201 and the carrier 11a There is no need to leave a gap between them, which improves the space utilization rate of the battery, thereby improving the energy density of the battery.
  • the electrode terminal 214 can also be arranged on one of the two opposite walls of the battery cell 20 along the second direction y, that is, the side wall where the electrode terminal 214 is arranged is connected to the top wall 204, and The side walls on which the motor terminals 214 are disposed are parallel to the vertical direction.
  • the electrode terminals 214 of the same column of battery cells 20 arranged along the second direction are also arranged along the second direction.
  • the dimension N of the bearing member 11 a in the vertical direction is 0.2 mm ⁇ 20 mm.
  • the weight M2 of the battery cell 20 is 1kg ⁇ 10kg. In this way, the vertical size of the carrier 11 a can be flexibly selected according to the weight M2 of the battery cell 20 or a corresponding appropriate battery cell 20 can be selected according to the vertical size of the carrier 11 a.
  • the carrier 11 a may be a plate-shaped structure, for example, a flat plate.
  • the plate-like structure as long as the contact surface of the bearing member 11a and the top wall 204 of the battery cell 20 is flat, there are no specific limitations on other aspects.
  • a cavity 11t is provided inside the carrier 11a.
  • the cavity 11t can provide expansion space for the battery cell 20; on the other hand, the cavity 11t can also serve as a flow channel to accommodate fluid , to adjust the temperature of the battery cell 20 .
  • the cavity 11t is used for accommodating a heat exchange medium to adjust the temperature of the battery cell 20
  • the carrier 11a may also be called a heat management component.
  • a heat exchange element can be provided between the battery cell 20 and the carrier 11, and the heat exchange element can be a component with a channel as a heat management component, or the heat exchange element can be formed in any other manner capable of regulating The temperature of the battery cell 20 is not limited in this application.
  • a reinforcing plate 11s may be disposed in the cavity 11t, and the reinforcing plate 11s may extend along the first direction.
  • the reinforcing plate 11s can enhance the structural strength of the carrier 11a; on the other hand, the reinforcing plate 11s can form a plurality of flow channels inside the carrier 11a for accommodating the heat exchange medium, wherein the plurality of flow channels can Interconnected can also be independent of each other.
  • the heat exchange medium may be liquid or gas, and adjusting the temperature refers to heating or cooling the plurality of battery cells 20 .
  • the cavity 11t can contain a cooling medium to adjust the temperature of the multiple battery cells 20.
  • the heat exchange medium can also be called a cooling medium or a cooling fluid. More specifically, It can be called cooling liquid or cooling gas.
  • the heat exchange medium may also be used for heating, which is not limited in this embodiment of the present application.
  • the heat exchange medium may be circulated to achieve a better effect of temperature regulation.
  • the fluid may be water, a mixture of water and glycol, refrigerant or air.
  • the carrier 11 a is provided with a reinforcing portion 506 .
  • the carrier 11a may include a first surface 504 and a second surface 505, the second surface 505 is connected to the top wall 204 of the battery cell 20, the reinforcing part 506 is disposed on the first surface 504 and/or the second surface 505, and the reinforcing part 506 can enhance the structural strength of the bearing part 11a.
  • the reinforcement part 506 may be a protrusion and/or a groove formed by stamping of the bearing part 11a, which is not limited in this embodiment of the present application.
  • the surface of the carrier 11a away from the battery cell 20 is provided with reinforcing ribs 503; in the example of FIG. 33, the carrier 11a is vertically away from the battery cell 20.
  • the surface of the body 20 may be a first surface 504 , and a reinforcing rib 503 is disposed above the first surface 504 .
  • the ribs 503 can enhance the structural strength of the carrier 11a.
  • the dimension of the reinforcing rib 503 in the vertical direction is N3.
  • N+N3)/N>2 only the size of N and the weight M2 of the battery cell 20 are considered to satisfy: 0.04mm/ kg ⁇ N/M2 ⁇ 100mm/kg.
  • the reinforcing rib 503 can belong to a battery or an electric device, such as a vehicle, and the reinforcing rib 503 can be set according to the structural strength requirements of the vehicle.
  • the vertical dimension of the reinforcing rib 503 is large, no reinforcement The relationship between the dimension N3 of the rib 503 and the weight M2 of the battery cell 20 .
  • N3 of the rib 503 is small, for example, when (N+N3)/N ⁇ 2, then (N+N3) and M2 meet: 0.04mm/kg ⁇ (N +N3)/M2 ⁇ 100mm/kg.
  • the number and shape of the ribs 503 can be specifically set according to the requirements of the electrical device or the arrangement of the battery, which is not specifically limited in the embodiment of the present application
  • the reinforcing rib 503 and the bearing member 11a are integrally formed, so that the processing is convenient and the process is saved.
  • the reinforcing rib 503 can also be formed separately from the carrier 11a, and then connected or assembled by splicing, welding, bonding, machining, stamping, etc., which is not specifically limited in this embodiment of the present application.
  • the carrier 11a can be a single-layer board structure, or a multi-layer board structure. Compared with the single-layer board structure, the load bearing part 11a of the multi-layer board structure has greater rigidity and strength.
  • the carrier 11a includes a first plate 51 and a second plate 52, the second plate 52 is connected to the top wall 204 of the battery cell 20, and the first plate 51 is vertically connected to the second plate 52.
  • the plates 52 are oppositely disposed.
  • the second plate 52 may be a flat plate
  • the first plate 51 may be a non-flat plate.
  • the specific configuration of the first board 51 such as size and strength, can be adjusted according to the specific requirements of the electrical device, which is not limited in this embodiment of the present application.
  • the carrier 11a may further include a third plate, a fourth plate, etc., and the embodiment of the present application does not limit the number of plates included in the carrier 11a.
  • the dimension N of the carrier 11a may be the dimension of the second plate 52 along the vertical direction, and the dimension of the first plate 51 along the vertical direction is N4, when (N+N4)/N When >2, only consider the relationship between N and M2: 0.04mm/kg ⁇ N/M2 ⁇ 100mm/kg. When (N+N4)/N ⁇ 2, the relationship between (N+N4) and M2 is satisfied: 0.04mm/kg ⁇ (N+N4)/M2 ⁇ 100mm/kg.
  • the relationship between the vertical dimension N of the bearing member 11 a and the weight M2 of the battery cell 20 also satisfies: 0.1 mm/kg ⁇ N/M2 ⁇ 20 mm/kg. In this way, the battery will not catch fire or explode, and the safety of the battery can be better guaranteed while satisfying the energy density of the battery 100 .
  • the battery 100 further includes a reinforcing member 30, the plurality of battery cells 20 are arranged in sequence along the second direction y, the reinforcing member 30 extends along the second direction y and is connected to the plurality of battery cells.
  • the first wall 201 of each battery cell 20 in 20 is connected, and the first wall 201 is the two opposite walls of the battery cell 20 along the first direction x, that is, the two first walls 201 are arranged opposite to each other along the first direction x , the first direction x is perpendicular to the first wall 201 , and the first wall 201 may be adjacent to the top wall of the battery cell 20 and the bottom wall of the battery cell 20 .
  • the reinforcing member 30 is connected to the first wall 201 of each battery cell 20, so that the reinforcing member 30 and the battery cell 20 are connected as a whole, which can improve the structural strength of the battery. In this case, there is no need to install side plates or beams in the battery, which can maximize the space utilization rate inside the battery and increase the structural strength and energy density of the battery.
  • the reinforcing member 30 can also be called a partition.
  • the first wall 201 may be the wall with the largest surface area of the battery cell 20 , so that the connection strength between the reinforcing member 30 and the battery cell 20 can be enhanced.
  • the first wall 201 may also be a wall with a smaller surface area of the battery cell 20, which is not specifically limited in this embodiment of the present application.
  • the battery cell 20 may also include two side walls oppositely arranged along the second direction y, the side walls are adjacent to the top wall of the battery cell, the bottom wall of the battery cell, and the first wall 201, wherein The side walls of two adjacent battery cells 20 arranged in the second direction y face each other.
  • the size of the reinforcement member 30 in the first direction x is 0.1 mm ⁇ 100 mm. In this way, the strength of the reinforcing member 30 and the energy density of the battery 10 can be balanced.
  • the size of the reinforcement 30 in the first direction x is too small, the stiffness of the reinforcement 30 is poor, and the structural strength of the battery 100 cannot be effectively improved.
  • the size of the reinforcement 30 in the first direction x is too large, it will occupy the battery. Too much space inside 100 is not conducive to improving the energy density of the battery 10, so the size of the reinforcing member 30 in the first direction x is set to 0.1mm-100mm, which can not only ensure the energy density of the battery 100, but also improve the energy density of the battery 100. structural strength.
  • a cavity 30a is provided inside the reinforcing member 30, and the cavity 30a can be used to provide an expansion space for the battery cell 20, and can also be used as a flow channel to accommodate fluid (liquid or gas) to Adjusting the temperature of the battery cells can also ensure the strength of the reinforcement 30 while reducing the weight of the reinforcement 30; at this time, the reinforcement 30 can also be called a heat management component.
  • structural reinforcements can also be provided inside the cavity structure, which can not only enhance the strength of the reinforcement 30, but also form multiple flow channels.
  • adjusting the temperature of the battery cells 20 refers to heating or cooling a plurality of battery cells 20 .
  • the reinforcing member 30 may be a metal partition, in this case, an insulating layer is provided on the surface of the reinforcing member 30, and the insulating layer may be an insulating film or insulating varnish.
  • the reinforcing member 30 is a non-metal partition, that is, the reinforcing member 30 is a non-metallic insulating plate.
  • the battery 10 includes multiple rows of battery cells 20 and multiple reinforcements 30 arranged along the second direction y, wherein multiple rows of battery cells 20 and multiple reinforcements 30 are alternately arranged in the first direction x .
  • the plurality of rows of battery cells 20 and the plurality of reinforcements 30 are connected to each other to form a whole and accommodated in the box, which can further ensure the structural strength of the battery 10 as a whole, thereby improving the performance of the battery.
  • Multiple rows of battery cells 20 and multiple reinforcement members 30 are arranged alternately in the first direction, wherein, along the first direction, they can be arranged in the manner of battery cells—reinforcement members—battery cells, or in the order of reinforcement members—battery cells.
  • the battery 10 includes a plurality of battery modules 100a, and the battery module 100a includes at least one row of a plurality of battery cells 20 and at least one reinforcement 30 arranged along the second direction y, and at least A row of battery cells 20 and at least one reinforcement member 30 are arranged alternately in the first direction x.
  • the battery module 100a includes N rows of battery cells 20 and N-1 reinforcement members 30, the reinforcement members 30 are arranged between two adjacent rows of battery cells 20, and N is greater than 1. Integer, in Figure 37, N is 2. In this way, the number of reinforcing members 30 can be reduced, and the energy density of the battery 10 can be increased.
  • the number of reinforcing members 30 is one less than the number of rows of battery cells 20. As shown in FIG. 39, the number of reinforcing members 30 is equal to the number of rows of battery cells 20, As shown in FIG. 40 , along the first direction x, the number of reinforcement members 30 is one greater than the number of rows of battery cells 20 .
  • the battery module 100a may include N rows of battery cells 20 and N+1 reinforcement members 30 , the reinforcement members 30 are arranged between two adjacent rows of battery cells, and N is an integer greater than 1.
  • battery modules 100a having different arrangements of battery cells 20 and reinforcements 30 may be combined with each other to form the battery 10.
  • a plurality of battery modules 100a are arranged along the first direction, and there are gaps between adjacent battery modules 100a, so that expansion space can be provided for the battery cells 20 .
  • a fixing structure 103 is provided at the end of the reinforcing member 30 in the second direction y, and the reinforcing member 30 is fixed to the bearing member 11 a through the fixing structure 103 .
  • the fixing structure 103 may be directly connected to the carrier 11a, or may be connected to the side wall of the box body 10 and then connected to the carrier 11a.
  • each battery cell 20 is fixed to the carrier 11a by the reinforcing member 30 and the fixing structure 103, so that the fixed connection between the battery cell 20 and the carrier 11a is enhanced, the entire battery 10 is connected as a whole, and the lifting The structural strength of the battery 10 is improved.
  • the fixing structure 103 may include a fixing plate 104 .
  • the fixing plate 104 is fixedly connected to the end of the reinforcing member 30 , and is fixedly connected to the battery cell 20 located at the end of the reinforcing member 30 .
  • the fixing plate 104 can be vertically connected to the reinforcing member 30, and respectively connected with the reinforcing member 30 to two adjacent side walls of the rectangular parallelepiped battery cell 20, thereby further strengthening the stability of the battery cell. A fixed effect of 20.
  • the fixing plate 104 can be made of the same material as the reinforcing member 30, for example, metal, plastic or composite material.
  • the thickness of the fixing plate 104 may also be the same as that of the reinforcing member 30 .
  • the material or thickness of the fixing plate 104 may also be different from that of the reinforcing member 30 , for example, the fixing plate 104 may be set with a higher strength or thickness, but this is not limited in this embodiment of the present application.
  • connection between the reinforcing member 30 and the fixing plate 104 can be resistance welding, resistance riveting, SPR riveting, locking bolts or clamping; the fixing plate 104 can also be connected by resistance welding, resistance riveting, or SPR riveting. , locking bolts, snap-fit and other connection methods are fixed to the carrier 11a, but this embodiment of the present application is not limited thereto.
  • the fixing plate 104 and the battery cell 20 may be fixedly connected by bonding, for example, bonding by structural glue, but this is not limited in this embodiment of the present application.
  • the fixing plate 104 includes a first connecting portion 105 extending in a direction away from the battery cell 20 along a first direction, and the first connecting portion 105 is used for connecting the carrier 11a.
  • the first connecting portion 105 can be formed by extending outward in a direction away from the battery cell 20, through the second A connecting portion 105 is connected to the second surface 505 .
  • the first connecting portion 105 can be parallel to the second surface 505 of the carrier 11a, and the area of the first connecting portion 105 can be set according to the fixing method with the side wall of the connected box body 10 to meet the required fixing effect .
  • the first connecting portion 105 may be formed by bending the fixing plate 104 .
  • the first connecting portion 105 may be formed by bending an edge of the fixing plate 104 close to the second surface 505 in a direction away from the battery cell 20 .
  • the upper edge of the fixing plate 104 can be bent outward to form the first connecting portion 105 .
  • the first connecting portion 105 is integrated with the main body of the fixing plate 104, so that the connection performance can be enhanced.
  • the fixing plate 104 further includes a second connecting portion 107 extending away from the battery cell 20 along the first direction, and the second connecting portion 107 is used for connecting the fixing plate 104 and the reinforcing member 30 .
  • the second connecting portion 107 can be formed by extending away from the battery cell 20 , that is, outward, and the fixing plate 104 is fixedly connected to the reinforcing member 30 through the second connecting portion 107 .
  • the second connecting portion 107 can also realize the connection between the fixing plates 104 at the same time.
  • each row of battery cells 20 is provided with a fixing plate 104 , and the reinforcing member 30 and the two fixing plates 104 corresponding to the two rows of battery cells 20 are fixed together through the second connecting portion 107 .
  • the second connecting portion 107 may be parallel to the reinforcing member 30 .
  • the area of the second connecting portion 107 can be set according to the fixing method to meet the required fixing effect.
  • the reinforcing member 30 is glued to the first wall 201 .
  • the reinforcing member 30 is fixedly connected to the first wall 201 by bonding, which has a simple structure and is convenient for processing and assembly.
  • the reinforcing member 30 can also be clamped between the battery cells 20 of adjacent rows by abutting against the first wall 201 .
  • the battery cell 20 is placed upside down in the box body 10 with the end cap 212 facing the bottom wall 102 to enhance The overall rigidity of the battery reduces the probability of damage in a collision; the end cover 212 is provided with a pressure relief mechanism 213 and an electrode terminal 214, and both the pressure relief mechanism 213 and the electrode terminal 214 are set towards the bottom wall 102 to improve the safety of the battery .
  • the battery cell 20 is placed upside down in the box body 10 with the end cover 212 facing the bottom wall 102 , which means that the battery cell 20 and the box body 10 are arranged upside down in the vertical direction.
  • the battery cell 20 can be placed on the top of the battery 100 , thereby increasing the rigidity of the top of the battery 100 and increasing the safety of the battery 100 .
  • the end caps 212 of the battery cells 20 face the bottom of the battery 100 , which can increase the energy density of the battery 100 and improve the usability of the battery 100 .
  • the arrangement of the electrode terminals 214 toward the bottom wall 102 can provide a large electrical connection space for the electrode terminals 214 .
  • the pressure relief mechanism 213 is arranged toward the bottom wall 102 so that the pressure relief direction of the pressure relief mechanism 213 is directed towards the bottom of the battery 100, thereby preventing the pressure relief mechanism 213 from discharging to other external devices connected to the top of the battery 100, which can increase the safety of the battery 100 sex.
  • the electrode terminals 214 are disposed on both sides of the pressure relief mechanism 213 ; of course, the pressure relief mechanism 213 may also have other positional relationships with the electrode terminals 214 .
  • the box body 10 includes a carrier 11 a and a frame 11 b, the carrier 11 a is arranged on the top of the box 10 , and the battery cells 20 and the carrier 11a is fixedly connected.
  • the carrier 11a is arranged on the top of the box body 10, and is arranged in sequence with the frame 11b from top to bottom along the vertical direction Z.
  • the carrier 11a is a board extending in the horizontal direction to increase the rigidity of the top of the battery 100.
  • the frame 11b is The plate extending along the vertical direction Z, the frame 11b surrounds the carrier 11a, and an opening 10c is formed at the bottom of the box, so that the inside of the box 10 has a space for accommodating the battery cells 20 .
  • the battery cells 20 are fixedly connected to the carrier 11 a, which can increase the rigidity of the top of the battery 100 and reduce the possibility of the battery 100 being damaged in a collision.
  • the battery cells 20 may be directly connected to the carrier 11a by gluing, or may be fixedly connected by other methods.
  • the frame 11b can be integrally formed with the carrier 11a, or can be fixedly connected with the carrier 11a through welding, bonding, fasteners or fusion self-tapping process, which is not limited in this application.
  • the electrode terminal 214 of the battery cell 20 is arranged toward the opening 10c of the bottom wall 102, and the end surface of the battery cell 20 opposite to the electrode terminal 214 is fixed to the carrier 11a.
  • the battery 100 passes through the box body 10
  • the top of the battery is fixed to an external device, such as inside the vehicle 1000.
  • the battery cell 20 placed on the top of the battery 100 can increase the rigidity of the top of the battery 100, reduce the possibility of damage to the battery 100 in a collision, and increase the safety of the battery 100.
  • the electrode terminal 214 of the battery cell 20 faces the opening 10c, and the side of the battery cell 20 opposite to the electrode terminal 214 is fixedly connected to the top of the box body 10, so that the battery 100 can reserve less space for placing the battery cell 20 , increase the energy density of the battery 100 , and at the same time enable the battery cells 20 to be better combined with the case 10 .
  • a cooling channel is buried inside the bearing member 11a. Since the battery cell 20 is arranged on the carrier 11a, and the top of the battery cell 2 is in contact with the carrier 11a, in consideration of the performance of the battery 100, a channel is buried inside the carrier 11a, through which gas as a heat exchange medium flows. Or liquid, can regulate the temperature of the battery 100 to the battery 100 when the battery 100 is working, thereby increasing the service life and usability of the battery 100 .
  • the channel can also be arranged between the battery cell 20 and the carrier 11a as a thermal management component, or be formed as any other component that can be provided to regulate the temperature of the battery 100,
  • the embodiments of the present application are not limited here.
  • the box body 10 further includes a bottom cover 12 disposed on the opening 10c, the frames 11b are connected to each other to form a frame structure, and the bottom cover 12 is fixed to the frame 11b connect.
  • the frames 11b are connected to each other to form a frame structure, that is, the frame 11b is arranged on the circumferential direction of the carrier 11a and combined with the carrier 11a to form a box 10 for accommodating the battery cells 2 .
  • the bottom cover 12 is fixedly connected to the frame 11b, so as to cover the opening 10c, so that the box body 1 has a relatively sealed structure.
  • the bottom cover 12 includes a cover portion 12a and a mounting portion 12b, and the mounting portion 12b is disposed on the circumference of the cover portion 12a and matched with the frame 11b. That is to say, the cover part 12a covers the opening 10c formed by the frame 11b, and the installation part 12b is fixed to the frame 11b, and the bottom cover 12 is fixedly connected to the frame 11b.
  • the mounting part 12b and the frame 11b may be connected by bolts, and the mounting part 12b and the frame 11b may also be fixedly connected in other ways.
  • the cover portion 12a protrudes from the bottom portion 102 relative to the mounting portion 12b.
  • the protruding distance of the cover portion 12 a relative to the mounting portion 12 b should be selected based on the energy density of the battery 100 , and should not be too large to increase the volume of the battery 100 while reducing the energy density of the battery 100 .
  • cover part 12a can also be called a main body part
  • installation part 12b can also be called a matching part
  • the battery 100 further includes a protective assembly 40, and the protective assembly 40 is disposed between the battery cell 20 and the bottom wall 102 to support the battery cell 20, and the battery cell 20 , the protective assembly 40 and the bottom wall 102 are arranged in sequence from top to bottom along the vertical direction Z, and the protective assembly 40 can be directly or indirectly abutted against the battery cell 20 to play a role of support and load, which can increase the structural strength of the battery 100, The stress performance of the battery 100 is improved, and the possibility of damage to the battery 100 is reduced in a collision.
  • the protective component 40 can also be called a carrying component.
  • the battery cell 20 is fixedly connected to the carrier 11 a
  • the protective assembly 40 is fixedly connected to the battery cell 20 , which can fix the structure of the battery 100 in multiple ways and improve the stability of the battery 100 .
  • the battery cell 20 is placed upside down in the case 10 with the end cover 212 facing the bottom wall 102 , and the protective component 40 is directly or indirectly abutted against the end of the battery cell 20 at this time.
  • Abutment means that two parts are in direct contact with each other or are abutted by other parts, but are not fixed to each other.
  • the end cover 212 is provided with a pressure relief mechanism 213 and an electrode terminal 214, and the pressure relief mechanism 213 and the electrode terminal 214 are both disposed toward the bottom wall 102, and the protective assembly 40 supports the battery cell 20 to protect the pressure relief mechanism 213 and the electrode terminal 214.
  • the box body 10 includes a main body 11 and a bottom cover 12 disposed on the bottom of the main body 11.
  • the bottom cover 12 is sealed with the main body 11 and jointly forms a closed accommodating cavity 10a.
  • the wall of the cover 12 facing the battery cell 20 constitutes the bottom wall 102 of the accommodating chamber 10a, and the protective assembly 40 is disposed between the battery cell 20 and the bottom cover.
  • the battery cell 20 is placed upside down in the case 10 with the end cover 212 facing the bottom wall 102 , the end cover 212 is provided with a pressure relief mechanism 213 and an electrode terminal 214 ,
  • the wall of the bottom cover 12 facing the battery cell 20 constitutes the bottom wall 102 of the accommodating chamber, and the protective assembly 40 is arranged between the battery cell 20 and the bottom cover 12, that is, between the pressure relief mechanism 213 and the electrode terminal 214 and the bottom cover. Between 12, it is configured to support the battery cell 20 and the bottom cover 12, so as to provide protection for the pressure relief mechanism 213 and the electrode terminal 214, and protect them during a collision.
  • the battery 100 further includes a current confluence component 24, which is used to electrically connect the electrode terminals of at least two battery cells 20, and the protective component 40 is disposed on the bottom wall 102 and the current confluence component. 24 , and the protective component 40 is used to insulate the battery cell 20 from the bottom wall 102 .
  • the protective assembly 40 is disposed between the bottom wall 102 and the confluence member 24 to support the battery cell 20 , that is, the protective assembly 40 can be part of the upper and lower sides of the battery cell 20 that are not covered by the confluence member 24 . and the bottom wall 102 of the accommodating cavity 10 a to provide support in the vertical direction Z for the battery cell 20 .
  • the protective assembly 40 can make a certain gap exist between the battery cells 20 and the bottom wall 102 of the receiving chamber 10a without contacting each other, so that the confluence components connected to the battery cells 20 are also connected to the bottom wall 102 of the receiving chamber 10a.
  • the protective assembly 40 may have a flat surface extending perpendicular to the vertical direction Z, thereby providing another layer of protective layer on the bottom of the box body 10, further reducing the impact on the bottom wall 102 of the accommodating chamber 10a when it is hit. The influence of the battery cell 20 and the bus member 24 .
  • the battery cell 20 is placed upside down in the box body 10 with the end cover 212 facing the bottom wall 102 , the end cover 212 is provided with an electrode terminal 214 , and the electrode terminal 214 is electrically connected to the corresponding current bus member 24 .
  • the flat bottom surface of the battery cell 20 facing the top side where the electrode terminal 214 is provided is connected to the top of the box body 10, so that the electrode terminal 214 is located on the side away from the top of the box body 10, thereby effectively Improving the structural strength of the top of the battery 100, and connecting the bottom of the battery cell 20 to the top of the box 10 can improve the space utilization rate inside the box 10, thereby increasing the energy density of the battery as a whole.
  • the confluence part 24 in the embodiment of the present application may be a CCS (Cells Contact System) assembly, that is, an integrated wiring harness composed of a flexible circuit board, a plastic structural member, a bus bar, etc., and is used to form a plurality of battery cells 20.
  • the battery cells 20 can be charged and discharged through the bus member according to the required electrical connection relationship.
  • the confluence part in the embodiment of the present application may be welded to the electrode terminal of the battery cell 20, so that the connection between the confluence part and the battery cell 20 is fixed.
  • the confluence part 24 may include a plurality of components, and each component is connected to the battery module composed of the battery cells 20, and then these components are electrically connected to form the required series/parallel/mixed
  • the flow-combining component 24 can also be provided as a whole, and connected to each battery cell 20 through the same component.
  • the box body 10 includes a carrier 11a, a frame 11b and a bottom cover 12, and the distance of the frame 11b extending in the vertical direction Z is greater than the distance extending in the vertical direction Z of the battery cells 20, the current confluence component, and the protective assembly 40. At this time, the bottom cover 12 may be closed to the lower end of the frame 11b.
  • the protection assembly 40 includes a protection strip 41 , and the protection strip 41 abuts against the battery cell 20 .
  • the protective component 40 can also be a bearing component, and the protective strip 41 can also be called a protective piece or a bearing strip, for example, the protective component 40 includes a protective piece, and the bearing assembly includes a bearing strip.
  • the protection assembly 40 may include a plurality of protection strips 41, and these protection strips 41 are in contact with the plurality of battery cells 20 respectively, so as to keep a certain distance between the battery cells 20 and the bottom wall 102, and reduce the thickness of the bottom wall. 102 is affected by the impact on the battery.
  • the protection strip 41 may abut against the surface of the battery cell 20 provided with the electrode terminals 214, specifically, the protection strip 41 may abut against the surface of the battery cell 20 provided with the electrode terminals except where the electrode terminals are located. Part of the area outside the area that can receive force, such as the protective strip 41 abuts against the "shoulder" on both sides of the electrode terminal in the second direction Y on the surface. On this basis, the protection strip 41 needs to be arranged at a corresponding position with the battery cells 20.
  • the protection strip 41 is also A plurality of protection strips 41 are arranged at intervals along the second direction, and each protection strip 41 extends along the first direction, so that the plurality of protection strips 41 form a strip structure arranged in parallel at intervals.
  • other protective strips 41 can be arranged at the position where adjacent battery cells 20 meet, that is, each protective strip 41 can be adjacent to the second direction Y at the same time. The two battery cells 20 are in contact with each other.
  • the first direction X is perpendicular to the second direction Y, and the first direction and the second direction are respectively perpendicular to the vertical direction, so as to form a relatively regular and easy-to-process structure.
  • the orthographic projection of the electrode terminal 30 on the bottom wall 102 is located between the orthographic projections of the adjacent protective strips 41 on the bottom wall 102 , and the protective strips 41 and The battery cell 20 is in contact with the shoulder of the battery cell 20 at this time, so that the connection between the electrode terminal and the bus component 24 is not hindered by the protective assembly 40, and the battery cell 20 is protected by the protective assembly 40.
  • the electrode terminals are dropped between the adjacent protective strips 41 so that the force generated by the impact can be distributed to the plurality of battery cells 20 to prevent the electrode terminals from being damaged by the impact.
  • the protective strip 41 is fixedly connected to the battery cell 20 and/or the box body 10, that is, the protective strip 41 is fixedly connected to at least one of the battery cell 20 and the box body 10, so as to ensure that the protective strip 41 is set reliably .
  • the protective strip 41 when the protective strip 41 is fixedly connected to the box body 10, the protective strip 41 is fixedly connected to the bottom wall 102; the box body 10 includes a bottom cover 12, and the wall of the bottom cover 12 facing the battery cell 20 constitutes the bottom wall 102 of the accommodation cavity 10a , then the protective strip 41 is fixedly connected with the bottom cover 12 .
  • the protective strip 41 is bonded to the battery cell 20 and/or the case body 10 , that is, the protective strip 41 is bonded to at least one of the battery cell 20 and the case body 10 to facilitate assembly.
  • the protective strip 41 when the protective strip 41 is bonded to the box body 10, the protective strip 41 is bonded to the bottom wall 102; the box body 10 includes a bottom cover 12, and the wall of the bottom cover 12 facing the battery cell 20 constitutes the bottom wall 102 of the accommodating chamber 10a , then the protective strip 41 is bonded to the bottom cover 12 .
  • the plurality of protective strips 41 include an edge protective strip 411, a first protective strip 412, and a second protective strip 413.
  • the edge protective strips 411 are arranged on the battery cells arranged in an array.
  • the first protective strips 412 and the second protective strips 413 are alternately distributed between the two edge protective strips 411.
  • the protective strip 41 in the embodiment of the present application may include three kinds of protective pieces respectively arranged in different positions, wherein the edge protective strips 411 are arranged at the edge positions of the battery cells 200, and the second protective strips are alternately arranged between the edge protective strips 411.
  • the first protective strip 412 and the second protective strip 413 may have different sizes, so as to match a variety of different connectors in the busbar and provide required space for the connection between adjacent battery cells 200 .
  • the protective strip 41 in the embodiment of the present application may include a plurality of different sizes, and each protective strip 41 may be adjusted accordingly according to the length of the battery cell 200 and the position of the electrode terminal 214 and the pressure relief mechanism thereon.
  • each protective strip 41 abuts against a plurality of battery cells 20
  • each protective strip 41 can be abutted between two adjacent battery cells 20, at this time the first protective strip 412 and
  • the distance between the second protective strips 413 can be similar to the length of the battery cell 20 itself, and the alternately arranged first protective strips 412 and second protective strips 413 can cooperate with the arrangement of the busbar 24 to form a safe and reliable electrical connection circuit.
  • the extension length of the first protection strip 412 is greater than the extension length of the second protection strip 413 .
  • the first protective strip 412 and the second protective strip 413 in the embodiment of the present application can have different lengths in the direction of their own extension, and the gap between adjacent second protective strips 413 can be set
  • a hard connector such as a bus bar that forms an electrical connection between the battery cells 20 is electrically connected to two adjacent battery cells 20 in the second direction y through the connector, that is, by adjusting the position of the second protective bar 413
  • the length and the distance between the adjacent second protection strips 413 in the second direction y are used to avoid the hard connecting parts in the flow-combining component 24 .
  • the extension length of the first protective strip 412 along the first direction X can be the same as the length of the inner cavity of the box body 10 in this direction, that is, integral, Alternatively, the first protective strip 412 may be provided with a break in the first direction X, so that a corresponding connecting piece is provided at the break. Arranging the connecting piece in the flow-combining component 24 at the opening of the protection strip 41 can also keep a certain distance between the connecting piece and the bottom wall 102 to form impact protection and maintain insulation.
  • the width of the first protective strip 412 and the second protective strip 413 is greater than the width of the edge protective strip 411; since the edge protective strip 411 is arranged on the edge of the battery cell 20 array, The edge protection strip 411 does not need to support two adjacent rows of battery cells 20 at the same time as the first protection strip 412 or the second protection strip 413 in the second direction Y, but only needs to support one row of battery cells 20, the edge protection strip 411
  • the width of the first protective strip 412 and the second protective strip 413 can be smaller, which can play a good supporting effect.
  • the width of the first protective strip 412 is greater than that of the second protective strip 413
  • the width of the second protective strip 413 is greater than that of the edge protective strip 411
  • the protective strip 41 in the embodiment of the present application may include an edge protective strip 411 arranged on the edge and a first protective strip 412 and a second protective strip 413 alternately arranged between the edge protective strips 411, wherein the edge protective strip 411 is only connected to one column
  • the battery cells 20 are in contact with each other, so their width can be smaller than the first protective strip 412 and the second protective strip 413, and the first protective strip 412 and the second protective strip 413 can be arranged on two adjacent rows of battery cells 20 , and abut against a plurality of battery cells 20 at the same time. Making each first protective strip 412 abut against two adjacent battery cells 20 at the same time can reduce the number of required protective strips 41 , thereby improving production efficiency.
  • the width and position of each protective bar 41 in the protective component 40 can be designed according to the position and size of the partial area of the battery cell 20 overlapping with the protective component 40 .
  • the width of the protective strip 41 can be selected according to the pressure that the battery cell 20 can bear and the expected impact, and then the location of the protective strip 41 can be selected according to the positions of the electrode terminals 214 and the pressure relief mechanism.
  • the extension length of the protection assembly 40 in the vertical direction Z is greater than 1.5mm.
  • the protective assembly 40 in the embodiment of the present application needs to extend to a certain size in the vertical direction Z, that is, each protective strip 41 needs to have a certain thickness, and the protective assembly 40 is used to provide the battery cell 20 with impact protection from the lower side , so the relationship between the thickness of the protective component 40 itself and the impact energy has a great influence on whether the battery will cause fire and explosion and other safety issues.
  • the protective component 40 needs to have a certain basic thickness to provide corresponding For protection strength, for example, the overall thickness of the protection assembly 40 in the embodiment of the present application may be greater than 1.5 mm.
  • the pressure relief mechanism 213 of the battery cell 20 is also disposed toward the bottom wall of the accommodating cavity; Bar 41, the battery cell 20 is provided with a plurality, the pressure relief mechanism 213 and the electrode terminal 214 of each battery cell 20 are located between two adjacent protection bars 41, for example, the protection bar 41 can be arranged on the adjacent battery cell 20 to avoid contact with the electrode terminals 214 and so on, and play a role in supporting the battery cell 20 .
  • the length direction of the case 10 is taken as one of the arrangement directions of the plurality of battery cells 20 , that is, the second direction, that is, the horizontal direction.
  • the length direction Y and the vertical direction Z are perpendicular to each other.
  • the angle between the length direction Y and the vertical direction Z is between 85° and 90°, the length direction Y and the vertical direction Z can be considered to be perpendicular to each other.
  • the length direction Y may also be other directions, and the length direction Y may not be perpendicular to the height direction Z, which will not be repeated in this application.
  • a plurality of protection strips 41 are distributed along the length direction Y at intervals, that is, the protection components 40 are arranged along the length direction Y between the plurality of battery cells 20 and the bottom cover 12 .
  • the protective strip 41 can be formed in a strip shape, protruding from the bottom cover 12 in the vertical direction Z and fixed to the battery cell 20, so that the pressure relief mechanism 213 and the electrode terminal 214 of the battery 100 are located on two adjacent sides. between the two protective strips 41, so as to protect the pressure relief mechanism 213 and the electrode terminal 214.
  • a plurality of protective strips 41 include edge protective strips 411, first protective strips 412, and second protective strips 413.
  • the edge protective strips 411 are arranged in arrays.
  • the first protection strips 412 and the second protection strips 413 are alternately distributed between the two edge protection strips 411 .
  • the edge protection strip 411 is placed on the sides of the plurality of battery cells 20 arranged in an array, that is, on the edge of the outermost battery cell 20 in the array, so that when the battery cells 20 are close to the box body 10 The position supports both the battery cells 20 .
  • the first protective strips 412 and the second protective strips 413 are alternately distributed between the two edge protective strips 411, which can make the protective strips 41 more adaptable to the array distribution of the battery cells 20, thereby better supporting the battery cells 20 effect.
  • the width direction of the box body 10 is taken as the first direction X, that is, another horizontal direction.
  • the length direction Y, the vertical direction Z and the width direction X are perpendicular to each other.
  • the angle between the length direction Y, the vertical direction Z and the width direction X is between 85° and 90°, the The three are considered perpendicular to each other.
  • the width direction X may also be other directions, and the width direction X may not be perpendicular to the length direction Y and the vertical direction Z, which will not be repeated in this embodiment of the present application.
  • multiple battery cells 20 are electrically connected through a bus component 24 .
  • the bus member 24 is connected between the electrode terminals 214 of adjacent battery cells 20 to connect a plurality of battery cells 20 in series, in parallel or in parallel. Since, in some embodiments of the present application, the busbar 24 bridges between the electrode terminals 214 of adjacent battery cells 20 in the length direction Y, at least a part of the protective strip 41 includes a gap to avoid the busbar 24;
  • the notch can be set at one end corresponding to the protective strip 41 , and the notch can also have other setting positions, which depends on the arrangement of the confluence components 24 and is not specifically limited. Therefore, in the width direction X, the extension length of the first protection strip 412 is greater than the extension length of the second protection strip 413 , so that the second protection strip 413 avoids the flow-combining component 24 .
  • the lengths of the first protective strip 412 and the second protective strip 413 in the width direction X are not equal, so that the protective member can avoid the confluence part 24, so that the protective assembly 40 is better adapted to the structure of the battery 100, which is convenient for battery cells.
  • the bodies 20 are connected in series, parallel and mixed with each other.
  • the dimensions of the first protective strip 412 and the second protective strip 413 may be changed according to specific conditions.
  • the extended length of the protective strip 41 may only indicate the sum of the lengths of the protective strip 41 in the width direction X, so that the sum of the lengths of the second protective strip 413 is smaller than the first protective strip 412, that is, the second protective strip 413
  • the protective strip 413 can avoid the confluence part 24 at any position, which can be at one end of the second protective strip 413 or in the middle of the second protective strip 413 , depending on the arrangement of the confluence part 24 .
  • the protective assembly 40 further includes a main board 42, the protective bar 41 is connected to the main board 42, the main board 42 is located between the protective bar 41 and the bottom wall 102, and the protective bar 41 is arranged on the main board 42 toward The surface of the box body 10 top.
  • main board 42 can also be called a connection board.
  • the multiple protective strips 41 there are multiple protective strips 41 , and the multiple protective strips 41 are all disposed on the surface of the main board 42 facing the top of the box body 10 , and the main board 42 is disposed close to the bottom wall 102 .
  • the relative position of the plurality of protective strips 41 can be stabilized by the main board 42 to avoid misalignment after impact.
  • the main board 42 can extend in the same direction as the bottom wall 102 and abut against the bottom wall 102 , and can also be further limited by the grooves provided on the bottom wall 102 .
  • the area between them and the extended coverage is relatively large, thereby improving the insulation performance between the confluence member 24 and the battery cells 20 and the bottom wall of the box body 10 .
  • the thickness of the main board 42 may be greater than 0.5mm.
  • the main board 42 is fixedly connected to the bottom wall 102, which facilitates the reliable setting of the main board 42 and increases the structural firmness of the battery 100; for example, the main board 42 and the bottom wall 102 are bonded and fixed for easy assembly.
  • the main board 42 may also abut against the bottom wall 102 , which is not limited in this embodiment of the present application.
  • the main board 42 and the protective strip 41 are integrally formed or detachably connected, so as to facilitate the processing of the main board 42 and the protective strip 41 .
  • the protection strip 41 is integrally formed with the main board 42 , the manufacture of the protection assembly 40 can be facilitated.
  • the protective strip 41 is detachably connected to the main board 42, the position of the protective strip 41 can be easily adjusted according to the arrangement of the battery cells 20, so that the protective assembly 40 has a wider range of usage scenarios.
  • the protective component 40 is fixed to the battery cell 20 by bonding.
  • the protective assembly 40 is in contact with the shoulder of the battery cell 20. At this time, the two can be bonded and fixed to further improve the overall strength and the stability of the connection, and prevent the protective assembly 40 from colliding with the battery cell due to impact. Misalignment between bodies 20 occurs.
  • each protective strip may be bonded to the corresponding position on the battery cell 20, or at least part of the protective strip may be bonded to the battery cell 20, which may include an edge Protective strip 411.
  • the end cap 212 includes a functional area 206 and a shoulder 207, the functional area 206 is provided with electrode terminals, the shoulder 207 is located on both sides of the functional area 206 along the second direction y, and the battery cells 20 abuts against the protective strip 41 through the shoulder 207, and the second direction y is perpendicular to the vertical direction.
  • the end cover 212 may also be called a top cover plate.
  • the functional area 206 indicates that the end cover 21 is provided with an area that enables the battery cell 20 to realize its own function, or an area where the battery cell 20 can interact with the outside world, such as an electrode that enables the battery cell 20 to be electrically connected to the outside world terminals. Since the functional area 206 is often provided with electrode terminals or other functional parts, the functional area 206 should not be subjected to force during the use of the battery 100 . What the shoulder 207 indicates is the area of the end cap 21 except the functional area 206 that can bear force.
  • the functional area 206 is disposed between the shoulders 207 , so that the shoulders 207 can achieve a certain protective effect on the functional area 206 .
  • Making the battery cell 20 abut against the protective strip 41 through the shoulder 207 can make the battery 100 have a more compact structure, prevent the functional area 206 from being damaged due to force, and increase the life of the battery cell 20 .
  • the protective strip 41 is fixedly connected with the shoulder 207 .
  • the electrode terminals are disposed between two adjacent protective strips 42 , and the electrode terminals 214 are spaced apart from the bottom wall 102 (eg, the bottom cover 12 ).
  • the electrode terminal 214 of the functional area 206 is also located between two adjacent protective strips 42 .
  • the electrode terminal 214 is spaced apart from the bottom wall 102, that is, the electrode terminal 214 is not in contact with the bottom wall 102.
  • the electrode terminal 214 can be regarded as being suspended between the two protective strips 42, so that the battery cell can be drawn out through the electrode terminal 214.
  • the electric energy of the body 20 increases the usability of the battery cell 20 .
  • the pressure relief mechanism and the electrode terminals of the battery cell 20 are arranged on the same side of the battery cell 20, and the pressure relief mechanism 213 is also arranged toward the bottom wall 102, and the functional area 206 is provided with a pressure relief mechanism 213 and an electrode terminal 214 , in the functional area 206, the electrode terminals 214 can be arranged on both sides of the pressure relief mechanism 213, so as to reduce the impact of the pressure relief mechanism 213 on the electrode terminals 214 during pressure relief.
  • the thickness of the protective strip 41 is greater than the extension height of the part of the electrode terminal 214 exposed to the battery cell 20, which can make the electrode
  • the terminals 214 are suspended between adjacent protective strips 41 to prevent contact with other components from affecting functions.
  • the shoulders 207 of two adjacent battery cells 20 overlap on the same protective strip 41 .
  • one battery cell 20 may be provided, or a plurality of battery cells 20 may be provided.
  • the protective strips 41 are arranged at intervals along the main board 42 along the first direction x, the shoulders 207 are located on both sides of the functional area 206 in the first direction x, so that the shoulders 207 can be located on the adjacent battery
  • the joints of the battery cells 20 allow the shoulders 207 of two adjacent battery cells 20 to be overlapped on the same protective strip 41 .
  • the number of protective strips 41 can be reduced as much as possible, which facilitates the manufacture of the protective assembly 40 .
  • the width D11 of the protective strip 41 (for example, the width D1 of the edge protective strip 4111 in this application, the width of the first protective strip 412
  • the width D2, the width D3) of the second protective strip 413 and the extended width D4 of the shoulder 207 satisfy: 0.5D4 ⁇ D11 ⁇ 2D4.
  • the width D11 of the protective strip 41 is greater than or equal to 0.5 times the extended width D4 of the shoulder 207 , sufficient supporting force can be provided for the battery cell 20 .
  • the width of the protective strip 41 in the second direction Y is less than or equal to twice the extension width of the shoulder 207, so that the protective strip 41 can only be connected to the adjacent battery cells 20.
  • the shoulders 207 of the two battery cells 20 are in contact, and the contact with the functional area 206 is avoided to affect the function of the battery cells 20 .
  • the relationship between the width D11 of the protective strip 41 and the extended width D4 of the shoulder 207 can satisfy D4 ⁇ D11 ⁇ 2D4. Since the protective strip 41 may be offset between adjacent battery cells 20, the width of the protective strip 41 in the longitudinal direction Y is greater than or equal to the extension width of the shoulder 207, so that the protective strip 41 can simultaneously carry two adjacent battery cells. Each battery cell 20 does not occur due to bias and can only carry one side, resulting in poor structural stability of the battery 100 due to uneven force.
  • the protection strip 41 abuts against the electrode terminal 214 , or the protection strip 41 is spaced apart from the electrode terminal 214 . Thus, it is convenient to realize the flexible arrangement of the protective strip 41 .
  • the orthographic projections of the electrode terminals 214 on the bottom wall 102 are located between the orthographic projections of adjacent protective strips 41 on the bottom wall 102 .
  • the protection assembly 40 in the embodiment of the present application includes a plurality of protection strips 40, and these protection strips are in contact with the battery cells 20, wherein the orthographic projection of the electrode terminals 30 in the battery cells 20 on the bottom wall can be located adjacent to At this time, the protective strip 41 is in contact with the shoulder of the battery cell 20, so that the connection between the electrode terminal 214 and the bus component 24 is not hindered by the protective assembly 40, and the battery cell 20 is protected by the protective assembly 40. After being erected, the electrode terminal 30 is dropped between the adjacent protective strips 41 so that the force generated by the impact can be distributed to the plurality of battery cells 20 to prevent the electrode terminal 30 from being damaged by the impact.
  • the electrode terminals 214 of two adjacent battery cells 20 are electrically connected through the bus member 24 , and in the second direction y, the two adjacent protective strips 41 The extension length of one of them is smaller than the extension length of the other, so as to form a avoidance gap 43 , and the avoidance gap 43 is used to avoid the flow-combining component 24 .
  • the bus member 24 is a member that electrically connects the plurality of battery cells 20 .
  • the bus member 24 is connected between the electrode terminals 214 of adjacent battery cells 20 to connect a plurality of battery cells 20 in series, in parallel or in parallel. Since the busbar 24 bridges between the electrode terminals 214 of the adjacent battery cells 20 in the second direction Y, at least a part of the protective strip 41 extending along the first direction X needs to avoid it to form the avoidance gap 43 .
  • the extension length of one of the two adjacent protection strips 41 is smaller than the extension length of the other, that is, the protection strips 41 with longer extension lengths are alternately distributed with the protection strips 41 with shorter extension lengths.
  • the length of the protective strip 41 can also be adjusted according to the arrangement of the flow-combining components 24.
  • the extension length of the protective strip 41 in the first direction X indicates only the sum of the lengths of the protective strip 41 in the first direction X, that is to say, the avoidance gap 43 can be arranged at one end of the protective strip 41, or It may be arranged in the middle of the protective strip 41, depending on the arrangement of the flow-combining components 24, which is not particularly limited in this embodiment of the present application.
  • Providing the avoidance notch 43 on the protective bar 41 can make the protective assembly 40 better adapt to the structure of the battery 100 , and facilitate the battery cells 20 to be connected in series, parallel and mixed.
  • the battery cell 20 further includes a pressure relief mechanism 213, which is arranged on the same side as the electrode terminal 214, and the pressure relief mechanism 213 is also arranged under the battery cell 20.
  • the side can be protected together with the electrode terminal 214 to avoid collision with the box body 10 and the like, and improve the safety and reliability of the battery 100 as a whole.
  • the pressure relief mechanism 213 is arranged at intervals from the bottom wall 102, and in the second direction y, the electrode terminals 214 are arranged on both sides of the pressure relief mechanism 213, which can reduce the pressure generated by the pressure relief mechanism 213 on the electrode terminals 214 during pressure relief. Influence.
  • the pressure relief mechanism 213 is spaced apart from the bottom wall 102, that is, the pressure relief mechanism 213 is not in contact with the bottom wall 102, thereby providing a larger pressure relief space for the pressure relief mechanism 213 and reducing the risk caused by the discharge of emissions. Improve the safety of the battery 100 .
  • the orthographic projection of the pressure relief mechanism 213 on the bottom wall 102 is located between the orthographic projections of adjacent protective strips 41 on the bottom wall 102 .
  • the pressure relief mechanism 213 can be arranged to be located between adjacent protective strips 41 and the area where the battery cell 20 abuts against each other, that is, the pressure relief mechanism 213 is arranged near the bottom.
  • One side of the wall 102 does not come into contact with the protective assembly 40, so that the impact force can be dispersed on the shoulder of the battery cell 20 when it is impacted by the outside world, so as to prevent the pressure relief mechanism 213 from being damaged by the impact, thereby improving the safety of the battery 100. safety.
  • the width D1 of the edge protection strip 411, the width D2 of the first protection strip 412, the width D3 of the second protection strip 413, and the width D4 of the shoulder 207 satisfy : 0.2D4 ⁇ D1 ⁇ D4, 0.5D4 ⁇ D2 ⁇ 2D4, 0.5D4 ⁇ D3 ⁇ 2D4.
  • the edge protection strip 411 Since the edge protection strip 411 is arranged on the edge of the battery cell 20 array, the edge protection strip 411 only contacts with the shoulder 207 of one side of the edge battery cell 20 in the length direction Y, so that the width D1 of the edge protection strip 411 is less than or equal to the shoulder.
  • the width D4 of the shoulder 207 can prevent the edge protection strip 411 from contacting the functional area 206 and affect the function of the battery cell 20, so that the width D1 of the edge protection strip 411 is greater than or equal to 0.2 times the width D4 of the shoulder 207, which can make the edge protection
  • the bars 411 provide sufficient support for the battery cells 20 .
  • the width D2 of the first protective strip 412 is greater than or equal to 0.5 times the extension width D4 of the shoulder 207, which can provide sufficient protection for the battery cells 20.
  • the width D2 of the first protective strip 412 is greater than or equal to the extension width D4 of the shoulder 207, the first protective strip 412 can simultaneously carry two adjacent battery cells 2 without bias However, only one side can be carried, which leads to the problem of poor structural stability of the battery 100 due to uneven force.
  • the width D2 of the first protective strip 412 is less than or equal to twice the width D4 of the shoulder 207, so that when the first protective strip 412 carries two adjacent battery cells 20 at the same time, it is only connected to the two adjacent battery cells.
  • the shoulder 207 of the battery cell 20 is in contact with the functional area 206 to avoid affecting the function of the battery cell 20 .
  • the width D3 of the second protective strip 413 may be greater than or equal to 0.5 times the extended width D4 of the shoulder 207 and less than or equal to twice the width D4 of the shoulder 207 .
  • the protective assembly 40 further includes a main board 42, the main board 42 is arranged between the protective strip 41 and the bottom wall 102, so as to absorb and disperse external impact forces in the horizontal direction, and the protective strip 41 Protruding from the main board 42 in the vertical direction, the protective strip 41 can form a bump.
  • the box body 10 includes a bottom cover 12 , the wall of the bottom cover 12 facing the battery cells 20 is formed as the bottom wall 102 , and the main board 42 is disposed between the protective bar 41 and the bottom cover 12 .
  • a plurality of protective strips 41 in the protective assembly 40 can be combined into a whole, and the main board 42 extending along the length direction Y can also be used to disperse the force of the protective assembly 40 to increase the battery 100. structural strength.
  • the protective component 40 can also be called a bearing component, and the protective bar 41 can also be called a supporting bar, and the supporting component includes a main board and a supporting bar.
  • the protection component 40 may be an insulator.
  • the insulator means that the protective component 40 may be made of insulating material as a whole, or may be an object whose surface is covered with an insulating material (such as an insulating coating) to present insulation as a whole.
  • the core material can be metal material, insulating material or composite material, etc., and the outer surface of the core material is covered with insulating material.
  • the protective strip 41 and the main board 42 should have a certain hardness and elasticity, so as to achieve a supporting effect on the battery cell 20 and produce a certain amount of deformation when impacted, so as to protect the battery cell 20. effect.
  • the protection strip 41 and the main board 42 can be integrally formed to facilitate the manufacture of the protection assembly 40 .
  • the protective strip 41 and the main board 42 can also be detachably connected to each other, so as to adjust the position of the protective assembly 40 according to the arrangement of the battery cells 20 , so that the protective assembly 40 has wider use scenarios.
  • the main board 42 is fixedly connected to the bottom cover 12 to increase the structural firmness of the battery 100 .
  • the main board 42 may also abut against the bottom wall 102 , for example, the main board 42 abuts against the bottom cover 12 , which is not limited in this embodiment of the present application.
  • the first distance H1 there is a first distance H1 between the end cap 212 of the battery cell 2 and the bottom wall 102 , and the first distance H1 satisfies 2mm ⁇ H1 ⁇ 30mm.
  • the wall of the bottom cover 12 facing the battery cell 20 is formed as the bottom wall 102 , the distance between the end cover 212 of the battery cell 20 and the bottom cover 12 is also the first distance H1 .
  • the first distance H1 indicates that in the vertical direction Z, the battery cell 20 has an electrode terminal and a pressure relief The distance between one side of the mechanism and the cover 12a.
  • the first distance H1 satisfies 2mm ⁇ H1 ⁇ 30mm.
  • the first distance H1 satisfies 5mm ⁇ H1 ⁇ 20mm.
  • the battery 100 can be guaranteed to have a suitable volume, so that the battery 100 has good discharge performance .
  • the ratio of the first distance H1 to the weight M2 of a single battery cell 20 satisfies 0.2mm/Kg ⁇ H1/M2 ⁇ 50mm/Kg.
  • the ratio H1/M2 of the first distance H1 to the weight M2 of a single battery cell 20 can indicate the energy density and structural strength of the battery 100 .
  • the ratio of the first distance H1 to the weight M2 of a single battery cell 20 is too large, the energy density of the battery 100 will be too low; when the ratio of the first distance H1 to the weight M2 of a single battery cell 20 is too small, the structure of the battery 100 will be The strength is insufficient, and a safety accident occurs in a collision.
  • H1/M2 satisfies 0.2mm/Kg ⁇ H1/M2 ⁇ 50mm/Kg, preferably, H1/M2 satisfies 0.5mm/Kg ⁇ H1/M2 ⁇ 20mm/Kg, within this value range, the battery 100 has Good energy density and suitable structural strength.
  • the crash test device A includes an impact head A1 , a launching device A2 and a frame A3 .
  • the battery 100 is placed on the frame A3, so that the impact head A1 is driven by the launching device A2, and impacts on the battery 100 at a certain speed.
  • the test conditions can be selected as follows: the collision direction is the vertical direction Z, the collision location is the weak point of the battery 100 , and the collision energy is 90J.
  • the weak point of the battery 100 indicates the position where the battery 100 is easily damaged, which is usually within the radius of 240 mm from the geometric center of the battery 100, and the weak point of the battery 100 is collided, which can simulate the position where the structural strength of the battery 100 is weak
  • the impact energy is 90J, which can be equivalent to the impact head A1 impacting the battery 100 at a speed of 4.2m/s.
  • impact energy can also be used to impact the battery 100, for example, 120J (impact speed 4.9m/s) s) or 150J (impact speed 5.5m/s).
  • the battery 100 may be subjected to multiple collisions with one collision energy, or multiple collisions may be performed on the battery 100 with multiple collision energies.
  • the battery 100 After the battery 100 is impacted by the impact test device A, it is observed at ambient temperature for 2 hours to detect whether the battery 100 is ignited or exploded.
  • the battery 100 may also be tested for the enclosure protection level, which is not limited in this embodiment of the present application.
  • Table 7 shows the test results of the crash test on the battery 100 by the above method when the first distance H1 , the weight M2 of a single battery cell 20 and the value of H1/M2 are respectively different.
  • the extension height of the protective strip 41 is the second distance N6, and the second distance N6 satisfies 0.5mm ⁇ N6 ⁇ 30mm.
  • the protection strip 41 has a certain size in the height direction Z, which can protrude from the main board 42 to support and carry the battery unit 20 .
  • Setting the second distance N6 can keep a certain distance between the end cap 212 of the battery cell 20 and the bottom wall 102 , so as to keep the energy density of the battery 100 moderate.
  • the ratio N6/M2 of the second distance N6 to the weight M2 of a single battery cell 20 can indicate the energy density and structural strength of the battery 100.
  • the ratio of the second distance N6 to the weight M2 of a single battery cell 20 is too large, the battery will If the energy density of 100 is too low, when the ratio of the second distance N6 to the weight M2 of a single battery cell 20 is too small, the structural strength of the battery 100 will be insufficient, and a safety accident will occur in a collision.
  • the ratio N6/M2 of the second distance N6 to the weight M2 of a single battery cell 20 satisfies 0.05mm/Kg ⁇ N6/M2 ⁇ 50mm/Kg, within this value range, the battery 100 has a good energy density , and has suitable structural strength.
  • a structural strength test can be performed on the battery 100 .
  • the structural strength of the battery 100 may be judged through multiple tests such as a shear strength test and a compressive strength test.
  • the battery 100 can be fixed between the clamps of the shear tester, and then the detection head of the shear tester is used to drive the battery 100 along the length direction Y or the width direction at a speed of 5 mm/min. Move in the direction X, and record the pulling force F exerted by the detection head when the box 1 is damaged. Taking the projected area of the battery 100 in the height direction Z as the area A, the value of F/A is the shear strength that the battery 100 can withstand.
  • an extrusion head can be used to apply pressure to the battery 100 in the height direction Z and the length direction Y or width direction X, and push toward the battery 100 at a speed of 2 m/s.
  • it reaches 50KN or the deformation of the battery 100 reaches 30%, stop, keep it for 10 minutes, and observe the battery 100 at ambient temperature for 2 hours after the compressive strength test.
  • the structural strength of the battery 100 may also be tested through other structural strength tests, which are not limited in this embodiment of the present application.
  • Table 8 shows that when the battery cell 20 is fixed on the protective strip 41, when the second distance N6, the weight M2 of a single battery cell 20, and the value of N6/M2 adopt different values, the above method can be used to Results of structural strength tests performed on battery 100 .
  • the battery 100 has better structural strength in the strength structure test.
  • the thickness of the protection strip 41 is the second distance N6, since the cover portion 12a of the bottom cover 12 protrudes from the bottom wall relative to the mounting portion 12b
  • the distance in the vertical direction between the cover part 12a and the installation part 12b is the fourth dimension D8.
  • the protective assembly 40 is disposed between the battery cell 20 and the bottom cover 12 .
  • the protective assembly 40 may have a shape matching the cover 12 a, and the vertical dimension of the main board 42 is a sixth dimension D10 .
  • the sum of the second distance N6 and the sixth dimension D10 should not be less than the fourth dimension D8, that is, N6+D10 ⁇ D8. That is to say, in the first direction X, the overall size of the protective assembly 40 should be greater than the distance difference between the cover portion 12a and the mounting portion 12b, so that the protective assembly 40 is fixed to the battery cell 20 so that the battery cell 20 Keep a distance from the cover portion 12 a of the bottom cover 12 , and reserve enough eruption space for the pressure relief mechanism 213 when the pressure relief mechanism 213 and the electrode terminal 214 face the bottom cover 12 together.
  • the protective assembly 40 abuts against the battery cell 20, at this time the second distance N6 satisfies 5mm ⁇ N6 ⁇ 30mm, the ratio of the second distance N6 to the weight M2 of a single battery cell 20 N6/ M2 satisfies 0.5mm/Kg ⁇ N6/M2 ⁇ 50mm/Kg, preferably, 1mm/Kg ⁇ N6/M2 ⁇ 30mm/Kg, within this value range, the battery has good energy density and has a suitable structure strength.
  • Table 9 shows that when the protective assembly 40 is in contact with the battery cell 20, the second distance N6, the weight M2 of a single battery cell 20, and the value of N6/M2 are respectively different values, and the above-mentioned impact test is passed.
  • the method is the test result of the crash test on the battery 100 .
  • the battery 100 further includes a connection plate 91 and a connector 92, and the connection plate 91 is provided on one side of the box body 10 and protrudes along the horizontal direction (for example, the second direction y).
  • the connecting plate 91 and the bottom wall 102 form a receiving portion 911 vertically
  • the connector 92 is disposed in the receiving portion 911 and connected to the connecting plate 91
  • the connector 92 is electrically connected to the battery cell 20 .
  • the connecting board 91 may also be called an adapter board, and the connector 92 may also be called an adapter.
  • the connecting plate 91 is a boss protruding from one side of the box body 10 along the second direction y, and has a thickness gap with the bottom wall 102 of the box body 10 in the vertical direction z.
  • the accommodating portion 911 is the space generated by the difference in thickness and formed by the connecting surface of the connecting plate 91 and the box body 10 , for the connector 92 to be disposed therein. Arranging the connector 92 in the accommodating portion 911 can protect the connector 92 and reduce the impact force of the connector 92 in a collision.
  • the battery 100 is electrically connected to an external device through the connector 92, therefore, the connector 92 needs to be electrically connected to the battery cell 20, and it is indicated that the connector 92 is electrically connected to the battery cell 20 through the current path provided inside the connecting plate 91 , so as to obtain the electric energy of the battery cells 20 in the box body 10 to supply power for external electric devices.
  • the horizontal direction intersects the vertical direction, which means that the connecting plate 91 can form a certain angle with the extending direction of the box body 10, but cannot be parallel to the box body 10, so that it can be arranged in the accommodation portion 911 between the connecting plate 91 and the box body 10 Connector 92.
  • the horizontal direction is perpendicular to the vertical direction as an example; optionally, the horizontal direction and the vertical direction may not be perpendicular.
  • the connector 92 does not exceed the extension surface of the bottom wall 102 in the vertical direction.
  • the connector 92 is completely located in the accommodating portion 911 , avoiding contact with external devices located around the battery 100 , and reducing the influence of the connector 92 during the process of electrically connecting the battery cells 20 with external devices.
  • the bottom wall of the box body 10 is formed with an opening 10c, and the box body 10 further includes frame 11b distributed along the periphery of the opening 10c, the frames 11b are connected to each other to form a frame structure, and the connecting plate 91 is integrally formed with the frame 11b.
  • the frame 11 b is vertically arranged in sequence with the carrier 11 a from top to bottom.
  • the frame 11b is a plate extending in the vertical direction and surrounds the carrier 11a, and an opening 10c is formed at the bottom of the box body 10, so that the box body 10 has a space capable of accommodating the battery cells 20 inside.
  • the connecting plate 91 protrudes from one side of the frame 11b and is integrally formed with the frame 11b, which can increase the stress strength of the connecting plate 91 .
  • the connecting plate 91 may not be integrally formed with the frame 11b, but fixedly connected with the frame 11b by at least one of welding, bonding, fasteners or hot-melt self-tapping processes.
  • between the connecting plate 91 and the carrier 11a, and between the frame 11b and the carrier 11a can also be integrally formed, or can also be fixedly connected in the above manner, which is not limited in this embodiment of the present application.
  • the surface of the connecting plate 91 facing the receiving portion 911 is the first protective surface 911a
  • the surface of the frame 11b facing the receiving portion 911 is the second protective surface 911b
  • the connector 92 is connected to the first protection surface 911a, and the connector 92 is spaced apart from the second protection surface 911b.
  • the first protective surface 911a is the side surface of the connecting plate 91 away from the top of the box body 10
  • the second protective surface 911b is the side surface of the frame 11b of the box body 10 close to the connecting plate 91
  • the first protective surface 911a And the second protection surface 911b is connected to form the receiving portion 911 .
  • the connector 92 extends vertically from the first protective surface 911a, so as to overhang the receiving portion 911 and not contact the second protective surface 911b, so as to reduce the impact that the connecting plate 91 may receive in a collision.
  • the first protective surface 911a and the second protective surface 911b may be vertically connected to each other, that is, the first protective surface 911a extends along the second direction (the direction in which multiple battery cells 20 are arranged), and the second protective surface 911b Extending in the vertical direction, so that the first protection surface 911 a and the second protection surface 911 b are perpendicular to each other, thereby increasing the installation space of the connector 92 and maximizing the accommodating portion 911 .
  • the thickness of the connecting plate 91 is the first dimension D5
  • the extended height of the connector 92 is the second dimension D6
  • the extended height of the frame 11b is is the third dimension D7.
  • the sum of the first dimension D5 and the second dimension D6 is not greater than the third dimension D7, that is, D5+D6 ⁇ D7, so that the connector 92 can be completely located in the receiving portion 911, thereby protecting the connector 92 .
  • the connector 92 may extend along the vertical direction Z, and face the extension surface where the bottom wall 102 of the box body 10 is located. Adopting this structure can facilitate the electrical connection between the connector 92 and the external device, and compared with the arrangement of the connector 92 along the horizontal direction, the connector 92 has better force bearing performance.
  • the box body 10 further includes a bottom cover 12 disposed on the opening 10c, and the bottom cover 12 is connected to the frame 11b.
  • the bottom cover 12 covers the opening 10c, so that the box body 100 has a relatively sealed structure.
  • the bottom cover 12 includes a cover portion 12a and a mounting portion 12b, and the mounting portion 12b is disposed in the circumferential direction of the cover portion 12a and matched with the frame 11b. That is to say, the cover part 12a covers the opening 10c formed by the frame 11b, and the mounting part 12b is fixed to the frame 11b to connect the bottom cover 12 to the frame 11b.
  • the cover part 12a protrudes from the extension surface of the bottom wall 102 relative to the mounting part 12b, so that there is a relatively larger distance between the battery cells 20 disposed inside the box body 10 and the bottom cover 12, To make way for the bus component 24 or other components between the electrode terminals 214 of the battery cell 20 to avoid the bottom cover 12 and the electrode terminals 214 of the battery cell 20 being too close. It should be understood that the protruding distance of the cover portion 12 a relative to the mounting portion 12 b should be selected based on the energy density of the battery 100 , and should not be too large to increase the volume of the battery 100 while reducing the energy density of the battery 100 .
  • the pressure relief mechanism 213 when the pressure relief mechanism 213 is disposed toward the bottom wall of the accommodating cavity 10a, the pressure relief mechanism 213 may be disposed toward the opening 10c, and when the battery cell 2 is thermally out of control, the pressure relief mechanism 213 sprays toward the bottom cover 12, at this time, the cover
  • the structure in which the part 12a protrudes from the extension surface of the bottom 102 relative to the mounting part 12b enables the pressure relief mechanism 213 to have a larger discharge space.
  • the pressure relief mechanism 213 erupts toward the bottom, that is, the eruption direction faces the ground, which can increase the safety of the battery 100 .
  • the bottom cover 12 is detachably connected to the frame 11 b to facilitate the assembly of the battery 100 .
  • the bottom cover 12 and the frame 11b are detachably connected by fasteners 13 such as bolts, and the bottom cover 12 and the frame 11b may also be fixedly connected in other ways. There is no restriction on this.
  • the box body 10 includes a carrier 11a disposed on the top, and the battery cells 2 are connected to the carrier 11a.
  • the bearing member 11a is a board extending along the second direction y on the top of the box body 10 .
  • the bearing part 11a can increase the rigidity of the top of the battery 100 and reduce the possibility of damage to the battery 100 in a collision.
  • Connecting the battery cell 20 to the carrier 11a, that is, placing the battery cell 20 on the top of the battery 100, can increase the rigidity of the top of the battery 100, reduce the possibility of damage to the battery 100 in a collision, and increase the safety of the battery 100.
  • the battery cell 20 may be directly bonded and fixed to the carrier 11a, or may be fixed to the carrier 11a in other ways, such as bolt connection, etc., which is not limited in this embodiment of the present application.
  • the side surface of the connecting plate 91 facing away from the receiving portion 911 is located at the same level as the side surface of the carrier 11 a facing away from the opening 10 c. That is to say, the connecting plate 91 and the side surface of the carrier 11a at the top of the box body 11 are located on the same plane, and when the battery 100 is fixed to the external device, the connecting plate 91 and the carrier 11a can be fixed on the same surface of the external device . Moreover, the connecting plate 91 and one side surface of the supporting member 11 a are located on the same horizontal plane, which can increase the stress strength of the two, so that the battery 100 has better bearing capacity.
  • the connecting plate 91 protrudes toward the extension surface of the bottom wall 102 along the vertical direction z, that is, the connecting plate 91 has a certain thickness in the vertical direction.
  • the side of the connecting plate 91 facing away from the box body 10 may bear a certain impact force, so that the connecting plate 91 has a certain thickness, which can increase the rigidity of the connecting plate 91 and provide better protection for the connector 92 .
  • connection plate can be integrally formed with the box body 10, or the connection plate can be positioned and connected to the box body 10 through a fixed connection such as welding connection, adhesive connection or FDS connection, which is not specified in this application. limit.
  • the battery 100 includes a battery cell 20 and a reinforcing member 30, the top of the box body 10 is provided with a carrier 11a, and a plurality of battery cells 20 are arranged along the second direction y. , that is, the second direction y is the arrangement direction of a row of battery cells 20 in the battery 100 .
  • the battery cell 20 includes a first wall 201 and a first outer surface m1 , the first wall 201 is the wall with the largest surface area in the battery cell 20 , and the first outer surface m1 is connected to the first wall 201 .
  • the reinforcement member 30 extends along the second direction y and is connected to the first wall 201 of each battery cell 20 in the plurality of battery cells 20, so that the contact area between the reinforcement member 30 and the battery cells 20 is relatively large, which can The connection strength between the reinforcement member 30 and the battery cell 20 is ensured. That is, the first wall 201 of the battery cell 20 faces the reinforcement 30 , that is, the first wall 201 of the battery cell 20 is parallel to the second direction y.
  • the carrier 11a is connected to the first outer surface m1 of each battery cell 20 in the plurality of battery cells 20, wherein, when the battery cell 20 is arranged in an electric device, the battery cell 20 is located under the carrier 11a, carrying The piece 11a is used for mounting the battery cell 20 .
  • the supporting part 11 a may be the upper cover of the case 10 of the battery 100 , or a part of an electrical device, such as the chassis of the vehicle 1000 .
  • the carrier 11 a is the chassis of the vehicle 1000
  • the first outer surface m1 of the battery cell 20 is connected to the carrier 11 a , that is, the first outer surface m1 of the battery cell 20 is connected to the chassis of the vehicle 1000 .
  • the battery cell 20 is directly connected to the chassis surface of the vehicle. In this way, the box body cover of the battery 100 may not be provided, which saves the space occupied by the box body cover of the battery 100 and improves the space utilization rate of the battery 100, thereby improving The energy density of the battery 10 is improved.
  • the reinforcing member 30 is arranged in the battery 100 to connect with the first wall 201 of each battery cell 20 having the largest surface area in a row of multiple battery cells 20 arranged along the second direction y.
  • the member 30 connects the plurality of battery cells 20 into a whole.
  • the battery 100 may not be provided with side plates, or structures such as beams may not be provided, so that the utilization of space inside the battery 100 can be greatly improved. rate, improve the structural strength and energy density of the battery 100;
  • the battery 10 is also provided with a carrier 11a connected to the first outer surface m1 of each battery cell 20 in the plurality of battery cells 20 arranged along the second direction y, The first outer surface m1 is connected to the first wall 201 .
  • the battery cell 20 When the battery cell 20 is installed in the electrical device, the battery cell 20 is located under the carrier 11 a and is mounted on the carrier 11 a. In this way, the first outer surface m1 of the battery cell 20 is directly connected to the carrier 11a, and there is no need to leave a space between the carrier 11a and the battery cell 20, which further improves the space utilization rate inside the battery 10 and improves the energy capacity of the battery 100. Density, while the battery cells 20 are mounted on the carrier 11a can improve the structural strength of the battery 100 , therefore, the technical solution of the embodiment of the present application can improve the performance of the battery 100 .
  • the electrode terminal 214 can be arranged on the outer surface of the battery cell 20 except the first outer surface m1, that is, the electrode terminal 214 is arranged on the wall of the non-carrier 11a, so that the battery cell 20 and the carrier 11a There is no need to reserve a space for the electrode terminals 214, so that the space utilization rate inside the battery 100 can be greatly improved, and the energy density of the battery 100 can be improved.
  • the electrode terminal 214 is arranged on the second outer surface m2 of the battery cell 20 which is opposite to the first outer surface m1 along the vertical direction z, and in FIG. 46
  • the electrode terminal 214 is arranged on the side wall of the battery cell 20 perpendicular to the second direction y.
  • the dimension T1 of the reinforcing member 30 in the first direction x and the dimension T2 of the battery cell 20 in the first direction x satisfy 0 ⁇ T1/T2 ⁇ 7.
  • the reinforcing member 30 takes up a large space, which affects the energy density.
  • the reinforcement 30 conducts heat to the battery cells 20 too quickly, which may also cause safety problems. For example, thermal runaway of one battery cell 20 may cause thermal runaway of other battery cells 20 connected to the same reinforcing member 30 .
  • 0 ⁇ T1/T2 ⁇ 7 the energy density of the battery 100 and the safety performance of the battery 100 can be guaranteed.
  • 0 ⁇ T1/T2 ⁇ 1 is further satisfied, so as to further increase the energy density of the battery 100 and ensure the safety performance of the battery 100 .
  • the weight M3 of the reinforcing member 30 and the weight M2 of the battery cell 20 satisfy 0 ⁇ M3/M2 ⁇ 20.
  • M3/M2 is too large, gravimetric energy density is lost.
  • 0 ⁇ M3/M2 ⁇ 20 the weight energy density of the battery 100 and the safety performance of the battery 100 can be guaranteed.
  • 0.1 ⁇ M3/M2 ⁇ 1 so as to further increase the energy density of the battery 100 and ensure the safety performance of the battery 100 .
  • the area S3 of the surface of the reinforcing member 30 connected to the first walls 201 of the plurality of battery cells 20 and the area S4 of the first walls 201 satisfy: 0.2 ⁇ S3/S4 ⁇ 30.
  • S3 is the total area of one side surface of the reinforcing member 30 connected to the battery cell 20 .
  • S3/S4 is too large, the energy density is affected.
  • S3/S4 is too small, the heat conduction effect is too poor, which affects the safety performance.
  • 0.2 ⁇ S3/S4 ⁇ 30 the energy density of the battery 10 and the safety performance of the battery 10 can be guaranteed.
  • 2 ⁇ S3/S4 ⁇ 10 is further satisfied, so as to further increase the energy density of the battery 10 and ensure the safety performance of the battery 10 .
  • the specific heat capacity Q of the reinforcing member 30 and the weight M3 of the reinforcing member 30 satisfy: 0.02KJ/(kg 2 /°C) ⁇ Q/M3 ⁇ 100KJ/(kg 2 /°C).
  • Q/M3 ⁇ 0.02KJ/(kg 2 /°C) the reinforcing member 30 will absorb more energy, causing the temperature of the battery cell 20 to be too low, which may produce lithium precipitation; Q/M3>100KJ/(kg 2 /°C ), the reinforcing member 30 has poor thermal conductivity and cannot take away the heat in time, and the above setting can ensure the safety performance of the battery 100.
  • the top of the box 10 is provided with a carrier 11a, and the bottom of the box 10 is provided with a protective assembly 40, the carrier 11a is fixedly connected to the battery cell 20, and the protective assembly 40 is connected to the battery
  • the cells 20 are fixedly connected to fix the position of the battery cells 20 and enhance the stability of the structure of the battery 100 .
  • both the bearing member 11a and the protection assembly 40 may also be referred to as support plates.
  • the battery cell 20 may be directly bonded to the carrier 11a and the protective assembly 40 by glue, or may be fixedly connected to the carrier 11a and the protective assembly 40 in other ways.
  • the pressure relief mechanism is welded to the battery box to fix the pressure relief mechanism to the battery box.
  • the pressure inside the battery cell is released through the pressure relief mechanism to improve Safety of battery cells.
  • the explosion-proof sheet is destroyed to discharge the discharge inside the battery cell to achieve the discharge of the battery cell. The purpose of internal pressure.
  • the pressure relief mechanism Since the pressure relief mechanism is welded to the battery box, cracks may appear at the welded position during the long-term use of the battery cell, resulting in a decrease in the strength of the welded position, and it is likely that the pressure inside the battery cell at the welded position does not reach the detonation of the pressure relief mechanism When the pressure is destroyed, the pressure relief mechanism will fail, and the reliability of the pressure relief mechanism will be low.
  • the inventors found that the pressure relief mechanism and the battery box of the battery unit can be integrated into a structure, that is, a part of the battery box can be used as the pressure relief mechanism.
  • a part of the end cover is weakened to reduce the strength of the part of the end cover to form a weak area, thereby forming an integrated pressure relief mechanism, which can effectively improve the reliability of the pressure relief mechanism.
  • the battery cell 20 further includes a battery case 21, the electrode assembly 22 is accommodated in the battery case 21, and the battery case 21 is provided with a pressure relief mechanism 213 for pressure relief.
  • the mechanism 213 is integrally formed with the battery box 21 to improve the reliability of the pressure relief structure 213 .
  • the battery case 21 includes an integrally formed non-weakened area 51 and a weakened area 52 , the battery case 21 is provided with a groove portion 53 , and the non-weakened area 52 is formed in the groove portion 53 A weakened area 52 is formed at the bottom of the groove 53, and the weakened area 52 is configured to be destroyed when the internal pressure of the battery cell 20 is released.
  • the pressure relief mechanism 213 includes the weakened area 52, so as to further ensure the reliable use of the pressure relief structure 213. .
  • the battery box 21 is a part that can accommodate the electrode assembly 22 together with other components.
  • the battery box 21 is a part of the shell of the battery cell 20, and the end cover (or called a cover plate) of the shell can be the battery box 21, or it can be
  • the casing 211 of the housing is the battery case 21 .
  • the battery box 21 can be made of metal, such as copper, iron, aluminum, steel, aluminum alloy, etc., and the battery box 21 can be made of aluminum-plastic film.
  • the weak area 52 is a weaker part of the battery case than other areas.
  • the area of weakness 52 may be damaged by rupture, detachment, or the like.
  • the weak region 52 is ruptured by the discharge (gas, electrolyte, etc.) inside the battery cell 20 , so that the discharge inside the battery cell 20 can be discharged smoothly.
  • the weakened area 52 can be in various shapes, such as rectangle, circle, ellipse, ring, arc, U-shape, H-shape and so on.
  • the thickness of the weakened area 52 may be uniform or non-uniform.
  • the weakened area 52 is formed at the bottom of the groove portion 53 , and the groove portion 53 can be formed by stamping to realize the integral formation of the weakened area 52 and the non-weakened area 51 .
  • the groove portion 53 is punched and formed on the battery case, the battery case is thinned in the area where the groove portion 53 is provided, and a corresponding weak area 52 is formed.
  • the groove portion 53 can be a primary groove, and along the depth direction of the groove portion 53, the groove side of the groove portion 53 is continuous.
  • the groove portion 53 can also be a multi-stage groove, and the multi-stage groove is arranged along the depth direction of the groove portion 53.
  • the first-level groove on the inside (deeper position) is arranged on the one on the outside (shallower position).
  • the groove bottom surface of the primary groove for example, the groove portion 53 is a stepped groove.
  • the multi-stage grooves can be stamped step by step along the depth direction of the groove portion 53, and the weakened area 52 is formed at the bottom of the deepest (innermost) primary groove among the multi-stage grooves.
  • the non-weakened region 51 is formed around the groove portion 53 , and the strength of the non-weakened region 51 is greater than that of the weakened region 52 , and the weakened region 52 is easier to be damaged than the non-weakened region 51 .
  • the non-weakened area 51 may be a part of the battery box that has not been punched.
  • the thickness of the non-weakened area 51 can be uniform or non-uniform.
  • the average grain size of the weakened region 52 it can be measured along the thickness direction of the weak region 52 ; when measuring the average grain size of the non-weakened region 51 , it can be measured along the thickness direction of the non-weakened region 51 .
  • the thickness direction of the weakened region 52 is consistent with the thickness direction of the non-weakened region 51 , both in the z direction.
  • the inventor also noticed that after the integrated pressure relief mechanism is formed on the battery box, the mechanical properties of the weak area of the battery box are relatively poor. Fatigue damage affects the service life of the battery cell.
  • the average grain size of the weakened region 52 is S 1
  • the average grain size of the non-weakened region 51 is S 2 , satisfying: 0.05 ⁇ S 1 /S 2 ⁇ 0.9.
  • the weakened area 52 and the non-weakened area 51 are integrally formed, which has good reliability. Since S 1 /S 2 ⁇ 0.9, the average grain size of the weakened region 52 is quite different from the average grain size of the non-weakened region 51, and the average grain size of the weak region 52 is reduced to achieve grain refinement in the weak region 52 The purpose is to improve the mechanical properties of the material of the weak area 52, improve the toughness and fatigue strength of the weak area 52, reduce the risk of the weak area 52 being damaged under the normal use conditions of the battery cell 20, and improve the use of the battery cell 20. life.
  • S 1 /S 2 ⁇ 0.05 reduces the difficulty of forming the weak region 52 and improves the timeliness of pressure release of the battery cell 20 when thermal runaway occurs.
  • S1 / S2 can be 0.01, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 Either point value or any range value in between.
  • 0.1 ⁇ S 1 /S 2 ⁇ 0.5 makes the overall performance of the battery box 21 better, and ensures that the weak area 52 can be destroyed in time when the battery cell 20 is thermally runaway.
  • the battery cell 20 has sufficient strength under normal use conditions.
  • S 1 /S 2 can be any point value in 0.1, 0.12, 0.15, 0.17, 0.2, 0.22, 0.25, 0.27, 0.3, 0.32, 0.35, 0.37, 0.4, 0.42, 0.45, 0.47, 0.5 or any The range value in between.
  • S 1 can be 0.4 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 28 ⁇ m, 30 ⁇ m, 35 ⁇ m, 36 ⁇ m, 40 ⁇ m, 45 ⁇ m, 49 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, Any point value of 70 ⁇ m, 72 ⁇ m, 75 ⁇ m or any range value between the two.
  • 0.4 ⁇ m ⁇ S 1 ⁇ 75 ⁇ m reduces the difficulty of forming the weak area 52 and improves the timeliness of pressure relief of the battery cell 20 when thermal runaway occurs; on the other hand, improves the toughness and fatigue resistance of the weak area 52 strength, reducing the risk of the weakened area 52 being damaged under normal use conditions of the battery cell 20 .
  • S 1 can be 1 ⁇ m, 1.5 ⁇ m, 1.6 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 2.6 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 3.6 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 4.6 ⁇ m, 5 ⁇ m, 5.5 ⁇ m, 5.6 ⁇ m, 6 ⁇ m, 6.5 ⁇ m, 6.6 Any one of ⁇ m, 7 ⁇ m, 7.5 ⁇ m, 7.6 ⁇ m, 8 ⁇ m, 8.5 ⁇ m, 8.6 ⁇ m, 9 ⁇ m, 9.5 ⁇ m, 9.6 ⁇ m, 10 ⁇ m or the range value between any two.
  • S2 can be 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 105 ⁇ m, 110 ⁇ m, 115 ⁇ m, 12 0 ⁇ m, 125 ⁇ m, 130 ⁇ m, 135 ⁇ m, 140 ⁇ m, 145 ⁇ m, 150 ⁇ m any point value or any range value between the two.
  • S2 can be 30 ⁇ m, 32 ⁇ m, 35 ⁇ m, 37 ⁇ m, 40 ⁇ m, 42 ⁇ m, 45 ⁇ m, 47 ⁇ m, 50 ⁇ m, 52 ⁇ m, 55 ⁇ m, 57 ⁇ m, 60 ⁇ m, 62 ⁇ m, 65 ⁇ m, 67 ⁇ m, 70 ⁇ m, 72 ⁇ m, 75 ⁇ m, 77 ⁇ m, 80 ⁇ m, 82 ⁇ m, 85 ⁇ m, 87 ⁇ m, 90 ⁇ m, 92 ⁇ m, 95 ⁇ m, 97 ⁇ m, 100 ⁇ m any point value or any range value between the two.
  • the minimum thickness of the weakened region is A 1 , which satisfies: 1 ⁇ A 1 /S 1 ⁇ 100.
  • a 1 /S 1 can be 1, 2, 4, 5, 10, 15, 20, 21, 22, 23, 25, 30, 33, 34, 35, 37, 38, 40, 45, 50, 55, 60 , 65, 70, 75, 80, 85, 90, 93, 94, 95, 100, or any range value between them.
  • 1 ⁇ A 1 /S 1 ⁇ 100 makes the weak region 52 have more grain layers in the thickness direction, improves the fatigue resistance of the weak region 52, and reduces the normal use of the weak region 52 in the battery cell 20
  • the weakened area 52 can be destroyed in a more timely manner when the battery cell 20 is thermally runaway, so as to achieve the purpose of timely pressure relief.
  • a 1 /S 1 can be 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5 , 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20 any point value or any range value between the two.
  • 5 ⁇ A 1 /S 1 ⁇ 20 makes the overall performance of the battery box better, and ensures that the weak area 52 can be destroyed in time when the battery cell 20 is thermally runaway.
  • the battery cell 20 has sufficient anti-fatigue strength under normal use conditions, thereby improving the service life of the battery cell 20 .
  • the minimum thickness of the weak zone is A 1
  • the hardness of the weak zone is B 1 , satisfying: 5HBW/mm ⁇ B 1 /A 1 ⁇ 10000HBW/mm.
  • B 1 /A 1 can be 5HBW/mm, 6HBW/mm, 7HBW/mm, 20HBW/mm, 50HBW/mm, 61HBW/mm, 62HBW/mm, 63HBW/mm, 64HBW/mm, 75HBW/mm, 90HBW/mm .
  • the hardness of the weak zone 52 is Brinell hardness, and the unit is HBW.
  • the measurement method of Brinell hardness can be implemented by referring to the measurement principle in GB/T23.1-2018.
  • the hardness of the weak zone 52 can be obtained by measuring the inner surface or the outer surface of the weak zone 52 in the thickness direction. Taking the battery box as the end cover 11 of the battery cell 20 as an example, the hardness of the weak area 52 can be measured on the outer surface of the weak area 52 facing away from the inside of the battery cell 20 , or the hardness of the weak area 52 facing the inside of the battery cell 20 can be measured.
  • the hardness of the area of weakness 52 is measured on the inner surface.
  • the weak area 52 When B 1 /A 1 >10000HBW/mm, the weak area 52 is thinner and has a higher hardness, which will cause the weak area 52 to be very fragile. The weak area 52 is easily damaged under the normal use conditions of the battery cell 20, and the battery cell The service life of the body 20 is relatively short. When B 1 /A 1 ⁇ 5HBW/mm, the weak region 52 is thicker and less rigid. When the battery cell 20 is thermally runaway, the weak region 52 will be stretched and the timeliness of pressure release is poor.
  • the influence of the thickness of the weak region 52 on the performance of the battery case is considered, but also the influence of the hardness of the weak region 52 on the performance of the battery case is considered, 5HBW/mm ⁇ B 1 /A 1 ⁇ 10000HBW/ mm, not only can make the weak area 52 have sufficient strength under the normal use condition of the battery cell 20, the weak area 52 is not easy to be damaged due to fatigue, and the service life of the battery cell 20 can be improved; In case of thermal runaway, the pressure is released in time through the weak region 52 , reducing the risk of explosion of the battery cell 20 and improving the safety of the battery cell 20 .
  • B 1 /A 1 can be 190HBW/mm, 250HBW/mm, 280HBW/mm, 300HBW/mm, 350HBW/mm, 400HBW/mm, 450HBW/mm, 500HBW/mm, 600HBW/mm, 700HBW/mm, 875HBW/mm , 1000HBW/mm, 1200HBW/mm, 1500HBW/mm, 1750HBW/mm, 1800HBW/mm, 2000HBW/mm, 2100HBW/mm, 2500HBW/mm, 3000HBW/mm, 3500HBW/mm, 4000HBW/mm Or any range value in between.
  • 190HBW/mm ⁇ B 1 /A 1 ⁇ 4000HBW /mm makes the overall performance of the battery box better, and ensures that the weak area 52 can be destroyed in time when the battery cell 20 is thermally runaway. Region 52 has sufficient strength under normal usage conditions of battery cell 20 . On the premise of ensuring the safety of the battery cell 20 , the service life of the battery cell 20 is improved.
  • 0.02mm ⁇ A1 ⁇ 1.6mm 0.02mm ⁇ A1 ⁇ 1.6mm .
  • a 1 can be 0.02mm, 0.04mm, 0.05mm, 0.06mm, 0.1mm, 0.15mm, 0.2mm, 0.25mm, 0.3mm, 0.35mm, 0.4mm, 0.45mm, 0.5mm, 0.55mm, 0.6mm, 0.7 mm, 0.75mm, 0.8mm, 0.85mm, 0.9mm, 0.95mm, 1mm, 1.05mm, 1.1mm, 1.15mm, 1.2mm, 1.25mm, 1.3mm, 1.35mm, 1.4mm, 1.42mm, 1.43mm, 1.45 Any point value in mm, 1.47mm, 1.5mm, 1.55mm, 1.6mm or any range value between the two.
  • a 1 can be any point value in 0.06mm, 0.07mm, 0.08mm, 0.1mm, 0.15mm, 0.18mm, 0.2mm, 0.25mm, 0.3mm, 0.35mm, 0.4mm or any range between the two value.
  • 0.06 mm ⁇ A 1 ⁇ 0.4 mm further reduces the difficulty of forming the weak region 52 and improves the timeliness of pressure release of the battery cell 20 when thermal runaway occurs.
  • the hardness of the weakened area is B 1
  • the hardness of the non-weakened area is B 2 , satisfying: 1 ⁇ B 1 /B 2 ⁇ 5.
  • the hardness of the non-weakened area 51 is Brinell hardness, and the unit is HBW.
  • the hardness of the non-weakened area 51 can be measured on the inner or outer surface of the non-weakened area 51 in the thickness direction. Taking the battery box as the end cap 11 of the battery cell 20 as an example, the hardness of the non-weakened area 51 can be measured on the outer surface of the non-weakened area 51 facing away from the inside of the battery cell 20, or the hardness of the non-weakened area 51 facing the battery cell can be measured.
  • the hardness of the non-weakened zone 51 is measured on the inner surface inside the 20.
  • B 1 >B 2 means that the hardness of the weak region 52 is increased, thereby increasing the strength of the weak region 52 and reducing the risk of the weak region 52 being damaged under normal use conditions of the battery cell 20 .
  • B 1 /B 2 can be any point value among 1.1, 1.5, 2, 2.5, 3, 3.5, 3.6, 4, 4.5, 5 or any range value between them.
  • the hardness of the weak region 52 may be too large, and the weak region 52 may be hard to be destroyed when the battery cell 20 is thermally runaway.
  • B 1 /B 2 ⁇ 5 reduces the risk that the weak region 52 cannot be destroyed in time when the battery cell 20 is thermally runaway, and improves the safety of the battery cell 20 .
  • B 1 /B 2 ⁇ 2.5.
  • B 1 /B 2 can be any one of 1.1, 1.11, 1.12, 1.2, 1.25, 1.3, 1.4, 1.5, 1.6, 1.7, 1.71, 1.72, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5 Point value or any range value in between.
  • B 1 /B 2 ⁇ 2.5 which can further reduce the risk that the weak region 52 cannot be destroyed in time when the battery cell 20 is thermally runaway.
  • 5HBW ⁇ B2 ⁇ 150HBW In some embodiments, 5HBW ⁇ B2 ⁇ 150HBW .
  • B2 can be 5HBW, 8HBW, 9HBW, 9.5HBW, 10HBW, 15HBW, 16HBW, 19HBW, 20HBW, 30HBW, 40HBW, 50HBW, 52HBW, 52.5HBW, 53HBW, 60HBW, 70HBW, 90HBW, 100HBW, 11 0HBW, 120HBW, 130HBW, Any point value of 140HBW, 150HBW or any range value between the two.
  • B 1 can be 5HBW, 6HBW, 8HBW, 10HBW, 15HBW, 19HBW, 20HBW, 30HBW, 50HBW, 60HBW, 70HBW, 90HBW, 100HBW, 110HBW, 120HBW, 130HBW, 140HBW, 150HBW, 160HBW , 170HBW, 180HBW, 190HBW, 200HBW Either point value or any range value in between.
  • FIG. 51 and FIG. 52 is a partially enlarged view of a battery box 21 provided in another implementation of the present application.
  • the minimum thickness of the weakened area 52 is A 1
  • the minimum thickness of the non-weakened area 51 is A 2 , satisfying: 0.05 ⁇ A 1 /A 2 ⁇ 0.95.
  • the minimum thickness of the weak area 52 is the thickness of the thinnest position of the weak area 52 .
  • the minimum thickness of the non-weakened area 51 is the thickness of the thinnest position of the non-weakened area 51 .
  • the battery box 21 has a first side 54 and a second side 55 oppositely arranged, the groove 53 is recessed from the first side 54 toward the direction close to the second side 55 , and the battery box is located in the groove 53
  • the portion between the groove bottom surface 531 and the second side surface 55 is the weakened area 52 .
  • the first side 54 and the second side 55 can be arranged in parallel or at a small angle. If the first side 54 and the second side 55 are arranged at a small angle, for example, the angle between the two is within 10 degrees.
  • the minimum distance between 54 and the second side 55 is the minimum thickness of the non-weakened area 51; as shown in Figure 51 and Figure 52, if the first side 54 is parallel to the second side 55, the first side 54 and the second side The distance between 55 is the minimum thickness of the non-weakened area 51 .
  • the groove bottom surface 531 of the groove portion 53 may be a flat surface or a curved surface. If the groove bottom surface 531 of the groove portion 53 is a plane, the groove bottom surface 531 of the groove portion 53 can be parallel to the second side surface 55 , or can be arranged at a small angle. If the groove bottom surface 531 of the groove portion 53 and the second side surface 55 are arranged at a small angle, for example, the angle between the two is within 10 degrees, the minimum distance between the groove bottom surface 531 of the groove portion 53 and the second side surface 55 is the weak point.
  • the minimum thickness of the zone 52 as shown in Figure 51, if the groove bottom 531 of the groove 53 is parallel to the second side 55, the distance between the groove bottom 531 of the groove 53 and the second side 55 is the minimum of the weak zone 52 thickness. As shown in Figure 52, if the groove bottom surface 531 of the groove portion is a curved surface, for example, the groove bottom surface 531 of the groove portion 53 is an arc surface, the minimum distance between the groove bottom surface 531 of the groove portion 53 and the second side surface 55 is the weak point. The minimum thickness of region 52.
  • a 1 /A 2 can be any of 0.05, 0.06, 0.07, 0.08, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.85, 0.9, 0.95 Either a point value or any range value in between.
  • a 1 /A 2 can be 0.12, 0.13, 0.14, 0.15, 0.17, 0.2, 0.22, 0.25, 0.27, 0.3, 0.32, 0.35, 0.37, 0.4, 0.42, 0.45, 0.47, 0.5, 0.52, 0.55, 0.57, 0.6 , 0.62, 0.65, 0.66, 0.67, 0.7, 0.72, 0.75, 0.77, 0.8, or any range value between them.
  • 0.12 ⁇ A 1 /A 2 ⁇ 0.8 makes the overall performance of the external components better, and ensures that the weak region 52 can be destroyed in time when the battery cell 20 is thermally runaway.
  • the battery cell 20 has sufficient strength under normal use conditions.
  • controlling A 1 /A 2 between 0.12 ⁇ 0.8 can make S 1 /S 2 ⁇ 0.5 more easily, so as to achieve the purpose of refining the grains in the weak region 52 .
  • a 1 /A 2 can be 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41 , 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, or any range value between them.
  • the strengthening effect of the grain refinement on the weak region 52 will be better than the weakening effect of the thickness reduction on the weak region 52, so that the weak region 52 It has better anti-fatigue performance, further reduces the risk of the weak area 52 being damaged under normal use conditions of the battery cell 20, and ensures that the weak area 52 is destroyed in time when the battery cell 20 is thermally runaway, improving the timeliness of pressure relief.
  • a 2 can be any point value in 1mm, 2mm, 3mm, 4mm, 5mm or any range value between them.
  • a 2 >5mm the thickness of the non-weakened area 51 is relatively large, and the material of the battery box is more, the weight of the battery box is large, and the economy is poor.
  • a 2 ⁇ 1 mm the thickness of the non-weakened area 51 is small, and the deformation resistance of the battery case is poor. Therefore, 1mm ⁇ A 2 ⁇ 5mm makes the battery case more economical and more resistant to deformation.
  • a 2 can be 1.2mm, 1.25mm, 1.3mm, 1.4mm, 1.5mm, 1.6mm, 1.7mm, 1.8mm, 1.9mm, 2mm, 2.1mm, 2.2mm, 2.3mm, 2.4mm, 2.5mm, 2.6mm , 2.7mm, 2.8mm, 2.9mm, 3mm, 3.1mm, 3.2mm, 3.3mm, 3.4mm, 3.5mm, any point value or any range value between the two.
  • FIG. 53 is a schematic structural diagram of a battery case 21 provided in some other embodiments of the present application (showing the first-level scoring groove 532);
  • FIG. 54 is the battery case 21 shown in FIG. 53
  • Figure 55 is a schematic structural view of the battery box 21 provided by some other embodiments of the present application (showing a first-level scoring groove 532);
  • Figure 56 is a F-F sectional view of the battery box shown in Figure 5;
  • Figure 125 is this Schematic diagram of the structure of the battery case provided by other embodiments of the application (showing the first-level scoring groove 532);
  • FIG. 58 is a G-G cross-sectional view of the battery case shown in FIG. 53 .
  • the battery box 21 has a pressure relief area 56, and the groove portion 53 includes a first-level scoring groove 532.
  • the scoring groove 532 is arranged along the edge of the pressure relief area 56, and the pressure relief area 56 is configured to be able to open with the scoring groove 532 as a boundary.
  • the weakened area 52 forms the bottom of the scoring groove 532 .
  • the pressure relief area 56 is an area where the battery case can be opened after the weakened area 52 is damaged. For example, when the internal pressure of the battery cell 20 reaches a threshold value, the weakened area 52 is ruptured, and the pressure relief area 56 is opened outwards by the discharge of the battery cell 20 . After the pressure relief area 56 is opened, the battery box can form a discharge port at a position corresponding to the pressure relief area 56 , and the discharge inside the battery cell 20 can be discharged through the discharge port to release the pressure inside the battery cell 20 .
  • the scoring groove 532 can be formed on the battery case by stamping.
  • the scoring groove 532 in the groove portion 53 is only one level, and the one-level scoring groove 532 can be formed by one stamping.
  • the scoring groove 532 can be grooves of various shapes, such as annular grooves, arc grooves, U-shaped grooves, H-shaped grooves and the like.
  • the weakened area 52 is formed at the bottom of the scoring groove 532.
  • the shape of the weakened area 52 is the same as that of the scoring groove 532.
  • the weakened area 52 is a U-shaped groove, and the weakened area 52 extends along a U-shaped track.
  • the weakened area 52 forms the bottom of the scoring groove 532.
  • the pressure relief area 56 can be opened with the weakened area 52 as the boundary to realize pressure relief, which increases the leakage of the battery box. pressure area.
  • the battery case 21 has a first side 54 and a second side 55 oppositely disposed, and the scoring groove 532 is close to the second side from the first side 54 .
  • the direction of the side face 55 is concave.
  • first side 54 is the inner surface of the battery box 21 facing the inside of the battery cell 20
  • second side 55 is the outer surface of the battery box facing away from the inside of the battery cell 20
  • first side 54 is the battery box facing away from the battery cell
  • the second side 55 is the inner surface of the battery box facing the inside of the battery cell 20
  • the first side 54 is parallel to the second side 55
  • the minimum thickness of the non-weakened area 51 is the distance between the first side 54 and the second side 55 .
  • the groove bottom surface of the scoring groove 532 is the groove bottom surface 531 of the groove portion.
  • the part of the battery case 21 between the bottom surface of the scoring groove 532 and the second side 55 is the bottom wall of the scoring groove 532 , and the bottom wall of the scoring groove 532 is the weak area 52 .
  • the groove portion 53 only includes a first-level scoring groove 532, the scoring groove 532 is the groove portion 53, and the groove portion 53 is a first-level groove, and the structure is simple.
  • the scoring groove 532 can be formed on the first side 54, which is simple in forming, improves production efficiency and reduces production cost.
  • FIG. 59 is a schematic structural diagram of a battery case 21 provided in some other embodiments of the present application (showing two-stage scoring grooves 532); FIG. K-K cross-sectional view of the battery case 21;
  • FIG. 61 is a schematic structural view of the battery case provided by some other embodiments of the present application (showing two-stage scoring grooves 532);
  • FIG. 62 is a M-M cross-sectional view of the battery case shown in FIG. 61;
  • FIG. 63 Schematic diagram of the structure of the battery box provided for other embodiments of the present application (showing the two-stage scoring groove 532);
  • FIG. 64 is an N-N cross-sectional view of the battery box shown in FIG.
  • the battery case 21 includes a first side 54 and a second side 55 that are oppositely arranged, and the groove portion 53 includes a multi-level scoring groove 532, and the multi-level scoring groove 532 is sequentially arranged on the battery along the direction from the first side 54 to the second side 55.
  • the weakened area 52 is formed at the bottom of the primary scoring groove 532 farthest from the first side 54 .
  • the battery box has a pressure relief area 56 , and the scoring groove 532 is provided along the edge of the pressure relief area 56 , and the pressure relief area 56 is configured to be open with the first-level scoring groove 532 farthest from the first side 54 as a boundary.
  • the groove portion 53 includes a multi-level scoring groove 532 , it can be understood that the groove portion 53 is a multi-level groove.
  • Each level of scoring groove 532 is disposed along the edge of the pressure relief area 56 , and the multi-level scoring grooves 532 have the same shape.
  • the scored grooves 532 in the groove portion 53 may be two-stage, three-stage, four-stage or more.
  • the scoring grooves 532 of each level can be formed on the battery case by stamping. During forming, the scoring grooves 532 at various levels can be stamped and formed sequentially along the direction from the first side 54 to the second side 55 .
  • the multi-level scoring groove 532 When forming the multi-level scoring groove 532 by stamping, the multi-level scoring groove 532 can be correspondingly formed by multiple times of stamping, and one level of scoring groove 532 is formed by each stamping.
  • the scoring groove 532 can be grooves of various shapes, such as annular grooves, arc grooves, U-shaped grooves, H-shaped grooves and the like.
  • the weakened area 52 is formed at the bottom of the primary scoring groove 532 farthest from the first side 54, and the primary scoring groove 532 farthest from the first side 54 is the deepest (innermost) primary scoring groove 532 .
  • the first-level scoring groove 532 away from the first side 54 is disposed on the bottom surface of the first-level scoring groove 532 close to the first side 54 .
  • the part of the battery box between the groove bottom of the first-level scoring groove 532 farthest from the first side 54 and the second side 55 is the groove bottom wall of the first-level scoring groove 532 farthest from the first side 54.
  • the wall is the area of weakness 52 .
  • the groove bottom surface of the primary scoring groove 532 farthest from the first side surface 54 is the groove bottom surface 531 of the groove portion.
  • the multi-level scoring groove 532 can be formed step by step on the battery box, and the forming depth of each level of scoring groove 532 can be reduced, thereby reducing the forming force on the battery box when forming each level of scoring groove 532.
  • the risk of cracks in the battery box is reduced, and the battery box is not easy to fail due to cracks at the position where the notch groove 532 is provided, thereby improving the service life of the battery box.
  • the primary scoring groove 532 farthest from the second side 55 is recessed from the first side 54 toward the second side 55 .
  • the two-stage scoring grooves 532 are respectively a first-level scoring groove and a second-level scoring groove.
  • the first-level scoring groove is arranged on the first side 54, that is, the first-level scoring groove is recessed from the first side 54 to the direction close to the second side 55, and the second-level scoring groove is arranged on the first-level scoring groove.
  • the bottom surface of the groove; that is, the second-level scoring groove is recessed from the groove bottom surface of the first-level scoring groove in a direction close to the second side surface 55 .
  • the first-level scoring groove is the outermost first-level scoring groove 532
  • the second-level scoring groove is the innermost first-level scoring groove 532 .
  • Groove portion 53 is made up of multi-stage scoring groove 532, during molding, can process multi-stage scoring groove 532 gradually from the direction of first side 54 to second side 55, and molding efficiency is high.
  • FIG. 65 is an axonometric view of the battery box provided in some embodiments of the present application
  • FIG. 66 is a schematic structural view of the battery box shown in FIG. Slot 532 and first-level sinker 533
  • Figure 67 is an O-O cross-sectional view of the battery box shown in Figure 66
  • Figure 68 is a schematic structural view of the battery box provided by some other embodiments of the application (showing the first-level scoring groove 532 and first-level sinking groove 533)
  • Figure 69 is a P-P cross-sectional view of the battery box shown in Figure 68; sinking groove 533
  • Figure 71 is a Q-Q sectional view of the battery box shown in Figure 70.
  • the battery box 21 includes a first side 54 and a second side 55 that are oppositely arranged, and the groove portion 53 also includes a primary sinker 533 , the sinker 533 is recessed from the first side 54 toward the direction close to the second side 55 , and the pressure relief area 56 Formed on the tank bottom wall 5331 of the sinker.
  • the groove portion 53 may include a one-stage sinking groove 533 .
  • the groove portion 53 has not only a scoring groove 532 but also a sinking groove 533 , and the groove portion 53 is a multi-stage groove.
  • the sunken groove 533 and the scoring groove 532 are arranged along the direction from the first side 54 to the second side 55 .
  • the sinking groove 533 can be formed on the battery box first, and then the scoring groove 532 can be formed on the bottom wall 5331 of the sinking groove.
  • the bottom wall 5331 of the sinker is the part of the battery box below the bottom of the sinker 533. After the sinker 533 is formed on the first side 54, the remaining part of the battery box in the area where the sinker 533 is set is the part of the sinker. Groove bottom wall 5331. As shown in FIG. 67 , FIG. 69 , and FIG. 71 , the part of the battery case 21 located between the bottom surface of the sinker 533 and the second side 55 is the bottom wall 5331 of the sinker. Wherein, the pressure relief area 56 may be a part of the tank bottom wall 5331 of the sinker.
  • the setting of the sinking groove 533 can reduce the depth of the scoring groove 532 under the condition that the thickness of the final weak zone 52 is constant, thereby reducing the forming force on the battery box when forming the scoring groove 532, and reducing the generation of the battery box. Risk of cracking.
  • the sunken groove 533 can provide an escape space for the pressure relief area 56 during the opening process, even if the first side 54 is blocked by an obstacle, the pressure relief area 56 can still be opened for pressure relief.
  • FIG. 72 is a schematic structural diagram of a battery box provided in some embodiments of the present application (showing a first-level scoring groove 532 and a two-level sinking groove 533);
  • FIG. 73 is a diagram The R-R sectional view of the battery box shown in 72;
  • FIG. 74 is a schematic structural diagram of the battery box provided by some other embodiments of the present application (showing the first-level scoring groove 532 and the two-level sinking groove 533);
  • FIG. 75 is shown in FIG. 74 The S-S sectional view of the battery box;
  • FIG. 72 is a schematic structural diagram of a battery box provided in some embodiments of the present application (showing a first-level scoring groove 532 and a two-level sinking groove 533);
  • FIG. 75 is shown in FIG. 74 The S-S sectional view of the battery box;
  • FIG. 74 The S-S sectional view of the battery box;
  • FIG. 76 is a schematic structural view of the battery box provided by other embodiments of the present application (showing a first-level scoring groove 532 and a two-level sinking groove 533);
  • FIG. 77 is the battery box shown in FIG. 76 The T-T section view.
  • the battery box includes a first side 54 and a second side 55 that are oppositely arranged, and the groove portion 53 also includes a multi-level sinker 533 , and the multi-level sinker 533 is sequentially arranged on the battery box 21 along the direction from the first side 54 to the second side 55 , the primary sinker 533 farthest from the second side 55 is recessed from the first side 54 toward the second side 55 , and the pressure relief area 56 is formed on the bottom wall 5331 of the primary sinker farthest from the first side 54 .
  • the groove portion 53 may include multi-level sinking grooves 533 . Understandably, the groove portion 53 has not only a scoring groove 532 but also a sinking groove 533 , and the groove portion 53 is a multi-stage groove.
  • the sunken groove 533 and the scoring groove 532 are arranged along the direction from the first side 54 to the second side 55 .
  • the multi-level sinker 533 can be formed on the battery box first, and then the scoring groove 532 can be formed on the bottom wall 5331 of the first-level sinker farthest from the first side 54 .
  • the primary sinker 533 farthest from the second side 55 is the outermost primary sinker 533
  • the primary sinker 533 farthest from the first side 54 is the innermost primary sinker 533
  • the outermost primary sinker 533 is disposed on the first side 54
  • the outermost primary sinker 533 is recessed from the first side 54 toward the second side 55 .
  • the groove bottom wall 5331 of the first-level sinking groove farthest from the first side 54 is the part of the battery box below the groove bottom of the first-level sinking groove 533 farthest from the first side 54.
  • the remaining part of the battery box in the region where the primary sink 533 is farthest from the first side 54 is the bottom wall 5331 of the sink.
  • the part of the battery case located between the bottom surface of the first-level sink 533 farthest from the first side 54 and the second side 55 is the first-level sink farthest from the first side 54.
  • the pressure relief area 56 may be a part of the tank bottom wall 5331 of the primary sinker farthest from the first side 54 .
  • the sinker 533 in the groove portion 53 may be two-stage, three-stage, four-stage or more.
  • the first-stage sinker 533 away from the first side 54 is disposed on the bottom surface of the first-stage sinker 533 close to the first side 54 .
  • the profile of the bottom surface of the multi-stage sinker 533 decreases step by step.
  • the sink grooves 533 at all levels can be formed on the battery case by stamping. During molding, sinking grooves 533 at various levels may be punched and formed sequentially along the direction from the first side 54 to the second side 55 , and then the scoring groove 532 may be punched and formed.
  • the sinking groove 533 in the groove portion 53 as two stages and the notch groove 532 as one stage as an example, when stamping and forming, two stampings can be performed first to form the two-stage sinking groove 533, and then one stamping is performed to achieve Correspondingly, a first-level scoring groove 532 is formed.
  • the sinker 533 in the groove portion 53 has two stages.
  • the multi-level sinker 533 When the multi-level sinker 533 is formed, the forming depth of each level of sinker 533 can be reduced, the forming force on the battery box when forming each level of sinker 533 can be reduced, and the risk of cracks in the battery box can be reduced.
  • the multi-level sinker 533 can provide a shelter space for the pressure relief area 56 during the opening process, even if the first side 54 is blocked by an obstacle, the pressure relief area 56 can still be opened for pressure relief.
  • the inner space of the sinker 533 is a cylinder, a prism, a cone or a pyramid.
  • the inner space of the sinker 533 is the space defined by the sides and the bottom of the sinker 533 .
  • the prism body may be triangular prism, quadrangular prism, pentagonal prism, hexagonal prism, etc.;
  • the inner space of the groove portion 53 is a quadrangular prism, specifically, the inner space of the groove portion 53 is a cuboid.
  • the sunken groove 533 has a simple structure and is easy to form, and can provide more escape space for the pressure relief area 56 during the opening process.
  • the scoring groove 532 includes a first groove segment 5321 , a second groove segment 5322 and a third groove segment 5323 , the first groove segment 5321 and the second groove segment 5323 Three groove segments 5323 are arranged oppositely, the second groove segment 5322 connects the first groove segment 5321 and the third groove segment 5323 , and the first groove segment 5321 , the second groove segment 5322 and the third groove segment 5323 are along the edge of the pressure relief area 56 set up.
  • the first groove segment 5321 , the second groove segment 5322 and the third groove segment 5323 can be linear grooves or non-linear grooves, for example, arc-shaped grooves.
  • the first groove segment 5321, the second groove segment 5322 and the third groove segment 5323 are all linear grooves
  • the first groove segment 5321, the second groove segment 5322 and the third groove segment 5323 are all linear grooves.
  • the first groove section 5321 and the third groove section 5323 can be arranged in parallel, or they can be arranged at an included angle. Both the first slot segment 5321 and the third slot segment 5323 may be perpendicular to the second slot segment 5322 , or they may not be perpendicular to the second slot segment 5322 .
  • connection position between the second groove segment 5322 and the first groove segment 5321 may be located at one end of the first groove segment 5321, or at a position deviated from one end of the first groove segment 5321, for example, the second groove segment 5322 and the first groove segment
  • the connection position of 5321 is located at the midpoint of the first groove segment 5321 in the extension direction; the connection position of the second groove segment 5322 and the third groove segment 5323 can be located at one end of the third groove segment 5323, or the position can be deviated from the third groove segment
  • the position of one end of 5323, for example, the connection position between the second groove segment 5322 and the third groove segment 5323 is located at the midpoint of the third groove segment 5323 in the extending direction.
  • the groove portion 53 includes multi-level scoring grooves 532
  • the The first groove section 5321 is arranged on the groove bottom surface of the first groove section 5321 of the first-level scoring groove 532 close to the first side 54
  • the second groove section 5322 of the first-level scoring groove 532 away from the first side 54 is arranged near The groove bottom surface of the second groove section 5322 of the first-level scoring groove 532 of the first side 54
  • the groove bottom surface of the third groove segment 5323 of the trace groove 532 is arranged.
  • the pressure relief area 56 can be opened with the first groove segment 5321 , the second groove segment 5322 and the third groove segment 5323 as boundaries, and it is easier to open the pressure relief area 56 when the battery cell 20 is depressurized. Realize large-area pressure relief of the battery box.
  • the press zone 56 is located on both sides of the second groove segment 5322 respectively.
  • the first groove segment 5321 , the second groove segment 5322 and the third groove segment 5323 form an H-shaped scoring groove 532 , and the connection position between the second groove segment 5322 and the first groove segment 5321 is located at the edge of the first groove segment 5321 The midpoint position, the connection position between the third groove segment 5323 and the second groove segment 5322 is located at the midpoint position of the third groove segment 5323 .
  • the two pressure relief regions 56 are symmetrically disposed on two sides of the second groove section 5322 .
  • the two pressure relief areas 56 are respectively located on both sides of the second groove section 5322, so that the two pressure relief areas 56 are bounded by the second groove section 5322. After the battery box is broken at the position of the second groove section 5322, the two pressure relief areas 56 can be opened in half along the first groove section 5321 and the third groove section 5323 to realize pressure relief, which can effectively improve the pressure relief efficiency of the battery box.
  • first groove segment 5321, the second groove segment 5322 and the third groove segment 5323 are sequentially connected, and the first groove segment 5321, the second groove segment 5322 and the third groove segment 5323 define a pressure relief area 56.
  • the first groove segment 5321 , the second groove segment 5322 and the third groove segment 5323 are sequentially connected to form a U-shaped scoring groove 532 .
  • the scoring groove 532 is a groove extending along an unclosed trajectory.
  • An unclosed trajectory refers to a trajectory whose two ends in the extending direction are not connected, and the unclosed trajectory may be an arc trajectory, a U-shaped trajectory, or the like.
  • the scoring groove 532 is a groove along an unclosed track, and the pressure relief area 56 can be opened in an overturned manner. After the pressure relief area 56 is opened, it is finally connected with other areas of the battery box, and the pressure relief area 56 is opened to reduce the pressure. risk of splashing.
  • the scoring groove 532 is an arc-shaped groove.
  • the arc-shaped groove is a groove extending along an arc-shaped track, and the arc-shaped track is an unclosed track.
  • the central angle of the arc-shaped groove can be less than, equal to or greater than 180°.
  • the arc-shaped groove has a simple structure and is easy to form. During the pressure relief process, the pressure relief area 56 can be rapidly ruptured along the arc-shaped groove, so that the pressure relief area 56 can be quickly opened.
  • the scoring groove 532 is a groove extending along a closed track.
  • a closed trajectory refers to a trajectory whose ends are connected.
  • the closed trajectory can be a circular trajectory, a rectangular trajectory, and the like.
  • the battery case 21 can be broken along the scored groove 532, so that the pressure relief area 56 can be opened in a disengaged manner, which increases the pressure relief area of the battery case 21 and improves the pressure relief rate of the battery case 21.
  • the scoring groove 532 is an annular groove.
  • the annular groove can be a rectangular annular groove or a circular annular groove.
  • the annular groove has a simple structure and is easy to form. During the pressure relief process, the battery case 21 can be quickly broken along the annular groove, so that the pressure relief area 56 can be quickly opened.
  • the area of the pressure relief area 56 is E1, which satisfies: 90mm 2 ⁇ E1 ⁇ 1500mm 2 .
  • the shaded area is the area of the pressure relief area 56 .
  • the area of the pressure relief region 56 is the area defined by the deepest (innermost) first-level scoring groove 532 .
  • the area E1 of the pressure relief area 56 can be 90mm 2 , 95mm 2 , 100mm 2 , 150mm 2 , 200mm 2 , 250mm 2 , 300mm 2 , 350mm 2 , 400mm 2 , 450mm 2 , 500mm 2 , 550mm 2 , 600mm 2 , 650mm 2 , 700mm2 , 750mm2 , 800mm2, 900mm2 , 950mm2 , 1000mm2 , 1050mm2, 1100mm2 , 1150mm2 , 1200mm2 , 1250mm2 , 1300mm2 , 1350mm2 , 1400mm2 , 1450mm 2 , 1500mm 2 any Either a point value or any range value in between.
  • the groove portion 53 only includes a first-level scoring groove 532, the scoring groove 532 is arranged on the first side 54, and the groove side of the scoring groove 532 intersects with the first side 54 to form The outer edge 534 , the groove side of the scoring groove 532 surrounds the groove bottom surface of the scoring groove 532 .
  • the notch groove 532 is a groove extending along a closed track, the groove side of the notch groove 532 intersects with the first side 54 to form an inner ring line and the outer side of the inner ring line.
  • the outer ring line is the outer edge 534 .
  • the groove portion 53 only includes a multi-level scoring groove 532, the outermost scoring groove 532 is arranged on the first side 54, and the groove side of the outermost scoring groove 532 is in contact with The first sides 54 intersect to form an outer edge 534 .
  • the notch groove 532 is a groove extending along a closed track, the outermost notch groove 532 intersects with the first side 54 to form an inner ring line and the outermost notch groove 532 is located outside the inner ring line.
  • the outer ring line is the outer edge 534 .
  • the groove portion 53 further includes a first-level sinking groove 533 , the sinking groove 533 is arranged on the first side 54 , and the groove side of the sinking groove 533 intersects with the first side 54 to form an outer edge 534 The sides of the sinker 533 are surrounded by the bottom of the sinker 533 .
  • the groove portion 53 also includes a multi-level sinker 533 , the outermost first-level sinker 533 is arranged on the first side 54 , and the outermost first-level sinker is connected to the first side. 54 intersect to form outer edge 534 .
  • the distance between the outer edge 534 and the inner edge 511 of the non-weakened area 51 is the first distance g, and the shape of the inner edge 511 of the non-weakened area 51 may be substantially the same as that of the outer edge 534 .
  • the direction of the first distance g may be perpendicular to the thickness direction of the non-weakened region 51 , that is, the first distance may be measured along the direction perpendicular to the thickness of the non-weakened region 51 .
  • the measurement may be performed in a region other than the outer edge 534 .
  • the non-weakened region 51 is not easily affected by the process of forming the groove portion 53 , so that the grains of the non-weakened region 51 are more uniform.
  • FIG. 53 and FIG. 59 in the embodiment where the first groove segment 5321 and the third groove segment 5323 of the scoring groove 532 are arranged opposite to each other, the first groove segment 5321 and the third groove segment 5323 Parallel as an example, when the distance between the first groove section 5321 and the third groove section 5323 is greater than 2*g, the inner edge 511 of the non-weakened area 51 is partially located in the pressure relief area 56, so that the pressure relief area 56 is partially located in the non-weakened area. District 51.
  • FIG. 78 is a schematic structural diagram of a battery box provided in other embodiments of the present application.
  • the inner edge 511 of the non-weakened area 51 is not located in the pressure relief area 56 , and the inner edge 511 of the non-weakened area 51 is substantially rectangular.
  • the distance between the first groove segment 5321 and the inner edge 511 of the non-weakened area 51 is g;
  • the distance between the inner edge 511 is g; along the width direction of the third groove segment 5323, the distance between the third groove segment 5323 and the inner edge 511 of the non-weakened area 51 is g; along the length direction of the third groove segment 5323, the third groove
  • the distance between the segment 5323 and the inner edge 511 of the non-weakened area 51 is g.
  • FIG. 79 is a grain diagram (schematic diagram) of a battery case provided in other embodiments of the present application.
  • the battery case 21 also includes a transition region 57 connecting the weakened region 52 and the non-weakened region 51 .
  • the average grain size of the transition region 57 is S 3 , which satisfies: S 3 ⁇ S 2 .
  • S 3 >S 1 .
  • the transition zone 57 is the part of the battery box 21 connecting the weak zone 52 and the non-weak zone 51.
  • the transition zone 57 is arranged around the outer side of the weak zone 52, and the non-weak zone 51 is around the outside of the transition zone 57.
  • the weak zone 52, the transition zone 57 It is integrally formed with the non-weakened area 51.
  • the average grain size of the transition region 57 may gradually decrease from the non-weakened region 51 to the weakened region 52 .
  • the average grain size of the transition region 57 located outside the sinker groove 533 may be larger than that of the transition region 57
  • the average grain size of the bottom area of the sinker 533, the average grain size of the transition zone 57 outside the sinker 533 may be less than or equal to the average grain size S2 of the non-weakened zone 51, the transition zone 57 is located in the sinker
  • the average grain size of the bottom region 533 may be larger than the average grain size S 1 of the weakened region 52 .
  • the transition area 57 plays a role of connecting the weakened area 52 and the non-weakened area 51 , realizing the integral formation of the weakened area 52 and the non-weakened area 51 .
  • FIG. 80 is a schematic structural diagram of an end cap 11 provided in some embodiments of the present application.
  • the battery case 21 is an end cover 11 , the end cover 11 is used to close the opening of the casing 12 , and the casing 12 is used to accommodate the electrode assembly 22 .
  • the end cap 11 is provided with a groove portion 53 to form a weakened area 52 and a non-weakened area 51 correspondingly.
  • the first side 54 and the second side 55 of the battery case are respectively two opposite surfaces of the end cover 11 in the thickness direction, that is, one of the first side 54 and the second side 55 is the side of the end cover 11 in the thickness direction. the inner surface, and the other is the outer surface of the end cover 11 in the thickness direction.
  • the end cap 11 can be a circular or rectangular plate-like structure.
  • the end cap 11 is a rectangular plate-like structure.
  • the end cap 11 has a pressure relief function to ensure the safety of the battery cell 20 .
  • FIG. 81 is a schematic structural diagram of the housing 12 provided by some embodiments of the present application
  • FIG. 82 is a schematic structural diagram of the housing 12 provided by other embodiments of the present application.
  • the battery case is a casing 12 with an opening, and the casing 12 is used to accommodate the electrode assembly 2 .
  • the housing 12 is a battery box, and the end cap 11 is used to close the opening of the housing 12 .
  • the casing 12 may be a hollow structure with an opening at one end, or a hollow structure with openings at opposite ends.
  • the casing 12 and the end cap 11 may form the casing 1 of the battery cell 20 .
  • the casing 12 may be a cuboid, a cylinder, or the like.
  • the battery box 21 is the casing 12 , so that the casing 12 has a pressure relief function to ensure the safety of the battery cells 20 .
  • the casing 12 includes a plurality of integrally formed wall portions 121 , and the plurality of wall portions 121 jointly define the inner space of the casing 12 , and at least one of the wall portions 121 is provided with the groove portion 53 .
  • a groove portion 53 may be provided on one wall portion 121 to form an integrally formed weakened area 52 and a non-weakened area 51 on the wall portion 121; grooves may also be provided on multiple wall portions 121
  • the portion 53 is formed to form an integrally formed weakened area 52 and a non-weakened area 51 on each wall portion 121 where the groove portion 53 is provided.
  • the first side 54 and the second side 55 of the battery case are two opposite surfaces of the wall 121 in the thickness direction, namely the first side 54 and the second side 55. One of them is the inner surface of the wall portion 121 in the thickness direction, and the other is the outer surface of the wall portion 121 in the thickness direction.
  • the plurality of wall portions 121 are integrally formed, so that the wall portion 121 provided with the groove portion 53 has better reliability.
  • the plurality of wall portions 121 include a bottom wall 121b and a plurality of side walls 121a surrounding the bottom wall 121b, and the housing 12 is opposite to the bottom wall 121b.
  • An opening is formed at one end.
  • the bottom wall 121b is provided with a groove portion 53 ; and/or, at least one side wall 121a is provided with a groove portion 53 .
  • the housing 12 is a hollow structure with an opening formed at one end.
  • the side walls 121a in the housing 12 may be three, four, five, six or more. There may be one, two, three, four, five, six or more side walls 121 a provided with the groove portion 53 .
  • FIG. 81 only one side wall 121a is provided with a groove portion 53, so as to form a weakened area 52 and a non-weakened area 51 on the side wall 121a; in FIG. 82, only the second cavity wall 30i1b is provided There is a groove portion 53 for correspondingly forming a weakened area 52 and a non-weakened area 51 on the bottom wall 121b.
  • the housing 12 is a cuboid. Understandably, there are four side walls 121 a in the casing 12 .
  • the rectangular parallelepiped casing 12 is suitable for a rectangular battery cell and can meet the requirement of a large capacity of the battery cell 20 .
  • the material of the battery box 21 includes aluminum alloy.
  • the aluminum alloy battery box is light in weight, has good ductility, has good plastic deformation ability, and is easy to form. Due to the good ductility of the aluminum alloy, it is easier to control S 1 /S 2 below 0.5 (including 0.5) when forming the groove portion 53 on the battery case by stamping, and the forming efficiency is higher.
  • the aluminum alloy includes the following components in mass percentage: aluminum ⁇ 99.6%, copper ⁇ 0.05%, iron ⁇ 0.35%, magnesium ⁇ 0.03%, manganese ⁇ 0.03%, silicon ⁇ 0.25%, titanium ⁇ 0.03% %, vanadium ⁇ 0.05%, zinc ⁇ 0.05%, other individual elements ⁇ 0.03%.
  • This aluminum alloy has lower hardness and better forming ability, reduces the difficulty of forming the groove portion 53, improves the forming precision of the groove portion 53, and improves the consistency of pressure relief of the battery box.
  • the aluminum alloy includes the following components in mass percentage: aluminum ⁇ 96.7%, 0.05% ⁇ copper ⁇ 0.2%, iron ⁇ 0.7%, manganese ⁇ 1.5%, silicon ⁇ 0.6%, zinc ⁇ 0.1%, The composition of other individual elements is ⁇ 0.05%, and the total composition of other elements is ⁇ 0.15%.
  • the battery box made of this aluminum alloy has higher hardness, high strength and good resistance to damage.
  • the battery cell 20 further includes a casing 12 having an opening, and the casing 12 is used for accommodating the electrode assembly 22 .
  • the battery box 21 is an end cover 11, and the end cover 11 closes the opening.
  • the battery box 21 is a casing 12 having an opening, and the casing 12 is used to accommodate the electrode assembly 22 .
  • the battery cell 20 also includes an end cap 11 that closes the opening.
  • FIG. 83 is a schematic structural diagram of a battery cell 20 provided in some embodiments of the present application, and the weakened area 52 is located at the lower part of the battery cell 20 .
  • the battery box 21 includes a casing 12 and an end cover 11 , and the end cover 11 closes the opening of the casing 12 .
  • the casing 12 and the end cover 11 are arranged along the height direction of the battery box 21, along the height direction of the battery box 21, the middle plane Y is located on the outer surface of the end cover 11 away from the casing 12 and the outer surface of the casing 12 away from the end cover 11 middle position.
  • the weakened area 52 is located at the lower part of the battery cell 20 , and the groove 53 is located at the lower part of the battery cell 20 , and both the weakened area 52 and the groove 53 are located below the mid-plane Y.
  • the weakened area 52 can be located in the housing 12 , and the weakened area 52 can also be located in the end cover 11 .
  • the weakened area 52 can be located on the side wall 121 a of the housing 12 , and can also be located on the bottom wall 121 b of the housing 12 . As shown in FIG.
  • the bottom wall 121b of the housing 12 may be located below the end cover 11, and the weak area 52 is located below the middle plane Y, so that the weak area 52
  • the distance to the bottom wall 121b of the casing 12 is greater than the distance from the weakened area 52 to the end cap 11 .
  • the weak area 52 Since the weak area 52 is located at the lower part of the battery cell 20, during the use of the battery 100, under the action of gravity of the electrode assembly 2 and the electrolyte inside the battery cell 20, the weak area 52 will be subject to a relatively large force.
  • the weakened area 52 and the non-weakened area 51 are integrally formed, have good structural strength, have better reliability, and increase the service life of the battery cell 20 .
  • the battery cell 20 includes a casing 12, the casing 12 is used to accommodate the electrode assembly 22, and the casing 12 includes an integrally formed bottom wall 121b and a plurality of side walls 121a surrounding the bottom wall 121b.
  • the bottom wall 121b is integrally formed with the side wall 121a
  • the shell 12 forms an opening at an end opposite to the bottom wall 121b
  • the weak zone 52 is located at the bottom wall 121b.
  • the bottom wall 121b is located below the middle plane Y. As shown in FIG.
  • the weakened area 52 is located on the bottom wall 121b, so that the weakened area 52 is set downward.
  • the battery 100 is generally installed below the passenger compartment, and the weak area 52 is set downward, so that the discharge discharged from the thermal runaway of the battery cell 20 is sprayed in a direction away from the passenger compartment, reducing the impact of the discharge on the passenger compartment. impact and reduce the risk of safety accidents.
  • the battery cell 20 includes an end cap 11 for closing the opening of the case 12 , the case 12 is used for accommodating the electrode assembly 22 , and the weakened area 52 is located on the end cap 11 .
  • the end cap 11 is located below the middle plane Y.
  • the weakened area 52 is located on the end cap 11, so that the weakened area 52 is set downward.
  • the discharge in the battery cell 20 will spray downward. to reduce the risk of safety accidents.
  • the embodiment of the present application provides an end cover 11 for the battery cell 20 , and the end cover 11 includes an integrally formed non-weakened area 51 and a weakened area 52 .
  • the end cover 11 is provided with a first-level groove portion 53, the non-weakened area 51 is formed around the groove portion 53, and the weakened area 52 is formed at the bottom of the groove portion 53, and the weakened area 52 is configured to be closed when the battery cell 20 releases internal pressure. destroy.
  • There is a first side 54 away from the inside of the battery cell 20 the groove 53 forms an outer edge 534 on the first side 54 , and the area of the end cap 11 away from the outer edge 534 is a non-weakened area 51 .
  • the average grain size of the weakened region 52 is S 1
  • the average grain size of the non-weakened region 51 is S 2
  • the minimum thickness of the weakened region 52 is A
  • the minimum thickness of the non-weakened region 51 is B
  • the hardness of the weakened region 52 is H 1
  • the hardness of the non-weak zone 51 is H 2 , satisfying: 0.1 ⁇ S 1 /S 2 ⁇ 0.5, 5 ⁇ A/S 1 ⁇ 20, 190HBW/mm ⁇ H 1 /A ⁇ 4000HBW/mm, 1 ⁇ H 1 /H 2 ⁇ 2.5, 0.2 ⁇ A/B ⁇ 0.5.
  • the embodiment of the present application provides a casing 12 for the battery cell 20 , and the casing 12 includes an integrally formed non-weakened area 51 and a weakened area 52 .
  • the casing 12 is provided with a first-level groove portion 53, the non-weakened area 51 is formed around the groove portion 53, and the weakened area 52 is formed at the bottom of the groove portion 53, and the weakened area 52 is configured to be energized when the internal pressure of the battery cell 20 is released. destroy.
  • There is a first side 54 away from the inside of the battery cell 20 the groove 53 forms an outer edge 534 on the first side 54 , and the area of the end cap 11 away from the outer edge 534 is a non-weakened area 51 .
  • the average grain size of the weakened region 52 is S 1
  • the average grain size of the non-weakened region 51 is S 2
  • the minimum thickness of the weakened region 52 is A
  • the minimum thickness of the non-weakened region 51 is B
  • the hardness of the weakened region 52 is H 1
  • the hardness of the non-weak zone 51 is H 2 , satisfying: 0.1 ⁇ S 1 /S 2 ⁇ 0.5, 5 ⁇ A/S 1 ⁇ 20, 190HBW/mm ⁇ H 1 /A ⁇ 4000HBW/mm, 1 ⁇ H 1 /H 2 ⁇ 2.5, 0.2 ⁇ A/B ⁇ 0.5.
  • the battery cell 20 is a square battery cell 20
  • the end cap 11 in the battery cell 20 is used as a battery box
  • the capacity is 150 Ah
  • the chemical system is NCM.
  • the average grain size of the weakened region 52 and the non-weakened region 51 is measured by electron backscatter diffraction (EBSD).
  • EBSD electron backscatter diffraction
  • the battery box is cut into three sections, and the sections at both ends of the middle section have weak areas 52 and non-weakened areas 51 .
  • the cutting direction is perpendicular to the length direction of the weak region 52, and the cutting equipment does not change the grain structure.
  • Select the middle section for sampling the thickness of the sample is less than 5mm, and the length is less than 10mm.
  • SEM scanning electron microscope
  • EBSD electron backscatter diffraction
  • Cut the battery case into three sections take the middle section as a sample, and the sections at both ends of the sample have weak areas 52 and non-weak areas 51 .
  • the cutting direction is perpendicular to the length direction of the weak zone 52 .
  • the sample is placed on a three-dimensional coordinate measuring instrument, and the thickness of the weak area 52 and the non-weak area 51 on the cross-section is measured.
  • the cut-off condition of the test is: the service life of the battery cells 20 drops to 80% SOH or the weak zone 52 of any group of battery cells 20 cracks during the cycle.
  • the condition for judging the cracking of the weak area 52 is: the air pressure inside the battery cell 20 drops, and the drop value is >10% of the maximum air pressure.
  • the average grain size S 1 of the weakened region 52 the average grain size S 2 of the non-weakened region 51 , the minimum thickness A 1 of the weakened region 52 , and the minimum thickness A 2 of the non-weakened region 51
  • the test results of the hardness B 1 of the weakened area 52 and the hardness B 2 of the non-weakened area 51 are shown in Table 11;
  • the explosion rate Q2 when out of control is shown in Table 12.
  • Example 7 when S 1 /S 2 ⁇ 0.5, it is more difficult for the weak region 52 to be destroyed when the battery cell 20 is thermally runaway, and the risk of explosion of the battery cell 20 is significantly increased if the pressure is not released in time . From Examples 3 to 5, it can be seen that when 0.1 ⁇ S 1 /S 2 ⁇ 0.5, the cracking rate of the weak region 52 under the normal use condition of the battery cell 20 and the explosion rate of the battery cell 20 under thermal runaway are equal. Lower, to ensure that the weak region 52 can be destroyed in time when the battery cell 20 is thermally runaway, and ensure that the weak region 52 has sufficient strength under the normal use condition of the battery cell 20 .
  • Example 25-30 From the comparison between Examples 25-30 and Example 24, it can be seen that when A 1 /A 2 >0.95, the explosion rate of the battery cell 20 is higher when thermal runaway occurs. Comparing Examples 25-30 with Example 31 shows that when A 1 /A 2 ⁇ 0.05, the cracking rate of the weakened region 52 is higher under the normal use condition of the battery cell 20 . And 0.05 ⁇ A 1 /A 2 ⁇ 0.95 can not only reduce the risk of rupture of the weak area 52 under the normal use condition of the battery cell 20, but also can release the pressure in time through the weak area 52 when the battery cell 20 is thermally runaway, reducing the battery life. Risk of cell 20 explosion.
  • the electrode assembly 22 includes a positive electrode sheet 1B and a negative electrode sheet 2B, and the positive electrode sheet 1B and/or the negative electrode sheet 2B includes a current collector 22A and an active material layer 22B.
  • the fluid 22A includes a support layer 22A1 and a conductive layer 22A2.
  • the support layer 22A1 is used to carry the conductive layer 22A2.
  • the support layer 22A1 has an appropriate rigidity to support and protect the conductive layer 22A2 and ensure the overall strength of the current collector 22A.
  • the conductive layer 22A2 is used to carry the active material layer 22B, and is used to provide electrons for the active material layer 22B, that is, to conduct electricity and collect current. role.
  • the weight of the current collector 22A of the present application is significantly lighter than that of the traditional current collector, so the current collector 22A of the present application can significantly increase the weight energy of the electrochemical device. density.
  • the supporting layer 22A1 is an insulating layer.
  • the conductive layer is disposed on at least one side of the support layer, and the conductive layer may be disposed on two opposite surfaces of the support layer.
  • Figure 84 and Figure 86 a conductive layer can also be provided on only one side of the supporting layer, and its structural diagram is shown in Figure 85 and Figure 87.
  • the room temperature sheet resistance R S of the conductive layer 22A2 satisfies: 0.016 ⁇ / ⁇ R S ⁇ 420 ⁇ / ⁇ .
  • the sheet resistance is measured in ohm/square ( ⁇ / ⁇ , which can be applied to a two-dimensional system that considers a conductor as a two-dimensional entity, which is equivalent to the concept of resistivity used in a three-dimensional system.
  • ⁇ / ⁇ the concept of thin film resistance
  • represents the resistivity
  • A represents the cross-sectional area
  • L represents the length.
  • the cross-sectional area can be decomposed into width W and film thickness t, i.e., resistance can be written as:
  • R S is the sheet resistance.
  • L W
  • the measured resistance R is the sheet resistance RS of the diaphragm
  • RS has nothing to do with the size of L or W
  • RS is the resistance value of the unit square, so R S The unit can be expressed as ohms per square ( ⁇ / ⁇ .
  • the normal temperature thin film resistance in the present application refers to the resistance value measured by the four-probe method on the conductive layer under normal temperature conditions.
  • the internal resistance of a battery cell usually includes the ohmic internal resistance of the battery and the polarization internal resistance of the battery, among which the active material resistance, current collector resistance, interface resistance, electrolyte composition, etc. will have a more obvious impact on the internal resistance of the battery cell.
  • the short-circuit current of the battery cell can be greatly reduced in the event of an internal short circuit, so the short-circuit heat generation can be greatly reduced, and the battery cell can be greatly improved.
  • the safety performance of the body in addition, the heat generated by the short circuit can also be controlled within the range that the battery cell can completely absorb, so the heat generated at the location where the internal short circuit occurs can be completely absorbed by the battery cell, and the damage caused to the battery cell
  • the temperature rise is also very small, so that the impact of short-circuit damage on the battery cells can be limited to the "point" range, and only "point breaks" are formed without affecting the normal operation of the battery cells in a short period of time.
  • the room temperature sheet resistance R S of the conductive layer is not greater than 420 ⁇ / ⁇ .
  • the upper limit of room temperature sheet resistance RS can be 420 ⁇ / ⁇ , 400 ⁇ / ⁇ , 350 ⁇ / ⁇ , 300 ⁇ / ⁇ , 250 ⁇ / ⁇ , 200 ⁇ / ⁇ , 150 ⁇ / ⁇ , 100 ⁇ / ⁇ , 80 ⁇ / ⁇ , 60 ⁇ / ⁇ , 40 ⁇ / ⁇ , 25 ⁇ / ⁇ , 20 ⁇ / ⁇ , 18 ⁇ / ⁇ , 16 ⁇ / ⁇ , 14 ⁇ / ⁇ , 12 ⁇ / ⁇ , 10 ⁇ / ⁇ , 8 ⁇ / ⁇ , 6 ⁇ / ⁇ , 4 ⁇ / ⁇ , 2 ⁇ / ⁇ ⁇ , 1.8 ⁇ / ⁇
  • the lower limit of room temperature thin film resistance R S can be 0.016 ⁇ / ⁇ , 0.032 ⁇ / ⁇ , 0.048 ⁇ / ⁇ , 0.064 ⁇ / ⁇ , 0.08 ⁇ / ⁇ , 0.09 ⁇ / ⁇ , 0.1 ⁇ / ⁇ , 0.2 ⁇ / ⁇ , 0.4 ⁇ / ⁇ , 0.6 ⁇ / ⁇ , 0.8 ⁇ / ⁇ , 1 ⁇ / ⁇ , 1.2 ⁇ / ⁇ , 1.4 ⁇ / ⁇ , 1.6 ⁇ / ⁇ ; Arbitrary numerical composition of the lower limit.
  • the normal-temperature sheet resistance of the conductive layer 22A2 satisfies: 0.032 ⁇ / ⁇ ⁇ RS ⁇ 21 ⁇ / ⁇ , more preferably 0.080 ⁇ / ⁇ ⁇ RS ⁇ 8.4 ⁇ / ⁇ .
  • the thickness d2 of the conductive layer 22A2 satisfies: 1 nm ⁇ d2 ⁇ 1 ⁇ m.
  • the upper limit of the thickness d2 of the conductive layer 22A2 may be 1 ⁇ m, 900nm, 800nm, 700nm, 600nm, 500nm, 450nm, 400nm, 350nm, 300, 250nm, 200nm, 150nm, 120nm, 100nm, 80nm, 60nm.
  • the lower limit of the thickness d2 of the layer can be 1nm, 5nm, 10nm, 15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm, 55nm; the range of the thickness d2 of the conductive layer can be composed of any numerical value of the upper limit or the lower limit.
  • the thickness d2 of the conductive layer 22A2 satisfies: 20nm ⁇ d2 ⁇ 500nm, more preferably 50nm ⁇ d2 ⁇ 200nm.
  • the conductive layer 22A2 is too thin, although it is beneficial to increase the normal temperature sheet resistance R S of the current collector 22A, it is easy to be damaged during the pole piece processing process; if the conductive layer 22A2 is too thick, it will affect the battery cell.
  • the gravimetric energy density of the body is not conducive to increasing the room temperature sheet resistance R S of the conductive layer 22A2.
  • the thickness of the supporting layer 22A1 is d1, and d1 satisfies 1 ⁇ m ⁇ d1 ⁇ 50 ⁇ m.
  • the upper limit of the thickness d1 of the support layer 22A1 may be 50 ⁇ m, 45 ⁇ m, 40 ⁇ m, 35 ⁇ m, 30 ⁇ m, 25 ⁇ m, 20 ⁇ m, 15 ⁇ m, 12 ⁇ m, 10 ⁇ m, 8 ⁇ m, and the lower limit of the thickness d1 of the support layer 22A1 may be 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m; the range of the thickness d1 of the support layer 22A1 can be composed of any value with an upper limit or a lower limit.
  • d1 satisfies: 2 ⁇ m ⁇ d1 ⁇ 30 ⁇ m; more preferably, 5 ⁇ m ⁇ d1 ⁇ 20 ⁇ m.
  • the supporting layer 22A1 mainly plays the role of supporting and protecting the conductive layer. If the support layer 22A1 is too thin, it is easy to break during the pole piece processing process; if it is too thick, it will reduce the volumetric energy density of the battery cell using the current collector 22A.
  • the material of the conductive layer 22A2 is selected from at least one of metal conductive materials and carbon-based conductive materials.
  • the metal conductive material is preferably at least one of aluminum, copper, nickel, titanium, silver, nickel-copper alloy, and aluminum-zirconium alloy;
  • the carbon-based conductive material is preferably at least one of graphite, acetylene black, graphene, and carbon nanotubes .
  • the material of the support layer 22A1 includes one or more of polymer materials and polymer-based composite materials.
  • the above polymer materials are, for example, polyamide-based polymers, polyimide-based polymers, polyester-based polymers, polyolefin-based polymers, polyalkyne-based polymers, siloxane polymers, polyethers, polyalcohols , polysulfone, polysaccharide polymers, amino acid polymers, polysulfur nitride polymer materials, aromatic ring polymers, aromatic heterocyclic polymers, polyphenylene sulfide, polysulfones, epoxy resins, phenolic resins , their derivatives, their cross-linked products and their copolymers.
  • the polyamide-based polymer can be one or more of polyamide (Polyamide, referred to as PA, commonly known as nylon) and polyparaphenylene terephthalamide (PPTA, commonly known as aramid);
  • the amine-based polymer can be polyimide (PI);
  • the polyester-based polymer can be polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate One or more of ethylene glycol formate (PEN) and polycarbonate (PC);
  • polyolefin-based polymers can be one of polyethylene (PE), polypropylene (PP) and polypropylene (PPE) One or more; derivatives of polyolefin-based polymers can be polyvinyl alcohol (PVA), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTEE ) and polystyrene sodium sulfonate
  • the above-mentioned polymer materials can also be doped by redox, ionization or electrochemical means.
  • the above-mentioned polymer-based composite material may be compounded by the above-mentioned polymer material and additives, wherein the additives may be one or more of metal materials and inorganic non-metal materials.
  • the metal material can be one or more of aluminum, aluminum alloy, copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, iron, iron alloy, silver and silver alloy;
  • the inorganic non-metallic material can be carbon One or more of base materials, alumina, silicon dioxide, silicon nitride, silicon carbide, boron nitride, silicate and titanium oxide, such as one or more of glass materials, ceramic materials and ceramic composite materials Various.
  • the aforementioned carbon-based material may be one or more of graphite, superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the above-mentioned additives may be carbon-based materials coated with metal materials, such as one or more of nickel-coated graphite powder and nickel-coated carbon fibers.
  • the support layer includes polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) and polyethylene One or more of imides (PI).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyethylene One or more of imides
  • the support layer can be a single-layer structure, or a composite layer structure formed by more than two sub-support layers, such as two-layer, three-layer, four-layer and so on.
  • the materials of each layer may be the same or different.
  • the material of the supporting layer is selected from one of organic polymer insulating materials, inorganic insulating materials, and composite materials. Further preferably, the composite material consists of an organic polymer insulating material and an inorganic insulating material.
  • the organic polymer insulating material is selected from polyamide (Polyamide, referred to as PA), polyethylene terephthalate (Polyethylene terephthalate, referred to as PET), polyimide (Polyimide, referred to as PI), polyethylene (Polyethylene, referred to as PE), polypropylene (Polypropylene, referred to as PP), polystyrene (Polystyrene, referred to as PS), polyvinyl chloride (Polyvinyl chloride, referred to as PVC), acrylonitrile-butadiene-styrene copolymer (Acrylonitrile Butadiene styrene copolymers, referred to as ABS), polybutylene terephthalate (Polybutylene terephthalat, referred to as PBT), poly-p-phenylene terephthalamide (Poly-p-phenylene terephthalamide, referred to as PPA), epoxy resin (
  • the inorganic insulating material is preferably at least one of alumina (Al2O3), silicon carbide (SiC), and silicon dioxide (SiO2); the compound is preferably epoxy resin glass fiber reinforced composite material, polyester resin glass fiber reinforced composite material at least one.
  • the embodiment of the present application can improve the weight energy density of the battery cell while improving the safety performance of the battery cell. And because the support layer can play a good role in carrying and protecting the conductive layer on its surface, it is not easy to cause the pole piece fracture phenomenon that is common in traditional current collectors.
  • the conductive layer can be formed on the insulating layer by at least one of mechanical rolling, bonding, vapor deposition (vapor deposition), and electroless plating (Electroless plating), and the vapor deposition method is preferably physical vapor deposition.
  • the physical vapor deposition method is preferably at least one of evaporation method and sputtering method; the evaporation method is preferably vacuum evaporation (vacuum evaporating), thermal evaporation (Thermal Evaporation Deposition), electron beam evaporation method (Electron beam evaporation method, EBEM) at least one, the sputtering method is preferably magnetron sputtering (Magnetron sputtering).
  • the structure of the current collector in order to facilitate the penetration of the electrolyte into the electrode active material layer and reduce the polarization of the battery cells, the structure of the current collector can be further improved, for example, holes can be set in the conductive layer, 10 ⁇ m ⁇ The diameter of the hole ⁇ 100 ⁇ m, the ratio of the area of the hole to the total area of the conductive layer can be 5% ⁇ 50%; or a through hole penetrating the support layer and the conductive layer is set in the current collector, 10 ⁇ m ⁇ The diameter of the through hole ⁇ 100 ⁇ m , the porosity of the current collector may be 5% to 50%.
  • electroless plating may be used to form holes in the conductive layer
  • mechanical drilling may be used to form through holes in the current collector through the support layer and the conductive layer.
  • the positive electrode sheet 1B includes a current collector (or called a positive electrode current collector 10B) and an active material layer (or called a positive electrode active material layer 11B) formed on the surface of the current collector, and the positive electrode current collector 10 includes a positive electrode support layer 101 and positive electrode conductive layer 102 .
  • the structural schematic diagrams of the positive electrode current collector 10B are shown in FIG. 84 and FIG. 85
  • the structural schematic diagrams of the positive electrode sheet 1B are shown in FIG. 88 and FIG. 89 .
  • the negative electrode sheet 2B includes a current collector (or negative electrode current collector 20B) and an active material layer (or negative electrode active material layer 21B) formed on the surface of the current collector, and the negative electrode current collector 20B includes a negative electrode support layer 201 and Negative electrode conductive layer 202 . 154 and 155 , and the structural schematic diagrams of the negative electrode sheet 2B are shown in FIGS. 90 and 91 .
  • the prepared pole piece is shown in FIG. 88 and FIG. 89, It can be directly applied to battery cells.
  • Figure 85 and Figure 87 when one side of the insulating layer is provided with a conductive layer, the current collector is coated with an active material on one side, and the prepared pole piece is shown in Figure 89 and Figure 91, which can be folded and applied to in the battery cell.
  • the positive electrode sheet of the battery cell of the present application adopts the above-mentioned configuration including a current collector and an active material layer.
  • the aluminum content in the conventional positive current collector is high, when the battery cell is short-circuited under abnormal conditions, the heat generated at the short-circuit point can trigger a severe thermite reaction, thereby generating a large amount of heat and causing accidents such as explosion of the battery cell , so when the positive electrode sheet of the battery cell adopts the above structure, since the amount of aluminum in the positive electrode current collector is only nano-scale thickness, the amount of aluminum in the positive electrode current collector is greatly reduced, so that thermite reaction can be avoided, thereby Significantly improve the safety performance of battery cells.
  • Fig. 92 is a schematic diagram of a nail-piercing experiment of the present application. For the sake of simplicity, the figure only shows that the nail 4B penetrates one layer of positive electrode sheet 1B, one layer of separator 3B and one layer of negative electrode sheet 2B of the battery. It should be noted that the actual nail penetration experiment is that the nail 4B penetrates the entire battery
  • the monomer generally includes a multilayer positive electrode sheet 1B, a multilayer separator 3B and a multilayer negative electrode sheet 2B.
  • r represents the internal resistance of the battery
  • Cap represents the capacity of the battery cell
  • A is a coefficient.
  • the battery cell capacity Cap is the theoretical capacity of the battery cell, usually the theoretical capacity of the positive plate of the battery cell.
  • R can be obtained by testing with an internal resistance meter.
  • the battery cell using the pole piece including the current collector and the active material layer in the embodiment of the present application since the battery cell capacity is the same, it has a relatively large internal resistance of the battery, so it can have a larger A value.
  • the battery cell using a pole piece including a current collector and an active material layer in the embodiment of the present application, when the coefficient A satisfies 40Ah ⁇ m ⁇ A ⁇ 2000Ah ⁇ m ⁇ , the battery cell can have good electrochemical performance and good safety performance.
  • the coefficient A satisfies 40Ah ⁇ m ⁇ A ⁇ 1000Ah ⁇ m ⁇ ; more preferably, the coefficient A satisfies 60Ah ⁇ m ⁇ A ⁇ 600Ah ⁇ m ⁇ .
  • the battery cell using a pole piece including a current collector and an active material layer in the embodiment of the present application also relates to: the application of the current collector in the preparation of a battery cell that only forms a point break to protect itself when subjected to an abnormal situation that causes a short circuit.
  • the battery cell when the battery cell can limit the impact of short-circuit damage on the battery cell to the "point" range, and does not affect the normal use of the battery cell in a short period of time, it is called "point break".
  • the embodiment of the present application also relates to the use of the current collector as a current collector of a battery cell that only forms a point open circuit when subjected to an abnormal situation that causes a short circuit.
  • the abnormal conditions that cause a short circuit include impact, extrusion, penetration of foreign objects, etc. Since the short circuit is caused by the electrical connection of the positive and negative electrodes with a material with a certain conductivity during these damage processes, it is implemented in this application. In the example, these abnormal situations are collectively referred to as nail penetration. And in the specific embodiment of the present application, the abnormal condition of the battery cell is simulated through a nail penetration experiment.
  • a support layer of a certain thickness such as an insulating layer, form a conductive layer of a certain thickness on its surface by vacuum evaporation, mechanical rolling or bonding, and measure the normal temperature sheet resistance of the conductive layer.
  • the formation conditions of the vacuum evaporation method are as follows: the insulating layer that has been cleaned on the surface is placed in a vacuum coating room, and the high-purity metal wire in the metal evaporation room is melted and evaporated at a high temperature of 1600 ° C to 2000 ° C. The evaporated metal After the cooling system in the vacuum plating room, it is finally deposited on the surface of the insulating layer to form a conductive layer.
  • the formation conditions of the mechanical rolling method are as follows: place the foil of the conductive layer material in a mechanical roll, roll it to a predetermined thickness by applying a pressure of 20t to 40t, and then place it on a surface-cleaned surface. The surface of the insulating layer, and finally put the two in a mechanical roller, and make the two tightly bonded by applying a pressure of 30t to 50t.
  • the formation conditions of the bonding method are as follows: the foil of the conductive layer material is placed in a mechanical roller, and it is rolled to a predetermined thickness by applying a pressure of 20t to 40t; The surface is coated with a mixed solution of PVDF and NMP; finally, the above-mentioned conductive layer of predetermined thickness is bonded to the surface of the insulating layer, and dried at 100°C.
  • test environment normal temperature 23 ⁇ 2 °C, relative humidity ⁇ 65%.
  • the positive electrode slurry or the negative electrode slurry is coated on the surface of the current collector, and the positive electrode sheet or the negative electrode sheet is obtained after drying at 100°C.
  • the current collector is an Al foil with a thickness of 12 ⁇ m
  • the electrode active material layer is a ternary (NCM) material layer with a certain thickness.
  • the current collector is a Cu foil with a thickness of 8 ⁇ m
  • the electrode active material layer is a graphite material layer with a certain thickness.
  • the positive electrode sheet (compacted density: 3.4g/cm3), PP/PE/PP separator and negative electrode sheet (compacted density: 1.6g/cm3) are wound together into a bare cell. Then put it into the battery case, inject the electrolyte (EC:EMC volume ratio is 3:7, LiPF6 is 1mol/L), and then carry out sealing, chemical conversion and other processes, and finally obtain the lithium-ion battery cell.
  • E:EMC volume ratio is 3:7, LiPF6 is 1mol/L
  • the lithium-ion battery cell 14 # and the lithium-ion battery cell 15 # whose capacity is further improved are prepared.
  • the cycle life test is carried out on the lithium-ion battery monomer, the specific test method is as follows:
  • lithium-ion battery cell 1 # and lithium-ion battery cell 4 # at two temperatures of 25°C and 45°C respectively, that is, first charge to 4.2V at a current of 1C, and then discharge at a current of 1C to 2.8V, record the discharge capacity of the first week; then make the battery cell perform 1C/1C charge and discharge cycle for 1000 cycles, record the discharge capacity of the battery cell at the 1000th cycle, divide the discharge capacity of the 1000th cycle by the first week to obtain the capacity retention rate of the 1000th cycle.
  • a nail-piercing experiment After the battery cell is fully charged, fix it, and at room temperature, a steel needle with a diameter of 8 mm is passed through the battery cell at a speed of 25 mm/s, and the steel needle is kept in the battery cell. Nail it, then watch and test.
  • Test the temperature of the battery cell use a multi-channel thermometer to attach a temperature-sensing line to the geometric center of the acupuncture surface and the back of the battery cell to be nailed, and wait for five minutes after the nail is completed. The battery cell temperature tracking test, and then record the temperature of the battery cell at five minutes.
  • Battery cell voltage test Connect the positive and negative electrodes of the battery cell to be nailed to the measuring terminal of the internal resistance meter. After the nail is pierced, perform a battery cell voltage tracking test for five minutes, and then record The voltage of the battery cell at five minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种电池和用电装置,电池包括箱体和电池单体,箱体内设有容纳腔,容纳腔包括在竖直方向上相对设置的顶壁和底壁,电池单体设于容纳腔内,电池单体包括电极组件和电极端子,电极组件与电极端子电连接,电池单体固定于容纳腔内,电极端子朝向容纳腔的底壁设置。

