WO2023159857A1 - 反应型复合光稳定剂及其应用、光稳定改性高分子材料 - Google Patents

反应型复合光稳定剂及其应用、光稳定改性高分子材料 Download PDF

Info

Publication number
WO2023159857A1
WO2023159857A1 PCT/CN2022/105379 CN2022105379W WO2023159857A1 WO 2023159857 A1 WO2023159857 A1 WO 2023159857A1 CN 2022105379 W CN2022105379 W CN 2022105379W WO 2023159857 A1 WO2023159857 A1 WO 2023159857A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactive
light stabilizer
triazine
polymer material
hindered amine
Prior art date
Application number
PCT/CN2022/105379
Other languages
English (en)
French (fr)
Inventor
杨威
张会京
李艳青
罗海
范小鹏
Original Assignee
天津利安隆新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津利安隆新材料股份有限公司 filed Critical 天津利安隆新材料股份有限公司
Publication of WO2023159857A1 publication Critical patent/WO2023159857A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/033Powdery paints characterised by the additives
    • C09D5/036Stabilisers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the invention relates to the technical field of polymer material modification, in particular to a reactive composite light stabilizer and its application, and a light-stabilized modified polymer material.
  • UV absorbers can absorb or shield ultraviolet rays that can damage polymers, and hindered amine light stabilizers can scavenge free radicals that cause polymer degradation. Hindered amine light stabilizers can significantly alleviate the aging process of polymer materials, and are an important product category in the field of polymer anti-aging.
  • UVA Ultraviolet absorbers
  • HALS hindered amine light stabilizers
  • the problem of material applicability it is manifested in two aspects.
  • One is the problem caused by the basicity of HALS.
  • the strength of the basicity is directly determined by the group connected to the nitrogen atom in the piperidine ring.
  • the general rule is (alkalinity from strong to weak): N-H>N-R>N-OR>N-COR.
  • Highly alkaline HALS will interact with unfavorable materials in the material system, such as acid catalysts, drier, etc., resulting in the performance of the final product not as expected. Therefore, low-alkaline HALS has a more tolerant usage scenario, which is the trend of future development.
  • the second is the problem caused by the compatibility of materials and light-stable products.
  • the polarity of the material system may affect the compatibility of additive products (including HALS), and problems such as precipitation may occur.
  • HALS additive products
  • the compatibility mentioned here refers to the compatibility phenomenon that occurs immediately during the production process of polymer materials, which is distinguished from the slow migration below.
  • HALS can function normally under normal use conditions, it slows down aging by capturing free radicals and finally protects materials.
  • traditional HALS will cause losses through physical methods (volatilization, migration, dissolution), and ultimately cannot achieve the role of protecting materials.
  • a typical application scenario is plastic coatings. When polymer coatings are applied to the surface of plastic products, small molecules in the coatings, such as light stabilizers, will slowly migrate to the plastic substrate, which is also a polymer. As time goes by, the concentration of light stabilizers in the paint will become lower and lower, so that the protective effect cannot be achieved, resulting in premature aging and degradation of the polymer matrix in the paint.
  • UVA ultraviolet absorber
  • HALS hindered amine light stabilizer
  • the main purpose of the present invention is to provide a reactive composite light stabilizer and its application, and light-stabilized modified polymer materials to solve the problem of high volatility and long-term effect of light stabilizers in the prior art in polymer materials. Poor question.
  • a reactive composite light stabilizer which includes a reactive ultraviolet absorber and a reactive hindered amine light stabilizer, and the reactive ultraviolet absorber is a reactive triazine class of UV absorbers.
  • the reactive ultraviolet absorber is selected from 2-[4-[2-hydroxy-3-tridecyloxypropyl]oxy-2-hydroxyphenyl]-4,6-bis(2,4- Dimethylphenyl)-1,3,5-triazine and 2-[4-[2-hydroxy-3-dodecyloxypropyl]oxy]-2-hydroxyphenyl]-4,6 -Mixtures of bis(2,4-dimethylphenyl)-1,3,5-triazine, and/or 2-[2-hydroxy-4-[3-(2-ethylhexyloxy)- 2-Hydroxypropoxy]phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine; reactive hindered amine light stabilizers selected from and/or 2,4-bis[N-butyl-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)amino]-6-(2-hydroxyethyl Amine
  • the reactive ultraviolet absorber is 2-[4-[2-hydroxy-3-tridecyloxypropyl]oxy-2-hydroxyphenyl]-4,6-bis(2,4-di Methylphenyl)-1,3,5-triazine and 2-[4-[2-hydroxy-3-dodecyloxypropyl]oxy]-2-hydroxyphenyl]-4,6- A mixture of bis(2,4-dimethylphenyl)-1,3,5-triazine, and the reactive hindered amine light stabilizer is Alternatively, the reactive UV absorber is 2-[2-hydroxy-4-[3-(2-ethylhexyloxy)-2-hydroxypropoxy]phenyl]-4,6-bis(2,4 -Dimethylphenyl)-1,3,5-triazine, and the reactive hindered amine light stabilizer is 2,4-bis[N-butyl-(1-cyclohexyloxy-2,2,6 ,6-tetramethylpiperidin-4-yl)a
  • the weight ratio between the reactive ultraviolet absorber and the reactive hindered amine light stabilizer is (0.1-10):1, preferably (1-5):1, more preferably 2:1.
  • the present invention there is also provided an application of a reactive hindered amine light stabilizer in polymer materials, wherein the reactive hindered amine light stabilizer is Preferably, the polymer material is paint.
  • a light-stabilized modified polymer material including a polymer material and a light stabilizer, wherein the light stabilizer is the above-mentioned reactive composite light stabilizer.
  • the polymer material is one or more of polyurethane material, amino resin material, acrylic resin material and epoxy resin material; preferably, the polymer material is paint, adhesive, foam material or elastomer.
  • the polymer material is aminoacrylic resin coating, acrylic polyurethane varnish or polyurethane powder coating.
  • the reactive ultraviolet absorber in the reactive composite light stabilizer is 2-[4-[2-hydroxyl-3-tridecyloxypropyl ]oxy-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine and 2-[4-[2-hydroxy-3-deca Mixture of dialkoxypropyl]oxy]-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, reactive hindered amine
  • the light stabilizer is When the polymer material is polyurethane powder coating, the reactive ultraviolet absorber in the reactive composite light stabilizer is 2-[2-hydroxy-4-[3-(2-ethylhexyloxy)-2-hydroxypropoxy Base]phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, the reactive hindered amine light stabilizer is 2,4-bis
  • the amount of the reactive composite light stabilizer added to the polymer material is 0.1-5 wt%, more preferably 1-2%.
  • the combination of reactive triazine UV absorbers and reactive hindered amine light stabilizers has a higher absorption rate and compounding effect Better yet, it is less volatile and more stable against photodegradation. And because they are both reactive components, they can exist in the form of chemical links in polymer materials, so they have better long-term effects.
  • Fig. 1 shows the photo of the paint film after coating curing in the embodiment of the present invention A-1 and comparative example A-1, wherein Fig. 1a is comparative example A-1, and Fig. 1b is embodiment A-1;
  • Fig. 2 has shown the photograph of the paint film after the coating curing in the embodiment of the present invention A-2, comparative example A-2 and comparative example A-3, wherein Fig. 2a is comparative example A-2, and Fig. 2b is comparative example A- 3, Fig. 2c is embodiment A-2;
  • Fig. 3 shows the color difference change curve in the QUV aging test process of the coating in embodiment B-1 and comparative examples B-1 to B-3;
  • Fig. 4 shows the color difference curves during the QUV aging test of the coatings in Examples B-2 to B-3 and Comparative Examples B-4 to B-7.
  • Fig. 5 shows the color difference change curves during the QUV aging test of the coatings in Example B-4, Comparative Example B-8 and Comparative Example B-9.
  • the invention provides a reactive composite light stabilizer, which includes a reactive ultraviolet absorber and a reactive hindered amine light stabilizer, and the reactive ultraviolet absorber is a reactive triazine ultraviolet absorber.
  • the reactive composite light stabilizer provided by the invention includes a reactive ultraviolet absorber and a reactive hindered amine light stabilizer, and the reactive ultraviolet absorber is a reactive triazine ultraviolet absorber.
  • the combination of reactive triazine UV absorbers and reactive hindered amine light stabilizers has a higher absorption rate and compounding effect Better yet, it is less volatile and more stable against photodegradation. And because they are both reactive components, they can exist in the form of chemical links in polymer materials, so they have better long-term effects.
