WO2023155465A1 - 泳池清洁机器人的路径规划及清洁方法、装置及设备 - Google Patents

泳池清洁机器人的路径规划及清洁方法、装置及设备 Download PDF

Info

Publication number
WO2023155465A1
WO2023155465A1 PCT/CN2022/127062 CN2022127062W WO2023155465A1 WO 2023155465 A1 WO2023155465 A1 WO 2023155465A1 CN 2022127062 W CN2022127062 W CN 2022127062W WO 2023155465 A1 WO2023155465 A1 WO 2023155465A1
Authority
WO
WIPO (PCT)
Prior art keywords
swimming pool
cleaning robot
pool cleaning
current
yaw angle
Prior art date
Application number
PCT/CN2022/127062
Other languages
English (en)
French (fr)
Inventor
丁忠超
Original Assignee
智橙动力(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智橙动力(北京)科技有限公司 filed Critical 智橙动力(北京)科技有限公司
Publication of WO2023155465A1 publication Critical patent/WO2023155465A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0206Control of position or course in two dimensions specially adapted to water vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/14Parts, details or accessories not otherwise provided for
    • E04H4/16Parts, details or accessories not otherwise provided for specially adapted for cleaning
    • E04H4/1654Self-propelled cleaners
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Definitions

  • the present application relates to the technical field of cleaning robots, in particular to a path planning and cleaning method, device and equipment for a swimming pool cleaning robot.
  • the swimming pool cleaning robot is a cleaning robot that can perform cleaning tasks underwater. It can help users clean swimming pools, improve swimming pool cleaning efficiency and reduce swimming pool cleaning costs.
  • the user places the swimming pool cleaning robot in the swimming pool, and the swimming pool cleaning robot sinks to the bottom of the swimming pool by its own gravity, and starts to perform cleaning tasks from the bottom of the pool.
  • swimming pool cleaning robots can perform cleaning tasks while moving in the pool bottom according to the planned path, thereby improving cleaning coverage, reducing missed cleaning areas, and improving cleaning efficiency.
  • the yaw angle of the swimming pool cleaning robot is likely to change dynamically.
  • Multiple planning paths with relatively consistent regularity are not conducive to improving the cleaning coverage, reducing the areas that are missed to be cleaned, and not conducive to improving the cleaning efficiency.
  • Various aspects of the present application provide a path planning and cleaning method, device, and equipment for a swimming pool cleaning robot, which are used to make it possible to obtain path planning graphics with better regularity, which can help swimming pool cleaning Robots improve cleaning coverage, reduce areas that are missed, and improve cleaning efficiency.
  • the present application provides a path planning method for a swimming pool cleaning robot, including: adjusting the current posture of the swimming pool cleaning robot to determine the current direction of travel; Move to generate a planned path; according to multiple planned paths corresponding to each current travel direction, generate a path planning graphic covering the operation area at the bottom of the pool.
  • the embodiment of the present application also provides a cleaning method for a swimming pool cleaning robot, including: performing path planning according to a path planning method of the swimming pool cleaning robot during the cleaning task of the swimming pool bottom.
  • the embodiment of the present application also provides a path planning device for a swimming pool cleaning robot, including: an adjustment module, used to adjust the current posture of the swimming pool cleaning robot to determine the current direction of travel; a control module, used to control the swimming pool cleaning robot to follow the current direction of travel Move between the boundaries defining the pool bottom operation area to generate a planned path; the generation module is used to generate a path planning graph covering the pool bottom operation area according to multiple planned paths corresponding to each current traveling direction.
  • the embodiment of the present application also provides an electronic device, including: a processor; and a memory storing a program; wherein, the program includes instructions, and when the instructions are executed by the processor, the processor executes the path planning method according to the swimming pool cleaning robot or executes the pool cleaning robot. The cleaning method of the cleaning robot.
  • the embodiment of the present application also provides a computer-readable storage medium storing computer instructions, wherein the computer instructions are used to make the computer execute the path planning method of the swimming pool cleaning robot or execute the cleaning method of the swimming pool cleaning robot.
  • the body posture of the swimming pool cleaning robot is adjusted to control the traveling direction of the swimming pool cleaning robot, and then the planned paths of the swimming pool cleaning robot in the pool bottom operation area are controlled to be substantially parallel to each other. It makes it possible to obtain a path planning graph with better regularity, in particular, it makes it possible to obtain a substantially parallel slash-like path planning graph.
  • the path planning graphics with better regularity can help the swimming pool cleaning robot to increase the cleaning coverage, reduce the areas that are missed to be cleaned, and improve the cleaning efficiency.
  • Figure 1 shows a schematic diagram of the overall structure of a swimming pool cleaning robot provided by an embodiment of the present application
  • Figure 2 shows an exploded schematic diagram of a swimming pool cleaning robot
  • Fig. 3 shows the driving wheel and the driven wheel in the driving assembly
  • Fig. 4 shows the structural representation of driving wheel
  • FIG. 5 is a flow chart of a path planning method for a swimming pool cleaning robot provided in an embodiment of the present application
  • Fig. 6 is a relationship diagram between the traveling direction and the yaw angle of the swimming pool cleaning robot
  • Figure 7a is a scene diagram of a swimming pool cleaning robot performing path planning in the pool bottom operation area
  • Figure 7b is a path planning graph obtained by the swimming pool cleaning robot performing path planning according to Figure 7a;
  • Figure 8a is another scene diagram of the path planning of the swimming pool cleaning robot in the pool bottom operation area
  • Fig. 8b is a path planning graph obtained by the path planning of the swimming pool cleaning robot according to Fig. 8a;
  • Fig. 9a is another scene diagram of the path planning of the swimming pool cleaning robot in the pool bottom operation area
  • Figure 9b is a path planning graph obtained by the swimming pool cleaning robot performing path planning according to Figure 9a;
  • Figure 10a is another scene diagram of the path planning of the swimming pool cleaning robot in the pool bottom operation area
  • Figure 10b is a path planning graph obtained by the swimming pool cleaning robot performing path planning according to Figure 10a;
  • Figure 11a is another scene diagram of the path planning of the swimming pool cleaning robot in the pool bottom operation area
  • Figure 11b is a path planning graph obtained by the swimming pool cleaning robot performing path planning according to Figure 11a;
  • Fig. 12 is a schematic structural diagram of a path planning device for a swimming pool cleaning robot provided in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the swimming pool cleaning robot provided in the embodiment of the present application is used to clean a swimming pool.
  • the swimming pool cleaning robot sinks to the bottom of the swimming pool by its own gravity and starts to perform cleaning tasks from the bottom of the pool.
  • the swimming pool cleaning robot relies on its own
  • the power walks on the bottom of the swimming pool and absorbs impurities from the bottom of the swimming pool.
  • the walls of the swimming pool can also be cleaned.
  • swimming pool cleaning robots can perform cleaning tasks while moving in the pool bottom according to the planned path, thereby improving cleaning coverage, reducing missed cleaning areas, and improving cleaning efficiency.
  • the yaw angle of the swimming pool cleaning robot is likely to change dynamically.
  • the shape of the boundary of the diverse swimming pool will change the yaw angle of the pool cleaning robot.
  • the yaw angle of the swimming pool cleaning robot at the arc-shaped boundary is different from the yaw angle at the straight-line boundary.
  • Another example is that when the swimming pool cleaning robot is started, the power is too large to change the yaw angle of the swimming pool cleaning robot.
  • the center of gravity of the swimming pool cleaning robot may shift due to the complexity of the underwater environment, causing the yaw angle of the swimming pool cleaning robot to change during its travel.
  • the factors that cause the yaw angle of the swimming pool cleaning robot to change are not limited to the factors listed above. Different yaw angles correspond to different regular planning paths, and it is difficult to ensure that multiple planning paths with relatively consistent regularity are planned in the entire pool bottom area, which is not conducive to improving the cleaning coverage rate, is not conducive to reducing the missed cleaning areas, and is not conducive to cleaning. Helps improve cleaning efficiency.
  • the embodiments of the present application provide a path planning and cleaning method, device, equipment and medium for a swimming pool cleaning robot.
  • the body posture of the swimming pool cleaning robot is adjusted to control the traveling direction of the swimming pool cleaning robot, and then the planned paths of the swimming pool cleaning robot in the pool bottom operation area are controlled to be substantially parallel to each other. It makes it possible to obtain a path planning graph with better regularity, in particular, it makes it possible to obtain a substantially parallel slash-like path planning graph.
  • the path planning graphics with better regularity can help the swimming pool cleaning robot to increase the cleaning coverage, reduce the areas that are missed to be cleaned, and improve the cleaning efficiency.
  • FIG. 1 shows a schematic diagram of the overall structure of a swimming pool cleaning robot provided by an embodiment of the present application
  • FIG. 2 shows an exploded schematic diagram of a swimming pool cleaning robot.
  • the swimming pool cleaning robot provided in the embodiment of the present application generally includes a driving system 20 , a sealing structure 13 and a cleaning mechanism 30 .
  • the cleaning housing 11 can be divided into an upper shell 111 and a chassis 112 , wherein the upper shell 111 is detachably connected to the chassis 112 .
  • the bottom plate 112 is provided with a water inlet 112 a for water and/or pollutants in the swimming pool to enter the interior of the cleaning housing 11 .
  • the upper shell 111 is provided with a water outlet 111a for water to be discharged.
  • the filter structure 12 is arranged between the water inlet 112a and the water outlet 111a, and is used to filter the water, so that the pollutants carried in the water are separated from the water, and the filtered pollutants are retained in the cleaning housing 11, and the filtered water It is discharged from the water outlet 111a.
  • the upper case 111 includes an upper case main body and a movable flip cover 113 , the upper case main body is connected with the chassis 112 , the movable flip cover 113 is rotatably connected to the upper case main body, and can be turned over relative to the upper case main body.
  • the movable flip cover 113 is opened, an opening is exposed, so that the filter structure 12 can be taken out from the cleaning housing 11 for easy cleaning, and the inside of the cleaning housing 11 can also be cleaned or maintained through the opening.
  • the movable cover 113 can cover the opening when fastened.
  • the sealing structure 13 at least includes a sealing housing, a water pump motor 132 and an impeller 133 .
  • the sealed housing is arranged in the cleaning housing 11 and is used for installing the water pump motor 132 and the like.
