WO2023157459A1 - 監視用無人航空機及び無人航空機監視システム - Google Patents

監視用無人航空機及び無人航空機監視システム Download PDF

Info

Publication number
WO2023157459A1
WO2023157459A1 PCT/JP2022/046858 JP2022046858W WO2023157459A1 WO 2023157459 A1 WO2023157459 A1 WO 2023157459A1 JP 2022046858 W JP2022046858 W JP 2022046858W WO 2023157459 A1 WO2023157459 A1 WO 2023157459A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
uav
surveillance
remote
Prior art date
Application number
PCT/JP2022/046858
Other languages
English (en)
French (fr)
Inventor
達也 阿部
勝洋 浅野
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Publication of WO2023157459A1 publication Critical patent/WO2023157459A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/20UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/31UAVs specially adapted for particular uses or applications for imaging, photography or videography for surveillance

Definitions

  • the present invention relates to an unmanned aerial vehicle monitoring system for monitoring the flight of unmanned aerial vehicles.
  • UAV Unmanned Aerial Vehicle
  • level 4 flight beyond visual line of sight flight in manned areas
  • the remote ID communication method is Bluetooth 5.
  • x, WiFi Aware, or WiFi Beacon Both communication methods are defined as weak transmission output, and are assumed to be received within a horizontal distance of approximately 300 m in radius under an ideal environment.
  • the remote ID please refer to the Prime Minister's Office website (https://www.kantei.go.jp/jp/singi/kogatamujinki/kanminkyougi_dai16/betten1.pdf) as the "remote ID technical standard (draft)". It has been published.
  • Patent Document 1 a first unmanned aerial vehicle that flies a predetermined route, a supervisory control device for monitoring or controlling the flight, and between the first unmanned aerial vehicle and the supervisory control device a second unmanned aerial vehicle that flies in an area without any shields, the second unmanned aerial vehicle shoots a video of the first unmanned aerial vehicle as a subject, wirelessly transmits the shooting data to the monitoring control device,
  • An invention is disclosed in which a monitoring control device displays photographed data received from a second unmanned aerial vehicle.
  • UAV observers who monitor UAV flights use capture devices that receive remote IDs emitted from UAVs to detect UAVs flying in the vicinity. Get the remote ID.
  • the target UAV it becomes difficult to obtain the remote ID.
  • ISM band 2.4 MHz band
  • Figure 1 shows an image of UAV surveillance using capture equipment.
  • the area reached by the remote ID transmitted by the target UAV 11 is shown as the remote ID reachable area 12 .
  • the remote ID of the target UAV 11 can be received by the capture device 22-1.
  • the capture device 22-2 possessed by another observer 21-2 is outside the range of the remote ID reachable area 12, the capture device 22-2 cannot receive the remote ID of the target UAV 11.
  • the observer 21 needs to place the capture device 22 within the remote ID reachable area 12 of the target UAV 11 .
  • the remote ID reachable area 12 may become smaller depending on the circumstances such as surrounding buildings, topography, and interference waves, the reachable distance in each direction is not uniform. Therefore, from the viewpoint of radio communication quality, it is desirable to keep the distance between the target UAV 11 and the capture device 22 as short as possible, and it is desirable to ensure physical line-of-sight between the two.
  • a surveillance unmanned aerial vehicle is configured as follows. That is, the surveillance unmanned aerial vehicle is controlled in operation by an observer who monitors the flight of the target unmanned aerial vehicle, and is characterized by being equipped with a capture device for receiving a remote ID transmitted from the target unmanned aerial vehicle. .
  • the surveillance unmanned aerial vehicle may be configured with a storage unit that stores the remote ID received by the capture device.
  • the surveillance unmanned aerial vehicle may be configured to include a wireless communication unit that wirelessly transmits the remote ID received by the capture device to provide the surveillance person with the remote ID.
  • the surveillance unmanned aerial vehicle may be configured to include a steering signal arrival direction estimating unit that estimates the arrival direction of the steering signal for the target unmanned aerial vehicle.
  • the surveillance unmanned aerial vehicle may be configured with a camera that captures the arrival direction of the steering signal estimated by the steering signal arrival direction estimator.
  • the surveillance unmanned aerial vehicle estimates the position of the transmission source of the steering signal based on the result of estimation by the steering signal arrival direction estimator, the imaging result by the camera, and the position information of the surveillance unmanned aerial vehicle.
  • the configuration may include a steering signal transmission position estimator for estimation.
  • An unmanned aerial vehicle monitoring system for monitoring the flight of a target unmanned aerial vehicle, comprising: a monitoring unmanned aerial vehicle operated by an observer who monitors the flight of the target unmanned aerial vehicle; a controller for wirelessly transmitting a steering signal to a surveillance unmanned aerial vehicle, and the surveillance unmanned aerial vehicle is equipped with a capture device for receiving a remote ID transmitted from a target unmanned aerial vehicle.
  • the unmanned aerial vehicle monitoring system may further include a search unmanned aerial vehicle having a steering signal arrival direction estimating unit that estimates the arrival direction of the steering signal for the unmanned aerial vehicle.
  • a stable wireless communication environment can be secured, so the remote ID can be received more reliably.
  • FIG. 1 is a diagram showing an overview of a UAV surveillance system according to an embodiment of the invention
  • FIG. 10 illustrates an example of a single observer receiving remote IDs from multiple surveyed UAVs
  • It is a figure which shows the outline of the remote ID confirmation method based on a flight plan.
  • It is a figure which shows the example of a definition of an airspace.
  • FIG. 4 is a diagram illustrating a method of identifying the operator position of a target UAV
  • FIG. 4 is a diagram showing a configuration example of a search UAV;
  • FIG. 2 shows an overview of a UAV surveillance system according to one embodiment of the invention.
  • the capture UAV 31 which is an example of the surveillance unmanned aerial vehicle according to the present invention.
  • the target UAV 11 transmits a remote ID for remotely identifying the UAV once or more per second.
  • the remote ID includes information such as registration number, manufacturing number, position information, speed information, time information, and authentication information, for example.
  • the capture UAV 31 has a configuration in which a capture device 32 equipped with a remote ID reception function is mounted on a UAV body 33 that performs flight operations according to steering signals sent from a UAV propo 35 (pilot). Observers (for example, Civil Aviation Bureau personnel, important facility managers, police officers, etc.) 34 remotely control the capture UAV 31 by operating the UAV propo 35 so that the capture UAV 31 reaches the remote ID reachable area of the target UAV 11. 12 and the remote ID transmitted from the target UAV 11 is received by the capture device 32 .
  • the remote ID received by the capture device 32 is stored in a memory (storage unit) (not shown).
  • the observer 34 collects the capture UAV 31 at hand, reads out the remote ID obtained by the capture device 32 from the memory, and accesses the UAV registration system of the Ministry of Land, Infrastructure, Transport and Tourism based on the remote ID to obtain the target UAV 11. You can query information about In addition, if the remote ID cannot be received from the target UAV 11, there is a high possibility that it is an illegal UAV. can be done.
  • the distance between the target UAV 11 and the capture device 32 can be shortened. This makes it possible to ensure line-of-sight communication between the target UAV 11 and the capture device 32, and to increase the distance from interference sources on the ground, making it possible to acquire the remote ID of the target UAV 11 more reliably. Become.
  • the observer 34 operates the UAV propo 35 to control the capture UAV 31.
  • the capture UAV 31 may be automatically operated to acquire the remote ID of the target UAV 11 . That is, the capture UAV 31 is controlled to autonomously fly toward the target UAV 11 to automatically acquire the remote ID of the target UAV 11 . As a result, it is possible to reduce the workload of the supervisor 34 involved in acquiring the remote ID.
  • the capture UAV 31 is configured to store the remote ID received by the capture device 32 in the memory. You may prepare.