Description

电池和用电装置
相关申请的交叉引用
本申请基于申请号为PCT/CN2022/098355、申请日为2022年06月13日的国际专利申请,申请号为PCT/CN2022/077998、申请日为2022年02月25日的国际专利申请,申请号为PCT/CN2022/098380、申请日为2022年06月13日的国际专利申请,申请号为PCT/CN2022/098343、申请日为2022年06月13日的国际专利申请,申请号为PCT/CN2022/098348、申请日为2022年06月13日的国际专利申请,申请号为PCT/CN2022/098373、申请日为2022年06月13日的国际专利申请,申请号为PCT/CN2022/098370、申请日为2022年06月13日的国际专利申请,申请号为PCT/CN2022/077993、申请日为2022年02月25日的国际专利申请,申请号为PCT/CN2022/101440、申请日为2022年06月27日的国际专利申请,申请号为PCT/CN2022/101406、申请日为2022年06月27日的国际专利申请,申请号为PCT/CN2022/101414、申请日为2022年06月27日的国际专利申请,申请号为PCT/CN2022/101517、申请日为2022年06月27日的国际专利申请,申请号为PCT/CN2022/101393、申请日为2022年06月27日的国际专利申请提出,并要求上述国际专利申请的优先权,上述国际专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电池技术,尤其是涉及一种电池和用电装置。
背景技术
近年来,新能源汽车的出现对于社会发展和环境保护均起到了巨大的推动作用,动力电池作为一种可充电的电池是新能源汽车的动力来源,在新能源汽车领域中被广泛应用。
在一些情形下,电池的能量密度不高,导致空间浪费,进而影响用电装置的性能;并且,现有的电池刚性较差,无法直接承受用电装置其它部位带来的载荷,容易产生安全事故,影响用电装置的安全性。
发明内容
本申请旨在至少解决相关技术中存在的技术问题之一。为此,本申请提出一种电池,能提升电池的能量密度和安全性。
本申请还提出一种具有上述电池的用电装置。
根据本申请第一方面实施例的电池,包括:箱体,所述箱体内设有容纳腔,所述容纳腔包括在竖直方向上相对设置的顶壁和底壁;电池单体,所述电池单体设于所述容纳腔内,所述电池单体包括电极组件和电极端子,所述电极组件与所述电极端子电连接,所述电池单体固定于所述容纳腔内,所述电极端子朝向所述容纳腔的所述底壁设置。
上述技术方案中,将电池单体设置于箱体内,电极端子朝向底壁设置,能够提高电池的安全性。
在一些实施例中,所述电池单体具有相连的第一壁和第二壁,所述第一壁为所述电池单体中面积最大的壁,所述第二壁和所述第一壁相交设置。
在一些实施例中,所述电极端子设于所述第一壁。
在一些实施例中,所述电池单体为多个且在第一方向排布设置,在所述第一方向上,每个所述电池单体设有与所述第一壁相对设置的第一表面,所述第一表面设有避让槽,相邻的两个所述电池单体中的其中一个所述电池单体的所述避让槽用于容纳另一个所述电池单体的所述电极端子,所述第一方向垂直于所述第一壁。
在一些实施例中,所述电极端子设置于所述第二壁。
在一些实施例中,所述电池单体包括相对设置的两个所述第一壁和相对设置的两个所述第二壁,所述电极端子设置为至少两个;至少两个所述电极端子设置于同一个所述第二壁;或者,每个所述第二壁设置有至少一个所述电极端子。
在一些实施例中,所述第一壁形成为圆筒状。
在一些实施例中,所述第一壁的轴向两端均设有所述第二壁,至少一个所述第二壁设有所述电极端子。
在一些实施例中,其中一个所述第二壁设有外露的所述电极端子,所述电极组件包括正极片和负极片,所述正极片和所述负极片中的其中一个与所述电极端子电连接,所述正极片和所述负极片中的另一个与所述第一壁或另一个所述第二壁电连接。
在一些实施例中,至少一个所述电池单体为软包电池单体。
在一些实施例中,所述电池单体还包括泄压机构,所述泄压机构与所述电极端子设置于所述电池单体的同一个壁。
在一些实施例中,所述电池单体还包括泄压机构,所述泄压机构与所述电极端子分别设置于所述电池单体的两个壁。
在一些实施例中,所述箱体包括主体及设置于所述主体底部的底盖,所述底盖与所述主体密封连接并共同形成封闭的所述容纳腔。
在一些实施例中,所述底盖面向所述电池单体的壁构成所述容纳腔的所述底壁。
在一些实施例中,所述底盖可拆卸地连接于所述主体底部。
在一些实施例中,所述底盖具有面向所述容纳腔的特征面,所述特征面被构造为平面。
在一些实施例中,所述箱体的顶部设有承载件,所述电池单体设于所述承载件表面。
在一些实施例中,所述承载件面向所述电池单体的壁构成所述容纳腔的所述顶壁。
在一些实施例中,所述承载件的最小厚度H与所述电池的重量M1满足:0.0002mm/kg<H/M1≤0.2mm/kg。
在一些实施例中,所述承载件用于界定所述容纳腔,所述电池单体悬吊于所述承载件。
在一些实施例中,所述电池单体与所述承载件粘接。
在一些实施例中,所述电池单体面向所述承载件的外表面为第一外表面,所述电极端子布置于所述电池单体除所述第一外表面之外的外表面。
在一些实施例中,所述电池单体具有与所述第一外表面相背设置的第二外表面,所述电极端子布置于所述第二外表面。
在一些实施例中,所述电池单体为多个,多个所述电池单体在第二方向排布设置,所述第二方向垂直于所述竖直方向;所述承载件与多个所述电池单体的顶壁相连,所述电池单体位于所述承载件下方,所述承载件在所述竖直方向上的尺寸N与所述电池单体的重量M2之间的关系满足:0.04mm/kg≤N/M2≤100mm/kg。
在一些实施例中,所述承载件内部设置有空腔。
在一些实施例中,所述空腔用于容纳换热介质以给所述电池单体调节温度。
在一些实施例中,在所述竖直方向上,所述承载件的远离所述电池单体的表面设有加强筋。
在一些实施例中,所述承载件具有面向所述容纳腔的承载面,所述承载面被构造为平面。
在一些实施例中,所述承载件具有承载部及连接部,所述连接部围合连接在所述承载部的边缘,所述承载部用于界定所述容纳腔,所述连接部连接于所述箱体除所述承载件之外的部分;其中,所述承载部面向所述容纳腔的内表面构造形成所述承载面。
在一些实施例中,所述承载部相较于所述连接部沿背离所述容纳腔的方向突出设置。
在一些实施例中,所述箱体包括底盖和边框,所述边框围合形成有在所述竖直方向的两端贯通设置的围合空间,所述底盖和所述承载件分别盖合于所述围合空间在所述竖直方向的相背两端,所述底盖、所述边框和所述承载件共同围合形成所述容纳腔。
在一些实施例中,所述电池单体以端盖朝向所述底壁的方式倒置于所述箱体内,所述端盖设置有泄压机构和所述电极端子,所述泄压机构及所述电极端子均朝向所述底壁设置。
在一些实施例中,所述电池还包括连接板和连接器,所述连接板设在所述箱体的一侧沿水平方向突出设置,所述连接板与所述底壁在所述竖直方向上形成容纳部,所述连接器设置在所述容纳部内且连接于所述连接板,所述连接器与所述电池单体电连接。
在一些实施例中,所述电池还包括防护组件,所述防护组件设置于所述电池单体与所述底壁之间,以支撑承载所述电池单体。
在一些实施例中,所述电池还包括汇流部件,所述汇流部件用于与至少两个所述电池单体的所述电极端子电连接,所述防护组件设置于所述底壁和所述汇流部件之间,所述防护组件用于使得所述电池单体与所述底壁绝缘设置。
在一些实施例中,所述防护组件包括防护条,所述防护条抵接于所述电池单体。
在一些实施例中,所述防护条与所述电池单体和/或所述箱体固定连接。
在一些实施例中,所述防护条与所述电池单体和/或所述箱体粘接。
在一些实施例中,所述防护条设置有多个,多个所述防护条在第二方向上间隔设置,并沿第一方向延伸,所述第一方向、所述第二方向与所述竖直方向两两垂直。
在一些实施例中,所述防护组件还包括主板,所述防护条连接于所述主板,所述主板位于所述防护条与所述底壁之间。
在一些实施例中,所述主板抵接于所述底壁。
在一些实施例中,所述主板与所述底壁固定连接。
在一些实施例中,所述主板与所述防护条一体成型或可拆卸连接。
在一些实施例中,所述电池单体的端盖包括功能区和肩部,所述功能区设置有所述电极端子,所述肩部沿第二方向位于所述功能区两侧,所述电池单体通过所述肩部抵接于所述防护条,所述第二方向垂直于所述竖直方向。
在一些实施例中,在所述竖直方向上,所述防护条的厚度大于所述电极端子的外露于所述电池单体的部分的延伸高度。
在一些实施例中,所述防护条抵接于所述电极端子,或者所述防护条与所述电极端子间隔设置。
在一些实施例中,所述电极端子在所述底壁上的正投影位于相邻的所述防护条在所述底壁上的正投影之间。
在一些实施例中,相邻的两个所述电池单体的所述电极端子通过汇流部件电连接,在所述第一方向上,相邻的两个所述防护条中一者的延伸长度小于另一者的延伸长度,以形成避让缺口,所述避让缺口用于避让所述汇流部件。
在一些实施例中,所述电池单体还包括泄压机构,所述泄压机构与所述电极端子同侧设置,所述泄压机构在所述底壁的正投影位于相邻所述防护条在所述底壁的正投影之间。
在一些实施例中,在所述竖直方向上,所述电池单体的所述端盖与所述底壁之间具有第一距离H1,所述第一距离H1满足2mm<H1<30mm。
在一些实施例中,所述第一距离H1与单个所述电池单体的重量M2之比H1/M2满足0.2mm/Kg<H1/M2<50mm/Kg。
在一些实施例中,所述电池单体还包括电池盒,所述电极组件容纳于所述电池盒内,所述电池盒设置有泄压机构,所述泄压机构与所述电池盒一体成型。
在一些实施例中,所述电池盒包括一体成型的非薄弱区和薄弱区,所述电池盒设置有槽部,所述非薄弱区形成于所述槽部的周围,所述薄弱区形成于所述槽部的底部,所述薄弱区被配置为在所述电池单体泄放内部压力时被破坏,所述泄压机构包括所述薄弱区。
在一些实施例中,所述薄弱区的平均晶粒尺寸为S 1,所述非薄弱区的平均晶粒尺寸为S 2,满足:0.05≤S 1/S 2≤0.9。
在一些实施例中,所述薄弱区的最小厚度为A 1,满足:1≤A 1/S 1≤100。
在一些实施例中,所述薄弱区的最小厚度为A 1,所述薄弱区的硬度为B 1,满足:5HBW/mm≤B 1/A 1≤10000HBW/mm。
在一些实施例中,所述薄弱区的硬度为B 1,所述非薄弱区的硬度为B 2,满足:1<B 1/B 2≤5。
在一些实施例中,所述薄弱区的最小厚度为A 1,所述非薄弱区的最小厚度为A 2,满足:0.05≤ A 1/A 2≤0.95。
在一些实施例中,所述电极组件包括正极片和负极片,所述正极片和/或所述负极片包括集流体和活性物质层,所述集流体包括支撑层和导电层,所述支撑层用于承载所述导电层,所述导电层用于承载所述活性物质层。
在一些实施例中,沿所述支撑层的厚度方向,所述导电层设置于所述支撑层的至少一侧。
在一些实施例中,所述导电层的常温薄膜电阻R S满足:0.016Ω/□≤R S≤420Ω/□。
在一些实施例中,所述导电层的材料选自铝、铜、钛、银、镍铜合金、铝锆合金中的至少一种。
在一些实施例中,所述支撑层的材料包括高分子材料及高分子基复合材料中的一种或多种。
在一些实施例中,所述支撑层的厚度d1与所述支撑层的透光率k满足:当12μm≤d1≤30μm时,30%≤k≤80%;或者,当8μm≤d1<12μm时,40%≤k≤90%;或者,当1μm≤d1<8μm时,50%≤k≤98%。
在一些实施例中,所述电极组件包括正极片,所述正极片包括正极集流体和涂覆于所述正极集流体表面的正极活性物质层,所述正极活性物质层包括正极活性材料,所述正极活性材料具有内核及包覆所述内核的壳,所述内核包括三元材料、dLi 2MnO 3·(1-d)LiMO 2以及LiMPO 4中的至少一种,0<d<1,所述M包括选自Fe、Ni、Co、Mn中的一种或多种,所述壳含有结晶态无机物,所述结晶态无机物使用X射线衍射测量的主峰的半高全宽为0-3°,所述结晶态无机物包括选自金属氧化物以及无机盐中的一种或多种。
在一些实施例中,所述壳包括所述金属氧化物以及所述无机盐中的至少之一,以及碳。
在一些实施例中,所述电极组件包括正极片,所述正极片包括正极集流体和涂覆于所述正极集流体表面的正极活性物质层,所述正极活性物质层包括正极活性材料,所述正极活性材料具有LiMPO 4,所述M包括Mn,以及非Mn元素,所述非Mn元素满足以下条件的至少之一:所述非Mn元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;所述非Mn元素的化合价变价电压为U,2V<U<5.5V;所述非Mn元素和O形成的化学键的化学活性不小于P-O键的化学活性;所述非Mn元素的最高化合价不大于6。
在一些实施例中,所述非Mn元素包括第一掺杂元素和第二掺杂元素中的一种或两种,所述第一掺杂元素为锰位掺杂,所述第二掺杂元素为磷位掺杂。
在一些实施例中,所述第一掺杂元素满足以下条件的至少之一:所述第一掺杂元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;所述第一掺杂元素的化合价变价电压为U,2V<U<5.5V。
在一些实施例中,所述第二掺杂元素满足以下条件的至少之一:所述第二掺杂元素和O形成的化学键的化学活性不小于P-O键的化学活性;所述第二掺杂元素的最高化合价不大于6。
在一些实施例中,所述正极活性材料还具有包覆层。
在一些实施例中,所述包覆层包括碳。
在一些实施例中,所述包覆层中的碳为SP2形态碳与SP3形态碳的混合物。
在一些实施例中,所述SP2形态碳与SP3形态碳的摩尔比为在0.1-10范围内的任意数值。
根据本申请第二方面实施例的用电装置,包括根据本申请上述第一方面实施例的电池,所述电池用于提供电能。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一个实施例的用电装置的示意图;
图2是根据本申请一个实施例的电池的爆炸图;
图3是根据本申请另一个实施例的电池的爆炸图;
图4是根据本申请一个实施例的电池单体的爆炸图;
图5是图4中所示的电池单体的示意图;
图6是根据本申请另一个实施例的电池单体的排布示意图;
图7是根据本申请一个实施例的电池的爆炸图;
图8是图7中所示的电池单体的排布示意图;
图9是根据本申请一个实施例的电池单体的示意图;
图10为本申请一些实施例提供的电池的结构示意图;
图11为图10中所示的电池的爆炸图;
图12为本申请一些实施例中提供的底盖的结构示意图;
图13为图12所述的底盖的俯视图;
图14为图12所示的底盖的主视图;
图15为本申请另一些实施例中提供的底盖的结构示意图;
图16为图10所示的电池的剖视图;
图17为图14所示的底盖在竖直方向的正投影示意图;
图18为本申请一些实施例中的电池单体的外形示意图;
图19为图18所示的电池单体的主视图;
图20为本申请一些实施例中的承载件的结构示意图;
图21为本申请另一些实施例中的承载件的结构示意图;
图22为图21所示的承载件在竖直方向的正投影图;
图23为图10所示的电池的主视图;
图24为本申请的一些实施例中电池应用于车身的示意图;
图25是图24中所示的电池的示意图;
图26为图24所示结构的第一分解状态图;
图27为图24所示结构的第二分解状态图;
图28本申请的一些实施例中电池与车身的安装关系示意图;
图29为本申请一些实施例提供的电池的示意图;
图30为本申请一些实施例的承载件的结构示意图;
图31为本申请一些实施例的承载件的结构示意图;
图32为本申请一些实施例的承载件的结构示意图;
图33为本申请一些实施例的承载件的结构示意图;
图34为本申请一些实施例的承载件的结构示意图;
图35是本申请一些实施例的电池的结构示意图;
图36为本申请一实施例的电池的结构示意图;
图37为图36中所示的电池模块的示意图;
图38为本申请一些实施例的电池单体与加强件配合的示意图;
图39为本申请一些实施例的电池单体与加强件配合的示意图;
图40为本申请一些实施例的电池单体与加强件配合的示意图;
图41为本申请一些实施例的电池的爆炸图;
图42为图41中所示的电池的防护组件的结构示意图;
图43为图41所示的电池的剖视示意图;
图44为图43在圆框B处的放大示意图;
图45为本申请一些实施例的对电池进行碰撞测试的碰撞测试装置A的结构示意图;
图46为本申请一些实施例的电极端子的布置示意图;
图47为本申请一些实施例的电池单体与加强件配合的示意图;
图48为本申请一些实施例提供的外壳的结构示意图;
图49为图48所示的外壳的C-C剖视图;
图50为图49所示的外壳的晶粒图(示意图);
图51为图49所示的外壳的E处的局部放大图;
图52为本申请另一些实施提供的外壳的局部放大图;
图53为本申请又一些实施例提供的外壳的结构示意图(示出一级刻痕槽);
图54为图53所示的外壳的E-E剖视图;
图55为本申请再一些实施例提供的外壳的结构示意图(示出一级刻痕槽);
图56为图55所示的外壳的F-F剖视图;
图57为本申请另一些实施例提供的外壳的结构示意图(示出一级刻痕槽);
图58为图57所示的外壳的G-G剖视图;
图59为本申请又一些实施例提供的外壳的结构示意图(示出两级刻痕槽);
图60为图59所示的外壳的K-K剖视图;
图61为本申请再一些实施例提供的外壳的结构示意图(示出两级刻痕槽);
图62为图61所示的外壳的M-M剖视图;
图63为本申请另一些实施例提供的外壳的结构示意图(示出两级刻痕槽);
图64为图63所示的外壳的N-N剖视图;
图65为本申请一些实施例提供的外壳的轴测图;
图66为图65所示的外壳的结构示意图(示出一级刻痕槽和一级沉槽);
图67为图66所示的外壳的O-O剖视图;
图68为本申请再一些实施例提供的外壳的结构示意图(示出一级刻痕槽和一级沉槽);
图69为图68所示的外壳的P-P剖视图;
图70为本申请另一些实施例提供的外壳的结构示意图(示出一级刻痕槽和一级沉槽);
图71为图70所示的外壳部件的Q-Q剖视图;
图72为本申请一些实施例提供的外壳的结构示意图(示出一级刻痕槽和两级沉槽);
图73为图72所示的外壳部件的R-R剖视图;
图74为本申请再一些实施例提供的外壳的结构示意图(示出一级刻痕槽和两级沉槽);
图75为图74所示的外壳的S-S剖视图;
图76为本申请另一些实施例提供的外壳部件的结构示意图(示出一级刻痕槽和两级沉槽);
图77为图76所示的外壳的T-T剖视图;
图78为本申请其他实施例提供的外壳的结构示意图;
图79为本申请另一些实施例提供的外壳的晶粒图(示意图);
图80为本申请一些实施例提供的端盖的结构示意图;
图81为本申请一些实施例提供的壳体的结构示意图;
图82为本申请另一些实施例提供的壳体的结构示意图;
图83为本申请一些实施例提供的电池单体的结构示意图;
图84为本申请某一具体实施方式的正极集流体的结构示意图;
图85为本申请又一具体实施方式的正极集流体的结构示意图;
图86为本申请某一具体实施方式的负极集流体的结构示意图;
图87为本申请又一具体实施方式的负极集流体的结构示意图;
图88为本申请某一具体实施方式的正极片的结构示意图;
图89为本申请又一具体实施方式的正极片的结构示意图;
图90为本申请某一具体实施方式的负极片的结构示意图;
图91为本申请又一具体实施方式的负极片的结构示意图;
图92为本申请一次穿钉实验示意图;
图93为锂离子电池1#和锂离子电池4#在一次穿钉实验后的温度变化曲线;
图94为锂离子电池1#和锂离子电池4#在一次穿钉实验后的电压变化曲线;
图95为未掺杂的LiMnPO 4和实施例2制备的正极活性材料的X射线衍射图谱(XRD)图;
图96为实施例2制备的正极活性材料的X射线能量色散谱(EDS)图;
图97为本申请所述的具有核-壳结构的正极活性材料的示意图;
图98为本申请一实施方式的具有核壳结构的正极活性材料的示意图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含;“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”;更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);或A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的 组分。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。本申请中,“约”某个数值表示一个范围,表示该数值±10%的范围。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
需要说明的是,在本文中,术语“包覆层”、“包覆”是指包覆在磷酸锰锂等内核材料上的物质层,所述物质层可以完全或部分地包覆内核,使用“包覆层”只是为了便于描述,并不意图限制本申请。另外,每一层包覆层可以是完全包覆,也可以是部分包覆。同样地,术语“包覆层的厚度”是指包覆在内核上的所述物质层在内核径向上的厚度。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
箱体10可以包括第一部分101和第二部分102(如图2和图3所示),第一部分101与第二部 分102相互盖合,第一部分101和第二部分102共同限定出用于容纳电池单体20的容纳腔10a。第二部分102可以是一端开口的空心结构,第一部分101为板状结构,第一部分101盖合于第二部分102的开口侧,以形成具有容纳腔10a的箱体;第一部分101和第二部分102也均可以是一侧开口的空心结构,第一部分101的开口侧盖合于第二部分102的开口侧,以形成具有容纳腔10a的箱体。当然,箱体10可以是多种形状,比如,圆柱体、长方体等。
为提高第一部分101与第二部分102连接后的密封性,第一部分101与第二部分102之间也可以设置密封件,比如,密封胶、密封圈等。
箱体10的材质可以是如铝合金、铁合金等合金材料,也可以是如聚碳酸酯、聚异氰脲酸酯泡沫塑料等高分子材料,或者是如玻璃纤维加环氧树脂的复合材料。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
对上述隔离膜没有特别的限制,可以选用任意公知的具有电化学稳定性和化学稳定性的多孔结构隔离膜,例如可以是玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的一种或多种的单层或多层薄膜。隔离膜的材质可以为聚丙烯(PP)或聚乙烯(PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
上述电解液包括有机溶剂和电解质盐,其中电解质盐在正负两极之间起传输离子的作用,有机溶剂作为传输离子的介质。电解质盐可以是本领域已知的用于电池单体的电解液的电解质盐,例如LiPF 6(六氟磷酸锂)、LiBF 4(四氟硼酸锂)、LiClO 4(高氯酸锂)、LiAsF 6(六氟砷酸锂)、LiFSI(双氟磺酰亚胺锂)、LiTFSI(双三氟甲磺酰亚胺锂)、LiTFS(三氟甲磺酸锂)、LiDFOB(二氟草酸硼酸锂)、LiBOB(二草酸硼酸锂)、LiPO 2F 2(二氟磷酸锂)、LiDFOP(二氟二草酸磷酸锂)及LiTFOP(四氟草酸磷酸锂)中的一种或多种;有机溶剂可以是本领域已知的用于电池单体的电解液的有机溶剂,例如碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸丁烯酯(BC)、氟代碳酸乙烯酯(FEC)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、丁酸甲酯(MB)、丁酸乙酯(EB)、1,4-丁内酯(GBL)、环丁砜(SF)、二甲砜(MSM)、甲乙砜(EMS)及二乙砜(ESE)中的一种或多种,优选为两种以上,可以根据实际需求选择合适的电解质盐和有机溶剂。
当然,电池单体还可以不包括电解液。
为了满足不同的电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块或电池组,电池模块或电池组再组成电池。电池再进一步设置于用电装置中,为用电装置提供电能。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
在相关技术中,电池箱体的开口常在垂直方向上朝向上方,电池单体固定于电池箱体底部,电极端子朝向覆盖于箱体开口的盖体。
然而,在如以上设置的电池中,申请人注意到,由于电池设置于用电装置中时,电池单体固定于电池箱体底部,使得更容易受到碰撞的电池箱体顶部的刚性较差,并且,电池在碰撞过程中,内部的电池单体受力不均,使得电池容易发生损坏,导致电池安全性较差,影响电池的使用性能。
鉴于此,本申请实施例提供了一种技术方案,在本申请实施例中,在电池中设置电池单体容纳于箱体的容纳腔内,并使电池单体固定于容纳腔内,且电池单体的电极端子朝向容纳腔的底壁设置。这样,可以有效提升电池的安全性。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的装置,还可以适用于所有使用电池的装置,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1000的结构示意图,车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部可以设置马达101、控制器102以及电池100,控制器102用来控制电池100为马达101的供电。例如,在车辆1000的底部或车头或车尾可以设置电池100。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如,用于车辆1000的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,替代或部分地替代燃油或天然气为车辆1000提供驱动动力。
为了满足不同的使用电力需求,电池100可以包括一个或多个电池单体20。例如,如图2和图3所示,为本申请一个实施例的一种电池100的结构示意图,电池100可以包括多个电池单体20。电池100还可以包括箱体10,箱体10内部为中空结构,多个电池单体20容纳于箱体10内。例如, 多个电池单体20相互并联或串联或混联组合后置于箱体10内。
可选地,电池100还可以包括其他结构,在此不再一一赘述。例如,该电池100还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值,例如电池单体20可以为一个。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池100中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。
如图4所示,为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和端盖212。壳体211和端盖212形成电池单体20的外壳或电池盒21。壳体211的壁以及端盖212均称为电池单体20的壁,其中对于长方体型电池单体20,壳体211的壁包括底壁和四个侧壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。端盖212覆盖开10口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液;壳体211的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在端盖212上。端盖212通常是平板形状,两个电极端子214固定在端盖212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。每个电极端子214各对应设置一个连接构件23,或者也可以称为集流构件,其位于端盖212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图4所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图4所示,电池单体20内设置有4个独立的电极组件22。
电池单体20上还可设置泄压机构213。泄压机构213用于电池单体20的内部压力或温度达到 阈值时致动以泄放内部压力或温度。具体来说,泄压机构213是指在电池单体20的内部压力达到预定阈值时致动以泄放内部压力的元件或部件。即当电池单体2的内部压力达到预定阈值时,泄压机构213产生动作或被激活至一定的状态,从而使得电池单体20的内部压力得以被泄放。泄压机构213产生的动作可以包括但不限于:泄压机构213中的至少一部分破裂、破碎、被撕裂或者打开,从而形成可供内部压力泄放的开口或通道等。此时,电池单体20的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力的情况下使电池单体20发生泄压,从而避免潜在的更严重的事故发生。泄压机构213可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏元件或构造。
例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
图10和图11示出了本申请一个实施例的电池100的结构示意图。
电池100包括箱体10和电池单体20,箱体10内设有容纳腔10a,容纳腔10a包括在竖直方向z上相对设置的顶壁101和底壁102,顶壁101和底壁102沿竖直方向由上至下依次设置,电池单体20设于容纳腔10a内,电池单体20包括电极组件22和电极端子214,电极组件22与电极端子214电连接,以使电池单体20用于提供电能。
其中,电池单体20固定于容纳腔10a内,电极端子214朝向容纳腔10a的底壁102设置,便于为电极端子214提供较大的电连接空间,能够提升电池100的能量密度,提升电池100的可用性和安全性。
示例性的,电池单体20固定于箱体10内的顶部,可以增加电池100顶部的刚度,以进一步增加电池100的安全性。
为便于描述,在本申请实施例中,以竖直方向为上下方向。应理解,电池100在使用时,竖直方向也可以为其他方向,此处不做具体限制。
在一些实施例中,如图5所示,电池单体20具有相连的第一壁201和第二壁202,第一壁201为电池单体中面积最大的壁,第二壁202和第一壁201相交设置。则第一壁201和第二壁202不平行,且第一壁201和第二壁202具有一条公共线。
可选地,电池单体20大致形成为长方体结构,且电池单体20的长度大于的电池单体20的宽度和电池单体20的高度,第一壁201位于电池单体20在第一方向x上的一侧,且电池单体20在第二方向y上的两侧中的至少一侧具有第二壁202,电池单体20在竖直方向z上的两侧中的至少一侧具有第二壁202,电极端子214可以设于电池单体20的在竖直方向z上的第二壁202;当然,如图6所示,电极端子214还可以设于电池单体20的在第二方向y上的第二壁202。
其中,电极端子214设置于第二壁202,则电极端子214设于电池单体20的除第一壁201以外的、且与第一壁201相交的壁上,以便于电极端子214的设置,同时便于实现电极端子214和加强件30(下文中描述)的避让,使得加强件30上可以无需设置避让电极端子214的避让部,有利于 简化加强件30的结构。
可选地,在图6的示例中,电池单体20可以为刀片电池,电池单体20的长度>电池单体20的宽度>电池单体20的高度,电池单体20在第二方向y上的长度>电池单体20在竖直方向z上的宽度>电池单体20在第一方向x上的高度,第一壁201位于电池单体20的高度方向上的一端,电极端子214设于第二壁202,则电极端子214可以位于电池单体20长度方向上的一端或两端、和/或、电极端子214位于电池单体20宽度方向上的一端或两端。
当然,本申请中,电极端子214的设置位置不限于此。如图7和图8所示,电极端子214还可以设于第一壁201,同样便于电极端子214的布置;例如电池单体20为One-Stop电池单体。可见,本申请实施例中的电池100,电极端子214的设置位置具有良好的灵活性。
在一些实施例中,如图8所示,电池单体20为多个,且多个电池单体20在第一方向x排布设置,在第一方向x上,每个电池单体20设有与第一壁201相对设置的第一表面203,第一表面203设有避让槽203a,相邻的两个电池单体20中的其中一个电池单体20的避让槽203a用于容纳另一个电池单体20的电极端子214,第一方向x垂直于第一壁201,以便于实现多个电池单体20在第一方向上紧凑排布,节省占用空间。
在一些实施例中,如图4-图6所示,电极端子214设于第二壁202,电池单体20包括相对设置的两个第一壁201和相对设置的两个第二壁202,电极端子214设置为至少两个,多个电极端子214包括正极电极端子214a和负极电极端子214b。
其中,至少两个电极端子214设置于同一个第二壁202,以在保证相邻电极端子214具有合适间距的前提下,有利于节省电池单体20的占用空间;或者,每个第二壁202设置有至少一个电极端子214,以使位于不同第二壁202上的电极端子214具有足够的间距。
例如,在图4和图5的示例中,电池单体20包括沿第一方向x相对设置的两个第一壁201和沿竖直方向z相对设置的两个第二壁202,竖直方向z与第一方向x不平行,例如竖直方向z与第一方向x垂直;多个电极端子214均位于电池单体20在竖直方向z上的同一个第二壁202。
在一些实施例中,电极端子214设置于电池单体20在第二方向y上的第二壁202,或者电极端子214设置于电池单体20在竖直方向z上的第二壁202。
在图11的示例中,电极端子214设于电池单体20在竖直方向上朝向底壁102的第二壁202。
当然,对于长方体形状的电池单体20,电池单体20还可以包括沿第二方向y相对设置的两个第二壁202,第二方向y与第一方向不平行,例如第二方向y与第一方向x垂直;多个电极端子214均位于电池单体20在第二方向y上的同一个第二壁202。
无论多个电极端子214位于电池单体20在第二方向y上的一侧,还是位于电池单体20在竖直方向z上的一侧,当电池单体20为多个、且多个电池单体20沿第二方向y依次布置时,在第二方向y上,相邻的两个电池单体20的第二壁202相对。
需要说明的是,本申请中,第一壁201可以为平面或曲面,第二壁202为平面或曲面。
在一些实施例中,如图9所示,第一壁201形成为圆筒状;此时电池单体20可以大致为圆柱 电池单体。
在一些实施例中,如图9所示,第一壁201的轴向两端均设有第二壁202,至少一个第二壁202设有电极端子214,则电池单体20的所有电极端子214均设于其中一个第二壁202上,或者,电池单体20的至少一个电极端子214设于其中一个第二壁202上,且电池单体20的其余电极端子214设于另一个第二壁202上。由此,便于实现电极端子214的灵活布置。
在一些实施例中,如图9所示,其中一个第二壁202设有外露的电极端子214,电极组件22包括正极片221和负极片222,正极片221和负极片222中的其中一个与电极端子214电连接,正极片221和负极片222中的另一个与第一壁201电连接,以便实现电池单体20的正常供电。
当然,正极片221和负极片222中的上述另一个还可以与另一个第二壁202电连接,也就是说,设有外露的电极端子214的第二壁202跟与正极片221和负极片222中的上述另一个电连接的第二壁202并非同一个壁,同样便于实现电池单体20的正常供电。
在一些实施例中,至少一个电池单体20为软包电池单体,则电池100包括一个电池单体20时,该电池单体20为软包电池单体;电池100包括多个电池单体20时,多个电池单体20中的至少一个为软包电池单体。由此,便于丰富电池100的种类、结构以及电池单体20的布局等,从而有利于使得电池100满足实际差异化需求。
在一些实施例中,如图4和图5所示,电池单体20还包括泄压机构213,泄压机构213与电极端子214设置于电池单体20的同一个壁,例如泄压机构213与电极端子214均设于第二壁202。
当然,在本申请其他实施例中,电池单体20还包括泄压机构213,泄压机构213与电极端子214分别设置于电池单体20的两个壁。
由此,泄压机构213相对于电极端子214的位置具有一定的灵活性。
目前,从市场形势的发展来看,电池的应用越加广泛。电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请人注意到,当外界的水汽进入到箱体内部时,会对箱体内部对箱体内的电池单体及其他器件造成腐蚀,降低电池的安全性及使用寿命。相关技术中,为了提高电池的密封性,会在箱体内部额外设置密封结构(如密封板)进行密封,但是额外设置的密封结构会增加电池的结构复杂性,且成本较高。
为了提高电池的安全性和使用寿命,申请人研究发现,可以将箱体自身设计成封闭结构,以降低电池结构的复杂性及电池的成本。
在一些实施例中,如图10和图11所示,箱体10包括主体11及设置与主体11底部的底盖12,底盖12与主体11共同围合形成容纳腔10a。
主体11可以是一体成型的结构,也可以由多个零部件装配形成。主体11可以是空心状的壳体结构,其自身界定有第一空间,第一空间的底部敞开,底盖12盖合在第一空间的敞开处。底盖12 可以呈一侧开口的空心结构,自身可以具备第二空间,底盖12所具备的第二空间与主体11所具备的第一空间整体形成容纳腔10a。底盖12自身可以不具备形成容纳腔10a的空间,当底盖12盖设在主体11所具备第一空间的敞开处时,底盖12密封主体11所具备的第一空间且两者围合形成与第一空间等同的容纳腔10a,此时底盖12可以呈平板状结构。当然,箱体10的容纳腔10a也可以是主体11所具备的第一空间的部分所形成,此时可以是底盖12盖合在第一空间的敞开处并向第一空间凹陷并占用第一空间的部分空间,第一空间除去被底盖12所占用的部分空间形成箱体10的容纳腔10a。
可理解地,此时底盖12位于箱体10的底部,并用于与主体11一起界定容纳腔10a。具体地,底盖12可以但不限于是板状结构、块状结构等等,可以是平板状、弯板状等,具体不限定。
电池单体20位于容纳腔10a时,电池单体20可以设置于底盖12和/或主体11上。当主体11由多个零部件装配形成时,电池单体20可以设置于其中一个零部件上,也可以设置于全部零部件上。在一实施例中,主体11可以包括顶盖、围板和支撑板,围板围合形成有在竖直方向的两端开口的第三空间,顶盖和底盖12分别密封盖合在第三空间在竖直方向的两端,顶盖(例如后文所述的承载件11a)、围板(例如后文所述的边框11b)及底盖12共同围合形成容纳腔10a,支撑板位于第三空间内,电池单体20支撑在支撑板上。在其他实施例中,主体11可以包括下文描述的承载件11a和边框11b,具体详见下文;本申请中,承载件11a也可称为支撑板或顶板,边框11b也可称为侧板。
底盖12与主体11之间可以通过焊接、热熔连接、粘接、紧固连接、卡接等方式实现两者固定。其中,紧固连接是指通过紧固件13实现连接,紧固件13包括螺栓、插销、铆钉、销钉、螺钉等构件。其中,卡接是指通过卡合结构实现固定,例如底盖12上具有卡钩,主体11上具有卡口,卡钩卡合在卡口内时可实现底盖12与主体11的卡合固定。当然,底盖12与主体11的连接方式不限于此,在本申请中不进行穷举。
在一些实施例中,底盖12与主体11密封连接并共同形成封闭的容纳腔10a。此时,箱体10通过自身的底盖12与自身的主体11围合形成密封的容纳腔10a,以通过箱体10自身的封闭性来保证电池100的气密性,不需借助其他密封结构,不需要在箱体10内额外设置其他密封结构,可简化电池100的结构,降低电池100的成本,同时保证电池100的安全性和使用寿命。
底盖12与主体11密封连接的方式有多种,可以但不限于是:在底盖12与主体11之间设置密封件,通过密封件密封连接底盖12与主体11;底盖12与主体11之间通过密封胶密封连接;底盖12与主体11之间相互插接通过插接面构成的阻挡结构密封连接。
在本申请的描述中,电池100的底盖12位于主体11的底部即在图10和图11所指上下竖直方位z中底盖12位于主体11的底部。在实际使用情况下,图10和图11所示的上下方位可以但不限于为竖直方向,根据电池100的实际安装情况而定。需要指出的是,在本申请的下述描述中,以竖直方向为参考对电池100各结构的位置关系、尺寸等进行描述,并不是对电池100结使用方式的限制,仅是为了更加清楚明了的对方案进行阐述和说明。
在一些实施例中,底盖12经由密封件与主体11密封连接。
密封件是指能够防止流体或固体微粒等从相邻结合面间泄漏的零部件,可以防止外界杂质如灰尘与水分等侵入到电池100内。密封件密封连接主体11和底盖12是指密封件连接在主体11与底盖12相对的两个表面之间,并与该两个表面之间具有圈形的接触界面,能够防止外界的水分经自身与两个表面的接触截面进入到电池100内部,进而起到密封效果。
密封件可选为密封圈、密封垫。具体地,密封件可选为橡胶、硅胶等材料制成。具体地,密封件可选为O形密封件、方形密封件、异形密封件等。密封件的具体形状可以与底盖12及主体11的相对的两个表面的形状相适配。例如底盖12及主体11的相对的两个表面为环形面时密封件可以为O形密封件。
此时,底盖12通过密封件与主体11实现密封连接,密封可靠且成本较低。
需要说明地,底盖12通过密封件实现与主体11的密封后,还可以通过其他方式与主体11之间固定连接。其他方式包括但不限于卡接、插接、螺纹件连接、铆接、焊接、粘接等。可理解地,当底盖12通过密封胶与主体11密封时,根据密封胶的粘接性,当密封胶的粘接性能好满足要求(即底盖12与主体11之间固定且不分离)时也可以不采取其他方式对两者进行固定连接。
在一些实施例中,如图10和图11所示,底盖12可拆卸地连接于主体11的底部。此时,主体11可以直接安装在安装体上,底盖12与主体11共同形成容纳腔10a,当容纳腔a内的部件(如电池单体)需要更换或维护,则只要拆卸底盖12就可以暴露电池100内的部件并对这些部件进行维护或更换,不需要将整个电池100从安装体上拆除,大大提高了电池100的维护便捷性。
底盖12与主体11可拆卸连接是指底盖12与主体11连接时底盖12相对主体11具有与主体11完全连接并形成容纳腔10a的第一状态以及具有与主体11不完全连接或分离能够暴露电池单体20开放的第二状态,底盖12在外力操作下可从第一状态切换至第二状态,并可从第二状态切换至第一状态,在此过程中不损坏任何零件。
底盖12相对主体11具有与主体11不完全连接并使得容纳腔10a开放的第二状态时,底盖12与主体11的安装方式可以是:底盖12与主体11可转动的连接且可经由紧固件13或者卡合方式实现固定连接。当底盖12相对主体11转动至闭合容纳腔10a时,底盖12与主体11可通过紧固件13或者卡合方式与主体11固定连接,电池单体20容纳在容纳腔10a内而不可视,此时底盖12处于第一状态。当拆下紧固件13或者解除卡合连接时,底盖12能够相对主体11转动至开放容纳腔10a并暴露电池单体20的位置,此时底盖12处于第二状态。其中,底盖12与主体11可转动的连接可以但不限于是底盖12与主体11通过转轴可转动连接。
底盖12相对主体11具有与主体11分离并使得容纳腔10a开放的第二状态时,底盖12与主体11的安装方式可以是:底盖12与主体11仅经由紧固件13或者卡合方式实现固定连接。当将紧固件13安装于底盖12与主体11上或者将底盖12与主体11的卡合结构卡合,底盖12与主体11实现完全固定并共同形成容纳腔10a,电池单体20容纳在容纳腔10a内而不可视,此时底盖12处于第一状态。当拆下紧固件13或者解除全部卡合连接,底盖12可以从主体11上分离下来,进而暴 露电池单体20,此时底盖12处于第二状态。
底盖12处于第一状态时与主体11形成容纳腔10a可对电池单体20形成保护。底盖12处于第二状态时电池100体被暴露,如此可以方便相关人员对电池单体20进行维护或更换。
在一些实施例中,请参照图11,底盖12与主体11经由紧固件13可拆卸连接。
紧固件13是指能够将两个或两个以上零件(或构件)紧固连接成为一件整体的构件,可以但不限于是:螺钉、螺栓、铆钉、插销、销轴、焊钉等等。
此时,底盖12与主体11经由紧固件13可拆卸连接,不仅方便拆装,而且结构简单、经济实惠。
在一些实施例中,如图14和图15所示,底盖12的最小厚度h满足:0.2mm<h<20mm。
底盖12的厚度是指在竖直方向的截面上底盖12竖直方向的两侧表面之间的距离。底盖12的最小厚度h即为底盖12竖直方向的两侧面之间的最短距离。当底盖12各处厚度均匀时,底盖12可以呈平板状(如图15所示),底盖12的最小厚度即为底盖12各处所具备的相等的厚度。当底盖12厚度不均匀时,则底盖12的最小厚度即为底盖12最薄处的厚度。
具体地,底盖12的最小厚度h可选为0.3mm、0.5mm、0.8mm、1mm、1.5mm、1.8mm、2mm、2.5mm、2.8mm、3mm、3.5mm、3.8mm、4mm、4.5mm、4.7mm、5mm、5.5mm、5.8mm、6mm、6.5mm、7mm、7.5mm、8mm、8.5mm、9mm、9.5mm、10mm、10.5mm、11mm、11.5mm、12mm、12.5mm、13mm、13.5mm、14mm、14.5mm、15mm、16mm、16.5mm、17mm、17.5mm、18mm、18.5mm、19mm、19.5mm等。优选地,0.5mm≤h≤3mm。
此时,经证明,当底盖12的最小厚度h满足0.2mm<h<20mm时,能够有效的降低电池100的重量,且强度结构合理。
需要说明的是,在本申请的描述中,以竖直方向为参考,某一结构的“厚度”是指在竖直方向的截面上该结构竖直方向的两侧表面之间的距离,在下述描述中并不对“厚度”进行过多解释,可参照此处的描述。当然,可理解地,竖直方向仅是为了更加方便的说明本申请的方案,并不是对电池100使用方式的限制。
在一些实施例中,电池单体20的重量M2与底盖12的最小厚度h满足:0.03mm/Kg≤h/M2≤100mm/Kg。
电池单体20的重量M2是指单个电池单体20的重量M2。当电池100包括多个电池单体20时,电池单体20的重量即为各个电池单体20的重量。
具体地,底盖12的最小壁厚h与电池单体20的重量M2的比值可选为0.04mm/Kg、0.05mm/Kg、0.1mm/Kg、0.4mm/Kg、0.8mm/Kg、1mm/Kg、1.5mm/Kg、2mm/Kg、2.5mm/Kg、3mm/Kg、3.5mm/Kg、4mm/Kg、5mm/Kg、6mm/Kg、8mm/Kg、10mm/Kg、12mm/Kg、13mm/Kg、15mm/Kg、16mm/Kg、18mm/Kg、20mm/Kg、30mm/Kg、35mm/Kg、40mm/Kg、45mm/Kg、50mm/Kg、55/Kg、60mm/Kg、65mm/Kg、68mm/Kg、70mm/Kg、75mm/Kg、80mm/Kg、85mm/Kg、90mm/Kg、95mm/Kg、98mm/Kg。
表1底盖12最小厚度h与电池单体20重量M2的比值对电池100安全性能的影响
No. h(mm) m2(Kg) h/M2(mm/Kg) 测试结果
1 0.2 10 0.02 起火,爆炸
2 0.5 10 0.05 不起火,不爆炸
3 1.2 3 0.4 不起火,不爆炸
4 3 1 3 不起火,不爆炸
5 5 1.5 3.33 不起火,不爆炸
6 8 1.8 4.45 不起火,不爆炸
7 10 2 5 不起火,不爆炸
8 12 1.6 7.5 不起火,不爆炸
9 15 1.7 8.82 不起火,不爆炸
10 20 2 10 不起火,不爆炸
11 20 1 20 不起火,不爆炸
12 20 0.5 40 不起火,不爆炸
13 20 0.32 62.5 不起火,不爆炸
14 20 0.25 80 不起火,不爆炸
15 20 0.2 100 不起火,不爆炸
表1给出了按GB38031-2020《电动汽车用动力蓄电池安全要求》的标准下进行测试时,几组底盖12的最小厚度h、电池单体20的重量m2的比值对电池100安全性能影响的测试结果。由表1可知,当h/m2等于0.02mm/Kg时,电池100容易起火爆炸,究其原因是由于电池100的结构强度无法满足要求。当h/M2大于0.02mm/Kg时,底盖12结构强度较好,电池100不容易起火和爆炸,但是h/m过大容易造成空间浪费及能量密度过低,因此h/M2最好不超过100mm/Kg。
此时,经证明,当底盖12的最小厚度h与电池单体20的重量m2满足0.03mm/Kg≤h/M2≤100mm/Kg,电池100不仅具有较好的结构强度,且能量密度较高,不容易起火爆炸。
在一些实施例中,请一并参照图10至图12,底盖12具有盖部12a及安装部12b,安装部12b围合连接于盖部12a的边缘,盖部12a用于界定容纳腔10a,安装部12b连接主体11。
盖部12a用于界定容纳腔10a是指盖部12a与主体11共同围合形成容纳腔10a,安装部12b与主体11进行连接,而不参与容纳腔10a的界定。盖部12a可以是板状、块状构件,可以是平板状、弯板状的构件,具体不限定。从图10-图12可以看出,安装部12b围合在盖部12a的边缘是指安装部12b沿盖部12a的边缘连续设置呈首尾封闭连接的结构。可理解地,在竖直方向的投影,安装部12b具有一定宽度,如此可与主体11之间具有适当的接触面积,不仅方便安装部12b与主体11之间的定位和安装,还方便设置密封件,也有助于提高安装部12b与主体11的密封性。
盖部12a与安装部12b可以一体成型。当底盖12是金属材质(如铝、铁、不锈钢等),盖部12a与安装部12b可以采用压铸、锻造、热压、冷压等方式一体成型。当底盖12是塑料材质(如PP、PE、ABS等),盖部12a与安装部12b可以采用注塑一体成型。盖部12a与安装部12b也可以单独成型后连接在一起。当盖部12a与安装部12b为金属材质,盖部12a与安装部12b可以焊接、粘接在一起。当盖部12a与安装部12b为塑料材质,盖部12a与安装部12b可以粘接在一起。当然,盖部12a与安装部12b也可通过卡接、铆接等其他方式固定连接在一起。
盖部12a与安装部12b可以位于同一平面内。具体可选地,盖部12a与安装部12b均面向主体 11的两个表面处于同一平面内,和/或盖部12a与安装部12b均背向主体11的两个表面处于同一平面。当盖部12a与安装部12b均面向主体11的两个表面以及均背向主体11的两个表面均分别处于同一平面时,盖部12a与安装部12b可以形成一平板状的底盖12(如图15所示)。
盖部12a与安装部12b也可以不位于同一平面内。具体地,盖部12a相对安装部12b朝主体11凹陷,或者盖部12a相对安装部12b背向主体11凸出,具体不限定。盖部12a与安装部12b的厚度可以相等,也可以不等,具体不限定。
此时,底盖12经由盖部12a界定容纳腔10a,并经由安装部12b实现与主体11连接,结构分明,方便安装。
可理解地,当底盖12与主体11密封连接时,底盖12经由安装部12b与主体11密封连接,即安装部12b与主体11密封连接。安装部12b与主体11之间的密封连接方式可以是密封件密封连接、密封胶密封连接等,具体不穷举。密封件可以是上述描述中提及的密封件,密封件的设置方式可以参考上述记载,不同之处在于密封件设置在安装部12b与主体11之间。当安装部12b与主体11之间采用密封胶密封连接时,密封胶可以涂覆在安装部12b与主体11相接触的全部表面上。
可理解地,当底盖12与主体11可拆卸连接时,底盖12经由安装部12b与主体11可拆卸连接,即安装部12b与主体11可拆卸连接。安装部12b与主体11可拆卸连接的方式,可以参照上述描述中记载的底盖12与主体11的可拆卸方式,只需将底盖12中与主体11可拆卸连接的部位设置为安装部12b即可,因此对于安装部12b与主体11的可拆卸连接方式在此不进行赘述。
在一些实施例中,安装部12b与主体11可拆卸连接。
具体地,底盖12还包括设置于安装部12b上的固定孔12c,紧固件13穿设安装部12b上的固定孔12c后紧固在主体11上。固定孔12c是在竖直方向贯通安装部12b的通孔,具体地,固定孔12c可以是光滑的通孔(如紧固件13为铆钉时)、也可以是具有螺纹的通孔(如紧固件13为螺钉时)、或者其他方式的通孔(如六角孔、方形孔、腰型孔等)。固定孔12c的具体形式根据紧固件13的具体形式及具体设定方式而定,在此不赘述。
在一些实施例中,盖部12a与安装部12b的厚度相等。
当盖部12a与安装部12b一体成型,两者可以采取上述描述中记载的方式实现一体成型,如压铸一体成型、冷压一体成型、热压一体成型、注塑一体成型等,在此不赘述。由于盖部12a与安装部12b的厚度相等,在成型时可以基于同一金属板通过冲压、切割等方式快速加工而出。
此时,盖部12a与安装部12b的厚度相等,在成型时各处应力均等,可提高一体成型的成型率,也可采取简单的诸如板材切割等方式快速加工而出,底盖12的结构更加简单、加工更加方便。
在一些实施例中,请参照图12和图14,盖部12a相较于安装部12b沿背离容纳腔10a的方向突出设置。
由上文可知,盖部12a界定容纳腔10a,盖部12a背离容纳腔10a突出是指盖部12a背离主体11突出。也就是说,盖部12a与安装部12b在竖直方向的错开布置,盖部12a处于底盖12的最低处。当盖部12a相较于安装部12b背离容纳腔10a突出,盖部12a与安装部12b之间能够形成一定 的冗余空间,该冗余空间能够增加盖部12a与电池单体20之间的距离,当外力作用在盖部12a时通过该冗余空间能够对外力进行消减,减小或避免外力作用于电池单体20,对电池单体20造成损伤,特别是当电池100安装于车辆1000底部且底盖12处于电池100最低处时,车辆1000行驶过程中地面上的石子等容易飞射到电池100的底部即底盖12处,击打底盖12,此时冗余空间可减小外力击打对电池单体20的影响。同时,盖部12a相对安装部12b突出,底盖12的盖部12a可以作为底盖12的加强结构,提高底盖12的抗弯性能。
在一些实施例中,底盖12位于箱体10的底部,并用于界定容纳腔10a,则底盖面向电池单体的壁构成容纳腔的底壁。
在一些实施例中,请参照图16,底盖12与电池单体20间隔设置。
底盖12与电池单体20间隔设置是指在竖直方向,底盖12与电池单体20之间保持有设定间隔r。在该设定间隔r的作用下底盖12与电池单体20之间形成有缓冲空间,可以避免作用于底盖12的外力传递到电池单体20上而损害电池单体20,特别是当电池100安装于车辆1000底部且底盖12处于电池100最低处时,车辆1000行驶过程中地面上的石子等容易飞射到电池100的底部击打底盖12,此时缓冲空间可中断外力传递到电池单体20对电池单体20造成影响。
底盖12与电池单体20间隔设置的方式可以是:由上述实施例中突出的盖部12a和安装部12b之间形成的冗余空间所形成,还可以是电池单体20中位于主体11内并朝向底盖12的一端与主体11朝向底盖12的一端之间保持设定距离,也就是说,电池单体20仅位于由主体11所界定的容纳腔10a的部分范围内,而不位于由底盖12所界定的容纳腔10a的范围内,由此来保证电池单体20与底盖12之间保持设定间隔r以形成缓冲空间。
可理解地,当电池100内包括多个电池单体20时,全部电池单体20均与底盖12间隔设置。进一步为了统一电池单体20的尺寸,各电池单体20与底盖12之间的间隔距离相等。
在一些实施例中,请参照图12、图13和图15,底盖12具有面向容纳腔10a的特征面12d,特征面12d被构造为平面,以降低底盖12本身对容纳腔10a的占用,尽可能多吧空间用于安装电池单体20,以提高电池的能量密度和续航能力。
特征面12d面向容纳腔10a表明特征面12d是底盖12中能够界定容纳腔10a的内表面。特征面12d被构造为平面是指在主体11与底盖12的布置方向上,特征面12d为与该布置方向垂直的平面。在实际状况下,当主体11与底盖12沿竖直方向布置时,底盖12的特征面12d为与水平面相平行的平面。当主体11与底盖12沿水平方向布置时,底盖12的特征面12d为与竖直面相平行的平面。
当特征面12d为平面,特征面12d可以与容纳于容纳腔10a内的各个电池单体20之间保持较为均等的距离(此距离可以为零)。当特征面12d与电池单体20之间的距离保持较为均等时,容纳腔10a能够容纳更多的电池单体20,即容纳腔10a的空间利用率更高,电池100能够拥有更高的能量密度,电池100的续航能力更高。
可理解地,当底盖12具有上述盖部12a和上述安装部12b时,特征面12d可以由盖部12a面 向容纳腔10a的内表面构造形成。进一步可理解地,当底盖12与电池单体20间隔设置时,特征面12d与电池单体20之间间隔布置。
在一些实施例中,盖部12a背离容纳腔10a的外表面与特征面12d相平行。
盖部12a背离容纳腔10a的外表面与特征面12d沿竖直方向相背布置。盖部12a的外表面用于与大气环境接触,并承受外力击打。当盖部12a的外表面是与特征面12d平齐的平面,特别在底盖12与主体11沿竖直方向布置在车辆1000的底部且底盖12位于电池100的最低处,盖部12a的外表面呈平面时可以大大减小电池100所产生的风阻,有助于降低车辆1000的行驶阻力,降低车辆1000行驶能耗,提高电池100的续航能力。
图17为图13所示的底盖12在竖直方向的正投影示意图。其中,S1表示特征面12d的投影面积,S2表示底盖12的投影面积。
在一些实施例中,在竖直方向,特征面12d的正投影的面积S1与底盖12的正投影的面积S2满足:S1/S2≥0.2。进一步地,S1/S2≥0.5。
在图17所示的实施例中,在竖直方向的正投影,特征面12d由第一特征边d1、第二特征边d2、第三特征边d3、第四特征边d4首尾连接围合形成,特征面12d的正投影的面积S1则为由第一特征边d1、第二特征边d2、第三特征边d3和第四特征边d4界定而出的区域面积。底盖12的正投影的面积S2则是由底盖12的边缘所界定而出的区域面积。具体地,特征面12d的正投影的面积S1与底盖12的正投影的面积S2两者的比值可以是0.3、0.4、0.5、0.6、0.7、0.8、0.9、1。
表2面积S1与面积S2的比值对电池100续航里程的影响
No. S1/mm 2 S2/mm 2 S1/S2 测试结果
1 0.3×10 6 2.6×10 6 0.115
2 0.52×10 6 2.6×10 6 0.2 较好
3 0.94×10 6 2.6×10 6 0.362 较好
4 1.3×10 6 2.6×10 6 0.5
5 1.5×10 6 2.6×10 6 0.577
6 1.8×10 6 2.6×10 6 0.629
7 2.2×10 6 2.6×10 6 0.846 优秀
8 2.4×10 6 2.6×10 6 0.923 优秀
9 2.6×10 6 2.6×10 6 1 优秀
表2给出了按NEDC(New European Driving Cycle)标准进行测试的几组特征面12d的正投影的面积S1与底盖12的正投影的面积S2比值对电池100续航里程的影响。当S1/S2小于0.2时,电池100续航里程较差,究其原因是由于特征面12d较小时,容纳腔10a的空间利用率较低,电池100内所容纳的电池单体20数量较少,电池100的能量密度比较低,造成电池100续航里程较短,测试结果较差。当S1/S2的比值达到0.2及以上时(特别是S1/S2达到0.5及以上时),随着比值越大,电池100续航里程越好,究其原因是特征面12d越大,容纳腔10a的空间利用率更高,电池100的能量密度越高,因此电池100续航里程越来越高,测试结果越来越好。
由于特征面12d为平面,当特征面12d所占底盖12面积越大,则底盖12中相对特征面12d凹陷或凸出的内表面的面积越小。相对特征面12d凹陷的内表面会使得容纳腔10a中的部分空间不规 整而无法安装电池单体20,造成容纳腔10a的空间利用率低。相对特征面12d凸出的内表面所形成的容纳腔10a的部分空间也因不规整而无法容纳电池单体20,造成容纳腔10a的空间利用率低。容纳腔10a空间利用率低时,电池100内单位空间的电池单体20所占体积小,电池100的能量密度低。因此,特征面12d所占底盖12面积越大,电池100的空间利用率越大,电池100的能量密度更高,电池100的续航里程越好。
在一些实施例中,请参照图17,在竖直方向,特征面12d的正投影呈矩形。
如图17所示,呈矩形的特征面12d是由第一特征边d1、第二特征边d2、第三特征边d3和第四特征边d4围合界定的区域。在电池100中,多个电池单体20大多组装形成矩形结构,将特征面12d构造呈矩形,能够与电池100内电池单体20所形成整体构造相适应,有助于在容纳腔10a内布置更多的电池单体20,提高电池100的能量密度。
当然,在其他实施例中,在竖直方向,特征面12d的正投影也可以呈其他形状,如圆形、多边形、椭圆形及其他异形。
在本申请的实施例中,主体11包括承载件11a。承载件11a可以是主体11中用于界定容纳腔10a的部件(例如承载件11a是上文中提及的顶盖或框架),也可以是不用于界定容纳腔10a但位于容纳腔10a内的部件(例如承载件11a是上文中提及的支撑板),具体不限定。当承载件11a用于界定容纳腔10a时,承载件11a可以是主体11中与底盖12径直连接的部件(如上文提及的框架),也可以是与底盖12不连接的部件(如上文提及的顶盖)。
在一些实施例中,箱体10的顶部设有承载件11a,电池单体20设于承载件11a表面。
此时,承载件11a是能够承载电池单体20重量的部件,可以是承载板、承载杆、承载块、承载片、承载框、承载绳等,具体不限定。具体可以是,电池单体20支撑在承载件11a上,此时电池单体20可以设置在承载件11a的上方。具体还可以是,电池单体20挂设在承载件11a上,此时电池单体20可以挂在承载件11a的与电池单体20重力方向平行的壁面上。
电池单体20可以设置在承载件11a的上方(如承载件11a作为位于容纳腔10a内的支撑板时),电池单体20也可以设置在承载件11a的下方(如承载件11a作为用于界定容纳腔10a的顶盖时),电池单体20也可以设置在承载件11a的侧方(如承载件11a作为用于界定容纳腔10a的框架时)。
在一些实施例中,电池单体20与承载件11a粘接,通过粘接连接能够减小将电池单体20连接于承载件11a时竖直方向Z上所需的尺寸,减小电池整体的厚度。示例性的,承载件11a用于界定容纳腔10a,电池单体20悬吊于承载件11a。
具体地,电池单体20与承载件11a之间可以诸如环氧树脂胶、丙烯酸酯胶等胶黏剂实现粘接,具体不限定。此时,电池单体20与承载件11a之间粘接,不仅方便连接,而且可简化电池100的结构。
在一些实施例中,承载件11a面向电池单体20的壁构成容纳腔10a的顶壁101,例如电池单体20可以设于容纳腔10a的顶壁101。
在一些实施例中,如图21所示,电池单体20设置于承载件11a表面,且承载件11a的最小厚 度H与电池100的重量M1满足:0.0002mm/kg<H/M1≤0.2mm/kg。此时,承载件11a可以用于承担电池单体20的重量,且电池100结构强度好,不会出现起火爆炸的问题,同时电池的能量密度较高,电池的续航能力更强。
承载件11a的厚度是指承载件11a中用于设置电池单体20的一侧表面与其相背的另一侧表面之间的距离。当电池单体20设置于承载件11a竖直方向的表面时,则承载件11a的最小厚度H是指承载件11a在竖直方向的两侧表面的距离最小处,当电池单体20于承载件11a水平方向的表面时,承载件11a的厚度是指承载件11a在水平方向的两侧表面的的距离最小处。
电池100的重量包含了主体11、底盖12、电池单体20及其他组成结构(如线束、热管理系统、电源管理系统等)的全部重量。
具体地,承载件11a的最小厚度H与电池100的重量M1之间的比值可以设计为:0.0003mm/kg、0.0005mm/kg、0.0008mm/kg、0.001mm/kg、0.003mm/kg、0.005mm/kg、0.008mm/kg、0.01mm/kg、0.03mm/kg、0.05mm/kg、0.06mm/kg、0.08mm/kg、0.1mm/kg、0.12mm/kg、0.15mm/kg、0.16mm/kg、0.19mm/kg、0.02mm/kg。
表3承载件11a最小厚度H与电池100重量M1的比值对电池100安全性能的影响
No. H(mm) M1(Kg) H/M(mm/Kg) 测试结果
1 0.1 1000 0.0001 起火,爆炸
2 0.2 1000 0.0002 起火,爆炸
3 0.6 600 0.001 不起火,不爆炸
4 1.5 500 0.003 不起火,不爆炸
5 2.5 500 0.005 不起火,不爆炸
6 4 500 0.008 不起火,不爆炸
7 3 300 0.01 不起火,不爆炸
8 9 300 0.03 不起火,不爆炸
9 10 200 0.05 不起火,不爆炸
10 12 200 0.06 不起火,不爆炸
11 16 200 0.08 不起火,不爆炸
12 20 200 0.1 不起火,不爆炸
13 30 200 0.15 不起火,不爆炸
14 40 200 0.02 不起火,不爆炸
表3给出按GB38031-2020《电动汽车用动力蓄电池安全要求》的标准下进行测试的几组承载件11a的最小厚度H与电池100的重量M1的比值对电池100安全性能的影响结果。从表3中可以看出,当H/M的比值不超过0.0002mm/Kg,电池100会起火爆炸,究其原因是电池100的结构强度不满足要求。当H/M的比值超过0.0002mm/Kg时,电池100不会起火爆炸。但是,当H/M过大(如超过0.1时),由于电池100重量小而承载板厚度大,使得电池100在单位体积内电池单体20的占比较低,空间利用率较低,电池100的能量密度过低,电池100的使用成本较高。进一步地,0.0005mm/Kg≤H/M≤0.1mm/Kg,此时电池100的结构强度满足要求且电池100的能量密度较高,电池100的续航能力更强且不会出现起火爆炸等安全事故。
在一些实施例中,承载件11a的最小厚度H满足:0.2mm<H<20mm。
具体地,承载件11a的最小厚度H可以为:0.3mm、0.5mm、0.8mm、0.9mm、1.0mm、1.2mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm、5mm、5.5mm、6mm、6.5mm、7mm、7.5mm、8mm、9mm、10mm、12mm、15mm、16mm、18mm、19mm。进一步地,0.5mm≤H≤10mm,此时承载件11a具有较好的结构强度,电池100整体强度较好,电池100不易起火和爆炸。同时承载件11a对电池100整体的体积占用较小,电池100的空间利用率较高,电池100的能量密度较高。
在一些实施例中,请参照图11、图16和图27,电池单体20悬吊于承载件11a。示例性的,承载件11a用于界定容纳腔10a,电池单体20悬吊于承载件11a。
电池单体20悬吊于承载件11a是指电池单体20设置在承载件11a竖直方向的下方,且由承载件11a承担电池单体20的重量。电池单体20悬吊在承载件11a的方式包括:电池单体20直接粘接在承载件11a的下表面、电池单体20通过紧固件13连接在承载件11a上且位于承载件11a的下方、电池单体20通过挂钩等挂设在承载件11a上且位于承载件11a的下方等。
此时,电池单体20悬吊在承载件11a的下方,底盖12位于箱体10的底部,在对电池100的内部进行维修时,拆卸底盖12即可暴露电池单体20而无需拆出承载件11a,电池100的维护更加方便。同时,在维修电池100时,可以将电池单体20从下方拆装于承载件11a上,特别是承载件11a作为车辆1000底盘的至少一部分而受力时,仅需从承载件11a的下方拆装电池单体20而不需要拆除承载件11a,方便电池100的维修。
在一些实施例中,请一并参照图18和图46,电池单体20面向承载件11a的外表面为第一外表面m1(也可以理解为本申请所述的电池单体20的顶壁204),电极端子214布置于电池单体20除第一外表面m1之外的外表面。
如上文介绍,电极端子214用于与电池单体20内部的电极组件23电连接,以用于输出或输入电池单体20的电能的部件。电极端子214至少部分伸出于电池单体20之外,以与外部电连接。电池单体20之间的串联、并联均通过各自的电极端子214之间的串联、并联实现。电极端子214具有导电性,以实现电传输,可以是铝电极、铜电极等。
电极端子214布置在电池单体20除第一外表面m1之外的外表面上。第一外表面m1面向承载件11a,通常是光滑表面,其上未凸出或凹陷有诸如电极端子214、注液孔的结构。当电池单体20悬吊于承载件11a时,第一外表面m1为电池单体20朝上的外表面。具体到一实施例中,电池单体20包括上文中的壳体211及端盖212,壳体211及端盖212形成电池单体20容纳电极组件23的内部环境。端盖212位于壳体211的一端,电极端子214布置端盖212上,此时壳体211的任一外表面均可作为电池单体20的第一外表面m1。
电极端子214包括正极端子和负极端子,正极端子用于与电极组件23中的正极片电连接,负极端子用于与电极组件23中的负极片电连接。需要说明地,正极端子和负极端子可以布置在电池单体20的同一外表面上(如方形电池单体20),也可以分别布置在电池单体20不同的两个外表面(如圆柱形电池单体20)上。当正极端子和负极端子布置在电池单体20不同的两个外表面上时,第一外表面m1为电池单体20中与该两个外表面不同的表面。
电池100除了电池单体20之外,通常还设置有电连接各电池单体20的采样线束、高压线速和对电池单体20进行防护的防护结构等部件,此时,将电极端子214布置在电池单体20除第一外表面m1之外的其他表面,在电极端子214上采样线束、高压线束、防护结构等部件时,不会受到承载件11a的限制而可以通过电池单体20与主体11除承载件11a之外的其他结构之间的空间(如通过电池单体与底盖之间的空间和/或电池单体与主体内侧面之间的空间)布置各个部件,更加方便各个部件的设置。同时由于第一外表面m1是光滑的表面,可以将第一外表面m1与承载件11a相贴合,如此可实现电池单体20与承载件11a的贴合安装,不需在电池单体20与承载件11a之间预留空间,有助于提高电池100的空间利用率。
在一些实施例中,请一并参照图18,电池单体20具有与第一外表面m1相背设置的第二外表面m2(也可以理解为本申请所述的电池单体20的底壁205),电极端子214布置于第二外表面m2。
第二外表面m2是电池单体20与第一外表面m1相背设置的外表面,当电池单体20悬吊于承载件11a时,第二外表面m2与底盖12相对。如上文所述,电池单体20与底盖12之间可以间隔设置。此时第二外表面m2与底盖12之间具有缓冲空间,且电极端子214伸出电池单体20之外的部分位于该缓冲空间内,如此与电极端子214连接的线束和连接片可以布置在缓冲空间内。同时,缓冲空间还具有上文中所提到的能够阻断击打于底盖12的外力作用到电池单体20而损伤电池单体20。因此,缓冲空间不仅能够中断外力影响,还能够进行线束等的布局,一举两得。此外,缓冲空间和电池100的空间利用率也得到提高。
当然,在其他实施例中,参照图46,电极端子214也可以布置在电池单体20中与第一外表面m1相交的第三外表面m3上。
在一些实施例中,请参照图11和图16,承载件11a位于箱体10的顶部,并用于界定容纳腔10a。由于底盖12位于箱体10的底部,因此承载件11a与底盖12相对布置。承载件11a作为箱体10顶部的结构,箱体10可经由承载件11a安装于安装体上。此时,设置在承载件11a上的电池单体20,能够加强承载件11a的强度,进而提高电池100顶部的刚度,如此可将电池100应用场景扩展至顶部受力的场景下,如作为车辆1000底盘的一部分使用。
在一些实施例中,如图20和图22所示,承载件11a具有面向容纳腔10a的承载面12f,承载面12f被构造为平面。
承载面12f是承载件11a面向容纳腔10a的内表面,且用于界定容纳腔10a。承载面12f被构造为平面是指在主体11与底盖12的布置方向上,承载面12f为与布置方向垂直的平面。在实际状况下,当主体11与底盖12沿竖直方向布置时,承载件11a与底盖12沿竖直方向相对设置,承载件11a的承载面12f为与水平面相平行的平面。当主体11与底盖12沿水平方向布置时,承载件11a与底盖12沿水平方向相对设置,承载件11a的承载面12f为与竖直面相平行的平面。
如图20和图30所示,承载件11a可以是承载件11a面向容纳腔10a的内表面的全部,此时承载件11a可以呈平板状。如图21和图22所示,承载件11a也可以是承载件11a面向容纳腔10a的内表面的一部分,此时承载面12f仅为承载件11a的内表面中用于界定容纳腔10a的部分。
当承载面12f为平面,承载面12f可以与容纳于容纳腔10a内的各个电池单体20之间保持较为均等的距离(此距离可以为零)。当承载面12f与电池单体20之间的距离保持较为均等时,容纳腔10a内能够容纳更多的电池单体20,也就是说容纳腔10a的空间利用率更高,电池100能够拥有更高的能量密度,电池100的续航能力更高。
在一些实施例中,电池单体20设置于承载面12f。电池单体20经由承载面12f安装在承载件11a上。此时,装配电池时,可以先安装承载件而后自下而上吊装电池单体,特别是承载件作为车辆底盘的至少一部分时,承载件作为受力结构可以先安装在安装体上,而后自下而上吊装电池单体,如此更加方便电池的装配。悬吊在承载件上的电池单体,能够加强承载件的强度,进而提高电池顶部的刚度,如此可将电池应用场景扩展至顶部受力的场景下,如作为车辆底盘的一部分使用。
电池单体20可以粘接于承载面12f,也可以经由紧固件13等固定连接在承载面12f,还可以焊接、卡接于承载面12f,具体不限定。
由于承载面12f是平面,承载面12f可以与设置于自身的电池单体20具有较大的接触面积,电池单体20的安装更加稳固。同时,承载面12f呈平面时,相比呈曲面等不平整面,承载面12f能够与更多数量的电池单体20实现连接,可提高电池100内电池单体20的安装数量,进而提高电池100的空间利用率及能量密度。
可理解地,电池单体20悬吊于承载件11a时,电池单体20悬吊于承载面12f。
在一些实施例中,在竖直方向,承载面12f的正投影的面积N1与承载件11a的正投影的面积N2满足:N1/N2≥0.2。进一步地,N1/N2≥0.5。
在图22所示的实施例中,在竖直方向的正投影,承载面12f由第一承载边f1、第二承载边f2、第三承载边f3及第四承载边f4首尾连接围合形成,承载面12f的正投影的面积N1则为由第一承载边f1、第二承载边f2、第三承载边f3和第四承载边f4界定而出的区域面积。承载件11a的正投影的面积N2则是由承载件11a的边缘所界定而出的区域面积。
具体地,承载面12f的正投影的面积N1与承载件11a的正投影的面积N2两者的比值可以是0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1。
表4面积N1与面积N2的比值对电池100续航里程的影响
No. N1(mm 2) N2(mm 2) N1/N2 测试结果
1 1.8×10 5 2.16×10 6 0.083
2 2.16×10 5 2.16×10 6 0.1
3 4.32×10 5 2.16×10 6 0.2 较好
4 8×10 5 2.16×10 6 0.37 较好
5 1.2×10 6 2.16×10 6 0.56
6 1.7×10 6 2.16×10 6 0.787 优秀
7 2.16×10 6 2.16×10 6 1 最优
表4给出了按NEDC(New European Driving Cycle)标准进行测试时,几组承载面12f的正投影的面积N1与承载件11a的正投影的面积N2的比值对电池100续航里程的影响。当N1/N2小于0.2时,电池100续航里程较差,究其原因是由于承载面12f较小时,承载于承载件11a上的电池单体20数量较小,容纳腔10a的空间利用率较低,电池100的能量密度比较低,造成电池100续 航里程较短,测试结果较差。当N1/N2的比值达到0.2及以上时(特别是N1/N2达到0.5及以上时),随着比值越大,电池100续航里程越好,究其原因是承载面12f越大,承载于承载件11a上的电池单体20数量越多,容纳腔10a的空间利用率越高,电池100的能量密度越高,因此电池100续航里程越来越高,测试结构越来越好。当承载件11a为图20所示的平板结构时,此时的承载面12f的正投影面积N1与承载件11a的正投影面积N2相等,电池100续航效果最好。
在一些实施例中,在竖直方向,承载面12f的正投影呈矩形。
如图22所示,呈矩形的承载面12f是由第一承载边f1、第二承载边f2、第三承载边f3和第四承载边f4围合界定的区域。在电池100中,多个电池单体20大多组装形成矩形结构,将承载面12f构造呈矩形,能够与电池所形成整体构造相适应,有助于在容纳腔10a内布置更多的电池单体20,提高电池100的能量密度。
当然,在其他实施例中,在竖直方向,承载面12f的正投影也可以呈其他形状,如圆形、多边形、椭圆形及其他异形。
在一些实施例中,请参照图21,承载件11a具有承载部11a1及连接部11a2,连接部11a2围合连接在承载部11a1的边缘,承载部11a1用于界定容纳腔10a,连接部11a2连接于箱体10除承载件11a之外的部分。