  • the water pump motor 132 is used for sucking the water in the swimming pool into the swimming pool cleaning robot for filtering and discharging.
  • the water pump motor 132 drives the impeller 133 to rotate, thereby sucking water into the swimming pool cleaning robot for filtering and discharging.
  • the sealed casing needs to ensure airtightness and waterproofness.
  • the embodiment of the present application does not limit its specific structure, as long as It can meet the waterproof requirements.
  • the sealed housing includes a first housing and a second housing, the first housing and the second housing are fixedly connected, and a waterproof sealing ring is provided at the joint; or the first housing and the second housing can adopt In the clamshell connection mode, the connection is sealed, such as by a waterproof sealing ring.
  • the water pump motor 132 is installed in the sealed housing, and at least part of the output shaft of the water pump motor 132 passes through the sealed housing.
  • the impeller 133 is arranged on the part where the output shaft of the water pump motor 132 protrudes from the sealing housing. When the water pump motor 132 is powered on and rotates, its output shaft rotates, and then drives the impeller 133 to rotate. Due to the rotation of the impeller 133, the water in the cleaning housing 11 is disturbed to make it flow to the water outlet 111a.
  • the swimming pool cleaning robot can move in the swimming pool driven by the driving system 20, and clean the water during the moving process.
  • the driving system 20 is connected to the cleaning housing 11 to drive the entire swimming pool cleaning robot to move.
  • the drive system 20 includes two sets of drive assemblies, the cleaning housing 11 is located between the two sets of drive assemblies, and the two sets of drive assemblies are independent of each other.
  • the swimming pool cleaning robot can be moved forward or backward in a straight line.
  • the swimming pool cleaning robot can be turned. In this way, the trajectories that the swimming pool cleaning robot can move are richer, so as to meet more complicated cleaning requirements.
  • the structures of the two groups of driving assemblies are similar, so one of them will be used to describe the structure in detail, but it should be known that in other embodiments, the structures of the two groups of driving assemblies can be different, as long as it can Meet mobile needs.
  • FIG. 3 shows the driving wheel and the driven wheel in the driving assembly
  • FIG. 4 shows a schematic structural view of the driving wheel.
  • the driving component includes a driving motor, a driving wheel 22, a driven wheel 23, and crawler belts.
  • the driving motor is arranged in the aforementioned sealed casing to achieve waterproofing.
  • the output shaft of the driving motor passes through the sealed housing and the cleaning housing 11 so as to cooperate with the driving wheel 22 .
  • the driving wheel 22 includes an inner outer ring gear 221 and an outer outer ring gear 222 , the inner outer ring gear 221 and the outer outer ring gear 222 are rigidly connected and rotate together.
  • a drive gear 24 is connected to the output shaft of the drive motor, and the drive gear 24 is externally meshed with the inner outer ring gear 221 to realize transmission.
  • the track is sheathed on the outer outer ring gear 222 and the driven wheel 23 .
  • the driving gear 24 is driven to rotate, so that the inner outer ring gear 221 meshing with it rotates. Since the inner outer ring gear 221 and the outer outer ring gear 222 are rigidly connected, the outer outer ring gear 221 is rigidly connected.
  • the outer ring gear 222 will rotate together, and then the track and the driven wheel 23 will rotate, so that the whole swimming pool cleaning robot will move.
  • the swimming pool cleaning robot is provided with a cleaning mechanism 30 .
  • the cleaning mechanism 30 is used to clean the pool bottom or the surface of the wall during the movement of the swimming pool cleaning robot.
  • the cleaning mechanism 30 includes a roller brush.
  • the roller brush is rotatably arranged on the cleaning casing 11 by being sleeved on the roller brush shaft;
  • the transition gear 02 is arranged on the cleaning casing 11, and is connected with the roller brush gear 01 on the roller brush shaft and the inner layer of the driving wheel 22
  • the outer ring gears 221 are respectively externally meshed. In this way, when the driving wheel 22 rotates, it can naturally drive the roller brush to rotate, so that it can clean the pool bottom or the wall, and sweep the adhered pollutants to the water inlet 112a, so that the swimming pool cleaning robot can collect the pollutants.
  • the swimming pool cleaning robot in the embodiment of the present application is equipped with a power supply battery, which supplies power to the water pump motor 132 and the driving motor.
  • the power supply battery is arranged in the cleaning casing 11.
  • the power supply battery needs to be arranged in the sealed casing. Since the power supply battery is set in the sealed casing, it cannot be taken out and loaded frequently. Therefore, a charging interface assembly needs to be provided on the swimming pool cleaning robot to facilitate the connection of the power supply battery to an external power source to realize charging of the power supply battery.
  • the swimming pool cleaning robot When the swimming pool cleaning robot is working, it drives the entire swimming pool cleaning robot to walk on the bottom of the swimming pool through the drive system. And in the process of walking, the impurities at the bottom of the swimming pool are absorbed into the swimming pool cleaning robot by the water pump motor for filtration. Since the water inlet corresponding to the pump motor is located below the swimming pool cleaning robot, and the water outlet is located above the swimming pool cleaning robot, therefore, when the water pump motor is working, the water outlet sprays water in a direction away from the bottom of the swimming pool, and the sprayed water will impact the swimming pool. The cleaning robot generates pressure against the direction of the water spray, which, due to its downward direction, is able to press the pool cleaning robot against the pool floor.
  • FIG. 5 is a flow chart of a path planning method for a swimming pool cleaning robot provided in an embodiment of the present application. Referring to Figure 5, the method may include the following steps:
  • the yaw angle refers to the angle that the machine rotates around the Y axis.
  • the yaw angle is the angle between the direction of travel of the machine and the horizontal axis.
  • the horizontal axis X of the ground coordinate system o-XY is along the horizontal direction
  • the vertical axis Y is along the vertical direction
  • the vertical direction is vertical and horizontal
  • the angle ⁇ between the machine's traveling direction V and the horizontal axis X is is the yaw angle.
  • the yaw angle of the machine directly affects the direction of travel of the machine, and different yaw angles lead to different travel directions, which in turn lead to different movement trajectories of the machine.
  • the yaw angle of the swimming pool cleaning robot will change during the movement process.
  • the uncontrolled yaw angle will lead to the planning of each path.
  • the planning path is chaotic and has poor regularity.
  • the planning paths planned by the swimming pool cleaning robot without yaw angle control are chaotic and poorly regular.
  • the utilization value of the path planning graph composed of disordered and poorly regular planning paths is poor, for example, it is difficult to be used to assist the swimming pool cleaning robot to perform cleaning tasks.
  • the swimming pool cleaning robot controls the traveling direction by adjusting the body posture of the swimming pool cleaning robot, and then controls the swimming pool cleaning robot to work on the pool bottom.
  • the moving trajectory (that is, the planned path) in the area makes it possible to obtain a path planning graph with better regularity.
  • the pool bottom operation area is defined by the boundary around the pool bottom.
  • the boundary can be the real boundary of the swimming pool, or a virtual boundary detected by the boundary detection capability, without limitation.
  • Pool cleaning robots are equipped with boundary detection capabilities, able to detect the boundary lines that define the working area on the pool bottom.
  • the swimming pool cleaning robot can use collision sensors, Global Positioning System (Global Positioning System, GPS), ultrasonic, laser radar, visual sensors and other sensors for boundary detection.
  • boundary detection please refer to related technologies.
  • the swimming pool cleaning robot when the swimming pool cleaning robot executes path planning in the pool bottom operation area of the swimming pool, it performs multiple round-trip movements between the two boundaries defining the pool bottom operation area until the moving track covers the entire pool bottom operation area.
  • one of the two boundaries that performs reciprocating motion during path planning is called the first side
  • the other boundary is called the second side
  • the first side is set opposite to the second side.
  • the moving trajectory of the swimming pool cleaning robot when moving from the first side to the second side is used as a planned path
  • the moving trajectory when moving from the second side to the first side is used as a planned path.
  • the current body posture of the swimming pool cleaning robot can be adjusted in the odd-numbered columns, even-numbered columns and designated columns of the path planning graph to determine the current traveling direction, but it is not limited thereto.
  • the path planning graph is a graph composed of multiple planning paths, which are arranged in the order of the appearance time of the planning paths from early to late, and the path planning graph includes the first planning path, the second planning path...the nth planning paths, n is a positive integer.
  • the planned paths with odd numbers are also odd columns, for example, the first planned path, the third planned path, and the fifth planned path.
  • Planned paths with even numbers are even columns, for example, the second planned path, the fourth planned path, and the sixth planned path.
  • the specified column can be a planning path with an odd number or a planning path with an even number.
  • the specified columns can be all or part of the columns in the path planning graph, without limitation.
  • adjusting the current body attitude of the swimming pool cleaning robot refers to adjusting the current yaw angle of the swimming pool cleaning robot to a preset yaw angle.
  • the preset yaw angle can be flexibly set according to a large amount of test data, and the parameter value written in the memory of the swimming pool cleaning robot in advance, or it can be actually generated during the cleaning operation of the swimming pool cleaning robot in the pool bottom operation area.
  • the parameter value of there is no restriction on this.
  • the planned paths adjusted by the attitude of the fuselage correspond to the same preset yaw angle, and the planned paths adjusted by the attitude of the fuselage are substantially parallel to each other, so that the obtained path planning graphics have better Regularity.
  • the operation of adjusting the body attitude of the swimming pool cleaning robot can be started at the initial stage of path planning graph construction. For example, when planning the first planned path or the second planned path, the attitude of the body of the swimming pool cleaning robot is adjusted.
  • the operation of adjusting the body posture of the swimming pool cleaning robot at the initial stage of constructing the path planning graph and the operation of adjusting the body posture of the swimming pool cleaning robot after the initial stage of construction can be abandoned.
  • the initial stage of construction can be flexibly set according to actual application requirements.
  • the initial stage of construction refers to the stage in which multiple planned paths with the earliest appearance time are planned in the path planning graph, or the initial stage of construction refers to the swimming pool cleaning robot The initial period of time to perform path planning operations.
  • the adjustment operation of the current fuselage attitude may not start immediately , it is necessary to wait to read the preset yaw angle actually generated during the cleaning operation of the swimming pool cleaning robot in the pool bottom operation area before starting the adjustment operation of the current fuselage attitude.