  • this wireless communication unit for example, any wireless system that can be used in the sky, such as 920 MHz band LoRa generally used in UAV, 5.7 GHz band unmanned mobile image transmission system, WiFi, LTE, etc. can be used.
  • the observer 34 can confirm the remote ID of the target UAV 11 without collecting the capture UAV 31 at hand.
  • the function of receiving the remote ID of the target UAV 11 wirelessly transmitted by the capture UAV 31 may be provided in the UAV propo 35 or may be provided in a device other than the UAV propo 35 .
  • FIG. 3 shows an example in which one observer 34 receives remote IDs from multiple target UAVs 11-1 and 11-2.
  • the observer 34 operates the UAV propo 35 to move the capture UAV 31 into the range of the remote ID reachable area 12-1 of the first target UAV 11-1, and the remote ID reachable area 12-1 of the first target UAV 11-1. Get an ID.
  • the observer 34 further operates the UAV propo 35 to move the capture UAV 31 into the range of the remote ID reachable area 12-2 of the second target UAV 11-2. Get the remote ID of
  • the capture UAV 31 By operating the capture UAV 31 in this way, it is also possible for a single observer 34 to obtain the remote IDs of multiple target UAVs 11 .
  • the remote IDs of two target UAVs 11-1 and 11-2 will be investigated, but if the capture UAV 31 is within the controllable range, the remote IDs will be obtained from more target UAVs 11. It is also possible to
  • FIG. 4 shows the concept of the remote ID confirmation method based on this background.
  • FIG. 4 shows the UAV flight plan with the horizontal axis representing time and the vertical axis representing airspace. This figure shows in which airspace UAVs are present in a certain time period. Airspace setting during actual operation will be described with reference to FIG.
  • the range of the space on the ground divided by the rectangular parallelepiped ABCDEFGH is defined as one airspace.
  • the height (size) ⁇ h of any point on the earth can be specified as a unique airspace.
  • the length of each side of the airspace must be appropriately set by the operation manager.
  • the flight plan is to move through each airspace as indicated by dashed arrows 13-1 and 13-2. If these flight plans can be grasped in advance, the observer 34 takes off the capture UAV 31 from the airspace (n) at the time (t) and moves to the airspace (n+1) at the time (t+1). By bringing it closer, it is possible to acquire the remote ID of the second target UAV 11-2.
  • the first target UAV 11-1 passes through the airspace (n-1), so the observer 34 moves or approaches the capture UAV 31 to the airspace (n-1).
  • the remote ID of the first target UAV 11-1 can be obtained.
  • the observer 34 returns the capture UAV 31 to the airspace (n), which is the starting point. Thereby, it is possible to confirm the remote IDs of the two devices acquired by the capture device 32 mounted on the capture UAV 31 .
  • each target UAV 11-1, 11-2 can confirm the flight plan. It is also possible to know whether you are flying in the street or not.
  • a surveillance assistant 47 who assists the activity of the surveillance person 34 uses a search UAV 41 having a function of estimating the direction of arrival of the steering signal transmitted from the UAV propo 15 for steering the target UAV 11, A case of identifying the position of the operator 14 of the target UAV 11 will be described.
  • the observer 34 tries to acquire the remote ID of the target UAV 11 by operating the capture UAV 31 with the UAV propo 35 .
  • the remote ID could not be acquired, work to identify the position of the operator 14 of the target UAV 11 is started in cooperation with the monitoring assistant 47. do.
  • the surveillance assistant 47 operates the search UAV 41 with the UAV propo 48 and moves the search UAV 41 to a position where the steering signal transmitted from the UAV propo 15 to the target UAV 11 can be intercepted. Attempt to identify 14 locations.
  • the search UAV 41 includes an array antenna 42, a steering signal arrival direction estimator 43, a camera 44, a steering signal transmission position estimator 45, and a wireless communication unit 46, as shown in FIG. It is assumed that there is
  • the array antenna 42 receives steering signals for steering the UAV.
  • the array antenna 42 receives steering signals for the own aircraft (searching UAV 41) and other UAVs flying in the vicinity. ), each steering signal can be distinguished.
  • the steering signal direction-of-arrival estimating unit 43 estimates the direction of arrival of the steering signal for the target UAV 11 based on the steering signal received by the array antenna 42, for example, using a known wave direction-of-arrival estimation algorithm such as MUSIC (MULTIPLE SIGNAL. CLASSIFICATION). to estimate For example, the direction of arrival of a steering signal other than the steering signal directed to the aircraft itself is estimated.
  • MUSIC MULTIPLE SIGNAL. CLASSIFICATION
  • the camera 44 captures the arrival direction of the steering signal with respect to the target UAV 11 based on the estimation result by the steering signal arrival direction estimation unit 43 . As a result, a photographed image of the operator 14 operating the UAV propo 15 can be obtained. At this time, it is preferable that the camera 44 automatically recognizes the operator 14 appearing in the photographed image and appropriately controls the magnification and focal length. Further, the camera 44 may calculate the distance to the operator 14 based on the enlargement magnification, the operator size of the captured image, and the like.
  • the steering signal transmission position estimation unit 45 estimates the position of the operator 14 of the target UAV 11 (more More precisely, the position of the UAV propo 15 that is the source of the steering signal for the target UAV 11) is estimated. Specifically, for example, based on the arrival direction of the steering signal of the target UAV 11 and the distance to the operator 14, the relative position of the UAV propo 15 with respect to the search UAV 41 is calculated, and the current position of the search UAV 41 is calculated. The position of the UAV propo 15 is calculated by calculating based on the position information.
  • the current position information of the search UAV 41 can be obtained by, for example, GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the estimation result by the steering signal transmission position estimation unit 45 is wirelessly transmitted by the wireless communication unit 46 .
  • the wireless communication unit 46 for example, any wireless system that can be used in the sky, such as 920 MHz band LoRa generally used in UAV, 5.7 GHz band unmanned mobile image transmission system, WiFi, LTE, etc. can be used.
  • the estimation result by the steering signal arrival direction estimating section 43 and the captured image by the camera 44 may also be wirelessly transmitted by the wireless communication section 46 .
  • the function of receiving data wirelessly transmitted by the search UAV 41 may be provided by the UAV propo 48, or may be provided by a device separate from the UAV propo 48.
  • the monitoring assistant 47 moves the search UAV 41 toward the position of the operator 14 of the target UAV 11 based on the data received from the search UAV 41 .
  • the search UAV 41 After confirming the position of the operator 14 of the target UAV 11 by such a method, the search UAV 41 is used to photograph the operator 14 and the surroundings, and save the image information. Based on the positional information, it becomes possible to track by vehicle. In addition, it is possible to share information with other UAV operation managers flying in the surrounding area and alert them to ensure the safety of UAV operation.
  • the search UAV 41 may be configured to include a memory (storage unit) for storing each data acquired in the above process, so that the monitor assistant 47 who collects the search UAV 41 can read from the memory.
  • the capture UAV 31 and search UAV 41 are configured separately, but the functions of these UAVs may be integrated into one aircraft. This allows a smaller number of people to monitor the flight of the target UAV 11 and track the operator 14 .
  • the remote ID of the target UAV 11 is acquired using the capture UAV 31 having the capture device 32 equipped with the remote ID reception function mounted on the UAV main body 33.
  • the present invention can be provided not only as devices such as those mentioned in the above description and systems configured with these devices, but also as methods executed by these devices and functions of these devices by a processor. It is also possible to provide a program for implementation, a storage medium storing such a program in a computer-readable manner, and the like.
  • the present invention can be used in an unmanned aerial vehicle monitoring system for monitoring the flight of unmanned aerial vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mechanical Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Traffic Control Systems (AREA)