承载部11a1用于界定容纳腔10a,连接部11a2用于与箱体10除承载件11a之外的部分连接,而不参与容纳腔10a的界定。承载部11a1可以是板状、块状构件,可以是平板状、弯板状的构件,具体不限定。从图21中可以看出,连接部11a2围合在承载部11a1的边缘是指连接部11a2沿承载部11a1的边缘连续呈首尾封闭连接的结构。可理解地,在竖直方向的投影,连接部11a2具有一定宽度,如此可与箱体10除承载件11a之外的其他结构具有适当的接触面积,更加方边实现连接部11a2与箱体10除承载件11a之外的其他结构的安装连接。
承载部11a1与连接部11a2可以一体成型。当承载件11a是金属材质(如铝、铁、不锈钢等),承载部11a1与连接部11a2可以采用压铸、锻造、热压、冷压等方式一体成型。当承载件11a是塑料材质(如PP、PE、ABS等),承载部11a1与连接部11a2可以采用注塑一体成型。承载部11a1与连接部11a2也可以单独成型后连接在一起。当承载部11a1与连接部11a2为金属材质,承载部11a1与连接部11a2可以焊接、粘接在一起。当承载部11a1与连接部11a2为塑料材质,盖部12a与安装部12b可以粘接在一起。当然,承载部11a1与连接部11a2也可通过卡接、铆接等其他方式固定连接在一起。
具体地,连接部11a2与主体11除承载件11a之外的部分连接,连接方式既可以是一体成型也是可以固定连接。当连接部11a2与主体11除承载件11a之外的部分一体成型时,也就是说主体11是一体成型制件,可通过压铸、锻造、热压、冷压、注塑等方式一体成型。当连接部11a2与主体11除承载件11a之外的部分固定连接时,可以经由紧固件13紧固连接、卡合结构卡接连接等方式固定连接,具体不限定。
承载部11a1与连接部11a2可以位于同一平面内。具体可选地,承载部11a1与连接部11a2均 面向底盖12的两个表面处于同一平面内,和/或承载部11a1与连接部11a2均背向底盖12的两个表面处于同一平面。当承载部11a1与连接部11a2均面向底盖12的两个表面以及均背向底盖12的两个表面均分别处于同一平面时,承载部11a1与连接部11a2可以形成一平板状的承载件11a(如图20所示)。
承载部11a1与连接部11a2也可以不位于同一平面内。具体地,承载部11a1相对连接部11a2背离容纳腔10a凸出,或者承载部11a1相对连接部11a2朝向容纳腔10a凹陷,具体不限定。承载部11a1与连接部11a2的厚度可以相等,也可以不等,具体不限定。
此时,承载件11a经由承载部11a1界定容纳腔10a,并经由连接部11a2实现与主体11除承载件11a之外的结构连接,结构分明。
可理解地,当承载件11a包括上述承载部11a1和上述连接部11a2时,电池单体20设置于承载部11a1。
可理解地,当承载件11a包括上述承载部11a1和上述连接部11a2时,承载部11a1面向容纳腔10a的内表面构造形成承载面12f。
在一些实施例中,承载部11a1相较于连接部11a2沿背离容纳腔10a的方向突出设置。
由上文可知,承载部11a1界定容纳腔10a,承载部11a1背离容纳腔10a突出是指承载部11a1与连接部11a2在竖直方向错开布置。承载部11a1位于承载件11a的最高处。此时,承载部11a1与连接部11a2之间可形成一定作为容纳腔10a的一部分的空间,该空间可容纳电池单体20。
当承载部11a1相较于连接部11a2背离容纳腔10a突出,承载部11a1可以作为承载件11a的加强结构,提高承载件11a的抗弯性能。
在一些实施例中,承载部11a1与连接部11a2的厚度相等。
当承载部11a1与连接部11a2的厚度相等,承载部11a1与连接部11a2可以经由同一板材经压铸、冷压、热压一体成型,承载件11a的成型更加方便。同时,承载部11a1与连接部11a2的厚度相等,在成型时各处应力均等,可提高承载件11a的成型率。
在一些实施例中,承载部11a1背离容纳腔10a的外表面与承载面12f相平行。
承载部11a1背离容纳腔10a的外表面与承载面12f沿竖直方向相背设置。承载部11a1的外表面能够与大气环境相接触。当电池100安装于车辆1000时,外表面呈平面的承载部11a1能够降低车辆1000的行驶阻力,降低车辆1000的行驶能耗能耗低,提高电池100的续航能力。
在一些实施例中,请参照图10和图11,主体11包括边框11b和承载件11a,边框11b围合形成有在竖直方向的两端贯通设置的围合空间10q,底盖12和承载件11a分别盖合于围合空间10q在竖直方向的相背两端,底盖12、边框11b和承载件11a共同围合形成容纳腔10a。
边框11b自身围合形成在竖直方向的两端贯通的围合空间10q,承载件11a盖合在围合空间10q的顶部,底盖12盖合在围合空间10q的底部,即,承载件11a位于箱体10的顶部且用于界定容纳腔10a,底盖12位于箱体10的底部且用于界定容纳腔10a。边框11b、承载件11a及底盖12三者围合形成容纳腔10a。边框11b、承载件11a及底盖12可以为相同材料制件,如铝合金、铜合金、 钢材、塑料等。当然,边框11b、承载件11a及底盖12也可以采取不同的材料制成,具体不限定。在竖直方向的正投影,边框11b可以呈矩形、圆形、多边形等,具体不限定。
边框11b平行于竖直方向,边框11b围绕电池单体20设置,且边框11b连接承载件11a和底盖12。当承载件11a包括上述承载部11a1及连接部11a2时,承载件11a经由连接部11a2与边框11b连接。当底盖12包括上述盖部12a和上述安装部12b时,底盖12经由安装部12b与边框11b连接。
此时,以边框11b为基础,并将承载件11a和底盖12分别连接在边框11b的竖直方向的两端后即可形成电池100的容纳腔10a,箱体10结构较为简单。
在一些实施例中,承载件11a与边框11b固定连接(例如可拆卸连接等)或一体成型。承载件11a与边框11b可采取注塑、压铸、锻造、冷压、热压等方式一体成型。承载件11a与边框11b可以经由紧固件13紧固连接、卡合结构卡接、焊接、粘接、热熔连接等实现固定连接。
当承载件11a与边框11b一体成型,主体11一体成型,主体11只需与底盖12连接即可实现箱体10的组装,箱体10组装方便。当承载件11a与边框11b固定连接,承载件11a与边框11b的成型工艺较为容易,可降低箱体10的工艺成本。
可以理解的,当承载件11a具有承载部11a1和连接部11a2时,由连接部11a2与边框11b连接。当底盖12具有盖部12a和安装部12b时,由安装部12b与边框11b连接。
请参照图18和图23,在一些实施例中,在竖直方向上,电池单体20的高度Hc与电池100的高度Hp满足:0.02≤Hc/Hp≤0.98。
电池单体20的高度Hc是指在主体11与底盖12沿竖直方向布置时,电池单体20在竖直方向的最大长度。以图18和图19所述的电池单体20为例,当电池单体20的第一外表面m1为与电极端子214所在的外表面向背设置时,电池单体20的最大长度是指电极端子214与第一外表面m1之间的距离。当然,在电池单体20的第一外表面m1为与电极端子214所在的外表面相邻时,则电池单体20的高度Hc是指电池单体20的第一外表面m1至与其相背设置的外表面之间的距离。
电池100的高度Hp是指在主体11与底盖12沿竖直方向z布置时,电池100在竖直方向z的最大长度。
具体地,电池单体20的高度Hc与电池100的高度Hp的比值可以为0.02、0.03、0.05、0.08、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、0.98。
表5电池单体20高度Hc与电池100高度Hp的比值对电池100的安全性的影响
No. Hc/mm Hp/mm Hc/Hp 测试结果
1 248 252 0.984 起火,爆炸
2 138 150 0.92 不起火,不爆炸
3 115 135 0.85 不起火,不爆炸
4 90 120 0.75 不起火,不爆炸
5 78 120 0.65 不起火,不爆炸
6 110 200 0.55 不起火,不爆炸
7 60 200 0.3 不起火,不爆炸
8 60 600 0.1 不起火,不爆炸
9 50 1000 0.05 不起火,不爆炸
表5给出了按GB38031-2020《电动汽车用动力蓄电池安全要求》的标准下进行测试的几组电池单体20的高度Hc与电池100的高度Hp的比值对电池100的安全性的影响。由表5可以看出,Hc/Hp超过0.98时,箱体10的结构所占电池100高度很小,箱体10的强度无法满足要求,会出现起火爆炸的安全事故。当0.02≤Hc/Hp时,箱体10的结构强度能够满足要求,不会出现起火和爆炸的情况。当Hc/Hp小于0.02时,箱体10的结构强度虽然能够满足要求,但是电池100的空间利用率低,能量密度过低。
进一步地,0.5≤Hc/Hp<0.94,不仅电池100的强度满足要求,不会出现起火爆炸的安全事故,而且电池100的空间利用率较高,电池100的能量密度较高。
在一些实施例中,请参照图24至图28,用电装置包括车辆1000,电池100设置在车辆车身200的底部。关于车辆1000的介绍参照上述描述中的记载,在此不进行赘述。
车辆1000的车身200是指车辆1000用来载人装货的部分,包括驾驶舱、乘客舱、发动机舱、行李舱等。车身200通常包括车身壳体及设于车身壳体上的车门、车窗、装饰件、座椅、空气调节装置等等。车身壳体通常指车辆1000纵梁、横梁、底盘及支柱等主要承力元件以及与它们相连的钣金件共同组成的结构。在本申请的实施例实施例中,电池100设置于车身200的底部主要是指电池100设置于车身壳体的底部。此时,将电池100设置在车身200的底部,不会占用车身200内部的空间,有助于降低车身200体积和重量。
在一些实施例中,请参照图28,主体11包括位于箱体10顶部的承载件11a,承载件11a用于界定容纳腔10a,在竖直方向,承载件11a与车身200的距离L满足:L≥0。
由于电池100位于车身200的底部,而承载件11a位于箱体10的顶部,因此电池100中承载件11a距离车身200最近。承载件11a与车身200的距离L是指在竖直方向,承载件11a的最高处与位于自身上方的车身200之间的距离。当承载件11a包括上述承载部11a1和上述连接部11a2时,承载件11a与车身200的距离L为承载部11a1背离容纳腔10a的外表面与位于其上方的车身200之间的距离。
当承载件11a与车身200的距离L等于0时,承载件11a与车身200贴合,当承载件11a与车身200的距离L大于0时,承载件11a与车身200间隔且不贴合。可理解地,此时底盖12处于承载件11a的底部,底盖12与车身200的距离g大于0。
在电池100设置车身200下方时,电池100底部至车身200的距离内的范围是电池100所占用的安装空间。当承载件11a与车身200间隔时,电池100与车身200之间会存在一定的浪费空间,若将承载件11a与车身200贴合,则可以将电池100与车身200之间存在的浪费空间划入到电池100的空间范围内,如此在车身200下方占用相同空间的情况下,电池100与车身200贴合能够提高电池100的体积,进而能够增加电池100的电量和能量密度。
此时,当承载件11a与车身200的距离L等于零,电池100能够具有较大电量和较高的能量密 度,车辆1000续航能力强。当承载件11a与车身200的距离L大于零,承载件11a的安装较为灵活。
在一些实施例中,请参照图24-图28,主体11包括位于箱体10顶部的承载件11a,承载件11a用于界定容纳腔10a,电池100经由承载件11a安装于车身200。
由于电池100位于车身200的底部,而承载件11a位于箱体10的顶部,因此电池100中承载件11a距离车身200最近,电池100经由承载件11a安装于车身200,具体可以是承载件11a经由紧固件13(如螺钉、螺栓、铆钉等)、焊接等方式固定在车身200。
当电池单体20设置在承载件11a上时,电池单体20与承载件11a形成的结构与车身200连接,可以提高电池100的顶部强度,进而提高电池100的安装强度。
在一些实施例中,承载件11a被配置为形成车身200底盘的至少一部分。
底盘作为车身200的一部分,由传动系、行驶系、转向系和制动系四部分组成的组合,用于支承、安装车辆1000发动机及其各部件、总成,形成车辆1000的整体造型,承受发动机动力,保证正常行驶。
底盘位于车身200的底部,承载件11a直接作为底盘的至少一部分。即,承载件11a用于形成车身200的底盘的至少一部分。如此,将承载件11a与车身200底盘集成于一体,如此可将传统底盘与电池100之间的间隙所占用的空间划分到电池100内用来提高电池100的空间,如此有助于提高电池100的能量,进而能够提高车辆1000的续航能力。
根据本申请的一些实施例,请参照图24-图28,用电装置包括车辆1000,车辆1000车身200的底部设置有电池100。电池100包括箱体10和电池单体20,箱体10包括位于其顶部的承载件11a,电池单体20位于箱体10内并悬吊在承载件11a上,且电池单体20的电极端子214位于电池单体20背离承载件11a的外表面上,承载件11a形成车辆1000底盘的至少一部分。
此时,电池单体20悬吊在承载件11a上,可以提高承载件11a的强度进而提高电池单体20顶部的强度,使得承载件11a作为底盘时能够达到一定的受力要求。同时,电池单体20的电极端子214背离承载件11a,可以将电池单体20直接安装在承载件11a上,省去电池单体20与承载件11a之间的空隙,并将节省的空隙用于增加电池单体20的安装空间,可提高电池100的能量,进而提高车辆1000的续航能力。
在一些实施例中,电池单体20为多个,多个电池单体20在第二方向y排布设置,第二方向垂直于竖直方向Z;承载件11a与多个电池单体20的顶壁204相连,电池单体20的顶壁204平行于第二方向y,竖直方向Z垂直于电池单体20的顶壁204,电池单体20位于承载件11a下方,这样承载件11a与电池单体20直接面接触,承载件11a直接与电池单体20的顶壁201连接,中间不需要再留有空间,可以提高电池100的空间利用率,从而提高电池100的能量密度,同时电池单体20与承载件11a连接为一个整体,可以提高电池100的结构强度。
可见,电池单体20的顶壁204与承载件11a的底面连接,承载件11a的底面可以为沿竖直方向靠近电池单体20的一面,电池单体20的顶壁204可以为电池单体20沿竖直方向靠近承载件11a 的一面。
其中,承载件11a在竖直方向Z上的尺寸N与电池单体20的重量M2之间的关系满足:0.04mm/kg≤N/M2≤100mm/kg,既可以使承载件11a在竖直方向Z的尺寸N保持在合理的范围内,避免N过大导致电池内部空间的浪费,又能够使电池单体20与承载件11a之间的连接更牢固,增强电池的结构强度,以提升电池的性能。
其中,承载件11a在竖直方向上的尺寸N可以为承载件11a在竖直方向上的厚度。承载件11a可以是电池的箱体上盖,也可以是用电装置的一部分,比如,车辆的底盘。当承载件11a为车辆的底盘时,电池单体20与承载件11a连接,也即,电池单体20与车辆的底盘面连接。电池单体20直接与车辆的底盘面连接,这样,可以不用设置电池的箱体上盖,节省了电池的箱体上盖所占用的空间,提高了电池的空间利用率,从而提高了电池的能量密度。
当N/M2>100mm/kg时,承载件11a沿竖直方向的尺寸N较大,虽然这样电池具有更大的结构强度,但同时承载件11a也占据了较大的空间,造成了电池内部的空间利用率的降低,进而导致了电池的能量密度的降低。
当N/M2<0.04mm/kg时,此时承载件11a不能满足电池的结构强度的需求,在电池的使用过程中,承载件11a可能会朝向重力方向变形甚至断裂,电池单体20也有可能会脱离承载件11a,进而发生起火爆炸等安全事故。
对不同尺寸的承载件和不同重量的电池单体的测试结果如表6所示。
表6不同尺寸的承载件和不同重量的电池单体的测试结果
N/mm M2/kg N/M2mm/kg 测试结果
0.2 10 0.02 起火,爆炸
0.4 8 0.05 不起火,不爆炸
0.4 1 0.4 不起火,不爆炸
1 3.5 0.286 不起火,不爆炸
5.5 1.5 3.667 不起火,不爆炸
10 2 5 不起火,不爆炸
18 2 9 不起火,不爆炸
在一些示例中,承载件11a也可以称为挂载壁。
可选地,电池单体20的顶壁204可以为电池单体20的表面积最大的壁,这样,承载件11a与电池单体20之间的接触面积较大,能够保证承载件11a和电池单体20之间的连接强度。在其它实施例中,承载件11a也可以和电池单体20的表面积较小的壁连接,本申请实施例对此不作限制。
在一些可选实施例中,电极端子214设在电池单体20的底壁205,底壁205与顶壁204沿竖直方向分隔且相对设置;或者,电极端子214设在电池单体20的侧壁,侧壁与顶壁204相连,且侧壁与竖直方向平行。
在电池单体20处于使用状态时,竖直方向可以平行于重力方向,电极端子214可以沿重力方向朝向地面。例如,电池100包括承载件11a和箱体10,箱体10位于承载件11a的下方,电池单体20的顶壁204朝向承载件11a并与承载件11a连接,电池单体20的底壁205朝向箱体10的底 部,电极端子214也朝向箱体10的底部,亦即朝向地面。这样,未设置有电极端子214的顶壁204可以与承载件11a直接连接,电池单体20和承载件11a连接成为一个整体,增强了电池100的整体结构强度,同时顶壁201与承载件11a之间不需要再留有间隙,提高了电池的空间利用率,进而提升了电池的能量密度。
可选地,电极端子214还可以设置在电池单体20的沿第二方向y相对设置的两个壁中的一个上,也就是说,设置电极端子214的侧壁与顶壁204相连,且设置电机端子214的侧壁平行于竖直方向。例如,沿第二方向排列的同一列电池单体20的电极端子214也沿第二方向排列。
可选地,承载件11a在竖直方向上的尺寸N为0.2mm~20mm。可选地,电池单体20的重量M2为1kg~10kg。这样,可以根据电池单体20的重量M2灵活地选择承载件11a在竖直方向上的尺寸或者根据承载件11a在竖直向上的尺寸选择相应合适的电池单体20。
可选地,如图20所示,承载件11a可以为板状结构,例如,平板。在板状结构中,只要能够实现承载件11a与电池单体20顶壁204接触的表面为平面即可,其他方面不作具体限制。
可选地,如图31所示,承载件11a内部设置有空腔11t,一方面,空腔11t可以给电池单体20提供膨胀空间,另一方面,空腔11t还可以作为流道容纳流体,以调节电池单体20的温度。
示例性的,空腔11t用于容纳换热介质以给电池单体20调节温度,此时承载件11a也可称为热管理部件。当然,在其他示例中,电池单体20与承载件11之间可以设置换热件,换热件可以为具有通道的部件以作为热管理部件,或者换热件形成为任何其他能够起到调节电池单体20温度的部件,本申请不作限制。
可选地,空腔11t内可以设置有加强板11s,加强板11s可以沿第一方向延伸。一方面,加强板11s可以增强承载件11a的结构强度,另一方面,加强板11s可以在承载件11a的内部形成多条流道,用于容纳换热介质,其中,该多条流道可以相互连通也可以相互独立。
换热介质可以是液体或气体,调节温度是指给多个电池单体20加热或者冷却。在给电池单体20降温的情况下,空腔11t可以容纳冷却介质以给多个电池单体20调节温度,此时,换热介质可也可以称为冷却介质或冷却流体,更具体地,可以称为冷却液或冷却气体。另外,换热介质也可以用于加热,本申请实施例对此并不限定。可选地,换热介质可可以是循环流动的,以达到更好的温度调节的效果。可选地,流体可以为水、水和乙二醇的混合液、制冷剂或者空气等。
可选地,如图32所示,承载件11a设置有加强部506。承载件11a可以包括第一面504和第二面505,第二面505和电池单体20的顶壁204连接,加强部506设置于第一面504和/或第二面505,该加强部506可以增强承载件11a的结构强度。可选地,加强部506可以为承载件11a经冲压形成的凸起和/或凹槽,本申请实施例对此不作限制。
可选地,如图33所示,在竖直方向上,承载件11a的远离电池单体20的表面设有加强筋503;在图33的示例中,承载件11a沿竖直方向远离电池单体20的表面可以为第一面504,第一面504上方设置有加强筋503。加强筋503可以增强承载件11a的结构强度。
需要注意的是,加强筋503在竖直方向上的尺寸为N3,当(N+N3)/N>2时,只考虑N的大小 与电池单体20的重量M2之间满足:0.04mm/kg≤N/M2≤100mm/kg。加强筋503可以属于电池,也可以属于用电装置,比如车辆,加强筋503可以根据车辆对结构强度的需求进行设置,当加强筋503在竖直方向上的尺寸较大时,不再考虑加强筋503的尺寸N3与电池单体20的重量M2之间的关系。从另一个角度来说,当加强筋503的尺寸N3较小,例如,当(N+N3)/N≤2时,则(N+N3)与M2之间满足:0.04mm/kg≤(N+N3)/M2≤100mm/kg。
加强筋503的数量和形状可以根据用电装置的需求或电池的设置方式具体设置,本申请实施例对此不作具体限制
可选地,加强筋503和承载件11a为一体成型结构,这样,加工方便,有利于节省工序。在其它实施例中,加强筋503也可以与承载件11a分别成型,再通过拼接、焊接、粘接、机加工、冲压等方式连接或装配,本申请实施例对此不作具体限制。
可选地,承载件11a可以为单层板结构,也可以为多层板结构。相较于单层板结构,多层板结构的承载件11a具有更大的刚度和强度。
可选地,如图34所示,承载件11a包括第一板51和第二板52,第二板52与电池单体20的顶壁204连接,第一板51沿竖直方向与第二板52相对设置。其中,第二板52可以为平板,第一板51可以为非平板。第一板51的具体设置,比如,大小,强度等可以根据用电装置的具体需求调整,本申请实施例对此不作限制。承载件11a还可以包括第三板,第四板等等,本申请实施例对承载件11a所包括的板的数量不作限制。
在图34所示的实施例中,承载件11a的尺寸N可以为第二板52沿竖直方向的尺寸,第一板51沿竖直方向的尺寸为N4,当(N+N4)/N>2时,只考虑N与M2之间满足:0.04mm/kg≤N/M2≤100mm/kg。当(N+N4)/N≤2时,则(N+N4)与M2之间满足:0.04mm/kg≤(N+N4)/M2≤100mm/kg。
在一些实施例中,承载件11a在竖直方向上的尺寸N与电池单体20的重量M2之间的关系还满足:0.1mm/kg≤N/M2≤20mm/kg。这样,电池不会发生起火和爆炸,能够在满足电池100的能量密度的同时使电池的安全性得到更好的保障。
在一些实施例中,如图35所示,电池100还包括加强件30,多个电池单体20沿第二方向y依次布置,加强件30沿第二方向y延伸且与多个电池单体20中的每个电池单体20的第一壁201连接,第一壁201为电池单体20沿第一方向x相对的两个壁,即两个第一壁201沿第一方向x相对设置,第一方向x垂直于第一壁201,第一壁201可以与电池单体20的顶壁和电池单体20的底壁相邻。
加强件30与每个电池单体20的第一壁201连接,这样,加强件30与电池单体20连接成一个整体,可以提高电池的结构强度。在这种情况下,电池内可以不再设置侧板,也可以不需要再设置梁等结构,可以较大限度地提升电池内部的空间利用率,提高电池的结构强度和能量密度。
当然,加强件30还可以称为隔板。
可选地,第一壁201可以为电池单体20的表面积最大的壁,这样,能够增强加强件30和电池单体20的连接强度。在其它实施例中,第一壁201也可以为电池单体20的表面积较小的壁,本申 请实施例对此不作具体限制。
可选地,电池单体20还可以包括沿第二方向y相对设置的两个侧壁,侧壁与电池单体的顶壁、电池单体的底壁、第一壁201相邻,其中沿第二方向y排列的相邻的两个电池单体20的侧壁相对。
可选地,加强件30在第一方向x的尺寸为0.1mm~100mm。这样,可以兼顾加强件30的强度和电池10的能量密度。
当加强件30在第一方向x上的尺寸过小时,加强件30的刚度差,不能有效提高电池100的结构强度,当加强件30在第一方向x上的尺寸过大时,会占据电池100内部过多的空间,不利于提高电池10的能量密度,因此设置加强件30在第一方向x上的尺寸为0.1mm~100mm,这样既可以保障电池100的能量密度,又可以提高电池100的结构强度。
可选地,如图47所示,加强件30的内部设置有空腔30a,该空腔30a可以用于给电池单体20提供膨胀空间,也可以作为流道容纳流体(液体或气体)以调节电池单体的温度,还可以保证加强件30强度的同时减轻加强件30的重量;此时加强件30还可以称为热管理部件。可选地,空腔结构内部还可以设置结构加强件,既可以增强加强件30的强度,又可以形成多条流道。
其中,调节电池单体20的温度是指给多个电池单体20加热或冷却。
可选地,加强件30可以为金属隔板,这种情况下,在加强件30的表面设置有绝缘层,该绝缘层可以为绝缘膜或绝缘漆。
可选地,加强件30为非金属隔板,即,加强件30为非金属的绝缘板。
可选地,电池10包括多列沿第二方向y排列的多个电池单体20和多个加强件30,其中,多列电池单体20和多加强件30在第一方向x上交替设置。这样,多列电池单体20和多个加强件30相互连接形成一个整体,容纳于箱体内,能够进一步保证电池10整体的结构强度,从而能够提升电池的性能。
多列电池单体20和多个加强件30在第一方向上交替设置,其中,沿第一方向,可以按电池单体—加强件—电池单体的方式排列,也可以按加强件—电池单体—加强件的方式排列。
可选地,如图36和图37所示,电池10包括多个电池模块100a,电池模块100a包括至少一列沿第二方向y排列的多个电池单体20和至少一个加强件30,且至少一列电池单体20和至少一个加强件30在第一方向x上交替设置。
可选地,如图37所示,电池模块100a包括N列电池单体20和N-1个加强件30,加强件30设置于相邻的两列电池单体20之间,N为大于1的整数,在图37中,N为2。这样,可以减少加强件30的个数,提升电池10的能量密度。
例如,如图38所示,沿第一方向x,加强件30的数量比电池单体20的列数小1,如图39所示,加强件30的数量等于电池单体20的列数,如图40所示,沿第一方向x,加强件30的数量比电池单体20的列数大1。
可选地,电池模块100a可以包括N列电池单体20和N+1个加强件30,加强件30设置于相邻的两列电池单体之间,N为大于1的整数。可选地,具有不同的电池单体20和加强件30的排列方 式的电池模块100a可以相互组合形成电池10。
可选地,多个电池模块100a沿第一方向排列,相邻的电池模块100a间具有间隙,这样,可以给电池单体20提供膨胀空间。
可选地,如图37所示,加强件30在第二方向y上的端部设置有固定结构103,加强件30通过固定结构103固定于承载件11a。固定结构103可以直接与承载件11a连接,也可以与箱体10的侧壁连接进而与承载件11a连接。这样,每个电池单体20都被加强件30和固定结构103固定于承载件11a,这样,增强了电池单体20和承载件11a之间的固定连接,整个电池10连接为一个整体,提升了电池10的结构强度。
可选地,固定结构103可以包括固定板104。固定板104与加强件30的端部固定连接,且与位于加强件30的端部的电池单体20固定连接。例如,对于长方体型电池单体20,固定板104可以垂直连接于加强件30,并与加强件30分别连接长方体型电池单体20的两个相邻的侧壁,从而进一步加强对电池单体20的固定效果。
可选地,固定板104可以采用与加强件30相同的材料,例如,金属、塑料或复合材料。固定板104的厚度也可以与加强件30相同。固定板104的材料或厚度也可以与加强件30不同,例如,固定板104可以采用更高强度或厚度的设置,但本申请实施例对此并不限定。
可选地,加强件30与固定板104之间的连接方式可以是电阻焊接、电阻铆接、SPR铆接、锁螺栓或卡接等连接方式;固定板104也可以通过电阻焊接、电阻铆接、SPR铆接、锁螺栓或卡接等连接方式固定到承载件11a上,但本申请实施例对此并不限定。
可选地,固定板104与电池单体20之间可以通过粘接的方式固定连接,例如,通过结构胶粘接,但本申请实施例对此并不限定。
可选地,固定板104包括沿第一方向向远离电池单体20的方向延伸形成的第一连接部105,第一连接部105用于连接承载件11a。例如,以连接承载件11a的第二面505为例,在固定板104靠近第二面505的位置,可向远离电池单体20的方向,即向外延伸形成第一连接部105,通过第一连接部105连接第二面505。
第一连接部105可以平行于承载件11a的第二面505,第一连接部105的面积可以根据与所连接的箱体10的侧壁的固定方式而设定,以满足所需的固定效果。
可选地,第一连接部105可以由固定板104弯折而形成。例如,第一连接部105可以由固定板104的靠近第二面505的边缘向远离电池单体20的方向弯折而形成。例如,固定板104的上边缘可以向外弯折形成第一连接部105。这样,第一连接部105与固定板104的主体为一体结构,从而可以增强连接性能。
可选地,固定板104还包括沿第一方向向远离电池单体20的方向延伸形成的第二连接部107,第二连接部107用于连接固定板104与加强件30。例如,在固定板104与加强件30连接的位置,可向远离电池单体20的方向,即向外延伸形成第二连接部107,固定板104通过第二连接部107与加强件30固定连接。
可选地,除了连接加强件30外,第二连接部107还可以同时实现固定板104间的连接。例如,每列电池单体20设置一个固定板104,加强件30与两列电池单体20对应的两个固定板104通过第二连接部107固定在一起。
第二连接部107可以平行于加强件30。第二连接部107的面积可以根据固定方式而设定,以满足所需的固定效果。
可选地,加强件30与第一壁201粘接。通过粘接的方式将加强件30与第一壁201固定连接,结构简单,便于加工和组装。
可选地,加强件30还可以通过与第一壁201抵接从而被夹持在相邻列的电池单体20之间。
在一些实施例中,如图11、图16、图26、图41、图43和图44所示,电池单体20以端盖212朝向底壁102的方式倒置于箱体10内,以增强电池整体的刚度,减少其在碰撞中发生损坏的概率;端盖212设置有泄压机构213和电极端子214,泄压机构213及电极端子214均朝向底壁102设置,以提高电池的安全性。
例如,电池单体20以端盖212朝向底壁102的方式倒置于箱体10内,是指电池单体20在竖直方向上与箱体10相互倒置设置。
由此,通过在将电池单体20与箱体10倒置设置,能够使得电池单体20设置于电池100的顶部,从而增加电池100顶部的刚度,增加电池100的安全性。并且,电池单体20的端盖212朝向电池100的底部,能够增加电池100的能量密度,提升电池100的可用性。电极端子214朝向底壁102设置能够为电极端子214提供较大的电连接空间。泄压机构213朝向底壁102设置能够使得泄压机构213的泄压方向朝向电池100的底部,从而避免泄压机构213向与电池100顶部连接的其它外部装置进行排放,能够增加电池100的安全性。
可选地,电极端子214设置于泄压机构213的两侧;当然,泄压机构213也可以于电极端子214具有其他的位置关系。
在本申请的一些实施例中,如图11、图27和图41所示,箱体10包括承载件11a以及边框11b,承载件11a设置于箱体10的顶部,电池单体20与承载件11a固定连接。
承载件11a设置于箱体10的顶部,与边框11b沿竖直方向Z由上至下依次排列,承载件11a是沿水平方向延伸的板体,用于增加电池100顶部的刚度,边框11b是沿竖直方向Z延伸的板体,边框11b包围承载件11a设置,而在箱体的底部处形成开口10c,使箱体10内部具有容纳电池单体20的空间。电池单体20与承载件11a固定连接,可以增加电池100顶部的刚度,减少电池100在碰撞中损坏的可能性。
可选地,电池单体20可以与承载件11a通过胶粘的方式直接连接,也可以通过其它方式固定连接。
可选地,边框11b可以与承载件11a一体成型,也可以与承载件11a通过焊接、粘接、紧固件或熔接自攻丝工艺等连接方式固定连接,本申请对此不作限制。
例如,电池单体20的电极端子214朝向底壁102的开口10c设置,电池单体20的与电极端子 214相背的端面固定于承载件11a,在实际应用过程中,电池100通过箱体10的顶部固定于外部装置,例如车辆1000内部,设置于电池100顶部的电池单体20能够增加电池100顶部的刚度,在碰撞中减少电池100损坏的可能性,增加电池100的安全性。而且,电池单体20的电极端子214朝向开口10c,电池单体20的与电极端子214相对的一面与箱体10的顶部固定连接,使得电池100可以为放置电池单体20预留较少空间,增加电池100的能量密度,同时能够使得电池单体20更好地与箱体10结合。
在一种可选的实施方式中,承载件11a内部埋设有冷却通道。由于电池单体20设置于承载件11a,电池单体2的顶部与承载件11a相接触,出于对电池100性能的考虑,承载件11a内部埋设有通道,其中通有作为换热介质的气体或液体,能够在电池100工作时对电池100起到调节电池100温度的效果,从而增加电池100的寿命以及可用性。
在另一种可选的实施方式中,通道也可以作为热管理部件被设置于电池单体20与承载件11a之间,或形成为任何其它能够设置起到能够调节电池100温度功能的部件,本申请实施例在此不作限制。
在本申请的一些实施例中,如图11、图27和图41所示,箱体10还包括设置于开口10c的底盖12,边框11b相互连接呈框架结构,底盖12与边框11b固定连接。
边框11b相互连接呈框架结构,也即是边框11b设置于承载件11a周向与承载件11a组合形成为箱体10,以容纳电池单体2。底盖12与边框11b固定连接,从而覆盖于开口10c,使得箱体1具有相对密封的结构。
底盖12包括盖部12a以及安装部12b,安装部12b设置于盖部12a周向且与边框11b相匹配。也即是说,盖部12a覆盖于由边框11b形成的开口10c,安装部12b固定于边框11b,将底盖12与边框11b固定连接。可选地,安装部12b与边框11b可以螺栓连接,安装部12b与边框11b也可以采用其它方式固定连接。
在竖直方向Z上,盖部12a相对于安装部12b凸出于底部102。使得设置于箱体10内部的电池单体20与底盖12之间具有相对更大的距离。应理解,盖部12a相对于安装部12b凸出的距离应基于电池100的能量密度进行选择,不应过大导致电池100体积增加,而对电池100的能量密度有所降低。
当然,盖部12a还可以称为主体部,安装部12b还可以称为配合部。
在一些实施例中,如图41和图42所示,电池100还包括防护组件40,防护组件40设置于电池单体20与底壁102之间,以支撑电池单体20,电池单体20、防护组件40以及底壁102沿竖直方向Z由上至下依次排列,防护组件40可以直接或间接抵接于电池单体20,以起到支撑承载作用,能够增加电池100的结构强度,提升电池100的受力性能,在碰撞中减少电池100损坏的可能性。
当然,在一些示例中,防护组件40还可以称为承载组件。
示例性地,电池单体20与承载件11a固定连接,防护组件40与电池单体20固定连接,能够对电池100的结构起到多方的固定作用,提高电池100的稳定性。
在一些实施例中,如图41所示,电池单体20以端盖212朝向底壁102的方式倒置于箱体10内,此时防护组件40直接或间接抵接于电池单体20的端盖212。抵接也即是两个部件之间彼此直接接触或通过其他部件止抵、但没有相互固定。
示例性的,端盖212设置有泄压机构213和电极端子214,泄压机构213和电极端子214均朝向底壁102设置,防护组件40支撑电池单体20以保护泄压机构213和电极端子214。
在一些实施例中,如图11和图41所示,箱体10包括主体11及设置与主体11底部的底盖12,底盖12与主体11密封连接并共同形成封闭的容纳腔10a,底盖12面向电池单体20的壁构成容纳腔10a的底壁102,此时防护组件40设置于电池单体20与底盖之间。
在一些实施例中,如图11和图41所示,电池单体20以端盖212朝向底壁102的方式倒置于箱体10内,端盖212设置有泄压机构213和电极端子214,底盖12面向电池单体20的壁构成容纳腔的底壁102,防护组件40设置于电池单体20与底盖12之间,也即是设置于泄压机构213和电极端子214与底盖12之间,被配置为支撑电池单体20与底盖12,从而为泄压机构213以及电极端子214提供防护,在碰撞过程中对其起到保护作用。
在一些实施例中,如图41所示,电池100还包括汇流部件24,汇流部件24用于与至少两个电池单体20的电极端子电连接,防护组件40设置于底壁102和汇流部件24之间,同时防护组件40用于使得电池单体20与底壁102绝缘设置。
由此,防护组件40设置于底壁102与汇流部件24之间,用于支撑电池单体20,即防护组件40可以为上下两侧分别与电池单体20未被汇流部件24覆盖的部分区域以及容纳腔10a的底壁102相抵接,为电池单体20提供竖直方向Z上的支撑力。同时防护组件40能够使得电池单体20与容纳腔10a的底壁102之间存在一定的间隙、相互不接触,进而使得连接于电池单体20上的汇流部件同样与容纳腔10a的底壁102保持一定的间距,将汇流部件、电池单体20均与容纳腔10a的底壁102绝缘设置,防止暴露在外的底壁102受到外界环境干扰,对电池单体20以及汇流部件24造成电性干扰。
进一步地,防护组件40可以为具有沿垂直于竖直方向Z延伸的平整表面,从而在箱体10的底部上再提供一层防护层,进一步减小容纳腔10a的底壁102受到撞击时对电池单体20以及汇流部件24的影响。
在一些示例中,如图41所示,电池单体20以端盖212朝向底壁102的方式倒置于箱体10内,端盖212设置有电极端子214,电极端子214与对应汇流部件24电连接,电池单体20中与设置有电极端子214的顶面对侧的平整底面与箱体10的顶部相互连接设置,使得电极端子214位于远离箱体10顶部的一侧,由此能够有效地提高电池100顶部的强结构度,且通过将电池单体20的底部与箱体10顶部相连接能够提高箱体10内部的空间利用率,从而提高电池整体的能量密度。
本申请实施例中的汇流部件24可以为CCS(Cells Contact System)组件,即由柔性电路板、塑胶结构件、汇流排等组成的集成线束,用于在多个电池单体20之间形成所需的电连接关系,可以通过该汇流部件对电池单体20进行充放电。可选地,本申请实施例中的汇流部件可以为与电池 单体20的电极端子焊接连接,从而使得汇流部件与电池单体20之间连接固定。
可选地,汇流部件24可以为包括多个组件,每个组件分别与电池单体20构成的电池模组对应连接设置,再将这些组件进行电连接,从而形成所需的串联/并联/混联的连接关系,或者,汇流部件24也可以为整体设置,通过同一组件分别连接至每个电池单体20。
可选地,箱体10包括承载件11a、边框11b和底盖12,边框11b在竖直方向Z上延伸的距离大于电池单体20、汇流部件以及防护组件40在竖直方向Z上延伸的距离,此时底盖12可以为盖合于边框11b下端。
在一些实施例中,如图42所示,防护组件40包括防护条41,防护条41抵接于电池单体20。
在一些示例中,防护组件40还可以成为承载组件,防护条41还可以称为防护件、或承载条,例如防护组件40包括防护件,承载组件包括承载条。
可选地,防护组件40可以包括多个防护条41,这些防护条41分别与多个电池单体20相抵接,使电池单体20与底壁102之间保持一定的距离,减小底壁102受到撞击对电池的影响。
可选地,防护条41可以抵接于电池单体20设置有电极端子214的表面,具体地,防护条41可以抵接于电池单体20设置有电极端子的这一表面中除了电极端子所在区域之外的、能够受力的部分区域,例如防护条41抵接于该表面中在第二方向Y上位于电极端子两侧的“肩部”。在此基础上,防护条41需要与电池单体20设置于相对应的位置,电池单体20为多个,且多个电池单体20阵列排布时,相对应地,防护条41也为多个,多个防护条41沿第二方向间隔设置,每个防护条41沿第一方向延伸,使得多个防护条41形成间隔平行设置的条状结构体。除了位于边缘的防护条41之外,其他防护条41可以为设置于相邻的电池单体20相接的位置,即每个防护条41可以为同时与在第二方向Y上相邻设置的两个电池单体20相抵接。
可选地,第一方向X与第二方向Y垂直,且第一方向和第二方向分别与竖直方向垂直,形成较为规整、便于加工的结构。
在一些可选实施例中,如图43和图44所示,电极端子30在底壁102上的正投影位于相邻的防护条41在底壁102上的正投影之间,防护条41与电池单体20相抵接,此时防护条41与电池单体20的肩部相抵接,能够使得电极端子与汇流部件24的连接不受防护组件40的阻碍,且电池单体20被防护组件40架起后,使电极端子落在相邻防护条41之间能够使得撞击产生的力分散至多个电池单体20,避免电极端子受到撞击损伤。
在一些实施例中,防护条41与电池单体20和/或箱体10固定连接,即防护条41与电池单体20和箱体10中的至少一个固定连接,以保证防护条41设置可靠。
例如,防护条41与箱体10固定连接时,防护条41与底壁102固定连接;箱体10包括底盖12,底盖12的面向电池单体20的壁构成容纳腔10a的底壁102,则防护条41与底盖12固定连接。
可选地,防护条41与电池单体20和/或箱体10粘接,即防护条41与电池单体20和箱体10中的至少一个粘接,以便于组装。
例如,防护条41与箱体10粘接时,防护条41与底壁102粘接;箱体10包括底盖12,底盖 12的面向电池单体20的壁构成容纳腔10a的底壁102,则防护条41与底盖12粘接。
在一些可选的实施例中,多个防护条41包括边缘防护条411、第一防护条412和第二防护条413,沿第二方向y、边缘防护条411设置于阵列排布的电池单体20构成的组件的边缘,第一防护条412和第二防护条413在两个边缘防护条411之间交替分布。
本申请实施例中的防护条41可以包括三种分别设置于不同位置的防护件,其中边缘防护条411设置于电池单体200的边缘位置,在边缘防护条411之间则交替地设置有第一防护条412以及第二防护条413。第一防护条412与第二防护条413之间可以为具有不同的尺寸,以配合汇流部件中多种不同的连接件,并为相邻电池单体200之间的连接提供所需的空间。
可选地,本申请实施例中的防护条41可以包括多个不同的尺寸,并根据电池单体200的长度以及电极端子214、泄压机构在其上的位置而相应地调整各个防护条41的尺寸,当每个防护条41与多个电池单体20相抵接时,每个防护条41可以为抵接于相邻的两个电池单体20之间,此时第一防护条412与第二防护条413之间的间距可以为与电池单体20自身的长度近似,交替排布的第一防护条412和第二防护条413能够配合汇流部件24的设置,形成安全可靠的电连接回路。
在一些实施例中,沿第一方向X,第一防护条412的延伸长度大于第二防护条413的延伸长度。
如前所述地,本申请实施例中的第一防护条412以及第二防护条413可以为在自身延伸方向上具有不同的长度,通过相邻的第二防护条413之间的缺口可以设置在电池单体20之间形成电连接的汇流排等硬质连接件,通过该连接件电连接在第二方向y上相邻的两个电池单体20,即通过调整第二防护条413的长度以及第二方向y上相邻的第二防护条413之间的间距来避让汇流部件24中的硬质连接件。
可选地,根据电池单体20之间的连接件设置位置,第一防护条412可以为沿第一方向X的延伸长度与箱体10的内腔在该方向上的长度相同,即一体、完整地延伸于箱体10内部,或者,第一防护条412可以在第一方向X上设置有断开口,以在断开口处设置相应的连接件。将汇流部件24中的连接件设置于防护条41的断开口处能够将同使得连接件同样与底壁102保持一定的间距,以形成冲击保护并保持绝缘。
在一些可选实施例中,沿第二方向Y,第一防护条412以及第二防护条413的宽度大于边缘防护条411的宽度;由于边缘防护条411设置于电池单体20阵列的边缘,边缘防护条411在第二方向Y上无需如第一防护条412或第二防护条413一样同时支持相邻的两列电池单体20,而只需支持一列电池单体20,边缘防护条411的宽度可以小第一防护条412以及第二防护条413,能够起到良好的支持效果。
可选地,第一防护条412的宽度大于第二防护条413的宽度,第二防护条413的宽度大于边缘防护条411的宽度。本申请实施例中的防护条41可以包括设置于边缘的边缘防护条411以及在边缘防护条411之间交替设置的第一防护条412和第二防护条413,其中边缘防护条411仅与一列电池单体20相抵接,因此其宽度可以为小于第一防护条412和第二防护条413,而第一防护条412以及第二防护条413可以为设置于相邻的两列电池单体20的连接处,并同时与多个电池单体20相 抵接。使每个第一防护条412同时与相邻的两个电池单体20相抵接,能够减少所需的防护条41数量,从而提高生产效率。
可选地,本申请实施例提供的电池中可以根据电池单体20中与防护组件40重叠设置的部分区域的位置及大小来设计防护组件40中每个防护条41的宽度及位置。具体地,可以为根据电池单体20能够承载的压强大小以及预期可能出现的冲击大小来选择防护条41的宽度,再根据电极端子214以及泄压机构的位置选择防护条41的设置位置。
在一些可选的实施例中,防护组件40在竖直方向Z上的延伸长度大于1.5mm。
本申请实施例中的防护组件40在竖直方向Z上需要延伸一定的尺寸,即每个防护条41需要具有一定的厚度,防护组件40用于为电池单体20提供来自下侧的撞击防护,因此防护组件40自身的厚度与冲击能量之间的关系对电池是否会产生起火爆炸等安全问题具有较大的影响,在此基础上,防护组件40需要具有一定的基础厚度,以提供相应的防护强度,示例性地,本申请实施例中的防护组件40的整体厚度可以为大于1.5mm。
在一些实施例中,如图41-图44所示,电池单体20的泄压机构213也朝向容纳腔的底壁设置;防护组件40包括沿箱体10的长度方向间隔分布的多个防护条41,电池单体20设置有多个,各电池单体20的泄压机构213和电极端子214位于相邻两个防护条41之间,例如防护条41可以设于相邻电池单体20的相接处,以避免与电极端子214等接触,起到支撑电池单体20的作用。
为便于描述,在一些实施例中,以箱体10的长度方向为多个电池单体20的排列方向即第二方向,也即水平方向的其中一个。长度方向Y与竖直方向Z彼此垂直,当长度方向Y以及竖直方向Z彼此之间的夹角为85°~90°之间的夹角时,即可将长度方向Y以及竖直方向Z视为彼此垂直。应理解,长度方向Y也可以为其它方向,长度方向Y也可以不与高度方向Z彼此垂直,本申请不做赘述。
多个防护条41沿长度方向Y间隔分布,也即是防护组件40在多个电池单体20以及底盖12之间沿长度方向Y进行排列。作为一种示例,防护条41可以形成为条状,从底盖12沿竖直方向Z凸出而固定于电池单体20,使得电池100的泄压机构213以及电极端子214位于相邻的两个防护条41之间,从而对泄压机构213以及电极端子214起到保护作用。
在一些实施例中,如图42所示,多个防护条41包括边缘防护条411、第一防护条412和第二防护条413,沿长度方向Y,边缘防护条411设置于阵列排布的多个电池单体20的两侧边缘,第一防护条412和第二防护条413在两个边缘防护条411之间交替分布。
边缘防护条411侧置于阵列排布的多个电池单体20的两侧边缘,也即是设置于位于阵列最外侧的电池单体20的边缘,从而在电池单体20贴近箱体10的位置,对电池单体20两者起到支撑作用。第一防护条412以及第二防护条413在两个边缘防护条411之间交替分布,能够使得防护条41更加适应电池单体20的阵列分布,从而对电池单体20起到更好的支持作用。
为便于描述,在本申请实施例中以箱体10的宽度方向为第一方向X,也即另一个水平方向。长度方向Y、竖直方向Z以及宽度方向X彼此垂直,当长度方向Y、竖直方向Z以及宽度方向X彼此 之间的夹角为85°~90°之间的夹角时,即可将三者视为彼此垂直。应理解,宽度方向X也可以为其它方向,宽度方向X也可以不与长度方向Y以及竖直方向Z垂直,本申请实施例不做赘述。
在一些实施例中,如图41和图42所示,多个电池单体20之间通过汇流部件24实现电连接。汇流部件24跨接于相邻的电池单体20的电极端子214之间,以将多个电池单体20串联、并联或混联。由于在本申请一些实施例中,汇流部件24在长度方向Y上跨接于相邻的电池单体20的电极端子214之间,至少一部分防护条41包括缺口,以对汇流部件24进行避让;缺口可以设于对应防护条41的一端,缺口也可以具有其他设置位置,根据汇流部件24的排布而定,不做具体限制。因此,在宽度方向X上,第一防护条412的延伸长度大于第二防护条413的延伸长度,使得第二防护条413对汇流部件24进行避让。
在使得宽度方向X上第一防护条412与第二防护条413的长度不等,能够使得防护件避让汇流部件24,从而使得防护组件40更好地适配于电池100的结构,便于电池单体20实现彼此串联、并联以及混联。
可选地,在汇流部件24沿其他方向跨接于电极端子214之间时,第一防护条412以及第二防护条413可以依据具体情况进行尺寸的变化。
可选地,防护条41的延伸长度所指示的可以仅是防护条41在宽度方向X上的长度总和,使得第二防护条413的长度总和小于第一防护条412,也即是使得第二防护条413可以在任意位置避让汇流部件24,可以在第二防护条413的一端,也可以在第二防护条413的中部,根据汇流部件24的排布而定。
在一些实施例中,如图42所示,防护组件40还包括主板42,防护条41连接于主板42,主板42位于防护条41与底壁102之间,则防护条41设置于主板42朝向箱体10顶部的表面。
当然,主板42还可以称为连接板。
可选地,防护条41为多个,多个防护条41均设置于主板42朝向箱体10顶部的表面,主板42靠近底壁102设置。通过主板42能够使得多个防护条41之间的相对位置稳定,避免受到撞击后发生错位。
主板42可以与底壁102沿同一方向延伸设置并与底壁102相抵接,还可以为通过底壁102上设置有的凹槽等进行进一步限位,主板42设置于防护条41与底壁102之间且延伸覆盖的面积较大,由此能够提高汇流部件24以及电池单体20与箱体10的底壁之间的绝缘性能。
可选地,为了提供所需的防护强度,主板42的厚度可以为大于0.5mm。
可选地,主板42与底壁102固定连接,便于主板42的可靠设置,增加电池100的结构牢固性;例如,主板42与底壁102粘接固定,便于组装。
可选地,主板42也可以抵接于底壁102,本申请实施例对此不做限制。
在一些实施例中,主板42与防护条41一体成型或可拆卸连接,以便于主板42和防护条41的加工。在防护条41与主板42一体成型的情况下,能够便于防护组件40的制造。在防护条41与主板42可拆卸连接的情况下,能够便于根据电池单体20的排布调整防护条41的位置,使得防护组 件40具有更广泛的使用场景。
在一些可选的实施例中,防护组件40与电池单体20粘接固定。本申请实施例中的防护组件40与电池单体20的肩部相抵接,此时可以将两者粘接固定,进一步提高整体强度以及连接的稳定性,避免受到冲击导致防护组件40与电池单体20之间产生错位。可选地,防护组件40中可以为每个防护条均分别与电池单体20上的对应位置进行粘接,或者,可以为至少部分防护条与电池单体20进行粘接,其中可以包括边缘防护条411。
在一些实施例中,如图18所示,端盖212包括功能区206和肩部207,功能区206设置有电极端子,肩部207沿第二方向y位于功能区206两侧,电池单体20通过肩部207抵接于防护条41,第二方向y垂直于竖直方向。
当然,端盖212还可以称为顶盖板。
功能区206所指示的是端盖21上设置有使得电池单体20能够实现自身功能的区域,或电池单体20能够与外界互动的区域,例如使得电池单体20能够与外界电连接的电极端子。由于功能区206常设置有电极端子或起到其它功能的部件,功能区206不宜在电池100的使用过程中受力。肩部207所指示的则是端盖21除功能区206以外可以受力的区域。
功能区206设置于肩部207之间,可以使得肩部207对功能区206实现一定保护效果。使得电池单体20通过肩部207抵接于防护条41,能够使得电池100具有更紧凑的结构,避免功能区206由于受力发生损坏,提升电池单体20的寿命。
可选地,防护条41与肩部207固定连接。
在一些实施例中,电极端子设置于相邻的两个防护条42之间,且电极端子214与底壁102(例如底盖12)间隔设置。
由于功能区206位于两个肩部207之间,肩部207搭接于防护条41上,功能区206的电极端子214也位于相邻的两个防护条42之间。电极端子214与底壁102间隔设置,也即是电极端子214不与底壁102接触,可以将电极端子214视作在两个防护条42之间悬空设置,以便于通过电极端子214引出电池单体20的电能,提升电池单体20的可用性。
可选地,电池单体20的泄压机构与电极端子设在电池单体20的同侧,则泄压机构213也朝向底壁102设置,功能区206设置有泄压机构213和电极端子214,在功能区206内,电极端子214可以设置于泄压机构213的两侧,以减少泄压机构213在泄压时对电极端子214产生的影响。
在一些实施例中,如图44所示,在竖直方向(例如主板的厚度方向)上,防护条41的厚度大于电极端子214的外露于电池单体20的部分的延伸高度,能够使得电极端子214悬架于相邻的防护条41之间,避免与其它部件接触影响功能。
在本申请的一些实施例中,如图43和图44所示,相邻两个电池单体20的肩部207共同搭接于同一个防护条41上。
在箱体10中,可以设置一个电池单体20,也可以设置多个电池单体20,在箱体10内设置有多个电池单体20的情况下,多个电池单体20相邻地排布于箱体10之中,由于防护条41沿第一方 向x沿主板42间隔设置,肩部207在第一方向x上位于功能区206的两侧,能够使得肩部207位于相邻电池单体20的相接处,从而使得相邻两个电池单体20的肩部207能够共同搭接于同一个防护条41上。
使得在第一方向x上相邻的电池单体20共用同一防护条41,能够尽可能地减少防护条41的数量,便于防护组件40的制造。
在本申请的一些实施例中,如图18和图42所示,在第一方向x上,防护条41的宽度D11(例如本申请中边缘防护条4111的宽度D1、第一防护条412的宽度D2、第二防护条413的宽度D3)与肩部207的延伸宽度D4满足:0.5D4≤D11≤2D4。
当防护条41的宽度D11大于等于肩部207的延伸宽度D4的0.5倍时,即可对电池单体20提供足够的支持力。而防护条41在同时承载相邻的两个电池单体20时,防护条41在第二方向Y上的宽度小于等于肩部207的延伸宽度的2倍,能够使得防护条41仅与相邻的两个电池单体20的肩部207接触,而避免与功能区206接触影响电池单体20的功能。
优选地,防护条41的宽度D11与肩部207的延伸宽度D4之间的关系可以满足D4≤D11≤2D4。由于防护条41可能在相邻的电池单体20之间发生偏置,使得防护条41在长度方向Y上的宽度大于等于肩部207的延伸宽度,能够使得防护条41同时承载相邻的两个电池单体20,而不发生由于偏置而只能承载一方、导致电池100由于受力不均而出现结构稳定性不佳的问题。
在一些实施例中,防护条41抵接于电极端子214,或者防护条41与电极端子214间隔设置。由此,便于实现防护条41的灵活设置。
在一些实施例中,如图18、图43和图44所示,电极端子214在底壁102上的正投影位于相邻的防护条41在底壁102上的正投影之间。
本申请实施例中的防护组件40包括包括多个防护条40,这些防护条与电池单体20相抵接,其中电池单体20中的电极端子30在底壁上的正投影可以为位于相邻的防护条之间,此时防护条41与电池单体20的肩部相抵接,能够使得电极端子214与汇流部件24的连接不受防护组件40的阻碍,且电池单体20被防护组件40架起后,使电极端子30落在相邻防护条41之间能够使得撞击产生的力分散至多个电池单体20,避免电极端子30受到撞击损伤。
在一些实施例中,如图41和图42所示,相邻的两个电池单体20的电极端子214通过汇流部件24电连接,在第二方向y上,相邻的两个防护条41中一者的延伸长度小于另一者的延伸长度,以形成避让缺口43,避让缺口43用于避让汇流部件24。
汇流部件24是使得多个电池单体20之间实现电连接的部件。汇流部件24跨接于相邻的电池单体20的电极端子214之间,以将多个电池单体20串联、并联或混联。由于汇流部件24在第二方向Y上跨接于相邻的电池单体20的电极端子214之间,至少一部分沿第一方向X延伸的防护条41需要对其进行避让,以形成避让缺口43。
相邻的两个防护条41中一者的延伸长度小于另一者的延伸长度,也即是延伸长度较长的防护条41与延伸长度较短的防护条41交替分布。可选地,防护条41的长度也可以根据汇流部件24的 布置情况而调整。并且,防护条41在第一方向X上的延伸长度所指示的仅是防护条41在第一方向X上的长度总和,也即是说,避让缺口43可以设置于防护条41的一端,也可以设置于防护条41的中部,根据汇流部件24的排布而定,本申请实施例对此不做特殊限制。
在防护条41设置避让缺口43,能够使得防护组件40更好地适配于电池100的结构,便于电池单体20实现彼此串联、并联以及混联。
在一些可选实施例中,如图18所示,电池单体20还包括泄压机构213,泄压机构213与电极端子214同侧设置,将泄压机构213同样设置在电池单体20下侧能够对其与电极端子214一并进行防护,避免与箱体10等产生撞击,提高电池100整体的安全性及可靠性。
可选地,泄压机构213与底壁102间隔设置,在第二方向y上,电极端子214设置于泄压机构213两侧,能够减少泄压机构213在泄压时对电极端子214产生的影响。并且,泄压机构213与底壁102间隔设置,也即是泄压机构213不与底壁102接触,从而为泄压机构213提供更大的泄压空间,减少排放物排出带来的风险,提升电池100的安全性。
在一些可选的实施例中,如图18、图43和图44所示,泄压机构213在底壁102的正投影位于相邻防护条41在底壁102的正投影之间。在将电池单体20与防护组件40进行配合时,可以将泄压机构213设置为位于相邻防护条41与电池单体20相互抵接的区域之间,即泄压机构213设置于靠近底壁102的一侧且与防护组件40不发生接触,由此能够在受到外界冲击时将撞击力分散于电池单体20的肩部,避免泄压机构213受到碰撞发生损坏,从而提高电池100的安全性。
在一些实施例中,如图42所示,沿长度方向Y,边缘防护条411的宽度D1、第一防护条412的宽度D2、第二防护条413的宽度D3、肩部207的宽度D4满足:0.2D4≤D1≤D4,0.5D4≤D2≤2D4,0.5D4≤D3≤2D4。
由于边缘防护条411设置于电池单体20阵列的边缘,边缘防护条411在长度方向Y上仅与边缘电池单体20的一侧肩部207接触,使得边缘防护条411的宽度D1小于等于肩部207宽度D4,可以避免边缘防护条411接触功能区206而对电池单体20的功能产生影响,使得边缘防护条411的宽度D1大于等于肩部207宽度D4的0.2倍,即可使得边缘防护条411为电池单体20提供足够的支持力。
由于第一防护条412设置于相邻的电池单体20之间,使得第一防护条412的宽度D2大于等于肩部207的延伸宽度D4的0.5倍,即可对电池单体20提供足够的支持力,优选地,第一防护条412的宽度D2大于等于肩部207的延伸宽度D4时,使得第一防护条412能够同时承载相邻的两个电池单体2,而不发生由于偏置而只能承载一方、导致电池100由于受力不均而出现结构稳定性不佳的问题。第一防护条412的宽度D2小于等于肩部207宽度D4的2倍,能够使得第一防护条412在同时承载相邻的两个电池单体20时,仅与相邻的两个电池单体20的肩部207接触,而避免与功能区206接触影响电池单体20的功能。
与第一防护条412相类似,第二防护条413的宽度D3可以大于等于肩部207的延伸宽度D4的0.5倍,且小于等于肩部207宽度D4的2倍。
在一些实施例中,如图41和图42所示,防护组件40还包括主板42,主板42设置于防护条41与底壁102之间,以吸收分散水平方向的外部冲击力,防护条41沿竖直方向凸出于主板42设置,防护条41可以形成凸块。示例性的,箱体10包括底盖12,底盖12的面向电池单体20的壁形成为底壁102,则主板42设于防护条41和底盖12之间。
通过设置主板42,可以将防护组件40中的多个防护条41结合为一个整体,并且,设置沿长度方向Y延伸的主板42,也可以对防护组件40的受力进行分散,以增加电池100的结构强度。
在一些示例中,防护组件40还可以称为承载组件,防护条41也可称为承载条,则承载组件包括主板和承载条。
可选地,为了避免对电池单体20之间的电连接产生影响,防护组件40可以为绝缘件。可以理解的是,绝缘件指示的是,防护组件40可以整体为绝缘材质,也可以为表面被覆有绝缘材质(例如绝缘涂层)以整体呈现绝缘性的物体。当防护组件40为表面包覆有绝缘材质的物体时,芯材可以为金属材质、绝缘材质或复合材质等,芯材外表面包覆绝缘材质。与此同时,防护条41和主板42应具有一定的硬度以及弹性,以在对电池单体20实现支撑效果的同时,在受到冲击时能够产生一定量的变形,对电池单体20起到保护作用。
可选地,防护条41与主板42可以一体成型,以便于防护组件40的制造。防护条41与主板42也可以彼此之间可拆卸连接,以便于根据电池单体20的排布调整防护组件40的位置,使得防护组件40具有更广泛的使用场景。
在一些实施例中,主板42与底盖12固定连接,以增加电池100的结构牢固性。可选地,主板42也可以抵接于底壁102,例如主板42抵接于底盖12,本申请实施例对此不做限制。
在一些实施例中,如图16所示,电池单体2的端盖212与底壁102之间具有第一距离H1,第一距离H1满足2mm<H1<30mm。当底盖12的面向电池单体20的壁形成为底壁102时,电池单体20的端盖212与底盖12之间的距离也为第一距离H1。
在底盖12的盖部12a相对于安装部12b凸出于箱体10底部延伸面的情况下,第一距离H1指示的是在竖直方向Z上,电池单体20具有电极端子以及泄压机构的一面与盖部12a之间的距离。第一距离H1满足2mm<H1<30mm,优选地,第一距离H1满足5mm≤H1≤20mm,在这一取值范围内,能够保证电池100具有适宜的体积,使得电池100具有良好的放电性能。
在一些实施例中,第一距离H1与单个电池单体20的重量M2之比满足0.2mm/Kg<H1/M2<50mm/Kg。
第一距离H1与单个电池单体20的重量M2之比H1/M2则能够指示电池100的能量密度以及结构强度。当第一距离H1与单个电池单体20重量M2之比过大,会导致电池100能量密度过低,当第一距离H1与单个电池单体20重量M2之比过小,会导致电池100结构强度不足,在碰撞中发生安全事故。因此,H1/M2满足0.2mm/Kg<H1/M2<50mm/Kg,优选地,H1/M2满足0.5mm/Kg≤H1/M2≤20mm/Kg,在这一取值范围内,电池100具有良好的能量密度,且具有适宜的结构强度。
为了验证第一距离H1与单个电池单体20重量M2之比H1/M2在适宜范围内的电池100具有良好的性能,示例性地,对电池100以碰撞测试装置A进行碰撞测试。如图45所示,碰撞测试装置A包括冲击头A1、发射装置A2以及机架A3。测试的过程中,将电池100放置于机架A3上,使得冲击头A1受发射装置A2驱动,以一定速度向电池100冲撞。其中,可以将测试条件选定为:冲撞方向为竖直方向Z,冲撞位置为电池100的薄弱点,冲撞能量为90J。
由于电池100被应用于如车辆1000的用电装置,通过箱体10顶部安装于车辆1000,对电池100的底部以竖直方向Z进行冲撞,可以模拟将电池100安装于车辆1000后的场景。电池100的薄弱点所指示的是电池100易被破坏的位置,这一点常在电池100的几何中心的半径240mm区域内,对电池100的薄弱点进行冲撞,能够模拟电池100结构强度较弱位置受到冲撞后电池100的状态。冲撞能量为90J,可以等效为冲击头A1以4.2m/s的速度向电池100冲撞,可以理解的是,也可以用其它冲撞能量对电池100进行冲撞,例如,120J(冲撞速度4.9m/s)或150J(冲撞速度5.5m/s)。在实际实验过程中,可以用一个冲撞能量对电池100进行多次冲撞,或以多个冲撞能量对电池100进行多次冲撞。
在通过碰撞测试装置A对电池100进行冲撞后,在环境温度下观察2小时,检测电池100有无出现起火爆炸现象。可选地,在以碰撞测试装置A对电池100进行碰撞测试后,还可以对电池100进行外壳防护等级等测试,本申请实施例对此不做限制。
表7示出了在第一距离H1、单个电池单体20的重量M2以及H1/M2的值分别采用不同的值的情况下,通过以上方法对电池100进行的碰撞测试的测试结果。
表7
  H1(mm) M2(mm) H1/M2(mm/Kg) 碰撞测试
实施例1 5 10 0.5 不起火,不爆炸
实施例2 10 5 2 不起火,不爆炸
实施例3 15 3 5 不起火,不爆炸
实施例4 20 2 10 不起火,不爆炸
实施例5 25 1 25 不起火,不爆炸
对比例1 2 10 0.2 起火,爆炸
对比例2 30 1 30 起火,爆炸
对比例3 25 0.5 50 起火,爆炸
如表7所示,当满足2mm<H1<30mm,H1/M2满足0.2mm/Kg<H1/M2<50mm/Kg时,在一定强度的碰撞测试中,电池100不会发生起火爆炸,具有较好的安全性。
在一些实施例中,如图42所示,在箱体1的高度方向Z(即竖直方向)上,防护条41的延伸高度为第二距离N6,第二距离N6满足0.5mm≤N6≤30mm。
防护条41在高度方向Z上具有一定尺寸,能够使其凸出于主板42而支撑承载电池单体20。设置第二距离N6,能够使得电池单体20的端盖212与底壁102保持一定距离,从而保持电池100的能量密度适中。
第二距离N6与单个电池单体20的重量M2之比N6/M2能够指示电池100的能量密度以及结构强度,当第二距离N6与单个电池单体20重量M2之比过大,会导致电池100能量密度过低,当第 二距离N6与单个电池单体20重量M2之比过小,会导致电池100结构强度不足,在碰撞中发生安全事故。因此,第二距离N6与单个电池单体20的重量M2之比N6/M2的满足0.05mm/Kg≤N6/M2≤50mm/Kg,在这一取值范围内,电池100具有良好的能量密度,且具有适宜的结构强度。
为了验证第二距离N6与单个电池单体20重量M2之比N6/M2在适宜范围内的电池100具有良好的性能,可以对电池100进行结构强度测试。在对电池100进行结构强度测试的过程中,示例性地,可以通过剪切强度测试、抗压强度测试等多个测试对电池100的结构强度进行判断。
在剪切强度测试中,示例性地,可以将电池100固定在剪切试验机的夹具之间,然后使用剪切试验机的检测头带动电池100以5mm/min的速度沿长度方向Y或宽度方向X移动,在箱体1受到破坏时记录检测头施加的拉力F。以电池100在高度方向Z上的投影面积为面积A,F/A的值即为电池100能够承受的剪切强度。
在抗压强度测试中,示例性地,可以使用挤压头在高度方向Z以及长度方向Y或宽度方向X上向电池100施加压力,以2m/s的速度向电池100推进,在挤压力达到50KN或电池100的形变量达到30%的时候停止,保持10分钟,并在抗压强度测试后对电池100在环境温度下静置观察2小时。
可选地,还可以通过其它结构强度测试对电池100的结构强度进行测试,本申请实施例在此不做限制。
表8示出了电池单体20固定于防护条41上时,在第二距离N6、单个电池单体20的重量M2以及N6/M2的值分别采用不同的值的情况下,通过以上方法对电池100进行的结构强度的测试结果。
表8
  N6(mm) M2(Kg) N6/M2(mm/Kg) 结构强度
实施例6 0.5 10 0.05 较好
实施例7 5 5 1 较好
实施例8 10 4 2.5
实施例9 10 2 5
实施例10 20 1 20 优秀
实施例11 30 0.6 50 优秀
对比例4 0.5 5 0.04
对比例5 52 1 52
如表8所示,当N6满足0.5mm≤N6≤30mm,N6/M2满足0.05mm/Kg≤H2/M≤50mm/Kg时,在强度结构测试中,电池100具有较好的结构强度。
在一些实施例中,如图42和图44所示,在竖直方向上,防护条41的厚度为第二距离N6,由于底盖12的盖部12a相对于安装部12b凸出于底壁102的延伸面,以盖部12a与安装部12b之间在竖直方向上的距离为第四尺寸D8。防护组件40设置于电池单体20与底盖12之间,防护组件40可以具有与盖部12a相匹配的形状,以主板42在竖直方向上的尺寸为第六尺寸D10。
为了使得电池100具有适宜的能量密度以及结构强度,第二距离N6与第六尺寸D10之和应不小于第四尺寸D8,也即满足N6+D10≥D8。也即是说,在第一方向X上,防护组件40的整体尺寸应大于盖部12a与安装部12b之间的距离差,如此,防护组件40固定于电池单体20,使得电池单体 20与底盖12的盖部12a之间保持距离,在泄压机构213与电极端子214共同朝向底盖12的情况下,为泄压机构213预留出足够的喷发空间。
在另一些可选实施例中,防护组件40抵接于电池单体20,此时第二距离N6满足5mm≤N6≤30mm,第二距离N6与单个电池单体20的重量M2之比N6/M2满足0.5mm/Kg≤N6/M2≤50mm/Kg,优选地,1mm/Kg≤N6/M2≤30mm/Kg,在这一取值范围内,电池具有良好的能量密度,且具有适宜的结构强度。
表9示出了防护组件40抵接于电池单体20时,在第二距离N6、单个电池单体20的重量M2以及N6/M2的值分别采用不同的值的情况下,通过上述碰撞测试方法对电池100进行碰撞测试的测试结果。
表9
No. N6(mm) M2(Kg) N6/M2(mm/Kg) 碰撞测试
实施例12 5 10 0.5 不起火,不爆炸
实施例13 10 5 2 不起火,不爆炸
实施例14 15 3 5 不起火,不爆炸
实施例15 30 1 30 不起火,不爆炸
实施例16 25 0.5 50 不起火,不爆炸
对比例7 3 2 0.2 起火,爆炸
对比例8 52 1 52 起火,爆炸
如表9所示,当N6满足5mm≤N6≤30mm,N6/M2满足0.5mm/Kg≤N6/M2≤50mm/Kg时,在一定强度的碰撞测试中,电池100不会发生起火爆炸,具有较好的安全性。
在一些实施例中,如图24和图25所示,电池100还包括连接板91和连接器92,连接板91设在箱体10的一侧沿水平方向(例如第二方向y)突出设置,连接板91与底壁102在竖直方向上形成容纳部911,连接器92设置在容纳部911内且连接于连接板91,连接器92与电池单体20电连接。
当然,连接板91还可以称为转接板,连接器92还可以称为转接器。
如图24和图25所示,连接板91是由箱体10一侧沿第二方向y伸出的凸台,其与箱体10的底壁102在竖直方向z上具有厚度上的差距,容纳部911即是由这一厚度差距产生的、由连接板91以及箱体10相接的一面构成的空间,以供连接器92设置于其中。将连接器92设置于容纳部911,能够对连接器92起到保护作用,减少连接器92在碰撞中受到的冲击力。
电池100通过连接器92与外部装置电连接,因此,连接器92需要与电池单体20电连接,所指示的是连接器92通过在连接板91内部设置的电流通路与电池单体20电连接,以便于获取箱体10内电池单体20的电能,为外部用电装置供电。
水平方向与竖直方向相交,指连接板91可以与箱体10的延伸方向呈一定夹角,但不能与箱体10平行,以便在连接板91与箱体10之间的容纳部911内设置连接器92。在本申请实施例中,为便于说明,以水平方向与竖直方向垂直为例;可选地,水平方向和竖直方向之间还可以不垂直。
在一些实施例中,连接器92在竖直方向上不超出底壁102的延伸面。由此,使得连接器92完全位于容纳部911内,避免与位于电池100周向的外部装置接触,减少连接器92在将电池单体20 与外部装置电连接的过程中受到影响。
在一些实施例中,箱体10的底壁形成有开口10c,箱体10还包括沿开口10c周侧分布的边框11b,边框11b相互连接呈框架结构,连接板91与边框11b一体成型。
箱体10中,边框11b沿竖直方向与承载件11a由上至下依次设置。边框11b为沿竖直方向延伸的板体且包围承载件11a设置,而在箱体10底部处形成开口10c,使箱体10内部具有能够容纳电池单体20的空间。使得连接板91从边框11b的一侧伸出与边框11b一体成型,可以增加连接板91的受力强度。
可选地,连接板91也可以不与边框11b一体成型,而与边框11b通过焊接、粘接、紧固件或热熔自攻丝工艺其中至少一种固定连接。与之相类似地,连接板91与承载件11a之间、边框11b与承载件11a之间,也可以一体成型,或者也通过如上方式固定连接,本申请实施例对此不做限制。
本申请的一些实施例中,如图24和图25所示,连接板91朝向容纳部911的表面为第一保护面911a,边框11b朝向容纳部911的表面为第二保护面911b,连接器92连接于第一保护面911a,连接器92与第二保护面911b间隔设置。
也即是说,第一保护面911a是连接板91背离箱体10顶部的一侧表面,第二保护面911b是箱体10的边框11b贴近连接板91的一侧表面,第一保护面911a以及第二保护面911b相接形成容纳部911。连接器92从第一保护面911a沿竖直方向延伸,从而悬伸于容纳部911中,不与第二保护面911b接触,以减少连接板91在碰撞中可能受到的冲击。
可选地,第一保护面911a以及第二保护面911b可以彼此垂直连接,也即是第一保护面911a沿第二方向(多个电池单体20的排列方向)延伸,第二保护面911b沿竖直方向延伸,从而使得第一保护面911a以及第二保护面911b彼此垂直,从而增加连接器92安装空间,使容纳部911最大化。
在一些实施例中,如图24和图25所示,在竖直方向z上,连接板91的厚度为第一尺寸D5,连接器92的延伸高度为第二尺寸D6,边框11b的延伸高度为第三尺寸D7。其中,第一尺寸D5与第二尺寸D6之和不大于第三尺寸D7,也即是D5+D6≤D7,能够使得连接器92完全位于容纳部911内,从而对连接器92起到保护作用。
在一些可选的实施例中,连接器92可以沿竖直方向Z延伸,并朝向箱体10底壁102所在的延伸面。采用这一结构能够便于连接器92与外部装置电连接,并相较于沿水平方向设置连接器92,使得连接器92具有更好的受力性能。
在一些实施例中,如图11、图26和图27所示,箱体10还包括设置于开口10c的底盖12,底盖12与边框11b连接。底盖12覆盖于开口10c,使得箱体100具有相对密封的结构。其中,底盖12包括盖部12a以及安装部12b,安装部12b设置于盖部12a周向且与边框11b相匹配。也即是说,盖部12a覆盖于由边框11b形成的开口10c,安装部12b固定于边框11b,将底盖12与边框11b连接。
在竖直方向z上,盖部12a相对于安装部12b凸出于底壁102的延伸面,使得设置于箱体10 内部的电池单体20与底盖12之间具有相对更大的距离,以为电池单体20电极端子214间的汇流部件24或其它部件进行让位,避免底盖12与电池单体20的电极端子214之间过近。应理解,盖部12a相对于安装部12b凸出的距离应基于电池100的能量密度进行选择,不应过大导致电池100体积增加,而对电池100的能量密度有所降低。
此外,当泄压机构213朝向容纳腔10a的底壁设置时,泄压机构213可以朝向开口10c设置,在电池单体2热失控时,泄压机构213朝向底盖12喷发,此时,盖部12a相对于安装部12b凸出于底部102延伸面的结构能够使得泄压机构213具有更大的喷发空间。并且,泄压机构213向底部喷发,也即是喷发方向朝向地面,能够增加电池100的安全性。
在一些实施例中,底盖12与边框11b可拆卸式连接,以便于电池100的装配。示例性地,如图26和图27所示,底盖12与边框11b通过通过紧固件13例如螺栓等可拆卸连接,底盖12与边框11b也可以采用其它方式固定连接,本申请实施例对此不做限制。
在一些实施例中,箱体10包括设置于顶部的承载件11a,电池单体2连接于承载件11a。
承载件11a是在箱体10的顶部沿第二方向y延伸的板体。承载件11a可以增加电池100顶部刚度,减少电池100在碰撞中损坏的可能性。将电池单体20连接于承载件11a,也即使得电池单体20设置于电池100顶部,能够增加电池100顶部的刚度,在碰撞中减少电池100损坏的可能性,增加电池100的安全性。
可选地,电池单体20可以直接粘接固定于承载件11a,也可以采用其它方式固定于承载件11a,例如,螺栓连接等,本申请实施例对此不做限制。
在一些实施例中,如图24和图25所示,连接板91背向容纳部911的一侧表面与承载件11a背向开口10c的一侧表面位于同一水平面。也即是说,连接板91与承载件11a位于箱体11顶部的一侧表面位于同一平面,在将电池100固定于外部装置时,连接板91与承载件11a能够固定于外部装置的同一表面。并且,连接板91与承载件11a的一侧表面位于同一水平面能够增加两者的受力强度,使得电池100具有更好的承受力。
其中,连接板91沿竖直方向z向底壁102的延伸面凸出,也即是连接板91在竖直方向上具有一定厚度。在碰撞中,连接板91背离箱体10的一面可能承受一定的冲击力,使连接板91具有一定厚度,能够提升连接板91的刚度,对连接器92起到更好的保护作用。