  • the reactive UV absorber is selected from 2-[4-[2-hydroxy-3-tridecyloxypropyl]oxy-2-hydroxyphenyl]-4,6-bis(2,4 -dimethylphenyl)-1,3,5-triazine and 2-[4-[2-hydroxy-3-dodecyloxypropyl]oxy]-2-hydroxyphenyl]-4, Mixtures of 6-bis(2,4-dimethylphenyl)-1,3,5-triazine (such as UV-400), and/or 2-[2-hydroxy-4-[3-(2- Ethylhexyloxy)-2-hydroxypropoxy]phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine (UV-405); reaction Type hindered amine light stabilizer selected from (RLHA for short) and/or 2,4-bis[N-butyl-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)amin
  • Both the reactive ultraviolet absorber and the reactive hindered amine light stabilizer are liquid or solid at a room temperature of 20-30°C. Based on the same form, the reactive UV absorber and the reactive hindered amine light stabilizer can form a better compound, and the compatibility in polymer materials is better, such as in some highly polar, acidic There is a significant improvement in compatibility in high polymer materials that require a large amount of light stabilizers to be added. And because they are both reactive components, they can exist in the form of chemical links in polymer materials, which can more significantly reduce the loss of light stabilizers caused by physical methods (volatilization, migration, dissolution, etc.), so they have better long-term stability. Effectiveness, can provide long-term and effective protection for polymer materials.
  • the reactive ultraviolet absorber is 2-[4-[2-hydroxy-3-tridecyloxypropyl]oxy-2-hydroxyphenyl]-4,6-bis (2,4-Dimethylphenyl)-1,3,5-triazine and 2-[4-[2-hydroxy-3-dodecyloxypropyl]oxy]-2-hydroxyphenyl ]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine (such as UV-400), and the reactive hindered amine light stabilizer is (RLHA for short); or, the reactive UV absorber is 2-[2-hydroxy-4-[3-(2-ethylhexyloxy)-2-hydroxypropoxy]phenyl]-4,6- Bis(2,4-dimethylphenyl)-1,3,5-triazine (UV-405), and the reactive hindered amine light stabilizer is 2,4-bis[N-butyl-(1- Cyclohexyloxy-2,2,6,6-te
  • RLHA is in liquid form at room temperature, which has high operational convenience, and can form a more uniform and stable complex with liquid UV absorbers such as UV-400. Its structure retains the main body of the low-basic N-OR type, and a hydroxyl group that can participate in the reaction is introduced at the other end. Hydroxyl groups can chemically cross-link with functional groups in polymer materials, such as isocyanate groups of polyurethane materials, free amine or ether bonds on amino resins, and epoxy groups in epoxy materials, and finally small molecules The hindered amine light stabilizer is bonded to the matrix polymer chain. Broad compatibility is achieved by taking advantage of these properties of RLHA. Combined with reactive UV-400 to achieve better long-term anti-aging performance. Both UV-405 and UV-152 are reactive reagents in powder form, which also have a good compounding effect and good compatibility in polymer materials. The composite light stabilizer formed by the two can also play a better role. Long-term anti-aging properties.
  • the weight ratio between the reactive ultraviolet absorber and the reactive hindered amine light stabilizer is (0.1-10):1, preferably (1-5):1, more preferably 2:1. Controlling the weight ratio of the two within the above range, in addition to having a better compounding effect, can exert a more significant synergistic effect after being applied to polymer materials.
  • an application of the above-mentioned reactive composite light stabilizer in polymer materials is also provided.
  • the reactive composite light stabilizer includes a reactive ultraviolet absorber and a reactive hindered amine light stabilizer, and the reactive ultraviolet absorber is a reactive triazine ultraviolet absorber.
  • the combination of reactive triazine UV absorbers and reactive hindered amine light stabilizers has a higher absorption rate and compounding effect Better yet, it is less volatile and more stable against photodegradation. And because they are both reactive components, they can exist in the form of chemical links in polymer materials, so they have better long-term effects.
  • the present invention also provides Application of reactive hindered amine light stabilizer in polymer materials.
  • reactive hindered amine light stabilizer in polymer materials.
  • it can be used alone It can also play an anti-aging effect, and although it is not as good as the reactive composite light stabilizer described above in the present invention in terms of long-term effect, the effect is also significantly improved compared with the conventionally used hindered amine light stabilizer.
  • the hindered amine light stabilizer has better compatibility than conventional products in terms of compatibility and coating curing.
  • a light-stabilized modified polymer material including a polymer material and a light stabilizer, wherein the light stabilizer is the above-mentioned reactive composite light stabilizer.
  • the polymer material is one or more of polyurethane material, amino resin material, acrylic resin material and epoxy resin material.
  • the macromolecular chains carry functional groups such as isocyanate groups, amino groups, ether bonds, and epoxy groups.
  • Reactive composite light stabilizers are used in the latter aspect to be able to combine with these materials.
  • it can also undergo cross-linking reactions with these groups to be better fixed on the macromolecular chain in the form of chemical links, so it can be maintained for a longer period of time in the finished polymer material. Less physical loss and longer lasting efficacy.
  • the product form of the above-mentioned polymer material is not particularly limited, such as including but not limited to coatings, adhesives, foaming materials, or elastomers.
  • the elastomer is preferably a polyurethane elastomer.
  • the application effect of the reactive composite light stabilizer of the present invention is more significant.
  • the polymer material is aminoacrylic resin paint, acrylic polyurethane varnish or polyurethane powder coating.
  • the specific solid content of the paint can be a customary solid content in this field, such as 20-100%, the solid content of liquid paint is usually 20-70wt%, and the solid content of powder paint is 100%.
  • the reactive composite light stabilizer of the present invention still has a better effect.
  • the reactive type The reactive ultraviolet absorber in the composite light stabilizer is 2-[4-[2-hydroxyl-3-tridecyloxypropyl]oxygen-2-hydroxyl phenyl]-4,6-bis(2, 4-dimethylphenyl)-1,3,5-triazine and 2-[4-[2-hydroxy-3-dodecyloxypropyl]oxy]-2-hydroxyphenyl]-4 , a mixture of 6-bis(2,4-dimethylphenyl)-1,3,5-triazine (UV-400), the reactive hindered amine light stabilizer is When the polymer material is polyurethane powder coating, the reactive ultraviolet absorber in the reactive composite light stabilizer is 2-[2-hydroxy-4-[3-(2-ethylhexyloxy)-2-hydroxyprop
  • the added amount of the reactive composite light stabilizer in the polymer material is 0.1-5 wt%, and even more preferably 1-2%.
  • the present invention formulates the reactive ultraviolet absorber and the reactive hindered amine light stabilizer with the same form into a uniform and stable composite light stabilizer, which is convenient to add and simplifies the use process.
  • the reactive composite light stabilizer satisfies the application of conventional polymer materials, it can also meet the compatibility of ultraviolet absorbers and hindered amine light stabilizers with special polymer systems, as well as the compatibility at high dosages. It has the widest application range of materials at present. Compared with conventional non-reactive composite light stabilizers, or only containing a single type of reactive composite light stabilizer, the reactive composite light stabilizer is more excellent in terms of long-term anti-aging effect.
  • Reactive hindered amine light stabilizer and compounded product with UV absorber improve the compatibility of high polarity system
  • High solids coating systems tend to be more polar and are catalyzed with strong acids.
  • This coating system needs to add UV absorber and hindered amine light stabilizer at the same time.
  • the conventional hindered amine light stabilizer has UV-292 and UV-123 which are liquid at room temperature. Taking these two hindered amine light stabilizers as a reference, for the reactive hindered amine light stabilizer of the present invention is (RLHA) compatibility in high solids coating systems.
  • Cymel 303, Cymel 1168 amino resin, purchased from Changxin Resin (Guangdong) Co., Ltd.;
  • Fumed silica purchased from Evonik Degussa, AEROSIL R972;
  • BYK 378, BYK 306 Silicone leveling agent, purchased from BYK Auxiliaries (Shanghai) Co., Ltd.;
  • Nacure 5225 acid catalyst, purchased from King Industries Inc, USA.
