WO2024000103A1 - 电池以及用电装置 - Google Patents

电池以及用电装置 Download PDF

Info

Publication number
WO2024000103A1
WO2024000103A1 PCT/CN2022/101517 CN2022101517W WO2024000103A1 WO 2024000103 A1 WO2024000103 A1 WO 2024000103A1 CN 2022101517 W CN2022101517 W CN 2022101517W WO 2024000103 A1 WO2024000103 A1 WO 2024000103A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
battery according
cover
carrying
Prior art date
Application number
PCT/CN2022/101517
Other languages
English (en)
French (fr)
Inventor
陈兴地
龙超
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/101517 priority Critical patent/WO2024000103A1/zh
Priority to CN202280006476.9A priority patent/CN116325321A/zh
Priority to PCT/CN2023/070129 priority patent/WO2023160252A1/zh
Priority to CN202320014583.8U priority patent/CN219203337U/zh
Priority to CN202380008506.4A priority patent/CN116686151A/zh
Priority to PCT/CN2023/070125 priority patent/WO2023155620A1/zh
Priority to CN202380008512.XA priority patent/CN116848705A/zh
Priority to CN202380008510.0A priority patent/CN116868417A/zh
Priority to PCT/CN2023/070126 priority patent/WO2023155621A1/zh
Priority to CN202320014525.5U priority patent/CN219575787U/zh
Priority to CN202320134491.3U priority patent/CN219180683U/zh
Publication of WO2024000103A1 publication Critical patent/WO2024000103A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the field of battery technology, and in particular relates to a battery and an electrical device.
  • the energy density of the battery is not high, resulting in a waste of space, which in turn affects the performance of the electrical device; moreover, the existing battery has poor rigidity, causing the battery to easily undergo thermal runaway in a collision, affecting the safety of the electrical device. sex.
  • Embodiments of the present application provide a battery and a power device that can improve the energy density and safety of the battery.
  • embodiments of the present application provide a battery, including a box, a cover, a battery cell, and a carrying component.
  • An opening is provided at the bottom of the box; the cover is closed with the opening, and the cover is fixedly connected to the box; a plurality of battery cells are arranged in the box, and the top cover plates of the battery cells are placed upside down in the box toward the opening; the load-bearing component is arranged between the battery cell and the cover to support the battery cell.
  • the opening is set at the bottom of the box, the battery cells are set inside the box, the top cover plate is set toward the opening, the cover body covers the opening, and a load-bearing component is set between the battery cells and the cover body to support
  • the battery cell can enhance the overall stiffness of the battery, reduce the probability of damage in a collision, and improve the safety of the battery.
  • the load-bearing component includes a main board and a load-bearing bar connected to the main board.
  • the main board abuts the cover, and the load-bearing bar abuts the battery cell.
  • the load-bearing strips can play a role in supporting the load-carrying battery cells.
  • the carrying strip is provided with a plurality of carrying components, and the plurality of carrying strips are spaced along the main board in a first direction and extend along the second direction on the main board.
  • multiple load-bearing components support multiple battery cells to improve the stability of the battery structure.
  • the top cover plate includes a functional area and shoulders.
  • the functional area is provided with electrode terminals.
  • the shoulders are located on both sides of the functional area along the first direction. The battery cells abut against the carrying bars through the shoulders.
  • the functional area provided with the electrode terminals is located between the shoulders, so that the shoulders can achieve a certain protective effect on the electrode terminals.
  • the battery cell overlaps the load-bearing bar through the shoulders, which can prevent the functional area from being damaged due to force and extend the life of the battery cell.
  • the electrode terminals are disposed between two adjacent carrying bars, and the electrode terminals are spaced apart from the cover.
  • the electrode terminals are not in contact with the cover body, so that the electrode terminals can realize their functions.
  • the thickness of the carrying strip is greater than the extension height of the electrode terminal.
  • the electrode terminals are suspended between the supporting bars.
  • the shoulders of two adjacent battery cells jointly abut on the same carrying bar.
  • battery cells adjacent in the first direction share the same carrier bar, which can reduce the number of carrier bars as much as possible and facilitate the manufacturing of carrier components.
  • the width D1 of the carrying strip and the extended width D2 of the shoulder satisfy: 0.5D2 ⁇ D1 ⁇ 2D2.
  • the load-bearing bar is prevented from being able to carry only one side of the battery cells due to offset, and the load-carrying bar is only in contact with the shoulders of two adjacent battery cells, and the contact with the functional area is avoided from affecting the battery cells. body functions.
  • the functional area is also provided with a pressure relief mechanism.
  • the pressure relief mechanism is spaced apart from the cover body. In the first direction, the electrode terminals are provided on both sides of the pressure relief mechanism.
  • the pressure relief mechanism is evenly suspended between the load-bearing bars, which can provide a larger pressure relief space for the pressure relief mechanism, reduce the risk caused by the discharge of emissions, and improve the safety of the battery.
  • the electrode terminals of two adjacent battery cells are electrically connected through bus components, and in the second direction, the extension length of one fold of the two adjacent carrier bars is smaller than the extension length of the other, To form an avoidance gap, the avoidance gap is used to avoid the converging parts.
  • the load-bearing component is better adapted to the structure of the battery, which facilitates the battery cells to be connected in series, parallel and mixed connection with each other.
  • the load-bearing strip is integrally formed or detachably connected to the motherboard to facilitate the manufacture of the load-bearing assembly or to adjust the position of the load-bearing strip according to the arrangement of the battery cells.
  • the main board is fixedly connected to the cover to increase the structural solidity of the battery.
  • the load-bearing component is made of insulating material, or the surface of the load-bearing component is covered with insulating material.
  • the thickness of the load-bearing strip is the first dimension H1, and the first dimension H1 satisfies 5mm ⁇ H1 ⁇ 30mm.
  • the ratio H1/M of the first dimension H1 to the weight M of a single battery cell satisfies 0.5mm/Kg ⁇ H1/M ⁇ 50mm/Kg.
  • embodiments of the present application provide an electrical device, including a battery cell according to any embodiment of the first aspect, and the battery cell is used to provide electric energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is a schematic diagram of the assembly structure of batteries according to some embodiments of the present application.
  • FIG. 3 is an exploded schematic diagram of a battery according to some embodiments of the present application.
  • Figure 4 is a schematic structural diagram of a load-bearing component of a battery according to some embodiments of the present application.
  • Figure 5 is a schematic structural diagram of a battery cell of a battery according to some embodiments of the present application.
  • Figure 6 is a schematic cross-sectional view of the battery shown in Figure 2;
  • Figure 7 is an enlarged schematic diagram of Figure 6 at circular frame B;
  • Figure 8 is a schematic structural diagram of a crash test device for crash testing a battery according to some embodiments of the present application.
  • Figure 9 is a schematic structural diagram of a battery cover according to some embodiments of the present application.
  • Figure 10 is a schematic diagram of the internal structure of a battery cell according to some embodiments of the present application.
  • X first direction
  • Y second direction
  • Z third direction
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • parallel includes not only the absolutely parallel situation, but also the roughly parallel situation that is conventionally recognized in engineering; at the same time, the term “perpendicular” includes not only the absolutely vertical situation, but also the roughly parallel situation that is conventionally recognized in engineering. vertical situation.
  • battery cells may include lithium ion secondary battery cells, lithium ion primary battery cells, lithium sulfur battery cells, sodium lithium ion battery cells, sodium ion battery cells or magnesium ion battery cells, etc.,
  • the embodiments of the present application are not limited to this.
  • a battery refers to a single physical module that includes one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may be a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • multiple battery cells can be connected in series, in parallel, or in mixed connection. Mixed connection means that multiple battery cells are connected in series and in parallel. Multiple battery cells can be directly connected in series or parallel or mixed together, and then the whole composed of multiple battery cells can be accommodated in the box; of course, the battery can also be multiple battery cells connected in series or parallel or mixed. They are connected to form a battery, and multiple batteries are connected in series, parallel, or mixed to form a whole, and are contained in the box.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also expanding.
  • the opening of the battery box often faces upward in the vertical direction
  • the battery cells are fixed at the bottom of the battery
  • the electrode terminals face the cover covering the opening of the box.
  • the rigidity is poor, and during the collision process of the battery, the internal battery cells are unevenly stressed, making the battery prone to damage, resulting in poor battery safety and affecting the battery performance.
  • embodiments of the present application provide a battery.
  • the opening is provided at the bottom of the box.
  • the battery cells are placed upside down in the box.
  • the top cover plate is set toward the opening.
  • the cover body covers the opening.
  • a load-bearing component is arranged between them to support the battery cells, which can enhance the overall stiffness of the battery, reduce the probability of damage in a collision, and improve the safety of the battery.
  • the overall structural strength of the battery can be adjusted while ensuring the energy density of the battery, further improving the performance of the battery.
  • Electrical devices can be vehicles, cell phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • FIG 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a range-extended vehicle.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is a schematic diagram of the assembly structure of the battery 100 according to some embodiments of the present application.
  • Figure 3 is an exploded schematic diagram of a battery 100 according to some embodiments of the present application.
  • the battery 100 includes a box 1 , a cover 2 , a battery cell 3 and a carrying component 4 .
  • the bottom 102 of the box 1 is provided with an opening 103 .
  • the cover 2 covers the opening 103 and is fixedly connected to the box 1 .
  • a plurality of battery cells 3 are placed in the box 1 , and the top cover plates 31 of the battery cells 3 are placed upside down in the box 1 toward the opening 103 .
  • the carrying component 4 is disposed between the battery cell 3 and the cover 2 to support and carry the battery cell 3 .
  • the opening 103 of the box 1 is provided at the bottom 102 .
  • the bottom 102 refers to the bottom 102 in the thickness direction of the box 1 .
  • the opening 103 faces downward in the thickness direction of the box 1 .
  • the thickness direction of the box 1 is taken as the third direction, that is, the Z direction.
  • the box 1 also has a top 101 in the third direction Z, and the top 101 and the bottom 102 are along the third direction. Z's are opposite each other. It should be understood that in the following content, in order to indicate the arrangement direction of the battery cells 3 and other factors, the first direction and the second direction will be defined in detail, and will not be described in detail here.
  • the cover 2 covers the opening 103 and is fixedly connected to the box 1 .
  • the cover 2 is disposed on the bottom 102 of the box 1 and covers the opening 103 .
  • a plurality of battery cells 3 are provided in the box 1.
  • the top cover plate 31 of the battery cell 3 faces the opening 103, that is, the bottom of the battery cell 3 is disposed on the top 101 of the box 1 in the third direction Z.
  • the top cover plate 31 on the top of the battery 100 is disposed toward the bottom 102 , indicating that the battery cell 3 is disposed upside down with the box 1 in the third direction Z.
  • the battery cell 3 By placing the battery cell 3 and the box 1 upside down, the battery cell 3 can be disposed on the top 101 of the battery 100 , thereby increasing the stiffness of the top 101 of the battery 100 and increasing the safety of the battery 100 .
  • the top cover plate 31 of the battery cell 3 faces the bottom 102 of the battery 100, which can increase the energy density of the battery 100 and improve the usability of the battery 100.
  • the top cover plate 31 of the battery cell 3 faces the opening 103
  • the top cover plate 31 of the battery cell 3 faces the cover 2 provided in the opening 103
  • a load-bearing assembly is disposed between the battery cell 3 and the cover 2 4 to support the battery cell 3. Since the carrying component 4 is disposed between the battery cell 3 and the cover 2 , the battery cell 3 , the carrying component 4 and the cover 2 are arranged in sequence from top to bottom along the third direction Z.