  • the first planned path or the second planned path because the preset yaw angle has not been read successfully, at this time, the first planned path or the second planned path is based on the current actual generation of the swimming pool cleaning robot.
  • the yaw angle is planned.
  • the swimming pool cleaning robot After planning the first planned path or the second planned path, the swimming pool cleaning robot successfully reads the actual yaw angle when planning the first planned path or the second planned path, and uses the read The actual yaw angle is used as the preset yaw angle. When planning the first planned path or the planned paths after the second planned path, adjust the swimming pool cleaning robot according to the read actually generated yaw angle. The operation of the fuselage attitude.
  • the source of the preset yaw angle is different, and the yaw angle adjustment operation may be different. If the preset yaw angle comes from the pre-written parameter value in the memory, the yaw angle adjustment operation can be started at the initial stage of path planning construction. If the preset yaw angle is derived from the actual yaw angle generated by the pool cleaning robot, the yaw angle adjustment operation is delayed slightly, possibly after the initial phase of path planning construction.
  • the preset yaw angle may be a parameter value actually generated when the swimming pool cleaning robot performs cleaning operations in the pool bottom operation area.
  • the yaw angle actually generated when the first planned path is executed is obtained as the yaw angle for the subsequent operation of adjusting the fuselage attitude of the swimming pool cleaning robot, so that the yaw angle adjustment can be performed starting from the second planned path operate.
  • Method 1 When the swimming pool robot sinks into the pool bottom operation area for the first time, control the swimming pool cleaning robot to move backwards and continuously detect whether it collides with the rear boundary.
  • the rear boundary is the first side and the second side set relatively in the pool bottom operation area. Any one of the edges; if so, read the current yaw angle of the swimming pool cleaning robot as the preset yaw angle.
  • Method 2 When the swimming pool robot sinks into the pool bottom operation area for the first time, control the swimming pool cleaning robot to move backward and continuously detect whether it collides with the rear boundary.
  • the rear boundary is the first side and the second side set relatively in the pool bottom operation area. any one of the edges; if so, control the swimming pool cleaning robot to move forward for a second preset distance, and read the current yaw angle of the swimming pool cleaning robot as the preset yaw angle.
  • the second preset distance is flexibly set according to a large amount of test data.
  • Method 3 After detecting that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area, control the swimming pool cleaning robot to turn around, control the swimming pool cleaning robot to move backward, and continuously detect whether it collides with the rear boundary, which is the bottom of the pool Either boundary of the first side and the second side relatively set in the work area; if so, read the current yaw angle of the swimming pool cleaning robot as the preset yaw angle.
  • This method of obtaining the preset yaw angle can be carried out at the initial stage of construction.
  • Method 4 After detecting that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area, control the swimming pool cleaning robot to turn around, control the swimming pool cleaning robot to move backward, and continuously detect whether it collides with the rear boundary, which is the bottom of the pool Either boundary of the first side and the second side set relatively in the work area; if so, control the swimming pool cleaning robot to move forward and move the second preset distance, and read the current yaw angle of the swimming pool cleaning robot as the preset yaw angle .
  • the second preset distance is flexibly set according to a large amount of test data. This method of obtaining the preset yaw angle can be carried out at the initial stage of construction.
  • the rear boundary refers to the boundary towards which the tail of the swimming pool cleaning robot is facing when the swimming pool cleaning robot moves backward.
  • the front boundary refers to the boundary that the head of the swimming pool cleaning robot faces when the swimming pool cleaning robot moves forward, that is, the front boundary is opposite to the rear boundary.
  • the swimming pool cleaning robot is controlled to move backward, and continuously detects whether it collides with the rear boundary. If it collides with the rear boundary, it means that the swimming pool cleaning robot has successfully patrolled. If there is no collision with the rear boundary, it means that the swimming pool cleaning robot has not successfully patrolled the edge.
  • the current yaw angle of the swimming pool cleaning robot can be read as the preset yaw angle, or the swimming pool cleaning robot can be read after the swimming pool cleaning robot moves forward from the successful patrol position for a second preset distance The current yaw angle of is used as the preset yaw angle.
  • the second preset distance is a part of the distance between the two boundaries, or the entire distance between the two boundaries, that is, when the swimming pool cleaning robot moves from one boundary to another After that, read the current yaw angle of the pool cleaning robot as the preset yaw angle.
  • controlling the swimming pool cleaning robot to move forward for a second preset distance, and reading the current yaw angle of the swimming pool cleaning robot as the preset yaw angle includes: controlling the swimming pool cleaning robot to move forward for a second preset distance , read the current yaw angle of the swimming pool cleaning robot when reaching the front boundary of the pool bottom operation area as the preset yaw angle, the second preset distance is the distance from the rear boundary to the front boundary, and the rear boundary is set opposite to the front boundary. For example, when the rear boundary is the first side, the front boundary is the second side, and when the rear boundary is the second side, the front boundary is the first side.
  • the above is how to obtain the preset yaw angle for adjusting the current fuselage attitude of the swimming pool cleaning robot, including the yaw angle that can be flexibly set according to a large amount of test data, and the parameter value written in the memory of the swimming pool cleaning robot in advance. Included may be actual parameter values generated during the cleaning operation performed by the swimming pool cleaning robot in the pool bottom operation area, without limitation. Further, in this embodiment, according to the different modes of adjusting the attitude of the fuselage, it can be distinguished: some planned paths do not need to adjust the attitude of the fuselage, and some planned paths need to adjust the attitude of the fuselage. Of course, the yaw angle of the planned path that does not need to adjust the attitude of the fuselage is relatively random and uncontrollable.
  • the adjustment mode when the adjustment mode is to adjust the attitude of the fuselage on the odd-numbered columns of the path planning graphic, the even-numbered columns in the path planning graphic do not need to adjust the attitude of the fuselage.
  • the adjustment mode when the adjustment mode is to adjust the attitude of the fuselage on the even-numbered columns of the path planning graphic, the odd-numbered columns in the path planning graphic do not need to adjust the attitude of the fuselage.
  • the adjustment mode when the adjustment mode is to adjust the posture of the fuselage on the specified column of the path planning graph, other columns in the path planning graph that do not belong to the specified column do not need to adjust the posture of the fuselage.
  • the specified columns can be all columns or some columns.
  • the specified column may be a certain planned path in each area, so that the yaw angle is adjusted for a planned path in each area.
  • the route planning graph has n columns, n is a positive integer, the route planning graph is divided into m regions, m is a positive integer, and each region includes n/m planned routes.
  • the yaw angle is adjusted for the ith planned path in each area, where i is any positive integer from 1 to n/m, that is, the yaw angle is adjusted every n/m planned paths.
  • the adjustment can be made before moving from one boundary to another boundary, or after moving a certain distance from one boundary to another boundary. Therefore, adjusting the current fuselage attitude of the swimming pool cleaning robot to determine the current direction of travel can be done but not limited to the following methods:
  • Method 1 After detecting that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area, control the swimming pool cleaning robot to turn around, and read the preset yaw angle for the pool cleaning robot to adjust the current fuselage attitude, preset yaw angle It is the yaw angle that is flexibly set based on a large amount of test data described above, and the parameter value written in the memory of the swimming pool cleaning robot in advance, or it can be actually generated during the cleaning operation of the swimming pool cleaning robot in the pool bottom operation area. The parameter value will not be described in detail below.
  • the front boundary is any boundary between the first side and the second side relatively set in the pool bottom operation area; adjust the current position of the swimming pool cleaning robot according to the preset yaw angle fuselage attitude, and determine the current direction of travel based on the adjusted fuselage attitude.
  • the swimming pool cleaning robot after the swimming pool cleaning robot turns around, due to many factors such as itself or the environment, the swimming pool cleaning robot will experience unpredictable deviations.
  • the fuselage attitude of the cleaning robot is uncontrollable during the start-up phase. Therefore, adjusting the body attitude immediately after the swimming pool cleaning robot turns around may not achieve the expected effect, and the situation of uncontrollable body attitude may still occur. Therefore, after the swimming pool cleaning robot turns around and successfully retreats to patrol the edge, and moves a certain distance, it can adjust the posture of the fuselage. For this reason, mode 2 can also be used to adjust the attitude of the fuselage.
  • Method 2 After detecting that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area, control the swimming pool cleaning robot to turn around and move forward for the first preset distance.
  • the front boundary is the relatively set first side and Any boundary on the second side; in the case of controlling the swimming pool cleaning robot to move forward and moving the first preset distance, read the preset yaw angle for the swimming pool cleaning robot to adjust the current fuselage posture, and adjust according to the preset yaw angle The current fuselage attitude of the swimming pool cleaning robot, based on the adjusted fuselage attitude to determine the current direction of travel.
  • the first preset distance is flexibly set according to the actual situation, and the first preset distance can filter out the deviation caused by the pool cleaning robot turning around and restarting to move forward.
  • the first preset distance may be the distance moved by the swimming pool cleaning robot after turning around.
  • the swimming pool cleaning robot advances the first preset distance
  • the swimming pool cleaning robot reads the preset yaw angle for swimming pool cleaning while maintaining the moving state.
  • the robot adjusts the current attitude of the fuselage and adjusts the attitude of the fuselage, that is to say, adjusts the fuselage while the machine is in a non-stop state.
  • the swimming pool can be adjusted by reading the pre-written preset yaw angle or reading the preset yaw angle determined after the swimming pool cleaning robot sinks to the pool bottom operation area for the first time and successfully reverses the edge.
  • the current fuselage posture of the cleaning robot is used to determine the current direction of travel; the preset yaw angle determined after the first back and forth patrol is successful, specifically, after the swimming pool cleaning robot has just fallen into the water and sank to the bottom of the pool, it moves backward and Collision with the rear boundary, at this time read the current yaw angle of the swimming pool cleaning robot as the preset yaw angle, or control the swimming pool cleaning robot to move forward and move the second preset distance, at this time read the current yaw angle of the swimming pool cleaning robot angle as the preset yaw angle.
  • Method 3 First, after detecting that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area, control the swimming pool cleaning robot to turn around. ; Furthermore, it can control the swimming pool cleaning robot to move backwards, and continuously detect whether it collides with the front boundary; if so, read the preset yaw angle for the swimming pool cleaning robot to adjust the current fuselage posture; When moving forward for the third preset distance, read the preset yaw angle for the swimming pool cleaning robot to adjust the current fuselage attitude; adjust the current fuselage attitude of the swimming pool cleaning robot according to the preset yaw angle, and based on the adjusted fuselage The attitude determines the current direction of travel.