  • UV-400 Add 2wt% RLHA and 5wt% UV-400 (note: the effective content of UV-400 is 85%, and the rest is 15% propylene glycol monomethyl ether solvent, The same below), prepared as a test paint sample.
  • UV-123 non-reactive type, liquid at room temperature
  • UV-123 1wt% UV-123 and 4.25% UV-1164 (non-reactive, solid at normal temperature) to the above one-component high-solid coating without stabilizer, and prepare a test coating sample.
  • UV-152 purchased from BASF, Tinuvin 152
  • UV-1164 non-reactive, solid at room temperature
  • the curing condition is 140°C and bake for 30 minutes, and the film thickness after curing is 30 microns. After the baking is completed, observe whether there is precipitation on the surface, and wipe it with your fingers to see if there is any precipitation.
  • test results of embodiment A-1 and comparative example A-1 are as shown in table 2:
  • a and b are respectively the photos of the cured paint film in Comparative Example A-1 and Example A-1, from It can also be seen from the photos that a layer of oily precipitates appeared on the surface of the paint film of Comparative Example A-1 (the whitish part around the picture), and the middle area was the original color exposed after wiping with fingers.
  • the paint film system in Example A-1 has no precipitation, which shows that the light stabilizer of the present invention has better compatibility with the coating system.
  • the oily precipitate in Comparative Example 1 is UV-123.
  • test results of embodiment A-2, comparative example A-2 and comparative example A-3 are as shown in table 3:
  • a, b and c are the photographs of the cured paint film in comparative example A-2, comparative example A-3 and embodiment A-2 respectively, as can be seen from the photographs, the paint of comparative example A-2 A layer of oily precipitates appeared on the surface of the membrane, and there were some obvious granular precipitates (the whitish and dotted parts around the picture). After analysis, the oily precipitates were UV123, and the granular precipitates were UV-1164.
  • the paint film system in Example A-2 has no precipitation, which shows that the above-mentioned composite light stabilizer of the present invention has better compatibility with the paint system.
  • the test is also based on the high solid content coating shown in Table 1 above. Under the condition of insufficient baking of the coating, the influence of alkalinity on the curing and film formation of the coating is particularly obvious. Under the condition slightly lower than the normal baking state (baking at 130 degrees for 20 minutes), the reaction of the resin in the coating film will be affected, and the final hardness will be quite different, even failing to meet the requirements for use. In the following examples and comparative examples, investigate the influence of different light stabilizers on the curing performance of the coating respectively:
  • the normal curing condition is to bake at 140 degrees for 30 minutes, and the condition for insufficient baking is to bake at 130 degrees for 20 minutes.
  • the film thickness after curing was 30 microns.
  • the K pendulum testing instrument is BYK pendulum hardness tester, model 5861.
  • the Martens hardness tester is HM2000 series micro-nano hardness tester.
  • the reactive composite light stabilizer of the present invention will not affect the curing performance of the coating under the condition of insufficient baking, and the hardness value is basically unchanged compared with the blank coating.
  • the light stabilizer in the comparative example had a serious impact on the curing performance of the coating under the condition of insufficient baking, resulting in a significant decrease in the hardness of the paint film.
  • Spray and make a paint test sample according to the following method: spray the film to a thickness of 30 microns, level it at room temperature for 10 minutes, and bake in a 140-degree oven for 30 minutes.
  • the QUV tests were started 3 days after surface conditioning.
  • the QUV test conditions are as follows: the test plate is placed in a QUV UV aging light box (model: Q-Lab QUV/Spray UV fluorescent aging test box), and the test standard refers to ASTM G154-06 cylce 1. Take out the test board to measure the color difference value every once in a while.
  • the colorimeter is: X-rite MA5 spectrophotometer.
  • FIG. 3 is the color difference curves during the QUV aging test of the coatings in Example B-1 and Comparative Examples B-1 to B-3. It can be seen from the curve in the figure that the compounding of UV-400 and RLHA provided by the present invention is applied to high-solid coatings, which has better anti-aging performance and significantly better long-term effect.
  • a layer of paint can be coated on the surface.
  • coatings may age due to the effects of light and heat.
  • the addition of hindered amine light stabilizers can slow down this process.
  • many plastic substrates have good plasticity, and some "free space” is provided in the substrate for the migration of small molecule hindered amine light stabilizers.
  • TPO a typical material with good plasticity, is selected for testing.
  • Desmodur N3300 an aliphatic polyisocyanate based on hexamethylene diisocyanate (HDI), purchased from Covestro Polymers (China) Co., Ltd.;
  • HDI hexamethylene diisocyanate
  • BYK 378 Silicone leveling agent, purchased from BYK Auxiliaries (Shanghai) Co., Ltd.;
  • DBTDL dibutyltin dilaurate, catalyst, purchased from Tianjin Sino Biotechnology Co., Ltd.
  • the QUV test conditions are as follows: the test plate is placed in a QUV UV aging light box (model: Q-Lab QUV/Spray UV fluorescent aging test box), and the test standard refers to ASTM G154-06 cylce 1. Take out the test board to measure the color difference value every once in a while.
  • the colorimeter is: X-rite MA5 spectrophotometer.
  • Powder coatings are completely free of volatile organic compounds (VOCs) and have excellent environmental characteristics. Therefore, the attention and use of powder coatings have become more and more extensive in recent years. Early powder coatings are generally used in relatively low-end applications, and the attention to weather resistance, especially long-term weather resistance, is low. Liquid reactive composite light stabilizers have very good long-term weather resistance performance in liquid coatings, but the form of additives that can be used in powder coatings is biased towards powder rather than liquid.
  • the reactive ultraviolet absorber UV-405 and the reactive hindered amine light stabilizer UV-152 form a powder reactive composite light stabilizer, and are successfully applied in the polyurethane powder coatings that have gradually matured in recent years. Compared with the conventional non-reactive ultraviolet absorber UV-1164 and the reactive hindered amine light stabilizer UV-622, a long-term photoaging test was carried out.
  • the polyurethane powder coating formula used is shown in Table 6:
  • CRYLCOAT 2839-0 Hydroxy polyester resin, purchased from allnex resin (China) Co., Ltd.
  • ADDITOL P932 aliphatic isocyanate, purchased from allnex resin (China) Co., Ltd.
  • Titanium dioxide DuPont R902.
  • Benzoin, leveling agent purchased from Ningbo Nanhai Chemical Co., Ltd.
  • Catalyst purchased from Estron Chemical Company, trade name Octaflow ST-70.
  • Antioxidant Rianox B225, purchased from Tianjin Rianox New Material Co., Ltd.
  • UV-152 Available from BASF, Tinuvin 152.
  • the hindered amine light stabilizer in the formula of Table 6 is UV-152, and the ultraviolet absorber is UV-405.
  • the hindered amine light stabilizer in the formula of Table 6 is UV-622, and the ultraviolet absorber is UV-1164.
  • the hindered amine light stabilizer and ultraviolet absorber in the formula of Table 6 were not added, as a blank comparison.
  • Paint test samples were prepared by spraying as follows: spray the powder paint of the above formula to a thickness of 50 microns, and bake in an oven at 200 degrees for 15 minutes. The QUV tests were started 3 days after surface conditioning.
  • the QUV test conditions are as follows: the test plate is placed in a QUV UV aging light box (model: Q-Lab QUV/Spray UV fluorescent aging test box), and the test standard refers to ASTM G154-06 cylce 1. Take out the test board to measure the color difference value every once in a while.
  • the colorimeter is: X-rite MA5 spectrophotometer.
  • Fig. 5 is the change curve of color difference during the QUV aging test of the coatings in Example B-4 and Comparative Examples B-8 to B-9. It can also be clearly seen from the curve in Figure 5 that the combined use of UV-405 and UV-152 of the present invention can significantly improve the long-term anti-aging performance of the coating film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明提供了一种反应型复合光稳定剂及其应用、光稳定改性高分子材料。该反应型复合光稳定剂,其包括反应型紫外线吸收剂和反应型受阻胺光稳定剂,且反应型紫外线吸收剂为反应型三嗪类紫外线吸收剂。反应型三嗪类紫外线吸收剂与反应型受阻胺光稳定剂组合具有更高的吸收率,复配效果更好,而且其挥发性更低、耐光降解的稳定性也更高。且由于同为反应型组分,能够在高分子材料中以化学链接的形式存在,因此具有更好的长效性。