可选地,连接板可以与箱体10一体成型设置,或者,连接板可以为与箱体10通过焊接连接、粘接连接或FDS连接等固定连接方式进行定位及连接,本申请对此不作特定的限定。
在一些实施例中,如图11和图18所示,电池100包括电池单体20、加强件30,箱体10的顶部设有承载件11a,多个电池单体20沿第二方向y排列,即第二方向y为电池100中的一列电池单体20的排列方向。
其中,电池单体20包括第一壁201和第一外表面m1,第一壁201为电池单体20中表面积最大的壁,第一外表面m1与第一壁201相连。加强件30沿第二方向y延伸且与多个电池单体20中的每个电池单体20的第一壁201连接,这样加强件30与电池单体20之间的接触面积较大,能够保 证加强件30和电池单体20之间的连接强度。也就是说,电池单体20的第一壁201面向加强件30,即,电池单体20的第一壁201平行于第二方向y。
承载件11a与多个电池单体20中的每个电池单体20的第一外表面m1连接,其中,电池单体20设置于用电装置时,电池单体20位于承载件11a下方,承载件11a用于挂载电池单体20。
承载件11a可以是电池100的箱体10上盖,也可以是用电装置的一部分,比如,车辆1000的底盘。当承载件11a为车辆1000的底盘时,电池单体20的第一外表面m1与承载件11a,也即,电池单体20的第一外表面m1与车辆1000的底盘面连接。电池单体20直接与车辆的底盘面连接,这样,可以不用设置电池100的箱体上盖,节省了电池100的箱体上盖所占用的空间,提高了电池100的空间利用率,从而提高了电池10的能量密度。
在本申请实施例中,在电池100中设置加强件30与一列沿第二方向y排列的多个电池单体20中的每个电池单体20的表面积最大的第一壁201连接,通过加强件30将多个电池单体20连接成整体,这种情况下,电池100内可以不再设置侧板,也可以不需要再设置梁等结构,可以较大限度地提升电池100内部的空间利用率,提升电池100的结构强度和能量密度;电池10中还设置承载件11a与沿第二方向y排列的多个电池单体20中的每个电池单体20的第一外表面m1连接,该第一外表面m1与第一壁201相连,电池单体20设置于用电装置时,电池单体20位于承载件11a下方,挂载于承载件11a上。这样,电池单体20的第一外表面m1直接与承载件11a连接,承载件11a与电池单体20间不需要留有空间,进一步提升电池10内部的空间利用率,提高了电池100的能量密度,同时电池单体20挂载于承载件11a上,可以提高电池100的结构强度,因此,本申请实施例的技术方案能够提升电池100的性能。
此时,电极端子214可以布置在电池单体20除第一外表面m1之外的外表面上,即电极端子214设置于非承载件11a的壁上,这样电池单体20与承载件11a之间不需要为电极端子214预留空间,从而可以较大限度地提升电池100内部的空间利用率,提升电池100的能量密度。在图10、图18和图46(a)的示例中,电极端子214布置于电池单体20的与第一外表面m1沿竖直方向z相背设置的第二外表面m2,在图46(b)的示例中,电极端子214布置于电池单体20的与第二方向y垂直的侧壁。
在一些实施例中,加强件30在第一方向x上的尺寸T1与电池单体20在第一方向x上的尺寸T2满足0<T1/T2≤7。
当T1/T2过大时,加强件30占用较大空间,影响能量密度。另外,加强件30对于电池单体20导热过快,也可能产生安全问题。例如,一个电池单体20热失控时可能会引发与同一个加强件30连接的其他电池单体20热失控。0<T1/T2≤7时,可以保障电池100的能量密度并保障电池100的安全性能。
可选地,进一步满足0<T1/T2≤1,以进一步提升电池100的能量密度并保障电池100的安全性能。
可选地,加强件30的重量M3与电池单体20的重量M2满足0<M3/M2≤20。当M3/M2过大时, 会损失重量能量密度。0<M3/M2≤20时,可以保障电池100的重量能量密度并保障电池100的安全性能。
进一步可选地,0.1≤M3/M2≤1,以进一步提升电池100的能量密度并保障电池100的安全性能。
在一些实施例中,加强件30的与多个电池单体20的第一壁201连接的表面的面积S3与第一壁201的面积S4满足:0.2≤S3/S4≤30。
S3为加强件30与电池单体20连接的一侧表面的总面积。当S3/S4过大时,影响能量密度。当S3/S4过小时,导热效果太差,影响安全性能。0.2≤S3/S4≤30时,可以保障电池10的能量密度并保障电池10的安全性能。
可选地,进一步满足2≤S3/S4≤10,以进一步提升电池10的能量密度并保障电池10的安全性能。
可选地,加强件30的比热容Q与加强件30的重量M3满足:0.02KJ/(kg 2/℃)≤Q/M3≤100KJ/(kg 2/℃)。当Q/M3<0.02KJ/(kg 2/℃)时,加强件30会吸收较多能量,造成电池单体20温度过低,可能产生析锂;Q/M3>100KJ/(kg 2/℃)时,加强件30导热能力差,无法及时带走热量,上述设置可以保障电池100的安全性能。
进一步地,0.3KJ/(kg 2/℃)≤Q/M3≤20KJ/(kg 2/℃),以进一步提升电池100的安全性能。
在一些实施例中,如图41所示,箱体10的顶部设有承载件11a,箱体10的底部设有防护组件40,承载件11a与电池单体20固定连接,防护组件40与电池单体20固定连接,以固定电池单体20的位置,增强电池100结构的稳固性。
此时,承载件11a和防护组件40还可以均称为支撑板。
可选地,电池单体20可以通过黏胶直接与承载件11a以及防护组件40粘接,也可以采用其它方式与承载件11a以及防护组件40固定连接。
对于一般的电池单体而言,泄压机构焊接于电池盒,以将泄压机构固定于电池盒,在电池单体热失控时,通过泄压机构泄放电池单体内部的压力,以提高电池单体的安全性。以泄压机构为设置于电池盒的端盖上的防爆片为例,在电池单体热失控时,防爆片被破坏,以将电池单体内部的排放物排出,以达到泄放电池单体内部的压力的目的。由于泄压机构与电池盒焊接连接,在电池单体长期使用过程中焊接位置可能会出现裂纹,导致焊接位置的强度降低,容易出现焊接位置在电池单体内部的压力未达到泄压机构的起爆压力时被破坏的情况,导致泄压机构失效,泄压机构的可靠性较低。
为提高泄压机构的可靠性,发明人研究发现,可以将泄压机构与电池单体的电池盒设置成一体成型结构,即将电池盒的一部分作为泄压机构。比如,将端盖的局部进行弱化处理,使得端盖的局部的强度降低,形成薄弱区,从而形成一体式泄压机构,这样,可以有效提高泄压机构的可靠性。
由此,在一些实施例中,如图48-图83所示,电池单体20还包括电池盒21,电极组件22容纳于电池盒21内,电池盒21设置有泄压机构213,泄压机构213与电池盒21一体成型,以提高 泄压结构213的可靠性。
在一些实施例中,如图48和图49所示,电池盒21包括一体成型的非薄弱区51和薄弱区52,电池盒21设置有槽部53,非薄弱区52形成于槽部53的周围,薄弱区52形成于槽部53的底部,薄弱区52被配置为在电池单体20泄放内部压力时被破坏,泄压机构213包括薄弱区52,以便进一步保证泄压结构213使用可靠。
电池盒21为能够与其他部件共同容纳电极组件22的部件,电池盒21为电池单体20的外壳的一部分,可以是外壳的端盖(或称为盖板)为电池盒21,也可以是外壳的壳体211为电池盒21。电池盒21可以是金属材质,比如,铜、铁、铝、钢、铝合金等,电池盒21可以是铝塑膜。
薄弱区52为电池盒较其他区域更为薄弱的部分,在电池单体20内部压力达到阈值时,电池盒21的薄弱区52能够被破坏,以泄放电池单体20内部的压力。薄弱区52可以破裂、脱离等方式被破坏。比如,在电池单体20内部压力达到阈值时,薄弱区52在电池单体20内部的排放物(气体、电解液等)的作用下破裂,使得电池单体20内部的排放物能够顺利排出。薄弱区52可以是多种形状,比如,矩形、圆形、椭圆形、环形、圆弧形、U形、H形等。薄弱区52的厚度可以是均匀的,也可以是不均匀的。
薄弱区52形成于槽部53的底部,槽部53可以通过冲压的方式成型,以实现薄弱区52与非薄弱区51一体成型。在电池盒上冲压成型槽部53后,电池盒在设置槽部53的区域减薄,对应形成薄弱区52。槽部53可以是一级槽,沿槽部53的深度方向,槽部53的槽侧面是连续的,比如,槽部53为内部空间呈长方体、柱型体等的槽。槽部53也可以是多级槽,多级槽沿槽部53的深度方向排布,在相邻的两级槽中,内侧(更深位置)的一级槽设置于外侧(更浅位置)的一级槽的槽底面,比如,槽部53为阶梯槽。在成型时,可以沿槽部53的深度方向逐级冲压成型多级槽,薄弱区52形成于多级槽中位于最深位置(最内侧)的一级槽的底部。
非薄弱区51形成于槽部53的周围,非薄弱区51的强度大于薄弱区52的强度,薄弱区52相较于非薄弱区51更容易被破坏。通过冲压的方式在电池盒上形成槽部53时,非薄弱区51可以是电池盒未被冲压的部分。非薄弱区51的厚度可以是均匀的,也可以是不均匀的。
平均晶粒尺寸的测量方法可以参见GB6394-2017中的截点法,在此不在赘述。在测量薄弱区52的平均晶粒尺寸时,可以沿薄弱区52的厚度方向进行测量;在测量非薄弱区51的平均晶粒尺寸时,可以沿非薄弱区51的厚度方向进行测量。
在图49中,薄弱区52的厚度方向与非薄弱区51的厚度方向一致,均为z向。
发明人还注意到,在电池盒上形成一体式泄压机构后,电池盒的薄弱区的力学性能较差,在电池单体正常使用条件下,容易出现薄弱区因电池单体内部压力长期变化而疲劳破坏,影响电池单体的使用寿命。
为此,在一些实施例中,薄弱区52的平均晶粒尺寸为S 1,非薄弱区51的平均晶粒尺寸为S 2,满足:0.05≤S 1/S 2≤0.9。
在本申请实施例中,薄弱区52和非薄弱区51一体成型,具有良好的可靠性。由于S 1/S 2≤0.9, 薄弱区52的平均晶粒尺寸与非薄弱区51的平均晶粒尺寸相差较大,减小薄弱区52的平均晶粒尺寸,达到细化薄弱区52晶粒的目的,提高了薄弱区52材料力学性能,提高了薄弱区52的韧性和抗疲劳强度,降低薄弱区52在电池单体20正常使用条件下被破坏的风险,提高了电池单体20的使用寿命。
当S 1/S 2<0.05时,薄弱区52的成型难度增大,且薄弱区52的强度过大,薄弱区52在电池单体20热失控时被破坏的难度加大,容易出现泄压不及时的情况。
因此,S 1/S 2≥0.05,降低成型薄弱区52的成型难度,提高电池单体20在热失控时的泄压及时性。
例如,S 1/S 2可以是0.01、0.03、0.04、0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9中任意一者点值或者任意两者之间的范围值。
在一些实施例中,0.1≤S 1/S 2≤0.5,使得电池盒21的综合性能更优,保证薄弱区52在电池单体20热失控时能够及时被破坏的情况下,保证薄弱区52在电池单体20正常使用条件下具有足够的强度。
例如,S 1/S 2可以是0.1、0.12、0.15、0.17、0.2、0.22、0.25、0.27、0.3、0.32、0.35、0.37、0.4、0.42、0.45、0.47、0.5中任意一者点值或者任意两者之间的范围值。
在一些实施例中,0.4μm≤S 1≤75μm。
S 1可以是0.4μm、0.5μm、1μm、2μm、3μm、4μm、5μm、10μm、15μm、20μm、25μm、28μm、30μm、35μm、36μm、40μm、45μm、49μm、50μm、55μm、60μm、65μm、70μm、72μm、75μm中任意一者点值或者任意两者之间的范围值。
发明人注意到,S 1>75μm,薄弱区52的韧性和抗疲劳强度较差;S 1<0.4μm,薄弱区52的成型难度较大,且薄弱区52的强度过大,薄弱区52在电池单体20热失控时被破坏的难度加大,容易出现泄压不及时的情况。
因此,0.4μm≤S 1≤75μm,一方面,降低薄弱区52的成型难度,提高电池单体20在热失控时的泄压及时性;另一方面,提高了薄弱区52的韧性和抗疲劳强度,降低薄弱区52在电池单体20正常使用条件下被破坏的风险。
在一些实施例中,1μm≤S 1≤10μm。
S 1可以是1μm、1.5μm、1.6μm、2μm、2.5μm、2.6μm、3μm、3.5μm、3.6μm、4μm、4.5μm、4.6μm、5μm、5.5μm、5.6μm、6μm、6.5μm、6.6μm、7μm、7.5μm、7.6μm、8μm、8.5μm、8.6μm、9μm、9.5μm、9.6μm、10μm中任意一者点值或者任意两者之间的范围值。
在本实施例中,1μm≤S 1≤10μm,使得电池盒21的综合性能更优,保证薄弱区52在电池单体20热失控时能够及时被破坏的情况下,保证薄弱区52在电池单体20正常使用条件下具有足够的强度。
在一些实施例中,10μm≤S 2≤150μm。
S 2可以是10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm、55μm、60μm、 65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm、105μm、110μm、115μm、120μm、125μm、130μm、135μm、140μm、145μm、150μm中任意一者点值或者任意两者之间的范围值。
进一步地,30μm≤S 2≤100μm。
S 2可以是30μm、32μm、35μm、37μm、40μm、42μm、45μm、47μm、50μm、52μm、55μm、57μm、60μm、62μm、65μm、67μm、70μm、72μm、75μm、77μm、80μm、82μm、85μm、87μm、90μm、92μm、95μm、97μm、100μm中任意一者点值或者任意两者之间的范围值。
在一些实施例中,薄弱区的最小厚度为A 1,满足:1≤A 1/S 1≤100。
A 1/S 1可以是1、2、4、5、10、15、20、21、22、23、25、30、33、34、35、37、38、40、45、50、55、60、65、70、75、80、85、90、93、94、95、100中任意一者点值或者任意两者之间的范围值。
当A 1/S 1<1时,在薄弱区52的厚度方向,薄弱区52的晶粒层数越少,薄弱区52的抗疲劳强度过小;当A 1/S 1>100时,在薄弱区52的厚度方向,薄弱区52的晶粒层数过多,薄弱区52的强度过大,容易出现薄弱区52在电池单体20热失控时不能及时被破坏的风险。
因此,1≤A 1/S 1≤100,一方面,使得薄弱区52在厚度方向的晶粒层数较多,提高薄弱区52的抗疲劳强度,降低薄弱区52在电池单体20正常使用条件下被破坏的风险;另一方面,使得薄弱区52能够在电池单体20热失控时能够更为及时的被破坏,以达到及时泄压的目的。
在一些实施例中,5≤A 1/S 1≤20。
A 1/S 1可以是5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20中任意一者点值或者任意两者之间的范围值。
在本实施例中,5≤A 1/S 1≤20,使得电池盒的综合性能更优,保证薄弱区52在电池单体20热失控时能够及时被破坏的情况下,保证了薄弱区52在电池单体20正常使用条件下具有足够的抗疲劳强度,提高电池单体20的使用寿命。
在一些实施例中,薄弱区的最小厚度为A 1,薄弱区的硬度为B 1,满足:5HBW/mm≤B 1/A 1≤10000HBW/mm。
B 1/A 1可以是5HBW/mm、6HBW/mm、7HBW/mm、20HBW/mm、50HBW/mm、61HBW/mm、62HBW/mm、63HBW/mm、64HBW/mm、75HBW/mm、90HBW/mm、100HBW/mm、120HBW/mm、150HBW/mm、190HBW/mm、500HBW/mm、1000HBW/mm、1200HBW/mm、1750HBW/mm、1800HBW/mm、2100HBW/mm、4000HBW/mm、5000HBW/mm、8000HBW/mm、9000HBW/mm、10000HBW/mm中任意一者点值或者任意两者之间的范围值。
薄弱区52的硬度为布氏硬度,单位为HBW。布氏硬度的测量方法可参见GB/T23.1-2018中的测量原理进行实施。在实际测量过程中,薄弱区52的硬度可以在薄弱区52厚度方向上的内表面或外表面进行测量获得。以电池盒为电池单体20的端盖11为例,可以在薄弱区52背离电池单体20内部的外表面上测量薄弱区52的硬度,也可以在薄弱区52面向电池单体20内部的内表面上测量薄弱区52的硬度。
当B 1/A 1>10000HBW/mm时,薄弱区52较薄且硬度较大,这样会导致薄弱区52非常薄脆,薄弱区52在电池单体20的正常使用条件下容易被破坏,电池单体20的使用寿命较短。当B 1/A 1<5HBW/mm时,薄弱区52较厚且硬度较小,在电池单体20热失控时,薄弱区52会被拉伸延展,泄压及时性较差。
在本实施例中,不仅考虑到薄弱区52的厚度对电池盒的性能的影响,还考虑到薄弱区52的硬度对电池盒的性能的影响,5HBW/mm≤B 1/A 1≤10000HBW/mm,既能够使得薄弱区52在电池单体20正常使用条件下具有足够的强度,薄弱区52不易因疲劳而破坏,提高电池单体20的使用寿命;又能够使得电池盒在电池单体20热失控时通过薄弱区52及时泄压,降低电池单体20发生爆炸的风险,提高电池单体20的安全性。
在一些实施例中,190HBW/mm≤B 1/A 1≤4000HBW/mm。
B 1/A 1可以是190HBW/mm、250HBW/mm、280HBW/mm、300HBW/mm、350HBW/mm、400HBW/mm、450HBW/mm、500HBW/mm、600HBW/mm、700HBW/mm、875HBW/mm、1000HBW/mm、1200HBW/mm、1500HBW/mm、1750HBW/mm、1800HBW/mm、2000HBW/mm、2100HBW/mm、2500HBW/mm、3000HBW/mm、3500HBW/mm、4000HBW/mm中任意一者点值或者任意两者之间的范围值。
在本实施例中,190HBW/mm≤B 1/A 1≤4000HBW/mm,使得电池盒综合性能更优,保证薄弱区52在电池单体20热失控时能够及时被破坏的情况下,保证薄弱区52在电池单体20正常使用条件下具有足够的强度。在保证电池单体20的安全性的前提下,提高了电池单体20的使用寿命。
在一些实施例中,0.02mm≤A 1≤1.6mm。
A 1可以是0.02mm、0.04mm、0.05mm、0.06mm、0.1mm、0.15mm、0.2mm、0.25mm、0.3mm、0.35mm、0.4mm、0.45mm、0.5mm、0.55mm、0.6mm、0.7mm、0.75mm、0.8mm、0.85mm、0.9mm、0.95mm、1mm、1.05mm、1.1mm、1.15mm、1.2mm、1.25mm、1.3mm、1.35mm、1.4mm、1.42mm、1.43mm、1.45mm、1.47mm、1.5mm、1.55mm、1.6mm中任意一者点值或者任意两者之间的范围值。
当A 1<0.02mm时,薄弱区52的成型难度困难,且在成型过程中,容易造成薄弱区52损伤;当薄弱区52的>1.6mm,薄弱区52在电池单体20热失控时被破坏的难度加大,容易出现泄压不及时的情况。
因此,0.02mm≤A 1≤1.6mm,在降低电池盒的泄压区56的成型难度的情况下,提高了电池单体20在热失控时的泄压及时性。
在一些实施例中,0.06mm≤A 1≤0.4mm。
A 1可以是0.06mm、0.07mm、0.08mm、0.1mm、0.15mm、0.18mm、0.2mm、0.25mm、0.3mm、0.35mm、0.4mm中任意一者点值或者任意两者之间的范围值。
在本实施例中,0.06mm≤A 1≤0.4mm,进一步降低薄弱区52的成型难度,并提高电池单体20在热失控时的泄压及时性。
在一些实施例中,薄弱区的硬度为B 1,非薄弱区的硬度为B 2,满足:1<B 1/B 2≤5。
非薄弱区51的硬度为布氏硬度,单位为HBW。在实际测量过程中,非薄弱区51的硬度可以在 非薄弱区51厚度方向上的内表面或外表面进行测量获得。以电池盒为电池单体20的端盖11为例,可以在非薄弱区51背离电池单体20内部的外表面上测量非薄弱区51的硬度,也可以在非薄弱区51面向电池单体20内部的内表面上测量非薄弱区51的硬度。
在本实施例中,B 1>B 2,相当于提高了薄弱区52的硬度,从而提高了薄弱区52的强度,降低薄弱区52在电池单体20正常使用条件下被破坏的风险。
B 1/B 2可以是1.1、1.5、2、2.5、3、3.5、3.6、4、4.5、5中任意一者点值或者任意两者之间的范围值。
当B 1/B 2>5时,可能会导致薄弱区52的硬度过大,可能会出现薄弱区52在电池单体20热失控时很难被破坏的情况。
因此,B 1/B 2≤5,降低薄弱区52在电池单体20热失控时无法及时被破坏的风险,提高电池单体20的安全性。
在一些实施例中,B 1/B 2≤2.5。
B 1/B 2可以是1.1、1.11、1.12、1.2、1.25、1.3、1.4、1.5、1.6、1.7、1.71、1.72、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5中任意一者点值或者任意两者之间的范围值。
在本实施例中,B 1/B 2≤2.5,能够进一步降低薄弱区52在电池单体20热失控时无法及时被破坏的风险。
在一些实施例中,5HBW≤B 2≤150HBW。
B 2可以是5HBW、8HBW、9HBW、9.5HBW、10HBW、15HBW、16HBW、19HBW、20HBW、30HBW、40HBW、50HBW、52HBW、52.5HBW、53HBW、60HBW、70HBW、90HBW、100HBW、110HBW、120HBW、130HBW、140HBW、150HBW中任意一者点值或者任意两者之间的范围值。
在一些实施例中,5HBW≤B 1≤200HBW。
B 1可以是5HBW、6HBW、8HBW、10HBW、15HBW、19HBW、20HBW、30HBW、50HBW、60HBW、70HBW、90HBW、100HBW、110HBW、120HBW、130HBW、140HBW、150HBW、160HBW、170HBW、180HBW、190HBW、200HBW中任意一者点值或者任意两者之间的范围值。
在一些实施例中,请参照图51和图52,图52为本申请另一些实施提供的电池盒21的局部放大图。薄弱区52的最小厚度为A 1,非薄弱区51的最小厚度为A 2,满足:0.05≤A 1/A 2≤0.95。
薄弱区52的最小厚度为薄弱区52最薄位置的厚度。非薄弱区51的最小厚度为非薄弱区51最薄位置的厚度。
如图51和图52所示,电池盒21具有相对设置的第一侧面54和第二侧面55,槽部53从第一侧面54向靠近第二侧面55的方向凹陷,电池盒位于槽部53的槽底面531与第二侧面55之间的部分为薄弱区52。
第一侧面54与第二侧面55可以平行设置,也可以呈小角度设置,若第一侧面54与第二侧面55呈小角度设置,比如,两者所呈角度在10度以内,第一侧面54与第二侧面55之间的最小距离即为非薄弱区51的最小厚度;如图51和图52所示,若第一侧面54与第二侧面55平行,第一侧 面54与第二侧面55之间的距离即为非薄弱区51的最小厚度。
槽部53的槽底面531可以是平面,也可以是曲面。若槽部53的槽底面531为平面,槽部53的槽底面531与第二侧面55可以平行,也可以呈小角度设置。若槽部53的槽底面531与第二侧面55呈小角度设置,比如,两者所呈角度在10度以内,槽部53的槽底面531与第二侧面55之间的最小距离即为薄弱区52的最小厚度;如图51所示,若槽部53的槽底面531与第二侧面55平行,槽部53的槽底面531与第二侧面55之间的距离即为薄弱区52的最小厚度。如图52所示,若槽部的槽底面531为曲面,比如,槽部53的槽底面531为圆弧面,槽部53的槽底面531与第二侧面55之间的最小距离即为薄弱区52的最小厚度。
A 1/A 2可以是0.05、0.06、0.07、0.08、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.8、0.85、0.9、0.95中任意一者点值或者任意两者之间的范围值。
当A 1/A 2<0.05时,可能会出现薄弱区52的强度不足的情况。当A 1/A 2>0.95时,可能会出现薄弱区52在电池单体20热失控时不容易被破坏的情况,泄压不及时,导致电池单体20爆炸。因此,0.05≤A 1/A 2≤0.95,既能够降低薄弱区52在电池单体20正常使用条件下破裂的概率,又能够降低电池单体20热失控时发生爆炸的概率。
在一些实施例中,0.12≤A 1/A 2≤0.8。
A 1/A 2可以是0.12、0.13、0.14、0.15、0.17、0.2、0.22、0.25、0.27、0.3、0.32、0.35、0.37、0.4、0.42、0.45、0.47、0.5、0.52、0.55、0.57、0.6、0.62、0.65、0.66、0.67、0.7、0.72、0.75、0.77、0.8中任意一者点值或者任意两者之间的范围值。
在本实施例中,0.12≤A 1/A 2≤0.8,使得外部部件综合性能更优,在保证薄弱区52在电池单体20热失控时能够及时被破坏的情况下,保证薄弱区52在电池单体20正常使用条件下具有足够的强度。在通过冲压的方式成型槽部53时,将A 1/A 2控制在0.12~0.8之间,能够更容易使得S 1/S 2≤0.5,以达到细化薄弱区52晶粒的目的。
在一些实施例中,0.2≤A 1/A 2≤0.5。
A 1/A 2可以是0.2、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.3、0.31、0.32、0.33、0.34、0.35、0.36、0.37、0.38、0.39、0.4、0.41、0.42、0.43、0.44、0.45、0.46、0.47、0.48、0.49、0.5中任意一者点值或者任意两者之间的范围值。
在本实施例中,将A 1/A 2控制在0.2~0.5之间,细化晶粒对薄弱区52的加强效果会更优于厚度减薄对薄弱区52的削弱效果,使得薄弱区52具有更好的抗疲劳性能,进一步降低薄弱区52在电池单体20正常使用条件下被破坏的风险,并保证薄弱区52在电池单体20热失控时及时被破坏,提高泄压及时性。
在一些实施例中,0.02mm≤A 1≤1.6mm。进一步地,0.06mm≤A 1≤0.4mm。
在一些实施例中,1mm≤A 2≤5mm。A 2可以是1mm、2mm、3mm、4mm、5mm中任意一者点值或者任意两者之间的范围值。
A 2>5mm,非薄弱区51的厚度较大,电池盒的用料更多,电池盒的重量大,经济性差。A 2<1mm, 非薄弱区51的厚度较小,电池盒的抗变形能力较差。因此,1mm≤A 2≤5mm,使得电池盒具有较好的经济性,且具有较好的抗变形能力。
进一步地,1.2mm≤A 2≤3.5mm。
A 2可以是1.2mm、1.25mm、1.3mm、1.4mm、1.5mm、1.6mm、1.7mm、1.8mm、1.9mm、2mm、2.1mm、2.2mm、2.3mm、2.4mm、2.5mm、2.6mm、2.7mm、2.8mm、2.9mm、3mm、3.1mm、3.2mm、3.3mm、3.4mm、3.5mm中任意一者点值或者任意两者之间的范围值。
在本实施例中,1.2mm≤A 2≤3.5mm,使得电池盒具有更好的经济性和抗变形能力。进一步地,2mm≤A 2≤3mm。
在一些实施例中,请参照图53,图53为本申请又一些实施例提供的电池盒21的结构示意图(示出一级刻痕槽532);图54为图53所示的电池盒21的E-E剖视图;图55为本申请再一些实施例提供的电池盒21的结构示意图(示出一级刻痕槽532);图56为图5所示的电池盒的F-F剖视图;图125为本申请另一些实施例提供的电池盒的结构示意图(示出一级刻痕槽532);图58为图53所示的电池盒的G-G剖视图。电池盒21具有泄压区56,槽部53包括一级刻痕槽532,刻痕槽532沿着泄压区56的边缘设置,泄压区56被配置为能够以刻痕槽532为边界打开,薄弱区52形成刻痕槽532的底部。
泄压区56为电池盒在薄弱区52被破坏后能够打开的区域。比如,在电池单体20内部压力达到阈值时,薄弱区52裂开,泄压区56在电池单体20内部的排放物的作用下向外打开。泄压区56打开后,电池盒在与泄压区56相对应的位置可以形成排放口,电池单体20内部的排放物可以通过排放口排出,以泄放电池单体20内部的压力。
刻痕槽532可以通过冲压成型的方式成型于电池盒。槽部53中的刻痕槽532仅为一级,通过一次冲压则可成型该一级刻痕槽532。刻痕槽532可以是多种形状的槽,比如,环形槽、弧形槽、U形槽、H形槽等。薄弱区52形成于刻痕槽532的底部,薄弱区52的形状与刻痕槽532的形状相同,比如,薄弱区52为U形槽,薄弱区52则沿U形轨迹延伸。
在本实施例中,薄弱区52形成刻痕槽532的底部,在薄弱区52被破坏时,泄压区56能够以薄弱区52为边界打开,以实现泄压,增大了电池盒的泄压面积。
在一些实施例中,请继续参照图54、图56和图58所示,电池盒21具有相对设置的第一侧面54和第二侧面55,刻痕槽532从第一侧面54向靠近第二侧面55的方向凹陷。
可以是第一侧面54为电池盒21面向电池单体20内部的内表面,第二侧面55为电池盒背离电池单体20内部的外表面;也可以是第一侧面54为电池盒背离电池单体20内部的外表面,第二侧面55为电池盒面向电池单体20内部的内表面。示例性的,第一侧面54平行于第二侧面55,非薄弱区51的最小厚度即为第一侧面54与第二侧面55之间的距离。
刻痕槽532的槽底面即为槽部的槽底面531。电池盒21在刻痕槽532的槽底面与第二侧面55之间的部分为刻痕槽532的槽底壁,刻痕槽532的槽底壁即为薄弱区52。
在本实施例中,槽部53中仅包括一级刻痕槽532,刻痕槽532即为槽部53,槽部53为一级槽, 结构简单。在成型时,可以在第一侧面54成型刻痕槽532,成型简单,提高生产效率,降低生产成本。
在一些实施例中,请参照图59-图64,图59为本申请又一些实施例提供的电池盒21的结构示意图(示出两级刻痕槽532);图60为图59所示的电池盒21的K-K剖视图;图61为本申请再一些实施例提供的电池盒的结构示意图(示出两级刻痕槽532);图62为图61所示的电池盒的M-M剖视图;图63为本申请另一些实施例提供的电池盒的结构示意图(示出两级刻痕槽532);图64为图63所示的电池盒的N-N剖视图。电池盒21包括相对设置的第一侧面54和第二侧面55,槽部53包括多级刻痕槽532,多级刻痕槽532沿第一侧面54到第二侧面55的方向依次设置于电池盒,薄弱区52形成于最远离第一侧面54的一级刻痕槽532的底部。其中,电池盒具有泄压区56,刻痕槽532沿着泄压区56的边缘设置,泄压区56被配置为能够以最远离第一侧面54的一级刻痕槽532为边界打开。
槽部53包括多级刻痕槽532,可理解的,槽部53为多级槽。每级刻痕槽532沿着泄压区56的边缘设置,多级刻痕槽532的形状相同。槽部53中的刻痕槽532可以是两级、三级、四级或者更多。各级刻痕槽532可以通过冲压成型的方式成型于电池盒。在成型时,可以沿第一侧面54到第二侧面55的方向依次冲压成型出各级刻痕槽532。在冲压成型多级刻痕槽532时,可以通过多次冲压对应形成多级刻痕槽532,每冲压一次成型一级刻痕槽532。刻痕槽532可以是多种形状的槽,比如,环形槽、弧形槽、U形槽、H形槽等。
薄弱区52形成于最远离于第一侧面54的一级刻痕槽532的底部,最远离于第一侧面54的一级刻痕槽532为最深位置(最内侧)的一级刻痕槽532。在相邻的两级刻痕槽532中,远离第一侧面54的一级刻痕槽532设置于靠近第一侧面54的一级刻痕槽532的底面。电池盒在最远离第一侧面54的一级刻痕槽532的槽底面与第二侧面55之间的部分为最远离第一侧面54的一级刻痕槽532的槽底壁,该槽底壁即为薄弱区52。最远离第一侧面54的一级刻痕槽532的槽底面即为槽部的槽底面531。
在成型时,可以在电池盒上逐级成型多级刻痕槽532,可以降低每级刻痕槽532的成型深度,从而降低电池盒在成型每级刻痕槽532时所受到的成型力,降低电池盒产生裂纹的风险,电池盒不易因在设置刻痕槽532的位置产生裂纹而失效,提高了电池盒的使用寿命。
在一些实施例中,请参照图60、图62、图64,最远离第二侧面55的一级刻痕槽532从第一侧面54向靠近第二侧面55的方向凹陷。
以槽部53中的刻痕槽532为两级为例,两级刻痕槽532分别为第一级刻痕槽和第二级刻痕槽。第一级刻痕槽设置于第一侧面54,即第一级刻痕槽从第一侧面54向靠近第二侧面55的方向凹陷,第二级刻痕槽设置于第一级刻痕槽的槽底面;即第二级刻痕槽从第一级刻痕槽的槽底面向靠近第二侧面55的方向凹陷。第一级刻痕槽为最外侧的一级刻痕槽532,第二级刻痕槽为最内侧的一级刻痕槽532。
槽部53由多级刻痕槽532构成,在成型时,可以从第一侧面54到第二侧面55的方向逐渐加 工出多级刻痕槽532,成型效率高。
在一些实施例中,请参照图65-图71,图65为本申请一些实施例提供的电池盒的轴测图;图66为图65所示的电池盒的结构示意图(示出一级刻痕槽532和一级沉槽533);图67为图66所示的电池盒的O-O剖视图;图68为本申请再一些实施例提供的电池盒的结构示意图(示出一级刻痕槽532和一级沉槽533);图69为图68所示的电池盒的P-P剖视图;图70为本申请另一些实施例提供的电池盒的结构示意图(示出一级刻痕槽532和一级沉槽533);图71为图70所示的电池盒的Q-Q剖视图。电池盒21包括相对设置的第一侧面54和第二侧面55,槽部53还包括一级沉槽533,沉槽533从第一侧面54向靠近第二侧面55的方向凹陷,泄压区56形成于沉槽的槽底壁5331。
需要说明的是,无论槽部53中的刻痕槽532是一级,还是多级,槽部53中均可以包括一级沉槽533。可理解的,槽部53中既有刻痕槽532,又有沉槽533,槽部53为多级槽。沉槽533和刻痕槽532沿第一侧面54到第二侧面55的方向设置。在成型时,可以先在电池盒上成型沉槽533,然后,再在沉槽的槽底壁5331上成型刻痕槽532。
沉槽的槽底壁5331为电池盒位于沉槽533的槽底面以下的部分,在第一侧面54上成型沉槽533后,电池盒在设置沉槽533的区域的残留部分即为沉槽的槽底壁5331。如图67、图69、图71所示,电池盒21位于沉槽533的槽底面与第二侧面55之间的部分为沉槽的槽底壁5331。其中,泄压区56可以是沉槽的槽底壁5331的一部分。
沉槽533的设置,在保证最终的薄弱区52的厚度一定的情况下,可以降低刻痕槽532的深度,从而降低电池盒在成型刻痕槽532时所受到的成型力,降低电池盒产生裂纹的风险。此外,沉槽533能够为泄压区56在打开过程中提供避让空间,即使第一侧面54被障碍物遮挡,泄压区56仍然能够打开泄压。
在一些实施例中,请参照图72-图77,图72为本申请一些实施例提供的电池盒的结构示意图(示出一级刻痕槽532和两级沉槽533);图73为图72所示的电池盒的R-R剖视图;图74为本申请再一些实施例提供的电池盒的结构示意图(示出一级刻痕槽532和两级沉槽533);图75为图74所示的电池盒的S-S剖视图;图76为本申请另一些实施例提供的电池盒的结构示意图(示出一级刻痕槽532和两级沉槽533);图77为图76所示的电池盒的T-T剖视图。电池盒包括相对设置的第一侧面54和第二侧面55,槽部53还包括多级沉槽533,多级沉槽533沿第一侧面54到第二侧面55的方向依次设置于电池盒21,最远离第二侧面55的一级沉槽533从第一侧面54向靠近第二侧面55凹陷,泄压区56形成于最远离第一侧面54的一级沉槽的槽底壁5331。
需要说明的是,无论槽部53中的刻痕槽532是一级,还是多级,槽部53中均可以包括多级沉槽533。可理解的,槽部53中既有刻痕槽532,又有沉槽533,槽部53为多级槽。沉槽533和刻痕槽532沿第一侧面54到第二侧面55的方向设置。在成型时,可以先在电池盒上成型多级沉槽533,然后,再在最远离第一侧面54的一级沉槽的槽底壁5331上成型刻痕槽532。
最远离第二侧面55的一级沉槽533为最外侧的一级沉槽533,最远离第一侧面54的一级沉槽 533为最内侧的一级沉槽533。最外侧的一级沉槽533设置于第一侧面54,最外侧的一级沉槽533从第一侧面54向靠近第二侧面55凹陷。
最远离第一侧面54的一级沉槽的槽底壁5331为电池盒位于最远离第一侧面54的一级沉槽533的槽底面以下的部分,在电池盒上成型多级沉槽533后,电池盒在设置最远离第一侧面54的一级沉槽533的区域的残留部分即为沉槽的槽底壁5331。如图73、图75、图77所示,电池盒位于最远离第一侧面54的一级沉槽533的槽底面与第二侧面55之间的部分为最远离第一侧面54的一级沉槽的槽底壁5331。其中,泄压区56可以是最远离第一侧面54的一级沉槽的槽底壁5331的一部分。
槽部53中的沉槽533可以是两级、三级、四级或者更多。在相邻的两级沉槽533中,远离第一侧面54的一级沉槽533设置于靠近第一侧面54的一级沉槽533的底面。沿第一侧面54到第二侧面55的方向,多级沉槽533的槽底面的轮廓逐级减小。各级沉槽533可以通过冲压成型的方式成型于电池盒。在成型时,可以沿第一侧面54到第二侧面55的方向依次冲压成型出各级沉槽533,再冲压成型刻痕槽532。以槽部53中的沉槽533为两级,刻痕槽532为一级为例,在冲压成型时,可以先进行两次冲压,以对应形成两级沉槽533,再进行一次冲压,以对应形成一级刻痕槽532。示例性的,在图72-图77中,槽部53中的沉槽533为两级。
在成型多级沉槽533时,能够减小每级沉槽533的成型深度,能够降低成型每级沉槽533时电池盒受到的成型力,降低电池盒产生裂纹的风险。此外,多级沉槽533能够为泄压区56在打开过程中提供避让空间,即使第一侧面54被障碍物遮挡,泄压区56仍然能够打开泄压。
在一些实施例中,沉槽533的内部空间为圆柱体、棱柱体、圆台体或棱台体。
沉槽533的内部空间为沉槽533的槽侧面和槽底面共同限定出来的空间。其中,棱柱体可以是三棱柱、四棱柱、五棱柱、六棱柱等;棱台体可以是三棱台、四棱台、五棱台或六棱台等。示例性的,在图72-图77中,槽部53的内部空间为四棱柱,具体的,槽部53的内部空间为长方体。
在本实施例中,沉槽533结构简单,易于成型,能够为泄压区56在打开过程中提供更多地避让空间。
在一些实施例中,请参照图53、图59、图66和图72,刻痕槽532包括第一槽段5321、第二槽段5322和第三槽段5323,第一槽段5321和第三槽段5323相对设置,第二槽段5322连接第一槽段5321和第三槽段5323,第一槽段5321、第二槽段5322和第三槽段5323沿着泄压区56的边缘设置。
第一槽段5321、第二槽段5322和第三槽段5323均可以是直线形槽,也可以是非直线形槽,比如,圆弧形槽。在第一槽段5321、第二槽段5322和第三槽段5323均为直线形槽的实施例中,可理解的,第一槽段5321、第二槽段5322和第三槽段5323均沿直线延伸,第一槽段5321与第三槽段5323两者可以平行设置,两者也可以呈夹角设置。第一槽段5321和第三槽段5323两者可以与第二槽段5322垂直,两者也可以与第二槽段5322不垂直。
第二槽段5322与第一槽段5321的连接位置可以位于第一槽段5321的一端,也可以位于偏离 第一槽段5321的一端的位置,比如,第二槽段5322与第一槽段5321的连接位置位于第一槽段5321在延伸方向的中点位置;第二槽段5322与第三槽段5323的连接位置可以位于第三槽段5323的一端,也可以位置偏离第三槽段5323的一端的位置,比如,第二槽段5322与第三槽段5323的连接位置位于第三槽段5323在延伸方向的中点位置。
需要说明的是,在槽部53包括多级刻痕槽532的实施例中,可理解的,在相邻的两级刻痕槽532中,远离第一侧面54的一级刻痕槽532的第一槽段5321设置于靠近第一侧面54的一级刻痕槽532的第一槽段5321的槽底面;远离第一侧面54的一级刻痕槽532的第二槽段5322设置于靠近第一侧面54的一级刻痕槽532的第二槽段5322的槽底面;远离第一侧面54的一级刻痕槽532的第三槽段5323设置于靠近第一侧面54的一级刻痕槽532的第三槽段5323的槽底面。
在本实施例中,泄压区56能够以第一槽段5321、第二槽段5322和第三槽段5323为边界打开,在电池单体20泄压时,泄压区56打开更加容易,实现电池盒的大面积泄压。
在一些实施例中,请继续参照图53、图59、图66和图72,第一槽段5321、第二槽段5322和第三槽段5323限定出两个泄压区56,两个泄压区56分别位于第二槽段5322的两侧。
示例性的,第一槽段5321、第二槽段5322和第三槽段5323形成H形刻痕槽532,第二槽段5322与第一槽段5321的连接位置位于第一槽段5321的中点位置,第三槽段5323与第二槽段5322的连接位置位于第三槽段5323的中点位置。两个泄压区56对称设置于第二槽段5322的两侧。
两个泄压区56分别位于第二槽段5322的两侧,使得两个泄压区56以第二槽段5322分界,电池盒在第二槽段5322的位置破裂后,两个泄压区56能够沿着第一槽段5321和第三槽段5323以对开的形式打开,以实现泄压,可有效提高电池盒的泄压效率。
在另一些实施例中,第一槽段5321、第二槽段5322和第三槽段5323依次连接,第一槽段5321、第二槽段5322和第三槽段5323限定出一个泄压区56。
第一槽段5321、第二槽段5322和第三槽段5323依次连接可以形成U形刻痕槽532。
在一些实施例中,刻痕槽532为沿非封闭轨迹延伸的槽。
非封闭轨迹是指在延伸方向上的两端未相连的轨迹,非封闭轨迹可以是弧形轨迹、U形轨迹等。
在本实施例中,刻痕槽532为沿非封闭轨迹的槽,泄压区56可以以翻转的方式打开,泄压区56打开后最终与电池盒的其他区域相连,降低泄压区56打开后发生飞溅的风险。
在一些实施例中,请参照图55、图61、图68和图74所示,刻痕槽532为圆弧形槽。
圆弧形槽为沿圆弧形轨迹延伸的槽,圆弧形轨迹为非封闭轨迹。圆弧形槽的圆心角可以小于、等于或大于180°。
圆弧形槽结构简单,易于成型。在泄压过程中,泄压区56能够沿着圆弧形槽快速破裂,以使泄压区56快速打开。
在一些实施例中,请参照图57、图63、图70和图76,刻痕槽532为沿封闭轨迹延伸的槽。
封闭轨迹是指首尾两端相连的轨迹,封闭轨迹可以是圆形轨迹、矩形轨迹等。
在泄压过程中,电池盒21能够沿刻痕槽532破裂,使得泄压区56可以以脱离的方式打开,增 大了电池盒21的泄压面积,提高电池盒21的泄压速率。
在一些实施例中,刻痕槽532为环形槽。
环形槽可以是矩形环槽,也可以是圆形环槽。
环形槽结构简单,易于成型,在泄压过程中,电池盒21可以沿着环形槽快速破裂,以使泄压区56快速打开。
在一些实施例中,泄压区56的面积为E1,满足:90mm 2≤E1≤1500mm 2
在图53、图55、图57、图59、图61、图63、图66、图68、图70、图72、图74和图76中,阴影部分的面积为泄压区56的面积。
需要说明的是,在槽部53中包括多级刻痕槽532的实施例中,泄压区56的面积为最深位置(最内侧)的一级刻痕槽532所限定出的区域的面积。
泄压区56的面积E1可以是90mm 2、95mm 2、100mm 2、150mm 2、200mm 2、250mm 2、300mm 2、350mm 2、400mm 2、450mm 2、500mm 2、550mm 2、600mm 2、650mm 2、700mm 2、750mm 2、800mm 2、900mm 2、950mm 2、1000mm 2、1050mm 2、1100mm 2、1150mm 2、1200mm 2、1250mm 2、1300mm 2、1350mm 2、1400mm 2、1450mm 2、1500mm 2中任意一者点值或者任意两者之间的范围值。
当泄压区56的面积E1<90mm 2时,电池盒的泄压面积较小,电池单体20热失控时的泄压及时性较差;E1>1500mm 2,泄压区56的抗冲击能力较差,泄压区56受力后的变形增大,薄弱区52在电池单体20正常使用条件下容易被破坏,影响电池单体20的使用寿命。因此,90mm 2≤泄压区56的面积E1≤1500mm 2,既能够提高电池单体20的使用寿命,又能够提高电池单体20的安全性。
进一步地,150mm 2≤泄压区56的面积E1≤1200mm 2。使得电池盒的综合性能更优,在使得电池盒具有较大的泄压面积,且有较好的抗冲击能力。
进一步地,200mm 2≤泄压区56的面积E1≤1000mm 2
进一步地,250mm 2≤泄压区56的面积E1≤800mm 2
在一些实施例中,请参照图48-图77,电池盒21具有相对设置的第一侧面54和第二侧面55,槽部53从第一侧面54向靠近第二侧面55的方向凹陷,槽部53在第一侧面54形成外边缘534,电池盒距离外边缘534第一距离以外的区域为非薄弱区51,第一距离为g,g=5mm。
在图53-图58所示的实施例中,槽部53仅包括一级刻痕槽532,刻痕槽532设置于第一侧面54,刻痕槽532的槽侧面与第一侧面54相交形成外边缘534,刻痕槽532的槽侧面围设在刻痕槽532的槽底面的周围。需要说明的是,在图55所示的实施例中,由于刻痕槽532为沿封闭轨迹延伸的槽,刻痕槽532的槽侧面与第一侧面54相交形成内环线和位于内环线外侧的外环线,外环线为外边缘534。
在图59-图64所示的实施例中,槽部53仅包括多级刻痕槽532,最外侧的刻痕槽532设置于第一侧面54,最外侧的刻痕槽532的槽侧面与第一侧面54相交形成外边缘534。需要说明的是,在图63所示的实施例中,由于刻痕槽532为沿封闭轨迹延伸的槽,最外侧的刻痕槽532与第一侧面54相交形成内环线和位于内环线外侧的外环线,外环线为外边缘534。
在图65-图71所示的实施例中,槽部53还包括一级沉槽533,沉槽533设置于第一侧面54,沉槽533的槽侧面与第一侧面54相交形成外边缘534,沉槽533的槽侧面围设于沉槽533的槽底面的周围。在图72-图77所示的实施例中,槽部53还包括多级沉槽533,最外侧的一级沉槽533设置与第一侧面54,最外侧的一级槽侧面与第一侧面54相交形成外边缘534。
可理解的,外边缘534与非薄弱区51的内边缘511之间的距离为第一距离g,非薄弱区51的内边缘511的形状可以与外边缘534的形状基本相同。第一距离g所在方向可以与非薄弱区51的厚度方向垂直,也就是说,第一距离可以沿着垂直于非薄弱区51的厚度方向测量。在测量非薄弱区51的平均晶粒尺寸时,可以在距离外边缘534以外的区域进行测量。
在本实施例中,非薄弱区51不易受到在成型槽部53的过程中的影响,使得非薄弱区51的晶粒更加均匀。
需要说明的是,如图53和图59所示,在刻痕槽532的第一槽段5321与第三槽段5323相对设置的实施例中,以第一槽段5321和第三槽段5323平行为例,当第一槽段5321与第三槽段5323之间的间距大于2*g时,非薄弱区51的内边缘511局部位于泄压区56,使得泄压区56部分位于非薄弱区51。在其他实施例中,请参照图78,图78为本申请其他实施例提供的电池盒的结构示意图,当第一槽段5321与第三槽段5323之间的间距小于或等于2*g,非薄弱区51的内边缘511并未位于泄压区56,非薄弱区51的内边缘511大致呈矩形。沿第一槽段5321的宽度方向,第一槽段5321与非薄弱区51的内边缘511的间距为g;沿第一槽段5321的长度方向,第一槽段5321与非薄弱区51的内边缘511的间距为g;沿第三槽段5323的宽度方向,第三槽段5323与非薄弱区51的内边缘511的间距为g;沿第三槽段5323的长度方向,第三槽段5323与非薄弱区51的内边缘511的间距为g。
在一些实施例中,请参照图79,图79为本申请另一些实施例提供的电池盒的晶粒图(示意图)。电池盒21还包括过渡区57,过渡区57连接薄弱区52和非薄弱区51,过渡区57的平均晶粒尺寸为S 3,满足:S 3≤S 2
示例性的,S 3>S 1
过渡区57为电池盒21连接薄弱区52和非薄弱区51的部分,过渡区57环绕设置于薄弱区52的外侧,非薄弱区51环绕在过渡区57的外侧,薄弱区52、过渡区57和非薄弱区51一体成型。
过渡区57的平均晶粒尺寸可以从非薄弱区51到薄弱区52逐渐减小。示例性的,如图79所示,以槽部53包括一级沉槽533和一级刻痕槽532为例,过渡区57位于沉槽533的外侧区域的平均晶粒尺寸可以大于过渡区57位于沉槽533的底部区域的平均晶粒尺寸,过渡区57位于沉槽533的外侧区域的平均晶粒尺寸可以小于或等于非薄弱区51的平均晶粒尺寸S 2,过渡区57位于沉槽533的底部区域的平均晶粒尺寸可以大于薄弱区52的平均晶粒尺寸S 1
在本实施例中,过渡区57起到连接薄弱区52和非薄弱区51的作用,实现薄弱区52和非薄弱区51一体成型。
在一些实施例中,请参照图80和图81,图80为本申请一些实施例提供的端盖11的结构示意 图。电池盒21为端盖11,端盖11用于封闭壳体12的开口,壳体12用于容纳电极组件22。
可理解的,端盖11设置有槽部53,以对应形成薄弱区52和非薄弱区51。电池盒的第一侧面54和第二侧面55分别为端盖11在厚度方向上相对的两个表面,即第一侧面54和第二侧面55中的一者为端盖11在厚度方向上的内表面,另一者为端盖11在厚度方向上的外表面。
端盖11可以是圆形、矩形板状结构。
示例性的,在图80示出的实施例中,端盖11为矩形板状结构。
在本实施例中,端盖11具有泄压功能,保证电池单体20的安全性。
在一些实施例中,请参照图81和图82,图81为本申请一些实施例提供的壳体12的结构示意图;图82为本申请另一些实施例提供的壳体12的结构示意图。电池盒为壳体12,壳体12具有开口,壳体12用于容纳电极组件2。
在本实施例中,壳体12为电池盒,端盖11用于封闭壳体12的开口。壳体12可以是一端形成开口的空心结构,也可以是相对的两端形成开口的空心结构,壳体12和端盖11可以形成电池单体20的外壳1。壳体12可以是长方体、圆柱体等。
在本实施例中,电池盒21为壳体12,使得壳体12具有泄压功能,保证电池单体20的安全性。
在一些实施例中,壳体12包括一体成型的多个壁部121,多个壁部121共同限定出壳体12的内部空间,至少一个壁部121设置有槽部53。
在壳体12中,可以是一个壁部121上设置槽部53,以在该壁部121上对应形成一体成型的薄弱区52和非薄弱区51;也可以是多个壁部121上设置槽部53,以在设置槽部53的每个壁部121上形成一体成型的薄弱区52和非薄弱区51。对于设置有槽部53的壁部121而言,电池盒的第一侧面54和第二侧面55分别为壁部121在厚度方向上相对的两个表面,即第一侧面54和第二侧面55中的一者为壁部121在厚度方向上的内表面,另一者为壁部121在厚度方向上的外表面。
在本实施例中,多个壁部121一体成型,使得设置槽部53的壁部121具有更好的可靠性。
在一些实施例中,请继续参照图81和图82,多个壁部121包括底壁121b和围设于底壁121b的周围的多个侧壁121a,壳体12在与底壁121b相对的一端形成开口。底壁121b设置有槽部53;和/或,至少一个侧壁121a设置有槽部53。
在本实施例中,壳体12为一端形成开口的空心结构。壳体12中的侧壁121a可以是三个、四个、五个、六个或者更多。可以是一个、两个、三个、四个、五个、六个或者更多侧壁121a设置有槽部53。
示例性的,在图81中,仅一个侧壁121a设置有槽部53,以在该侧壁121a上对应形成薄弱区52和非薄弱区51;在图82中,仅第二腔壁30i1b设置有槽部53,以在底壁121b上对应形成薄弱区52和非薄弱区51。
在一些实施例中,请继续参照图81和图91,壳体12为长方体。可理解的,壳体12中的侧壁121a为四个。
长方体壳体12适用于方形电池单体,能够满足电池单体20的大容量要求。
在一些实施例中,电池盒21的材质包括铝合金。
铝合金的电池盒重量轻,具有很好的延展性,具有很好的塑性变形能力,易于成型。由于铝合金具有很好的延展性,在通过冲压的方式在电池盒上成型槽部53时,更容易将S 1/S 2控制在0.5以下(包括0.5),成型优率更高。
在一些实施例中,铝合金包括以下质量百分含量的成分:铝≥99.6%,铜≤0.05%,铁≤0.35%,镁≤0.03%,锰≤0.03%,硅≤0.25%,钛≤0.03%,钒≤0.05%,锌≤0.05%,其他单个元素≤0.03%。这种铝合金硬度更低,具有更好的成型能力,降低槽部53的成型难度,提高了槽部53的成型精度,提高了电池盒的泄压一致性。
在一些实施例中,铝合金包括以下质量百分含量的成分:铝≥96.7%,0.05%≤铜≤0.2%,铁≤0.7%,锰≤1.5%,硅≤0.6%,锌≤0.1%,其他单个元素成分≤0.05%,其他元素总成分≤0.15%。由这种铝合金制成的电池盒硬度更高,强度大,具有良好的抗破坏能力。
在一些实施例中,电池单体20还包括壳体12,壳体12具有开口,壳体12用于容纳电极组件22。电池盒21为端盖11,端盖11封闭开口。
在一些实施例中,电池盒21为壳体12,壳体12具有开口,壳体12用于容纳电极组件22。电池单体20还包括端盖11,端盖11封闭开口。
在一些实施例中,请参照图83,图83为本申请一些实施例提供的电池单体20的结构示意图,薄弱区52位于电池单体20的下部。
在电池单体20中,沿电池单体20的电池盒21的高度方向,电池单体20位于电池盒21的中平面Y以下的部分即为电池单体20的下部,其中,中平面Y垂直于电池盒21的高度方向,中平面Y到电池盒21在高度方向上的两端面的距离相等。比如,电池盒21包括壳体12和端盖11,端盖11封闭壳体12的开口。壳体12和端盖11沿电池盒21的高度方向排布,沿电池盒21的高度方向,中平面Y位于端盖11背离壳体12的外表面与壳体12背离端盖11的外表面的中间位置。
薄弱区52位于电池单体20的下部,则槽部53位于电池单体20的下部,薄弱区52和槽部53均位于中平面Y的下方。薄弱区52可以位于壳体12,薄弱区52也可以位于端盖11。薄弱区52可以位于壳体12的侧壁121a,也可以位于壳体12的底壁121b。如图71所示,以薄弱区52位于壳体12的侧壁121a为例,可以是壳体12的底壁121b位于端盖11的下方,薄弱区52位于中平面Y以下,使得薄弱区52到壳体12的底壁121b的距离大于薄弱区52到端盖11的距离。
由于薄弱区52位于电池单体20的下部,在电池100使用过程中,在电池单体20内部的电极组件2、电解液等的重力作用下,薄弱区52会受到较大的作用力,由于薄弱区52与非薄弱区51为一体成型结构,具有很好的结构强度,具有更好的可靠性,提高电池单体20的使用寿命。
在一些实施例中,电池单体20包括壳体12,壳体12用于容纳电极组件22,壳体12包括一体成型的底壁121b和围设于底壁121b的周围的多个侧壁121a,底壁121b与侧壁121a一体成型,壳体12在与底壁121b相对的一端形成开口,薄弱区52位于底壁121b。
可理解的,底壁121b位于中平面Y的下方。
在本实施例中,薄弱区52位于底壁121b,使得薄弱区52朝下设置,在电池单体20热失控时,薄弱区52被破坏后,电池单体20中的排放物将朝下喷出,降低发生安全事故的风险。比如,在车辆1000中,电池100一般安装于乘客舱的下方,薄弱区52朝下设置,使得电池单体20热失控排出的排放物向背离乘客舱的方向喷出,降低排放物对乘客舱的影响,降低发生安全事故的风险。
在一些实施例中,电池单体20包括端盖11,端盖11用于封闭壳体12的开口,壳体12用于容纳电极组件22,薄弱区52位于端盖11。
可理解的,端盖11位于中平面Y的下方。
在本实施例中,薄弱区52位于端盖11,使得薄弱区52朝下设置,在电池单体20热失控时,薄弱区52被破坏后,电池单体20中的排放物将朝下喷出,降低发生安全事故的风险。
在一些实施例中,本申请实施例提供一种端盖11,用于电池单体20,端盖11包括一体成型的非薄弱区51和薄弱区52。端盖11设置一级槽部53,非薄弱区51形成于槽部53的周围,薄弱区52形成于槽部53的底部,薄弱区52被配置为在电池单体20泄放内部压力时被破坏。具有背离电池单体20的内部的第一侧面54,槽部53在第一侧面54形成外边缘534,端盖11距离外边缘534以外的区域为非薄弱区51。薄弱区52的平均晶粒尺寸为S 1,非薄弱区51的平均晶粒尺寸为S 2,薄弱区52的最小厚度为A,非薄弱区51的最小厚度为B,薄弱区52的硬度为H 1,非薄弱区51的硬度为H 2,满足:0.1≤S 1/S 2≤0.5,5≤A/S 1≤20,190HBW/mm≤H 1/A≤4000HBW/mm,1<H 1/H 2≤2.5,0.2≤A/B≤0.5。
在一些实施例中,本申请实施例提供一种壳体12,用于电池单体20,壳体12包括一体成型的非薄弱区51和薄弱区52。壳体12设置一级槽部53,非薄弱区51形成于槽部53的周围,薄弱区52形成于槽部53的底部,薄弱区52被配置为在电池单体20泄放内部压力时被破坏。具有背离电池单体20的内部的第一侧面54,槽部53在第一侧面54形成外边缘534,端盖11距离外边缘534以外的区域为非薄弱区51。薄弱区52的平均晶粒尺寸为S 1,非薄弱区51的平均晶粒尺寸为S 2,薄弱区52的最小厚度为A,非薄弱区51的最小厚度为B,薄弱区52的硬度为H 1,非薄弱区51的硬度为H 2,满足:0.1≤S 1/S 2≤0.5,5≤A/S 1≤20,190HBW/mm≤H 1/A≤4000HBW/mm,1<H 1/H 2≤2.5,0.2≤A/B≤0.5。
以下结合实施例对本申请的特征和性能作进一步的详细描述。
在各实施例和对比例中,电池单体20为方形电池单体20,电池单体20中的端盖11作为电池盒,容量为150Ah,化学体系为NCM。
一、测试方法:
(1)薄弱区52和非薄弱区51的平均晶粒尺寸测试。
薄弱区52和非薄弱区51的平均晶粒尺寸测试采用电子背散射衍射(EBSD)法。将电池盒切开成3段,中间段两端的截面都有薄弱区52和非薄弱区51。切割方向与薄弱区52长度方向垂直,切割设备不改变晶粒结构。选择中间段进行取样,样品厚度尺寸小于5mm,长度小于10mm。然后将样品进行电解抛光后,将试样固定在倾斜70°的样品台上,选择合适的放大倍数,使用安装有电 子背散射衍射(EBSD)附件的扫描电子显微镜(SEM)进行EBSD扫描,根据扫描结果,最后计算出平均晶粒尺寸(即检验面内完整晶粒的等积圆直径)。
(2)薄弱区52和非薄弱区51的最小厚度测试。
将电池盒切开成3段,取中间段作为试样,试样两端的截面都有薄弱区52和非薄弱区51。切割方向与薄弱区52长度方向垂直。对中间段截面进行抛光充分去除毛刺后,将试样放置在三次元坐标量测仪,对截面上的薄弱区52和非薄弱区51进行厚度测量。
(3)薄弱区52和非薄弱区51的硬度测试。
将电池盒切开成3段,取中间段作为试样,试样两端的截面都有薄弱区52和非薄弱区51。切割方向与薄弱区52长度方向垂直,对试验截面进行抛光充分去除毛刺后,将试样水平放置(试样截面方向与硬度测量仪挤压方向平行)在布氏硬度测量仪上进行硬度测量。若薄弱区52宽度尺寸<1mm或布氏硬度测量仪的压头尺寸远大于薄弱区52宽度,应按照布氏硬度测量和换算原理,加工非标压头进行硬度测量。
(4)薄弱区52在电池单体20正常使用条件下的开裂率。
将电池100放置在25±2℃条件下,进行循环充放电,充放电区间5%-97%SOC,同时监控电池单体20内部产气气压,同时进行500组试验。试验截止条件为:电池单体20寿命下降至80%SOH或任意一组电池单体20在循环过程中薄弱区52开裂。其中,薄弱区52开裂判定条件为:电池单体20内部气压值下降,其下降值>最大气压的10%。统计薄弱区52的开裂率,开裂率=开裂数量/总数量*100%。
(5)电池单体20在热失控时的爆炸率。
在电池单体20内内置一个小型加热膜,给加热膜通电,给电池单体20加热,直至电池单体20发生热失控,观察电池单体20是否爆炸。重复进行500组试验,统计电池单体20的爆炸率,爆炸率=爆炸的数量/总数量*100%。
二、测试结果
在各实施例和对比例中,薄弱区52的平均晶粒尺寸S 1、非薄弱区51的平均晶粒尺寸S 2、薄弱区52的最小厚度A 1、非薄弱区51的最小厚度A 2、薄弱区52的硬度B 1、非薄弱区51的硬度B 2的测试结果如表11所示;薄弱区52在电池单体20正常使用条件下的开裂率Q 1和电池单体20在热失控时的爆炸率Q 2如表12所示。
表11
Figure PCTCN2023070129-appb-000001
Figure PCTCN2023070129-appb-000002
Figure PCTCN2023070129-appb-000003
表12
Figure PCTCN2023070129-appb-000004
Figure PCTCN2023070129-appb-000005
结合表11和表12,根据实施例1~7可知,在S 1/S 2≤0.9时,薄弱区52在电池单体20正常使用条件下开裂率较低。在对比例1中,0.9<S 1/S 2<1,薄弱区52在电池单体20正常使用条件下开裂率明显升高;在对比例2中,S 1/S 2=1,薄弱区52在电池单体20正常使用条件下开裂率明显升高;在对比例3中,S 1/S 2>1,薄弱区52在电池单体20正常使用条件下开裂率也明显升高。比较实施例1~7和对比例1~3可知,将S 1/S 2控制在不超过0.9,能够有效降低薄弱区52在电池单体20正常使用条件下被破坏的风险,从而提高电池单体20的使用寿命。
根据实施例7可知,当S 1/S 2<0.5时,薄弱区52在电池单体20热失控时被破坏的难度增大,泄压不及时,电池单体20发生爆炸的风险明显增大。从实施例3~5可以看出,当0.1≤S 1/S 2≤0.5时,薄弱区52在电池单体20正常使用条件下的开裂率以及电池单体20在热失控时的爆炸率均较低,保证薄弱区52在电池单体20热失控时能够及时被破坏的情况下,保证薄弱区52在电池单体20正常使用条件下具有足够的强度。
从实施例9~12与实施例8比较可以看出,当1≤A 1/S 1≤100时,电池单体20在热失控时能够及时泄压,电池单体20爆炸率较低。当5≤A 1/S 1≤20时,电池单体20的综合性能更优,薄弱区52在电池单体20正常使用条件下的开裂率以及电池单体20在热失控时的爆炸率均较低。
从实施例14~17与实施例13比较可以看出,当B 1/A 1>10000HBW/mm时,薄弱区52在电池单体20正常使用条件下的开裂率较高,比较实施例14~17和实施例18可知,当B 1/A 1<5HBW/mm时,电池单体20在热失控时的爆炸率较高。而5HBW/mm≤B 1/A 1≤10000HBW/mm,既能够降低薄弱区52在电池单体20正常使用条件下破裂的风险,又能够在电池单体20热失控时通过薄弱区52及时泄压,降低电池单体20发生爆炸的风险。从实施例15~16可以看出,当190HBW/mm≤B 1/A 1≤4000HBW/mm时,电池单体20的综合性能更优,薄弱区52在电池单体20正常使用条件下的开裂率以及电池单体20在热失控时的爆炸率均较低。
从实施例19~21与实施例22~23比较可以看出,当B 1/B 2≤1时,薄弱区52在电池单体20正常使用条件下的开裂率较高。而B 1/B 2>1能够有效降低薄弱区52在电池单体20正常使用条件下的开裂率。比较实施例20~21和实施例19可知,当B 1/B 2>5时,电池单体20在热失控时的爆炸率较高。而B 1/B 2≤5能够降低电池单体20发生爆炸的风险。
从实施例25~30与实施例24比较可以看出,当A 1/A 2>0.95时,电池单体20在热失控时的爆炸率较高。比较实施例25~30和实施例31可知,当A 1/A 2<0.05时,薄弱区52在电池单体20正常使用条件下的开裂率较高。而0.05≤A 1/A 2≤0.95,既能够降低薄弱区52在电池单体20正常使用条件下破裂的风险,又能够在电池单体20热失控时通过薄弱区52及时泄压,降低电池单体20发生爆炸的风险。从实施例26~29可以看出,当0.12≤A 1/A 2≤0.8时,电池单体20的综合性能更优,薄弱区52在电池单体20正常使用条件下的开裂率以及电池单体20在热失控时的爆炸率均较低, 0.2≤A 1/A 2≤0.5,效果更优。
在一些实施例中,如图4、图84-图94所示,电极组件22包括正极片1B和负极片2B,正极片1B和/或负极片2B包括集流体22A和活性物质层22B,集流体22A包括支撑层22A1和导电层22A2,支撑层22A1用于承载导电层22A2,支撑层22A1具有适当的刚性,以对导电层22A2起到支撑和保护的作用,确保集流体22A的整体强度,同时具有适当的柔性以使集流体22A及极片能够在加工过程中进行卷绕;导电层22A2用于承载活性物质层22B,用于为活性物质层22B提供电子,即起到导电和集流的作用。
其中,由于支撑层22A1的密度较导电层22A2的密度低,使得本申请的集流体22A较传统集流体的重量显著减轻,因此采用本申请的集流体22A,能够显著提高电化学装置的重量能量密度。
可选地,支撑层22A1为绝缘层。
在一些实施例中,如图84-图94所示,沿支撑层的厚度方向,导电层设置于支撑层的至少一侧,可在支撑层的相对的两个表面上均设置有导电层,其结构示意图如图84和图86所示;也可在仅支撑层的一面上设置有导电层,其结构示意图如图85和图87所示。由此,便于实现导电层的灵活设置。
在一些实施例中,导电层22A2的常温薄膜电阻R S满足:0.016Ω/□≤R S≤420Ω/□。
其中,薄膜电阻用欧姆/平方(Ω/□来计量,可被应用于将导电体考虑为一个二维实体的二维系统,其与三维系统下所用的电阻率的概念对等。当使用到薄膜电阻这一概念的时候,电流理论上假设为沿着薄膜的平面流动。
对于常规三维导体,电阻的计算公式为:
Figure PCTCN2023070129-appb-000006
其中,ρ代表电阻率,A代表截面面积,L代表长度。截面面积可被分解为宽度W和薄膜厚度t,即,电阻可被记为:
Figure PCTCN2023070129-appb-000007
其中,R S即为薄膜电阻。当膜片为正方形形状,L=W,所测得的电阻R即为膜片的薄膜电阻R S,而且R S与L或W的大小无关,R S是单位正方形的电阻值,因此R S的单位可以表示为欧姆每平方(Ω/□。
本申请的常温薄膜电阻是指在常温条件下对导电层采用四探针法测量得到的电阻值。
在现有的锂离子电池单体中,当在异常情况下发生电池单体内短路时,瞬间产生大电流,并伴随着大量的短路产热,这些热量通常还会引发正极铝箔集流体处的铝热反应,进而使电池单体发生着火、爆炸等。
而在本申请中,通过提高集流体的常温薄膜电阻R S来解决上述技术问题。
电池单体的内阻通常包括电池欧姆内阻和电池极化内阻,其中活性物质电阻、集流体电阻、界面电阻、电解液组成等均会对电池单体内阻产生较明显的影响。
在异常情况下发生短路时,由于发生内短路,电池单体的内阻会大大降低。因此增大集流体的电阻,可增大电池单体短路后的内阻,由此改善电池单体的安全性能。在本申请中,当电池单体可将短路损坏对电池单体的影响局限于“点”范围,即可将短路损坏对电池单体的影响局限于损坏点位处,且由于集流体的高电阻使得短路电流大幅度减小,短路产热使电池单体的温升不明显,不影响电池单体在短时间内正常使用的特点,称为“点断路”。
当导电层的常温薄膜电阻R S不小于0.016Ω/□时,可以使电池单体在发生内短路的情况下,短路电流大幅减小,因此可极大地降低短路产热量,极大地改善电池单体的安全性能;此外,还可将短路产热量控制在电池单体可以完全吸收的范围,因此在发生内短路的位点处产生的热量可以被电池单体完全吸收,对电池单体造成的温升也很小,从而可以将短路损坏对电池单体的影响局限于“点”范围,仅形成“点断路”,而不影响电池单体在短时间内的正常工作。
然而,当导电层的常温薄膜电阻R S太大时,会影响导电层的导电和集流的作用,电子无法在集流体、电极活性材料层以及两者的界面之间进行有效地传导,即会增大导电层表面的电极活性材料层的极化,影响电池单体的电化学性能。因此导电层的常温薄膜电阻R S满足不大于420Ω/□。
在本申请中,常温薄膜电阻R S的上限可为420Ω/□、400Ω/□、350Ω/□、300Ω/□、250Ω/□、200Ω/□、150Ω/□、100Ω/□、80Ω/□、60Ω/□、40Ω/□、25Ω/□、20Ω/□、18Ω/□、16Ω/□、14Ω/□、12Ω/□、10Ω/□、8Ω/□、6Ω/□、4Ω/□、2Ω/□、1.8Ω/□,常温薄膜电阻R S的下限可为0.016Ω/□、0.032Ω/□、0.048Ω/□、0.064Ω/□、0.08Ω/□、0.09Ω/□、0.1Ω/□、0.2Ω/□、0.4Ω/□、0.6Ω/□、0.8Ω/□、1Ω/□、1.2Ω/□、1.4Ω/□、1.6Ω/□;常温薄膜电阻R S的范围可由上限或下限的任意数值组成。
在一些实施例中,导电层22A2的常温薄膜电阻满足:0.032Ω/□≤R S≤21Ω/□,更优选地0.080Ω/□≤R S≤8.4Ω/□。
在一些实施例中,导电层22A2的厚度d2满足:1nm≤d2≤1μm。
在本申请中,导电层22A2的厚度d2的上限可为1μm、900nm、800nm、700nm、600nm、500nm、450nm、400nm、350nm、300、250nm、200nm、150nm、120nm、100nm、80nm、60nm,导电层的厚度d2的下限可为1nm、5nm、10nm、15nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm、55nm;导电层的厚度d2的范围可由上限或下限的任意数值组成。
在一些实施例中,导电层22A2的厚度d2满足:20nm≤d2≤500nm,更优选地50nm≤d2≤200nm。
若导电层22A2太薄的话,虽然有益于增大集流体22A的常温薄膜电阻R S,然而却易在极片加工工艺等过程中发生破损;若导电层22A2太厚的话,则会影响电池单体的重量能量密度,且会不利于增大导电层22A2的常温薄膜电阻R S
在一些实施例中,支撑层22A1的厚度为d1,d1满足1μm≤d1≤50μm。
在本申请中,支撑层22A1的厚度d1的上限可为50μm、45μm、40μm、35μm、30μm、25μm、20μm、15μm、12μm、10μm、8μm,支撑层22A1的厚度d1的下限可为1μm、1.5μm、2μm、3μm、4μm、5μm、6μm、7μm;支撑层22A1的厚度d1的范围可由上限或下限的任意数值组成。
在一些实施例中,d1满足:2μm≤d1≤30μm;更优选地,5μm≤d1≤20μm。
支撑层22A1主要起到支撑和保护导电层的作用。若支撑层22A1太薄的话,很容易在极片加工工艺等过程中发生断裂;太厚的话,则会降低使用该集流体22A的电池单体的体积能量密度。
在一些实施例中,导电层22A2的材料选自金属导电材料、碳基导电材料中的至少一种。
其中,金属导电材料优选铝、铜、镍、钛、银、镍铜合金、铝锆合金中的至少一种;碳基导电材料优选石墨、乙炔黑、石墨烯、碳纳米管中的至少一种。
在一些实施例中,支撑层22A1的材料包括高分子材料及高分子基复合材料中的一种或多种。
上述高分子材料,例如是聚酰胺基聚合物、聚酰亚胺基聚合物、聚酯基聚合物、聚烯烃基聚合物、聚炔烃基聚合物、硅氧烷聚合物、聚醚、聚醇、聚砜、多糖类聚合物、氨基酸类聚合物、聚氮化硫类高分子材料、芳环聚合物、芳杂环聚合物、聚苯硫醚、聚砜类、环氧树脂、酚醛树脂、它们的衍生物、它们的交联物及它们的共聚物中的一种或多种。
作为示例,聚酰胺基聚合物可以是聚酰胺(Polyamide,简称PA,俗称尼龙)及聚对苯二甲酰对苯二胺(PPTA,俗称芳纶)中的一种或多种;聚酰亚胺基聚合物可以是聚酰亚胺(PI);聚酯基聚合物可以是聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚萘二甲酸乙二醇酯(PEN)及聚碳酸酯(PC)中的一种或多种;聚烯烃基聚合物可以是聚乙烯(PE)、聚丙烯(PP)及聚丙乙烯(PPE)中的一种或多种;聚烯烃基聚合物的衍生物可以是聚乙烯醇(PVA)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTEE)及聚苯乙烯磺酸钠(PSS)中的一种或多种;聚炔烃基聚合物可以是聚乙炔(Polyacetylene,简称PA);硅氧烷聚合物可以是硅橡胶(Silicone rubber);聚醚例如可以是聚甲醛(POM)、聚苯醚(PPO)及聚苯硫醚(PPS)中的一种或多种;聚醇可以是聚乙二醇(PEG);多糖类聚合物例如可以是纤维素及淀粉中的一种或多种;氨基酸类聚合物可以是蛋白质;芳环聚合物可以是聚苯及聚对苯撑中的一种或多种;芳杂环聚合物可以是聚吡咯(Ppy)、聚苯胺(PAN)、聚噻吩(PT)及聚吡啶(PPY)中的一种或多种;聚烯烃基聚合物及其衍生物的共聚物可以是丙烯腈-丁二烯-苯乙烯共聚物(ABS)。
另外,上述高分子材料还可以采用氧化还原、离子化或电化学等手段进行掺杂处理。
上述高分子基复合材料可以是由上述的高分子材料和添加剂复合而成,其中添加剂可以是金属材料及无机非金属材料中的一种或多种。
作为示例,金属材料可以是铝、铝合金、铜、铜合金、镍、镍合金、钛、钛合金、铁、铁合金、银及银合金中的一种或多种;无机非金属材料可以是碳基材料、氧化铝、二氧化硅、氮化硅、碳化硅、氮化硼、硅酸盐及氧化钛中的一种或多种,如玻璃材料、陶瓷材料及陶瓷复合材料中的一种或多种。前述碳基材料可以是石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或多种。
上述添加剂可以是金属材料包覆的碳基材料,例如镍包覆的石墨粉及镍包覆的碳纤维中的一种或多种。
在一些优选的实施例中,支撑层包括聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯 (PBT)、聚萘二甲酸乙二醇酯(PEN)及聚酰亚胺(PI)中的一种或多种。
可以理解的是,支撑层可以是单层结构,也可以是由两层以上的子支撑层形成的复合层结构,如两层、三层、四层等。当支撑层是由两层以上的子支撑层形成的复合层结构时,各层的材料可以相同,也可以不同。
在一些实施例中,支撑层的材料选自有机聚合物绝缘材料、无机绝缘材料、复合材料中的一种。进一步优选地,复合材料由有机聚合物绝缘材料和无机绝缘材料组成。
在一些实施例中,有机聚合物绝缘材料选自聚酰胺(Polyamide,简称PA)、聚对苯二甲酸酯(Polyethylene terephthalate,简称PET)、聚酰亚胺(Polyimide,简称PI)、聚乙烯(Polyethylene,简称PE)、聚丙烯(Polypropylene,简称PP)、聚苯乙烯(Polystyrene,简称PS)、聚氯乙烯(Polyvinyl chloride,简称PVC)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile butadiene styrene copolymers,简称ABS)、聚对苯二甲酸丁二醇酯(Polybutylene terephthalat,简称PBT)、聚对苯二甲酰对苯二胺(Poly-p-phenylene terephthamide,简称PPA)、环氧树脂(epoxy resin)、聚丙乙烯(polyphenylene ether,简称PPE)、聚甲醛(Polyformaldehyde,简称POM)、酚醛树脂(Phenol-formaldehyde resin)、聚四氟乙烯(Polytetrafluoroethylene,简称PTFE)、硅橡胶(Silicone rubber)、聚偏氟乙烯(Polyvinylidenefluoride,简称PVDF)、聚碳酸酯(Polycarbonate,简称PC)中的至少一种。
无机绝缘材料优选氧化铝(Al2O3)、碳化硅(SiC)、二氧化硅(SiO2)中的至少一种;复合物优选环氧树脂玻璃纤维增强复合材料、聚酯树脂玻璃纤维增强复合材料中的至少一种。
由于支撑层的密度通常较金属小,因此本申请实施例在提升电池单体安全性能的同时,还可以提升电池单体的重量能量密度。并且由于支撑层可以对位于其表面的导电层起到良好的承载和保护作用,因而不易产生传统集流体中常见的极片断裂现象。
在一些实施例中,导电层可通过机械辊轧、粘结、气相沉积法(vapor deposition)、化学镀(Electroless plating)中的至少一种形成于绝缘层上,气相沉积法优选物理气相沉积法(Physical Vapor Deposition,PVD);物理气相沉积法优选蒸发法、溅射法中的至少一种;蒸发法优选真空蒸镀法(vacuum evaporating)、热蒸发法(Thermal Evaporation Deposition)、电子束蒸发法(electron beam evaporation method,EBEM)中的至少一种,溅射法优选磁控溅射法(Magnetron sputtering)。
在一些实施例中,为了有利于电解液渗透入电极活性材料层中,减小电池单体的极化,可对集流体的结构做进一步的改进,例如,可在导电层内设置孔,10μm≤孔的直径≤100μm,孔的面积占导电层的总面积的比例可为5%~50%;或者在集流体内设置贯穿支撑层和导电层的通孔,10μm≤通孔的直径≤100μm,集流体的孔隙率可为5%~50%。
具体地,例如可采用化学镀的方法在导电层中形成孔,可以采用机械打孔法在集流体中形成贯穿支撑层和导电层的通孔。
