WO2023159885A1 - 一种可缓慢降解的高纯镁锚钉的制备方法 - Google Patents

一种可缓慢降解的高纯镁锚钉的制备方法 Download PDF

Info

Publication number
WO2023159885A1
WO2023159885A1 PCT/CN2022/111652 CN2022111652W WO2023159885A1 WO 2023159885 A1 WO2023159885 A1 WO 2023159885A1 CN 2022111652 W CN2022111652 W CN 2022111652W WO 2023159885 A1 WO2023159885 A1 WO 2023159885A1
Authority
WO
WIPO (PCT)
Prior art keywords
purity magnesium
anchor
hydrothermal solution
degradable high
magnesium anchor
Prior art date
Application number
PCT/CN2022/111652
Other languages
English (en)
French (fr)
Inventor
彭兆祥
陈宇碟
吴红艳
Original Assignee
宁波市医疗中心李惠利医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波市医疗中心李惠利医院 filed Critical 宁波市医疗中心李惠利医院
Publication of WO2023159885A1 publication Critical patent/WO2023159885A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/112Phosphorus-containing compounds, e.g. phosphates, phosphonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the invention relates to the technical field of medical devices, in particular to a preparation method of a slowly degradable high-purity magnesium anchor.
  • Anchors are a very important type of internal fixation device in the field of orthopedics, which can repair ligaments, tendons and bones by fixing them. After more than 30 years of development, anchors of different materials and designs are widely used clinically, but they all follow some common principles: 1. Maximize the pull-out strength; 2. Minimize the acute iatrogenic injury; 3. Minimizes the possibility of arthritis in long-term application.
  • the materials used to prepare anchors mainly include inert metals (such as titanium and its alloys), PEEK, and polymer degradable materials (such as polyglycolic acid, stereoisomers of polylactic acid, etc.).
  • Inert metals cannot be degraded and absorbed in the body, and their elastic modulus is much larger than that of human bone, which will produce a stress shielding effect, causing osteoporosis and even the risk of internal fixation failure, and long-term implantation may release various harmful ions, causing inflammation and allergies Therefore, it is often necessary to remove the bone after bone healing, which not only increases medical expenses, brings secondary injuries to patients, but also increases the psychological burden of patients.
  • PEEK material cannot be degraded in the human body, and its low strength and high brittleness limit its clinical application.
  • Magnesium and magnesium alloys have good biocompatibility, mechanical properties and biodegradability, and their harmless degradation products can be excreted through human metabolism, so they are an ideal anchor material.
  • the important factor that mainly limits its application is that the degradation rate is too fast in the complex internal environment of the body, which affects the early fixation strength, so its slow degradation is the key to realize clinical application.
  • the technical problem to be solved by the present invention is to overcome the above shortcomings of the prior art: to provide a preparation method of a slowly degradable high-purity magnesium anchor.
  • the technical solution of the present invention is as follows: a preparation method of a slowly degradable high-purity magnesium anchor, comprising the following steps:
  • the high-purity magnesium anchor is placed in the hydrothermal solution prepared in step 1), and heated at a temperature of 110° C. for 4-6 hours to obtain a slowly degradable high-purity magnesium anchor with a hydroxyapatite coating.
  • the ratio of calcium to phosphorus in the hydrothermal solution is 10:6.
  • the magnesium content of the high-purity magnesium anchor is above 99.99wt.%.
  • the thickness of the hydroxyapatite coating of the slowly degradable high-purity magnesium anchor prepared in step 2) is 14-24 ⁇ m.
  • the beneficial effect of the invention is that: as the main inorganic component of bone, hydroxyapatite has good biocompatibility. Coating the surface of high-purity magnesium anchor with hydroxyapatite through surface modification can realize its slow degradation in the internal environment of the body.
  • the present invention realizes the formation of a compact hydroxyapatite coating with a thickness of 14-24 ⁇ m on the surface of the high-purity magnesium anchor by adjusting the formula of the hydrothermal solution and controlling the conditions of the hydrothermal treatment, so that the magnesium anchor can be slowly degraded in the animal body, and It has good biocompatibility in animals.