Description

反应型复合光稳定剂及其应用、光稳定改性高分子材料
本申请是以CN申请号为202210176909.7,申请日为2022年02月24日的中国申请为基础,并主张其优先权,该CN申请的公开内容再次作为整体引入本申请中。
技术领域
本发明涉及高分子材料改性技术领域,具体而言,涉及一种反应型复合光稳定剂及其应用、光稳定改性高分子材料。
背景技术
随着材料科技的日益进步,各种高分子材料带来的独特且优异的性能,拓展了现代社会的巨大的发展空间。高分子材料在国计民生的各个领域都发挥着重要作用,但其老化特性是一个非常严重的限制因素。高分子的老化必然会影响到其使用性能,导致寿命降低和资源浪费。引起高分子老化的因素主要是光和热,其中自然界日光中的紫外线对高分子的长效性能影响尤为重大。目前,防止户外光老化主要是通过添加光稳定剂来解决。这类光稳定剂包括紫外线吸收剂、受阻胺光稳定剂。紫外光吸收剂能吸收或屏蔽能对高分子造成损害的紫外线,受阻胺光稳定剂则能清除导致高分子降解的自由基。受阻胺光稳定剂能显著缓解高分子材料的老化过程,是高分子抗老化领域重要的产品类别。
紫外线吸收剂(简称UVA)与受阻胺光稳定剂(简称HALS)具有协同效果,对高分子的抗老化效果会有明显的提升。因此,UVA配合HALS在众多高分子材料领域已有成功应用。目前常规的UVA与HALS的组合可能会遇到如下问题:
一、材料适用性问题:表现在两个方面。一是由于HALS碱性带来的问题,碱性的强弱由哌啶环中氮原子所连接的基团直接确定。一般的规律是(碱性由强到弱):N-H>N-R>N-OR>N-COR。碱性高的HALS会与材料体系中的不利物料,如酸催化剂、催干剂等相互作用,导致最终制品的性能不及预期。因此,低碱性HALS具有更宽容的使用场景,是未来发展的趋势。二是材料与光稳定产品相容性带来的问题,根据“相似相容”原则,材料体系的极性可能影响到助剂产品(含HALS)的相容问题,出现析出等问题。(注:本处所说的相容性是指高分子材料在生产制作过程中即时出现的相容现象,与下文中的缓慢迁移相区分。)
二、长效性,虽然在一般的使用条件下HALS能正常发挥作用,通过捕获自由基而减缓老化最终保护材料。但是,在高温、以及环境物质侵蚀的情况下,传统HALS会通过物理方式(挥发、迁移、溶出)产生损失,最终无法达到保护材料的作用。一个典型的应用场景是塑料涂料,当高分子的涂料涂布于塑料制品表面后,涂料中的小分子如光稳定剂会缓慢迁移到同样是高分子的塑料底材中。随着时间推移,涂料中的光稳定剂浓度将越来越低,以至于无法达到保护效果,导致涂料中高分子基质提前老化降解。
如果将紫外线吸收剂(简称UVA)或受阻胺光稳定剂(简称HALS)设计为反应型,那么通过化学交联将光稳定剂连接到上面提及的高分子链上,能解决上述提到的材料适用性问题,以及达到长期的保护效果。然而,目前虽然有单独具有反应型的UVA(如UV-400,液体)、反应型HALS(如Tinuvin 152,粉末),但很少有将反应型UVA和反应型HALS复配的产品,以达到更好的抗老化效果。这一方面是由于现有反应型UVA和反应型HALS无法形成稳定均匀的复配物,另一方面是由于材料面临的适用性和长效性问题是随着材料本身的进步及产品升级而产生,目前还没有引起足够的重视。而且,大部分反应性UVA和反应型HALS复配使用,效果改善也不明显,还可能存在挥发性高等问题。
发明内容
本发明的主要目的在于提供一种反应型复合光稳定剂及其应用、光稳定改性高分子材料,以解决现有技术中的光稳定剂在高分子材料中的挥发性高、长效性欠佳的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种反应型复合光稳定剂,其包括反应型紫外线吸收剂和反应型受阻胺光稳定剂,且反应型紫外线吸收剂为反应型三嗪类紫外线吸收剂。
进一步地,反应型紫外线吸收剂选自2-[4-[2-羟基-3-十三烷氧基丙基]氧基-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪和2-[4-[2-羟基-3-十二烷氧基丙基]氧基]-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪的混合物,和/或2-[2-羟基-4-[3-(2-乙基己氧基)-2-羟基丙氧基]苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪;反应型受阻胺光稳定剂选自
Figure PCTCN2022105379-appb-000001
和/或2,4-二[N-丁基-(1-环己氧基-2,2,6,6-四甲基哌啶-4-基)氨]-6-(2-羟乙胺)-1,3,5-三嗪中;优选地,反应型紫外线吸收剂和反应型受阻胺光稳定剂在20~30℃的室温下均为液态或者均为固态。
进一步地,反应型紫外线吸收剂为2-[4-[2-羟基-3-十三烷氧基丙基]氧基-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪和2-[4-[2-羟基-3-十二烷氧基丙基]氧基]-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪的混合物,且反应型受阻胺光稳定剂为
Figure PCTCN2022105379-appb-000002
或者,反应型紫外线吸收剂为2-[2-羟基-4-[3-(2-乙基己氧基)-2-羟基丙氧基]苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪,且反应型受阻胺光稳定剂为2,4-二[N-丁基-(1-环己氧基-2,2,6,6-四甲基哌啶-4-基)氨]-6-(2-羟乙胺)-1,3,5-三嗪。
进一步地,反应型紫外线吸收剂和反应型受阻胺光稳定剂之间的重量比为(0.1~10):1,优选为(1~5):1,更优选为2:1。
根据本发明的另一方面,还提供了一种上述反应型复合光稳定剂在高分子材料中的应用。
根据本发明的又一方面,还提供了一种反应型受阻胺光稳定剂在高分子材料中的应用,其中,反应型受阻胺光稳定剂为
Figure PCTCN2022105379-appb-000003
优选地,高分子材料为涂料。
根据本发明的又一方面,还提供了一种光稳定改性高分子材料,包括高分子材料和光稳定剂,其中,光稳定剂为上述反应型复合光稳定剂。
进一步地,高分子材料为聚氨酯材料、氨基树脂材料、丙烯酸树脂材料和环氧树脂材料中的一种或多种;优选地,高分子材料为涂料、胶粘剂、发泡材料或弹性体。
进一步地,高分子材料为氨基丙烯酸树脂涂料、丙烯酸聚氨酯清漆或聚氨酯粉末涂料。
进一步地,高分子材料为氨基丙烯酸树脂涂料或丙烯酸聚氨酯清漆时,反应型复合光稳定剂中的反应型紫外线吸收剂为2-[4-[2-羟基-3-十三烷氧基丙基]氧基-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪和2-[4-[2-羟基-3-十二烷氧基丙基]氧基]-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪的混合物,反应型受阻胺光稳定剂为
Figure PCTCN2022105379-appb-000004
高分子材料为聚氨酯粉末涂料时,反应型复合光稳定剂中的反应型紫外线吸收剂为2-[2-羟基-4-[3-(2-乙基己氧基)-2-羟基丙氧基]苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪,反应型受阻胺光稳定剂为2,4-二[N-丁基-(1-环己氧基-2,2,6,6-四甲基哌啶-4-基)氨]-6-(2-羟乙胺)-1,3,5-三嗪。
进一步地,反应型复合光稳定剂在高分子材料中的添加量为0.1~5wt%,更优选为1~2%。
相比与其他类型的反应型紫外线吸收剂诸如反应型苯并三氮唑类而言,反应型三嗪类紫外线吸收剂与反应型受阻胺光稳定剂组合具有更高的吸收率,复配效果更好,而且其挥发性更低、耐光降解的稳定性也更高。且由于同为反应型组分,能够在高分子材料中以化学链接的形式存在,因此具有更好的长效性。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明实施例A-1和对比例A-1中涂料固化后漆膜的照片,其中图1a为对比例A-1,图1b为实施例A-1;
图2示出了本发明实施例A-2、对比例A-2和对比例A-3中涂料固化后漆膜的照片,其中图2a为对比例A-2,图2b为对比例A-3,图2c为实施例A-2;
图3示出了实施例B-1和对比例B-1至B-3中的涂料的QUV老化测试过程中的色差变化曲线;
图4示出了实施例B-2至B-3和对比例B-4至B-7中的涂料的QUV老化测试过程中的色差变化曲线。
图5示出了实施例B-4、对比例B-8和对比例B-9中的涂料的QUV老化测试过程中的色差变化曲线。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
本发明提供了一种反应型复合光稳定剂,其包括反应型紫外线吸收剂和反应型受阻胺光稳定剂,且所述反应型紫外线吸收剂为反应型三嗪类紫外线吸收剂。