在一些实施例中,正极片1B包括集流体(或称正极集流体10B)和形成于集流体表面的活性物 质层(或称正极活性物质层11B),正极集流体10包括正极支撑层101和正极导电层102。其中,正极集流体10B结构示意图如图84和图85所示,正极片1B结构示意图如图88和图89所示。
在一些实施例中,负极片2B包括集流体(或称负极集流体20B)和形成于集流体表面的活性物质层(或称负极活性物质层21B),负极集流体20B包括负极支撑层201和负极导电层202。其中,负极集流体20B结构示意图如图154和图155所示,负极片2B结构示意图如图90和图91所示。
在一些实施例中,如图84和图86所示,当支撑层的双面分别设置有导电层,集流体双面涂覆活性物质,制备得到的极片如图88和图89所示,可直接应用于电池单体中。如图85和图87所示,当绝缘层的单面设置有导电层时,集流体单面涂覆活性物质,制备得到的极片如图图89和图91所示,可折叠后应用于电池单体中。
优选地,本申请的电池单体的正极片采用上述包括集流体和活性物质层的设置。因为常规正极集流体中的铝含量高,在电池单体异常情况下发生短路时,短路点处产生的热量可以引发剧烈的铝热反应,从而产生大量的热并引起电池单体发生爆炸等事故,所以当电池单体的正极片采用上述结构时,由于正极集流体中铝的量仅为纳米级的厚度,因此大大减少了正极集流体中铝的量,因此可以避免产生铝热反应,从而显著改善电池单体的安全性能。
下面采用穿钉实验来模拟电池单体的异常情况,并观察穿钉后电池单体的变化。图92为本申请一次穿钉实验示意图。为了简单起见,图中仅仅示出了钉子4B穿透电池的一层正极片1B、一层隔膜3B和一层负极片2B,需要说明的是,实际的穿钉实验是钉子4B穿透整个电池单体,通常包括多层正极片1B、多层隔膜3B和多层负极片2B。
此外,通过大量的实验发现,电池单体的容量越大,则电池单体的内阻越小,则电池单体的安全性能就越差,即电池单体容量(Cap)与电池内阻
Figure PCTCN2023070129-appb-000008
呈反比关系:
r=A/Cap
式中r表示电池的内阻,Cap表示电池单体的容量,A为系数。
电池单体容量Cap为电池单体的理论容量,通常为电池单体正极片的理论容量。
R可以通过内阻仪测试得到。
对于由常规正极片和常规负极片组成的常规锂离子电池单体来说,由于在异常情况下发生内短路时,基本所有的常规锂离子电池单体均会发生不同程度的冒烟、起火、爆炸等。
而对于本申请实施例中采用包括集流体和活性物质层的极片的电池单体来说,由于在电池单体容量相同的情况下,具有比较大的电池内阻,因此可以具有较大的A值。
对于本申请实施例中采用包括集流体和活性物质层的极片的电池单体来说,当系数A满足40Ah·mΩ≤A≤2000Ah·mΩ时,电池单体可以兼具良好的电化学性能和良好的安全性能。
当A值太大时,电池单体由于内阻过大,电化学性能会劣化,因此没有实用性。
当A值太小时,电池单体发生内短路时温升过高,电池单体安全性能降低。
进一步优选地,系数A满足40Ah·mΩ≤A≤1000Ah·mΩ;更优选地,系数A满足60Ah·mΩ≤A≤600Ah·mΩ。
本申请实施例中采用包括集流体和活性物质层的极片的电池单体还涉及:集流体在制备受到引发短路的异常情况时仅形成点断路以自身保护的电池单体中的应用。在本申请实施例中,当电池单体可将短路损坏对电池单体的影响局限于“点”范围,不影响电池单体在短时间内正常使用的特点,称为“点断路”。
另一方面,本申请实施例还涉及该集流体作为受到引发短路的异常情况时仅形成点断路的电池单体的集流体的用途。
优选地,引发短路的异常情况包括撞击、挤压、异物刺入等,由于在这些损伤过程中引发短路的均由具备一定导电性的材料将正负极电连接而引发,因此在本申请实施例中将这些异常情况统称为穿钉。并在本申请具体实施方式中通过穿钉实验来模拟电池单体的异常情况。
实施例
1、集流体的制备:
选取一定厚度的支撑层例如绝缘层,在其表面通过真空蒸镀、机械辊轧或粘结的方式形成一定厚度的导电层,并对导电层的常温薄膜电阻进行测定。
其中,
(1)真空蒸镀方式的形成条件如下:将经过表面清洁处理的绝缘层置于真空镀室内,以1600℃至2000℃的高温将金属蒸发室内的高纯金属丝熔化蒸发,蒸发后的金属经过真空镀室内的冷却系统,最后沉积于绝缘层的表面,形成导电层。
(2)机械辊轧方式的形成条件如下:将导电层材料的箔片置于机械辊中,通过施加20t至40t的压力将其碾压为预定的厚度,然后将其置于经过表面清洁处理的绝缘层的表面,最后将两者置于机械辊中,通过施加30t至50t的压力使两者紧密结合。
(3)粘结方式的形成条件如下:将导电层材料的箔片置于机械辊中,通过施加20t至40t的压力将其碾压为预定的厚度;然后在经过表面清洁处理的绝缘层的表面涂布PVDF与NMP的混合溶液;最后将上述预定厚度的导电层粘结于绝缘层的表面,并于100℃下烘干。
(4)常温薄膜电阻测定方法为:
使用RTS-9型双电测四探针测试仪,测试环境为:常温23±2℃,相对湿度≤65%。
测试时,将待测材料进行表面清洁,然后水平置于测试台上,将四探针放下,使探针与待测材料表面有良好接触,然后调节自动测试模式标定材料的电流量程,在合适的电流量程下进行薄膜方阻测量,并采集相同样品的8至10个数据点作为数据测量准确性和误差分析。
本申请实施例的集流体及其极片具体参数如表13所示,对比例集流体及其极片具体参数如表14所示。
2、极片的制备:
通过常规的电池涂布工艺,在集流体的表面涂布正极浆料或负极浆料,100℃干燥后得到正极片或负极片。
常规正极片:集流体是厚度为12μm的Al箔片,电极活性物质层是一定厚度的三元(NCM)材料 层。
常规负极片:集流体是厚度为8μm的Cu箔片,电极活性物质层是一定厚度的石墨材料层。
本申请实施例的集流体及其极片具体参数如表13所示,对比例集流体及其极片具体参数如表14所示。
3、电池单体的制备:
通过常规的电池单体制作工艺,将正极片(压实密度:3.4g/cm3)、PP/PE/PP隔膜和负极片(压实密度:1.6g/cm3)一起卷绕成裸电芯,然后置入电池壳体中,注入电解液(EC:EMC体积比为3:7,LiPF6为1mol/L),随之进行密封、化成等工序,最终得到锂离子电池单体。
本申请的实施例制作的锂离子电池单体以及对比例锂离子电池单体的具体组成如表15所示。
表13
Figure PCTCN2023070129-appb-000009
表14
Figure PCTCN2023070129-appb-000010
表15
Figure PCTCN2023070129-appb-000011
Figure PCTCN2023070129-appb-000012
其中,通过进一步增加电芯的卷绕层数,制备容量得到进一步提高的锂离子电池单体14 #和锂离子电池单体15 #
实验例:
1、电池单体测试方法:
对锂离子电池单体进行循环寿命测试,具体测试方法如下:
将锂离子电池单体1 #与锂离子电池单体4 #分别于25℃和45℃两种温度下进行充放电,即先以1C的电流充电至4.2V,然后再以1C的电流放电至2.8V,记录下第一周的放电容量;然后使电池单体进行1C/1C充放电循环1000周,记录第1000周的电池单体放电容量,将第1000周的放电容量除以第一周的放电容量,得到第1000周的容量保有率。
实验结果如表16所示。
2、电池内阻的测试
使用内阻仪(型号为HIOKI-BT3562)进行测试,测试环境为:常温23±2℃。测试前,将内阻仪正负极两端短接校准电阻为零;测试时,将待测锂离子电池单体进行正负极极耳清洁,然后将内阻仪正负极测试端分别连接到锂离子电池单体的正负极极耳,进行测试并记录。并根据公式r=A/Cap计算系数A。
3、一次穿钉实验和六次连续穿钉实验的实验方法和测试方法:
(1)一次穿钉实验:电池单体满充后,固定,在常温下将直径为8mm的钢针,以25mm/s的速度贯穿电池单体,将钢针保留于电池单体中,穿钉完毕,然后观察和测试。
(2)六次穿钉实验:电池单体满充后,固定,在常温下将六根直径为8mm的钢针,以25mm/s的速度先后迅速地贯穿电池单体,将钢针保留于电池单体中,穿钉完毕,然后进行观察和测试。
(3)电池单体温度的测试:使用多路测温仪,分别于待穿钉的电池单体的针刺面和背面的几何中心附上感温线,待穿钉完毕后,进行五分钟的电池单体温度跟踪测试,然后记录下五分钟时的电池单体的温度。
(4)电池单体电压的测试:将待穿钉的电池单体的正极和负极连接至内阻仪的测量端,待穿钉完毕后,进行五分钟的电池单体电压跟踪测试,然后记录下五分钟时的电池单体的电压。
记录的电池单体的温度和电压的数据如表17所示。
表16
Figure PCTCN2023070129-appb-000013
表17
Figure PCTCN2023070129-appb-000014
注:“N/A”表示一根钢针贯穿入电池单体瞬间发生热失控和毁坏。
表18
Figure PCTCN2023070129-appb-000015
其中,锂离子电池单体1 #和锂离子电池单体4 #的电池单体温度随时间的变化曲线如图93所示, 电压随时间的变化曲线如图94所示。
根据表16中的结果来看,与采用常规的正极片和常规的负极片的锂离子电池单体1 #相比,采用本申请实施例集流体的锂离子电池单体4 #的循环寿命良好,与常规的电池单体的循环性能相当。这说明本申请实施例的集流体并不会对制得的极片和电池单体有任何明显的不利影响。
此外,本申请实施例的集流体可以大大改善锂离子电池单体的安全性能。从表17以及图93和图94中的结果来看,未采用本申请实施例的集流体的锂离子电池单体1 #、6 #、11 #,在穿钉的瞬间,电池单体温度骤升几百度,电压骤降至零,这说明在穿钉的瞬间,电池单体发生内短路,产生大量的热,电池单体瞬间发生热失控和毁坏,无法继续工作;而且由于在第一根钢针穿入电池单体之后的瞬间,电池单体就发生了热失控和毁坏,因此无法对这类电池单体进行六根钢针连续穿钉实验。
而采用了本申请实施例集流体的锂离子电池单体2 #~5 #、7 #~10 #、12 #和13 #,无论对其进行一次穿钉实验还是六次连续穿钉实验,电池单体温升基本都可以被控制在10℃左右或10℃以下,电压基本保持稳定,电芯可以正常工作。
表18中的数据表明,未采用本申请实施例的集流体的锂离子电池单体6 #和锂离子电池单体11#,系数A较小。而采用了本申请实施例集流体的锂离子电池单体4 #、5 #、14 #~15 #的系数A越大。从而证实了系数A越大,则电池单体在异常情况下发生内短路时,温升越小,则电池单体的安全性能越好。
可见,在电池单体发生内短路的情况下,本申请实施例的集流体可极大地降低短路产热量,从而改善电池单体的安全性能;此外,还可将短路损坏对电池单体的影响局限于“点”范围,仅形成“点断路”,而不影响电池单体在短时间内的正常工作。
进一步地,支撑层的透光率k满足:0%≤k≤98%。
在一些实施例中,对于集流体包括支撑层和导电层,集流体对激光能量具有较高的吸收率,从而实现集流体以及采用该集流体的电极极片及电化学装置在激光切割处理时较高的可加工性能及加工效率,特别地,其在低功率激光切割处理时具有较高的可加工性能及加工效率。前述激光切割处理时的激光功率例如是小于等于100W。
优选地,支撑层的透光率k满足0≤k≤95%,更好地提高集流体以及采用该集流体的极片及电化学装置在激光切割处理时的可加工性能及加工效率,特别地,提高在低功率激光切割处理时的可加工性能及加工效率。更优选地,支撑层的透光率k满足15%≤k≤90%。
在一些实施例中,支撑层中含有着色剂。通过在支撑层中添加着色剂,并调控着色剂的含量,可以调节支撑层的透光率。
着色剂可以使得支撑层显示一定程度的黑色、蓝色或红色,但并不限于此,例如还可以是使得支撑层显示一定程度的黄色、绿色或紫色等。
着色剂可以是无机颜料及有机颜料中的一种或多种。
无机颜料例如是炭黑、钴蓝、群青、氧化铁、镉红、铬橙、钼橙、镉黄、铬黄、镍钛黄、钛白、锌钡白及锌白中的一种或多种。
有机颜料可以是酞菁类颜料、偶氮类颜料、蒽醌类颜料、靛类颜料及金属络合颜料中的一种或多种。作为示例,有机颜料可以为塑料红GR、塑料紫RL、耐晒黄G、永固黄、橡胶大红LC、酞菁蓝及酞菁绿中的一种或多种。
在一些实施例中,支撑层的厚度d1优选为1μm≤d1≤30μm,有利于提高集流体在激光切割处理时的可加工性能及加工效率,特别地,提高集流体在低功率激光切割处理时的可加工性能及加工效率。同时保证支撑层的机械强度,防止支撑层在集流体、电极极片及电化学装置的加工过程中发生断裂,并确保电化学装置具有较高的重量能量密度。
其中,支撑层的厚度d1的上限可以为30μm、25μm、20μm、15μm、12μm、10μm、8μm,下限可以为1μm、1.5μm、2μm、3μm、4μm、5μm、6μm、7μm;支撑层的厚度d1的范围可以由任意上限和任意下限组成。优选地,支撑层的厚度d1为1μm≤d1≤20μm;进一步优选为2μm≤d1≤15μm;更优选为3μm≤d1≤12μm。
在一些实施例中,支撑层的厚度d1与支撑层的透光率k满足:
当12μm≤d1≤30μm时,30%≤k≤80%;和/或,
当8μm≤d1<12μm时,40%≤k≤90%;和/或,
当1μm≤d1<8μm时,50%≤k≤98%。
支撑层的厚度与透光率满足上述关系,使激光照射支撑层时,支撑层能够尽可能多地吸收激光能量,使得集流体在激光切割处理时具有较高的可加工性能及加工效率,特别地,使得集流体在低功率激光切割处理时具有较高的可加工性能及加工效率,避免发生胶连。支撑层的厚度与透光率满足上述关系,还有利于使支撑层具有合适的机械强度,防止支撑层在集流体、电极极片及电化学装置的加工过程中发生断裂。
优选地,支撑层MD方向(Mechine Direction,机械方向)的拉伸强度大于等于100Mpa,进一步优选为100Mpa~400Mpa。
支撑层MD方向的拉伸强度可以采用本领域已知的设备和方法进行测试,例如根据DIN53455-6-5测量标准,使用拉力强度测试仪,优选采用日本ALGOL拉力测试头,测试支撑层MD方向断裂时所受的最大拉伸应力,支撑层MD方向断裂时所受的最大拉伸应力与支撑层横截面积的比值即为支撑层MD方向的拉伸强度。
可以通过调整高分子材料的化学组成、分子量及分布、链结构和链构筑、聚集态结构、相结构等,使支撑层具有上述的拉伸强度。
在一些实施例中,导电层的导电材料可以是金属材料、碳基导电材料及导电高分子材料中的一种或多种。
作为示例,上述金属材料可以为铝、铝合金、铜、铜合金、镍、镍合金、铁、铁合金、钛、钛合金、银及银合金中的一种或多种,优选为铝、铜、镍、铁、钛、银、镍铜合金及铝锆合金中的一种或多种。
导电层采用金属材料时,可以是通过机械辊轧、粘结、气相沉积法(vapor deposition)及化学 镀(Electroless plating)中的至少一种手段形成于支撑层上,其中气相沉积法优选物理气相沉积法(Physical Vapor Deposition,PVD);物理气相沉积法优选蒸发法及溅射法中的至少一种;蒸发法优选真空蒸镀法(vacuum evaporating)、热蒸发法(ThermalEvaporation Deposition)及电子束蒸发法(electron beam evaporationmethod,EBEM)中的至少一种,溅射法优选磁控溅射法(Magnetronsputtering)。
优选地,金属材料的导电层可以通过气相沉积法及化学镀中的至少一种手段形成于支撑层上,以使得支撑层与导电层之间的结合更牢固。
作为一个示例,上述通过机械辊轧形成导电层的条件如下:将金属箔片置于机械辊中,通过施加20t~40t的压力将其碾压为预定的厚度,将其置于经过表面清洁处理的支撑层的表面,然后将两者置于机械辊中,通过施加30t~50t的压力使两者紧密结合。
作为另一个示例,上述通过粘结形成导电层的条件如下:将金属箔片置于机械辊中,通过施加20t~40t的压力将其碾压为预定的厚度;然后在经过表面清洁处理的支撑层的表面涂布聚偏氟乙烯(PVDF)与N-甲基吡咯烷酮(NMP)的混合溶液;最后将上述预定厚度的导电层粘结于支撑层的表面,并于100℃下烘干。
作为再一个示例,上述通过真空蒸镀法形成导电层的条件如下:将经过表面清洁处理的支撑层置于真空镀室内,以1300℃~2000℃的高温将金属蒸发室内的高纯金属丝熔化蒸发,蒸发后的金属经过真空镀室内的冷却系统,最后沉积于支撑层的表面,形成导电层。
上述碳基导电材料,例如是石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或多种。
导电层采用碳基导电材料时,可以通过机械辊轧、粘结、气相沉积法(vapor deposition)、原位形成法及涂布法中的至少一种手段形成于支撑层上。
上述导电高分子材料,例如是聚氮化硫类、脂肪族共轭聚合物、芳环共轭聚合物及芳杂环共轭聚合物中的一种或多种。脂肪族共轭聚合物例如是聚乙炔;芳环共轭聚合物例如是聚对苯撑、聚苯及聚萘中的一种或多种;芳杂环共轭聚合物例如是聚吡咯、聚乙炔、聚苯胺、聚噻吩及聚吡啶中的一种或多种。还可以通过掺杂使电子离域性增大,提高电导率,有利于进一步提高电化学装置的倍率性能。
导电层采用导电高分子材料时,可以通过机械辊轧、粘结、原位形成法及涂布法中的至少一种手段形成于支撑层上。
导电层优选采用金属材料,例如金属箔材、涂炭金属箔材或多孔金属板。
支撑层的设置能够使得本申请的集流体中导电层的厚度较传统的金属集流体显著降低,导电层的厚度d2优选为30nm≤d2≤3μm。导电层的厚度降低,能够减小集流体、电极极片及电化学装置的重量,提高电化学装置的重量能量密度,并且由于导电层的厚度降低,在被尖锐物体刺破电池单体等异常情况下,集流体产生的金属毛刺更小,从而更好地改善电化学装置的安全性能。采用厚度为30nm≤d2≤3μm的导电层,集流体具有良好的导电和集流的性能,有利于降低电池单体内阻、 减小极化现象,从而提高电化学装置的倍率性能和循环性能。
导电层的厚度d2的上限可以为3μm、2.5μm、2μm、1.8μm、1.5μm、1.2μm、1μm、900nm,导电层的厚度d2的下限可为800nm、700nm、600nm、500nm、450nm、400nm、350nm、300nm、100nm、50nm、30nm,导电层的厚度d2的范围可由任意上限和任意下限组成。优选地,导电层的厚度d2为300nm≤d2≤2μm。
作为一个示例,在支撑层自身厚度方向上的两个表面上均设置有导电层,厚度分别为d21和d22,其中,30nm≤d21≤3μm,优选为300nm≤d21≤2μm;30nm≤d22≤3μm,优选为300nm≤d22≤2μm。
作为另一个示例,仅在支撑层自身厚度方向上的两个表面中的一个表面上设置有导电层,厚度为d23,其中,30nm≤d23≤3μm,优选为300nm≤d23≤2μm。
本申请的集流体可以用作正极集流体及负极集流体中的一个或两个。
当本申请的集流体用于正极片,例如用作正极集流体时,集流体的导电层可以采用金属箔材、涂炭金属箔材或多孔金属板,例如铝箔。
当本申请的集流体用于负极片,例如用作负极集流体时,集流体的导电层可以采用金属箔材、涂炭金属箔材或多孔金属板,例如铜箔。
当本申请的电极极片用作正极片时,活性物质层可以采用本领域已知的正极活性材料,能够可逆地进行离子的嵌入/脱嵌。
以锂离子二次电池单体为例,正极活性材料采用能够可逆地进行锂离子嵌入/脱嵌的化合物,例如含锂过渡金属氧化物,其中过渡金属可以是Mn、Fe、Ni、Co、Cr、Ti、Zn、V、Al、Zr、Ce及Mg中的一种或多种。作为示例,含锂过渡金属氧化物可以为LiMn 2O 4、LiNiO 2、LiCoO 2、LiNi 1-yCo yO 2(0<y<1)、LiNi aCo bAl 1-a-bO 2(0<a<1,0<b<1,0<a+b<1)、LiMn 1-m-nNi mCo nO 2(0<m<1,0<n<1,0<m+n<1)、LiMPO 4(M可以为Fe、Mn、Co中的一种或多种)及Li 3V 2(PO 4) 3中的一种或多种。
含锂过渡金属氧化物还可以进行掺杂或表面包覆处理,以使化合物具有更稳定的结构和更优异的电化学性能。
正极片的活性材料层还可以包括粘结剂和导电剂。本申请对粘结剂和导电剂并没有具体地限制,可以根据实际需求进行选择。
作为示例,上述粘结剂可以是丁苯橡胶(SBR)、水性丙烯酸树脂(water-based acrylic resin)、羧甲基纤维素(CMC)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚乙烯醇缩丁醛(PVB)、乙烯-醋酸乙烯酯共聚物(EVA)及聚乙烯醇(PVA)中的一种或多种。
作为示例,上述导电剂可以是石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中一种或多种。
正极片可以按照本领域常规方法制备。通常将正极活性材料及可选的导电剂和粘结剂分散于溶剂(例如N-甲基吡咯烷酮,简称为NMP)中,形成均匀的正极浆料,将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,制得正极片。
当本申请的电极极片用作负极片时,活性材料层可以采用本领域已知的负极活性材料,能够可 逆地进行离子的嵌入/脱嵌。
同样以锂离子二次电池单体为例,负极活性材料采用能够可逆地进行锂离子嵌入/脱嵌的物质,例如金属锂、天然石墨、人造石墨、中间相微碳球(简写为MCMB)、硬碳、软碳、硅、硅-碳复合物、SiO、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO 2、尖晶石结构的钛酸锂Li 4Ti 5O 12及Li-Al合金中的一种或多种。
负极片的活性物质层还可以包括粘结剂和导电剂。本申请对粘结剂和导电剂并没有具体地限制,可以根据实际需求进行选择。
作为示例,上述粘结剂可以是丁苯橡胶(SBR)、水性丙烯酸树脂(water-based acrylic resin)、羧甲基纤维素(CMC)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚乙烯醇缩丁醛(PVB)、乙烯-醋酸乙烯酯共聚物(EVA)及聚乙烯醇(PVA)中的一种或多种。
作为示例,上述导电剂可以是石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中一种或多种。
负极片中还可以包括增稠剂,例如羧甲基纤维素(CMC)。
负极片可以按照本领域常规方法制备。通常将负极活性材料及可选的导电剂、粘结剂和增稠剂分散于溶剂中,溶剂可以是去离子水或NMP,形成均匀的负极浆料,将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,制得负极片。
在一些实施例中,将电池单体单体的正极片、隔离膜、负极片按顺序堆叠好,使隔离膜处于正极片、负极片之间起到隔离的作用,得到电极组件,也可以是经卷绕后得到电极组件;将电极组件置于包装外壳中,注入电解液并封口,制备电池单体单体。
以锂离子二次电池单体为例对电池单体单体进行示例性地说明:
实施例1
支撑层的制备
支撑材料为PET,在PET中添加一定含量的着色剂炭黑,并混合均匀,在PET热熔状态下经挤压浇注、冷辊辊轧,并双向拉伸后,获得支撑层。
集流体的制备
将支撑层置于真空镀室内,以1300℃~2000℃的高温将金属蒸发室内的高纯铝丝熔化蒸发,蒸发后的金属经过真空镀室内的冷却系统,最后沉积于支撑层的两个表面,形成导电层,并且两个表面上导电层的厚度D2相等。
实施例2~10
与实施例1不同的是,调整制备过程中的相关参数,具体参数示于下面的表19中。
对比例1
与实施例4不同的是,支撑层中没有添加着色剂。
测试部分
(1)支撑层透光率的测试:
使用LS117透光率仪,按照GB2410-80标准检测支撑层的透光率,包括:首先仪器开机自校准,界面显示T=100%,即校准OK,然后将支撑层样品夹在探头与接收器中间,界面自动显示支撑层的透光率数值。
(2)支撑层MD方向的拉伸强度测试:
使用拉力强度测试仪,按照DIN53455-6-5标准测试支撑层MD方向的拉伸强度。其中采用日本ALGOL(1kg)拉力测试头,将支撑层样品安装在两测试头之间,测试支撑层MD方向断裂时所受的最大拉伸应力,支撑层MD方向断裂时所受的最大拉伸应力与支撑层样品横截面积的比值即为支撑层MD方向的拉伸强度。
(3)集流体切割性能测试:
使用IPG公司型号为YLP-V2-1-100-100-100的光钎激光器,设置功率为100W、频率为150kHz,将集流体安装于激光器的切割设备上进行切割,测试集流体的最大可切断速度。其中集流体的最大可切断速度指的是激光切割该集流体、不发生胶连现象时可以达到的最大切割速度。
实施例1~10及对比例1的测试结果示于下面的表19中。
表19
Figure PCTCN2023070129-appb-000016
对比分析实施例4、5与对比例1可以看出,通过降低支撑层的透光率,集流体在低功率激光切割处理下、且不发生胶连现象的切割速度明显增大。
通过实施例1~10的测试结果,可以得出,本申请通过降低支撑层的透光率,使集流体在激光切割处理时的切割性能和切割速率得到显著提高,特别地,使集流体在低功率激光切割处理时的切割性能和切割速率得到显著提高。
以下,适当地参照附图详细说明具体公开了本申请的正极活性材料。
在一些实施例中,电极组件22包括正极片1B,正极片1B包括正极集流体10B和涂覆于正极集流体10B表面的正极活性物质层11B,正极活性物质层11B包括正极活性材料。
其中,正极活性材料具有内核及包覆内核的壳,内核包括三元材料、dLi 2MnO 3·(1-d)LiMO 2以及LiMPO 4中的至少一种,0<d<1,M包括选自Fe、Ni、Co、Mn中的一种或多种,壳含有结晶态无机物,结晶态无机物使用X射线衍射测量的主峰的半高全宽为0-3°,结晶态无机物包括选自金属氧化物以及无机盐中的一种或多种。结晶态的物质晶格结构稳定,对Mn等容易溶出的活泼金属离子有更好的截留作用。
本申请的发明人发现,目前用于锂离子二次电池单体的正极活性材料为了提高电池单体性能,如提高容量,改善倍率性能、循环性能等考虑,常在三元正极活性材料,或是可能应用于高电压体系的LiMPO 4,如LiMnPO 4、LiNiPO 4、LiCoPO 4,或是富Li锰基正极活性材料等材料中添加掺杂元素。上述掺杂元素可替换上述材料中的活性过渡金属等位点,从而起到提升材料的电池单体性能的作用。另一方面,磷酸铁锂等材料中可能添加有Mn元素,但是上述活性过渡金属等元素的添加或是掺杂,容易导致该材料在深度充放电的过程中造成Mn离子等活性金属的溶出。溶出的活性金属元素一方面会进一步向电解液迁移,在负极还原后造成类似催化剂的效应,导致负极表面SEI膜(solid electrolyte interphase,固态电解质界面膜)溶解。另一方面,上述金属元素的溶出也将导致正积极活性材料容量的损失,且溶出后正极活性材料的晶格产生缺陷,导致循环性能差等问题。因此,有必要基于上述含有活性金属元素的正极材料进行改进以缓解甚至解决上述问题。发明人发现,X射线衍射测量的主峰具有上述半高全宽的晶态无机物具有较好的截留溶出活性金属离子的能力,且晶态无机物和前述的内核材料可以较好的结合,具有稳定的结合力,不容易在使用过程中发生可的剥离的问题,且可以通过较为简便的方法实现面积恰当、均匀性较好的包覆层。
具体地,以磷酸锰锂正极活性材料为例,本申请发明人在实际作业中发现,目前现有的磷酸锰锂正极活性材料在深度充放电过程中,锰离子溶出比较严重。虽然现有技术中有尝试对磷酸锰锂进行磷酸铁锂包覆,从而减少界面副反应,但这种包覆无法阻止溶出的锰离子继续向电解液中迁移。溶出的锰离子在迁移到负极后,被还原成金属锰。这样产生的金属锰相当于“催化剂”,能够催化负极表面的SEI膜(solid electrolyte interphase,固态电解质界面膜)分解,产生副产物;所述副产物的一部分为气体,因此导致会二次电池单体发生膨胀,影响二次电池单体的安全性能;另外,所述副产物的另一部分沉积在负极表面,会阻碍锂离子进出负极的通道,造成二次电池单体阻抗增加,从而影响二次电池单体的动力学性能。此外,为补充损失的SEI膜,电解液和电池单体内部的活性锂被不断消耗,会给二次电池单体容量保持率带来不可逆的影响。通过对磷酸锰锂进行改性以及对磷酸锰锂的多层包覆,能够得到一种新型的具有核-壳结构的正极活性材料,所述正极活性材料能够实现显著降低的锰离子溶出以及降低的晶格变化率,其用于二次电池单体中,能够改善电池单体的循环性能、倍率性能、安全性能并且提高电池单体的容量。
在一些实施例中,电极组件22包括正极片1B,正极片1B包括正极集流体10B和涂覆于正极集流体10B表面的正极活性物质层11B,正极活性物质层11B包括正极活性材料;正极活性材料具有 LiMPO 4,M包括Mn,以及非Mn元素,非Mn元素满足以下条件的至少之一:非Mn元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;非Mn元素的化合价变价电压为U,2V<U<5.5V;非Mn元素和O形成的化学键的化学活性不小于P-O键的化学活性;非Mn元素的最高化合价不大于6。
作为锂离子二次电池单体的正极活性材料,磷酸锰锂、磷酸铁锂或是磷酸镍锂等未来可应用于高电压体系的化合物具有较低的成本以及较好的应用前景。但以磷酸锰锂为例,其与其他正极活性材料相比的缺点在于倍率性能较差,目前通常是通过包覆或掺杂等手段来解决这一问题。但仍然希望能够进一步提升磷酸锰锂正极活性材料的倍率性能、循环性能、高温稳定性等。
本申请的发明人反复研究了在磷酸锰锂的Li位、Mn位、P位和O位用各种元素进行掺杂时产生的影响,发现可以通过控制掺杂位点和具体的元素、掺杂量,改善正极活性材料的克容量、倍率性能以及循环性能等。
具体地,选择适当的Mn位掺杂元素,可改善该材料在脱嵌锂过程中磷酸锰锂的晶格变化率,提高正极材料的结构稳定性,大大减少锰的溶出,并降低颗粒表面的氧活性,进而可以提高材料的克容量,并降低该材料在使用过程中和电解液的界面副反应,进而提升材料的循环性能等。更具体地,选择离子半径和Mn元素相似的元素为Mn位掺杂元素,或是选择化合价可变价范围在Mn的化合价变价范围内的元素进行掺杂,可控制掺杂元素和O的键长与Mn-O键键长的变化量,从而有利于稳定掺杂后的正极材料晶格结构。此外,还可以在Mn为引入起到支撑晶格作用的空位元素,如该元素的化合价大于或等于Li与Mn的化合价之和,从而相当于在活泼的、容易溶出的Mn位引入了无法和Li结合的空位点,进而可以对晶格起到支撑的作用。
又例如,选择适当的P位掺杂元素,可助于改变Mn-O键长变化的难易程度,从而改善电子电导并降低锂离子迁移势垒,促进锂离子迁移,提高二次电池单体的倍率性能。具体地,P-O键自身的四面体结构相对稳固,使得Mn-O键长变化难度大,造成材料整体锂离子迁移势垒较高,而适当的P位掺杂元素可以改善P-O键四面体的坚固程度,从而促进材料的倍率性能改善。具体地,可以选择和O形成的化学键的化学活性不小于P-O键的化学活性的元素在P位进行掺杂,从而可以改善Mn-O键长变化的难易程度。在本申请中,如无特殊说明,“和O形成的化学键的化学活性不小于P-O键的化学活性”,可以通过本领域技术人员所公知的确定化学键活性的测试方式进行确定。例如,可以通过检测键能,或是参考用于打破该化学键的氧化、还原试剂的电化学电位等方式确定。或者,可选择化合价态不显著地高于P,例如低于6的元素在P位进行掺杂,从而有利于降低Mn和P元素的排斥作用,也可改善材料的克容量、倍率性能等。
类似地,在Li位进行恰当的元素掺杂,也可改善材料晶格变化率,并保持材料的电池单体容量。
O位掺杂元素可有助于改善材料和电解液的界面副反应,降低界面活性,从而有利于提升该正极活性材料的循环性能等。此外,还可以通过在O为进行掺杂,提升材料抗HF等酸腐蚀的性能,进而有利于提升材料的循环性能和寿命。
在本申请的一些实施方式中,内核包括LiMPO 4且M包括Mn和非Mn元素,所述非Mn元素满足以下条件的至少之一:所述非Mn元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;所述非Mn元素的化合价变价电压为U,2V<U<5.5V;所述非Mn元素和O形成的化学键的化学活性不小于P-O键的化学活性;所述非Mn元素的最高化合价不大于6。
在一些实施例中,上述位点掺杂的非Mn元素可包括第一掺杂元素和第二掺杂元素中的一种或两种,所述第一掺杂元素为锰位掺杂,所述第二掺杂元素为磷位掺杂。第一掺杂元素满足以下条件的至少之一:第一掺杂元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;所述第一掺杂元素的化合价变价电压为U,2V<U<5.5V。第二掺杂元素满足以下条件的至少之一:所述第二掺杂元素和O形成的化学键的化学活性不小于P-O键的化学活性;所述掺杂元素M第二掺杂元素的最高化合价不大于6。在一些实施方式中,该正极活性材料还可以同时含有两种第一掺杂元素。
在一些实施例中,可在上述位置中的Mn位以及P位同时进行掺杂。由此,不仅可有效减少锰溶出,进而减少迁移到负极的锰离子,减少因SEI膜分解而消耗的电解液,提高二次电池单体的循环性能和安全性能,还能够促进Mn-O键调整,降低锂离子迁移势垒,促进锂离子迁移,提高二次电池单体的倍率性能。
在本申请的另一些实施例中,通过在上述四个位置同时以特定量掺杂特定的元素,能够获得明显改善的倍率性能,改善的循环性能和/或高温稳定性,由此获得了改进的磷酸锰锂正极活性材料。
本申请的正极活性材料例如可用于锂离子二次电池单体中。
第一掺杂元素包括选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Co、Ga、Sn、Sb、Nb和Ge中的一种或多种元素。第一掺杂元素包括选自Fe、Ti、V、Ni、Co和Mg中的至少两种。第二掺杂元素包括选自B(硼)、S、Si和N中的一种或多种元素。
上述掺杂元素应使得体系保持电中性,能够保证正极活性材料中的缺陷和杂相尽量少。如果正极活性材料中存在过量的过渡金属(例如锰),由于该材料体系本身结构较稳定,那么多余的过渡金属很可能会以单质的形式析出,或在晶格内部形成杂相,保持电中性可使这样的杂相尽量少。另外,保证体系电中性还可以在部分情况下使材料中产生锂空位,从而使材料的动力学性能更优异。
下面,以磷酸锰锂材料为例,详述本申请提出的正极活性材料的具体参数,以及能够获得上述有益效果的原理:
本申请发明人在实际作业中发现,目前现有的磷酸锰锂正极活性材料在深度充放电过程中,锰溶出比较严重。虽然现有技术中有尝试对磷酸锰锂进行磷酸铁锂包覆,从而减少界面副反应,但这种包覆无法阻止溶出的锰继续向电解液中迁移。溶出的锰在迁移到负极后,被还原成金属锰。这样产生的金属锰相当于“催化剂”,能够催化负极表面的SEI膜(solid electrolyte interphase,固态电解质界面膜)分解,产生副产物;所述副产物的一部分为气体,因此导致会二次电池单体发生膨胀,影响二次电池单体的安全性能;另外,所述副产物的另一部分沉积在负极表面,会阻碍锂离子进出负极的通道,造成二次电池单体阻抗增加,从而影响二次电池单体的动力学性能。此外,为补充损失的SEI膜,电解液和电池单体内部的活性锂被不断消耗,会给二次电池单体容量保持率 带来不可逆的影响。
发明人在进行大量研究后发现,通过对磷酸锰锂进行改性能够得到一种新型的正极活性材料,所述正极活性材料能够实现显著降低的锰溶出以及降低的晶格变化率,其用于二次电池单体中,能够改善电池单体的循环性能、倍率性能、安全性能并且提高电池单体的容量。
在一些实施方式中,上述正极活性材料可以具有化学式为Li 1+xMn 1-yA yP 1-zR zO 4的化合物,其中x为在-0.100-0.100范围内的任意数值,y为在0.001-0.500范围内的任意数值,z为在0.001-0.100范围内的任意数值,所述A包括选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Co、Ga、Sn、Sb、Nb和Ge中的一种或多种元素,所述R包括选自B(硼)、S、Si和N中的一种或多种元素。其中,所述x、y和z的值满足以下条件:使整个化合物保持电中性。
在另一些实施方式中,上述正极活性材料可以具有化学式为Li 1+xC mMn 1-yA yP 1-zR zO 4-nD n的化合物,其中,所述C包括选自Zn、Al、Na、K、Mg、Nb、Mo和W中的一种或多种元素,所述A包括选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Mg、Co、Ga、Sn、Sb、Nb和Ge中的一种或多种元素,所述R包括选自B(硼)、S、Si和N中的一种或多种元素,所述D包括选自S、F、Cl和Br中的一种或多种元素,x为在0.100-0.100范围内的任意数值,y为在0.001-0.500范围内的任意数值,z为在0.001-0.100范围内的任意数值,n为在0.001至0.1范围内的任意数值,m为在0.9至1.1范围内的任意数值。类似地,上述x、y、z和m的值满足以下条件:使整个化合物保持电中性。
除非另有说明,否则上述内核的化学式中,当某掺杂位点具有两种以上元素时,上述对于x、y、z或m数值范围的限定不仅是对每种作为该位点的元素的化学计量数的限定,也是对各个作为该位点的元素的化学计量数之和的限定。例如,当具有化学式为Li 1+xMn 1-yA yP 1-zR zO 4的化合物时,当A为两种以上元素A1、A2……An时,A1、A2……An各自的化学计量数y1、y2……yn各自均需落入本申请对y限定的数值范围内,且y1、y2……yn之和也需落入该数值范围内。类似地,对于R为两种以上元素的情况,本申请中对R化学计量数的数值范围的限定也具有上述含义。
在一个可选的实施方式中,当A为选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Co、Ga、Sn、Sb、Nb和Ge中的一种、两种、三种或四种元素时,A y为G n1D n2E n3K n4,其中n1+n2+n3+n4=y,且n1、n2、n3、n4均为正数且不同时为零,G、D、E、K各自独立地为选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Co、Ga、Sn、Sb、Nb和Ge的一种,可选地,G、D、E、K中至少一个为Fe。可选地,n1、n2、n3、n4之一为零,其余不为零;更可选地,n1、n2、n3、n4中的两个为零,其余不为零;还可选地,n1、n2、n3、n4中的三个为零,其余不为零。Li 1+xMn 1-yA yP 1-zR zO 4中,在锰位掺杂一种、两种、三种或四种上述A元素是有利的,可选地,掺杂一种、两种或三种上述A元素;此外,在磷位掺杂一种或两种R元素是有利的,这样有利于使掺杂元素均匀分布。
例如具体地,Mn位可同时具有Fe和V掺杂。
在一些实施方式中,在Li 1+xMn 1-yA yP 1-zR zO 4中,y与1-y的比值为1:10至1:1,可选为1:4至1:1。此处y表示Mn位掺杂元素A的化学计量数之和。在满足上述条件时,使用所述正极活性材 料的二次电池单体的能量密度和循环性能可进一步提升。在一些实施方式中,z与1-z的比值为1:9至1:999,可选为1:499至1:249。此处z表示P位掺杂元素R的化学计量数之和。在满足上述条件时,使用所述正极活性材料的二次电池单体的能量密度和循环性能可进一步提升。
在本申请的另一些实施方式中,正极活性材料可含有Li 1+xC mMn 1-yA yP 1-zR zO 4-nD n。其中,x的大小受A和R的价态大小以及y和z的大小的影响,以保证整个体系呈现电中性。如果x的值过小,会导致整个内核体系的含锂量降低,影响材料的克容量发挥。Y值会限制所有掺杂元素的总量,如果y过小,即掺杂量过少,掺杂元素起不到作用,如果y超过0.5,会导致体系中的Mn含量较少,影响材料的电压平台。所述R元素掺杂在P的位置,由于P-O四面体较稳定,而z值过大会影响材料的稳定性,因此将z值限定为0.001-0.100。更具体地,x为在0.100-0.100范围内的任意数值,y为在0.001-0.500范围内的任意数值,z为在0.001-0.100范围内的任意数值,n为在0.001至0.1范围内的任意数值,m为在0.9至1.1范围内的任意数值。例如,所述1+x选自0.9至1.1的范围,例如为0.97、0.977、0.984、0.988、0.99、0.991、0.992、0.993、0.994、0.995、0.996、0.997、0.998、1.01,所述x选自0.001至0.1的范围,例如为0.001、0.005,所述y选自0.001至0.5的范围,例如为0.001、0.005、0.02、0.05、0.1、0.15、0.2、0.25、0.3、0.34、0.345、0.349、0.35、0.4,所述z选自0.001至0.1的范围,例如为0.001、0.005、0.08、0.1,所述n选自0.001至0.1的范围,例如为0.001、0.005、0.08、0.1,并且所述正极活性材料为电中性的。
如前所述,本申请的正极活性材料通过在化合物LiMnPO 4等中进行元素掺杂而获得,不希望囿于理论,现认为磷酸锰锂的性能提升与减小脱嵌锂过程中磷酸锰锂的晶格变化率和降低表面活性有关。减小晶格变化率可减小晶界处两相间的晶格常数差异,减小界面应力,增强Li +在界面处的传输能力,从而提升正极活性材料的倍率性能。而表面活性高容易导致界面副反应严重,加剧产气、电解液消耗和破坏界面,从而影响电池单体的循环等性能。本申请中,通过Li和Mn位掺杂减小了晶格变化率。Mn位掺杂还有效降低表面活性,从而抑制Mn溶出和正极活性材料与电解液的界面副反应。P位掺杂使Mn-O键长的变化速率更快,降低材料的小极化子迁移势垒,从而有利于电子电导率。O位掺杂对减小界面副反应有良好的作用。P位和O位的掺杂还对反位缺陷的Mn溶出及动力学性能产生影响。因此,掺杂减小了材料中反位缺陷浓度,提高材料的动力学性能和克容量,还可以改变颗粒的形貌,从而提升压实密度。本申请人意外地发现:通过在化合物LiMnPO 4的Li位、Mn位、P位和O位同时以特定量掺杂特定的元素,能够获得明显改善的倍率性能,同时显著减少了Mn与Mn位掺杂元素的溶出,获得了显著改善的循环性能和/或高温稳定性,并且材料的克容量和压实密度也可以得到提高。
通过在上述范围内对Li位掺杂元素进行选择,能够进一步减小脱锂过程中的晶格变化率,从而进一步改善电池单体的倍率性能。通过在上述范围内对Mn位掺杂元素进行选择,能够进一步提高电子电导率并进一步减小晶格变化率,从而提升电池单体的倍率性能和克容量。通过在上述范围内对P位掺杂元素进行选择,能够进一步改善电池单体的倍率性能。通过在上述范围内对O位掺杂元素进行选择,能够进一步减轻界面的副反应,提升电池单体的高温性能。
在一些实施方式中,所述x选自0.001至0.005的范围;和/或,所述y选自0.01至0.5的范围,可选地选自0.25至0.5的范围;和/或,所述z选自0.001至0.005的范围;和/或,所述n选自0.001至0.005的范围。通过在上述范围内对y值进行选择,能够进一步提升材料的克容量和倍率性能。通过在上述范围内对x值进行选择,能够进一步提升材料的动力学性能。通过在上述范围内对z值进行选择,能够进一步提升二次电池单体的倍率性能。通过在上述范围内对n值进行选择,能够进一步提升二次电池单体的高温性能。
在一些实施方式中,具有4个位点均掺杂有非Mn元素的所述正极活性材料满足:(1-y):y在1至4范围内,可选地在1.5至3范围内,且(1+x):m在9到1100范围内,可选地在190-998范围内。此处y表示Mn位掺杂元素的化学计量数之和。在满足上述条件时,正极活性材料的能量密度和循环性能可进一步提升。
在一些实施方式中,该正极活性材料可以具有Li 1+xMn 1-yA yP 1-zR zO 4和Li 1+xC mMn 1-yA yP 1-zR zO 4-nD n中的至少之一。其中,y与1-y的比值为1:10至1:1,可选为1:4至1:1。Z与1-z的比值为1:9至1:999,可选为1:499至1:249。C、R和D各自独立地为上述各自范围内的任一种元素,并且所述A为其范围内的至少两种元素;可选地,所述C为选自Mg和Nb中的任一种元素,和/或,所述A为选自Fe、Ti、V、Co和Mg中的至少两种元素,可选地为Fe与选自Ti、V、Co和Mg中的一种以上元素,和/或,所述R为S,和/或,所述D为F。其中,x选自0.001至0.005的范围;和/或,所述y选自0.01至0.5的范围,可选地选自0.25至0.5的范围;和/或,所述z选自0.001至0.005的范围;和/或,所述n选自0.001至0.005的范围。上述参数在无特殊说明的前提下,可自由进行组合,在此不再一一列举他们组合的情况。
在一些实施方式中,所述正极活性材料的晶格变化率为8%以下,可选地,晶格变化率为4%以下。通过降低晶格变化率,能够使得Li离子传输更容易,即Li离子在材料中的迁移能力更强,有利于改善二次电池单体的倍率性能。晶格变化率可通过本领域中已知的方法,例如X射线衍射图谱(XRD)测得。LiMnPO 4的脱嵌锂过程是两相反应。两相的界面应力由晶格变化率大小决定,晶格变化率越小,界面应力越小,Li +传输越容易。因此,减小掺杂LiMnPO 4的晶格变化率将有利于增强Li+的传输能力,从而改善二次电池单体的倍率性能。
在一些实施方式中,可选地,所述正极活性材料的扣电平均放电电压为3.5V以上,放电克容量在140mAh/g以上;可选为平均放电电压3.6V以上,放电克容量在145mAh/g以上。
尽管未掺杂的LiMnPO 4的平均放电电压在4.0V以上,但它的放电克容量较低,通常小于120mAh/g,因此,能量密度较低;通过掺杂调整晶格变化率,可使其放电克容量大幅提升,在平均放电电压微降的情况下,整体能量密度有明显升高。
在一些实施方式中,所述正极活性材料的Li/Mn反位缺陷浓度为2%以下,可选地,Li/Mn反位缺陷浓度为0.5%以下。所谓Li/Mn反位缺陷,指的是LiMnPO4晶格中,Li +与Mn 2+的位置发生互换。Li/Mn反位缺陷浓度指的是正极活性材料中与Mn 2+发生互换的Li +占Li +总量的百分比。反位缺陷的Mn 2+会阻碍Li +的传输,通过降低Li/Mn反位缺陷浓度,有利于提高正极活性材料的克容量和倍率性 能。Li/Mn反位缺陷浓度可通过本领域中已知的方法,例如XRD测得。
在一些实施方式中,所述正极活性材料的表面氧价态为-1.82以下,可选地为-1.89~-1.98。通过降低表面氧价态,能够减轻正极活性材料与电解液的界面副反应,从而改善二次电池单体的循环性能和高温稳定性。表面氧价态可通过本领域中已知的方法测量,例如通过电子能量损失谱(EELS)测量。
在一些实施方式中,所述正极活性材料在3T(吨)下的压实密度为2.0g/cm3以上,可选地为2.2g/cm3以上。压实密度越高,单位体积活性材料的重量越大,因此提高压实密度有利于提高电芯的体积能量密度。压实密度可依据GB/T24533-2009测量。
在一些实施方式中,所述正极活性材料具有核-壳结构,所述核-壳结构包括内核及包覆所述内核的壳,所述内核具有所述LiMPO 4。具有核-壳结构的正极活性材料可以进一步通过包覆的壳提升该正极材料的性能。
例如,在本申请的一些实施方式中,内核的表面包覆有碳。由此,可以改善正极活性材料的导电性。包覆层的碳为SP2形态碳与SP3形态碳的混合物,可选地,所述SP2形态碳与SP3形态碳的摩尔比为在0.1-10范围内的任意数值,可选为在2.0-3.0范围内的任意数值。
在一些实施方式中,所述SP2形态碳与SP3形态碳的摩尔比可为约0.1、约0.2、约03、约0.4、约0.5、约0.6、约0.7、约0.8、约0.9、约1、约2、约3、约4、约5、约6、约7、约8、约9或约10,或在上述任意值的任意范围内。
本申请中,“约”某个数值表示一个范围,表示该数值±10%的范围。
通过选择碳包覆层中碳的形态,从而提升二次电池单体的综合电性能。具体来说,通过使用SP2形态碳和SP3形态碳的混合形态并将SP2形态碳和SP3形态碳的比例限制在一定范围内,能够避免以下情况:如果包覆层中的碳都是无定形SP3形态,则导电性差;如果都是石墨化的SP2形态,则虽然导电性良好,但是锂离子通路少,不利于锂的脱嵌。另外,将SP2形态碳与SP3形态碳的摩尔比限制在上述范围内,既能实现良好的导电性,又能保证锂离子的通路,因此有利于二次电池单体功能的实现及其循环性能。
包覆层碳的SP2形态和SP3形态的混合比可以通过烧结条件例如烧结温度和烧结时间来控制。例如,在使用蔗糖作为碳源制备第三包覆层的情况下,使蔗糖在高温下进行裂解后,在第二包覆层上沉积同时在高温作用下,会产生既有SP3形态也有SP2形态的碳包覆层。SP2形态碳和SP3形态碳的比例可以通过选择高温裂解条件和烧结条件来调控。
包覆层碳的结构和特征可通过拉曼(Raman)光谱进行测定,具体测试方法如下:通过对Raman测试的能谱进行分峰,得到Id/Ig(其中Id为SP3形态碳的峰强度,Ig为SP2形态碳的峰强度),从而确认两者的摩尔比。
在本申请的一些实施方式中,壳包括无机包覆层以及碳包覆层,所述无机包覆层靠近所述内核设置。具体地,无机包覆层含有磷酸盐以及焦磷酸盐中的至少之一。具有核-壳结构的正极活性材料,能够进一步降低的锰溶出以及降低的晶格变化率,其用于二次电池单体中,能够改善电池单体 的循环性能、倍率性能、安全性能并且提高电池单体的容量。通过进一步包覆具有优异导锂离子的能力的晶态磷酸盐、焦磷酸盐包覆层,可以使正极活性材料的表面的界面副反应有效降低,进而改善二次电池单体的高温循环及存储性能;通过再进一步包覆碳层,能够进一步提升二次电池单体的安全性能和动力学性能。
在本申请中,焦磷酸盐可包括QP 2O 7,具体可包括晶态焦磷酸盐Li aQP 2O 7和/或Q b(P 2O 7) c,其中,0≤a≤2,1≤b≤4,1≤c≤6,所述a、b和c的值满足以下条件:使所述晶态焦磷酸盐Li aQP 2O 7或Q b(P 2O 7) c保持电中性,所述晶态焦磷酸盐Li aQP 2O 7和Q b(P 2O 7) c中的Q各自独立地为选自Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素。
晶态磷酸盐可包括XPO 4,其中,所述X为选自Li、Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素。
晶态焦磷酸盐和晶态磷酸盐的结晶情况不受特别限定,在本申请的一些实施方式中,晶态的焦磷酸盐和/或磷酸盐可以为单晶、多晶或是部分结晶的状态。发明人发现,结晶态的磷酸盐和焦磷酸盐的表面选择性较好,可以更好地和内核的晶态进行匹配,进而具有更好的结合力和界面状态,更加不容易在使用过程中发生剥落,且晶态的无机盐包覆层能够更好地提升正极活性材料导锂离子的能力,也能够更好地降低活性材料表面的界面副反应。
具体地,晶态焦磷酸盐的晶面间距范围为0.293-0.470nm,晶向(111)的夹角范围为18.00°-32.00°。晶态磷酸盐的晶面间距范围为0.244-0.425nm,晶向(111)的夹角范围为20.00°-37.00°。
本申请中,晶态意指结晶度在50%以上,即50%-100%。结晶度小于50%的称为玻璃态。本申请所述的晶态焦磷酸盐和晶态磷酸盐的结晶度为50%至100%。具备一定结晶度的焦磷酸盐和磷酸盐不但有利于充分发挥焦磷酸盐包覆层阻碍锰溶出和磷酸盐包覆层优异的导锂离子的能力、减少界面副反应的功能,而且能够使得焦磷酸盐包覆层和磷酸盐包覆层能够更好的进行晶格匹配,从而能够实现包覆层更紧密的结合。
本申请中,所述正极活性材料的晶态焦磷酸盐和晶态磷酸盐的结晶度可以通过本领域中常规的技术手段来测试,例如通过密度法、红外光谱法、差示扫描量热法和核磁共振吸收方法测量,也可以通过例如,X射线衍射法来测试。具体的X射线衍射法测试正极活性材料的晶态焦磷酸盐和晶态磷酸盐的结晶度的方法可以包括以下步骤:
取一定量的正极活性材料粉末,通过X射线测得总散射强度,它是整个空间物质的散射强度之和,只与初级射线的强度、正极活性材料粉末化学结构、参加衍射的总电子数即质量多少有关,而与样品的序态无关;然后从衍射图上将结晶散射和非结晶散射分开,结晶度即是结晶部分散射对散射总强度之比。
需要说明的是,在本申请中,包覆层中的焦磷酸盐和磷酸盐的结晶度例如可通过调整烧结过程的工艺条件例如烧结温度、烧结时间等进行调节。
本申请中,由于金属离子在焦磷酸盐中难以迁移,因此焦磷酸盐作为第一包覆层可以将掺杂金 属离子与电解液进行有效隔离。晶态焦磷酸盐的结构稳定,因此,晶态焦磷酸盐包覆能够有效抑制过渡金属的溶出,改善循环性能。
包覆层与核之间的结合类似于异质结,其结合的牢固程度受晶格匹配程度的限制。晶格失配在5%以下时,晶格匹配较好,两者容易结合紧密。紧密的结合能够保证在后续的循环过程中,包覆层不会脱落,有利于保证材料的长期稳定性。包覆层与核之间的结合程度的衡量主要通过计算核与包覆各晶格常数的失配度来进行。本申请中,在所述内核中掺杂了元素后,特别是Mn位以及P位掺杂元素之后,与不掺杂元素相比,所述内核与包覆层的匹配度得到改善,内核与晶态无机盐包覆层之间能够更紧密地结合在一起。
在本申请中,磷酸盐和焦磷酸盐是否位于同一个包覆层中,二者之中谁更靠近内核设置均不受特别限制,本领域技术人员可以根据实际情况进行选择。例如,可令磷酸盐和焦磷酸盐形成一个无机盐包覆层,无机盐包覆层的外侧可进一步具有碳层。或者焦磷酸盐以及焦磷酸盐均单独形成独立的包覆层,二者中的一个靠近内核设置,另一个包覆靠近内核设置的晶态无机盐包覆层,最外侧再设置碳层。又或者,该核壳结构可以仅含有一个由磷酸盐或者焦磷酸盐构成的无机盐包覆层,外侧再设置碳层。
更具体地,壳包括包覆所述内核的第一包覆层以及包覆所述第一包覆层的第二包覆层,其中,所述第一包覆层包括焦磷酸盐QP 2O 7和磷酸盐XPO 4,其中所述Q和X各自独立地选自Li、Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种;所述第二包覆层包含碳。此时正极活性材料的结构可为如图166中所示出的,具有内核11,第一包覆层12以及第二包覆层13。
在一些实施方式中,第一包覆层12的磷酸盐的晶面间距为0.345-0.358nm,晶向(111)的夹角为24.25°-26.45°;第一包覆层12的焦磷酸盐的晶面间距为0.293-0.326nm,晶向(111)的夹角为26.41°-32.57°。当第一包覆层中磷酸盐和焦磷酸盐的晶面间距和晶向(111)的夹角在上述范围时,能够有效避免包覆层中的杂质相,从而提升材料的克容量,循环性能和倍率性能。
在一些实施方式中,可选地,所述第一包覆层的包覆量为大于0重量%且小于等于7重量%,可选为4-5.6重量%,基于所述内核的重量计。
当所述第一包覆层的包覆量在上述范围内时,能够进一步抑制锰溶出,同时进一步促进锂离子的传输。并能够有效避免以下情况:若第一包覆层的包覆量过小,则可能会导致焦磷酸盐对锰溶出的抑制作用不充分,同时对锂离子传输性能的改善也不显著;若第一包覆层的包覆量过大,则可能会导致包覆层过厚,增大电池单体阻抗,影响电池单体的动力学性能。
在一些实施方式中,可选地,所述第一包覆层中焦磷酸盐和磷酸盐的重量比为1:3至3:1,可选为1:3至1:1。
焦磷酸盐和磷酸盐的合适配比有利于充分发挥二者的协同作用。并能够有效避免以下情况:如果焦磷酸盐过多而磷酸盐过少,则可能导致电池单体阻抗增大;如果磷酸盐过多而焦磷酸盐过少,则抑制锰溶出的效果不显著。
在一些实施方式中,可选地,所述焦磷酸盐和磷酸盐的结晶度各自独立地为10%至100%,可选 为50%至100%。
在本申请磷酸锰锂正极活性材料的第一包覆层中,具备一定结晶度的焦磷酸盐和磷酸盐有利于保持第一包覆层的结构稳定,减少晶格缺陷。这一方面有利于充分发挥焦磷酸盐阻碍锰溶出的作用,另一方面也有利于磷酸盐减少表面杂锂含量、降低表面氧的价态,从而减少正极材料与电解液的界面副反应,减少对电解液的消耗,改善电池单体的循环性能和安全性能。
在一些实施方式中,可选地,所述第二包覆层的包覆量为大于0重量%且小于等于6重量%,可选为3-5重量%,基于所述内核的重量计。
作为第二包覆层的含碳层一方面可以发挥“屏障”功能,避免正极活性材料与电解液直接接触,从而减少电解液对活性材料的腐蚀,提高电池单体在高温下的安全性能。另一方面,其具备较强的导电能力,可降低电池单体内阻,从而改善电池单体的动力学性能。然而,由于碳材料的克容量较低,因此当第二包覆层的用量过大时,可能会降低正极活性材料整体的克容量。因此,第二包覆层的包覆量在上述范围时,能够在不牺牲正极活性材料克容量的前提下,进一步改善电池单体的动力学性能和安全性能。
在另一些实施方式中,正极活性材料包括包覆所述内核的第一包覆层、包覆所述第一包覆层的第二包覆层以及包覆所述第二包覆层的第三包覆层,其中,所述第一包覆层包括晶态焦磷酸盐Li aQP 2O 7和/或Q b(P 2O 7) c,其中,0≤a≤2,1≤b≤4,1≤c≤6,所述a、b和c的值满足以下条件:使所述晶态焦磷酸盐Li aQP 2O 7或Q b(P 2O 7) c保持电中性,所述晶态焦磷酸盐Li aQP 2O 7和Q b(P 2O 7) c中的Q各自独立地为选自Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素;所述第二包覆层包括晶态磷酸盐XPO 4,其中,所述X为选自Li、Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素;所述第三包覆层为碳。参考图98,该正极活性材料的结构可以大致如图中所示出的,可具有内核11,第一包覆层12,第二包覆层13以及第三包覆层14。图98为理想中的三层包覆结构的正极活性材料的示意图。如图98所示,最里面的圆示意表示内核,由内向外依次为第一包覆层、第二包覆层、第三包覆层。该图表示的是每层均完全包覆的理想状态,实践中,每一层包覆层可以是完全包覆,也可以是部分包覆。
在上述实施方式中,选择晶态磷酸盐作为第二包覆层,首先,是因为它与第一层包覆物晶态焦磷酸盐的晶格匹配度较高(失配度仅为3%);其次,磷酸盐本身的稳定性好于焦磷酸盐,用其包覆焦磷酸盐有利于提高材料的稳定性。晶态磷酸盐的结构很稳定,其具有优异导锂离子的能力,因此,使用晶态磷酸盐进行包覆能够使正极活性材料的表面的界面副反应得到有效降低,从而改善二次电池单体的高温循环及存储性能。第二包覆层和第一包覆层之间的晶格匹配方式等,与上述第一包覆层和核之间的结合情况相似,晶格失配在5%以下时,晶格匹配较好,两者容易结合紧密。碳作为第三层包覆的主要原因是碳层的电子导电性较好。由于在二次电池单体中应用时发生的是电化学反应,需要有电子的参与,因此,为了增加颗粒与颗粒之间的电子传输,以及颗粒上不同位置的电子传输,可以使用具有优异导电性能的碳来对正极活性材料进行包覆。碳包覆可有效改善正极活性材料的导电性能和去溶剂化能力。
在一些实施方式中,上述具有三层包覆层的正极活性材料的一次颗粒的平均粒径范围为50-500nm,体积中值粒径Dv50在200-300nm范围内。由于颗粒会发生团聚,因此实际测得团聚后的二次颗粒大小可能为500-40000nm。正极活性材料颗粒的大小会影响材料的加工和极片的压实密度性能。通过选择一次颗粒的平均粒径在上述范围内,从而能够避免以下情况:所述正极活性材料的一次颗粒的平均粒径太小,可能会引起颗粒团聚,分散困难,并且需要较多的粘结剂,导致极片脆性较差;所述正极活性材料的一次颗粒的平均粒径太大,可能会使颗粒间的空隙较大,压实密度降低。通过上述方案,能够有效抑制脱嵌锂过程中磷酸锰锂的晶格变化率和Mn溶出,从而提升二次电池单体的高温循环稳定性和高温储存性能。
在上述实施方式中,第一包覆层中的晶态焦磷酸盐的晶面间距范围为0.293-0.470nm,晶向(111)的夹角范围为18.00°-32.00°;所述第二包覆层中的晶态磷酸盐的晶面间距范围为0.244-0.425nm,晶向(111)的夹角范围为20.00°-37.00°。
本申请所述的正极活性材料中的第一包覆层和第二包覆层均使用晶态物质。对于包覆层中的晶态焦磷酸盐和晶态磷酸盐,可通过本领域中常规的技术手段进行表征,也可以例如借助透射电镜(TEM)进行表征。在TEM下,通过测试晶面间距可以区分内核和包覆层。
包覆层中的晶态焦磷酸盐和晶态磷酸盐的晶面间距和夹角的具体测试方法可以包括以下步骤:取一定量的经包覆的正极活性材料样品粉末于试管中,并在试管中注入溶剂如酒精,然后进行充分搅拌分散,然后用干净的一次性塑料吸管取适量上述溶液滴加在300目铜网上,此时,部分粉末将在铜网上残留,将铜网连带样品转移至TEM样品腔中进行测试,得到TEM测试原始图片,保存原始图片。将上述TEM测试所得原始图片在衍射仪软件中打开,并进行傅里叶变换得到衍射花样,量取衍射花样中衍射光斑到中心位置的距离,即可得到晶面间距,夹角根据布拉格方程进行计算得到。
晶态焦磷酸盐的晶面间距范围和晶态磷酸盐的存在差异,可通过晶面间距的数值直接进行判断。在上述晶面间距和夹角范围内的晶态焦磷酸盐和晶态磷酸盐,能够更有效地抑制脱嵌锂过程中磷酸锰锂的晶格变化率和Mn溶出,从而提升二次电池单体的高温循环性能、循环稳定性和高温储存性能。
在一些实施方式中,第一包覆层的包覆量为大于0且小于或等于6重量%,可选为大于0且小于或等于5.5重量%,更可选为大于0且小于或等于2重量%,基于所述内核的重量计;和/或所述第二包覆层的包覆量为大于0且小于或等于6重量%,可选为大于0且小于或等于5.5重量%,更可选为2-4重量%,基于所述内核的重量计;和/或所述第三包覆层的包覆量为大于0且小于或等于6重量%,可选为大于0且小于或等于5.5重量%,更可选为大于0且小于或等于2重量%,基于所述内核的重量计。本申请中,每一层的包覆量均不为零。本申请所述的具有核-壳结构的正极活性材料中,三层包覆层的包覆量优选在上述范围内,由此能够对所述内核进行充分包覆,并同时在不牺牲正极活性材料克容量的前提下,进一步改善二次电池单体的动力学性能和安全性能。
对于第一包覆层而言,通过包覆量在上述范围内,则能够避免以下情况:包覆量过少则意味着包覆层厚度较薄,可能无法有效阻碍过渡金属的迁移;包覆量过大则意味着包覆层过厚,会影响 Li+的迁移,进而影响材料的倍率性能。对于第二包覆层而言,通过包覆量在上述范围内,则能够避免以下情况:包覆量过多,可能会影响材料整体的平台电压;包覆量过少,可能无法实现足够的包覆效果。对于第三包覆层而言,碳包覆主要起到增强颗粒间的电子传输的作用,然而由于结构中还含有大量的无定形碳,因此碳的密度较低,因此,如果包覆量过大,会影响极片的压实密度。
在上述实施方式中,第一包覆层的厚度为1-10nm;和/或所述第二包覆层的厚度为2-15nm;和/或所述第三包覆层的厚度为2-25nm。
在一些实施方式中,所述第一包覆层的厚度可为约2nm、约3nm、约4nm、约5nm、约6nm、约7nm、约8nm、约9nm或约10nm,或在上述任意数值的任意范围内。在一些实施方式中,所述第二包覆层的厚度可为约2nm、约3nm、约4nm、约5nm、约6nm、约7nm、约8nm、约9nm、约10nm、约11nm、约12nm、约13nm、约14nm、约15nm,或在上述任意数值的任意范围内。在一些实施方式中,所述第三层包覆层的厚度可为约2nm、约3nm、约4nm、约5nm、约6nm、约7nm、约8nm、约9nm、约10nm、约11nm、约12nm、约13nm、约14nm、约15nm、约16nm、约17nm、约18nm、约19nm、约20nm、约21nm、约22nm、约23nm、约24nm或约25nm,或在上述任意数值的任意范围内。
当所述第一包覆层的厚度范围为1-10nm时,能够避免过厚时可能产生的对材料的动力学性能的不利影响,且能够避免过薄时可能无法有效阻碍过渡金属离子的迁移的问题。
当所述第二包覆层的厚度在2-15nm范围内时,所述第二包覆层的表面结构稳定,与电解液的副反应小,因此能够有效减轻界面副反应,从而提升二次电池单体的高温性能。
当所述第三包覆层的厚度范围为2-25nm时,能够提升材料的电导性能并且改善使用所述正极活性材料制备的电池单体极片的压密性能。
包覆层的厚度大小测试主要通过FIB进行,具体方法可以包括以下步骤:从待测正极活性材料粉末中随机选取单个颗粒,从所选颗粒中间位置或中间位置附近切取100nm左右厚度的薄片,然后对薄片进行TEM测试,量取包覆层的厚度,测量3-5个位置,取平均值。
在一些实施方式中,当正极活性材料具有三层包覆层时,基于正极活性材料的重量计,锰元素含量在10重量%-35重量%范围内,可选在15重量%-30重量%范围内,更可选在17重量%-20重量%范围内,磷元素的含量在12重量%-25重量%范围内,可选在15重量%-20重量%范围内,锰元素和磷元素的重量比范围为0.90-1.25,可选为0.95-1.20。
在本申请中,在仅正极活性材料的内核中含有锰的情况下,锰的含量可与内核的含量相对应。在本申请中,将所述锰元素的含量限制在上述范围内,能够有效避免若锰元素含量过大可能会引起的材料结构稳定性变差、密度下降等问题,从而提升二次电池单体的循环、存储和压密等性能;且能够避免若锰元含量过小可能会导致的电压平台低等问题,从而提升二次电池单体的能量密度。本申请中,将所述磷元素的含量限制在上述范围内,能够有效避免以下情况:若磷元素的含量过大,可能会导致P-O的共价性过强而影响小极化子导电,从而影响材料的电导率;若磷含量过小,可能会使所述内核、所述第一包覆层中的焦磷酸盐和/或所述第二包覆层中的磷酸盐晶格结构的稳定性下降,从而影响材料整体的稳定性。锰与磷含量重量比大小对二次电池单体的性能具有以下影响: 该重量比过大,意味着锰元素过多,锰溶出增加,影响正极活性材料的稳定性和克容量发挥,进而影响二次电池单体的循环性能及存储性能;该重量比过小,意味着磷元素过多,则容易形成杂相,会使材料的放电电压平台下降,从而使二次电池单体的能量密度降低。锰元素和磷元素的测量可采用本领域中常规的技术手段进行。特别地,采用以下方法测定锰元素和磷元素的含量:将材料在稀盐酸中(浓度10-30%)溶解,利用ICP测试溶液各元素的含量,然后对锰元素的含量进行测量和换算,得到其重量占比。
本申请的第二方面涉及一种制备本申请第一方面的正极活性材料的方法。具体地,该方法包括形成LiMPO 4化合物的操作,其中LiMPO 4化合物可具有前述的LiMPO 4化合物的全部特征以及优点,在此不再赘述。简单来说,所述M包括Mn,以及非Mn元素,所述非Mn元素满足以下条件的至少之一:所述非Mn元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;所述非Mn元素的化合价变价电压为U,2V<U<5.5V;所述非Mn元素和O形成的化学键的化学活性不小于P-O键的化学活性;所述非Mn元素的最高化合价不大于6。
在一些实施方式中,所述非Mn元素包括第一和第二掺杂元素,所述方法包括:将锰源、所述锰位元素的掺杂剂和酸混合,得到具有第一掺杂元素的锰盐颗粒;将所述具有所述第一掺杂元素的锰盐颗粒与锂源、磷源和所述第二掺杂元素的掺杂剂在溶剂中混合并得到浆料,在惰性气体气氛保护下烧结后得到所述LiMPO 4化合物。关于第一掺杂元素和第二掺杂元素的种类,前面已经进行了详细的描述,在此不再赘述。在一些实施方式中,第一掺杂元素包括选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Co、Ga、Sn、Sb、Nb和Ge中的一种或多种元素,所述第二掺杂元素包括选自B(硼)、S、Si和N中的一种或多种元素。
在一些实施方式中,按照化学式Li 1+xMn 1-yA yP 1-zR zO 4形成所述LiMPO 4化合物,在另一些实施方式中,按照化学式Li 1+xC mMn 1-yA yP 1-zR zO 4-nD n形成所述LiMPO 4化合物。关于各取代位点的元素及其选择原则、有益效果,以及原子比范围,前面已经进行了详细的描述,在此不再赘述。其中,元素C的源选自元素C的单质、氧化物、磷酸盐、草酸盐、碳酸盐和硫酸盐中的至少一种,元素A的源选自元素A的单质、氧化物、磷酸盐、草酸盐、碳酸盐、硫酸盐氯化盐、硝酸盐、有机酸盐、氢氧化物、卤化物中的至少一种,元素R的源选自元素R的硫酸盐、硼酸盐、硝酸盐和硅酸盐、有机酸、卤化物、有机酸盐、氧化物、氢氧化物中的至少一种,元素D的源选自元素D的单质和铵盐中的至少一种。
在一些实施方式中,所述酸选自盐酸、硫酸、硝酸、磷酸、有机酸如草酸等中的一种或多种,例如可为草酸。在一些实施方式中,所述酸为浓度为60重量%以下的稀酸。在一些实施方式中,所述锰源可为本领域已知的可用于制备磷酸锰锂的含锰物质,例如所述锰源可选自单质锰、二氧化锰、磷酸锰、草酸锰、碳酸锰中的一种或它们的组合。在一些实施方式中,所述锂源可为本领域已知的可用于制备磷酸锰锂的含锂物质,例如所述锂源可选自碳酸锂、氢氧化锂、磷酸锂、磷酸二氢锂中的一种或它们的组合。在一些实施方式中,所述磷源可为本领域已知的可用于制备磷酸锰锂的含磷物质,例如所述磷源可选自磷酸氢二铵、磷酸二氢铵、磷酸铵和磷酸中的一种或它们的组合。各位 点掺杂元素各自的源的加入量取决于目标掺杂量,锂源、锰源和磷源的用量之比符合化学计量比。
在一些实施方式中,得到具有第一掺杂元素的锰盐颗粒满足以下条件的至少之一:在20-120℃、可选为40-120℃、可选地为60-120℃、更可选地为25-80℃的温度下将锰源、所述锰位元素和酸混合;和/或所述混合在搅拌下进行,所述搅拌在200-800rpm下,可选地400-700rpm下,更可选地500-700rpm进行1-9h,可选地为3-7h,更可选地为可选地为2-6h。
在一些实施方式中,正极活性物质可以具有第一掺杂元素和第二掺杂元素。该方法可以将所述具有第一掺杂元素的锰盐颗粒与锂源、磷源和所述第二掺杂元素的掺杂剂在溶剂中研磨并混合进行8-15小时。例如,将所述具有第一掺杂元素的锰盐颗粒与锂源、磷源和所述第二掺杂元素的掺杂剂在溶剂中混合是在20-120℃、可选为40-120℃的温度下进行1-10h。
具体地,该方法可按照化学式Li 1+xC xMn 1-yA yP 1-zR zO 4-nD n形成LiMPO 4化合物。更具体地,可将所述具有第一掺杂元素的锰盐颗粒与锂源、磷源和所述第二掺杂元素的掺杂剂在溶剂中研磨并混合进行8-15小时。例如,可将锰源、元素A的源和酸在溶剂中溶解生成掺杂元素A的锰盐的悬浊液,将所述悬浊液过滤并烘干得到掺杂了元素A的锰盐;将锂源、磷源、元素C的源、元素R的源和元素D的源、溶剂和所述掺杂了元素A的锰盐加溶剂混合,得到浆料;将所述浆料进行喷雾干燥造粒,得到颗粒;将所述颗粒进行烧结,得到所述正极活性材料。烧结可以是在600-900℃的温度范围内进行6-14小时。
通过控制掺杂时的反应温度、搅拌速率和混合时间,能够使掺杂元素均匀分布,并且烧结后材料的结晶度更高,从而可提升材料的克容量和倍率性能等。
在一些具体地实施方式中,该方法可以包括以下步骤:(1)将锰源、元素B的源和酸在溶剂中溶解并搅拌,生成掺杂元素B的锰盐的悬浊液,将悬浊液过滤并烘干滤饼,得到掺杂了元素B的锰盐;(2)将锂源、磷源、元素A的源、元素C的源和元素D的源、溶剂和由步骤(1)获得的掺杂了元素B的锰盐加入反应容器中研磨并混合,得到浆料;(3)将由步骤(2)获得的浆料转移到喷雾干燥设备中进行喷雾干燥造粒,得到颗粒;(4)将由步骤(3)获得的颗粒进行烧结,得到正极活性材料。
在一些实施方式中,步骤(1)和步骤(2)中所述溶剂各自独立地可为本领域技术人员在锰盐和磷酸锰锂的制备中常规使用的溶剂,例如其可各自独立地选自乙醇、水(例如去离子水)中的至少一种等。
在一些实施方式中,步骤(1)的搅拌在60-120℃范围内的温度下进行。在一些实施方式中,步骤(1)的搅拌通过在200-800rpm,或300-800rpm,或400-800rpm的搅拌速率下进行。在一些实施方式中,步骤(1)的搅拌进行6-12小时。在一些实施方式中,步骤(2)的研磨并混合进行8-15小时。
通过控制掺杂时的反应温度、搅拌速率和混合时间,能够使掺杂元素均匀分布,并且烧结后材料的结晶度更高,从而可提升材料的克容量和倍率性能等。
在一些实施方式中,在步骤(1)中烘干滤饼之前可对滤饼进行洗涤。在一些实施方式中,步 骤(1)中的烘干可通过本领域技术人员已知的方式和已知的条件进行,例如,烘干温度可在120-300℃范围内。可选地,可在烘干后将滤饼研磨成颗粒,例如研磨至颗粒的中值粒径Dv50在50-200nm范围内。其中,中值粒径Dv50是指,所述正极活性材料累计体积分布百分数达到50%时所对应的粒径。在本申请中,正极活性材料的中值粒径Dv50可采用激光衍射粒度分析法测定。例如参照标准GB/T19077-2016,使用激光粒度分析仪(例如Malvern Master Size 3000)进行测定。
在一些实施方式中,在步骤(2)中还向反应容器中加入碳源一起进行研磨并混合。由此,所述方法可获得表面包覆有碳的正极活性材料。可选地,所述碳源包括淀粉、蔗糖、葡萄糖、聚乙烯醇、聚乙二醇、柠檬酸中的一种或几种的组合。所述碳源的用量相对于所述锂源的用量通常在摩尔比0.1%-5%的范围内。所述研磨可通过本领域已知的适合的研磨方式进行,例如可通过砂磨进行。
步骤(3)的喷雾干燥的温度和时间可为本领域中进行喷雾干燥时常规的温度和时间,例如,在100-300℃下,进行1-6小时。
在一些实施方式中,所述烧结在600-900℃的温度范围内进行6-14小时。通过控制烧结温度和时间,能够控制材料的结晶度,降低正极活性材料的循环后Mn与Mn位掺杂元素的溶出量,从而改善电池单体的高温稳定性和循环性能。在一些实施方式中,所述烧结在保护气氛下进行,所述保护气氛可为氮气、惰性气体、氢气或其混合物。
在另一些实施方式中,该正极活性材料可以仅具有Mn为以及P位掺杂元素。所述提供正极活性材料的步骤可包括:步骤(1):将锰源、元素A的掺杂剂和酸在容器中混合并搅拌,得到掺杂有元素A的锰盐颗粒;步骤(2):将所述掺杂有元素A的锰盐颗粒与锂源、磷源和元素R的掺杂剂在溶剂中混合并得到浆料,在惰性气体气氛保护下烧结后得到掺杂有元素A和元素R的内核。在一些可选实施方式中,在所述锰源、所述元素A的掺杂剂与所述酸在溶剂中反应得到掺杂有元素A的锰盐悬浮液后,将所述悬浮液过滤,烘干,并进行砂磨以得到粒径为50-200nm的经元素A掺杂的锰盐颗粒。在一些可选实施方式中,将步骤(2)中的浆料进行干燥得到粉料,然后将粉料烧结得到掺杂有元素A和元素R的正极活性物质。
在一些实施方式中,所述步骤(1)在20-120℃、可选为40-120℃的温度下进行混合;和/或所述步骤(1)中所述搅拌在400-700rpm下进行1-9h,可选地为3-7h。可选地,所述步骤(1)中的反应温度可在约30℃、约50℃、约60℃、约70℃、约80℃、约90℃、约100℃、约110℃或约120℃进行;所述步骤(1)中所述搅拌进行约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时或约9小时;可选地,所述步骤(1)中的反应温度、搅拌时间可在上述任意数值的任意范围内。
在一些实施方式中,所述步骤(2)在20-120℃、可选为40-120℃的温度下进行混合1-12h。可选地,所述步骤(2)中的反应温度可在约30℃、约50℃、约60℃、约70℃、约80℃、约90℃、约100℃、约110℃或约120℃进行;所述步骤(2)中所述混合进行约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时、约10小时、约11小时或约12小时;可选地,所述步骤(2)中的反应温度、混合时间可在上述任意数值的任意范围内。
当正极活性颗粒制备过程中的温度和时间处于上述范围内时,制备获得的正极活性材料的晶格缺陷较少,有利于抑制锰溶出,减少正极活性材料与电解液的界面副反应,从而改善二次电池单体的循环性能和安全性能。
在一些实施方式中,可选地,在制备A元素和R元素掺杂的稀酸锰颗粒的过程中,控制溶液pH为3.5-6,可选地,控制溶液pH为4-6,更可选地,控制溶液pH为4-5。需要说明的是,在本申请中可通过本领域通常使用的方法调节所得混合物的pH,例如可通过添加酸或碱。在一些实施方式中,可选地,在步骤(2)中,所述锰盐颗粒与锂源、磷源的摩尔比为1:0.5-2.1:0.5-2.1,更可选地,所述掺杂有元素A的锰盐颗粒与锂源、磷源的摩尔比为约1:1:1。
在一些实施方式中,可选地,制备A元素和R元素掺杂的磷酸锰锂过程中的烧结条件为:在惰性气体或惰性气体与氢气混合气氛下在600-950℃下烧结4-10小时;可选地,所述烧结可在约650℃、约700℃、约750℃、约800℃、约850℃或约900℃下烧结约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时或约10小时;可选地,所述烧结的温度、烧结时间可在上述任意数值的任意范围内。在制备A元素和R元素掺杂的磷酸锰锂过程中,烧结温度过低以及烧结时间过短时,会导致材料内核的结晶度较低,会影响整体的性能发挥,而烧结温度过高时,材料内核中容易出现杂相,从而影响整体的性能发挥;烧结时间过长时,材料内核颗粒长的较大,从而影响克容量发挥,压实密度和倍率性能等。在一些可选实施方式中,可选地,保护气氛为70-90体积%氮气和10-30体积%氢气的混合气体。