  • the load-bearing component 4 plays a supporting role in supporting the battery cell 3, that is, the load-bearing component 4 is in contact with the top cover plate 31 of the battery cell 3, thereby increasing the structural strength of the battery 100 and improving the force-bearing performance of the battery 100. Reduces the likelihood of battery 100 damage in a collision.
  • FIG. 4 is a schematic structural diagram of the load-bearing component 4 of the battery 100 in some embodiments of the present application.
  • the load-bearing assembly 4 includes a main plate 41 and a load-bearing bar 42 .
  • the main plate 41 is in contact with the cover 2
  • the load-bearing bar 42 is in contact with the battery cell 3 .
  • Contact means that the main board 41 and the cover 2 and the carrying bar 42 and the battery cell 3 are in contact with each other but are not fixed to each other.
  • the main board 41 is in contact with the cover 2
  • the load-bearing bar 42 is in contact with the battery cell 3 . That is, the load-bearing assembly 4 is in contact with the cover 2 and the battery cell 3 respectively to provide support for the battery cell 3 and keep the battery in place.
  • multiple carrying bars 42 are provided.
  • the plurality of carrying bars 42 are spaced apart along the main board 41 in the first direction and extend along the second direction on the main board 41 .
  • the carrying bar 42 is formed in a strip shape and extends in the second direction.
  • a plurality of carrying bars 42 are arranged on the main board 41 at intervals in the first direction, that is, the carrying bars 42 are arranged along the first direction to support the battery cells 3 at multiple positions.
  • the first direction and the second direction are perpendicular to each other. Since the bearing assembly 4 is arranged parallel to the top 101 and the bottom 102 of the box 1 in the third direction Z, the first direction, the second direction and the third direction Z are perpendicular to each other. .
  • the first direction and the second direction are referred to as the X direction and the Y direction respectively.
  • first direction X, the second direction Y and the third direction Z can be Z's are considered perpendicular to each other. It should be understood that the first direction X, the second direction Y and the third direction Z can also be other directions perpendicular to each other.
  • the carrying bar 42 is disposed on a side of the main board 41 close to the battery cell 3 and protrudes toward the battery cell 3 along the third direction Z to contact the battery cell 3, thereby supporting and carrying the battery cell 3. Improve the stability of the battery 100 structure.
  • FIG. 5 is a schematic structural diagram of the battery cell 3 according to the embodiment of the present application.
  • the top cover plate 31 includes a functional area 301 and a shoulder 302.
  • the functional area 301 is provided with electrode terminals 311, and the shoulders 302 are located on both sides of the functional area 301 along the first direction X.
  • the battery cells 3 are mounted on the carrying bars 42 through the shoulders 302 .
  • the functional area 301 indicates that the top cover 31 is provided with an area that enables the battery cell 3 to realize its own functions, or an area that allows the battery cell 3 to interact with the outside world, for example, an area that enables the battery cell 3 to be electrically connected to the outside world.
  • Electrode terminal 311 Since the functional area 301 is often provided with components such as electrode terminals 311, the functional area 301 should not be subject to force during use of the battery 100.
  • the shoulder 302 indicates the area of the top cover 31 that can bear force except the functional area 301 .
  • the shoulders 302 can achieve a certain protective effect on the functional area 301.
  • the battery cell 3 is overlapped with the carrying bar 42 through the shoulder 302, which can prevent the electrode terminal 311 of the functional area 301 from being damaged due to force, thereby extending the life of the battery cell 3.
  • the electrode terminal 311 is disposed between two adjacent carrying bars 42 , and the electrode terminal 311 is spaced apart from the cover 2 .
  • the electrode terminals 311 of the functional area 301 are also located between the two adjacent carrier bars 42 .
  • the electrode terminals 311 are spaced apart from the cover 2 , that is, the electrode terminals 311 are not in contact with the cover 2 .
  • the electrode terminals 311 can be regarded as suspended between the two carrying bars 42 , so that the battery cells can be led out through the electrode terminals 311 The electric energy of the battery cell 3 is increased to improve the availability of the battery cell 3.
  • the thickness of the carrying strip 42 is greater than the extension height of the electrode terminal 311 in the thickness direction of the main board 41 .
  • the thickness direction of the main board 41 is also the thickness direction of the box 1, that is, the third direction Z.
  • the thickness of the carrying bar 42 is greater than the extension height of the electrode terminal 311, which can make the electrode terminal 311 suspended in the relative position. between adjacent load-bearing bars 42 to avoid contact with other components and affecting the function.
  • the shoulders 302 of two adjacent battery cells 3 overlap together on the same carrying bar 42 .
  • one battery cell 3 can be installed, or multiple battery cells 3 can be installed.
  • the multiple battery cells 3 are adjacent to each other.
  • the carrying bars 42 are spaced apart along the main board 41 along the first direction X, the shoulders 302 are located on both sides of the functional area 301 in the first direction
  • the joints of the cells 3 enable the shoulders 302 of two adjacent battery cells 3 to jointly overlap the same carrier bar 4 .
  • the width D1 of the carrying bar 42 and the extended width D2 of the shoulder 302 satisfy: 0.5D2 ⁇ D1 ⁇ 2D2.
  • the width D1 of the carrying bar 42 is greater than or equal to 0.5 times the extended width D2 of the shoulder 302 , sufficient support force can be provided for the battery cell 3 .
  • the carrying bar 42 carries two adjacent battery cells 3 at the same time, the width of the carrying bar 42 in the length direction
  • the shoulders 302 of the two battery cells 3 are in contact to avoid contact with the functional area 301 and affecting the function of the battery cells 3 .
  • the relationship between the width D1 of the carrying bar 42 and the extended width D2 of the shoulder 302 can satisfy D2 ⁇ D1 ⁇ 2D2. Since the load-bearing bar 42 may be offset between adjacent battery cells 3 , the width of the load-carrying bar 42 in the length direction Each battery cell 3 does not have the problem of being able to carry only one side due to offset, resulting in poor structural stability of the battery 100 due to uneven stress.
  • the functional area 301 is also provided with a pressure relief mechanism 312.
  • the pressure relief mechanism 312 is spaced apart from the cover 2.
  • the electrode terminals 311 are provided on both sides of the pressure relief mechanism 312.
  • the pressure relief mechanism 312 refers to an element or component that is activated to relieve the internal pressure when the internal pressure of the battery cell 3 reaches a predetermined threshold. That is, when the internal pressure of the battery cell 3 reaches a predetermined threshold, the pressure relief mechanism 312 takes action or is activated to a certain state, so that the internal pressure of the battery cell 3 can be released.
  • the actions generated by the pressure relief mechanism 312 may include but are not limited to: at least a part of the pressure relief mechanism 312 is ruptured, broken, torn or opened, thereby forming an opening or channel for internal pressure relief, etc. At this time, the high-temperature and high-pressure substances inside the battery cell 3 will be discharged outward from the actuated part as emissions.
  • the pressure relief mechanism 312 may take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, and may specifically adopt a pressure-sensitive component or structure.
  • Arranging the electrode terminals 311 on both sides of the pressure relief mechanism 312 can reduce the impact of the pressure relief mechanism 312 on the electrode terminals 311 during pressure relief. Moreover, the pressure relief mechanism 312 is spaced apart from the cover body 2, that is, the pressure relief mechanism 312 does not contact the cover body 2, thereby providing a larger pressure relief space for the pressure relief mechanism 312 and reducing the risk caused by the discharge of emissions. Improve the safety of battery 100.
  • the electrode terminals 311 of two adjacent battery cells 3 are electrically connected through the bus part 34.
  • the adjacent The extension length of one of the two carrying bars 42 is smaller than the extension length of the other, so as to form an avoidance gap 43 , and the avoidance gap 43 is used to avoid the bus part 34 .
  • the bus member 34 is a member that electrically connects the plurality of battery cells 3 .
  • the bus part 34 is connected between the electrode terminals 311 of adjacent battery cells 3 to connect a plurality of battery cells 3 in series, parallel or mixed connection. Since the bus part 34 spans between the electrode terminals 311 of adjacent battery cells 3 in the first direction .
  • the extension length of one of the two adjacent load-bearing bars 42 is smaller than the extension length of the other, that is, the load-bearing bars 42 with the longer extension length and the load-bearing bars 42 with the shorter extension length are alternately distributed.
  • the length of the carrying bar 42 can also be adjusted according to the arrangement of the bus part 34 .
  • the extension length of the load-bearing bar 42 in the second direction Y only indicates the sum of the lengths of the load-bearing bar 42 in the second direction Y.
  • the avoidance gap 43 can be provided at one end of the load-bearing bar 42, or It can be arranged in the middle of the carrying bar 42, depending on the arrangement of the bus components 34, and the embodiment of the present application does not impose any special restrictions on this.
  • the carrying bar 42 is integrally formed or detachably connected to the main board 41 .
  • the manufacturing of the carrying assembly 4 can be facilitated.
  • the load-bearing bar 42 is detachably connected to the main board 41, the position of the load-bearing bar 42 can be easily adjusted according to the arrangement of the battery cells 3, so that the load-bearing assembly 4 can be used in a wider range of scenarios.
  • the main board 41 may be fixedly connected to the cover 2 .
  • the main board 41 can also be in contact with the cover 2, which is not limited in the embodiment of the present application.
  • the load-bearing component 4 is made of insulating material, or the surface of the load-bearing component 4 is covered with insulating material.
  • the load-bearing component 4 is an insulator. It can be understood that the bearing component 4 can be made of an insulating material as a whole, or can be an object covered with an insulating material on the surface to exhibit insulating properties as a whole.
  • the core material can be made of metal, insulating material or composite material, and the outer surface of the core material is covered with an insulating material.
  • the load-bearing component 4 should have a certain degree of hardness and elasticity, so as to achieve a supporting effect on the battery cell 3 and at the same time be able to produce a certain amount of deformation when it is impacted, thereby protecting the battery cell 3 .
  • FIG. 6 is a schematic cross-sectional view of the battery shown in FIG. 2 .
  • Figure 7 is an enlarged schematic diagram of Figure 6 at circular frame B.
  • the thickness of the load-bearing strip 42 in the thickness direction of the main board 41 , is the first dimension H1 , and the first dimension H1 satisfies 5 mm ⁇ H1 ⁇ 30 mm.
  • the thickness direction of the main board 41 is also the thickness direction of the box 1 , that is, the third direction Z.
  • the carrying strip 42 has a certain thickness in the third direction Z, so that it can protrude from the main board 41 and support the carrying battery cell 3 .
  • the carrying bar 42 maintains the first size, which can keep the top cover plate 31 of the battery cell 3 and the cover 2 at a certain distance, thereby keeping the energy density of the battery 100 moderate.
  • the ratio H1/M of the first dimension H1 to the weight M of the single battery cell 3 satisfies 0.5mm/Kg ⁇ H1/M ⁇ 50mm/Kg.
  • the ratio H1/M of the first dimension H1 to the weight M of a single battery cell 3 can indicate the energy density and structural strength of the battery 100.
  • the battery will 100The energy density is too low.
  • the structural strength of the battery 100 may be insufficient and a safety accident may occur in a collision. Therefore, the range of the ratio H1/M of the first dimension H1 to the weight M of a single battery cell 3 satisfies 0.5mm/Kg ⁇ H1/M ⁇ 50mm/Kg.
  • the range of H1/M satisfies 1mm/Kg ⁇ H1/ M ⁇ 30mm/Kg. Within this value range, the battery 100 has good energy density and appropriate structural strength.
  • FIG. 8 is a schematic structural diagram of a collision test device A for performing a collision test on the battery 100 according to some embodiments of the present application.
  • the battery 100 is illustratively subjected to a collision test using the collision test device A.
  • the collision test device A includes an impact head A1, a launching device A2 and a frame A3.
  • the battery 100 is placed on the frame A3, so that the impact head A1 is driven by the launching device A2 and collides with the battery 100 at a certain speed.
  • the test conditions can be selected as follows: the collision direction is the third direction Z, the collision position is the weak point of the battery 100, and the collision energy is 90J.