本发明提供的反应型复合光稳定剂,其包括反应型紫外线吸收剂和反应型受阻胺光稳定剂,且反应型紫外线吸收剂为反应型三嗪类紫外线吸收剂。相比与其他类型的反应型紫外线吸收剂诸如反应型苯并三氮唑类而言,反应型三嗪类紫外线吸收剂与反应型受阻胺光稳定剂组合具有更高的吸收率,复配效果更好,而且其挥发性更低、耐光降解的稳定性也更高。且由于同为反应型组分,能够在高分子材料中以化学链接的形式存在,因此具有更好的长效性。
更优选地,反应型紫外线吸收剂选自2-[4-[2-羟基-3-十三烷氧基丙基]氧基-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪和2-[4-[2-羟基-3-十二烷氧基丙基]氧基]-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪的混合物(比如UV-400),和/或2-[2-羟基-4-[3-(2-乙基己氧基)-2-羟基丙氧基]苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪(UV-405);反应型受阻胺光稳定剂选自
Figure PCTCN2022105379-appb-000005
(简称RLHA)和/或2,4-二[N-丁基-(1-环己氧基-2,2,6,6-四甲基哌啶 -4-基)氨]-6-(2-羟乙胺)-1,3,5-三嗪中;优选地,反应型紫外线吸收剂和反应型受阻胺光稳定剂在20~30℃的室温下均为液态或者均为固态。
反应型紫外线吸收剂和反应型受阻胺光稳定剂在20~30℃的室温下均为液态或者均为固态。基于同样的形态,反应型紫外线吸收剂和反应型受阻胺光稳定剂之间能够形成更好的复配,在高分子材料中的相容性更佳,比如在一些极性较高的、酸性较高的、需大量添加光稳定剂的高分子材料中具有显著的相容性改善。且由于同为反应型组分,能够在高分子材料中以化学链接的形式存在,能够更显著降低因物理方式(挥发、迁移、溶出等)产生的光稳定剂损失,因此具有更好的长效性,能够对高分子材料进行长期有效的保护。
在一种优选的实施方式中,反应型紫外线吸收剂为2-[4-[2-羟基-3-十三烷氧基丙基]氧基-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪和2-[4-[2-羟基-3-十二烷氧基丙基]氧基]-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪的混合物(比如UV-400),且反应型受阻胺光稳定剂为
Figure PCTCN2022105379-appb-000006
(简称RLHA);或者,反应型紫外线吸收剂为2-[2-羟基-4-[3-(2-乙基己氧基)-2-羟基丙氧基]苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪(UV-405),且反应型受阻胺光稳定剂为2,4-二[N-丁基-(1-环己氧基-2,2,6,6-四甲基哌啶-4-基)氨]-6-(2-羟乙胺)-1,3,5-三嗪(UV-152)。RLHA在室温下为液体形态,具有很高的操作便利性,且能与液体的紫外线吸收剂如UV-400形成更加均匀稳定的复合物。其结构保留了低碱性N-OR型的主体,在其另一端引入可参与反应的羟基基团。羟基基团能与高分子材料中的官能团,如聚氨酯材料的异氰酸基团、氨基树脂上的游离胺或醚键,以及环氧材料中的环氧基团发生化学交联,最终小分子的受阻胺光稳定剂被键合到基质高分子链上。利用RLHA的这些特性达到广泛相容性。搭配反应型的UV-400达到更优异的长期抗老化性能。UV-405和UV-152均为粉末形态的反应型试剂,也具有良好的复配效果,在高分子材料中具有良好的相容性,二者形成的复合光稳定剂同样能够发挥更好的长期抗老化性能。
更优选地,反应型紫外线吸收剂和反应型受阻胺光稳定剂之间的重量比为(0.1~10):1,优选为(1~5):1,更优选为2:1。将二者的重量比控制在上述范围内,除了具有更好的复配效果以外,应用于高分子材料之后能够发挥更显著的协同增效效果。
根据本发明的另一方面,还提供了一种上述反应型复合光稳定剂在高分子材料中的应用。该反应型复合光稳定剂包括反应型紫外线吸收剂和反应型受阻胺光稳定剂,且反应型紫外线吸收剂为反应型三嗪类紫外线吸收剂。相比与其他类型的反应型紫外线吸收剂诸如反应型苯并三氮唑类而言,反应型三嗪类紫外线吸收剂与反应型受阻胺光稳定剂组合具有更高的吸收率,复配效果更好,而且其挥发性更低、耐光降解的稳定性也更高。且由于同为反应型组分,能够在高分子材料中以化学链接的形式存在,因此具有更好的长效性。
此外,介于目前现有技术中还未有将
Figure PCTCN2022105379-appb-000007
作为高分子材料抗老化改性剂的实践,本发明还提供了
Figure PCTCN2022105379-appb-000008
作为反应型受阻胺光稳定剂在高分子材料中的应用。除了与前文所述反应型紫外线吸收剂联合应用于高分子材料中具有的有益效果以外,单独使用
Figure PCTCN2022105379-appb-000009
也能够在起到抗老化作用,在长效性等方面尽管不如本发明前文所述的反应型复合光稳定剂,但效果相比与现在常规使用的受阻胺光稳定剂,也具有明显改善。特别是该受阻胺光稳定剂还在相容性、涂料固化方面,比常规产品具有更优异的兼容性。
根据本发明的又一方面,还提供了一种光稳定改性高分子材料,包括高分子材料和光稳定剂,其中,光稳定剂为上述反应型复合光稳定剂。
在一种优选的实施方式中,高分子材料为聚氨酯材料、氨基树脂材料、丙烯酸树脂材料和环氧树脂材料中的一种或多种。以上类型的高分子材料中,大分子链上均携带了诸如异氰酸基团、氨基、醚键、环氧基团的官能团,反应型复合光稳定剂用于其中后一方面能够与这些材料之间形成更好的相容,另一方面也能够与这些基团发生交联反应从而以化学链接形式更好的固定在大分子链上,因此能够在高分子材料成品中更长久的保持,物理损失更低,功效更持久。
上述高分子材料的产品形式没有特殊限制,比如包括但不限于涂料、胶粘剂、发泡材料或弹性体等。弹性体优选为聚氨酯弹性体。
在一些极性较高的、酸性较高的、需大量添加光稳定剂的高分子材料中,本发明反应型复合光稳定剂的应用效果更显著,优选的,高分子材料为的氨基丙烯酸树脂涂料、丙烯酸聚氨酯清漆或聚氨酯粉末涂料。具体的涂料固含量可以是本领域惯常的固含量,比如20~100%,液体涂料固含量通常为20~70wt%,粉末涂料固含量为100%。尤其是对于高固含涂料,如固含量在45~70wt%,本发明的反应型复合光稳定剂仍旧具有较佳效果。
为了促使光稳定剂与高分子材料之间更好的相容,以便进一步提高材料抗老化性能,在一种优选的实施方式中,高分子材料为氨基丙烯酸树脂涂料或丙烯酸聚氨酯清漆时,反应型 复合光稳定剂中的反应型紫外线吸收剂为2-[4-[2-羟基-3-十三烷氧基丙基]氧基-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪和2-[4-[2-羟基-3-十二烷氧基丙基]氧基]-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪的混合物(UV-400),反应型受阻胺光稳定剂为
Figure PCTCN2022105379-appb-000010
高分子材料为聚氨酯粉末涂料时,反应型复合光稳定剂中的反应型紫外线吸收剂为2-[2-羟基-4-[3-(2-乙基己氧基)-2-羟基丙氧基]苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪(UV405),反应型受阻胺光稳定剂为2,4-二[N-丁基-(1-环己氧基-2,2,6,6-四甲基哌啶-4-基)氨]-6-(2-羟乙胺)-1,3,5-三嗪(UV-152)。
更优选地,反应型复合光稳定剂在高分子材料中的添加量为0.1~5wt%,进一步更优选为1~2%。
总之,本发明将具有相同形态的反应型紫外线吸收剂和反应型受阻胺光稳定剂配制成均匀稳定的复合光稳定剂,方便添加、简化使用过程。该反应型复合光稳定剂在满足常规高分子材料应用时,还能同时满足紫外线吸收剂和受阻胺光稳定剂与特殊高分子体系相容性,以及在高添加量时的相容性。具有目前最广泛的材料适用范围。该反应型复合光稳定剂相对于常规非反应型复合光稳定剂,或仅含单独一类反应型复合光稳定剂,在长期的抗老化效果方面更加优异。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
材料适用性验证试验
(1)反应型受阻胺光稳定剂以及和紫外线吸收剂的复配产品对高极性体系相容性改善效果
高固体份涂料体系趋于更高的极性,并且用强酸催化。这种涂料体系需要同时添加紫外线吸收剂和受阻胺光稳定剂,常规的受阻胺光稳定剂有室温下呈液态的UV-292和UV-123,以这两种受阻胺光稳定剂作为参照,对于本发明反应型受阻胺光稳定剂为
Figure PCTCN2022105379-appb-000011
(RLHA)在高固体份涂料体系中的相容性。
Figure PCTCN2022105379-appb-000012
选取典型的单组份高固含涂料(组成配方见下表1,固含量为62wt%):
表1
物料名称 添加比例(重量份)
Setalux 1795 25.3
Setal 168 3.2
Cymel 303 4.2
Cymel 1168 1
BYK 378 0.42
BYK 306 0.25
气相二氧化硅 0.5
颜料 24