  • Figure 1 (a) is the cross-sectional scanning electron microscope image of the high-purity magnesium anchor with hydroxyapatite coating prepared in Example 1; (b) is the high-purity magnesium anchor with hydroxyapatite coating prepared in Example 1 Nail elemental analysis results.
  • Fig. 2 is a CT image of the animal skeleton in the control experiment at 12 weeks.
  • Fig. 3 is a schematic diagram of hard tissue section of local bone tissue of the anchor in the control experiment.
  • step 2) Put the high-purity magnesium anchor with a magnesium content of 99.99wt.% in the hydrothermal solution prepared in step 1), and heat it at 110°C for 4 hours to obtain slowly degradable high-purity magnesium with a hydroxyapatite coating anchor.
  • Figure 1 is the hydroxyapatite coating characterization and elemental analysis of the high-purity magnesium anchor prepared in Example 1; among them, the left picture (a) is the cross-sectional electron microscope scanning picture of the high-purity magnesium anchor prepared in Example 1; the right picture (b ) is the elemental analysis result of the high-purity magnesium anchor prepared in Example 1.
  • the hydroxyapatite coating is closely combined with the magnesium substrate, and no obvious gaps exist.
  • the thickness of the hydroxyapatite coating is 18.71 ⁇ 3.36 ⁇ m. , The characteristic peak of phosphorus element is obvious.
  • Example 1 Apatite-coated high-purity magnesium anchors (hydroxyapatite-coated group). The anchor was implanted into the animal bone, and the degradation of the anchor and the changes of the bone tissue around the anchor were observed by regular CT examination, and then the local bone tissue samples were taken out for histological research.
  • Fig. 2 is a CT image of the animal skeleton in the control experiment at 12 weeks.
  • the CT results in Figure 2 suggest that compared with the bare magnesium group, the structure of the anchor implanted in the hydroxyapatite-coated group is intact at 12 weeks after operation, and the cavity around the anchor is small, indicating that the coating can significantly slow down the progression of the disease within 12 weeks. Degradation of anchors in experimental animals.
  • Fig. 3 is a schematic diagram of hard tissue section of local bone tissue of the anchor in the control experiment.
  • the local tissue sections at 12 weeks after operation in Figure 3 indicated that the anchors in the hydroxyapatite-coated group were more tightly integrated with the surrounding bone tissue, and the surrounding bone tissue structure was normal, while the bone tissue structure around the anchor in the bare magnesium group was loose, indicating that the hydroxyapatite coating group was more tightly integrated with the surrounding bone tissue.
  • the anchors in the graystone coating group had good histocompatibility within 12 weeks, without significant degradation and no adverse effects on the metabolism of surrounding bone tissue.
  • the high-purity magnesium anchor coated with hydroxyapatite coating prepared in the present invention can achieve slow degradation in animals and has good biocompatibility in animals.
  • step 2) Put the high-purity magnesium anchor with a magnesium content of 99.99wt.% in the hydrothermal solution prepared in step 1), and heat it at 110°C for 6 hours to obtain slowly degradable high-purity magnesium with a hydroxyapatite coating anchor.
  • step 2) Put the high-purity magnesium anchor with a magnesium content of 99.99wt.% in the hydrothermal solution prepared in step 1), and heat it at 110°C for 4 hours to obtain slowly degradable high-purity magnesium with a hydroxyapatite coating anchor.
  • step 2) Put the high-purity magnesium anchor with a magnesium content of 99.99wt.% in the hydrothermal solution prepared in step 1), and heat it at 110°C for 5 hours to obtain slowly degradable high-purity magnesium with a hydroxyapatite coating anchor.
  • step 2) Put the high-purity magnesium anchor with a magnesium content of 99.99wt.% in the hydrothermal solution prepared in step 1), and heat it at 110°C for 4 hours to obtain slowly degradable high-purity magnesium with a hydroxyapatite coating anchor.
  • step 2) Put the high-purity magnesium anchor with a magnesium content of 99.99wt.% in the hydrothermal solution prepared in step 1), and heat it at 110°C for 6 hours to obtain slowly degradable high-purity magnesium with a hydroxyapatite coating anchor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开一种可缓慢降解的高纯镁锚钉的制备方法,包括以下步骤:1)将乙二胺四乙酸二钠、磷酸二氢钾、氯化钙溶解于去离子水中,滴加氢氧化钠至pH=9.0得到水热溶液;所述水热溶液中各组分浓度为:乙二胺四乙酸二钠 0.2-0.25mol/L、磷酸二氢钾0.12-0.15mol/L、氯化钙 0.2-0.25mol/L;2)将高纯镁锚钉置于步骤1)制备的水热溶液中,在110℃的温度下加热4-6小时,得到具有羟基磷灰石涂层的可缓慢降解的高纯镁锚钉;本发明使得镁锚钉在动物体内实现缓慢降解,且在动物体内具有良好的生物相容性。