在一些实施方式中,具有上述化学组成的颗粒可作为内核,该方法还包括形成包覆所述内核的壳的步骤。
具体地,包覆的步骤可以包括形成碳包覆层的步骤,具体地可以在形成具有第二掺杂元素颗粒的步骤中同时加入碳源并经过研磨混合等操作。可选地,所述碳源包括淀粉、蔗糖、葡萄糖、聚乙烯醇、聚乙二醇、柠檬酸中的一种或几种的组合。所述碳源的用量相对于所述锂源的用量通常在摩尔比0.1%-5%的范围内。所述研磨可通过本领域已知的适合的研磨方式进行,例如可通过砂磨进行。
或者,该方法还包括形成前述的无机包覆层的步骤。关于无机包覆层的组成、层数等,前面已经进行了详细的描述,在此不再赘述。
以包覆层包括第一包覆层和包覆所述第一包覆层的第二包覆层,所述第一包覆层含有焦磷酸盐QP 2O 7和磷酸盐XPO 4,第二包覆层含碳为例,所述方法包括:提供QP 2O 7粉末和包含碳的源的XPO 4悬浊液,将所述磷酸锰锂氧化物、QP 2O 7粉末加入到包含碳的源的XPO 4悬浊液中并混合,经烧结获得正极活性材料。
其中,所述QP 2O 7粉末是市售产品,或者可选地所述提供QP 2O 7粉末包括:将元素Q的源和磷的源添加到溶剂中,得到混合物,调节混合物的pH为4-6,搅拌并充分反应,然后经干燥、烧结获得,且所述提供QP 2O 7粉末满足以下条件的至少之一:所述干燥为在100-300℃、可选150-200℃下干燥4-8h;所述烧结为在500-800℃、可选650-800℃下,在惰性气体气氛下烧结4-10h。例如,具体地,形成所述包覆层的烧结温度为500-800℃,烧结时间为4-10h。
在一些实施方式中,可选地,所述包含碳的源的XPO 4悬浊液是市售可得的,或者可选地,通过以下方法来制备:将锂的源、X的源、磷的源和碳的源在溶剂中混合均匀,然后将反应混合物升温至60-120℃保持2-8小时即可获得包含碳的源的XPO 4悬浊液。可选地,在制备包含碳的源的XPO 4悬浊液的过程中,调节所述混合物的pH为4-6。
在一些实施方式中,可选地,本申请双层包覆的磷酸锰锂正极活性材料的一次颗粒的中值粒径Dv50为50-2000nm。
在另一些实施方式中,包覆层包括包覆所述LiMPO 4化合物的第一包覆层、包覆所述第一包覆层的第二包覆层以及包覆所述第二包覆层的第三包覆层,其中,所述第一包覆层包括晶态焦磷酸盐Li aQP 2O 7和/或Q b(P 2O 7) c,其中,0≤a≤2,1≤b≤4,1≤c≤6,所述a、b和c的值满足以下条件:使所述晶态焦磷酸盐Li aQP 2O 7或Q b(P 2O 7) c保持电中性,所述晶态焦磷酸盐Li aQP 2O 7和Q b(P 2O 7) c中的Q各自独立地为选自Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素;所述第二包覆层包括晶态磷酸盐XPO 4,其中,所述X为选自Li、Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素;所述第三包覆层为碳。
具体地,在第一包覆步骤中,控制溶解有元素Q的源、磷源和酸以及任选地锂源的溶液pH为3.5-6.5,然后搅拌并反应1-5h,然后将所述溶液升温至50-120℃,并保持该温度2-10h,和/或,烧结在650-800℃下进行2-6小时。可选地,在第一包覆步骤中,所述反应充分进行。可选地,在第一包覆步骤中,所述反应进行约1.5小时、约2小时、约3小时、约4小时、约4.5小时或约5小时。可选地,第一包覆步骤中,所述反应的反应时间可在上述任意数值的任意范围内。可选地,在第一包覆步骤中,控制溶液pH为4-6。可选地,在第一包覆步骤中,将所述溶液升温至约55℃、约60℃、约70℃、约80℃、约90℃、约100℃、约110℃或约120℃,并在该温度下保持约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时或约10小时;可选地,第一包覆步骤中,所述升温的温度和保持时间可在上述任意数值的任意范围内。可选地,在所述第一包覆步骤中,所述烧结可在约650℃、约700℃、约750℃、或约800℃下烧结约2小时、约3小时、约4小时、约5小时或约6小时;可选地,所述烧结的温度、烧结时间可在上述任意数值的任意范围内。
在所述第一包覆步骤中,通过将烧结温度和时间控制在以上范围内,可以避免以下情况:当所述第一包覆步骤中的烧结温度过低以及烧结时间过短时,会导致第一包覆层的结晶度低,非晶态物质较多,这样会导致抑制金属溶出的效果下降,从而影响二次电池单体的循环性能和高温存储性能;而烧结温度过高时,会导致第一包覆层出现杂相,也会影响到其抑制金属溶出的效果,从而影响二次电池单体的循环和高温存储性能等;烧结时间过长时,会使第一包覆层的厚度增加,影响Li+的迁移,从而影响材料的克容量发挥和倍率性能等。
在一些实施方式中,所述第二包覆步骤中,将元素X的源、磷源和酸溶于溶剂后,搅拌并反应1-10h,然后将所述溶液升温至60-150℃,并保持该温度2-10h,和/或,烧结在500-700℃下进行6-10小时。可选地,在第二包覆步骤中,所述反应充分进行。可选地,在第二包覆步骤中,所述 反应进行约1.5小时、约2小时、约3小时、约4小时、约4.5小时、约5小时、约6小时、约7小时、约8小时、约9小时或约10小时。可选地,第二包覆步骤中,所述反应的反应时间可在上述任意数值的任意范围内。可选地,在第二包覆步骤中,将所述溶液升温至约65℃、约70℃、约80℃、约90℃、约100℃、约110℃、约120℃、约130℃、约140℃或约150℃,并在该温度下保持约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时或约10小时;可选地,第二包覆步骤中,所述升温的温度和保持时间可在上述任意数值的任意范围内。
在所述提供内核材料的步骤和所述第一包覆步骤和所述第二包覆步骤中,在烧结之前,即,在发生化学反应的内核材料的制备中,以及在第一包覆层悬浮液和第二包覆层悬浮液的制备中,通过如上所述选择适当的反应温度和反应时间,从而能够避免以下情况:反应温度过低时,则反应无法发生或反应速率较慢;温度过高时,产物分解或形成杂相;反应时间过长时,产物粒径较大,可能会增加后续工艺的时间和难度;反应时间过短时,则反应不完全,获得的产物较少。
可选地,在第二包覆步骤中,所述烧结可在约550℃、约600℃或约700℃下烧结约6小时、约7小时、约8小时、约9小时或约10小时;可选地,所述烧结的温度、烧结时间可在上述任意数值的任意范围内。在所述第二包覆步骤中,通过将烧结温度和时间控制在以上范围内,可以避免以下情况:当所述第二包覆步骤中的烧结温度过低以及烧结时间过短时,会导致第二包覆层的结晶度低,非晶态较多,降低材料表面反应活性的性能下降,从而影响二次电池单体的循环和高温存储性能等;而烧结温度过高时,会导致第二包覆层出现杂相,也会影响到其降低材料表面反应活性的效果,从而影响二次电池单体的循环和高温存储性能等;烧结时间过长时,会使第二包覆层的厚度增加,影响材料的电压平台,从而使材料的能量密度下降等。
在一些实施方式中,所述第三包覆步骤中的烧结在700-800℃下进行6-10小时。可选地,在第三包覆步骤中,所述烧结可在约700℃、约750℃或约800℃下烧结约6小时、约7小时、约8小时、约9小时或约10小时;可选地,所述烧结的温度、烧结时间可在上述任意数值的任意范围内。在所述第三包覆步骤中,通过将烧结温度和时间控制在以上范围内,可以避免以下情况:当所述第三包覆步骤中的烧结温度过低时,会导致第三包覆层的石墨化程度下降,影响其导电性,从而影响材料的克容量发挥;烧结温度过高时,会造成第三包覆层的石墨化程度过高,影响Li+的传输,从而影响材料的克容量发挥等;烧结时间过短时,会导致包覆层过薄,影响其导电性,从而影响材料的克容量发挥;烧结时间过长时,会导致包覆层过厚,影响材料的压实密度等。
在上述第一包覆步骤、第二包覆步骤、第三包覆步骤中,所述干燥均在100℃至200℃、可选为110℃至190℃、更可选为120℃至180℃、甚至更可选为120℃至170℃、最可选为120℃至160℃的干燥温度下进行,干燥时间为3-9h、可选为4-8h,更可选为5-7h,最可选为约6h。
本申请的第三方面提供一种正极片,其包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极活性材料或通过本申请第二方面的方法制备的正极活性材料,并且所述正极活性材料在所述正极膜层中的含量为10重量%以上,基于所述正极膜层的总重量计。
在一些实施方式中,所述正极活性材料在所述正极膜层中的含量为95-99.5重量%,基于所述正极膜层的总重量计。
本申请的第四方面提供一种二次电池单体,其包括本申请第一方面的正极活性材料或通过本申请第二方面的方法制备的正极活性材料或本申请第三方面的正极片。
通常情况下,二次电池单体包括正极片、负极片、电解质和隔离膜。在电池单体充放电过程中,活性离子在正极片和负极片之间往返嵌入和脱出。电解质在正极片和负极片之间起到传导离子的作用。隔离膜设置在正极片和负极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
以下适当参照附图对本申请的二次电池单体、电池单体模块、电池单体包和用电装置进行说明。
[正极片]
正极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极片:将上述用于制备正极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极片。
[负极片]
负极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成 在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池单体的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池单体负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极片:将上述用于制备负极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极片。
[电解质]
电解质在正极片和负极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池单体某些性能的添加剂,例如改善电池单体过充性能的添加剂、改善电池单体高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池单体中还包括隔离膜。本申请对隔离膜的种类没有特别的限制, 可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极片、负极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池单体可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池单体的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池单体的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池单体的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。
在一些实施方式中,电池单体盒可包括壳体和盖板。其中,壳体可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体具有与容纳腔连通的开口,盖板能够盖设于所述开口,以封闭容纳腔。正极片、负极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件。电极组件封装于所述容纳腔内。电解液浸润于电极组件中。二次电池单体所含电极组件的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池单体可以组装成电池单体模块,电池单体模块所含二次电池单体的数量可以为一个或多个,具体数量本领域技术人员可根据电池单体模块的应用和容量进行选择。
在电池单体中,多个二次电池单体可以是沿电池单体的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池单体进行固定。
在一些实施方式中,上述电池单体模块还可以组装成电池单体包,电池单体包所含电池单体模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池单体包的应用和容量进行选择。
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
一、正极活性材料性质及电池单体性能测试方法
1.晶格变化率测量方法
在25℃恒温环境下,将正极活性材料样品置于XRD(型号为Bruker D8 Discover)中,采用1°/min对样品进行测试,并对测试数据进行整理分析,参照标准PDF卡片,计算出此时的晶格常数a0、b0、c0和v0(a0,b0和c0表示晶胞各个方面上的长度大小,v0表示晶胞体积,可通过XRD精修结果直接获取)。
采用上述实施例中扣电制备方法,将所述正极活性材料样品制备成扣电,并对上述扣电以0.05C小倍率进行充电,直至电流减小至0.01C。然后将扣电中的正极片取出,并置于DMC中浸泡8小时。然后烘干,刮粉,并筛选出其中粒径小于500nm的颗粒。取样并按照与上述测试新鲜样品同样的方式计算出其晶格常数v1,将(v0-v1)/v0×100%作为其完全脱嵌锂前后的晶格变化率示于表中。
2.Li/Mn反位缺陷浓度测量方法
将“晶格变化率测量方法”中测试的XRD结果与标准晶体的PDF(Powder Diffraction File)卡片对比,得出Li/Mn反位缺陷浓度。具体而言,将“晶格变化率测量方法”中测试的XRD结果导入通用结构分析系统(GSAS)软件中,自动获得精修结果,其中包含了不同原子的占位情况,通过读取精修结果获得Li/Mn反位缺陷浓度。
3.表面氧价态测量方法
取5g正极活性材料样品按照上述实施例中所述扣电制备方法制备成扣电。对扣电采用0.05C小倍率进行充电,直至电流减小至0.01C。然后将扣电中的正极片取出,并置于DMC中浸泡8小时。然后烘干,刮粉,并筛选出其中粒径小于500nm的颗粒。将所得颗粒用电子能量损失谱(EELS,所用仪器型号为Talos F200S)进行测量,获取能量损失近边结构(ELNES),其反映元素的态密度和能级分布情况。根据态密度和能级分布,通过对价带态密度数据进行积分,算出占据的电子数,从而推算出充电后的表面氧的价态。
4.压实密度测量方法
取5g的粉末放于压实专用模具(美国CARVER模具,型号13mm)中,然后将模具放在压实密度仪器上。施加3T的压力,在设备上读出压力下粉末的厚度(卸压后的厚度),通过ρ=m/v,计算出压实密度。其中使用的面积值为标准的小图片面积1540.25mm 2
5.循环后Mn(以及Mn位掺杂的Fe)溶出量测量方法
将45℃下循环至容量衰减至80%后的全电池单体采用0.1C倍率进行放电至截止电压2.0V。然后将电池单体拆开,取出负极片,在负极片上随机取30个单位面积(1540.25mm 2)的圆片,用Agilent ICP-OES730测试电感耦合等离子体发射光谱(ICP)。根据ICP结果计算其中Fe(如果正极活性材料的Mn位掺杂有Fe的话)和Mn的量,从而计算循环后Mn(以及Mn位掺杂的Fe)的溶出量。测试标准依据EPA-6010D-2014。
6.扣式电池单体初始克容量测量方法
在2.5~4.3V下,将扣式电池单体按照0.1C充电至4.3V,然后在4.3V下恒压充电至电流小于等于0.05mA,静置5min,然后按照0.1C放电至2.0V,此时的放电容量为初始克容量,记为D0。
7.3C充电恒流比测量方法
在25℃恒温环境下,将新鲜全电池单体静置5min,按照1/3C放电至2.5V。静置5min,按照1/3C充电至4.3V,然后在4.3V下恒压充电至电流小于等于0.05mA。静置5min,记录此时的充电容量为C0。按照1/3C放电至2.5V,静置5min,再按照3C充电至4.3V,静置5min,记录此时的充电容量为C1。3C充电恒流比即为C1/C0×100%。3C充电恒流比越高,说明电池单体的倍率性能越好。
8.全电池单体45℃循环性能测试
在45℃的恒温环境下,在2.5~4.3V下,将全电池单体按照1C充电至4.3V,然后在4.3V下恒压充电至电流小于等于0.05mA。静置5min,然后按照1C放电至2.5V,记录此时的放电容量为D0。 重复前述充放电循环,直至放电容量降低到D0的80%。记录此时电池单体经过的循环圈数。
9.全电池单体60℃胀气测试
在60℃下,存储100%充电状态(SOC)的全电池单体。在存储前后及过程中测量电芯的开路电压(OCV)和交流内阻(IMP)以监控SOC,并测量电芯的体积。其中在每存储48h后取出全电池单体,静置1h后测试开路电压(OCV)、内阻(IMP),并在冷却至室温后用排水法测量电芯体积。排水法即先用表盘数据自动进行单位转换的天平单独测量电芯的重力F 1,然后将电芯完全置于去离子水(密度已知为1g/cm 3)中,测量此时的电芯的重力F 2,电芯受到的浮力F 即为F 1-F 2,然后根据阿基米德原理F =ρ×g×V ,计算得到电芯体积V=(F 1-F 2)/(ρ×g)。
由OCV、IMP测试结果来看,本实验过程中直至存储结束,实施例的电池单体始终保持99%以上的SOC。
存储30天后,测量电芯体积,并计算相对于存储前的电芯体积,存储后的电芯体积增加的百分比。
另外,测量电芯残余容量。在2.5~4.3V下,将全电池单体按照1C充电至4.3V,然后在4.3V下恒压充电至电流小于等于0.05mA。静置5min,记录此时的充电容量为电芯残余容量。
10.正极活性材料中锰元素和磷元素的测量
将5g上述制得的正极活性材料在100ml逆王水(浓盐酸:浓硝酸=1:3)中(浓盐酸浓度~37%,浓硝酸浓度~65%)溶解,利用ICP测试溶液各元素的含量,然后对锰元素或磷元素的含量进行测量和换算(锰元素或磷元素的量/正极活性材料的量*100%),得到其重量占比。
11.晶面间距和夹角测试
取1g上述制得的各正极活性材料粉末于50mL的试管中,并在试管中注入10mL质量分数为75%的酒精,然后进行充分搅拌分散30分钟,然后用干净的一次性塑料吸管取适量上述溶液滴加在300目铜网上,此时,部分粉末将在铜网上残留,将铜网连带样品转移至TEM(Talos F200s G2)样品腔中进行测试,得到TEM测试原始图片,保存原始图片格式(xx.dm3)。将上述TEM测试所得原始图片在DigitalMicrograph软件中打开,并进行傅里叶变换(点击操作后由软件自动完成)得到衍射花样,量取衍射花样中衍射光斑到中心位置的距离,即可得到晶面间距,夹角根据布拉格方程进行计算得到。通过得到的晶面间距和相应夹角数据,与其标准值比对,即可对包覆层的不同物质进行识别。
12.包覆层厚度测试
包覆层的厚度大小测试主要通过FIB从上述制得的正极活性材料单个颗粒中间切取100nm左右厚度的薄片,然后对薄片进行TEM测试,得到TEM测试原始图片,保存原始图片格式(xx.dm3)。
将上述TEM测试所得原始图片在DigitalMicrograph软件中打开,通过晶格间距和夹角信息,识别出包覆层,量取包覆层的厚度。
对所选颗粒测量三个位置处的厚度,取平均值。
13.第三层包覆层碳中SP2形态和SP3形态摩尔比的测定
本测试通过拉曼(Raman)光谱进行。通过对Raman测试的能谱进行分峰,得到Id/Ig,其中Id为SP3形态碳的峰强度,Ig为SP2形态碳的峰强度,从而确认两者的摩尔比。
二、正极材料以及二次电池单体的制备
本申请实施例涉及的原材料来源如下:
名称 化学式 厂家 规格
碳酸锰 MnCO 3 山东西亚化学工业有限公司 1Kg
碳酸锂 Li 2CO 3 山东西亚化学工业有限公司 1Kg
碳酸镁 MgCO 3 山东西亚化学工业有限公司 1Kg
碳酸锌 ZnCO 3 武汉鑫儒化工有限公司 25Kg
碳酸亚铁 FeCO 3 西安兰之光精细材料有限公司 1Kg
硫酸镍 NiCO 3 山东西亚化学工业有限公司 1Kg
硫酸钛 Ti(SO 4) 2 山东西亚化学工业有限公司 1Kg
硫酸钴 CoSO 4 厦门志信化学有限公司 500g
二氯化钒 VCl 2 上海金锦乐实业有限公司 1Kg
二水合草酸 C 2H 2O 4·2H 2O 上海金锦乐实业有限公司 1Kg
磷酸二氢铵 NH 4H 2PO 4 上海澄绍生物科技有限公司 500g
蔗糖 C 12H 22O 11 上海源叶生物科技有限公司 100g
硫酸 H 2SO 4 深圳海思安生物技术有限公司 质量分数60%
硝酸 HNO 3 安徽凌天精细化工有限公司 质量分数60%
亚硅酸 H 2SiO 3 上海源叶生物科技有限公司 100g
硼酸 H 3BO 3 常州市启迪化工有限公司 1Kg
实施例1
1)正极活性材料的制备
制备掺杂的草酸锰:将1.3mol的MnSO 4﹒H 2O、0.7mol的FeSO 4﹒H 2O在混料机中充分混合6小时。将混合物转移至反应釜中,并加入10L去离子水和2mol二水合草酸(以草酸计)。将反应釜加热至80℃,以600rpm的转速搅拌6小时,反应终止(无气泡产生),得到Fe掺杂的草酸锰悬浮液。然后过滤所述悬浮液,将滤饼在120℃下烘干,之后进行研磨,得到中值粒径Dv 50为100nm左右的Fe掺杂的草酸锰颗粒。
制备掺杂的磷酸锰锂:取1mol上述草酸锰颗粒、0.497mol碳酸锂、0.001mol的Mo(SO 4) 3、含有0.999mol磷酸的浓度为85%的磷酸水溶液、0.001mol的H 4SiO 4、0.0005mol的NH 4HF 2和0.005mol蔗糖加入到20L去离子水中。将混合物转入砂磨机中充分研磨搅拌10小时,得到浆料。将所述浆料转移到喷雾干燥设备中进行喷雾干燥造粒,设定干燥温度为250℃,干燥4小时,得到颗粒。在氮气(90体积%)+氢气(10体积%)保护气氛中,将上述粉料在700℃下烧结10小时,得到碳包 覆的Li 0.994Mo 0.001Mn 0.65Fe 0.35P 0.999Si 0.001O 3.999F 0.001。正极活性材料可用电感耦合等离子体发射光谱(ICP)进行元素含量的检测。
2)扣式电池单体的制备
将上述正极活性材料、聚偏二氟乙烯(PVDF)、乙炔黑以90:5:5的重量比加入至N-甲基吡咯烷酮(NMP)中,在干燥房中搅拌制成浆料。在铝箔上涂覆上述浆料,干燥、冷压制成正极片。涂覆量为0.2g/cm 2,压实密度为2.0g/cm 3
采用锂片作为负极,采用1mol/L的LiPF 6在体积比1:1:1的碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸二甲酯(DMC)中的溶液为电解液,与上述制备的正极片一起在扣电箱中组装成扣式电池单体(下文也称“扣电”)。
3)全电池单体的制备
将上述正极活性材料与导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比92:2.5:5.5在N-甲基吡咯烷酮溶剂体系中混合均匀后,涂覆于铝箔上并烘干、冷压,得到正极片。涂覆量为0.4g/cm 2,压实密度为2.4g/cm 3
将负极活性材料人造石墨、硬碳、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比90:5:2:2:1在去离子水中混合均匀后,涂覆于铜箔上烘干、冷压,得到负极片。涂覆量为0.2g/cm 2,压实密度为1.7g/cm 3
以聚乙烯(PE)多孔聚合薄膜作为隔离膜,将正极片、隔离膜、负极片按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到裸电芯。将裸电芯置于外包装中,注入与上述制备扣电时相同的电解液并封装,得到全电池单体(下文也称“全电”)。
实施例2
除了在“1)正极活性材料的制备”中,将高纯Li 2CO 3的量改变为0.4885mol,将Mo(SO 4) 3换成MgSO 4,将FeSO 4﹒H 2O的量改变为0.68mol,在制备掺杂的草酸锰时还加入0.02mol的Ti(SO 4) 2,并将H 4SiO 4换成HNO 3之外,其他与实施例1相同。
实施例3
除了在“1)正极活性材料的制备”中,将高纯Li 2CO 3的量改变为0.496mol,将Mo(SO 4) 3换成W(SO 4) 3,将H 4SiO 4换成H 2SO 4之外,其他与实施例1相同。
实施例4
除了在“1)正极活性材料的制备”中,将高纯Li 2CO 3的量改变为0.4985mol,将0.001mol的Mo(SO 4) 3换成0.0005mol的Al 2(SO 4) 3和NH 4HF 2换成NH 4HCl 2之外,其他与实施例1相同。
实施例5
除了在“1)正极活性材料的制备”中,将0.7mol的FeSO 4﹒H 2O改为0.69mol,在制备掺杂的草酸锰时还加入0.01molVCl 2,将Li 2CO 3的量改变为0.4965mol,将0.001mol的Mo(SO 4) 3换成0.0005mol的Nb 2(SO 4) 5和H 4SiO 4换成H 2SO 4之外,其他与实施例1相同。
实施例6
除了在“1)正极活性材料的制备”中,将FeSO 4﹒H 2O的量改为0.68mol,在制备掺杂的草酸锰时还加入0.01mol的VCl 2和0.01mol的MgSO 4,将Li 2CO 3的量改变为0.4965mol,将0.001mol的Mo(SO 4) 3换成0.0005mol的Nb 2(SO 4) 5和H 4SiO 4换成H 2SO 4之外,其他与实施例1相同。
实施例7
除了在“1)正极活性材料的制备”中,将MgSO 4换成CoSO 4之外,其他与实施例6相同。
实施例8
除了在“1)正极活性材料的制备”中,将MgSO 4换成NiSO 4之外,其他与实施例6相同。
实施例9
除了在“1)正极活性材料的制备”中,将FeSO 4﹒H 2O的量改为0.698mol,在制备掺杂的草酸锰时还加入0.002mol的Ti(SO 4) 2,将Li 2CO 3的量改变为0.4955mol,将0.001mol的Mo(SO 4) 3换成0.0005mol的Nb 2(SO 4) 5,H 4SiO 4换成H 2SO 4,NH 4HF 2制成NH 4HCl 2之外,其他与实施例1相同。
实施例10
除了在“1)正极活性材料的制备”中,将FeSO 4﹒H 2O的量改为0.68mol,在制备掺杂的草酸锰时还加入0.01mol的VCl 2和0.01mol的MgSO 4,将Li 2CO 3的量改变为0.4975mol,将0.001mol的Mo(SO 4) 3换成0.0005mol的Nb 2(SO 4) 5和NH 4HF 2换成NH 4HBr 2之外,其他与实施例1相同。
实施例11
除了在“1)正极活性材料的制备”中,将FeSO 4﹒H 2O的量改为0.69mol,在制备掺杂的草酸锰时还加入0.01mol的VCl 2,将Li 2CO 3的量改变为0.499mol,将Mo(SO 4) 3换成MgSO 4和NH 4HF 2换成NH 4HBr 2之外,其他与实施例1相同。
实施例12
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.36mol,将FeSO 4﹒H 2O的量改为0.6mol,在制备掺杂的草酸锰时还加入0.04mol的VCl 2,将Li 2CO 3的量改变为0.4985mol,将Mo(SO 4) 3换成MgSO 4和H 4SiO 4换成HNO 3之外,其他与实施例1相同。
实施例13
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.16mol,FeSO 4﹒H 2O的量改为0.8mol之外,其他与实施例12相同。
实施例14
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.3mol,VCl 2的量改为0.1mol之外,其他与实施例12相同。
实施例15
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.2mol,在制备掺杂的草酸锰时还加入0.1mol的VCl 2,将Li 2CO 3的量改变为0.494mol,将0.001mol的Mo(SO 4) 3换成0.005mol的MgSO 4和H 4SiO 4换成H 2SO 4之外,其他与实施例1相同。
实施例16
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.2mol,在制备掺杂的草酸锰时还加入0.1mol的VCl 2,将Li 2CO 3的量改变为0.467mol,将0.001mol的Mo(SO 4) 3换成0.005mol的MgSO 4,0.001mol的H 4SiO 4换成0.005mol的H 2SO 4和1.175mol浓度为85%的磷酸换成1.171mol浓度为85%的磷酸之外,其他与实施例1相同。
实施例17
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.2mol,在制备掺杂的草酸锰时还加入0.1mol的VCl 2,将Li 2CO 3的量改变为0.492mol,将0.001mol的Mo(SO 4) 3换成0.005mol的MgSO 4,H 4SiO 4换成H 2SO 4和0.0005mol的NH 4HF 2改成0.0025mol之外,其他与实施例1相同。
实施例18
除了在“1)正极活性材料的制备”中,将FeSO 4﹒H 2O的量改为0.5mol,在制备掺杂的草酸锰时还加入0.1mol的VCl 2和0.1mol的CoSO 4,将Li 2CO 3的量改变为0.492mol,将0.001mol的Mo(SO 4) 3换成0.005mol的MgSO 4,H 4SiO 4换成H 2SO 4和0.0005mol的NH 4HF 2改成0.0025mol之外,其他与实施例1相同。
实施例19
除了在“1)正极活性材料的制备”中,将FeSO 4﹒H 2O的量改为0.4mol,将0.1mol的CoSO 4改为0.2mol之外,其他与实施例18相同。
实施例20
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.5mol,FeSO 4﹒H 2O的量改为0.1mol,CoSO 4的量改为0.3mol之外,其他与实施例18相同。
实施例21
除了在“1)正极活性材料的制备”中,将0.1mol的CoSO 4换成0.1mol的NiSO 4之外,其他与实施例18相同。
实施例22
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.5mol,FeSO 4﹒H 2O的量改为0.2mol,将0.1mol的CoSO 4换成0.2mol的NiSO 4之外,其他与实施例18相同。
实施例23
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.4mol,FeSO 4﹒H 2O的量改为0.3mol,CoSO 4的量改为0.2mol之外,其他与实施例18相同。
实施例24
除了在“1)正极活性材料的制备”中,将1.3mol的MnSO 4﹒H 2O改为1.2mol,0.7mol的FeSO 4﹒H 2O改为0.5mol,在制备掺杂的草酸锰时还加入0.1mol的VCl 2和0.2mol的CoSO 4,将Li 2CO 3的量改变为0.497mol,将0.001mol的Mo(SO 4) 3换成0.005mol的MgSO 4,H 4SiO 4换成H 2SO 4和0.0005mol的NH 4HF 2改成0.0025mol之外,其他与实施例1相同。
实施例25
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.0mol,FeSO 4﹒H 2O的量改为0.7mol,CoSO 4的量改为0.2mol之外,其他与实施例18相同。
实施例26
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.4mol,FeSO 4﹒H 2O的量改为0.3mol,在制备掺杂的草酸锰时还加入0.1mol的VCl 2和0.2mol的CoSO 4,将Li 2CO 3的量改变为0.4825mol,将0.001mol的Mo(SO 4) 3换成0.005mol的MgSO 4,H 4SiO 4的量改成0.1mol,磷酸的量改成0.9mol和NH 4HF 2的量改成0.04mol之外,其他与实施例1相同。
实施例27
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.4mol,FeSO 4﹒H 2O的量改为0.3mol,在制备掺杂的草酸锰时还加入0.1mol的VCl 2和0.2mol的CoSO 4,将Li 2CO 3的量改变为0.485mol,将0.001mol的Mo(SO 4) 3换成0.005mol的MgSO 4,H 4SiO 4的量改成0.08mol,磷酸的量改成0.92mol和NH 4HF 2的量改成0.05mol之外,其他与实施例1相同。
对比例1
制备草酸锰:将1mol的MnSO 4﹒H 2O加至反应釜中,并加入10L去离子水和1mol二水合草酸(以草酸计)。将反应釜加热至80℃,以600rpm的转速搅拌6小时,反应终止(无气泡产生),得到草酸锰悬浮液。然后过滤所述悬浮液,将滤饼在120℃下烘干,之后进行研磨,得到中值粒径Dv 50为50-200nm的草酸锰颗粒。
制备磷酸锰锂:取1mol上述草酸锰颗粒、0.5mol碳酸锂、含有1mol磷酸的浓度为85%的磷酸水溶液和0.005mol蔗糖加入到20L去离子水中。将混合物转入砂磨机中充分研磨搅拌10小时,得到浆料。将所述浆料转移到喷雾干燥设备中进行喷雾干燥造粒,设定干燥温度为250℃,干燥4小时,得到颗粒。在氮气(90体积%)+氢气(10体积%)保护气氛中,将上述粉料在700℃下烧结10小时,得到碳包覆的LiMnPO 4
实施例55
除了在对比例1中,将1mol的MnSO 4﹒H 2O换成0.85mol的MnSO 4﹒H 2O和0.15mol的FeSO 4﹒H 2O,并加入到混料机中充分混合6小时之后再加入反应釜之外,其它与对比例1相同。
实施例56
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.9mol,0.7mol的FeSO 4﹒H 2O换成0.1mol的ZnSO 4,将Li 2CO 3的量改变为0.495mol,将0.001mol的Mo(SO 4) 3换成0.005mol的MgSO 4,将磷酸的量改成1mol,不加入H 4SiO 4和NH 4HF 2之外,其他与实施例1相同。
实施例57
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.2mol,FeSO 4﹒H 2O的量改为0.8mol,将Li 2CO 3的量改变为0.45mol,将0.001mol的Mo(SO 4) 3换成0.005mol的Nb 2(SO 4) 5,将0.999mol的磷酸改成1mol,0.0005mol的NH 4HF 2改成0.025mol,不加入H 4SiO 4之外,其他与实施例1相同。
实施例58
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.4mol,FeSO 4﹒H 2O的量改为0.6mol,将Li 2CO 3的量改变为0.38mol,将0.001mol的Mo(SO 4) 3换成0.12mol的MgSO 4之外,其他与实施例1相同。
实施例59
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为0.8mol,0.7mol的FeSO 4﹒H 2O换成1.2mol的ZnSO 4,将Li 2CO 3的量改变为0.499mol,将0.001mol的Mo(SO 4) 3换成0.001mol的MgSO 4之外,其他与实施例1相同。
实施例60
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.4mol,FeSO 4﹒H 2O的量改为0.6mol,将Li 2CO 3的量改变为0.534mol,将0.001mol的Mo(SO 4) 3换成0.001mol的MgSO 4,将磷酸的量改成0.88mol,H 4SiO 4的量改成0.12mol,NH 4HF 2的量改成0.025mol之外,其他与实施例1相同。
实施例61
除了在“1)正极活性材料的制备”中,将MnSO 4﹒H 2O的量改为1.2mol,FeSO 4﹒H 2O的量改为0.8mol,将Li 2CO 3的量改变为0.474mol,将0.001mol的Mo(SO 4) 3换成0.001mol的MgSO 4,将磷酸的量改成0.93mol,H 4SiO 4的量改成0.07mol,NH 4HF 2的量改成0.06mol之外,其他与实施例1相同。
表20中示出实施例1-11,55-61和对比例1的正极活性材料组成。
表21中示出实施例1-11,55-61和对比例1的正极活性材料或扣电或全电按照上述性能测试方法测得的性能数据。表22示出实施例12-27的正极活性材料组成。表23中示出实施例12-27的正极活性材料或扣电或全电按照上述性能测试方法测得的性能数据。
表20实施例1-11,55-61和对比例1的正极活性材料组成
Figure PCTCN2023070129-appb-000017
Figure PCTCN2023070129-appb-000018
表21实施例1-11,55-61和对比例1的正极活性材料或扣电或全电按照上述性能测试方法测得的性能数据
Figure PCTCN2023070129-appb-000019
Figure PCTCN2023070129-appb-000020
表22实施例12-27的正极活性材料组成
  正极活性材料 (1-y):y a:x
实施例12 Li 0.997Mg 0.001Mn 0.68Fe 0.3V 0.02P 0.999N 0.001O 3.999F 0.001 2.26 997
实施例13 Li 0.997Mg 0.001Mn 0.58Fe 0.4V 0.02P 0.999N 0.001O 3.999F 0.001 1.45 997
实施例14 Li 0.997Mg 0.001Mn 0.65Fe 0.3V 0.05P 0.999N 0.001O 3.999F 0.001 2.17 997
实施例15 Li 0.988Mg 0.005Mn 0.6Fe 0.35V 0.05P 0.999S 0.001O 3.999F 0.001 1.71 197.6
实施例16 Li 0.984Mg 0.005Mn 0.6Fe 0.35V 0.05P 0.995S 0.005O 3.999F 0.001 1.71 196.8
实施例17 Li 0.984Mg 0.005Mn 0.6Fe 0.35V 0.05P 0.999S 0.001O 3.995F 0.005 1.71 196.8
实施例18 Li 0.984Mg 0.005Mn 0.65Fe 0.25V 0.05Co 0.05P 0.999S 0.001O 3.995F 0.005 2.60 196.8
实施例19 Li 0.984Mg 0.005Mn 0.65Fe 0.20V 0.05Co 0.10P 0.999S 0.001O 3.995F 0.005 3.25 196.8
实施例20 Li 0.984Mg 0.005Mn 0.75Fe 0.05V 0.05Co 0.15P 0.999S 0.001O 3.995F 0.005 15.0 196.8
实施例21 Li 0.984Mg 0.005Mn 0.65Fe 0.25V 0.05Ni 0.05P 0.999S 0.001O 3.995F 0.005 2.60 196.8
实施例22 Li 0.984Mg 0.005Mn 0.75Fe 0.10V 0.05Ni 0.10P 0.999S 0.001O 3.995F 0.005 7.50 196.8
实施例23 Li 0.984Mg 0.005Mn 0.7Fe 0.15V 0.05Co 0.10P 0.999S 0.001O 3.995F 0.005 4.67 196.8
实施例24 Li 0.984Mg 0.005Mn 0.6Fe 0.25V 0.05Co 0.10P 0.999S 0.001O 3.995F 0.005 2.40 196.8
实施例25 Li 0.984Mg 0.005Mn 0.5Fe 0.35V 0.05Co 0.10P 0.999S 0.001O 3.995F 0.005 1.43 196.8
实施例26 Li 1.01Mg 0.005Mn 0.7Fe 0.15V 0.05Co 0.10P 0.9Si 0.1O 3.92F 0.08 4.67 202
实施例27 Li 0.97Mg 0.005Mn 0.7Fe 0.15V 0.05Co 0.10P 0.92Si 0.08O 3.9F 0.1 4.67 194
表23实施例12-27的正极活性材料或扣电或全电按照上述性能测试方法测得的性能数据
Figure PCTCN2023070129-appb-000021
Figure PCTCN2023070129-appb-000022
实施例28-41
按照与实施例1相同的方式制备正极活性材料、扣电和全电,但改变制备掺杂的草酸锰时的搅拌转速、温度、在砂磨机中研磨搅拌的时间、烧结温度和烧结时间,具体如下表24所示。
并且,对实施例28-41的正极活性材料或扣电或全电按照上述性能测试方法测得性能数据,如表25所示。
表24实施例28-41中制备掺杂的草酸锰时的搅拌转速、温度、在砂磨机中研磨搅拌的时间、 烧结温度和烧结时间
Figure PCTCN2023070129-appb-000023
表25实施例28-41的正极活性材料或扣电或全电按照上述性能测试方法测得性能数据
Figure PCTCN2023070129-appb-000024
Figure PCTCN2023070129-appb-000025
实施例42-54
按照与实施例1相同的方式制备正极活性材料、扣电和全电,但改变锂源、锰源、磷源和Li位、Mn位、P位以及O位掺杂元素的源,具体如下表26所示。制得的正极活性材料组成与实施例1相同,即,均为Li 0.994Mo 0.001Mn 0.65Fe 0.35P 0.999Si 0.001O 3.999F 0.001
并且,对实施例42-54的正极活性材料或扣电或全电按照上述性能测试方法测得性能数据,如表27所示。
表26实施例42-54中锂源、锰源、磷源和掺杂元素C、A、R、D的源
  锂源 锰源 磷源 C源 A源 R源 D源
实施例42 LiOH MnCO 3 NH 4H 2PO 4 Mo(NO 3) 6 FeO H 4SiO 4 NH 4F
实施例43 LiOH MnO NH 4H 2PO 4 Mo(NO 3) 6 FeO H 4SiO 4 NH 4F
实施例44 LiOH Mn 3O 4 NH 4H 2PO 4 Mo(NO 3) 6 FeO H 4SiO 4 NH 4F
实施例45 LiOH Mn(NO 3) 2 NH 4H 2PO 4 Mo(NO 3) 6 FeO H 4SiO 4 NH 4F
实施例46 LiOH MnO NH 4H 2PO 4 Mo(NO 3) 6 FeCO 3 H 4SiO 4 NH 4F
实施例47 LiOH MnO NH 4H 2PO 4 Mo(NO 3) 6 Fe(NO 3) 2 H 4SiO 4 NH 4F
实施例48 LiOH MnO NH 4H 2PO 4 Mo(NO 3) 6 Fe 3O 4 H 4SiO 4 NH 4F
实施例49 LiOH MnO NH 4H 2PO 4 Mo(NO 3) 6 FeC 2O 4 H 4SiO 4 NH 4F
实施例50 LiOH MnO NH 4H 2PO 4 Mo(NO 3) 6 Fe H 4SiO 4 NH 4F
实施例51 LiOH MnO NH 4H 2PO 4 Mo(PO 4) 2 FeO H 4SiO 4 NH 4F
实施例52 LiOH MnO NH 4H 2PO 4 Mo(C 2O 4) 3 FeO H 4SiO 4 NH 4F
实施例53 LiOH MnO NH 4H 2PO 4 MoO 3 FeO H 4SiO 4 NH 4F
实施例54 LiOH MnO NH 4H 2PO 4 Mo FeO H 4SiO 4 NH 4F
表27实施例42-54的正极活性材料或扣电或全电按照上述性能测试方法测得性能数据
Figure PCTCN2023070129-appb-000026
Figure PCTCN2023070129-appb-000027
由上述表21、23、25、27可见,本申请实施例的各正极活性材料均在循环性能、高温稳定性、克容量和压实密度中的一个甚至全部方面实现了比对比例更优的效果。
由实施例18-20、23-25之间相比,可以看出,在其他元素相同的情况下,(1-y):y在1至4范围内,能够进一步提升二次电池单体的能量密度和循环性能。
图95示出了未掺杂的LiMnPO 4和实施例2制备的正极活性材料的XRD图。由图中可以看出,实施例2的正极活性材料的XRD图中主要特征峰位置与未掺杂的LiMnPO 4的一致,说明掺杂过程没有引入杂质相,性能的改善主要是来自元素掺杂,而不是杂相导致的。
图96示出实施例2制备的正极活性材料的EDS谱图。图中点状分布的为各掺杂元素。由图中可以看出实施例2的正极活性材料中,元素掺杂均匀。
以下提供内核为Li 1+xMn 1-yA yP 1-zR zO 4,包覆层包括焦磷酸盐层、磷酸盐层以及碳层三层包覆结构的正极活性材料的实施例、对比例以及性能测试分析:
实施例62
步骤1:正极活性材料的制备
步骤S1:制备Fe、Co、V和S共掺杂的草酸锰
将689.6g碳酸锰、455.27g碳酸亚铁、4.65g硫酸钴、4.87g二氯化钒加入混料机中充分混合6h。然后将得到的混合物转入反应釜中,并加入5L去离子水和1260.6g二水合草酸,加热至80℃,以500rpm的转速充分搅拌6h,混合均匀,直至反应终止无气泡产生,得到Fe、Co、和V共掺杂的草酸锰悬浮液。然后将悬浮液过滤,在120℃下烘干,再进行砂磨,得到粒径为100nm的草酸锰颗粒。
步骤S2:制备内核Li 0.997Mn 0.60Fe 0.393V 0.004Co 0.003P 0.997S 0.003O 4
取(1)中制备的草酸锰1793.1g以及368.3g碳酸锂、1146.6g磷酸二氢铵和4.9g稀硫酸,将它们加入到20L去离子水中,充分搅拌,在80℃下均匀混合反应10h,得到浆料。将所述浆料转入 喷雾干燥设备中进行喷雾干燥造粒,在250℃的温度下进行干燥,得到粉料。在保护气氛(90%氮气和10%氢气)中,在700℃下将所述粉料在辊道窑中进行烧结4h,得到上述内核材料。
步骤S3:第一包覆层悬浊液的制备
制备Li 2FeP 2O 7溶液,将7.4g碳酸锂,11.6g碳酸亚铁,23.0g磷酸二氢铵和12.6g二水合草酸溶于500mL去离子水中,控制pH为5,然后搅拌并在室温下反应2h得到溶液,之后将该溶液升温到80℃并保持此温度4h,得到第一包覆层悬浊液。
步骤S4:第一包覆层的包覆
将步骤S2中获得的掺杂后的1571.9g磷酸锰锂内核材料加入到步骤S3中获得的第一包覆层悬浊液(包覆物质含量为15.7g)中,充分搅拌混合6h,混合均匀后,转入120℃烘箱中干燥6h,然后在650℃下烧结6h得到焦磷酸盐包覆后的材料。
步骤S5:第二包覆层悬浊液的制备
将3.7g碳酸锂、11.6g碳酸亚铁、11.5g磷酸二氢铵和12.6g二水合草酸溶于1500mL去离子水中,然后搅拌并反应6h得到溶液,之后将该溶液升温到120℃并保持此温度6h,得到第二包覆层悬浊液。
步骤S6:第二包覆层的包覆
将步骤S4中获得的1586.8g的焦磷酸盐包覆后的材料加入到步骤S5中得到的第二包覆层悬浊液(包覆物质含量为47.1g)中,充分搅拌混合6h,混合均匀后,转入120℃烘箱中干燥6h,然后700℃烧结8h得到两层包覆后的材料。
步骤S7:第三包覆层水溶液的制备
将37.3g蔗糖溶于500g去离子水中,然后搅拌并充分溶解,得到蔗糖水溶液。
步骤S8:第三包覆层的包覆
将步骤S6中获得的两层包覆的材料1633.9g加入到步骤S7中得到的蔗糖溶液中,一同搅拌混合6h,混合均匀后,转入150℃烘箱中干燥6h,然后在700℃下烧结10h得到三层包覆后的材料。
步骤2:正极片的制备
将上述制备的三层包覆后的正极活性材料、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比为97.0:1.2:1.8加入到N-甲基吡咯烷酮(NMP)中,搅拌混合均匀,得到正极浆料。然后将正极浆料按0.280g/1540.25mm 2均匀涂覆于铝箔上,经烘干、冷压、分切,得到正极片。
步骤3:负极片的制备
将负极活性物质人造石墨、硬碳、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比为90:5:2:2:1溶于溶剂去离子水中,搅拌混合均匀后制备成负极浆料。将负极浆料按0.117g/1540.25mm 2均匀涂覆在负极集流体铜箔上,经过烘干、冷压、分切,得到负极片。
步骤4:电解液的制备
在氩气气氛手套箱中(H 2O<0.1ppm,O 2<0.1ppm),将有机溶剂碳酸乙烯酯(EC)/碳酸甲乙酯 (EMC)按照体积比3/7混合均匀,加入12.5重量%(基于碳酸乙烯酯/碳酸甲乙酯溶剂的重量计)LiPF 6溶解于上述有机溶剂中,搅拌均匀,得到电解液。
步骤5:隔离膜的制备
使用市售的厚度为20μm、平均孔径为80nm的PP-PE共聚物微孔薄膜(来自卓高电子科技公司,型号20)。
步骤6:全电池单体的制备
将上述获得的正极片、隔离膜、负极片按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到裸电芯。将裸电芯置于外包装中,注入上述电解液并封装,得到全电池单体(下文也称“全电”)。
【扣式电池单体的制备】
各项参数同实施例1,在此不再赘述。
实施例63-90,91-105和对比例2、3
以类似于实施例62的方式制备实施例63至90,91-105和对比例2、39中的正极活性材料和电池单体,正极活性材料的制备中的不同之处参见表28-33,其中对比例2、实施例91、实施例93-99、实施例101未包覆第一层,因此没有步骤S3、S4;对比例2、实施例91-100未包覆第二层,因此没有步骤S5-S6。本申请所有实施例和对比例中,如未标明,则使用的第一包覆层物质和/或第二包覆层物质均默认为晶态。
表28:内核的制备原料编号
Figure PCTCN2023070129-appb-000028
Figure PCTCN2023070129-appb-000029
Figure PCTCN2023070129-appb-000030
Figure PCTCN2023070129-appb-000031
Figure PCTCN2023070129-appb-000032
Figure PCTCN2023070129-appb-000033
表29:第一包覆层悬浊液的制备(步骤S3)
Figure PCTCN2023070129-appb-000034
表30:第一包覆层的包覆(步骤S4)
Figure PCTCN2023070129-appb-000035
Figure PCTCN2023070129-appb-000036
表31:第二包覆层悬浊液的制备(步骤S5)
Figure PCTCN2023070129-appb-000037
Figure PCTCN2023070129-appb-000038
表32:第二包覆层的包覆(步骤S6)
Figure PCTCN2023070129-appb-000039
Figure PCTCN2023070129-appb-000040
表33:第三层包覆层的包覆(步骤S8)
Figure PCTCN2023070129-appb-000041
Figure PCTCN2023070129-appb-000042
Figure PCTCN2023070129-appb-000043
实施例89-116:其他包覆层物质的考察
实施例89-116以类似于实施例62中的方法进行,不同之处参见下表34和表35。表34:第一包覆层物质的考察
Figure PCTCN2023070129-appb-000044
表35:第二包覆层物质的考察
Figure PCTCN2023070129-appb-000045
Figure PCTCN2023070129-appb-000046
上述内核为Li 1+xMn 1-yA yP 1-zR zO 4,包覆层包括焦磷酸盐层、磷酸盐层以及碳层三层包覆结构的正极活性材料的实施例和对比例的性能测试结果参见下面的表格。
表36:实施例62-105和对比例2、3中正极活性材料的粉料性能及所制备的电池单体的电池单体性能。
Figure PCTCN2023070129-appb-000047
Figure PCTCN2023070129-appb-000048
Figure PCTCN2023070129-appb-000049
Figure PCTCN2023070129-appb-000050
由表36可见,与对比例相比,实施例实现了更小的晶格变化率、更小的Li/Mn反位缺陷浓度、更大的压实密度、更接近于-2价的表面氧价态、更少的循环后Mn和Fe溶出量以及更好的电池单体性能,例如更好的高温存储性能和高温循环性能。
表37:正极活性材料每一层的厚度以及锰元素和磷元素的重量比
Figure PCTCN2023070129-appb-000051
Figure PCTCN2023070129-appb-000052
Figure PCTCN2023070129-appb-000053
由表37可以看出,通过对磷酸锰铁锂(含锰量35%,含磷量约20%)的锰位和磷位进行掺杂以及三层包覆,正极活性材料中的锰元素含量以及锰元素与磷元素的重量含量比明显降低;此外,将 实施例62-75与实施例92、实施例93、实施例101相比,结合表38可知,正极活性材料中锰元素和磷元素的降低会导致锰铁溶出量降低并且其制备的二次电池单体的电池单体性能提升。
表38:正极活性材料的粉料性能及所制备的电池单体的电池单体性能
Figure PCTCN2023070129-appb-000054
由表38可知,采用包含本申请范围内的其他元素的第一包覆层和第二包覆层同样获得了具有良好性能的正极活性材料并实现了良好的电池单体性能结果。
表39:第一包覆层物质和第二包覆层物质的晶面间距和夹角
Figure PCTCN2023070129-appb-000055
Figure PCTCN2023070129-appb-000056
由表39可知,本申请第一包覆层和第二包覆层的晶面间距和夹角均在本申请所述范围内。
III.考察包覆层烧结方法对对正极活性材料性能和二次电池单体性能的影响
下表中的实施例和对比例的电池单体制备类似于实施例62,不同之处使用下表中的方法参数。结果参见下表40。
Figure PCTCN2023070129-appb-000057
Figure PCTCN2023070129-appb-000058
Figure PCTCN2023070129-appb-000059
Figure PCTCN2023070129-appb-000060
Figure PCTCN2023070129-appb-000061
Figure PCTCN2023070129-appb-000062
由表41可以看出,当步骤S1中的反应温度范围为60-120℃、反应时间为2-9小时且步骤S2中的反应温度范围为40-120℃、反应时间为1-10小时时,正极活性材料粉料性能(晶格变化率、Li/Mn反位缺陷浓度、表面氧价态、压实密度)和所制备的电池单体性能(电容量、高温循环性能、高温存储性能)均表现优异。
下面详述包覆层具有第一包覆层(焦磷酸盐和磷酸盐),第二包覆层是碳的正极活性材料的制备以及性能测试:
实施例1-1
【双层包覆的磷酸锰锂正极活性材料的制备】
(1)共掺杂磷酸锰锂内核的制备
制备Fe、Co和V共掺杂的草酸锰:将689.5g碳酸锰(以MnCO 3计,下同)、455.2g碳酸亚铁(以FeCO 3计,下同)、4.6g硫酸钴(以CoSO 4计,下同)和4.9g二氯化钒(以VCl 2计,下同)在混料机中充分混合6小时。将混合物转移至反应釜中,并加入5升去离子水和1260.6g二水合草酸(以C 2H 2O 4.2H 2O计,下同)。将反应釜加热至80℃,以600rpm的转速搅拌6小时,直至反应终止(无气泡产生),得到Fe、Co、V和S共掺杂的草酸锰悬浮液。然后过滤所述悬浮液,将滤饼在120℃下烘干,之后进行研磨,得到中值粒径Dv50为100nm的Fe、Co和V共掺杂的二水草酸锰颗粒。
制备Fe、Co、V和S共掺杂的磷酸锰锂:将前一步骤获得的二水草酸锰颗粒(1793.4g)、369.0g碳酸锂(以Li 2CO 3计,下同),1.6g浓度为60%的稀硫酸(以60%H 2SO 4计,下同)和1148.9g磷酸二氢铵(以NH 4H 2PO 4计,下同)加入到20升去离子水中,将混合物搅拌10小时使其混合均匀,得到浆料。将所述浆料转移到喷雾干燥设备中进行喷雾干燥造粒,设定干燥温度为250℃,干燥4小时,得到粉料。在氮气(90体积%)+氢气(10体积%)保护气氛中,将上述粉料在700℃下烧结4小时,得到1572.1g的Fe、Co、V和S共掺杂的磷酸锰锂。
(2)焦磷酸铁锂和磷酸铁锂的制备
制备焦磷酸铁锂粉末:将4.77g碳酸锂、7.47g碳酸亚铁、14.84g磷酸二氢铵和1.3g二水合草酸溶于50ml去离子水中。混合物的pH为5,搅拌2小时使反应混合物充分反应。然后将反应后的溶液升温到80℃并保持该温度4小时,得到包含Li 2FeP 2O 7的悬浊液,将悬浊液进行过滤,用去离子水洗涤,并在120℃下干燥4h,得到粉末。将所述粉末在650℃、氮气气氛下烧结8小时,并自然冷却至室温后进行研磨,得到Li 2FeP 2O 7粉末。
制备磷酸铁锂悬浊液:将11.1g碳酸锂、34.8g碳酸亚铁、34.5g磷酸二氢铵、1.3g二水合草酸和74.6g蔗糖(以C 12H 22O 11计,下同)溶于150ml去离子水中,得到混合物,然后搅拌6小时使上述混合物充分反应。然后将反应后的溶液升温到120℃并保持该温度6小时,得到包含LiFePO 4的悬浊液。
(3)包覆
将1572.1g上述Fe、Co、V和S共掺杂的磷酸锰锂与15.72g上述焦磷酸铁锂(Li 2FeP 2O 7)粉末 加入到上一步骤制备获得的磷酸铁锂(LiFePO 4)悬浊液中,搅拌混合均匀后转入真空烘箱中在150℃下干燥6小时。然后通过砂磨分散所得产物。在分散后,将所得产物在氮气气氛中、在700℃下烧结6小时,得到目标产物双层包覆的磷酸锰锂。
【正极片的制备】
将上述制备的双层包覆的磷酸锰锂正极活性材料、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比为92:2.5:5.5加入到N-甲基吡咯烷酮(NMP)中,搅拌混合均匀,得到正极浆料。然后将正极浆料按0.280g/1540.25mm 2均匀涂覆于铝箔上,经烘干、冷压、分切,得到正极片。
【负极片的制备】
将负极活性物质人造石墨、硬碳、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC-Na)按照重量比为90:5:2:2:1溶于溶剂去离子水中,搅拌混合均匀后制备成负极浆料。将负极浆料按0.117g/1540.25mm 2均匀涂覆在负极集流体铜箔上,经过烘干、冷压、分切得到负极片。
【电解液的制备】
在氩气气氛手套箱中(H 2O<0.1ppm,O 2<0.1ppm),作为有机溶剂,将碳酸亚乙酯(EC)/碳酸甲乙酯(EMC)按照体积比3/7混合均匀,加入12.5重量%(基于所述有机溶剂的重量计)LiPF 6溶解于上述有机溶剂中,搅拌均匀,得到电解液。
【隔离膜】
使用市售的厚度为20μm、平均孔径为80nm的PP-PE共聚物微孔薄膜(来自卓高电子科技公司,型号20)。
【全电池单体的制备】
将上述获得的正极片、隔离膜、负极片按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到裸电芯。将裸电芯置于外包装中,注入上述电解液并封装,得到全电池单体(下文也称“全电”)。
【扣式电池单体的制备】
各项参数同实施例1,在此不再赘述。
实施例1-2至1-6
在共掺杂磷酸锰锂内核的制备过程中,除不使用二氯化钒和硫酸钴、使用463.4g的碳酸亚铁,1.6g的60%浓度的稀硫酸,1148.9g的磷酸二氢铵和369.0g碳酸锂以外,实施例1-2至1-6中磷酸锰锂内核的制备条件与实施例1-1相同。
此外,在焦磷酸铁锂和磷酸铁锂的制备过程以及包覆第一包覆层和第二包覆层的过程中,除所使用的原料按照表20中所示包覆量与实施例1-1对应的包覆量的比值对应调整,以使实施例1-2至1-6中Li 2FeP 2O 7/LiFePO 4的用量分别为12.6g/37.7g、15.7g/47.1g、18.8g/56.5g、22.0/66.0g和25.1g/75.4g,实施例1-2至1-6中蔗糖的用量为37.3g以外,其他条件与实施例1-1相同。
实施例1-7至1-10
除蔗糖的用量分别为74.6g、149.1g、186.4g和223.7g以使作为第二包覆层的碳层的对应包覆量分别为31.4g、62.9g、78.6g和94.3g以外,实施例1-7至1-10的条件与实施例1-3相同。
实施例1-11至1-14
除在焦磷酸铁锂和磷酸铁锂的制备过程中按照表20中所示包覆量对应调整各种原料的用量以使Li 2FeP 2O 7/LiFePO 4的用量分别为23.6g/39.3g、31.4g/31.4g、39.3g/23.6g和47.2g/15.7g以外,实施例1-11至1-14的条件与实施例1-7相同。
实施例1-15
除在共掺杂磷酸锰锂内核的制备过程中使用492.80gZnCO 3代替碳酸亚铁以外,实施例1-15的条件与实施例1-14相同。
实施例1-16至1-18
除实施例1-16在共掺杂磷酸锰锂内核的制备过程中使用466.4g的NiCO 3、5.0g的碳酸锌和7.2g的硫酸钛代替碳酸亚铁,实施例1-17在共掺杂的磷酸锰锂内核的制备过程中使用455.2g的碳酸亚铁和8.5g的二氯化钒,实施例1-18在共掺杂的磷酸锰锂内核的制备过程中使用455.2g的碳酸亚铁、4.9g的二氯化钒和2.5g的碳酸镁以外,实施例1-17至1-19的条件与实施例1-7相同。
实施例1-19至1-20
除实施例1-19在共掺杂磷酸锰锂内核的制备过程中使用369.4g的碳酸锂、和以1.05g的60%浓度的稀硝酸代替稀硫酸,实施例1-20在共掺杂的磷酸锰锂内核的制备过程中使用369.7g的碳酸锂、和以0.78g的亚硅酸代替稀硫酸以外,实施例1-19至1-20的条件与实施例1-18相同。
实施例1-21至1-22
除实施例1-21在共掺杂磷酸锰锂内核的制备过程中使用632.0g碳酸锰、463.30g碳酸亚铁、30.5g的二氯化钒、21.0g的碳酸镁和0.78g的亚硅酸;实施例1-22在共掺杂磷酸锰锂内核的制备过程中使用746.9g碳酸锰、289.6g碳酸亚铁、60.9g的二氯化钒、42.1g的碳酸镁和0.78g的亚硅酸以外,实施例1-21至1-22的条件与实施例1-20相同。
实施例1-23至1-24
除实施例1-23在共掺杂磷酸锰锂内核的制备过程中使用804.6g碳酸锰、231.7g碳酸亚铁、1156.2g的磷酸二氢铵、1.2g的硼酸(质量分数99.5%)和370.8g碳酸锂;实施例1-24在共掺杂磷酸锰锂内核的制备过程中使用862.1g碳酸锰、173.8g碳酸亚铁、1155.1g的磷酸二氢铵、1.86g的硼酸(质量分数99.5%)和371.6g碳酸锂以外,实施例1-23至1-24的条件与实施例1-22相同。
实施例1-25
除实施例1-25在共掺杂磷酸锰锂内核的制备过程中使用370.1g碳酸锂、1.56g的亚硅酸和1147.7g的磷酸二氢铵以外,实施例1-25的条件与实施例1-20相同。
实施例1-26
除实施例1-26在共掺杂磷酸锰锂内核的制备过程中使用368.3g碳酸锂、4.9g质量分数为60%的稀硫酸、919.6g碳酸锰、224.8g碳酸亚铁、3.7g二氯化钒、2.5g碳酸镁和1146.8g的磷酸二氢 铵以外,实施例1-26的条件与实施例1-20相同。
实施例1-27
除实施例1-27在共掺杂磷酸锰锂内核的制备过程中使用367.9g碳酸锂、6.5g浓度为60%的稀硫酸和1145.4g的磷酸二氢铵以外,实施例1-27的条件与实施例1-20相同。
实施例1-28至1-33
除实施例1-28至1-33在共掺杂磷酸锰锂内核的制备过程中使用1034.5g碳酸锰、108.9g碳酸亚铁、3.7g二氯化钒和2.5g碳酸镁,碳酸锂的使用量分别为:367.6g、367.2g、366.8g、366.4g、366.0g和332.4g,磷酸二氢铵的使用量分别为:1144.5g、1143.4g、1142.2g、1141.1g、1139.9g和1138.8g,浓度为60%的稀硫酸的使用量分别为:8.2g、9.8g、11.4g、13.1g、14.7g和16.3g以外,实施例1-28至1-33的条件与实施例1-20相同。
实施例2-1至2-4
实施例2-1
除在焦磷酸铁锂(Li 2FeP 2O 7)的制备过程中在粉末烧结步骤中的烧结温度为550℃,烧结时间为1h以控制Li 2FeP 2O 7的结晶度为30%,在磷酸铁锂(LiFePO 4)的制备过程中在包覆烧结步骤中的烧结温度为650℃,烧结时间为2h以控制LiFePO 4的结晶度为30%以外,其他条件与实施例1-1相同。
实施例2-2
除在焦磷酸铁锂(Li 2FeP 2O 7)的制备过程中在粉末烧结步骤中的烧结温度为550℃,烧结时间为2h以控制Li 2FeP 2O 7的结晶度为50%,在磷酸铁锂(LiFePO 4)的制备过程中在包覆烧结步骤中的烧结温度为650℃,烧结时间为3h以控制LiFePO 4的结晶度为50%以外,其他条件与实施例1-1相同。
实施例2-3
除在焦磷酸铁锂(Li 2FeP 2O 7)的制备过程中在粉末烧结步骤中的烧结温度为600℃,烧结时间为3h以控制Li 2FeP 2O 7的结晶度为70%,在磷酸铁锂(LiFePO 4)的制备过程中在包覆烧结步骤中的烧结温度为650℃,烧结时间为4h以控制LiFePO 4的结晶度为70%以外,其他条件与实施例1-1相同。
实施例2-4
除在焦磷酸铁锂(Li 2FeP 2O 7)的制备过程中在粉末烧结步骤中的烧结温度为650℃,烧结时间为4h以控制Li 2FeP 2O 7的结晶度为100%,在磷酸铁锂(LiFePO 4)的制备过程中在包覆烧结步骤中的烧结温度为700℃,烧结时间为6h以控制LiFePO 4的结晶度为100%以外,其他条件与实施例1-1相同。
实施例3-1至3-12
除制备Fe、Co和V共掺杂的草酸锰颗粒的过程中,实施例3-1反应釜内的加热温度/搅拌时间分别为60℃/120分钟;实施例3-2反应釜内的加热温度/搅拌时间分别为70℃/120分钟;实施例 3-3反应釜内的加热温度/搅拌时间分别为80℃/120分钟;实施例3-4反应釜内的加热温度/搅拌时间分别为90℃/120分钟;实施例3-5反应釜内的加热温度/搅拌时间分别为100℃/120分钟;实施例3-6反应釜内的加热温度/搅拌时间分别为110℃/120分钟;实施例3-7反应釜内的加热温度/搅拌时间分别为120℃/120分钟;实施例3-8反应釜内的加热温度/搅拌时间分别为130℃/120分钟;实施例3-9反应釜内的加热温度/搅拌时间分别为100℃/60分钟;实施例3-10反应釜内的加热温度/搅拌时间分别为100℃/90分钟;实施例3-11反应釜内的加热温度/搅拌时间分别为100℃/150分钟;实施例3-12反应釜内的加热温度/搅拌时间分别为100℃/180分钟以外,实施例3-1至3-12的其他条件与实施例1-1相同。
实施例4-1至4-7
实施例4-1至4-4:除在焦磷酸铁锂(Li 2FeP 2O 7)的制备过程中在干燥步骤中的干燥温度/干燥时间分别为100℃/4h、150℃/6h、200℃/6h和200℃/6h;在焦磷酸铁锂(Li 2FeP 2O 7)的制备过程中在烧结步骤中的烧结温度和烧结时间分别为700℃/6h、700℃/6h、700℃/6h和600℃/6h以外,其它条件与实例1-7相同。
实施例4-5至4-7:除在包覆过程中在干燥步骤中的干燥温度/干燥时间分别为150℃/6h、150℃/6h和150℃/6h;在包覆过程中在烧结步骤中的烧结温度和烧结时间分别为600℃/4h、600℃/6h和800℃/8h以外,其它条件与实例1-12相同。
对比例1-1
制备草酸锰:将1149.3g碳酸锰加至反应釜中,并加入5升去离子水和1260.6g二水合草酸(以C 2H 2O 4·2H 2O计,下同)。将反应釜加热至80℃,以600rpm的转速搅拌6小时,直至反应终止(无气泡产生),得到草酸锰悬浮液,然后过滤所述悬浮液,将滤饼在120℃下烘干,之后进行研磨,得到中值粒径Dv50为100nm的二水草酸锰颗粒。
制备碳包覆的磷酸锰锂:取1789.6g上述获得的二水草酸锰颗粒、369.4g碳酸锂(以Li 2CO 3计,下同),1150.1g磷酸二氢铵(以NH 4H 2PO 4计,下同)和31g蔗糖(以C 12H 22O 11计,下同)加入到20升去离子水中,将混合物搅拌10小时使其混合均匀,得到浆料。将所述浆料转移到喷雾干燥设备中进行喷雾干燥造粒,设定干燥温度为250℃,干燥4小时,得到粉料。在氮气(90体积%)+氢气(10体积%)保护气氛中,将上述粉料在700℃下烧结4小时,得到碳包覆的磷酸锰锂。
实施例1-34
除使用689.5g的碳酸锰和额外添加463.3g的碳酸亚铁以外,其他条件与对比例1-1相同。
实施例1-35
除使用1148.9g的磷酸二氢铵和369.0g碳酸锂,并额外添加1.6g的60%浓度的稀硫酸以外,其他条件与对比例1-1相同。
实施例1-36
除使用689.5g的碳酸锰、1148.9g的磷酸二氢铵和369.0g碳酸锂,并额外添加463.3g的碳酸亚铁、1.6g的60%浓度的稀硫酸以外,其他条件与对比例1-1相同。
实施例1-37
除额外增加以下步骤:制备焦磷酸铁锂粉末:将9.52g碳酸锂、29.9g碳酸亚铁、29.6g磷酸二氢铵和32.5g二水合草酸溶于50ml去离子水中。混合物的pH为5,搅拌2小时使反应混合物充分反应。然后将反应后的溶液升温到80℃并保持该温度4小时,得到包含Li 2FeP 2O 7的悬浊液,将悬浊液进行过滤,用去离子水洗涤,并在120℃下干燥4h,得到粉末。将所述粉末在500℃、氮气气氛下烧结4小时,并自然冷却至室温后进行研磨,控制Li 2FeP 2O 7的结晶度为5%,制备碳包覆的材料时,Li 2FeP 2O 7的用量为62.8g以外,其它条件与实施例1-36相同。
实施例1-38
除额外增加以下步骤:制备磷酸铁锂悬浊液:将14.7g碳酸锂、46.1g碳酸亚铁、45.8g磷酸二氢铵和50.2g二水合草酸溶于500ml去离子水中,然后搅拌6小时使混合物充分反应。然后将反应后的溶液升温到120℃并保持该温度6小时,得到包含LiFePO 4的悬浊液,在磷酸铁锂(LiFePO 4)的制备过程中在包覆烧结步骤中的烧结温度为600℃,烧结时间为4h以控制LiFePO 4的结晶度为8%以外,制备碳包覆的材料时,LiFePO 4的用量为62.8g以外,其它条件与实施例1-36相同。
实施例1-39
制备焦磷酸铁锂粉末:将2.38g碳酸锂、7.5g碳酸亚铁、7.4g磷酸二氢铵和8.1g二水合草酸溶于50ml去离子水中。混合物的pH为5,搅拌2小时使反应混合物充分反应。然后将反应后的溶液升温到80℃并保持该温度4小时,得到包含Li 2FeP 2O 7的悬浊液,将悬浊液进行过滤,用去离子水洗涤,并在120℃下干燥4h,得到粉末。将所述粉末在500℃、氮气气氛下烧结4小时,并自然冷却至室温后进行研磨,控制Li 2FeP 2O 7的结晶度为5%。
制备磷酸铁锂悬浊液:将11.1g碳酸锂、34.7g碳酸亚铁、34.4g磷酸二氢铵、37.7g二水合草酸和37.3g蔗糖(以C 12H 22O 11计,下同)溶于1500ml去离子水中,然后搅拌6小时使混合物充分反应。然后将反应后的溶液升温到120℃并保持该温度6小时,得到包含LiFePO 4的悬浊液。
将得到的焦磷酸铁锂粉末15.7g,加入上述磷酸铁锂(LiFePO 4)和蔗糖悬浊液中,制备过程中在包覆烧结步骤中的烧结温度为600℃,烧结时间为4h以控制LiFePO 4的结晶度为8%以外,对比例7的其它条件与对比例4相同,得到非晶态焦磷酸铁锂、非晶态磷酸铁锂、碳包覆的正极活性材料。
实施例(1-40)-(1-43)
除在焦磷酸铁锂(Li 2FeP 2O 7)的制备过程中在干燥步骤中的干燥温度/干燥时间在实施例1-40至1-42中分别为80℃/3h、80℃/3h、80℃/3h;在焦磷酸铁锂(Li 2FeP 2O 7)的制备过程中在烧结步骤中的烧结温度和烧结时间在实施例1-40至1-42中分别为400℃/3h、400℃/3h、350℃/2h,实施例1-43在磷酸铁锂(LiFePO 4)的制备过程中在干燥步骤中的干燥温度/干燥时间为80℃/3h;以及在实施例1-40至1-42中Li 2FeP 2O 7/LiFePO 4的用量分别为47.2g/15.7g、15.7g/47.2g、62.8g/0g、0g/62.8g以外,其他条件与实施例1-7相同。
上述实施例和对比例的【正极片的制备】、【负极片的制备】、【电解液的制备】、【隔离膜】 和【电池单体的制备】均与实施例1-1的工艺相同。
表42实施例1-1至1-33以及对比例1-7的性能测试结果
Figure PCTCN2023070129-appb-000063
Figure PCTCN2023070129-appb-000064
Figure PCTCN2023070129-appb-000065
Figure PCTCN2023070129-appb-000066
Figure PCTCN2023070129-appb-000067
Figure PCTCN2023070129-appb-000068
Figure PCTCN2023070129-appb-000069
综合上述实施例以及对比例可知,第一包覆层的存在有利于降低所得材料的Li/Mn反位缺陷浓度和循环后Fe和Mn溶出量,提高电池单体的扣电克容量,并改善电池单体的安全性能和循环性能。当在Mn位和磷位分别掺杂其他元素时,可显著降低所得材料的晶格变化率、反位缺陷浓度和Fe和Mn溶出量,提高电池单体的克容量,并改善电池单体的安全性能和循环性能。
综合实施例1-1至1-6可知,随着第一包覆层的量从3.2%增加至6.4%,所得材料的Li/Mn反位缺陷浓度逐渐下降,循环后Fe和Mn溶出量逐渐下降,对应电池单体的安全性能和45℃下的循环性能也得到改善,但扣电克容量略有下降。可选地,当第一包覆层的总量为4-5.6重量%时,对应电池单体的综合性能最佳。
综合实施例1-3以及实施例1-7至1-10可知,随着第二包覆层的量从1%增加至6%,所得材料的Li/Mn反位缺陷浓度逐渐下降,循环后Fe和Mn溶出量逐渐下降,对应电池单体的安全性能和45℃下的循环性能也得到改善,但扣电克容量却略有下降。可选地,当第二包覆层的总量为3-5重量%时,对应电池单体的综合性能最佳。
综合实施例1-11至1-15以及实施例1-37、1-38可知,当第一包覆层中同时存在Li 2FeP 2O 7和LiFePO 4、特别是Li 2FeP 2O 7和LiFePO 4的重量比为1:3至3:1,并且尤其是1:3至1:1时,对电池单体性能的改善更加明显。
Figure PCTCN2023070129-appb-000070
Figure PCTCN2023070129-appb-000071
Figure PCTCN2023070129-appb-000072
Figure PCTCN2023070129-appb-000073
从表45中可以看出,在通过本申请的方法制备焦磷酸铁锂时,通过调节制备过程中的干燥温度/时间和烧结温度/时间,可以改善所得材料的性能,从而改善电池单体性能。从实施例1-40至1-43可以看出,当焦磷酸铁锂制备过程中的干燥温度低于100℃或烧结步骤的温度低于400℃时,将无法获得本申请所希望制得的Li 2FeP 2O 7,从而无法改善材料性能以及包含所得材料的电池单体的性能。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以上实施例仅用以说明本申请的技术方案,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (75)