甲基戊基酮 10
乙酸丁酯 16
100#溶剂油 15
Nacure 5225 0.13
Setalux 1795、Setal 168:羟基丙烯酸树脂,购于湛新树脂(中国)有限公司;
Cymel 303、Cymel 1168:氨基树脂,购于长新树脂(广东)有限公司;
气相二氧化硅:购于赢创德固赛,AEROSIL R972;
BYK 378、BYK 306:有机硅流平剂,购于毕克助剂(上海)有限公司;
Nacure 5225:酸催化剂,购于美国King Industries Inc。
实施例A-1
在以上单组份高固含涂料中添加3wt%的RLHA,配制成测试涂料样品。
实施例A-2
在以上未加稳定剂的单组份高固含涂料中添加2wt%的RLHA和5wt%UV-400(注:UV-400有效含量为85%,其余部分为15%的丙二醇单甲醚溶剂,下同),配制成测试涂料样品。
对比例A-1
在以上未加稳定剂的单组份高固含涂料中添加1%的UV-123(非反应型,常温为液体)配制成测试涂料样品。
对比例A-2
在以上未加稳定剂的单组份高固含涂料中添加1wt%的UV-123和4.25%UV-1164(非反应型,常温为固体),配制成测试涂料样品。
对比例A-3
在以上未加稳定剂的单组份高固含涂料中添加1wt%的UV-152(购自巴斯夫,Tinuvin 152)和4.25%UV-1164(非反应型,常温为固体),配制成测试涂料样品。
检测过程:
将上述涂料喷涂在铁板上,流平10分钟后观察表面有无析出;
进入烘箱烘烤固化,固化条件为140℃烘烤30分钟,固化后膜厚为30微米。烘烤完成后,观察表面有无析出,用手指擦拭有无析出物。
实施例A-1和对比例A-1的测试结果如表2所示:
表2
Figure PCTCN2022105379-appb-000013
光稳定剂在高固含涂料中的相容性问题是行业内比较突出的问题,图1中a和b分别为对比例A-1和实施例A-1中固化后漆膜的照片,从照片中也可以看出,对比例A-1的漆膜表面出现了一层油状的析出物(图中周围发白部分),中间区域是用手指擦拭后露出的原本颜色。实施例A-1中的漆膜体系均一无析出,表明本发明上述光稳定剂具有与涂料体系更好的相容性,经检测,对比例1的油状析出物为UV-123。
实施例A-2、对比例A-2和对比例A-3的测试结果如表3所示:
表3
Figure PCTCN2022105379-appb-000014
图2中a、b和c分别为对比例A-2、对比例A-3和实施例A-2中固化后漆膜的照片,从照片中也可以看出,对比例A-2的漆膜表面出现了一层油状的析出物,且有一些明显的颗粒状析出物(图中周围发白部分及点状部分),经分析油状析出物为UV123,颗粒状析出物为UV-1164。实施例A-2中的漆膜体系均一无析出,表明本发明上述复配型光稳定剂具有与涂料体系更好的相容性。
(2)反应型光稳定剂以及和紫外线吸收剂的复配产品对涂料固化的改善:
测试同样基于上述表1所示的高固含涂料,该涂料在烘烤不足的条件下,碱性对涂料固化成膜的影响尤为明显。在略低于正常烘烤状态的条件下(130度烘烤20分钟),涂膜中树脂反应受到影响最终硬度也会有较大差异,甚至无法达到使用要求。以下实施例和对比例中分别考察不同光稳定剂对该涂料的固化性能的影响:
实施例A-3
在以上未加稳定剂的单组份高固含涂料中添加1wt%的RLHA,配制成测试涂料样品。
实施例A-4
在以上未加稳定剂的单组份高固含涂料中添加1wt%的RLHA和2wt%UV-400,配制成测试涂料样品。
对比例A-3
在以上未加稳定剂的单组份高固含涂料中添加1%的UV-292,配制成测试涂料样品。
对比例A-4
在以上未加稳定剂的单组份高固含涂料中添加1wt%的UV-292(非反应型)和2wt%UV-400,配制成测试涂料样品。
对比例A-5
未添加光稳定剂的上述单组份高固含涂料作为空白对比。
检测过程:
将上述涂料喷涂在铁板上,流平10分钟后进入烘箱烘烤固化。正常固化条件为140度烘烤30分钟,烘烤不足的条件为130度烘烤20分钟。固化后膜厚为30微米。
烘烤完成后,室温放置三天。然后测试固化后漆膜的硬度。K摆测试仪器为BYK摆杆硬度计,型号为5861。马氏硬度测试仪器为
Figure PCTCN2022105379-appb-000015
HM2000系列微纳米硬度计。
结果如表4所示:
表4
  K摆硬度(s) 马氏硬度(N/mm 2)
对比例A-3 134 51.5
对比例A-4 132 50.2
对比例A-5 171 70.7
实施例A-3 168 70.4
实施例A-4 170 70.5
由表中硬度数据可知,采用本发明的反应型复配光稳定剂,在涂料烘烤不足的条件下对于其固化性能不会造成影响,硬度值与空白涂料相比基本没有变化。然而,对比例中的光稳定剂在涂料烘烤不足情况下对其固化性能产生了严重影响,造成漆膜硬度的显著下降。
总之,由以上相容性判断数据可知,常规复配产品在高固体份涂料中出现了很大的局限性:(1)常规HALS(UV-123)在案例中的高固涂料即便很低的添加量也会出现析出,无法成为复配;(2)常规HALS(UV-292)在案例中的高固涂料会影响固化,特别是实际中会出现的烘烤不足情况;(3)常规UVA(UV-1164)在极性高固涂料中,如添加量过高会出现析出。而本发明的反应型复配光稳定剂用在高固体份涂料中后,涂料的色差变化明显较低,能保证涂膜长期的抗老化性能。
长期耐候效果评估试验
(1)反应型复合光稳定剂在高固体份涂料中耐候提升
基于上述高固体份涂料体系,常规HALS无法达到有效相容。复配光稳定剂产品能满足使用,且在长期使用中有更好的抗老化效果。测试如下,添加不同类型光稳定剂得到如下四组测试涂料样品。
实施例B-1
在上述未加光稳定剂的高固含涂料中添加1wt%的UV-400和0.5%的RLHA,配制成测试涂料样品。
对比例B-1
在上述高固含涂料中添加1.5wt%的UV-400,配制成测试涂料样品。
对比例B-2
在上述高固含涂料中添加0.85wt%的UV-1164和0.5wt%的UV-292,配制成测试涂料样品。
对比例B-3
未添加光稳定剂的上述高固含涂料作为空白对比。
按以下方法喷涂制作涂料测试样板:喷涂膜厚至30微米,常温流平10分钟,置于140度烘箱烘烤30分钟。表面调整3天后开始QUV测试。
QUV测试条件如下:测试板放置于QUV紫外老化灯箱中(型号:Q-Lab QUV/Spray紫外荧光老化试验箱),测试标准参考ASTM G154-06 cylce 1。每隔一段时间取出测试板测量色差值。色差仪为:X-rite MA5分光测色仪。
测试结果见图3,其为实施例B-1和对比例B-1至B-3中的涂料的QUV老化测试过程中的色差变化曲线。由图中曲线可知,本发明所提供的UV-400与RLHA复配应用于高固含涂料,具有更好的抗老化性能,且长效性明显更佳。
(2)塑胶涂料中的抗迁移性
塑胶基材为达到美化效果和防护效果,表面可涂布一层涂料。在一些户外使用场合,涂料可能受光和热的影响而发生老化。受阻胺光稳定剂的添加能减缓这一过程。但许多塑胶基材本身的塑性较好,基材内提供一些“自由空间”可供小分子的受阻胺光稳定剂迁移。本测试选用塑性较好的典型材料TPO进行测试。
选择2K丙烯酸聚氨酯清漆作为加入对象,组分见表5:
表5
Setalux 1274 BA-70 62.5
BYK 378 0.2
甲基戊基酮 16
正丁醇 1.8
丙酮 7
醋酸丁酯 12.45
DBTDL(5%溶液) 0.05
以上为基于异氰酸酯固化的双组分(2K)丙烯酸聚氨酯清漆涂料体系:A组分配方见表5,B组分为Desmodur N3300(Covestro),按重量比计,A组分:B组分=100:20.45。
物料备注:
Desmodur N3300:以六亚甲基二异氰酸酯(HDI)为基料的脂肪族聚异氰酸酯,购于科思创聚合物(中国)有限公司;
Setalux 1274BA-70:羟基丙烯酸树脂,购于湛新树脂(中国)有限公司;
BYK 378:有机硅流平剂,购于毕克助剂(上海)有限公司;
DBTDL:二月桂酸二丁基锡,催化剂,购于天津希恩思生物科技有限公司。
实施例B-2
在上述未加光稳定剂的2K丙烯酸聚氨酯清漆中添加1wt%的UV-400和0.5%的RLHA,配制成测试涂料样品。
实施例B-3
在上述未添加光稳定剂的上述2K丙烯酸聚氨酯清漆中添加0.85wt%的UV-405和0.5wt%的UV-RLHA,配制成测试涂料样品。
对比例B-4
在上述未加光稳定剂的2K丙烯酸聚氨酯清漆中添加1wt%的UV-400和0.5%的UV-123,配制成测试涂料样品。
对比例B-5
在上述未加光稳定剂的2K丙烯酸聚氨酯清漆中添加0.85wt%的UV-1164和0.5wt%的RLHA,配制成测试涂料样品(注:UV-400有效含量为85%,因此固体非反应性紫外线吸收剂UV-1164按等有效重量添加)。
对比例B-6
在上述未加光稳定剂的2K丙烯酸聚氨酯清漆中添加0.85wt%的固体反应性UVA(简称RUV,结构见下式,来源参考专利CN112552250A)和0.5%的RLHA,配制成测试涂料样品。
Figure PCTCN2022105379-appb-000016
对比例B-7
未添加光稳定剂的上述2K丙烯酸聚氨酯清漆作为空白对比。