Description

一种可缓慢降解的高纯镁锚钉的制备方法 技术领域
本发明涉及医疗器械技术领域,具体涉及一种可缓慢降解的高纯镁锚钉的制备方法。
背景技术
在锚钉是骨科领域中一类非常重要的内固定器械,通过固定韧带、肌腱和骨以进行修复效果。经过30多年的发展,不同材料与设计的锚钉广泛应用于临床,但都遵循一些共同的原则:一、最大限度地提高拔出强度;二、最大限度地减少急性医源性损伤;三、最大限度地减少长期应用中发生关节炎的可能性。
用于制备锚钉的材料主要有惰性金属(如钛及其合金)、PEEK和高分子可降解材料(如聚乙醇酸、聚乳酸的立体异构体等)。惰性金属在体内不能被降解吸收,而且其弹性模量远大于人骨,会产生应力遮挡效应,造成骨质疏松甚至内固定失败的风险,且长期植入可能释放各种有害离子,引发炎症、过敏的风险,所以多需要在骨愈合后再次手术取出,这不但提高了医疗支出、给患者带来二次伤害并且还增加了患者心理负担。PEEK材料在人体不能降解,且其强度低、脆性大等,限制了其临床应用。高分子可降解材料也存在诸多问题,如力学性能较低、应用范围局限、降解过程中会产生大量酸性小分子或低聚体从而对周围组织产生刺激导致比较严重的炎性反应,甚至积液、囊肿等,影响手术预后并降低患者的满意度。因此,为了克服以上材料在应用中的各种局限,采用新的材料制备锚钉是必要的。
镁及镁合金具有良好的生物相容性、力学性能和生物可降解性,而且其无害的降解产物可通过人体新陈代谢排出体外,是一种理想的锚钉制备材料。现主要限制其应用的重要因素是在机体复杂内环境下降解速度过快,影响早期固定强度,因此使其缓慢降解是实现临床应用的关键。
技术问题
本发明所要解决的技术问题是,克服以上现有技术的缺点:提供一种可缓慢降解的高纯镁锚钉的制备方法。
技术解决方案
本发明的技术解决方案如下:一种可缓慢降解的高纯镁锚钉的制备方法,包括以下步骤:
1)将乙二胺四乙酸二钠、磷酸二氢钾、氯化钙溶解于去离子水中,滴加氢氧化钠至pH=9.0得到水热溶液;所述水热溶液中各组分浓度为:乙二胺四乙酸二钠 0.2-0.25mol/L、磷酸二氢钾0.12-0.15mol/L、氯化钙 0.2-0.25mol/L;
2)将高纯镁锚钉置于步骤1)制备的水热溶液中,在110℃的温度下加热4-6小时,得到具有羟基磷灰石涂层的可缓慢降解的高纯镁锚钉。
作为优选,所述水热溶液中钙磷比为10︰6。
作为优选,所述高纯镁锚钉的镁含量为99.99wt.%以上。
作为优选,步骤2)中制得的所述可缓慢降解的高纯镁锚钉的羟基磷灰石涂层厚度为14-24μm。
有益效果
本发明的有益效果是:作为骨骼的主要无机成分,羟基磷灰石具有良好的生物相容性。通过表面改性使高纯镁锚钉表面涂覆羟基磷灰石可以实现其在机体内环境下缓慢降解。本发明通过对水热溶液配方的调整以及控制水热处理的条件实现在高纯镁锚钉表面形成紧密且厚度为14-24μm的羟基磷灰石涂层,使得镁锚钉在动物体内实现缓慢降解,且在动物体内具有良好的生物相容性。
附图说明
图1中:(a)为实施例1制备的具有羟基磷灰石涂层的高纯镁锚钉的横断面电镜扫描图;(b)为实施例1制备的具有羟基磷灰石涂层的高纯镁锚钉元素分析结果。
图2为对照实验中动物骨骼后12周的CT影像图。
图3为对照实验中锚钉局部骨组织硬组织切片示意图。
本发明的实施方式
下面用具体实施例对本发明做进一步详细说明,但本发明不仅局限于以下具体实施例。
实施例1
按照以下步骤制备可缓慢降解的高纯镁锚钉:
1)将乙二胺四乙酸二钠、磷酸二氢钾、氯化钙溶解于去离子水中,滴加氢氧化钠至pH=9.0得到水热溶液;所述水热溶液中各组分浓度为:乙二胺四乙酸二钠 0.25mol/L、磷酸二氢钾0.15mol/L、氯化钙 0.25mol/L。
2)将镁含量为 99.99wt.%的高纯镁锚钉置于步骤1)制备的水热溶液中,在110℃的温度下加热4小时,得到具有羟基磷灰石涂层的可缓慢降解的高纯镁锚钉。