  • the weak point of the battery 100 indicates the position where the battery 100 is easily damaged. This point is often within a radius of 240mm from the geometric center of the battery 100. Collision with the weak point of the battery 100 can simulate the weak structural strength of the battery 100.
  • the impact energy is 90J, which can be equivalent to the impact head A1 impacting the battery 100 at a speed of 4.2m/s.
  • impact energy can also be used to impact the battery 100, for example, 120J (collision speed 4.9m/s) s) or 150J (collision speed 5.5m/s).
  • 120J collision speed 4.9m/s
  • 150J collision speed 5.5m/s
  • one impact energy can be used to impact the battery 100 multiple times, or multiple impact energies can be used to impact the battery 100 multiple times.
  • the battery 100 After the battery 100 is impacted by the collision test device A, it is observed at ambient temperature for 2 hours to detect whether the battery 100 has a fire or explosion phenomenon.
  • the battery 100 can also be tested for the shell protection level, etc. This is not limited in the embodiment of the present application.
  • Table 1 shows the test results of the collision test on the battery 100 through the above method when the first distance H1, the weight M of the single battery cell 3, and the value of H1/M respectively adopt different values.
  • the battery cells 3 may not be mounted on the carrying bar 42 but may be fixedly connected to the carrying bar 42 .
  • the first size H1 satisfies 0.5mm ⁇ H1 ⁇ 30mm
  • the ratio H1/M of the first size H1 to the weight M of the single battery cell 3 satisfies 0.05mm/Kg ⁇ H1/M ⁇ 50mm/Kg.
  • the battery 100 has good energy density and appropriate structural strength.
  • a structural strength test can be performed on the battery 100 .
  • the structural strength of the battery 100 can be judged through multiple tests such as a shear strength test and a compressive strength test.
  • the battery 100 can be fixed between the clamps of the shear testing machine, and then the detection head of the shear testing machine is used to drive the battery 100 along the first direction X or at a speed of 5 mm/min. Move in the second direction Y, and record the tensile force F exerted by the detection head when the box 1 is damaged. Taking the projected area of the battery 100 in the third direction Z as the area A, the value of F/A is the shear strength that the battery 100 can withstand.
  • an extrusion head can be used to apply pressure to the battery 100 in the third direction Z and the first direction X or the second direction Y, and push the battery 100 towards the battery 100 at a speed of 2 m/s. Stop when the extrusion force reaches 50KN or the deformation of the battery 100 reaches 30%, keep it for 10 minutes, and after the compressive strength test, leave the battery 100 at ambient temperature for 2 hours of observation.
  • the structural strength of the battery 100 can also be tested through other structural strength tests, which are not limited by the embodiments of the present application.
  • Table 2 shows that when the battery cell 3 is fixed on the carrying bar 42 and the first distance H1, the weight M of the single battery cell 3 and the value of H1/M adopt different values, the above method can be used to The battery 100 undergoes structural strength test results.
  • Example 1 H1(mm) M(Kg) H1/M(mm/Kg) Structural strength testing Example 1 0.5 10 0.05 better Example 2 5 5 1 better Example 3 10 4 2.5 good Example 4 10 2 5 good Example 5 20 1 20 excellent Example 6 30 0.6 50 better
  • battery 100 has good structural strength in the strength structure test.
  • the above descriptions of some embodiments of the battery 100 are only exemplary, and the battery 100 may also have other structures.
  • the box 1 includes a support plate 11 and a side plate 12 .
  • the support plate 11 is provided on the top 101 , and the side plates 12 are distributed along the circumference of the opening 103 . That is to say, the support plate 11 and the side plate 12 are arranged in sequence from top to bottom along the third direction Z.
  • the support plate 11 is a plate extending along the first direction X
  • the side plate 12 is a plate extending along the third direction Z.
  • the side plates 12 are arranged to surround the support plate 11, and an opening 103 is formed at the bottom 102, so that the box 1 is formed into a hollow structure.
  • the battery cells 3 are arranged on the support plate 11, which can increase the rigidity of the top 101 of the battery 100 and reduce the possibility of the battery 100 being damaged in a collision.
  • the side plate 12 can be integrally formed with the support plate 11, or can be fixedly connected to the support plate 11 through at least one of welding, bonding, fasteners or hot-melt self-tapping processes. This is the case in the embodiment of the present application. No restrictions.
  • channels are embedded inside the support plate 11 . Since the battery cell 3 is disposed on the support plate 11, the bottom 102 of the battery cell 3 is in contact with the support plate 11. In order to consider the performance of the battery 100, a channel is embedded inside the support plate 11, through which gas as a heat medium passes. or liquid, which can regulate the temperature of the battery 100 when the battery 100 is working, thereby increasing the life and availability of the battery 100 .
  • the channel can also be provided as a thermal management component between the battery cell 3 and the support plate 11 , or formed as any other component that can be configured to regulate the temperature of the battery 100 .
  • the application examples are not limited here.
  • the box 1 may also be a simple three-dimensional structure such as a rectangular parallelepiped or a cylinder, or a complex three-dimensional structure composed of a combination of simple three-dimensional structures such as a rectangular parallelepiped or a cylinder.
  • the material of the box body 1 may be alloy materials such as aluminum alloy, iron alloy, etc., or may be polymer materials such as polycarbonate, polyisocyanurate foam, or composite materials such as glass fiber and epoxy resin.
  • a sealing member such as sealant, sealing ring, etc., can also be provided between the cover 2 and the side plate 12. The embodiments of this application place no restrictions on the above feasible settings.
  • the battery 100 there may be multiple battery cells 3 , and the multiple battery cells 3 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that among the multiple battery cells 3 There are both series and parallel connections. Multiple battery cells 3 can be directly connected in series or in parallel or mixed together, and then the whole composed of multiple battery cells 3 can be accommodated in the box 1 ; of course, the battery 100 can also be multiple battery cells 3 First, the battery 100 modules are connected in series, parallel, or mixed, and then multiple battery 100 modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 1 .
  • Each battery cell 3 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 3 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • Figure 9 is a schematic structural diagram of the cover 2 of the battery 100 in some embodiments of the present application.
  • the box 1 also includes a cover 2 disposed at the opening 103.
  • the cover 2 is fixedly connected to the side plate 12, thereby covering the opening 103, so that the box 1 has relative Sealed structure.
  • the cover 2 includes a main body part 21 and a fitting part 22 .
  • the fitting part 22 is provided in the circumferential direction of the main body part 21 and matches the side plate 12 . That is to say, the main body part 21 covers the opening 103 formed by the side plate 12 , and the fitting part 22 is fixed to the side plate 12 to fixedly connect the cover 2 and the side plate 12 .
  • the fitting part 22 and the side plate 12 may be connected by bolts, and the fitting part 22 and the side plate 12 may also be fixedly connected in other ways.
  • the main body portion 21 protrudes from the extended surface of the bottom 102 relative to the fitting portion 22 .
  • the protruding distance of the main part 21 relative to the mating part 22 should be selected based on the energy density of the battery 100 , and should not be too large to increase the volume of the battery 100 and reduce the energy density of the battery 100 .
  • FIG. 10 is a schematic diagram of the internal structure of the battery cell 3 in some embodiments of the present application.
  • the battery cell 3 refers to the smallest unit that constitutes the battery 100 .
  • the battery cell 3 also includes a top cover plate 31 , a case 32 , an electrode assembly 33 and other functional components.
  • the top cover plate 31 refers to a component that covers the opening of the case 32 to isolate the internal environment of the battery cell 3 from the external environment.
  • the shape of the top cover plate 31 can be adapted to the shape of the housing 32 to fit the housing 32 .
  • the top cover plate 31 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the top cover plate 31 is less likely to deform when subjected to extrusion and collision, so that the battery cell 3 can have better performance. With high structural strength, safety performance can also be improved.
  • Functional components such as electrode terminals 311 and explosion-proof valves are provided on the top cover plate 31 .
  • the electrode terminal 311 may be used to electrically connect with the electrode assembly 33 for outputting or inputting electric energy of the battery cell 3 .
  • the top cover plate 31 may also be provided with a pressure relief mechanism 312 for releasing the internal pressure when the internal pressure or temperature of the battery cell 3 reaches a threshold.
  • the top cover plate 31 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • an insulating member may also be provided inside the top cover plate 31 , and the insulating member may be used to isolate the electrical connecting plate in the housing 32 from the top cover plate 31 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber, etc.
  • the housing 32 is a component used to cooperate with the top cover plate 31 to form an internal environment of the battery cell 3 , wherein the formed internal environment can be used to accommodate the electrode assembly 33 , electrolyte (not shown in the figure) and other components.
  • the casing 32 and the top cover plate 31 may be independent components, and an opening may be provided on the casing 32.
  • the top cover plate 31 covers the opening at the opening to form the internal environment of the battery cell 3.
  • the top cover plate 31 and the shell 32 can also be integrated. Specifically, the top cover plate 31 and the shell 32 can form a common connection surface before other components are inserted into the shell. When the shell 32 needs to be packaged, When inside, the top cover plate 31 is allowed to cover the housing 32 .
  • the housing 32 may be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the housing 32 can be determined according to the specific shape and size of the electrode assembly 33 .
  • the housing 32 may be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • the electrode assembly 33 is a component in the battery cell 3 where electrochemical reactions occur.
  • One or more electrode assemblies 33 may be contained within the housing 32 .
  • the electrode assembly 33 is mainly formed by winding or stacking positive electrode sheets and negative electrode sheets, and usually a separator is provided between the positive electrode sheets and the negative electrode sheets.
  • the portions of the positive electrode sheet and the negative electrode sheet that contain active material constitute the main body of the electrode assembly 33 , and the portions of the positive electrode sheet and the negative electrode sheet that do not contain active material each constitute tabs.
  • the positive electrode tab and the negative electrode tab can be located together at one end of the main body or respectively located at both ends of the main body.
  • the battery 100 includes a box 1, a cover 2, a plurality of battery cells 3, and a load-bearing assembly 4.
  • the cover 2 covers the opening 103 of the bottom 102 of the box 1, and The box 1 is fixedly connected, a plurality of battery cells 3 are placed in the box 1, the top cover plate 31 is placed upside down on the box 1 toward the opening 103, and the load-bearing assembly 4 is placed between the battery cells 3 and the cover 2.
  • It includes a main board 41 and a carrying bar 42 connected to the main board 41.
  • the main board 41 is in contact with the cover 2, and the carrying bar 42 is in contact with the battery cell 3 to support the battery cell 3.
  • a plurality of carrying bars 42 are provided.
  • the plurality of carrying bars 42 are spaced along the main board 41 in the first direction X and extend along the second direction Y on the main board 41 .
  • the top cover plate 31 of the battery cell 3 includes a functional area 301 provided with electrode terminals 311 and shoulders 302 provided on both sides of the functional area 301 along the first direction 42, so that the electrode terminal 311 is located between adjacent supporting bars 42 and spaced apart from the cover 2, so as to protect the electrode terminal 311.
  • the thickness of the load-bearing bar 42 is the first dimension H1.
  • the first dimension H1 satisfies 5mm ⁇ H1 ⁇ 30mm
  • the first dimension H1 is equal to the weight M of the single battery cell 3.
  • the ratio H1/M satisfies 0.5mm/Kg ⁇ H1/M ⁇ 50mm/Kg, as shown in Table 1, in a collision test of a certain intensity, the battery 100 will not catch fire or explode, and has good safety.
  • the battery 100 in the embodiment of the present application can increase the rigidity of the box 1 and increase the energy density of the battery 100 by placing the battery cells 3 upside down in the box 1; and, the load-bearing component 4 can be used to support the battery 100.
  • the battery cell 3 can enhance the structural strength of the battery 100 and reduce the probability of damage in a collision, so that the battery 100 has better safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池以及用电装置。电池包括箱体、盖体、电池单体以及承载组件,箱体的底部设置有开口,盖体盖合于开口,与箱体固定连接,多个电池单体设置于箱体内,电池单体的顶盖板朝向开口倒置于箱体设置,承载组件设置于电池单体与盖体之间,以支撑承载电池单体。根据本申请实施例,能够提升电池的结构稳定性以及安全性。