按以下方法喷涂制作涂料测试样板:底材统一选用TPO(PP:SEBS=1:1),统一喷涂蓝色金属底色漆,常温流平10分钟;其次在蓝色金属底色漆上喷涂测试涂料样品,控制膜厚至30微米,常温流平10分钟,置于80度烘箱烘烤30分钟。表面调整7天后开始QUV测试。
QUV测试条件如下:测试板放置于QUV紫外老化灯箱中(型号:Q-Lab QUV/Spray紫外荧光老化试验箱),测试标准参考ASTM G154-06 cylce 1。每隔一段时间取出测试板测量色差值。色差仪为:X-rite MA5分光测色仪。
测试结果见图4,其为实施例B-2至B-3和对比例B-4至B-7中的涂料的QUV老化测试过程中的色差变化曲线。
其它固体反应型产品如RUV、UV-405必须先溶解才可以添加。这会造成两个负面结果:添加时不如同是液体的UV-400和RLHA复配添加方便;溶剂的引入增加了VOC排放,特别是对高固体系是不能接受的。
特别是,由图4中的曲线亦可明显看出本发明的UV-400与RLHA的复配使用,对于涂膜长期的抗老化性能有更显著的改善。
此外,由图4中的曲线还可看出,反应型三嗪复配(UV-400和RLHA)的效果好于反应型苯并三氮唑复配(RUV和RLHA)的效果,反应型固体HALS复配(UV-405和UV-RLHA)的效果长期抗老化效果要优于反应型苯并三氮唑复配(RUV和RLHA)的效果。反应型固体HALS复配(UV-405和UV-RLHA)的效果与液体反应型HALS复配(UV-400和RLHA)基本相当,但有上述的两个负面结果。
(3)粉末涂料中长效耐候性
粉末涂料完全不含挥发性有机物(VOC),具有非常优异的环保特性。因此,近年来对于粉末涂料的关注和使用越来越广泛。早期的粉末涂料一般用于相对中低端的应用场合,对于耐候性的关注,特别是长期耐候性关注较低。液体反应型复合光稳定剂在液体涂料中具有非常好的长效耐候表现,但是粉末涂料中能使用的助剂形态偏向于粉体而非液体。本发明中反应型紫外线吸收剂UV-405、反应型受阻胺光稳定剂UV-152组成粉体反应型复合光稳定剂,并成功应用在近年来逐步成熟的聚氨酯型粉末涂料中。对比常规非反应型紫外线吸收剂UV-1164、反应型受阻胺光稳定剂UV-622,进行长期光老化测试。
使用的聚氨酯粉末涂料配方见表6:
表6
物料名称 添加比例(重量百分比)
CRYLCOAT 2839-0 39.4
ADDITOL P932 15.3
钛白粉 26.5
硫酸钡 11.1
流平剂GLP599 5
安息香 0.5
催化剂ST-70 0.2
抗氧剂 0.5
受阻胺光稳定剂 0.5
紫外线吸收剂 1
CRYLCOAT 2839-0:羟基聚酯树脂,购于湛新树脂(中国)有限公司。
ADDITOL P932:脂肪族异氰酸酯,购于湛新树脂(中国)有限公司。
钛白粉:杜邦R902。
安息香、流平剂:购于宁波南海化学有限公司。
催化剂:购于Estron Chemical公司,商品牌号Octaflow ST-70。
抗氧剂:Rianox B225,购于天津利安隆新材料股份有限公司。
UV-152:购自巴斯夫,Tinuvin 152。
实施例B-4
表6配方中的受阻胺光稳定剂为UV-152,紫外线吸收剂为UV-405。
对比例B-8
表6配方中的受阻胺光稳定剂为UV-622,紫外线吸收剂为UV-1164。
对比例B-9
表6配方中的受阻胺光稳定剂和紫外线吸收剂未添加,作为空白对比。
按以下方法喷涂制作涂料测试样板:将上述配方的粉末涂料喷涂膜厚至50微米,置于200度烘箱烘烤15分钟。表面调整3天后开始QUV测试。
QUV测试条件如下:测试板放置于QUV紫外老化灯箱中(型号:Q-Lab QUV/Spray紫外荧光老化试验箱),测试标准参考ASTM G154-06 cylce 1。每隔一段时间取出测试板测量色差值。色差仪为:X-rite MA5分光测色仪。
测试结果见图5,其为实施例B-4和对比例B-8至B-9中的涂料的QUV老化测试过程中的色差变化曲线。由图5中的曲线亦可明显看出本发明的UV-405和UV-152的复配使用,对于涂膜长期的抗老化性能有更显著的改善。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种反应型复合光稳定剂,其特征在于,包括反应型紫外线吸收剂和反应型受阻胺光稳定剂,且所述反应型紫外线吸收剂为反应型三嗪类紫外线吸收剂。
  2. 根据权利要求1所述的反应型复合光稳定剂,其特征在于,所述反应型紫外线吸收剂选自2-[4-[2-羟基-3-十三烷氧基丙基]氧基-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪和2-[4-[2-羟基-3-十二烷氧基丙基]氧基]-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪的混合物,和/或2-[2-羟基-4-[3-(2-乙基己氧基)-2-羟基丙氧基]苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪;所述反应型受阻胺光稳定剂选自
    Figure PCTCN2022105379-appb-100001
    和/或2,4-二[N-丁基-(1-环己氧基-2,2,6,6-四甲基哌啶-4-基)氨]-6-(2-羟乙胺)-1,3,5-三嗪中;优选地,所述反应型紫外线吸收剂和所述反应型受阻胺光稳定剂在20~30℃的室温下均为液态或者均为固态。
  3. 根据权利要求2所述的反应型复合光稳定剂,其特征在于,
    所述反应型紫外线吸收剂为2-[4-[2-羟基-3-十三烷氧基丙基]氧基-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪和2-[4-[2-羟基-3-十二烷氧基丙基]氧基]-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪的混合物,且所述反应型受阻胺光稳定剂为
    Figure PCTCN2022105379-appb-100002
    或者,
    所述反应型紫外线吸收剂为2-[2-羟基-4-[3-(2-乙基己氧基)-2-羟基丙氧基]苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪,且所述反应型受阻胺光稳定剂为2,4-二[N-丁基-(1-环己氧基-2,2,6,6-四甲基哌啶-4-基)氨]-6-(2-羟乙胺)-1,3,5-三嗪;
    优选地,所述反应型紫外线吸收剂和所述反应型受阻胺光稳定剂之间的重量比为(0.1~10):1,优选为(1~5):1。
  4. 一种权利要求1至3中任一项所述的反应型复合光稳定剂在高分子材料中的应用。
  5. 一种反应型受阻胺光稳定剂在高分子材料中的应用,其特征在于,所述反应型受阻胺光稳定剂为
    Figure PCTCN2022105379-appb-100003
    优选地,所述高分子材料为涂料。
  6. 一种光稳定改性高分子材料,包括高分子材料和光稳定剂,其特征在于,所述光稳定剂为权利要求1至3中任一项所述的反应型复合光稳定剂。
  7. 根据权利要求5所述的光稳定改性高分子材料,其特征在于,所述高分子材料为聚氨酯材料、氨基树脂材料、丙烯酸树脂材料和环氧树脂材料中的一种或多种;优选地,所述高分子材料为涂料、胶粘剂、发泡材料或弹性体。
  8. 根据权利要求5所述的光稳定改性高分子材料,其特征在于,所述高分子材料为氨基丙烯酸树脂涂料、丙烯酸聚氨酯清漆或聚氨酯粉末涂料。
  9. 根据权利要求8所述的光稳定改性高分子材料,其特征在于,
    所述高分子材料为所述氨基丙烯酸树脂涂料或所述丙烯酸聚氨酯清漆时,所述反应型复合光稳定剂中的反应型紫外线吸收剂为2-[4-[2-羟基-3-十三烷氧基丙基]氧基-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪和2-[4-[2-羟基-3-十二烷氧基丙基]氧基]-2-羟基苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪的混合物,反应型受阻胺光稳定剂为
    Figure PCTCN2022105379-appb-100004
    所述高分子材料为所述聚氨酯粉末涂料时,所述反应型复合光稳定剂中的反应型紫外线吸收剂为2-[2-羟基-4-[3-(2-乙基己氧基)-2-羟基丙氧基]苯基]-4,6-双(2,4-二甲基苯基)-1,3,5-三嗪,反应型受阻胺光稳定剂为2,4-二[N-丁基-(1-环己氧基-2,2,6,6-四甲基哌啶-4-基)氨]-6-(2-羟乙胺)-1,3,5-三嗪。
  10. 根据权利要求5至9中任一项所述的光稳定改性高分子材料,其特征在于,所述反应型复合光稳定剂在所述高分子材料中的添加量为0.1~5wt%,更优选为1~2%。
PCT/CN2022/105379 2022-02-24 2022-07-13 反应型复合光稳定剂及其应用、光稳定改性高分子材料 WO2023159857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210176909.7 2022-02-24
CN202210176909.7A CN116693938A (zh) 2022-02-24 2022-02-24 反应型复合光稳定剂及其应用、光稳定改性高分子材料