  • the third preset distance is the distance that the swimming pool cleaning robot moves after turning around.
  • the swimming pool cleaning robot When the swimming pool cleaning robot advances the third preset distance, the swimming pool cleaning robot reads the preset yaw angle while maintaining the moving state for the swimming pool cleaning robot Adjust the current attitude of the fuselage and adjust the attitude of the fuselage, that is to say, adjust the fuselage while the machine is in a non-stop state.
  • the swimming pool cleaning robot is controlled to continue to retreat to continue to advance towards the front boundary before the U-turn, and after another collision with the front boundary, due to the swimming pool cleaning robot's The head of the machine is far away from the front boundary that was facing before the U-turn.
  • the swimming pool cleaning robot can be controlled to move to the boundary opposite to the front boundary that was facing before the U-turn, so as to plan a new planning path.
  • the swimming pool cleaning robot Before planning a new planning path, the swimming pool cleaning robot can adjust the attitude of the fuselage according to the preset yaw angle at the beginning of the front boundary that the swimming pool cleaning robot is facing before turning back and patrolling, and start planning a new path after the attitude of the fuselage is adjusted. planning path.
  • the swimming pool cleaning robot has unpredictable deviation due to many factors such as itself or the environment, for example, the starting force of the swimming pool cleaning robot is large or the friction at the bottom of the pool is large, so that the swimming pool cleaning robot is in the starting stage.
  • the attitude of the fuselage is uncontrollable. Therefore, when the swimming pool cleaning robot retreats and patrols to the front boundary it is facing before turning around, it may not achieve the desired effect to immediately adjust the fuselage attitude, and the situation of uncontrollable fuselage attitude may still occur.
  • the pool cleaning robot moves forward and collides with the front boundary, turns around and moves backward and patrols again to the front boundary it was facing before the U-turn, and continues from the position where it patrolled again to the front boundary it was facing before the U-turn Move forward a third preset distance, and then adjust the attitude of the fuselage after moving the third preset distance.
  • Method 4 After detecting that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area, control the swimming pool cleaning robot to turn around, control the swimming pool cleaning robot to move backward, and continuously detect whether it collides with the front boundary; if so, read the preset The yaw angle is used for the swimming pool cleaning robot to adjust the current fuselage posture; the first preset distance is moved forward, and the front boundary is any one of the first side and the second side set relatively in the pool bottom operation area; when controlling the swimming pool cleaning After the robot moves forward for the first preset distance, adjust the current fuselage attitude of the swimming pool cleaning robot according to the preset yaw angle, and determine the current traveling direction based on the adjusted fuselage attitude.
  • the pool cleaning robot reads the preset yaw angle when it collides with the front boundary, and then advances a certain distance from the collision position of the front boundary and then based on the previously read preset yaw angle Angle to adjust the attitude of the fuselage.
  • Method 5 After detecting that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area, control the swimming pool cleaning robot to turn around, control the swimming pool cleaning robot to move backward, and continuously detect whether it collides with the front boundary; Set the distance, the front boundary is any one of the first side and the second side set relatively in the pool bottom operation area; and when the swimming pool cleaning robot is controlled to move forward to move the first preset distance, the preset yaw angle is read, and Adjust the current fuselage attitude of the swimming pool cleaning robot according to the preset yaw angle, and determine the current traveling direction based on the adjusted fuselage attitude.
  • the swimming pool cleaning robot does not read the preset yaw angle when it collides with the front boundary, but reads the preset yaw angle after advancing a certain distance from the collision position of the front boundary, And adjust the attitude of the fuselage based on the preset yaw angle read in real time.
  • FIG. 8 a to FIG. 11 b are taken as examples for description.
  • the path planning graphs corresponding to Fig. 8a to Fig. 11b correspond to the scene where the fuselage attitude adjustment is not performed in the initial construction stage.
  • the specified column can be all columns, that is, all columns can be adjusted for fuselage attitude.
  • the specified column can be a partial column, that is, the fuselage attitude adjustment can be performed on a partial column.
  • the other columns except the planned paths 1 to 2 are used as designated columns, so that in addition to the random yaw angles of the planned paths 1 to 2, multiple planned paths such as the planned paths 3 to 11
  • the corresponding yaw angles are the same yaw angle, and the planned paths 3 to 11 are substantially parallel to each other, so that the obtained path planning graphics have better regularity.
  • the path planning graph shown in FIG. 8b is the graph obtained according to the path planning strategy shown in FIG. 8a.
  • the specified column may be a certain planned path in each area, so that the yaw angle is adjusted for a planned path in each area.
  • the entire path planning graph includes an area 1 composed of columns 1 to 4, an area 2 composed of columns 4 to 8, and an area 3 composed of columns 9 to 12.
  • the yaw angle corresponding to each specified column in the path planning graph is the same yaw angle, and the yaw angles of other columns except the specified column are basically the same, and the randomness is small.
  • the specified columns in the graph are substantially parallel to each other, with good regularity, while the other columns except the specified columns basically maintain the state of substantially parallel to each other, with less randomness.
  • the path planning graph shown in FIG. 9b is the graph obtained according to the path planning strategy shown in FIG. 9a.
  • the fuselage attitude adjustment is performed on the odd columns.
  • the yaw angles corresponding to multiple odd-numbered columns such as planned paths 3, 5, 7, and 9 are the same yaw angle, and these planned paths 3, 5, 7, and 9 are substantially parallel to each other, and have a good Regularity, while the planned path 1 and the yaw angles corresponding to each even-numbered column are basically the same, and the randomness is small.
  • the path planning graph shown in FIG. 10b is the graph obtained according to the path planning strategy shown in FIG. 10a.
  • Fig. 11a the fuselage attitude adjustment is performed on the even columns.
  • the yaw angles corresponding to multiple even-numbered columns such as planned paths 4, 6, and 8 are the same yaw angle, and these planned paths 4, 6, and 8 are substantially parallel to each other, and have good regularity, while The planned path 2 and the yaw angles corresponding to each odd column are basically the same, and the randomness is small.
  • the path planning graph shown in FIG. 11b is the graph obtained according to the path planning strategy shown in FIG. 11a.
  • the swimming pool cleaning robot can control the swimming pool cleaning robot to turn around after detecting the first side or the second side, and perform the current fuselage attitude adjustment operation after the turning, or it can After the U-turn and the forward movement distance, the current fuselage attitude adjustment operation is performed, and there is no restriction on this.
  • the technical solution provided by the embodiment of the application adjusts the body posture of the swimming pool cleaning robot to control the traveling direction of the swimming pool cleaning robot, and then controls the swimming pool cleaning robot to present substantially parallel paths between the planned paths in the pool bottom operation area.
  • the state makes it possible to obtain path planning graphics with better regularity, especially makes it possible to obtain path planning graphics with substantial parallel slashes.
  • the path planning graphics with better regularity can help the swimming pool cleaning robot to increase the cleaning coverage, reduce the areas that are missed to be cleaned, and improve the cleaning efficiency.
  • the embodiment of the present application also provides a cleaning method of a swimming pool cleaning robot. During the cleaning task of the swimming pool bottom, path planning is performed according to the path planning method of the swimming pool cleaning robot in the foregoing embodiments.
  • Fig. 12 is a schematic structural diagram of a path planning device for a swimming pool cleaning robot provided by an embodiment of the present application.
  • the device can consist of software and/or hardware, and can generally be integrated into a swimming pool cleaning robot.
  • the device may include:
  • An adjustment module 10 configured to adjust the current posture of the swimming pool cleaning robot to determine the current direction of travel
  • the control module 20 is used to control the swimming pool cleaning robot to move between the boundaries defining the pool bottom operation area according to the current travel direction to generate a planned path;
  • the generating module 30 is configured to generate a path planning graph covering the operation area at the bottom of the pool according to the multiple planned paths corresponding to each current traveling direction.
  • the adjustment module 10 adjusts the current fuselage posture of the swimming pool cleaning robot to determine the current traveling direction, it is specifically used to: control the swimming pool cleaning robot to turn around after detecting that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area , the front boundary is any boundary between the first side and the second side set relatively in the pool bottom operation area; adjust the current fuselage attitude of the swimming pool cleaning robot according to the preset yaw angle, and determine the current fuselage attitude based on the adjusted fuselage attitude direction of travel.
  • the adjustment module 10 adjusts the current fuselage posture of the swimming pool cleaning robot to determine the current traveling direction, it is specifically used to: control the swimming pool cleaning robot to turn around after detecting that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area , and move forward for the first preset distance, the front boundary is either the boundary of the first side and the second side relatively set in the pool bottom operation area; after controlling the swimming pool cleaning robot to move forward for the first preset distance, according to the preset
  • the yaw angle adjusts the current fuselage attitude of the swimming pool cleaning robot, and determines the current traveling direction based on the adjusted fuselage attitude.
  • the preset yaw angle is a parameter value pre-written into the memory of the swimming pool cleaning robot, or a parameter value actually generated when the swimming pool cleaning robot performs cleaning operations in the pool bottom operation area.
  • the above device also includes an acquisition module. If the preset yaw angle is a parameter value actually generated by the swimming pool cleaning robot during the cleaning operation in the pool bottom operation area, when the acquisition module acquires the preset yaw angle, It is specifically used for: when the swimming pool robot falls into the water for the first time and sinks to the pool bottom operation area or after detecting that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area, after controlling the swimming pool cleaning robot to turn around, control the swimming pool cleaning robot to move backwards, And continue to detect whether it collides with the rear boundary, which is any one of the first and second sides set relatively in the pool bottom operation area; if so, read the current yaw angle of the swimming pool cleaning robot as the preset yaw angle Or, control the swimming pool cleaning robot to move forward a second preset distance, and read the current yaw angle of the swimming pool cleaning robot as the preset yaw angle.
  • the acquisition module controls the swimming pool cleaning robot to move forward for a second preset distance, and reads the current yaw angle of the swimming pool cleaning robot as the preset yaw angle
  • it is specifically used for: controlling the swimming pool cleaning robot to move forward for a second Preset distance, read the current yaw angle of the swimming pool cleaning robot when reaching the front boundary of the pool bottom operation area as the preset yaw angle
  • the second preset distance is the distance from the rear boundary to the front boundary, the rear boundary and the front boundary relative settings.