图1为实施例1制备的高纯镁锚钉的羟基磷灰石涂层表征及元素分析;其中,左图(a)为实施例1制备的高纯镁锚钉的横断面电镜扫描图;右图(b)为实施例1制备的高纯镁锚钉元素分析结果。由高纯镁锚钉横断面电镜结果可知,羟基磷灰石涂层与镁基底结合紧密,未见明显缝隙存在,羟基磷灰石涂层厚度为18.71±3.36μm,由元素分析结果可知涂层中钙、磷元素特征峰明显。
动物体内降解对照实验
以成年母绵羊为实验动物,将动物随机分成两组,对照组植入镁含量为 99.99wt.%的传统高纯镁锚钉(裸镁组),实验组植入由实施例1制备的涂覆羟基磷灰石涂层的高纯镁锚钉(羟基磷灰石涂层组)。将锚钉植入动物骨内,定期行CT检查观察锚钉降解情况及锚钉周围骨组织改变,后取出局部骨组织标本进行组织学研究。
图2为对照实验中动物骨骼后12周的CT影像图。由图2的CT结果提示与裸镁组相比,羟基磷灰石涂层组所植入锚钉术后12周结构完整,锚钉周围空腔小,表明涂层能在12周内明显减缓锚钉在实验动物体内的降解。
图3为对照实验中锚钉局部骨组织硬组织切片示意图。由图3的术后12周局部组织切片提示,羟基磷灰石涂层组锚钉与周围骨组织结合更紧密,周围骨组织结构正常,裸镁组锚钉周围骨组织结构疏松,表明羟基磷灰石涂层组锚钉在12周内组织相容性好,未出现明显降解及对周围骨组织代谢产生不利影响。
综上所述,本发明制备的涂覆羟基磷灰石涂层的高纯镁锚钉能在动物体内实现缓慢降解,且在动物体内具有良好的生物相容性。
实施例2
按照以下步骤制备可缓慢降解的高纯镁锚钉:
1)将乙二胺四乙酸二钠、磷酸二氢钾、氯化钙溶解于去离子水中,滴加氢氧化钠至pH=9.0得到水热溶液;所述水热溶液中各组分浓度为:乙二胺四乙酸二钠 0.25mol/L、磷酸二氢钾0.12mol/L、氯化钙 0.2mol/L。
2)将镁含量为 99.99wt.%的高纯镁锚钉置于步骤1)制备的水热溶液中,在110℃的温度下加热6小时,得到具有羟基磷灰石涂层的可缓慢降解的高纯镁锚钉。
实施例3
按照以下步骤制备可缓慢降解的高纯镁锚钉:
1)将乙二胺四乙酸二钠、磷酸二氢钾、氯化钙溶解于去离子水中,滴加氢氧化钠至pH=9.0得到水热溶液;所述水热溶液中各组分浓度为:乙二胺四乙酸二钠 0.25mol/L、磷酸二氢钾0.13mol/L、氯化钙 0.22mol/L。
2)将镁含量为 99.99wt.%的高纯镁锚钉置于步骤1)制备的水热溶液中,在110℃的温度下加热4小时,得到具有羟基磷灰石涂层的可缓慢降解的高纯镁锚钉。
实施例4
按照以下步骤制备可缓慢降解的高纯镁锚钉:
1)将乙二胺四乙酸二钠、磷酸二氢钾、氯化钙溶解于去离子水中,滴加氢氧化钠至pH=9.0得到水热溶液;所述水热溶液中各组分浓度为:乙二胺四乙酸二钠 0.2mol/L、磷酸二氢钾0.12mol/L、氯化钙 0.2mol/L;所述水热溶液中钙磷比为10︰6。
2)将镁含量为 99.99wt.%的高纯镁锚钉置于步骤1)制备的水热溶液中,在110℃的温度下加热5小时,得到具有羟基磷灰石涂层的可缓慢降解的高纯镁锚钉。
实施例5
按照以下步骤制备可缓慢降解的高纯镁锚钉:
1)将乙二胺四乙酸二钠、磷酸二氢钾、氯化钙溶解于去离子水中,滴加氢氧化钠至pH=9.0得到水热溶液;所述水热溶液中各组分浓度为:乙二胺四乙酸二钠 0.2mol/L、磷酸二氢钾0.15mol/L、氯化钙 0.25mol/L。
2)将镁含量为 99.99wt.%的高纯镁锚钉置于步骤1)制备的水热溶液中,在110℃的温度下加热4小时,得到具有羟基磷灰石涂层的可缓慢降解的高纯镁锚钉。
实施例6
按照以下步骤制备可缓慢降解的高纯镁锚钉:
1)将乙二胺四乙酸二钠、磷酸二氢钾、氯化钙溶解于去离子水中,滴加氢氧化钠至pH=9.0得到水热溶液;所述水热溶液中各组分浓度为:乙二胺四乙酸二钠 0.2mol/L、磷酸二氢钾0.14mol/L、氯化钙 0.23mol/L。
2)将镁含量为 99.99wt.%的高纯镁锚钉置于步骤1)制备的水热溶液中,在110℃的温度下加热6小时,得到具有羟基磷灰石涂层的可缓慢降解的高纯镁锚钉。
以上仅是本发明的特征实施范例,对本发明保护范围不构成任何限制。凡采用同等交换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (4)