Publications (1)

Publication Number Publication Date
WO2023159857A1 true WO2023159857A1 (zh) 2023-08-31

Family

ID=87764532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105379 WO2023159857A1 (zh) 2022-02-24 2022-07-13 反应型复合光稳定剂及其应用、光稳定改性高分子材料

Country Status (2)

Country Link
CN (1) CN116693938A (zh)
WO (1) WO2023159857A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0389419A1 (en) * 1989-03-21 1990-09-26 Ciba-Geigy Ag Non-migrating 1-hydrocarbyloxy hindered amine compounds as polymer stabilizers
CN1420907A (zh) * 2000-02-01 2003-05-28 西巴特殊化学品控股有限公司 被紫外吸收剂加选定受阻胺的组合物稳定化的烛蜡
US20080254229A1 (en) * 2005-10-03 2008-10-16 Lake Randall T Radiation Curable Coating Composition and Method
JP2011219691A (ja) * 2010-04-14 2011-11-04 Kansai Paint Co Ltd 活性エネルギー線硬化型塗料組成物及び塗装物品
CN102471594A (zh) * 2009-07-30 2012-05-23 大日精化工业株式会社 太阳光发电用树脂构件的室外暴露物性改良方法以及其中所使用的树脂物性改良剂
CN103765313A (zh) * 2011-08-31 2014-04-30 旭化成电子材料株式会社 感光性碱可溶有机硅树脂组合物
CN106471049A (zh) * 2014-05-01 2017-03-01 塞特工业公司 用于稳定化材料抵抗紫外光和热降解的稳定组合物
CN109982841A (zh) * 2016-11-23 2019-07-05 Ppg工业俄亥俄公司 紫外保护性透明体
JP2019172793A (ja) * 2018-03-28 2019-10-10 日本カーバイド工業株式会社 樹脂組成物及び積層体
CN110352223A (zh) * 2017-04-25 2019-10-18 巴斯夫欧洲公司 具有共价结合紫外线吸收剂的涂料组合物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0389419A1 (en) * 1989-03-21 1990-09-26 Ciba-Geigy Ag Non-migrating 1-hydrocarbyloxy hindered amine compounds as polymer stabilizers
CN1420907A (zh) * 2000-02-01 2003-05-28 西巴特殊化学品控股有限公司 被紫外吸收剂加选定受阻胺的组合物稳定化的烛蜡
US20080254229A1 (en) * 2005-10-03 2008-10-16 Lake Randall T Radiation Curable Coating Composition and Method
CN102471594A (zh) * 2009-07-30 2012-05-23 大日精化工业株式会社 太阳光发电用树脂构件的室外暴露物性改良方法以及其中所使用的树脂物性改良剂
JP2011219691A (ja) * 2010-04-14 2011-11-04 Kansai Paint Co Ltd 活性エネルギー線硬化型塗料組成物及び塗装物品
CN103765313A (zh) * 2011-08-31 2014-04-30 旭化成电子材料株式会社 感光性碱可溶有机硅树脂组合物
CN106471049A (zh) * 2014-05-01 2017-03-01 塞特工业公司 用于稳定化材料抵抗紫外光和热降解的稳定组合物
CN109982841A (zh) * 2016-11-23 2019-07-05 Ppg工业俄亥俄公司 紫外保护性透明体
CN110352223A (zh) * 2017-04-25 2019-10-18 巴斯夫欧洲公司 具有共价结合紫外线吸收剂的涂料组合物
JP2019172793A (ja) * 2018-03-28 2019-10-10 日本カーバイド工業株式会社 樹脂組成物及び積層体

Also Published As

Publication number Publication date
CN116693938A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
JP4811900B2 (ja) 透明積層体、眼鏡用プラスチックレンズおよびプライマー組成物
US4880889A (en) Hydroxylic acrylate copolymer process for its preparation, and coating agent based on the acrylate
US4396680A (en) Substrate coated with crater resistant acrylic enamel
JP3388580B2 (ja) ラッカーおよび該ラッカーの自動車車体をラッカー塗布するための上塗りラッカーとしての使用
KR101378336B1 (ko) 내화학성, 내스크래치성 및 스크래치 복원성이 우수한 1액형 자동차 상도용 투명 도료 조성물
US4330458A (en) High solids coating composition of a blend of a low molecular weight acrylic polymer and a medium molecular weight acrylic polymer and an alkylated melamine cross-linking agent
EP2440595A1 (de) Beschichtungsmittel und daraus hergestellte beschichtungen mit hoher kratzfestigkeit und hoher kocherstabilität
JPH02145660A (ja) プライマー組成物
WO2016078387A1 (zh) 一种聚醚改性hmdi水性聚氨酯固化剂的制备方法
US4371657A (en) Crater resistant acrylic enamel
CN112175440A (zh) 一种抗日晒耐黄变防老化修复涂料及其制备方法
EP3783070A1 (en) A waterborne white-base coating
JP5874971B2 (ja) ウレタン塗料組成物および樹脂部材
WO2023159857A1 (zh) 反应型复合光稳定剂及其应用、光稳定改性高分子材料
US4812506A (en) Amino methyl propanol blocked aromatic sulfonic acid
KR20010031106A (ko) 비수성 분산 중합체, 실란 관능성 아크릴계 중합체 및트리아진을 함유하는 코팅 조성물
EP0772647B2 (de) Polyacrylatharzlösungen mit verbesserter farbzahl und verwendung in überzugsmitteln
CN116042074B (zh) 双组份涂料组合物
CA2154835C (en) Coating compositions including high tg acrylic polymers for low temperature cure and good etch resistance
JPH09157595A (ja) プレコートメタル用塗料組成物
KR101540689B1 (ko) 아크릴 수지를 경화제로 포함하는 투명 도료 조성물
CN113004755A (zh) 水性涂料组合物
KR101776304B1 (ko) 금 나노입자를 함유한 클리어 도료 조성물
JP7395087B2 (ja) プライマー組成物
KR101540688B1 (ko) 아크릴 수지를 포함하는 투명 도료 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928126

Country of ref document: EP

Kind code of ref document: A1