Description

电池以及用电装置 技术领域
本申请属于电池技术领域,尤其涉及一种电池以及用电装置。
背景技术
近年来,新能源汽车的出现对于社会发展和环境保护均起到了巨大的推动作用,动力电池作为一种可充电的电池是新能源汽车的动力来源,在新能源汽车领域中被广泛应用。
在现有技术中,电池的能量密度不高,导致空间浪费,进而影响用电装置的性能;并且,现有的电池刚性较差,导致电池在碰撞容易发生热失控,影响用电装置的安全性。
发明内容
本申请实施例提供一种电池以及用电装置,能够提升电池的能量密度以及安全性。
第一方面,本申请实施例提供了一种电池,包括箱体、盖板、电池单体以及承载组件。箱体底部设置有开口;盖体盖合于开口,盖体与箱体固定连接;多个电池单体设置于箱体内,电池单体的顶盖板朝向开口倒置于箱体设置;承载组件设置于电池单体与盖体之间,以支撑承载电池单体。
上述技术方案中,将开口设置于箱体的底部,电池单体设置于箱体内,顶盖板朝向开口设置,盖体盖合于开口,在电池单体与盖体之间设置承载组件以支撑电池单体,能够增强电池整体的刚度,减少其在碰撞中发生损坏的概率,提高电池的安全性。
在一些实施例中,承载组件包括主板以及连接于主板的承载条,主板抵接于盖体,承载条抵接于电池单体。
上述技术方案中,承载条能够起到支撑承载电池单体的作用。
在一些实施例中,承载条设置有多个承载组件,多个承载条在第一方向上沿主板间隔设置,并在主板上沿第二方向延伸。
上述技术方案中,多个承载组件支撑多个电池单体,提升电池结构的稳定性。
在一些实施例中,顶盖板包括功能区和肩部,功能区设置有电极端子,肩部沿第一方向位于功能区两侧,电池单体通过肩部抵接于承载条。
上述技术方案中,使得设置有电极端子的功能区位于肩部之间,可以令肩部对电极端子实现一定保护效果。使得电池单体通过肩部搭接于承载条,能够避免功能区由于受力发生损坏,提升电池单体的寿命。
在一些实施例中,电极端子设置于相邻的两个承载条之间,且电极端子与盖体间隔设置。
上述技术方案中,使得电极端子不与盖体接触,以便于电极端子实现功能。
在一些实施例中,在主板的厚度方向上,承载条的厚度大于电极端子的延伸高度。
上述技术方案中,使得电极端子悬架于承载条之间。
在一些实施例中,相邻两个电池单体的肩部共同抵接于同一个承载条上。
上述技术方案中,使得在第一方向上相邻的电池单体共用同一承载条,能够尽可能地减少承载条的数量,便于承载组件的制造。
在一些实施例中,在第一方向上,承载条的宽度D1与肩部的延伸宽度D2满足:0.5D2≤D1≤2D2。
上述技术方案中,避免承载条由于偏置而只能承载一侧的电池单体,并且使得承载条仅与相邻的两个电池单体的肩部接触,而避免与功能区接触影响电池单体的功能。
在一些实施例中,功能区还设置有泄压机构,泄压机构与盖体间隔设置,在第一方向上,电极端子设置于泄压机构两侧。
上述技术方案中,泄压机构以均悬架于承载条之间,能够为泄压机构提供更大的泄压空间,减少排放物排出带来的风险,提升电池的安全性。
在一些实施例中,相邻的两个电池单体的电极端子通过汇流部件电连接,在第二方向上,相邻的两个承载条中一折的延伸长度小于另一者的延伸长度,以形成避让缺口,避让缺口用于避让汇流部件。
上述技术方案中,使得承载组件更好地适配于电池的结构,便于电池单体实现彼此串联、并联以及混联。
在一些实施例中,承载条与主板一体成型或可拆卸连接,以便于承载组件的制造或根据电池单体的排布调整承载条的位置。
在一些实施例中,主板与盖体固定连接,以增加电池的结构牢固性。
在一些实施例中,承载组件由绝缘材质构成,或者承载组件的表面包覆有绝缘材质。
在一些实施例中,在主板的厚度方向上,承载条的厚度为第一尺寸H1,第一尺寸H1满足5mm≤H1≤30mm。
在一些实施例中,第一尺寸H1与单个电池单体的重量M之比H1/M满足0.5mm/Kg≤H1/M≤50mm/Kg。
第二方面,本申请实施例提供了一种用电装置,包括第一方面任一实施方式的电池单体,电池单体用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例的电池的装配结构示意图;
图3为本申请一些实施例的电池的爆炸示意图;
图4为本申请一些实施例的电池的承载组件的结构示意图;
图5为本申请一些实施例的电池的电池单体的结构示意图;
图6为图2所示的电池的剖视示意图;
图7为图6在圆框B处的放大示意图;
图8为本申请一些实施例的对电池进行碰撞测试的碰撞测试装置的结构示意图。
图9为本申请一些实施例的电池的盖体的结构示意图;
图10为本申请一些实施例的电池单体的内部结构示意图。
具体实施方式的附图标记如下:
1000、车辆;100、电池;200、控制器;300、马达;1、箱体;101、顶部;102、底部;103、开口;11、支撑板;12、侧板;2、盖体;21、主体部;22、配合部;3、电池单体;301、功能区;302、肩部;31、顶盖板;311、电极端子;312、泄压机构;32、壳体;33、电极组件;34、汇流部件;4、承载组件;41、主板;42、承载条;43、避让缺口;
A、碰撞测试装置;A1、冲击头;A2、发射装置;A3、机架;
X、第一方向;Y、第二方向;Z、第三方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示 前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中术语“平行”不仅包括绝对平行的情况,也包括了工程上常规认知的大致平行的情况;同时,“垂直”也不仅包括绝对垂直的情况,还包括工程上常规认知的大致垂直的情况。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。
本申请中,电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以是电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。在电池中,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体内;当然,电池也可以是多个电池单体先串联或并联或混联组成电池形式,多个电池再串联或并联或混联形成一个整体,并容纳于箱体内。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其 市场的需求量也在不断地扩增。
在相关技术中,电池箱体的开口常在竖直方向上朝向上方,电池单体固定于电池底部,电极端子朝向覆盖于箱体开口的盖体。
然而,在如以上设置的电池中,发明人注意到,由于电池设置于用电装置中时,底部与用电装置粘接,电池单体固定于电池底部,使得更容易受到碰撞的电池顶部的刚性较差,并且,电池在碰撞过程中,内部的电池单体受力不均,使得电池容易发生损坏,导致电池安全性较差,影响电池的使用性能。
鉴于此,本申请实施例提供一种电池,将开口设置于箱体的底部,电池单体倒置于箱体内,顶盖板朝向开口设置,盖体盖合于开口,在电池单体与盖体之间设置承载组件,以支撑电池单体,能够增强电池整体的刚度,减少其在碰撞中发生损坏的概率,提高电池的安全性。并且,通过调整承载组件的厚度与电池单体重量之比,能够在保证电池的能量密度的同时对电池的整体结构强度进行调整,进一步提升电池的性能。
本申请实施例描述的技术方案适用于电池,以及受电池供电的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的用电装置,但为描述简洁,下述实施例均以车辆1000为例进行说明。
图1为本申请一些实施例提供的车辆1000的结构示意图。如图1所示,车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。
电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
图2为本申请一些实施例的电池100的装配结构示意图。图3为本申请一些实施例的电池100的爆炸示意图。如图2以及图3所示,根据本申请的一些实施例,电池100包括箱体1、盖体2、电池单体3以及承载组件4。箱体1的底部102设置有开口103。盖体2盖合于开口103,与箱体1固定连接。多个电池单体3设置于箱体1内,电池单体3的顶盖板31朝向开口103倒置于箱体1设置。承载组件4设置于电池单体3与盖体2之间,以支撑承载电池单体3。
箱体1的开口103设置于底部102,底部102所指示的是在箱体1厚度方向上的底部102,开口103在箱体1的厚度方向上朝向下方。为便于描述,在本申请实施例中以箱体1的厚度方向为第三方向,也即Z方向,箱体1在第三方向Z上还具有顶部101,顶部101与底部102沿第三方向Z彼此相对。应理解,在以下内容中为了指示电池单体3的排布方向等其它因素,还会对第一方向以及第二方向进行详细定义,此处不做展开描述。
盖体2盖合于开口103与箱体1固定连接。盖体2设置于箱体1的底部102,并覆盖于开口103。箱体1内设置有多个电池单体3,电池单体3的顶盖板31朝向开口103,也即是电池单体3的底部设置于箱体1在第三方向Z上的顶部101,而电池100顶部的顶盖板31朝向底部102设置,所指示的是电池单体3在第三方向Z上与箱体1相互倒置设置。通过在将电池单体3与箱体1倒置设置,能够使得电池单体3设置于电池100的顶部101,从而增加电池100顶部101的刚度,增加电池100的安全性。并且,电池单体3的顶盖板31朝向电池100的底部102,能够增加电池100的能量密度,提升电池100的可用性。
在电池单体3的顶盖板31朝向开口103的情况下,电池单体3的顶盖板31朝向设置于开口103的盖体2,电池单体3与盖体2之间设置有承载组件4以支撑承载电池单体3。由于承载组件4设置于电池单体3与盖体2之间,电池单体3、承载组件4以及盖体2沿第三方向Z由上至下依次排列。承载组件4对电池单体3起到支撑承载作用,也即是承载组件4抵接于电池单体3的顶盖板31,从而能够增加电池100的结构强度,提升电池100的受力性能,在碰撞中减少电池100损坏的可能性。
图4为本申请一些实施例的电池100的承载组件4的结构示意图。如图4所示,本申请的一些实施例中,承载组件4包括主板41以及承载条42,主板41抵接于盖体2,承载条42抵接于电池单体3。
抵接也即是主板41与盖体2之间以及承载条42与电池单体3之间彼此接触但没有相互固定。主板41抵接于盖体2,承载条42抵接于电池单体3,也即是承载组件4分别抵接于盖体2以及电池单体3,以为电池单体3提供支撑力,保持电池单体3与盖体3之间的距离。
在本申请的一些实施例中,承载条42设置有多个,多个承载条42在第一方向上沿主板41间隔设置,并在主板41上沿第二方向延伸。