  • the adjustment module 10 detects that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area, and controls the swimming pool cleaning robot to turn around, it is also used to: control the swimming pool cleaning robot to move backward, and continuously detect whether it is in line with the front boundary A boundary collision occurs; if so, read the preset yaw angle for the swimming pool cleaning robot to adjust the current fuselage attitude; or, in the case of controlling the swimming pool cleaning robot to move forward for a third preset distance, read the preset yaw angle angle for the swimming pool cleaning robot to adjust the current fuselage attitude.
  • the adjustment module 10 detects that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area, and controls the swimming pool cleaning robot to turn around, it is also used to: control the swimming pool cleaning robot to move backward, and continuously detect whether collide with the front boundary; if so, read the preset yaw angle for the swimming pool cleaning robot to adjust the current fuselage attitude; or, control the swimming pool cleaning robot to move forward and move the first preset yaw angle When setting the distance, read the preset yaw angle for the swimming pool cleaning robot to adjust the current fuselage attitude.
  • the adjustment module 10 adjusts the current body posture of the swimming pool cleaning robot to determine the current traveling direction
  • it is specifically used to: adjust the current body posture of the swimming pool cleaning robot to determine the current traveling direction in the odd-numbered columns of the path planning graph ; or, in the even-numbered columns of the path planning graph, adjust the current body posture of the swimming pool cleaning robot to determine the current direction of travel; or, in the specified column of the path planning graph, adjust the current body posture of the swimming pool cleaning robot to determine the current direction of travel .
  • the path planning device for the swimming pool cleaning robot shown in FIG. 12 can execute the path planning method for the swimming pool cleaning robot in the embodiment shown in FIG. 5 , and its implementation principles and technical effects will not be repeated here.
  • the path planning device of the swimming pool cleaning robot in the above embodiments the specific manners of performing operations by various modules and units have been described in detail in the embodiments related to the method, and will not be described in detail here.
  • FIG. 13 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in FIG. 13 , the electronic device includes: a memory 21 and a processor 22;
  • the memory 21 is used to store computer programs, and can be configured to store other various data to support operations on the computing platform. Examples of such data include instructions for any application or method operating on the computing platform, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 21 can be realized by any type of volatile or nonvolatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk any type of volatile or nonvolatile storage device or their combination
  • the processor 22, coupled with the memory 21, is used to execute the computer program in the memory 21, so as to: adjust the current posture of the swimming pool cleaning robot to determine the current direction of travel; control the swimming pool cleaning robot to define the bottom of the pool according to the current direction of travel Move between the boundaries of the operation area to generate a planned path; generate a path planning graph covering the operation area at the bottom of the pool according to multiple planned paths corresponding to each current travel direction.
  • the processor 22 adjusts the current fuselage posture of the swimming pool cleaning robot to determine the current traveling direction, it is specifically used to: control the swimming pool cleaning robot to turn around after detecting that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area , the front boundary is either one of the first side and the second side that are relatively set in the pool bottom operation area; adjust the current fuselage attitude of the swimming pool cleaning robot according to the preset yaw angle, and determine the current fuselage attitude based on the adjusted fuselage attitude direction of travel.
  • the processor 22 adjusts the current fuselage posture of the swimming pool cleaning robot to determine the current traveling direction, it is specifically used to: control the swimming pool cleaning robot to turn around after detecting that the swimming pool cleaning robot moves forward and reaches the front boundary of the pool bottom operation area , and move forward for the first preset distance, the front boundary is either the boundary of the first side and the second side relatively set in the pool bottom operation area; after controlling the swimming pool cleaning robot to move forward for the first preset distance, according to the preset
  • the yaw angle adjusts the current fuselage attitude of the swimming pool cleaning robot, and determines the current traveling direction based on the adjusted fuselage attitude.
  • the preset yaw angle is a parameter value pre-written into the memory of the swimming pool cleaning robot, or a parameter value actually generated when the swimming pool cleaning robot performs cleaning operations in the pool bottom operation area.
  • the preset yaw angle is a parameter value actually generated when the swimming pool cleaning robot performs cleaning operations in the pool bottom operation area, when the processor 22 obtains the preset yaw angle, it is specifically used for:
  • the processor 22 controls the swimming pool cleaning robot to move forward for a second preset distance, and reads the current yaw angle of the swimming pool cleaning robot as the preset yaw angle, it is specifically used for: controlling the swimming pool cleaning robot to move forward for the second preset distance.
  • Two preset distances read the current yaw angle of the swimming pool cleaning robot when reaching the front boundary of the pool bottom operation area as the preset yaw angle, the second preset distance is the distance from the rear boundary to the front boundary, the rear boundary and the front boundary Boundaries are set relatively.
  • the processor 22 is also used to: control the swimming pool cleaning robot to move backward, and continuously detect whether it is in line with the front A boundary collision occurs; if so, read the preset yaw angle for the swimming pool cleaning robot to adjust the current fuselage attitude; or, in the case of controlling the swimming pool cleaning robot to move forward for a third preset distance, read the preset yaw angle angle for the swimming pool cleaning robot to adjust the current fuselage attitude.
  • the processor 22 is also used to: control the swimming pool cleaning robot to move backward, and continuously detect whether it is in line with the front A boundary collision occurs; if so, read the preset yaw angle for the swimming pool cleaning robot to adjust the current fuselage attitude; or, when controlling the swimming pool cleaning robot to move forward for the first preset distance, read the preset yaw angle to For the swimming pool cleaning robot to adjust the current fuselage attitude.
  • the processor 22 adjusts the current body posture of the swimming pool cleaning robot to determine the current traveling direction, it is specifically used to: adjust the current body posture of the swimming pool cleaning robot to determine the current traveling direction in the odd-numbered columns of the path planning graph ; or, in the even-numbered columns of the path planning graph, adjust the current body posture of the swimming pool cleaning robot to determine the current direction of travel; or, in the specified column of the path planning graph, adjust the current body posture of the swimming pool cleaning robot to determine the current direction of travel .
  • the electronic device further includes: a communication component 23 , a display 24 , a power supply component 25 , an audio component 26 and other components.
  • FIG. 13 only schematically shows some components, which does not mean that the electronic device only includes the components shown in FIG. 13 .
  • the components in the dotted line box in FIG. 13 are optional components, not mandatory components, which may depend on the product form of the electronic device.
  • the electronic device in this embodiment can be implemented as a terminal device such as a desktop computer, a notebook computer, a smart phone, or an IOT device, or as a server device such as a conventional server, a cloud server, or a server array.
  • the electronic device of this embodiment is implemented as a terminal device such as a desktop computer, a notebook computer, or a smart phone, it may include the components in the dashed box in Figure 13; if the electronic device of this embodiment is implemented as a conventional server, cloud server, or server array, etc.
  • the server device may not include the components in the dotted box in FIG. 13 .
  • an embodiment of the present application further provides a computer-readable storage medium storing a computer program.
  • the computer program When the computer program is executed, the steps that can be executed by the electronic device in the above method embodiments can be implemented.
  • the embodiments of the present application also provide a computer program product, including computer programs/instructions, which, when executed by a processor, cause the processor to implement the steps executable by the electronic device in the above method embodiments.
  • the above-mentioned communication component is configured to facilitate wired or wireless communication between the device where the communication component is located and other devices.
  • the device where the communication component is located can access a wireless network based on communication standards, such as WiFi, 2G, 3G, 4G/LTE, 5G and other mobile communication networks, or a combination thereof.
  • the communication component receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication assembly also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • the above-mentioned display includes a screen, and the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or a swipe action, but also detect duration and pressure associated with the touch or swipe operation.
  • a power supply component provides power for various components of the equipment where the power supply component is located.
  • a power supply component may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to the device in which the power supply component resides.
  • the aforementioned audio components may be configured to output and/or input audio signals.
  • the audio component includes a microphone (MIC), which is configured to receive an external audio signal when the device on which the audio component is located is in an operation mode, such as a calling mode, a recording mode, and a speech recognition mode.
  • the received audio signal may be further stored in a memory or sent via a communication component.
  • the audio component further includes a speaker for outputting audio signals.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent storage in computer readable media, in the form of random access memory (RAM) and/or nonvolatile memory such as read-only memory (ROM) or flash RAM. Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash random access memory
  • Computer-readable media including both permanent and non-permanent, removable and non-removable media, can be implemented by any method or technology for storage of information.
  • the information may be computer readable instructions, data structures, modules of a program, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridge, tape magnetic disk storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media excludes transitory computer-readable media, such as modulated data signals and carrier waves.