Abstract

課題: ターゲットUAVから発信されるリモートIDの受信が困難な状況であっても、リモートIDをより確実に受信できるようにする。 解決手段: ターゲットUAV11のリモートIDを取得するために、キャプチャ用UAV31を使用する。キャプチャ用UAV31は、UAVプロポ35(操縦器)から送信される操舵信号に従って飛行動作を行うUAV本体33に、リモートIDの受信機能を備えたキャプチャ機器32を搭載した構成となっている。

Description

監視用無人航空機及び無人航空機監視システム
 本発明は、無人航空機の飛行を監視するための無人航空機監視システムに関する。
 近年のロボット技術の進展は実に目覚しく、様々な社会課題の解決にロボットが利用されることも多くなっている。特に無人航空機については、内閣官房が主導する「小型無人機に係る環境整備に向けた官民協議会」による利活用に向けた検討が活発に実施されており、その中で空の産業革命に向けたロードマップが毎年更新公表されている。ロードマップの大きな目標である無人航空機(以降、UAV(Unmanned Aerial Vehicle)と記す)のレベル4飛行(有人地帯における目視外飛行)は2022年の実現を予定しており、それに向けた関連法の整備が進められている状況にある。そのような取り組みの一環として、UAVを遠隔から識別するためのリモートIDを1秒に1回以上発信することが義務づけられ、2022年6月から施行される予定にある。
 リモートIDの通信方式は、Bluetooth 5.x、WiFi Aware、又はWiFi Beaconによることが規定されている。いずれの通信方式も微弱な送信出力規定となっており、理想的な環境下において水平距離で概ね半径300m程度の範囲での受信が想定されている。リモートIDの仕様については、「リモートID技術規格書(案)」として、首相官邸webサイト(https://www.kantei.go.jp/jp/singi/kogatamujinki/kanminkyougi_dai16/betten1.pdf)にて公開されている。
 ここで、本発明に係る技術分野の従来技術として、以下のようなものがある。例えば、特許文献1には、所定のルートを飛行する第1の無人航空機と、その飛行を監視又は制御するための監視制御装置と、第1の無人航空機との間及び監視制御装置との間に遮蔽物が無いエリアを飛行する第2の無人航空機とを備え、第2の無人航空機は、第1の無人航空機を被写体とした動画を撮影し、撮影データを監視制御装置へ無線送信し、監視制御装置は、第2の無人航空機から受信した撮影データを表示する発明が開示されている。
特開2021-131598号公報
 UAVの飛行を監視するUAV監視者(例えば、航空局職員、重要施設管理者、警察官等)は、UAVから発信されるリモートIDを受信するキャプチャ機器を使用して、近隣を飛行するUAVのリモートIDを取得する。しかしながら、調査対象となるUAV(以下、ターゲットUAVという)のリモートIDを受信可能な場所まで接近することが困難な場合には、リモートIDの取得が困難になる。また、特に都市部等においては、キャプチャ機器の周辺に存在する2.4MHz帯(ISMバンド)機器の干渉による通信品質劣化により、リモートIDの取得が困難になる場合がある。
 図1は、キャプチャ機器によるUAV監視のイメージを示している。図1では、ターゲットUAV11が発信するリモートIDが到達するエリアが、リモートID到達エリア12として示されている。例えば、監視者21-1が所持するキャプチャ機器22-1がリモートID到達エリア12の範囲内である場合には、キャプチャ機器22-1でターゲットUAV11のリモートIDを受信することができる。一方で、別の監視者21-2が所持するキャプチャ機器22-2がリモートID到達エリア12の範囲外の場合には、キャプチャ機器22-2でターゲットUAV11のリモートIDを受信することができない。このように、監視者21は、ターゲットUAV11のリモートID到達エリア12の範囲内にキャプチャ機器22を配置する必要がある。
 また、リモートID到達エリア12は、周辺の建造物、地形、干渉波等の状況によって小さくなる場合があるため、各方向の到達距離も均一にはならない。従って、無線通信品質の観点から、ターゲットUAV11とキャプチャ機器22の間の距離はできるだけ短くすることが望ましく、また、双方の間の物理的見通しが確保されることが望ましい。
 本発明は、上記のような従来の事情に鑑みて為されたものであり、ターゲットUAVから発信されるリモートIDの受信が困難な状況であっても、リモートIDをより確実に受信できるようにすることを目的とする。
 上記の目的を達成するために、本発明の一態様に係る監視用無人航空機は、以下のように構成される。
 すなわち、ターゲットの無人航空機の飛行を監視する監視者によって動作が制御される監視用無人航空機であって、ターゲットの無人航空機から発信されるリモートIDを受信するキャプチャ装置を搭載したことを特徴とする。
 また、本発明に係る監視用無人航空機は、キャプチャ装置により受信されたリモートIDを記憶する記憶部を備えた構成であり得る。
 また、本発明に係る監視用無人航空機は、キャプチャ装置により受信されたリモートIDを監視者に提供するために無線送信する無線通信部を備えた構成であり得る。
 また、本発明に係る監視用無人航空機は、ターゲットの無人航空機に対する操舵信号の到来方向を推定する操舵信号到来方向推定部を備えた構成であり得る。
 また、本発明に係る監視用無人航空機は、操舵信号到来方向推定部により推定された操舵信号の到来方向を撮影するカメラを備えた構成であり得る。