  1. 一种电池,其中,包括:
    箱体,所述箱体内设有容纳腔,所述容纳腔包括在竖直方向上相对设置的顶壁和底壁;
    电池单体,所述电池单体设于所述容纳腔内,所述电池单体包括电极组件和电极端子,所述电极组件与所述电极端子电连接,所述电池单体固定于所述容纳腔内,所述电极端子朝向所述容纳腔的所述底壁设置。
  2. 根据权利要求1所述的电池,其中,所述电池单体具有相连的第一壁和第二壁,所述第一壁为所述电池单体中面积最大的壁,所述第二壁和所述第一壁相交设置。
  3. 根据权利要求2所述的电池,其中,所述电极端子设于所述第一壁。
  4. 根据权利要求3所述的电池,其中,所述电池单体为多个且在第一方向排布设置,在所述第一方向上,每个所述电池单体设有与所述第一壁相对设置的第一表面,所述第一表面设有避让槽,相邻的两个所述电池单体中的其中一个所述电池单体的所述避让槽用于容纳另一个所述电池单体的所述电极端子,所述第一方向垂直于所述第一壁。
  5. 根据权利要求2所述的电池,其中,所述电极端子设置于所述第二壁。
  6. 根据权利要求5所述的电池,其中,所述电池单体包括相对设置的两个所述第一壁和相对设置的两个所述第二壁,所述电极端子设置为至少两个;
    至少两个所述电极端子设置于同一个所述第二壁;或者,每个所述第二壁设置有至少一个所述电极端子。
  7. 根据权利要求2所述的电池,其中,所述第一壁形成为圆筒状。
  8. 根据权利要求7所述的电池,其中,所述第一壁的轴向两端均设有所述第二壁,至少一个所述第二壁设有所述电极端子。
  9. 根据权利要求8所述的电池,其中,其中一个所述第二壁设有外露的所述电极端子,所述电极组件包括正极片和负极片,所述正极片和所述负极片中的其中一个与所述电极端子电连接,所述正极片和所述负极片中的另一个与所述第一壁或另一个所述第二壁电连接。
  10. 根据权利要求1所述的电池,其中,至少一个所述电池单体为软包电池单体。
  11. 根据权利要求1-10中任一项所述的电池,其中,所述电池单体还包括泄压机构,所述泄压机构与所述电极端子设置于所述电池单体的同一个壁。
  12. 根据权利要求1-10中任一项所述的电池,其中,所述电池单体还包括泄压机构,所述泄压机构与所述电极端子分别设置于所述电池单体的两个壁。
  13. 根据权利要求1-12中任一项所述的电池,其中,所述箱体包括主体及设置于所述主体底部的底盖,所述底盖与所述主体密封连接并共同形成封闭的所述容纳腔。
  14. 根据权利要求13所述的电池,其中,所述底盖面向所述电池单体的壁构成所述容纳腔的所述底壁。
  15. 根据权利要求13或14所述的电池,其中,所述底盖可拆卸地连接于所述主体底部。
  16. 根据权利要求13-15中任一项所述的电池,其中,所述底盖具有面向所述容纳腔的特征面,所述特征面被构造为平面。
  17. 根据权利要求1-16中任一项所述的电池,其中,所述箱体的顶部设有承载件,所述电池单体设于所述承载件表面。
  18. 根据权利要求17中所述的电池,其中,所述承载件面向所述电池单体的壁构成所述容纳腔的所述顶壁。
  19. 根据权利要求17或18所述的电池,其中,所述承载件的最小厚度H与所述电池的重量M1满足:0.0002mm/kg<H/M1≤0.2mm/kg。
  20. 根据权利要求17-19中任一项所述的电池,其中,所述承载件用于界定所述容纳腔,所述电池单体悬吊于所述承载件。
  21. 根据权利要求20所述的电池,其中,所述电池单体与所述承载件粘接。
  22. 根据权利要求17-21中任一项所述的电池,其中,所述电池单体面向所述承载件的外表面为第一外表面,所述电极端子布置于所述电池单体除所述第一外表面之外的外表面。
  23. 根据权利要求22所述的电池,其中,所述电池单体具有与所述第一外表面相背设置的第二外表面,所述电极端子布置于所述第二外表面。
  24. 根据权利要求17-23中任一项所述的电池,其中,所述电池单体为多个,多个所述电池单体在第二方向排布设置,所述第二方向垂直于所述竖直方向;
    所述承载件与多个所述电池单体的顶壁相连,所述电池单体位于所述承载件下方,所述承载件在所述竖直方向上的尺寸N与所述电池单体的重量M2之间的关系满足:0.04mm/kg≤N/M2≤100mm/kg。
  25. 根据权利要求24所述的电池,其中,所述承载件内部设置有空腔。
  26. 根据权利要求24所述的电池,其中,所述空腔用于容纳换热介质以给所述电池单体调节温度。
  27. 根据权利要求17-26中任一项所述的电池,其中,在所述竖直方向上,所述承载件的远离所述电池单体的表面设有加强筋。
  28. 根据权利要求17-27中任一项所述的电池,其中,所述承载件具有面向所述容纳腔的承载面,所述承载面被构造为平面。
  29. 根据权利要求28所述的电池,其中,所述承载件具有承载部及连接部,所述连接部围合连接在所述承载部的边缘,所述承载部用于界定所述容纳腔,所述连接部连接于所述箱体除所述承载件之外的部分;
    其中,所述承载部面向所述容纳腔的内表面构造形成所述承载面。
  30. 根据权利要求29所述的电池,其中,所述承载部相较于所述连接部沿背离所述容纳腔的方向突出设置。
  31. 根据权利要求17-30中任一项所述的电池,其中,所述箱体包括底盖和边框,所述边框围合形成有在所述竖直方向的两端贯通设置的围合空间,所述底盖和所述承载件分别盖合于所述围合空间在所述竖直方向的相背两端,所述底盖、所述边框和所述承载件共同围合形成所述容纳腔。
  32. 根据权利要求1-31中任一项所述的电池,其中,所述电池单体以端盖朝向所述底壁的方式倒置 于所述箱体内,所述端盖设置有泄压机构和所述电极端子,所述泄压机构及所述电极端子均朝向所述底壁设置。
  33. 根据权利要求1-32中任一项所述的电池,其中,所述电池还包括连接板和连接器,所述连接板设在所述箱体的一侧沿水平方向突出设置,所述连接板与所述底壁在所述竖直方向上形成容纳部,所述连接器设置在所述容纳部内且连接于所述连接板,所述连接器与所述电池单体电连接。
  34. 根据权利要求1-33中任一项所述的电池,其中,所述电池还包括防护组件,所述防护组件设置于所述电池单体与所述底壁之间,以支撑承载所述电池单体。
  35. 根据权利要求34所述的电池,其中,所述电池还包括汇流部件,所述汇流部件用于与至少两个所述电池单体的所述电极端子电连接,所述防护组件设置于所述底壁和所述汇流部件之间,所述防护组件用于使得所述电池单体与所述底壁绝缘设置。
  36. 根据权利要求34或35所述的电池,其中,所述防护组件包括防护条,所述防护条抵接于所述电池单体。
  37. 根据权利要求36所述的电池,其中,所述防护条与所述电池单体和/或所述箱体固定连接。
  38. 根据权利要求37所述的电池,其中,所述防护条与所述电池单体和/或所述箱体粘接。
  39. 根据权利要求36-38中任一项所述的电池,其中,所述防护条设置有多个,多个所述防护条在第二方向上间隔设置,并沿第一方向延伸,所述第一方向、所述第二方向与所述竖直方向两两垂直。
  40. 根据权利要求36-39中任一项所述的电池,其中,所述防护组件还包括主板,所述防护条连接于所述主板,所述主板位于所述防护条与所述底壁之间。
  41. 根据权利要求40所述的电池,其中,所述主板抵接于所述底壁。
  42. 根据权利要求41所述的电池,其中,所述主板与所述底壁固定连接。
  43. 根据权利要求40-42中任一项所述的电池,其中,所述主板与所述防护条一体成型或可拆卸连接。
  44. 根据权利要求36-43中任一项所述的电池,其中,所述电池单体的端盖包括功能区和肩部,所述功能区设置有所述电极端子,所述肩部沿第二方向位于所述功能区两侧,所述电池单体通过所述肩部抵接于所述防护条,所述第二方向垂直于所述竖直方向。
  45. 根据权利要求36-44中任一项所述的电池,其中,在所述竖直方向上,所述防护条的厚度大于所述电极端子的外露于所述电池单体的部分的延伸高度。
  46. 根据权利要求36-45中任一项所述的电池,其中,所述防护条抵接于所述电极端子,或者所述防护条与所述电极端子间隔设置。
  47. 根据权利要求39-46中任一项所述的电池,其中,所述电极端子在所述底壁上的正投影位于相邻的所述防护条在所述底壁上的正投影之间。
  48. 根据权利要求39-47中任一项所述的电池,其中,相邻的两个所述电池单体的所述电极端子通过汇流部件电连接,在所述第二方向上,相邻的两个所述防护条中一者的延伸长度小于另一者的延伸长度,以形成避让缺口,所述避让缺口用于避让所述汇流部件。
  49. 根据权利要求39-48中任一项所述的电池,其中,所述电池单体还包括泄压机构,所述泄压机 构与所述电极端子同侧设置,所述泄压机构在所述底壁的正投影位于相邻所述防护条在所述底壁的正投影之间。
  50. 根据权利要求32-49中任一项所述的电池,其中,在所述竖直方向上,所述电池单体的所述端盖与所述底壁之间具有第一距离H1,所述第一距离H1满足2mm<H1<30mm。
  51. 根据权利要求50所述的电池,其中,所述第一距离H1与单个所述电池单体的重量M2之比H1/M2满足0.2mm/Kg<H1/M2<50mm/Kg。
  52. 根据权利要求1-51中任一项所述的电池,其中,所述电池单体还包括电池盒,所述电极组件容纳于所述电池盒内,所述电池盒设置有泄压机构,所述泄压机构与所述电池盒一体成型。
  53. 根据权利要求52所述的电池,其中,所述电池盒包括一体成型的非薄弱区和薄弱区,所述电池盒设置有槽部,所述非薄弱区形成于所述槽部的周围,所述薄弱区形成于所述槽部的底部,所述薄弱区被配置为在所述电池单体泄放内部压力时被破坏,所述泄压机构包括所述薄弱区。
  54. 根据权利要求53所述的电池,其中,所述薄弱区的平均晶粒尺寸为S 1,所述非薄弱区的平均晶粒尺寸为S 2,满足:0.05≤S 1/S 2≤0.9。
  55. 根据权利要求54所述的电池,其中,所述薄弱区的最小厚度为A 1,满足:1≤A 1/S 1≤100。
  56. 根据权利要求53-55中任一项所述的电池,其中,所述薄弱区的最小厚度为A 1,所述薄弱区的硬度为B 1,满足:5HBW/mm≤B 1/A 1≤10000HBW/mm。
  57. 根据权利要求53-56中任一项所述的电池,其中,所述薄弱区的硬度为B 1,所述非薄弱区的硬度为B 2,满足:1<B 1/B 2≤5。
  58. 根据权利要求53-57中任一项所述的电池,其中,所述薄弱区的最小厚度为A 1,所述非薄弱区的最小厚度为A 2,满足:0.05≤A 1/A 2≤0.95。
  59. 根据权利要求1-58中任一项所述的电池,其中,所述电极组件包括正极片和负极片,所述正极片和/或所述负极片包括集流体和活性物质层,所述集流体包括支撑层和导电层,所述支撑层用于承载所述导电层,所述导电层用于承载所述活性物质层。
  60. 根据权利要求59所述的电池,其中,沿所述支撑层的厚度方向,所述导电层设置于所述支撑层的至少一侧。
  61. 根据权利要求59或60中任一项所述的电池,其中,所述导电层的常温薄膜电阻R S满足:0.016Ω/□≤R S≤420Ω/□。
  62. 根据权利要求59-61中任一项所述的电池,其中,所述导电层的材料选自铝、铜、钛、银、镍铜合金、铝锆合金中的至少一种。
  63. 根据权利要求59-62中任一项所述的电池,其中,所述支撑层的材料包括高分子材料及高分子基复合材料中的一种或多种。
  64. 根据权利要求59-63中任一项所述的电池,其中,所述支撑层的厚度d1与所述支撑层的透光率k满足:
    当12μm≤d1≤30μm时,30%≤k≤80%;或者,
    当8μm≤d1<12μm时,40%≤k≤90%;或者,
    当1μm≤d1<8μm时,50%≤k≤98%。
  65. 根据权利要求1-64中任一项所述的电池,其中,所述电极组件包括正极片,所述正极片包括正极集流体和涂覆于所述正极集流体表面的正极活性物质层,所述正极活性物质层包括正极活性材料,所述正极活性材料具有内核及包覆所述内核的壳,所述内核包括三元材料、dLi 2MnO 3·(1-d)LiMO 2以及LiMPO 4中的至少一种,0<d<1,所述M包括选自Fe、Ni、Co、Mn中的一种或多种,
    所述壳含有结晶态无机物,所述结晶态无机物使用X射线衍射测量的主峰的半高全宽为0-3°,所述结晶态无机物包括选自金属氧化物以及无机盐中的一种或多种。
  66. 根据权利要求65所述的电池,其中,所述壳包括所述金属氧化物以及所述无机盐中的至少之一,以及碳。
  67. 根据权利要求1-66中任一项所述的电池,其中,所述电极组件包括正极片,所述正极片包括正极集流体和涂覆于所述正极集流体表面的正极活性物质层,所述正极活性物质层包括正极活性材料,所述正极活性材料具有LiMPO 4,所述M包括Mn,以及非Mn元素,所述非Mn元素满足以下条件的至少之一:
    所述非Mn元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;
    所述非Mn元素的化合价变价电压为U,2V<U<5.5V;
    所述非Mn元素和O形成的化学键的化学活性不小于P-O键的化学活性;
    所述非Mn元素的最高化合价不大于6。
  68. 根据权利要求67所述的电池,其中,所述非Mn元素包括第一掺杂元素和第二掺杂元素中的一种或两种,所述第一掺杂元素为锰位掺杂,所述第二掺杂元素为磷位掺杂。
  69. 根据权利要求68所述的电池,其中,所述第一掺杂元素满足以下条件的至少之一:
    所述第一掺杂元素的离子半径为a,锰元素的离子半径为b,|a-b|/b不大于10%;
    所述第一掺杂元素的化合价变价电压为U,2V<U<5.5V。
  70. 根据权利要求68所述的电池,其中,所述第二掺杂元素满足以下条件的至少之一:
    所述第二掺杂元素和O形成的化学键的化学活性不小于P-O键的化学活性;
    所述第二掺杂元素的最高化合价不大于6。
  71. 根据权利要求67-70中任一项所述的电池,其中,所述正极活性材料还具有包覆层。
  72. 根据权利要求71所述的电池,其中,所述包覆层包括碳。
  73. 根据权利要求72所述的电池,其中,所述包覆层中的碳为SP2形态碳与SP3形态碳的混合物。
  74. 根据权利要求73所述的电池,其中,所述SP2形态碳与SP3形态碳的摩尔比为在0.1-10范围内的任意数值。
  75. 一种用电装置,其中,包括根据权利要求1-74中任一项所述的电池,所述电池用于提供电能。
PCT/CN2023/070129 2022-02-25 2023-01-03 电池和用电装置 WO2023160252A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380008506.4A CN116686151A (zh) 2022-02-25 2023-01-03 电池和用电装置