  • the embodiments of the present application may be provided as methods, systems or computer program products. Accordingly, the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)
  • Cleaning In General (AREA)

Abstract

本申请实施例提供一种泳池清洁机器人的路径规划及清洁方法、装置及设备。在本申请实施例中,调整泳池清洁机器人的机身姿态以控制泳池清洁机器人的行进方向,进而控制泳池清洁机器人在池底作业区域中的各条规划路径之间呈现出实质相互平行的状态,使得获取规律性较好的路径规划图形成为可能,特别是使得获取实质平行斜杠式的路径规划图形成为可能。规律性较好的路径规划图形能够帮助泳池清洁机器人提高清洁覆盖率,减少遗漏清洁的区域,提高清洁效率。

Description

泳池清洁机器人的路径规划及清洁方法、装置及设备
交叉引用
本申请引用于2022年10月14日递交的名称为“泳池清洁机器人的路径规划及清洁方法、装置及设备”的第2022112623525号中国专利申请,其通过引用被全部并入本申请。
本申请引用于2022年02月21日递交的名称为“泳池地图边界构建及泳池清扫方法、装置、电子设备”的第PCT/CN2022/076907号PCT国际申请,其通过引用被全部并入本申请。
技术领域
本申请涉及到清洁机器人技术领域,尤其涉及到一种泳池清洁机器人的路径规划及清洁方法、装置及设备。
背景技术
泳池清洁机器人是一种可在水下执行清洁任务的清洁机器人,能够帮助用户清洁泳池,提高泳池清洁效率和降低泳池清洁成本。通常,用户在存在泳池清洁需求时,将泳池清洁机器人放置到泳池中,泳池清洁机器人依靠自身的重力下沉至泳池的池底,并从池底开始执行清洁任务。
实际应用中,泳池清洁机器人在路径规划算法的辅助下能够按照规划路径在池底中边移动边执行清洁任务,进而提高清洁覆盖率,减少遗漏清洁的区域,提高清洁效率。然而,实际应用中,因各种因素的干扰,泳池清洁机器人的偏航角很可能会动态发生改变,不同的偏航角对应不同规律的规划路径,进而难以保证在整个池底区域中规划出规律性较为一致的多条规划路径, 不利于提高清洁覆盖率,不利于减少遗漏清洁的区域,以及不利于提高清洁效率。
发明内容
本申请的多个方面提供一种泳池清洁机器人的路径规划及清洁方法、装置及设备,用于使得获取规律性较好的路径规划图形成为可能,规律性较好的路径规划图形能够帮助泳池清洁机器人提高清洁覆盖率,减少遗漏清洁的区域,提高清洁效率。
本申请提供了一种泳池清洁机器人的路径规划方法,包括:调整泳池清洁机器人的当前机身姿态以确定当前行进方向;控制泳池清洁机器人按照当前行进方向在界定池底作业区域的边界之间进行移动以生成一条规划路径;根据各当前行进方向对应的多条规划路径,生成覆盖池底作业区域的路径规划图形。
本申请实施例还提供一种泳池清洁机器人的清洁方法,包括:在执行泳池池底的清洁任务过程中,根据泳池清洁机器人的路径规划方法进行路径规划。
本申请实施例还提供一种泳池清洁机器人的路径规划装置包括:调整模块,用于调整泳池清洁机器人的当前机身姿态以确定当前行进方向;控制模块,用于控制泳池清洁机器人按照当前行进方向在界定池底作业区域的边界之间进行移动以生成一条规划路径;生成模块,用于根据各当前行进方向对应的多条规划路径,生成覆盖池底作业区域的路径规划图形。
本申请实施例还提供一种电子设备,包括:处理器;以及存储程序的存储器;其中,程序包括指令,指令在由处理器执行时使处理器执行根据泳池清洁机器人的路径规划方法或执行泳池清洁机器人的清洁方法。
本申请实施例还提供一种存储有计算机指令的计算机可读存储介质,其中,计算机指令用于使计算机执行泳池清洁机器人的路径规划方法或执行泳池清洁机器人的清洁方法。
在本申请实施例中,调整泳池清洁机器人的机身姿态以控制泳池清洁机器人的行进方向,进而控制泳池清洁机器人在池底作业区域中的各条规划路径之间呈现出实质相互平行的状态,使得获取规律性较好的路径规划图形成为可能,特别是使得获取实质平行斜杠式的路径规划图形成为可能。规律性较好的路径规划图形能够帮助泳池清洁机器人提高清洁覆盖率,减少遗漏清洁的区域,提高清洁效率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了本申请实施例提供的泳池清洁机器人的整体结构示意图;
图2示出了泳池清洁机器人的分解示意图;
图3示出了驱动组件中的驱动轮和从动轮;
图4示出了驱动轮的结构示意图;
图5为本申请实施例提供的一种泳池清洁机器人的路径规划方法的流程图;
图6为泳池清洁机器人的行进方向与偏航角的关系图;
图7a为泳池清洁机器人在池底作业区域进行路径规划的一种场景图;
图7b为泳池清洁机器人按照图7a进行路径规划所得到的一种的路径规划图形;
图8a为泳池清洁机器人在池底作业区域进行路径规划的另一种场景图;
图8b为泳池清洁机器人按照图8a进行路径规划所得到的一种的路径规划图形;
图9a为泳池清洁机器人在池底作业区域进行路径规划的另一种场景图;
图9b为泳池清洁机器人按照图9a进行路径规划所得到的一种的路径规划图形;
图10a为泳池清洁机器人在池底作业区域进行路径规划的另一种场景图;
图10b为泳池清洁机器人按照图10a进行路径规划所得到的一种的路径规划图形;
图11a为泳池清洁机器人在池底作业区域进行路径规划的另一种场景图;
图11b为泳池清洁机器人按照图11a进行路径规划所得到的一种的路径规划图形;
图12为本申请实施例提供的一种泳池清洁机器人的路径规划装置的结构示意图;
图13为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,除非另外定义,本说明书一个或多个实施例使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本说明书一个或多个实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为方便理解本申请实施例提供的泳池清洁机器人,首先介绍一下其应用场景,本申请实施例提供的泳池清洁机器人用于清洁泳池。通常,用户在存在泳池清洁需求时,将泳池清洁机器人放置到泳池中,泳池清洁机器人依靠自身的重力下沉至泳池的池底,并从池底开始执行清洁任务,例如,泳池清洁机器人依靠自身的动力在泳池池底行走,并吸附泳池池底的杂质。另外,除清理泳池池底外,还可以对泳池墙壁进行清洗。
实际应用中,泳池清洁机器人在路径规划算法的辅助下能够按照规划路径在池底中边移动边执行清洁任务,进而提高清洁覆盖率,减少遗漏清洁的区域,提高清洁效率。然而,因各种因素的干扰,泳池清洁机器人的偏航角很可能会动态发生改变。例如,多样化的泳池的边界形状会改变泳池清洁机器人的偏航角。举例来说,泳池清洁机器人在圆弧形的边界处的偏航角和在直线形的边界处的偏航角有所不同。又例如,泳池清洁机器人启动时动力过大改变泳池清洁机器人的偏航角。又例如,泳池清洁机器人因水下环境复杂性可能会出现自身重心偏移的情况,致使泳池清洁机器人的偏航角在行进过程中发生改变。当然,致使泳池清洁机器人的偏航角发生改变的因素并不限于上述举例的因素。不同的偏航角对应不同规律的规划路径,进而难以保证在整个池底区域中规划出规律性较为一致的多条规划路径,不利于提高清洁覆盖率,不利于减少遗漏清洁的区域,以及不利于提高清洁效率。
为此,本申请实施例提供一种泳池清洁机器人的路径规划及清洁方法、装置、设备及介质。在本申请实施例中,调整泳池清洁机器人的机身姿态以控制泳池清洁机器人的行进方向,进而控制泳池清洁机器人在池底作业区域中的各条规划路径之间呈现出实质相互平行的状态,使得获取规律性较好的路径规划图形成为可能,特别是使得获取实质平行斜杠式的路径规划图形成为可能。规律性较好的路径规划图形能够帮助泳池清洁机器人提高清洁覆盖率,减少遗漏清洁的区域,提高清洁效率。
下面结合具体的附图以及实施例对其进行详细描述。
首先介绍本申请实施例提供的泳池清洁机器人的基本结构。图1及图2 中所示,图1示出了本申请实施例提供的泳池清洁机器人的整体结构示意图;图2示出了泳池清洁机器人的分解示意图。本申请实施例提供的泳池清洁机器人通常包括驱动系统20、密封结构13和清洁机构30。
作为一个可选的方案,清洁壳体11可以分为上壳111和底盘112,其中,上壳111可拆卸地连接在底盘112上。底盘112上设置有一进水口112a,以供泳池内的水和/或污染物等进入清洁壳体11内部。另外,上壳111上设置有一出水口111a,以供水排出。
过滤结构12设置在进水口112a和出水口111a之间,用于对水进行过滤,使得水中携带的污染物与水分离,过滤出的污染物被保留在清洁壳体11内,过滤后的水从出水口111a排出。
可选地,为了方便清除清洁壳体11内的污染物,防止污染物在清洁壳体11内大量堆积而造成过滤结构12被堵塞,而影响清洁效果或者损坏泳池清洁机器人。上壳111包括上壳主体和活动翻盖113,上壳主体与底盘112连接,活动翻盖113可转动地连接在上壳主体上,且能够相对上壳主体翻转。在翻开活动翻盖113时,露出开口,使得过滤结构12可以从清洁壳体11内取出,以方便对其进行清洁,同时也可以通过该开口对清洁壳体11内部进行清洁或者维修。上述活动翻盖113扣合时可以覆盖开口。
为了使泳池内的水和/或污染物有动力向清洁壳体11内流动,且能够从出水口111a排出,密封结构13至少包括密封壳体、水泵电机132和叶轮133。其中,密封壳体设置在清洁壳体11内,并用于安装水泵电机132等。水泵电机132用于将泳池内的水吸入到泳池清洁机器人内进行过滤并排出。示例性的,水泵电机132带动叶轮133转动,从而将水吸入到泳池清洁机器人内进行过滤并排出。由于水泵电机132等需要使用电力作为能源,而为了保证用电安全,以确保水泵电机132的使用寿命,密封壳体需要保证密封性和防水性,本申请实施例对其具体结构不作限制,只要能够满足防水需求即可。例如,密封壳体包括第一壳体和第二壳体,第一壳体和第二壳体固定连接,且在连接处设置有防水密封圈;或者第一壳体和第二壳体可采用翻盖式的连接 方式,在连接处进行密封,如通过防水密封圈密封。