 また、本発明に係る監視用無人航空機は、操舵信号到来方向推定部による推定結果と、カメラによる撮影結果と、当該監視用無人航空機の位置情報とに基づいて、操舵信号の送信元の位置を推定する操舵信号発信位置推定部を備えた構成であり得る。
 本発明の別の態様に係る無人航空機監視システムは、以下のように構成される。
 すなわち、ターゲットの無人航空機の飛行を監視するための無人航空機監視システムであって、ターゲットの無人航空機の飛行を監視する監視者により操縦される監視用無人航空機と、監視者の操作を受け付けて、監視用無人航空機に対する操舵信号を無線により送信する操縦器とを備え、監視用無人航空機は、ターゲットの無人航空機から発信されるリモートIDを受信するキャプチャ装置を搭載したことを特徴とする。
 また、本発明に係る無人航空機監視システムは、無人航空機に対する操舵信号の到来方向を推定する操舵信号到来方向推定部を有する探索用無人航空機を更に備えた構成であり得る。
 本発明によれば、ターゲットUAVから発信されるリモートIDの受信が困難な状況であっても、安定的な無線通信環境を確保できるため、リモートIDをより確実に受信できるようになる。
キャプチャ機器によるUAV監視の問題点について説明する図である。 本発明の一実施形態に係るUAV監視システムの概要を示す図である。 一人の監視者が複数の調査対象のUAVからリモートIDを受信する場合の例を示す図である。 飛行計画に基づくリモートID確認方法の概略を示す図である。 空域の定義例を示す図である。 ターゲットUAVの操縦者位置を特定する方法について説明する図である。 探索用UAVの構成例を示す図である。
 本発明の一実施形態について、図面を参照して説明する。図2には、本発明の一実施形態に係るUAV監視システムの概要を示してある。本方式では、ターゲットUAV11のリモートIDを取得するために、本発明に係る監視用無人航空機の一例であるキャプチャ用UAV31を使用する。ここでは、ターゲットUAV11が、UAVを遠隔から識別するためのリモートIDを1秒に1回以上発信していることを想定している。リモートIDには、例えば、登録番号、製造番号、位置情報、速度情報、時刻情報、認証情報などの情報が含まれる。
 キャプチャ用UAV31は、UAVプロポ35(操縦器)から送信される操舵信号に従って飛行動作を行うUAV本体33に、リモートIDの受信機能を備えたキャプチャ機器32を搭載した構成となっている。監視者(例えば、航空局職員、重要施設管理者、警察官等)34は、UAVプロポ35の操作によりキャプチャ用UAV31を遠隔的に操縦することで、キャプチャ用UAV31をターゲットUAV11のリモートID到達エリア12の範囲内まで移動させ、ターゲットUAV11から発信されるリモートIDをキャプチャ機器32で受信する。キャプチャ機器32によって受信されたリモートIDは、不図示のメモリ(記憶部)に記憶される。
 その後、監視者34はキャプチャ用UAV31を手元に回収し、キャプチャ機器32で得られたリモートIDをメモリから読み出し、そのリモートIDをもとに国交省のUAV登録システムにアクセスすることで、ターゲットUAV11に関する情報を照会することができる。なお、ターゲットUAV11からリモートIDを受信できなかった場合は、違法なUAVである可能性が高いので、この情報を、周辺空域でUAV運航を計画している事業者に対する注意喚起等に活用することができる。
 このように、本方式では、キャプチャ機器32を搭載したキャプチャ用UAV31を利用することで、ターゲットUAV11とキャプチャ機器32の間の距離を短縮することができる。これにより、ターゲットUAV11とキャプチャ機器32の間の通信の見通し確保、及び、地上の干渉源からの離隔距離の拡大が可能となるため、ターゲットUAV11のリモートIDをより確実に取得することが可能になる。
 なお、上記の説明では、監視者34がUAVプロポ35を操作することでキャプチャ用UAV31を操縦しているが、ターゲットUAV11の位置情報を把握する手段がある場合には、その位置情報に基づいてキャプチャ用UAV31を自動運転させて、ターゲットUAV11のリモートIDを取得するようにしてもよい。すなわち、ターゲットUAV11に向かって自律飛行するようにキャプチャ用UAV31を制御して、ターゲットUAV11のリモートIDを自動的に取得させる。これにより、リモートIDの取得に係る監視者34の作業負担を軽減することが可能である。
 また、上記の説明では、キャプチャ用UAV31が、キャプチャ機器32によって受信されたリモートIDをメモリに記憶する構成となっているが、キャプチャ機器32によって受信されたリモートIDを無線送信する無線通信部を備えてもよい。この無線通信部としては、例えば、UAVで一般に利用される920MHz帯のLoRa、5.7GHz帯の無人移動体画像伝送システム、WiFi、LTE等の、上空での利用が可能な任意の無線方式を使用することができる。このような無線通信部を設けることで、監視者34は、キャプチャ用UAV31を手元に回収することなくターゲットUAV11のリモートIDを確認できるようになる。キャプチャ用UAV31が無線送信したターゲットUAV11のリモートIDを受信する機能は、UAVプロポ35が備えてもよいし、UAVプロポ35とは別の装置が備えてもよい。