Applications Claiming Priority (26)

Application Number Priority Date Filing Date Title
PCT/CN2022/077993 WO2023159486A1 (zh) 2022-02-25 2022-02-25 电池、用电设备、制备电池的方法和设备
CNPCT/CN2022/077993 2022-02-25
PCT/CN2022/077998 WO2023159487A1 (zh) 2022-02-25 2022-02-25 电池、用电设备、制备电池的方法和设备
CNPCT/CN2022/077998 2022-02-25
PCT/CN2022/098373 WO2023240394A1 (zh) 2022-06-13 2022-06-13 电池包及用电装置
CNPCT/CN2022/098370 2022-06-13
CNPCT/CN2022/098380 2022-06-13
CNPCT/CN2022/098355 2022-06-13
PCT/CN2022/098380 WO2023240397A1 (zh) 2022-06-13 2022-06-13 电池包及用电装置
PCT/CN2022/098355 WO2023240389A1 (zh) 2022-06-13 2022-06-13 电池包及用电装置
CNPCT/CN2022/098373 2022-06-13
PCT/CN2022/098343 WO2023240387A1 (zh) 2022-06-13 2022-06-13 电池包及用电装置
CNPCT/CN2022/098343 2022-06-13
PCT/CN2022/098370 WO2023240391A1 (zh) 2022-06-13 2022-06-13 电池包及用电装置
PCT/CN2022/098348 WO2023240388A1 (zh) 2022-06-13 2022-06-13 电池包及用电装置
CNPCT/CN2022/098348 2022-06-13
PCT/CN2022/101406 WO2024000091A1 (zh) 2022-06-27 2022-06-27 电池以及用电装置
CNPCT/CN2022/101440 2022-06-27
PCT/CN2022/101440 WO2024000096A1 (zh) 2022-06-27 2022-06-27 电池以及用电装置
PCT/CN2022/101414 WO2024000093A1 (zh) 2022-06-27 2022-06-27 电池以及用电装置
CNPCT/CN2022/101517 2022-06-27
PCT/CN2022/101393 WO2024000085A1 (zh) 2022-06-27 2022-06-27 电池及用电装置
CNPCT/CN2022/101393 2022-06-27
CNPCT/CN2022/101414 2022-06-27
CNPCT/CN2022/101406 2022-06-27
PCT/CN2022/101517 WO2024000103A1 (zh) 2022-06-27 2022-06-27 电池以及用电装置

Publications (1)

Publication Number Publication Date
WO2023160252A1 true WO2023160252A1 (zh) 2023-08-31

Family

ID=87652644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070129 WO2023160252A1 (zh) 2022-02-25 2023-01-03 电池和用电装置

Country Status (2)

Country Link
CN (2) CN116686151A (zh)
WO (1) WO2023160252A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205645921U (zh) * 2016-04-08 2016-10-12 比亚迪股份有限公司 电池包箱体和具有其的车辆
CN107757327A (zh) * 2016-08-23 2018-03-06 本特勒尔汽车技术有限公司 用于电动机动车的蓄电池载体和用于装备并装配蓄电池载体的方法
CN207753067U (zh) * 2017-12-25 2018-08-21 湖南庆胜新能源科技有限公司 锂电池组的防护装置
CN211743203U (zh) * 2019-11-22 2020-10-23 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN212136479U (zh) * 2020-04-26 2020-12-11 天能电池集团股份有限公司 一种蓄电池防护片
CN215008401U (zh) * 2021-07-20 2021-12-03 远景动力技术(江苏)有限公司 一种新能源汽车
DE202021105082U1 (de) * 2021-09-21 2021-12-15 Kirchhoff Automotive Deutschland Gmbh Traktionsbatterieeinheit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205645921U (zh) * 2016-04-08 2016-10-12 比亚迪股份有限公司 电池包箱体和具有其的车辆
CN107757327A (zh) * 2016-08-23 2018-03-06 本特勒尔汽车技术有限公司 用于电动机动车的蓄电池载体和用于装备并装配蓄电池载体的方法
CN207753067U (zh) * 2017-12-25 2018-08-21 湖南庆胜新能源科技有限公司 锂电池组的防护装置
CN211743203U (zh) * 2019-11-22 2020-10-23 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN212136479U (zh) * 2020-04-26 2020-12-11 天能电池集团股份有限公司 一种蓄电池防护片
CN215008401U (zh) * 2021-07-20 2021-12-03 远景动力技术(江苏)有限公司 一种新能源汽车
DE202021105082U1 (de) * 2021-09-21 2021-12-15 Kirchhoff Automotive Deutschland Gmbh Traktionsbatterieeinheit

Also Published As

Publication number Publication date
CN116686151A (zh) 2023-09-01
CN219575787U (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
Jiang et al. The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review
WO2023155620A1 (zh) 电池和用电装置
Etacheri et al. Challenges in the development of advanced Li-ion batteries: a review
CN110224169B (zh) 一种高能量密度锂离子电池
Li et al. High-voltage positive electrode materials for lithium-ion batteries
Blomgren The development and future of lithium ion batteries
CN107851832B (zh) 非水电解质二次电池
Meng et al. Strategies for improving electrochemical reaction kinetics of cathode materials for subzero-temperature Li-ion batteries: A review
WO2023155622A1 (zh) 电池和用电装置
BR102017019199A2 (pt) eletrólito compósito, bateria secundária, conjunto de bateria e veículo
CN105990575A (zh) 电极、非水电解质电池及电池包
KR20150119876A (ko) 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지
EP3220448B1 (en) Nonaqueous electrolyte battery, battery pack and vehicle
KR20160035039A (ko) 비수전해질 이차 전지용 정극 및 이것을 사용한 비수전해질 이차 전지
Maiyalagan et al. Rechargeable lithium-ion batteries: trends and progress in electric vehicles
KR20180118241A (ko) 전기 디바이스
KR20190069073A (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
EP3780234B1 (en) Nonaqueous electrolyte secondary battery
CN219203386U (zh) 电池和用电装置
Chen et al. Rock salt-type LiTiO2@ LiNi0. 5Co0. 2Mn0. 3O2 as cathode materials with high capacity retention rate and stable structure
WO2023160252A1 (zh) 电池和用电装置
EP4195352A1 (en) Lithium ion battery
CN108292781A (zh) 二次电池、电池组、电动车辆、电力储存系统、电动工具以及电子设备
CN117342631B (zh) 三元前驱体及其制备方法、二次电池和用电装置
WO2023097433A1 (zh) 负极极片、二次电池、电池模块、电池包和用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202380008506.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23758879

Country of ref document: EP

Kind code of ref document: A1