承载条42形成为条状,在第二方向上延伸。多个承载条42在第一方向上间隔地设置于主板41上,也即是承载条42沿第一方向排布,以在多个位置对电池单体3实施支撑作用。第一方向以及第二方向是彼此垂直的方向,由于承载组件4平行于箱体1在第三方向Z上的顶部101以及底部102设置,第一方向、第二方向以及第三方向Z彼此垂直。为便于说明,在以下内容中,以第一方向以及第二方向分别为X方向以及Y方向。可以理解的是,当第一方向X、第二方向Y以及第三方向Z彼此之间的夹角为85°-95°时,即可将第一方向X、第二方向Y以及第三方向Z视为彼此垂直。应理解,第一方向X、第二方向Y以及第三方向Z也可以为其它彼此垂直的方向。
承载条42设置于主板41贴近电池单体3的一面,沿第三方向Z向电池单体3凸出,从而抵接于电池单体3,因此能够起到支撑承载电池单体3的作用,提升电池100结构的稳定性。
图5是本申请实施例的电池单体3的结构示意图。如图5所示,在本申请的一些实施例中,顶盖板31包括功能区301和肩部302,功能区301设置有电极端子311,肩部302沿第一方向X位于功能区301两侧,电池单体3通过肩部302搭载于承载条42。
功能区301所指示的是顶盖板31上设置有使得电池单体3能够实现自身功能的区域,或电池单体3能够与外界互动的区域,例如使得电池单体3能够与外界电连接的电极端子311。由于功能区301常设置有电极端子311等部件,功能区301不宜在电池100的使用过程中受力。肩部302所指示的则是顶盖板31除功能区301以外可以受力的区域。
将设置有电极端子311的功能区301设置于肩部302之间,可以使得肩部302对功能区301实现一定保护效果。使得电池单体3通过肩部302搭接于承载条42,能够避免功能区301的电极端子311由于受力发生损坏, 提升电池单体3的寿命。
在本申请的一些实施例中,电极端子311设置于相邻的两个承载条42之间,且电极端子311与盖体2间隔设置。
由于功能区301位于两个肩部302之间,肩部302搭接于承载条42上,功能区301的电极端子311也位于相邻的两个承载条42之间。电极端子311与盖体2间隔设置,也即是电极端子311不与盖体2接触,可以将电极端子311视作在两个承载条42之间悬空设置,以便于通过电极端子311引出电池单体3的电能,提升电池单体3的可用性。
在本申请的一些实施例中,在主板41的厚度方向上,承载条42的厚度大于电极端子311的延伸高度。
主板41的厚度方向也即箱体1的厚度方向,也即第三方向Z,在第三方向Z上,承载条42的厚度大于电极端子311的延伸高度,能够使得电极端子311悬架于相邻的承载条42之间,避免与其它部件接触影响功能。
在本申请的一些实施例中,相邻两个电池单体3的肩部302共同搭接于同一个承载条42上。
在箱体1中,可以设置一个电池单体3,也可以设置多个电池单体3,在箱体1内设置有多个电池单体3的情况下,多个电池单体3相邻地排布于箱体1之中,由于承载条42沿第一方向X沿主板41间隔设置,肩部302在第一方向X上位于功能区301的两侧,能够使得肩部302位于相邻电池单体3的相接处,从而使得相邻两个电池单体3的肩部302能够共同搭接于同一个承载条4上。
使得在第一方向X上相邻的电池单体3共用同一承载条42,能够尽可能地减少承载条42的数量,便于承载组件4的制造。
在本申请的一些实施例中,在第一方向X上,承载条42的宽度D1与肩部302的延伸宽度D2满足:0.5D2≤D1≤2D2。
当承载条42的宽度D1大于等于肩部302的延伸宽度D2的0.5倍时,即可对电池单体3提供足够的支持力。而承载条42在同时承载相邻的两个电池单体3时,承载条42在长度方向X上的宽度小于等于肩部302的延伸宽度的2倍,能够使得承载条42仅与相邻的两个电池单体3的肩部302接触,而避免与功能区301接触影响电池单体3的功能。
优选地,承载条42的宽度D1与肩部302的延伸宽度D2之间的关系可以满足D2≤D1≤2D2。由于承载条42可能在相邻的电池单体3之间发生偏置,使得承载条42在长度方向X上的宽度大于等于肩部302的延伸宽度,能够使得承载条42同时承载相邻的两个电池单体3,而不发生由于偏置而只能承载一方、导致电池100由于受力不均而出现结构稳定性不佳的问题。
在本申请的一些实施例中,功能区301还设置有泄压机构312,泄压机构312与盖体2间隔设置,在第一方向X上,电极端子311设置于泄压机构312两侧。
泄压机构312是指在电池单体3的内部压力达到预定阈值时致动以泄放内部压力的元件或部件。即当电池单体3的内部压力达到预定阈值时,泄压机构312产生动作或被激活至一定的状态,从而使得电池单体3的内部压力得以被泄放。泄压机构312产生的动作可以包括但不限于:泄压机构312中的至少一部分破裂、破碎、被撕裂或者打开,从而形成可供内部压力泄放的开口或通道等。此时,电池单体3的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力的情况下使电池单体3发生泄压,从而避免潜在的更严重的事故发生。泄压机构312可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏元件或构造。
将电极端子311设置于泄压机构312的两侧,能够减少泄压机构312 在泄压时对电极端子311产生的影响。并且,泄压机构312与盖体2间隔设置,也即是泄压机构312不与盖体2接触,从而为泄压机构312提供更大的泄压空间,减少排放物排出带来的风险,提升电池100的安全性。
再次参考图4,如图4所示,在本申请的一些实施例中,相邻的两个电池单体3的电极端子311通过汇流部件34电连接,在第二方向Y上,相邻的两个承载条42中一者的延伸长度小于另一者的延伸长度,以形成避让缺口43,避让缺口43用于避让汇流部件34。
汇流部件34是使得多个电池单体3之间实现电连接的部件。汇流部件34跨接于相邻的电池单体3的电极端子311之间,以将多个电池单体3串联、并联或混联。由于汇流部件34在第一方向X上跨接于相邻的电池单体3的电极端子311之间,至少一部分沿第二方向Y延伸的承载条42需要对其进行避让,以形成避让缺口43。
相邻的两个承载条42中一者的延伸长度小于另一者的延伸长度,也即是延伸长度较长的承载条42与延伸长度较短的承载条42交替分布。可选地,承载条42的长度也可以根据汇流部件34的布置情况而调整。并且,承载条42在第二方向Y上的延伸长度所指示的仅是承载条42在第二方向Y上的长度总和,也即是说,避让缺口43可以设置于承载条42的一端,也可以设置于承载条42的中部,根据汇流部件34的排布而定,本申请实施例对此不做特殊限制。
在承载条42设置避让缺口43,能够使得承载组件4更好地适配于电池100的结构,便于电池单体3实现彼此串联、并联以及混联。
在本申请的一些实施例中,承载条42与主板41一体成型或可拆卸连接。
在承载条42与主板41一体成型的情况下,能够便于承载组件4的制造。在承载条42与主板41可拆卸连接的情况下,能够便于根据电池单 体3的排布调整承载条42的位置,使得承载组件4具有更广泛的使用场景。
在本申请的一些实施例中,主板41可以与盖体2固定连接。以增加电池100的结构牢固性。可选地,主板41也可以抵接于盖体2,本申请实施例对此不做限制。
在本申请的一些实施例中,承载组件4由绝缘材质构成,或者承载组件4的表面包覆有绝缘材质。
为了避免对电池单体3之间的电连接产生影响,承载组件4为绝缘件。可以理解的是,承载组件4可以整体为绝缘材质,也可以表面为被覆有绝缘材质以整体呈现绝缘性的物体。承载组件4为表面包覆有绝缘材质的物体时,芯材可以为金属材质、绝缘材质或复合材质等,芯材外表面包覆绝缘材质。与此同时,承载组件4应具有一定的硬度以及弹性,以在对电池单体3实现支撑效果的同时,在受到冲击时能够产生一定量的变形,对电池单体3起到保护作用。
图6为图2所示的电池的剖视示意图。图7为图6在圆框B处的放大示意图。如图6以及图7所示,在本申请的一些实施例中,在主板41的厚度方向上,承载条42的厚度为第一尺寸H1,第一尺寸H1满足5mm≤H1≤30mm。
主板41的厚度方向也即箱体1的厚度方向,也即是第三方向Z。承载条42在第三方向Z上具有一定厚度,能够使其凸出于主板41而支撑承载电池单体3。承载条42保有第一尺寸,能够使得电池单体3的顶盖板31与盖体2保持一定距离,从而保持电池100的能量密度适中。
在本申请的一些实施例中,第一尺寸H1与单个电池单体3重量M之比H1/M满足0.5mm/Kg≤H1/M≤50mm/Kg。
第一尺寸H1与单个电池单体3的重量M之比H1/M能够指示电池100的能量密度以及结构强度,当第一尺寸H1与单个电池单体3重量M之 比过大,会导致电池100能量密度过低。当第一尺寸H1与单个电池单体3重量M之比过小,会导致电池100结构强度不足,在碰撞中发生安全事故。因此,第一尺寸H1与单个电池单体3重量M之比H1/M的范围满足0.5mm/Kg≤H1/M≤50mm/Kg,优选地,H1/M的范围满足1mm/Kg≤H1/M≤30mm/Kg,在这一取值范围内,电池100具有良好的能量密度,且具有适宜的结构强度。
图8为本申请一些实施例的对电池100进行碰撞测试的碰撞测试装置A的结构示意图。为了验证第一距离H1与单个电池单体3重量M之比H1/M在适宜范围内的电池100具有良好的性能,示例性地,对电池100以碰撞测试装置A进行碰撞测试。如图8所示,碰撞测试装置A包括冲击头A1、发射装置A2以及机架A3。测试的过程中,将电池100放置于机架A3上,使得冲击头A1受发射装置A2驱动,以一定速度向电池100冲撞。其中,可以将测试条件选定为:冲撞方向为第三方向Z,冲撞位置为电池100的薄弱点,冲撞能量为90J。
由于电池100被应用于如车辆1000的用电装置,通过顶部101安装于车辆1000,对电池100的底部102以第三方向Z进行冲撞,可以模拟将电池100安装于车辆1000后的场景。电池100的薄弱点所指示的是电池100易被破坏的位置,这一点常在电池100的几何中心的半径240mm区域内,对电池100的薄弱点进行冲撞,能够模拟电池100结构强度较弱位置受到冲撞后电池100的状态。冲撞能量为90J,可以等效为冲击头A1以4.2m/s的速度向电池100冲撞,可以理解的是,也可以用其它冲撞能量对电池100进行冲撞,例如,120J(冲撞速度4.9m/s)或150J(冲撞速度5.5m/s)。在实际实验过程中,可以用一个冲撞能量对电池100进行多次冲撞,或以多个冲撞能量对电池100进行多次冲撞。
在通过碰撞测试装置A对电池100进行冲撞后,在环境温度下观察 2小时,检测电池100有无出现起火爆炸现象。可选地,在以碰撞测试装置A对电池100进行碰撞测试后,还可以对电池100进行外壳防护等级等测试,本申请实施例对此不做限制。
表1示出了在第一距离H1、单个电池单体3的重量M以及H1/M的值分别采用不同的值的情况下,通过以上方法对电池100进行碰撞测试的测试结果。