 図3には、一人の監視者34が複数のターゲットUAV11-1~11-2からリモートIDを受信する場合の例を示してある。監視者34はまず、UAVプロポ35を操作して、キャプチャ用UAV31を第1のターゲットUAV11-1のリモートID到達エリア12-1の範囲内に移動させて、第1のターゲットUAV11-1のリモートIDを取得する。その後、監視者34は、UAVプロポ35を更に操作して、キャプチャ用UAV31を第2のターゲットUAV11-2のリモートID到達エリア12-2の範囲内に移動させて、第2のターゲットUAV11-2のリモートIDを取得する。
 このようにキャプチャ用UAV31を操作することで、一人の監視者34だけで複数のターゲットUAV11のリモートIDを取得することも可能である。この事例では、2機のターゲットUAV11-1~11-2のリモートIDを調査する想定としているが、キャプチャ用UAV31の操縦が可能な範囲内であれば、更に多くのターゲットUAV11からリモートIDを取得することも可能である。
(飛行計画に基づくリモートID確認方法)
 従来、UAV運航の許可・承認の条件とされていた「飛行計画の通報」は、今後は共通運航ルールとして、法令等で明確化される予定である。従って、今後すべてのUAVは、飛行の日時、経路、高度等を含む飛行計画を、国土交通省の「ドローン情報基盤システム」に登録する必要がある。従って、ドローン情報基盤システムにアクセスすることで、各UAVが、いつ、どの経路、高度を通過するかという情報を、容易に把握できることになる。
 図4には、このような背景を踏まえたリモートIDの確認方法の概念を示してある。図4では、横軸を時間、縦軸を空域として、UAVの飛行計画を示している。この図は、ある時間帯にどの空域にUAVが存在するかを表している。実運用時の空域設定について、図5を参照して説明しておく。図5に示すように、地上の空間を直方体ABCDEFGHで区切った範囲を一つの空域とし、それぞれの空域を、直方体底面の各頂点(A~D)の緯度・経度、直方体底面の高度Ht、空域の高さ(大きさ)Δhで規定することで、地球上のあらゆる地点をユニークな空域として指定することができる。なお、空域の各辺の長さについては、運行管理者が適切に設定する必要がある。
 ここで、例えば、2機のターゲットUAV11-1,11-2が存在し、それぞれが破線矢印13-1,13-2に示す通りに各空域を移動する飛行計画であるものとする。これら飛行計画を事前に把握することができれば、監視者34は、時間(t)の時点でキャプチャ用UAV31を空域(n)から飛び立たせ、時間(t+1)の時点で空域(n+1)に移動又は接近させることで、第2のターゲットUAV11-2のリモートIDを取得することができる。また、次の時間(t+2)においては、第1のターゲットUAV11-1は空域(n-1)を通過するので、監視者34は、キャプチャ用UAV31を空域(n-1)に移動又は接近させることで、第1のターゲットUAV11-1のリモートIDを取得することができる。
 その後、監視者34は、キャプチャ用UAV31を出発地点である空域(n)に帰還させる。これにより、キャプチャ用UAV31に搭載されたキャプチャ機器32で取得された2機分のリモートIDを確認することができる。また、各ターゲットUAV11-1,11-2から取得したリモートIDをもとに、ドローン情報基盤システムにアクセスして飛行計画と照らし合わせることで、各ターゲットUAV11-1,11-2が飛行計画の通りに飛行しているか否かを把握することも可能である。
(取得したリモートIDに問題がある場合の対応)
 監視者が取得したリモートIDを国土交通省の登録システムやドローン情報基盤システムに照会した結果、UAVが飛行計画と異なる飛行ルートを取っているなどの問題が認められた場合には、そのUAVの操縦者を特定できることが望ましい。また、UAVからリモートIDを取得できなかった場合も同様である。しかしながら、悪意のあるUAV運航を行う者を、登録システムやドローン情報基盤システムの情報から特定するのは困難である。
 そこで、上記のような場合の対応方法として、ターゲットUAV11の操縦者位置を特定する方法について、図6を参照して説明する。ここでは、監視者34の活動を補佐する監視補助者47が、ターゲットUAV11を操縦するためのUAVプロポ15から発信される操舵信号の到来方向を推定する機能を持つ探索用UAV41を利用して、ターゲットUAV11の操縦者14の位置を特定する場合について説明する。
 まず、監視者34が、UAVプロポ35によりキャプチャ用UAV31を操縦して、ターゲットUAV11のリモートIDの取得を試みる。その結果、取得したリモートIDに問題があった場合、又は、リモートIDを取得できなかった場合には、監視補助者47と連携して、ターゲットUAV11の操縦者14の位置を特定する作業を開始する。
 監視補助者47は、UAVプロポ48で探索用UAV41を操縦し、UAVプロポ15からターゲットUAV11に対して送信される操舵信号を傍受できる位置まで探索用UAV41を移動させることで、ターゲットUAV11の操縦者14の位置の特定を試みる。ここで、探索用UAV41は、図7に示すように、アレイアンテナ42と、操舵信号到来方向推定部43と、カメラ44と、操舵信号発信位置推定部45と、無線通信部46とを備えているものとする。
 アレイアンテナ42は、UAVを操縦するための操舵信号を受信する。アレイアンテナ42によって、自機(探索用UAV41)及び近隣を飛行する他のUAVの各々に対する操舵信号が受信されるが、操舵信号に含まれる送信元(UAVプロポ)の識別情報や送信先(UAV)の識別情報に基づいて、各操舵信号を区別することができる。