  1. 一种在可缓慢降解的高纯镁锚钉的制备方法,其特征在于,包括以下步骤:
    1)将乙二胺四乙酸二钠、磷酸二氢钾、氯化钙溶解于去离子水中,滴加氢氧化钠至pH=9.0得到水热溶液;所述水热溶液中各组分浓度为:乙二胺四乙酸二钠 0.2-0.25mol/L、磷酸二氢钾0.12-0.15mol/L、氯化钙 0.2-0.25mol/L;
    2)将高纯镁锚钉置于步骤1)制备的水热溶液中,在110℃的温度下加热4-6小时,得到具有羟基磷灰石涂层的可缓慢降解的高纯镁锚钉。
  2. 根据权利要求1所述的可缓慢降解的高纯镁锚钉的制备方法,其特征在于,所述水热溶液中钙磷比为10︰6。
  3. 根据权利要求1所述的可缓慢降解的高纯镁锚钉的制备方法,其特征在于,所述高纯镁锚钉的镁含量为99.99wt.%以上。
  4. 根据权利要求1所述的可缓慢降解的高纯镁锚钉的制备方法,其特征在于,步骤2)中制得的所述可缓慢降解的高纯镁锚钉的羟基磷灰石涂层厚度为14-24μm。
PCT/CN2022/111652 2022-02-22 2022-08-11 一种可缓慢降解的高纯镁锚钉的制备方法 WO2023159885A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210161174.0A CN114601963A (zh) 2022-02-22 2022-02-22 一种可缓慢降解的高纯镁锚钉的制备方法及其应用
CN202210161174.0 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023159885A1 true WO2023159885A1 (zh) 2023-08-31

Family

ID=81859242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111652 WO2023159885A1 (zh) 2022-02-22 2022-08-11 一种可缓慢降解的高纯镁锚钉的制备方法

Country Status (2)

Country Link
CN (1) CN114601963A (zh)
WO (1) WO2023159885A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114601963A (zh) * 2022-02-22 2022-06-10 宁波市医疗中心李惠利医院 一种可缓慢降解的高纯镁锚钉的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441536A (en) * 1991-06-18 1995-08-15 Kabushiki Kaisya Advance Method for the production of an implant having an apatite coating layer using a hydrothermal treatment
CN101757695A (zh) * 2010-03-03 2010-06-30 上海交通大学 自降解生物活性金属锚钉及其制备方法
CN103966578A (zh) * 2014-05-09 2014-08-06 哈尔滨工程大学 在镁合金表面构筑羟基磷灰石超疏水膜层的方法
CN104888271A (zh) * 2015-05-11 2015-09-09 同济大学 一种生物可降解镁合金表面锶羟基磷灰石涂层的制备方法
CN107740151A (zh) * 2017-09-26 2018-02-27 上海理工大学 一种医用镁合金表面活性涂层的制备方法
CN108004527A (zh) * 2017-11-22 2018-05-08 同济大学 一种用于镁合金材料的锌掺杂羟基磷灰石涂层的制备方法
CN114601963A (zh) * 2022-02-22 2022-06-10 宁波市医疗中心李惠利医院 一种可缓慢降解的高纯镁锚钉的制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0710355A2 (pt) * 2006-04-28 2011-08-09 Biomagnesium Systems Ltd ligas de magnésio biodegrádavel e usos da mesma