表1
No. H1(mm) M(Kg) H1/M(mm/Kg) 碰撞测试
实施例1 5 10 0.5 不起火,不爆炸
实施例2 10 5 2 不起火,不爆炸
实施例3 15 3 5 不起火,不爆炸
实施例4 30 1 30 不起火,不爆炸
实施例5 25 0.5 50 不起火,不爆炸
对比例1 3 5 0.2 起火,爆炸
对比例2 52 1 52 起火,爆炸
如表1所示,当H1满足5mm≤H1≤30mm,H1/M满足0.5mm/Kg≤H1/M≤50mm/Kg时,在一定强度的碰撞测试中,电池100不会发生起火爆炸,具有较好的安全性。
在另一些可选的实施例中,电池单体3也可以不搭载于承载条42上,而与承载条42固定连接。
此时,第一尺寸H1满足0.5mm≤H1≤30mm,第一尺寸H1与单个电池单体3的重量M之比H1/M满足0.05mm/Kg≤H1/M≤50mm/Kg,在这一取值范围内,电池100具有良好的能量密度,且具有适宜的结构强度。
为了验证第一尺寸H1与单个电池单体3重量M之比H1/M在适宜范围内的电池100具有良好的性能,可以对电池100进行结构强度测试。 在对电池100进行结构强度测试的过程中,示例性地,可以通过剪切强度测试、抗压强度测试等多个测试对电池100的结构强度进行判断。
在剪切强度测试中,示例性地,可以将电池100固定在剪切试验机的夹具之间,然后使用剪切试验机的检测头带动电池100以5mm/min的速度沿第一方向X或第二方向Y移动,在箱体1受到破坏时记录检测头施加的拉力F。以电池100在第三方向Z上的投影面积为面积A,F/A的值即为电池100能够承受的剪切强度。
在抗压强度测试中,示例性地,可以使用挤压头在第三方向Z以及第一方向X或第二方向Y上向电池100施加压力,以2m/s的速度向电池100推进,在挤压力达到50KN或电池100的形变量达到30%的时候停止,保持10分钟,并在抗压强度测试后对电池100在环境温度下静置观察2小时。
可选地,还可以通过其它结构强度测试对电池100的结构强度进行测试,本申请实施例在此不做限制。
表2示出了电池单体3固定于承载条42上时,在第一距离H1、单个电池单体3的重量M以及H1/M的值分别采用不同的值的情况下,通过以上方法对电池100进行结构强度的测试结果。
表2
  H1(mm) M(Kg) H1/M(mm/Kg) 结构强度测试
实施例1 0.5 10 0.05 较好
实施例2 5 5 1 较好
实施例3 10 4 2.5
实施例4 10 2 5
实施例5 20 1 20 优秀
实施例6 30 0.6 50 较好
对比例1 0.2 5 0.04
对比例2 52 1 52
如表2所示,当H1满足0.5mm≤H1≤30mm,H1/M满足0.05mm/Kg≤H1/M≤50mm/Kg时,在强度结构测试中,电池100具有较好的结构强度。
应理解,以上对电池100的一些实施例的描述仅是示例性的,电池100还可以具有其它的结构。
再次参考图2以及图3,如图2以及图3所示,箱体1包括支撑板11以及侧板12,支撑板11设置于顶部101,侧板12沿开口103周侧分布。也即是说,支撑板11以及侧板12沿第三方向Z由上至下依次排列,支撑板11是沿第一方向X延伸的板体,侧板12是沿第三方向Z延伸的板体,侧板12包围支撑板11设置,而在底部102处形成开口103,使箱体1形成为中空结构体。电池单体3设置于支撑板11,可以增加电池100顶部101刚度,减少电池100在碰撞中损坏的可能性。
可选地,侧板12可以与支撑板11一体成型,也可以与支撑板11通过焊接、粘接、紧固件或热熔自攻丝工艺其中至少一种固定连接,本申请实施例对此不作限制。
在一些可选的实施例中,支撑板11内部埋设有通道(图中未示出)。由于电池单体3设置于支撑板11,电池单体3的底部102与支撑板11相接触,出于对电池100性能的考虑,支撑板11内部埋设有通道,其中通有作为热介质的气体或液体,能够在电池100工作时对电池100起到调节电池100温度的效果,从而增加电池100的寿命以及可用性。
在另一些可选的实施例中,通道也可以作为热管理部件被设置于电池单体3与支撑板11之间,或形成为任何其它能够设置起到能够调节电池100温度功能的部件,本申请实施例在此不作限制。
在一些可选的实施例中,箱体1也可以是长方体或者圆柱体等简单立体结构,也可以是由长方体或者圆柱体等简单立体结构组合而成的复杂立体结构。箱体1的材质可以是如铝合金、铁合金等合金材料,也可以是如聚碳酸酯、聚异氰脲酸酯泡沫塑料等高分子材料,或者是如玻璃纤维加环氧树脂的复合材料。为提高箱体1的密封性,盖体2与侧板12之间也可以设置密封件,比如,密封胶、密封圈等。本申请实施例对以上可行的设置均不做限制。
在一些可选的实施例中,在电池100中,电池单体3可以是多个,多个电池单体3之间可串联或并联或混联,混联是指多个电池单体3中既有串联又有并联。多个电池单体3之间可直接串联或并联或混联在一起,再将多个电池单体3构成的整体容纳于箱体1内;当然,电池100也可以是多个电池单体3先串联或并联或混联组成电池100模块形式,多个电池100模块再串联或并联或混联形成一个整体,并容纳于箱体1内。
其中,每个电池单体3可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体3可呈圆柱体、扁平体、长方体或其它形状等。
图9为本申请一些实施例的电池100的盖体2的结构示意图。如图9所示,根据本申请的一些实施例,箱体1还包括设置于开口103的盖体2,盖体2与侧板12固定连接,从而覆盖于开口103,使得箱体1具有相对密封的结构。
盖体2包括主体部21以及配合部22,配合部22设置于主体部21周向且与侧板12相匹配。也即是说,主体部21覆盖于由侧板12形成的开口103,配合部22固定于侧板12,将盖体2与侧板12固定连接。可选地,配合部22与侧板12可以螺栓连接,配合部22与侧板12也可以采用其它方式固定连接。
在第三方向Z上,主体部21相对于配合部22凸出于底部102的延伸面。使得设置于箱体1内部的电池单体3与盖体2之间具有相对更大的距离,以为汇流部件34或承载组件4进行让位。应理解,主体部21相对于配合部22凸出的距离应基于电池100的能量密度进行选择,不应过大导致电池100体积增加,而对电池100的能量密度有所降低。
图10为本申请一些实施例的电池单体3的内部结构示意图。电池单体3是指组成电池100的最小单元。如图10所示,电池单体3还包括顶盖板31、壳体32、电极组件33以及其他的功能性部件。
顶盖板31是指盖合于壳体32的开口处以将电池单体3的内部环境隔绝于外部环境的部件。不限地,顶盖板31的形状可以与壳体32的形状相适应以配合壳体32。可选地,顶盖板31可以由具有一定硬度和强度的材质(如铝合金)制成,这样,顶盖板31在受挤压碰撞时就不易发生形变,使电池单体3能够具备更高的结构强度,安全性能也可以有所提高。顶盖板31上设置有如电极端子311以及防爆阀等的功能性部件。电极端子311可以用于与电极组件33电连接,以用于输出或输入电池单体3的电能。在一些实施例中,顶盖板31上还可以设置有用于在电池单体3的内部压力或温度达到阈值时泄放内部压力的泄压机构312。顶盖板31的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在顶盖板31的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体32内的电连接板件与顶盖板31,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体32是用于配合顶盖板31以形成电池单体3的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件33、电解液(图中未示出)以及其他部件。壳体32和顶盖板31可以是独立的部件,可以于壳体32上设置开口,通过在开口处使顶盖板31盖合开口以形成电池单体3的内部环境。 不限地,也可以使顶盖板31和壳体32一体化,具体地,顶盖板31和壳体32可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体32的内部时,再使顶盖板31盖合壳体32。壳体32可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体32的形状可以根据电极组件33的具体形状和尺寸大小来确定。壳体32的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件33是电池单体3中发生电化学反应的部件。壳体32内可以包含一个或更多个电极组件33。电极组件33主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电极组件33的主体部,正极片和负极片不具有活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池100的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子311以形成电流回路。
在本申请的一些可选的实施例中,电池100包括箱体1、盖体2、多个电池单体3以及承载组件4,盖体2盖合于箱体1底部102的开口103,与箱体1固定连接,多个电池单体3设置于箱体1内,顶盖板31朝向开口103而倒置于箱体1设置,承载组件4设置于电池单体3与盖体2之间,包括主板41以及连接于主板41的承载条42,主板41抵接于盖体2,承载条42则抵接于电池单体3,以支撑承载电池单体3。承载条42设置有多个,多个承载条42在第一方向X上沿主板41间隔设置,并在主板41上沿第二方向Y延伸。电池单体3的顶盖板31包括设置有电极端子311的功能区301以及沿第一方向X设置于功能区301两侧的肩部302,电池单体3通过肩部302抵接于承载条42,使得电极端子311位于相邻的承载条42之间且 与盖体2间隔设置,以对电极端子311起到保护作用。在主板41的厚度方向也即第三方向Z上,承载条42的厚度为第一尺寸H1,当第一尺寸H1满足5mm≤H1≤30mm,第一尺寸H1与单个电池单体3重量M之比H1/M满足0.5mm/Kg≤H1/M≤50mm/Kg时,如表1所示,在一定强度的碰撞测试中,电池100不会发生起火爆炸,具有较好的安全性。
在一些情形下,本申请实施例的电池100,通过将电池单体3倒置于箱体1内,能够增加箱体1的刚度,并增加电池100的能量密度;并且,通过承载组件4支撑承载电池单体3,能够增强电池100的结构强度,减少其在碰撞中发生损坏的概率,使得电池100具有更好的安全性。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (16)