 操舵信号到来方向推定部43は、アレイアンテナ42で受信した操舵信号をもとに、例えば、MUSIC(MUltiple SIgnal. Classification)等の公知の到来波方向推定アルゴリズムにより、ターゲットUAV11に対する操舵信号の到来方向を推定する。例えば、自機に対する操舵信号以外の操舵信号を対象にして、その到来方向の推定を行う。
 カメラ44は、操舵信号到来方向推定部43による推定結果に基づいて、ターゲットUAV11に対する操舵信号の到来方向を撮影する。これにより、UAVプロポ15を操作する操縦者14を映した撮影画像を得ることができる。このとき、カメラ44は、撮影画像に映る操縦者14を自動認識して、拡大倍率や焦点距離を適切に制御することが好ましい。また、カメラ44は、拡大倍率や撮影画像の操縦者サイズ等に基づいて、操縦者14までの距離を算出してもよい。
 操舵信号発信位置推定部45は、操舵信号到来方向推定部43による推定結果と、カメラ44による撮影結果と、自機の現在の位置情報とに基づいて、ターゲットUAV11の操縦者14の位置(より正確には、ターゲットUAV11に対する操舵信号の発信元であるUAVプロポ15の位置)を推定する。具体的には、例えば、ターゲットUAV11の操舵信号の到来方向と、操縦者14までの距離とに基づいて、探索用UAV41に対するUAVプロポ15の相対的な位置を算出し、探索用UAV41の現在の位置情報を基準にして演算することで、UAVプロポ15の位置を算出する。なお、探索用UAV41の現在の位置情報は、例えば、GNSS(Global Navigation Satellite System;全球測位衛星システム)により取得することが可能である。なお、上述した操舵信号の発信位置の推定方式は一例に過ぎず、他の手法で操舵信号の発信位置を推定しても構わない。
 操舵信号発信位置推定部45による推定結果は、無線通信部46によって無線送信される。無線通信部46としては、例えば、UAVで一般に利用される920MHz帯のLoRa、5.7GHz帯の無人移動体画像伝送システム、WiFi、LTE等の、上空での利用が可能な任意の無線方式を使用することができる。また、操舵信号到来方向推定部43による推定結果や、カメラ44による撮影画像も、無線通信部46により無線送信しても構わない。
 探索用UAV41が無線送信したデータを受信する機能は、UAVプロポ48が備えてもよいし、UAVプロポ48とは別の装置が備えてもよい。監視補助者47は、探索用UAV41から受信したデータをもとに、ターゲットUAV11の操縦者14の位置に向けて探索用UAV41を移動させる。
 このような手法により、ターゲットUAV11の操縦者14の位置を確認した後、探索用UAV41を活用して、操縦者14やその周辺の様子を撮影して映像情報を保存すると共に、操縦者14の位置情報をもとにして車両による追跡等も可能になる。また、周辺を飛行する他のUAVの運航管理者等と情報を共有して注意喚起を行い、UAV運航の安全を確保することもできる。なお、探索用UAV41は、上記の処理に取得した各データを記憶するメモリ(記憶部)を備える構成とし、探索用UAV41を回収した監視補助者47がメモリから読み出せるようにしてもよい。
 なお、上記の説明では、キャプチャ用UAV31と探索用UAV41を別々に構成しているが、これらUAVの機能を1つの機体に統合してもよい。これにより、ターゲットUAV11の飛行の監視や操縦者14の追跡を、より少ない人数で実行できるようになる。
 以上のように、本例では、リモートIDの受信機能を備えたキャプチャ機器32をUAV本体33に搭載した構成のキャプチャ用UAV31を用いて、ターゲットUAV11のリモートIDを取得するように構成されている。このような構成によれば、ターゲットUAV11から発信されるリモートIDの受信が困難な状況であっても、ターゲットUAV11とキャプチャ機器32の間で安定的な無線通信環境を確保できるため、ターゲットUAV11のリモートIDをより確実に受信できるようになる。
 以上、本発明の実施形態について説明したが、これら実施形態は例示に過ぎず、本発明の技術的範囲を限定するものではない。本発明は、その他の様々な実施形態をとることが可能であると共に、本発明の要旨を逸脱しない範囲で、省略や置換等の種々の変形を行うことができる。これら実施形態及びその変形は、本明細書等に記載された発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 また、本発明は、上記の説明で挙げたような装置や、これら装置で構成されたシステムとして提供することが可能なだけでなく、これら装置により実行される方法、これら装置の機能をプロセッサにより実現させるためのプログラム、そのようなプログラムをコンピュータ読み取り可能に記憶する記憶媒体などとして提供することも可能である。
 この出願は、2022年2月18日に出願された日本出願特願2022-023958を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。
 本発明は、無人航空機の飛行を監視するための無人航空機監視システムに利用することが可能である。
 11,11-1,11-2:ターゲットUAV、 12,12-1,12-2:リモートID到達エリア、 13-1,13-2:飛行計画、 14:操縦者、 15:UAVプロポ、 21-1,21-2:監視者、 22:キャプチャ機器、 31:キャプチャ用UAV、 32:キャプチャ機器、 33:UAV本体、 34:監視者、 35:UAVプロポ、 41:探索用UAV、 42:アレイアンテナ、 43:操舵信号到来方向推定部、 44:カメラ、 45:操舵信号発信位置推定部、 46:無線通信部、 47:監視補助者、 48:UAVプロポ 