水泵电机132安装在密封壳体内,且水泵电机132的输出轴的至少部分穿出密封壳体。叶轮133设置在水泵电机132的输出轴伸出密封壳体的部分上。水泵电机132上电转动时,其输出轴转动,进而带动叶轮133转动,由于叶轮133转动而扰动清洁壳体11内的水,使其向出水口111a流动。由于叶轮133处的水向出水口111a流动,而使得清洁壳体内产生负压,进而泳池内的水会通过进水口112a进入清洁壳体11内,如此随着叶轮133的转动使得泳池内的水和/或污染物通过进水口112a进入清洁壳体11内,经过过滤结构12的过滤后,通过出水口111a排出,以此实现对泳池的清洁。
为了更加充分地对泳池进行清洁,泳池清洁机器人可以在驱动系统20的驱动下于泳池内移动,并在移动的过程中对水进行清洁。继续参见图1-图4,驱动系统20连接在清洁壳体11上,以带动整个泳池清洁机器人移动。在一示例中,驱动系统20包括两组驱动组件,清洁壳体11位于两组驱动组件之间,两组驱动组件相互独立。在两组驱动组件同向同速运动时可以使泳池清洁机器人沿着直线前进或者后退。在两组驱动组件不同向或者不同速运动(也可以称为差速运动)时,可以使泳池清洁机器人转弯。这样就可以使泳池清洁机器人能够移动的轨迹比较丰富,从而满足较为复杂的清洁需求。
在本申请实施例中,两组驱动组件的结构类似,故以其中一组对其结构进行详细说明,但应当知道的是,在其他实施例中,两组驱动组件的结构可以不同,只要能够满足移动需求即可。
一并参考图3和图4,图3示出了驱动组件中的驱动轮和从动轮,图4示出了驱动轮的结构示意图。以其中的一个驱动组件为例,驱动组件包括驱动电机、驱动轮22、从动轮23和履带等。其中,驱动电机设置在前述的密封壳体内,以实现防水。驱动电机的输出轴穿出密封壳体和清洁壳体11,以便与驱动轮22配合。例如,驱动轮22包括内层外齿圈221和外层外齿圈222,内层外齿圈221和外层外齿圈222之间刚性连接,且一起转动。驱动电机的输出轴上连接有驱动齿轮24,驱动齿轮24和内层外齿圈221外啮合,实现传动。 履带套设在外层外齿圈222和从动轮23外。在驱动电机的输出轴转动时带动驱动齿轮24转动,从而使得与之啮合的内层外齿圈221转动,由于内层外齿圈221和外层外齿圈222之间刚性连接,因此外层外齿圈222会一起转动,继而使履带和从动轮23转动,使得整个泳池清洁机器人移动。
为了进一步加强清洁效果,有效地对泳池的池底或者墙壁上粘附的污染物进行有效清洁,泳池清洁机器人上设置有清洁机构30。清洁机构30用于在泳池清洁机器人移动过程中对池底或者墙壁的表面进行清扫。
例如,清洁机构30包括滚刷。滚刷通过套设在滚刷轴可转动地设置在清洁壳体11上;过渡齿轮02设置在清洁壳体11上,并且与滚刷轴上的滚刷齿轮01和与驱动轮22的内层外齿圈221分别外啮合。这样在驱动轮22转动时可以自然地带动滚刷转动,使其对池底或者墙壁进行清扫,将粘附的污染物扫向进水口112a,以方便泳池清洁机器人对污染物进行收集。
从上述描述中可以看出,泳池清洁机器人的正常工作需要电力供应。而为了简化泳池清洁机器人的结构,并保证工作可靠性和安全性,本申请实施例的泳池清洁机器人中配置有供电电池,通过供电电池为水泵电机132和驱动电机等供电。供电电池设置在清洁壳体11内,优选地,为了确保供电电池的安全性,避免在水中作业时由于渗水导致故障,需要将供电电池设置在密封壳体内。由于供电电池设置在密封壳体内,无法频繁地取出和装入,因此需要在泳池清洁机器人上设置充电接口组件,以方便供电电池与外接电源连接,实现对供电电池的充电。
泳池清洁机器人在工作时,通过驱动系统驱动整个泳池清洁机器人在泳池池底行走。且在行走的过程中,通过水泵电机将泳池池底的杂质吸附到泳池清洁机器人内进行过滤。由于水泵电机对应的进水口位于泳池清洁机器人的下方,出水口位于泳池清洁机器人的上方,因此,在水泵电机工作时,出水口沿背离泳池池底的方向喷水,喷出的水将对泳池清洁机器人产生背离喷水方向的压力,该压力由于方向向下,因此能够将泳池清洁机器人压紧在泳池池底。
图5为本申请实施例提供的一种泳池清洁机器人的路径规划方法的流程图。参见图5,该方法可以包括以下步骤:
501、调整泳池清洁机器人的当前机身姿态以确定当前行进方向;
502、控制泳池清洁机器人按照当前行进方向在界定池底作业区域的边界之间进行移动以生成一条规划路径;
503、根据各当前行进方向对应的多条规划路径,生成覆盖池底作业区域的路径规划图形。
首先,对偏航角(yaw)进行简单介绍。在机体坐标系o-XYZ下,偏航角(yaw)是指机器绕Y轴旋转的角度。在地面坐标系下,偏航角是机器的行进方向与横轴之间的夹角。参见图6,地面坐标系o-XY的横轴X沿着水平方向,纵轴Y沿着垂直方向,垂直方向垂直与水平方向,机器的行进方向V与横轴X之间的夹角θ即为偏航角。基于此,机器的偏航角直接影响机器的行进方向,偏航角不同导致的行进方向也不同,进而致使机器的移动轨迹有所不同。
由于实际应用中,各种因素会致使泳池清洁机器人的偏航角在移动过程中发生改变,针对执行路径规划任务的泳池清洁机器人而言,不受控制的偏航角会导致规划出的各条规划路径呈现杂乱无章、规律性较差的特点,如图7a和图7b所示,在未进行偏航角控制的情况下泳池清洁机器人所规划的各条规划路径呈现杂乱无章、规律性较差的特点。而由杂乱无章、规律性较差的各条规划路径组成的路径规划图形的利用价值较差,例如,难以用于辅助泳池清洁机器人执行清洁任务。
基于上述,在本实施例中,泳池清洁机器人在泳池的池底作业区域执行路径规划时,通过调整泳池清洁机器人的机身姿态控制泳池清洁机器人的行进方向,进而控制泳池清洁机器人在池底作业区域中的移动轨迹(也即规划路径),使得获取规律性较好的路径规划图形成为可能。其中,池底作业区域由围绕池底的边界界定。边界可以是泳池的真实边界,也可以是通过边界探测能力探测到的虚拟边界,对此不做限制。泳池清洁机器人具备边界探测能 力,能够探测界定池底作业区域的边界线。实际应用中,泳池清洁机器人可以借助碰撞传感器、全球定位系统(Global Positioning System,GPS)、超声波、激光雷达、视觉传感器等若干种传感器进行边界探测。关于边界探测的更多介绍可以参见相关技术。
在本实施例中,泳池清洁机器人在泳池的池底作业区域执行路径规划时,在界定池底作业区域的两条边界之间执行多次往返运动,直至移动轨迹覆盖整个池底作业区域。为了便于理解和区分,将执行路径规划时进行往返运动的两条边界中的一条边界称作为第一边,另一条边界称作为第二边,第一边与第二边相对设置。泳池清洁机器人从第一边移动至第二边时的移动轨迹作为一条规划路径,同样地,从第二边移动至第一边时的移动轨迹作为一条规划路径。
在本实施例中,可以在路径规划图形的奇数列、偶数列和指定列,调整泳池清洁机器人的当前机身姿态以确定当前行进方向,但并不限于此。
具体而言,路径规划图形是由多条规划路径组成的图形,从规划路径出现时间从早到晚的顺序排列,路径规划图形依次包括第1条规划路径、第2条规划路径……第n条规划路径,n为正整数。其中,条数号为奇数的规划路径也即奇数列,例如,第1条规划路径、第3条规划路径以及第5条规划路径等。条数号为偶数的规划路径也即偶数列,例如,第2条规划路径、第4条规划路径以及第6条规划路径等。指定列可以是条数号为奇数的规划路径或条数号为偶数的规划路径。指定列可以是路径规划图形中的所有列或部分列,对此不做限制。
在本实施例中,调整泳池清洁机器人的当前机身姿态是指将泳池清洁机器人的当前偏航角调整为预设偏航角。预设偏航角可以是根据大量的试验数据灵活设置的偏航角,并预先写入泳池清洁机器人存储器的参数值,也可以是泳池清洁机器人在池底作业区域执行清洗作业的过程中实际产生的参数值,对此不做限制。经过机身姿态调整的各条规划路径对应同一预设偏航角,进而这些经过机身姿态调整的各条规划路径之间呈现出实质相互平行的状 态,这样获得的路径规划图形具有较好的规律性。
实际应用中,若使用存储在存储器中的预设偏航角调整泳池清洁机器人的当前机身姿态,则可以在路径规划图形的构建初始阶段便可启动调整泳池清洁机器人的机身姿态的操作。例如,在规划第1条规划路径或第2条规划路径时,便调整泳池清洁机器人的机身姿态。当然,可以放弃在路径规划图形的构建初始阶段调整泳池清洁机器人的机身姿态的操作,在构建初始阶段之后调整泳池清洁机器人的机身姿态的操作。例如,在规划第1条规划路径或第2条规划路径时,不执行调整泳池清洁机器人的机身姿态的操作,从第3条规划路径开始执行调整泳池清洁机器人的机身姿态的操作。值得注意的是,构建初始阶段根据实际应用需求灵活设置,例如,构建初始阶段是指在路径规划图形中规划出出现时间最早的多条规划路径的阶段,或者,构建初始阶段是指泳池清洁机器人执行路径规划操作的最初的一段时间。
实际应用中,若使用泳池清洁机器人在池底作业区域执行清洗作业的过程中实际产生的预设偏航角调整泳池清洁机器人的当前机身姿态,则当前机身姿态的调整操作可能无法立即启动,需要等待读取到泳池清洁机器人在池底作业区域执行清洗作业的过程中实际产生的预设偏航角之后再启动当前机身姿态的调整操作。例如,在规划第1条规划路径或第2条规划路径时,由于预设偏航角尚未读取成功,此时,第1条规划路径或第2条规划路径是按照泳池清洁机器人当前实际产生的偏航角规划出来的。在规划完第1条规划路径或第2条规划路径后,泳池清洁机器人成功读取了在规划第1条规划路径或第2条规划路径时实际产生的偏航角,并将所读取的实际产生的偏航角作为预设偏航角,则在规划第1条规划路径或第2条规划路径后面的各条规划路径时,按照所读取的实际产生的偏航角调整泳池清洁机器人的机身姿态的操作。
基于上述可知,预设偏航角的来源不同,偏航角调整操作可以有所不同。若预设偏航角来源于存储器中预先写入的参数值,则可以在路径规划的构建初始阶段便启动偏航角调整操作。若预设偏航角来源于泳池清洁机器人实际 产生的偏航角,则偏航角调整操作稍有延迟,可能在路径规划的构建初始阶段之后启动。