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441536A (en) * 1991-06-18 1995-08-15 Kabushiki Kaisya Advance Method for the production of an implant having an apatite coating layer using a hydrothermal treatment
CN101757695A (zh) * 2010-03-03 2010-06-30 上海交通大学 自降解生物活性金属锚钉及其制备方法
CN103966578A (zh) * 2014-05-09 2014-08-06 哈尔滨工程大学 在镁合金表面构筑羟基磷灰石超疏水膜层的方法
CN104888271A (zh) * 2015-05-11 2015-09-09 同济大学 一种生物可降解镁合金表面锶羟基磷灰石涂层的制备方法
CN107740151A (zh) * 2017-09-26 2018-02-27 上海理工大学 一种医用镁合金表面活性涂层的制备方法
CN108004527A (zh) * 2017-11-22 2018-05-08 同济大学 一种用于镁合金材料的锌掺杂羟基磷灰石涂层的制备方法
CN114601963A (zh) * 2022-02-22 2022-06-10 宁波市医疗中心李惠利医院 一种可缓慢降解的高纯镁锚钉的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIAYUE SUN, CAI SHU, WEI JIELING, LIU JIA, XU GUOHUA: "Corrosion Resistance and Rapid Mineralization of Hydroxyapatite Coated Magnesium Alloy Prepared by Hydrothermal Method", JOURNAL OF THE CHINESE CERAMIC SOCIETY, vol. 48, no. 6, 23 March 2020 (2020-03-23), pages 810 - 817, XP093087717, DOI: 10.14062/j.issn.0454-5648.20190779 *

Also Published As

Publication number Publication date
CN114601963A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
Xie et al. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures
Fukuda et al. Bone bonding bioactivity of Ti metal and Ti–Zr–Nb–Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments
Wong et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants
Landes et al. Treatment of malar and midfacial fractures with osteoconductive forged unsintered hydroxyapatite and poly-L-lactide composite internal fixation devices
Fu et al. Fluorescence microscopic analysis of bone osseointegration of strontium-substituted hydroxyapatite implants
Bai et al. Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration
Geng et al. Optimizing the strontium content to achieve an ideal osseointegration through balancing apatite-forming ability and osteogenic activity
Liu et al. Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration
CN108159501A (zh) 一种复合纳米级羟基磷灰石的丝素蛋白材料的制备方法及其在修复骨折部位的应用
WO2023159885A1 (zh) 一种可缓慢降解的高纯镁锚钉的制备方法
WO2023087830A1 (zh) 一种可降解镁及镁合金的表面涂层及其制备方法
Zhuang et al. Degraded and osteogenic properties of coated magnesium alloy AZ31; an experimental study
Wang et al. Black tantalic oxide submicro-particles coating on PEEK fibers woven into fabrics as artificial ligaments with photothermal antibacterial effect and osteogenic activity for promoting ligament-bone healing
Kashiwada et al. In vivo behaviors of highly flexible paper consisting of ultralong hydroxyapatite nanowires
Shao et al. Polarized hydroxyapatite/BaTiO3 scaffolds with bio-inspired porous structure for enhanced bone penetration
Wang et al. Enhanced biocompatibility and osseointegration of calcium titanate coating on titanium screws in rabbit femur
CN106399802A (zh) 一种耐腐蚀生物医用镁合金
Hossain et al. Recent development of dental implant materials, synthesis process, and failure–a review
CN114404652B (zh) 一种在医用镁合金表面制备壳聚糖中间层的方法
Hayakawa et al. In vivo evaluation of composites of PLGA and apatite with two different levels of crystallinity
CN110064072A (zh) 一种用于眼眶骨缺损修复的镁合金支架及其制备方法
Peltoniemi et al. Intraosseous plating: a new method for biodegradable osteofixation in craniofacial surgery
WO2022205279A1 (zh) 一种高效的双相磷酸钙涂层方法
CN209153928U (zh) 一种用于管状骨骨折的内固定装置
CN108057031B (zh) 预防手术后异位骨化的缓释吲哚美辛纳米颗粒及其注射剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928152

Country of ref document: EP

Kind code of ref document: A1