Claims (8)

  1.  無人航空機の飛行を監視する監視者によって動作が制御される監視用無人航空機であって、
     前記無人航空機から発信されるリモートIDを受信するキャプチャ装置を搭載したことを特徴とする監視用無人航空機。
  2.  請求項1に記載の監視用無人航空機において、
     前記キャプチャ装置により受信されたリモートIDを記憶する記憶部を有することを特徴とする監視用無人航空機。
  3.  請求項1に記載の監視用無人航空機において、
     前記キャプチャ装置により受信されたリモートIDを前記監視者に提供するために無線送信する無線通信部を有することを特徴とする監視用無人航空機。
  4.  請求項1に記載の監視用無人航空機において、
     前記無人航空機に対する操舵信号の到来方向を推定する操舵信号到来方向推定部を有することを特徴とする監視用無人航空機。
  5.  請求項4に記載の監視用無人航空機において、
     前記操舵信号到来方向推定部により推定された前記操舵信号の到来方向を撮影するカメラを有することを特徴とする監視用無人航空機。
  6.  請求項5に記載の監視用無人航空機において、
     前記操舵信号到来方向推定部による推定結果と、前記カメラによる撮影結果と、当該監視用無人航空機の位置情報とに基づいて、前記操舵信号の送信元の位置を推定する操舵信号発信位置推定部を有することを特徴とする監視用無人航空機。
  7.  無人航空機の飛行を監視するための無人航空機監視システムであって、
     前記無人航空機の飛行を監視する監視者により操縦される監視用無人航空機と、
     前記監視者の操作を受け付けて、前記監視用無人航空機に対する操舵信号を無線により送信する操縦器とを備え、
     前記監視用無人航空機は、前記無人航空機から発信されるリモートIDを受信するキャプチャ装置を搭載したことを特徴とする無人航空機監視システム。
  8.  請求項7に記載の無人航空機監視システムにおいて、
     前記無人航空機に対する操舵信号の到来方向を推定する操舵信号到来方向推定部を有する探索用無人航空機を更に備えたことを特徴とする無人航空機監視システム。 
PCT/JP2022/046858 2022-02-18 2022-12-20 監視用無人航空機及び無人航空機監視システム WO2023157459A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022023958A JP2023120856A (ja) 2022-02-18 2022-02-18 監視用無人航空機及び無人航空機監視システム
JP2022-023958 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023157459A1 true WO2023157459A1 (ja) 2023-08-24