  1. 一种电池,包括:
    箱体(1),所述箱体(1)的底部(102)设置有开口(103);
    盖体(2),盖合于所述开口(103),所述盖体(2)与所述箱体(1)固定连接;
    多个电池单体(3),设置于所述箱体(1)内,所述电池单体(3)的顶盖板(31)朝向所述开口(103)倒置于所述箱体(1)设置;
    承载组件(4),设置于所述电池单体(3)与所述盖体(2)之间,以支撑承载所述电池单体(3)。
  2. 根据权利要求1所述的电池,其中,所述承载组件(4)包括主板(41)以及连接于主板(41)承载条(42),所述主板(41)抵接于所述盖体(2),所述承载条(42)抵接于所述电池单体(3)。
  3. 根据权利要求2所述的电池,其中,所述承载条(42)设置有多个,多个所述承载条(42)在第一方向上沿所述主板(41)间隔设置,并在所述主板(41)上沿第二方向延伸。
  4. 根据权利要求3所述的电池,其中,所述顶盖板(31)包括功能区(301)和肩部(302),所述功能区(301)设置有电极端子(311),所述肩部(302)沿所述第一方向位于所述功能区(301)两侧,所述电池单体(3)通过所述肩部(302)抵接于所述承载条(42)。
  5. 根据权利要求4所述的电池,其中,所述电极端子(311)设置于相邻的两个所述承载条(42)之间,且所述电极端子(311)与所述盖体(2)间隔设置。
  6. 根据权利要求5所述的电池,其中,在所述主板(41)的厚度方向上,所述承载条(42)的厚度大于所述电极端子(311)的延伸高度。
  7. 根据权利要求4所述的电池,其中,相邻两个电池单体(3)的所述肩部(302)共同抵接于同一个所述承载条(42)上。
  8. 根据权利要求7所述的电池,其中,在所述第一方向上,所述承载条(42)的宽度D1与所述肩部(302)的延伸宽度D2满足:0.5D2≤D1≤2D2。
  9. 根据权利要求5所述的电池,其中,所述功能区(301)还设置有泄压机构(312),所述泄压机构(312)与所述盖体(2)间隔设置,在所述第一方向上,所述电极端子(311)设置于所述泄压机构(312)两侧。
  10. 根据权利要求4所述的电池,其中,相邻的两个所述电池单体(3)的所述电极端子(311)通过汇流部件(34)电连接,在所述第二方向上,相邻的两个所述承载条(42)中一者的延伸长度小于另一者的延伸长度,以形成避让缺口(43),所述避让缺口(43)用于避让所述汇流部件(34)。
  11. 根据权利要求2-3中任一项所述的电池,其中,所述承载条(42)与所述主板(41)一体成型或可拆卸连接。
  12. 根据权利要求2所述的电池,其中,所述主板(41)与所述盖体(2)固定连接。
  13. 根据权利要求1所述的电池,其中,所述承载组件(4)由绝缘材质构成,或者所述承载组件(4)的表面包覆有绝缘材质。
  14. 根据权利要求2所述的电池,其中,在所述主板(41)的厚度方向上,所述承载条(42)的厚度为第一尺寸H1,所述第一尺寸H1满足5mm≤H1≤30mm。
  15. 根据权利要求14所述的电池,其中,所述第一尺寸H1与单个所述电池单体(3)的重量M之比H1/M满足0.5mm/Kg≤H1/M≤50mm/Kg。
  16. 一种用电装置,包括根据权利要求1-15中任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/101517 2022-02-21 2022-06-27 电池以及用电装置 WO2024000103A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PCT/CN2022/101517 WO2024000103A1 (zh) 2022-06-27 2022-06-27 电池以及用电装置
CN202280006476.9A CN116325321A (zh) 2022-06-27 2022-06-27 电池以及用电装置
PCT/CN2023/070129 WO2023160252A1 (zh) 2022-02-25 2023-01-03 电池和用电装置
CN202320014583.8U CN219203337U (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008506.4A CN116686151A (zh) 2022-02-25 2023-01-03 电池和用电装置
PCT/CN2023/070125 WO2023155620A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008512.XA CN116848705A (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202380008510.0A CN116868417A (zh) 2022-02-21 2023-01-03 电池和用电装置
PCT/CN2023/070126 WO2023155621A1 (zh) 2022-02-21 2023-01-03 电池和用电装置
CN202320014525.5U CN219575787U (zh) 2022-02-25 2023-01-03 电池和用电装置
CN202320134491.3U CN219180683U (zh) 2022-06-27 2023-01-12 电池以及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101517 WO2024000103A1 (zh) 2022-06-27 2022-06-27 电池以及用电装置