Family

ID=87577957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046858 WO2023157459A1 (ja) 2022-02-18 2022-12-20 監視用無人航空機及び無人航空機監視システム

Country Status (2)

Country Link
JP (1) JP2023120856A (ja)
WO (1) WO2023157459A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170092138A1 (en) * 2015-09-30 2017-03-30 Alarm.Com Incorporated Drone detection systems
JP2019055774A (ja) * 2018-10-18 2019-04-11 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機を操作するシステム
US10866597B1 (en) * 2018-05-07 2020-12-15 Securus Technologies, Llc Drone detection and interception

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170092138A1 (en) * 2015-09-30 2017-03-30 Alarm.Com Incorporated Drone detection systems
US10866597B1 (en) * 2018-05-07 2020-12-15 Securus Technologies, Llc Drone detection and interception
JP2019055774A (ja) * 2018-10-18 2019-04-11 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機を操作するシステム

Also Published As

Publication number Publication date
JP2023120856A (ja) 2023-08-30

Similar Documents

Publication Publication Date Title
US11693402B2 (en) Flight management system for UAVs
CA2984021C (en) Systems and methods for remote distributed control of unmanned aircraft
JP5767731B1 (ja) 空撮映像配信システムおよび空撮映像配信方法
JP6379575B2 (ja) 無人航空機、無人航空機の制御方法、および、管制システム
US10354521B2 (en) Facilitating location positioning service through a UAV network
WO2017114496A1 (en) Facilitating location positioning service through a uav network
US10089889B2 (en) Unmanned aerial vehicle for situational awareness to first responders and alarm investigation
KR101688585B1 (ko) 무인항공기 관제시스템
US20210263537A1 (en) Uav systems, including autonomous uav operational containment systems, and associated systems, devices, and methods
WO2019089149A1 (en) Managing operation of a package delivery robotic vehicle
KR101701397B1 (ko) 무인 비행체를 이용한 차량 단속방법 및 시스템
US20190361434A1 (en) Surveillance system, unmanned flying object, and surveillance method
CN111819610A (zh) 用于无人驾驶飞行器和载人飞行器的空中态势信息和交通管理系统
CN109785670A (zh) 一种低空空域应急管控系统
AU2017425949B2 (en) Flight information collection system, wireless communication device, relay, flight information collection method
CN211167412U (zh) 具有反制设备的无人机以及无人机反制系统
WO2023157459A1 (ja) 監視用無人航空機及び無人航空機監視システム
JP6393157B2 (ja) 宇宙機の探索回収システム
KR101676485B1 (ko) 이동통신기지국을 이용한 소형비행체 감시 서비스 제공 시스템 및 방법
JP2004037119A (ja) 航空写真取得システム、航空写真取得方法
WO2023189534A1 (ja) 無人移動体、情報処理方法及びコンピュータプログラム
JP2019059325A (ja) 無人飛行体及び制御システム
JP2021131598A (ja) 無人航空機制御システム及び監視制御装置
US20220207871A1 (en) Digital License Tag
JP2021015427A (ja) 飛行装置、および作業車両監視システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927344

Country of ref document: EP

Kind code of ref document: A1