Publications (1)

Publication Number Publication Date
WO2024000103A1 true WO2024000103A1 (zh) 2024-01-04

Family

ID=86662210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101517 WO2024000103A1 (zh) 2022-02-21 2022-06-27 电池以及用电装置

Country Status (2)

Country Link
CN (2) CN116325321A (zh)
WO (1) WO2024000103A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117175122B (zh) * 2023-10-30 2024-03-29 宁德时代新能源科技股份有限公司 电池和用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260905A (ja) * 2005-03-16 2006-09-28 Toyota Motor Corp 電池パック構造
CN103208656A (zh) * 2012-01-16 2013-07-17 微宏动力系统(湖州)有限公司 电池组系统及其漏液检测方法
CN111106278A (zh) * 2018-12-29 2020-05-05 宁德时代新能源科技股份有限公司 电池包
CN112368881A (zh) * 2018-07-31 2021-02-12 松下知识产权经营株式会社 电池模块以及电池组
CN114006124A (zh) * 2021-11-22 2022-02-01 北京胜能能源科技有限公司 一种动力电池及车辆
CN215989064U (zh) * 2021-09-27 2022-03-08 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260905A (ja) * 2005-03-16 2006-09-28 Toyota Motor Corp 電池パック構造
CN103208656A (zh) * 2012-01-16 2013-07-17 微宏动力系统(湖州)有限公司 电池组系统及其漏液检测方法
CN112368881A (zh) * 2018-07-31 2021-02-12 松下知识产权经营株式会社 电池模块以及电池组
CN111106278A (zh) * 2018-12-29 2020-05-05 宁德时代新能源科技股份有限公司 电池包
CN215989064U (zh) * 2021-09-27 2022-03-08 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN114006124A (zh) * 2021-11-22 2022-02-01 北京胜能能源科技有限公司 一种动力电池及车辆

Also Published As

Publication number Publication date
CN219180683U (zh) 2023-06-13
CN116325321A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN213692271U (zh) 电池单体、电池及用电装置
US20230261312A1 (en) End cover assembly, battery cell, battery, and electrical apparatus
CN217468591U (zh) 一种隔离组件、电池模组、电池和用电装置
CN116325327A (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
KR20220164047A (ko) 배터리 셀, 배터리 셀의 제조 방법과 시스템, 배터리 및 전기장치
EP4092818A1 (en) Battery box body, battery, electric device, method and apparatus for preparing box body
WO2023134479A1 (zh) 电池和用电设备
WO2023207402A1 (zh) 顶盖组件、电池单体、电池及用电设备
WO2024000103A1 (zh) 电池以及用电装置
EP4181281A1 (en) Battery, electric device, and method and device for preparing battery
CN115715438B (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022205325A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法及设备
CN115832603B (zh) 外壳、电池单体、电池及用电设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2024000093A1 (zh) 电池以及用电装置
WO2024000091A1 (zh) 电池以及用电装置
WO2024000096A1 (zh) 电池以及用电装置
WO2024016458A1 (zh) 电池单体、电池及用电装置
WO2023035763A1 (zh) 电极组件及与其相关的电池单体、电池、装置和制造方法
WO2023133755A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023050080A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
CN218939874U (zh) 电池及用电装置
CN219553748U (zh) 电池单体、电池以及用电装置
CN218586250U (zh) 底护板、箱体、电池包和用电设备
CN219017730U (zh) 电池单体、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948227

Country of ref document: EP

Kind code of ref document: A1