实际应用中,预设偏航角可以是泳池清洁机器人在池底作业区域执行清洗作业的过程中实际产生的参数值。泳池清洁机器人实际产生的偏航角的读取时间越早,越能尽早执行偏航角调整操作,使得最终生成的路径规划图像能够覆盖更多地池底作业区域,提高了高质量的路径规划图像获取概率。例如,获取执行第1条规划路径时实际产生的偏航角作为后续启动调整泳池清洁机器人的机身姿态操作的偏航角,这样,从第2条规划路径起,便可执行偏航角调整操作。下面介绍几种示例性的预设偏航角的获取方式:
方式1:在泳池机器人首次落水下沉至池底作业区域,控制泳池清洁机器人后退移动,并持续检测是否与后方边界发生碰撞,后方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;若是,则读取泳池清洁机器人的当前偏航角作为预设偏航角。
方式2:在泳池机器人首次落水下沉至池底作业区域,控制泳池清洁机器人后退移动,并持续检测是否与后方边界发生碰撞,后方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;若是,则控制泳池清洁机器人前进移动第二预设距离,并读取泳池清洁机器人的当前偏航角作为预设偏航角。其中,第二预设距离根据大量的试验数据灵活设置。
方式3:在检测到泳池清洁机器人前进移动到达池底作业区域的前方边界后,控制泳池清洁机器人调头后,控制泳池清洁机器人后退移动,并持续检测是否与后方边界发生碰撞,后方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;若是,则读取泳池清洁机器人的当前偏航角作为预设偏航角。该种获取预设偏航角的方式可在构建初始阶段进行。
方式4:在检测到泳池清洁机器人前进移动到达池底作业区域的前方边界后,控制泳池清洁机器人调头后,控制泳池清洁机器人后退移动,并持续检测是否与后方边界发生碰撞,后方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;若是,则控制泳池清洁机器人前进移动第二预设距 离,并读取泳池清洁机器人的当前偏航角作为预设偏航角。其中,第二预设距离根据大量的试验数据灵活设置。该种获取预设偏航角的方式可在构建初始阶段进行。
值得注意的是,在上述各种获取预设偏航角的方式中,后方边界是指在泳池清洁机器人后退移动时,泳池清洁机器人的机尾所朝向的边界。相对于后方边界,前方边界是指在泳池清洁机器人前进移动时,泳池清洁机器人的机头所朝向的边界,也即前方边界与后方边界相对。
在上述各种获取预设偏航角的方式中,控制泳池清洁机器人后退移动,并持续检测是否与后方边界发生碰撞,若与后方边界发生碰撞,说明泳池清洁机器人巡边成功。若尚未与后方边界发生碰撞,说明泳池清洁机器人尚未巡边成功。在巡边成功后,可以读取泳池清洁机器人的当前偏航角作为预设偏航角,或在泳池清洁机器人从巡边成功的位置点前进移动第二预设距离后再读取泳池清洁机器人的当前偏航角作为预设偏航角。
实际应用中,第二预设距离是两个边界之间的距离中的部分距离,也可以两个边界之间的距离中的全部距离,也即在泳池清洁机器人从一个边界移动到另一个边界之后,读取泳池清洁机器人的当前偏航角作为预设偏航角。于是,进一步可选的,控制泳池清洁机器人前进移动第二预设距离,并读取泳池清洁机器人的当前偏航角作为预设偏航角,包括:控制泳池清洁机器人前进移动第二预设距离,读取到达池底作业区域的前方边界时泳池清洁机器人的当前偏航角作为预设偏航角,第二预设距离为从后方边界到前方边界的距离,后方边界与前方边界相对设置。例如,在后方边界为第一边时,前方边界为第二边,在后方边界为第二边时,前方边界为第一边。
以上为如何获取调整泳池清洁机器人的当前机身姿态的预设偏航角的方式,包括可以是根据大量的试验数据灵活设置的偏航角,并预先写入泳池清洁机器人存储器的参数值,也包括可以是泳池清洁机器人在池底作业区域执行清洗作业的过程中实际产生的参数值,对此不做限制。进一步地,在本实施例中,根据调整机身姿态的模式的不同,可以区分成:有些规划路径不需 要调整机身姿态,有些规划路径需要调整机身姿态。当然,不需要调整机身姿态的规划路径的偏航角的随机性比较大,不受控制。例如,在调整模式为在路径规划图形的奇数列上调整机身姿态时,路径规划图形中的偶数列不需要调整机身姿态。又例如,在调整模式为在路径规划图形的偶数列上调整机身姿态时,路径规划图形中的奇数列不需要调整机身姿态。又例如,在调整模式为在路径规划图形的指定列上调整机身姿态时,路径规划图形中的不属于指定列的其他列不需要调整机身姿态。指定列可以是全部列或者是部分列。进一步可选的,在路径规划图形划分为多个区域的情况下,指定列可以是每个区域中的某一条规划路径,这样,对每个区域中的一条规划路径调整偏航角。具体举例来说,路径规划图形具有n列,n为正整数,路径规划图形划分为m个区域,m为正整数,每个区域包括n/m条规划路径。对每个区域中的第i条规划路径调整偏航角,i为1至n/m中的任一正整数,也即每隔n/m条规划路径进行偏航角调整。
在本实施例中,针对需要调整机身姿态的规划路径,可以在从一个边界向另一个边界移动之前进行调整,也可以在从一个边界向另一个边界移动一段距离后进行调整。于是,调整泳池清洁机器人的当前机身姿态以确定当前行进方向可以采用但不限于以下方式:
方式1:检测到泳池清洁机器人前进移动到达池底作业区域的前方边界后,控制泳池清洁机器人调头,并读取预设偏航角以供泳池清洁机器人调整当前机身姿态,预设偏航角即为以上所描述的根据大量的试验数据灵活设置的偏航角,并预先写入泳池清洁机器人存储器的参数值,也可以是泳池清洁机器人在池底作业区域执行清洗作业的过程中实际产生的参数值,以下不再赘述,另外,可以理解的是,前方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;根据预设偏航角调整泳池清洁机器人的当前机身姿态,并基于调整后的机身姿态确定当前行进方向。
考虑到实际应用中,泳池清洁机器人在调头之后,因为自身或环境等诸多因素致使泳池清洁机器人发生不可预知的偏移,例如,泳池清洁机器人的 起动力较大或池底摩擦力较大导致泳池清洁机器人在起动阶段的机身姿态不可控。于是,在泳池清洁机器人调头之后立即进行机身姿态调整可能达不到预期效果,仍然会发生机身姿态不可控的情形。于是,可以在泳池清洁机器人调头并成功后退巡边,以及移动一定距离后再调整机身姿态。为此,还可以采用方式2进行机身姿态调整。
方式2:检测到泳池清洁机器人前进移动到达池底作业区域的前方边界后,控制泳池清洁机器人调头,并前进移动第一预设距离,前方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;在控制泳池清洁机器人前进移动第一预设距离的情况下,读取预设偏航角以供泳池清洁机器人调整当前机身姿态,并根据预设偏航角调整泳池清洁机器人的当前机身姿态,基于调整后的机身姿态确定当前行进方向。其中,第一预设距离是根据实际情况灵活设置的,第一预设距离可以过滤掉池清洁机器人调头后重新启动向前移动所带来的偏差。
第一预设距离可为泳池清洁机器人在调头之后所移动的距离,在泳池清洁机器人前进第一预设距离,泳池清洁机器人在保持移动状态的情况下读取预设偏航角以供泳池清洁机器人调整当前机身姿态并进行机身姿态调整,也就是说,在机器不停状态下进行机身调整。
在本实施例中,可以读取预先写入的预设偏航角或者读取在泳池清洁机器人下沉至池底作业区域首次后退巡边成功后所确定的预设偏航角,来调整泳池清洁机器人的当前机身姿态以确定当前行进方向;此首次后退巡边成功后所确定的预设偏航角,具体为,泳池清洁机器人刚落水下沉至池底作业区域后,后退移动并与后方边界发生碰撞,此时读取泳池清洁机器人的当前偏航角作为预设偏航角,或者,控制泳池清洁机器人前进移动第二预设距离,此时读取泳池清洁机器人的当前偏航角作为预设偏航角。
方式3:首先,检测到泳池清洁机器人前进移动到达池底作业区域的前方边界后,控制泳池清洁机器人调头,前方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;再者可控制泳池清洁机器人后退移动,并持 续检测是否与前方边界发生碰撞;若是,则读取预设偏航角,以供泳池清洁机器人调整当前机身姿态;或者,在控制泳池清洁机器人前进移动第三预设距离时,读取预设偏航角以供泳池清洁机器人调整当前机身姿态;根据预设偏航角调整泳池清洁机器人的当前机身姿态,并基于调整后的机身姿态确定当前行进方向。第三预设距离泳池清洁机器人在调头之后所移动的距离,在泳池清洁机器人前进第三预设距离时,泳池清洁机器人在保持移动状态的情况下读取预设偏航角以供泳池清洁机器人调整当前机身姿态并进行机身姿态调整,也就是说,在机器不停状态下进行机身调整。
具体而言,在泳池清洁机器人前进移动到达前方边界并调头之后,控制泳池清洁机器人继续后退以继续针对调头前所朝向的前方边界前进,并在对前方边界再次发生碰撞后,由于泳池清洁机器人的机头远离调头前所朝向的前方边界,此时,可以控制泳池清洁机器人向与调头前所朝向的前方边界相对的边界移动,以规划一条新的规划路径。
在规划一条新的规划路径之前,可以在泳池清洁机器人后退巡边到调头前所朝向的前方边界的起初按照预设偏航角调整机身姿态,并在机身姿态调整后,开始规划一条新的规划路径。
进一步的,考虑到泳池清洁机器人因为自身或环境等诸多因素致使泳池清洁机器人发生不可预知的偏移,例如,泳池清洁机器人的起动力较大或池底摩擦力较大导致泳池清洁机器人在起动阶段的机身姿态不可控。于是,在泳池清洁机器人后退巡边到调头前所朝向的前方边界时立即进行机身姿态调整可能达不到预期效果,仍然会发生机身姿态不可控的情形。于是,在一些场景中,泳池清洁机器人前进移动碰撞到前方边界,调头并后退移动再次巡边到调头前所朝向的前方边界,以及自再次巡边到调头前所朝向的前方边界的位置开始继续向前移动第三预设距离,在移动第三预设距离后再调整机身姿态。
方式4:检测到泳池清洁机器人前进移动到达池底作业区域的前方边界后,控制泳池清洁机器人调头,控制泳池清洁机器人后退移动,并持续检测 是否与前方边界发生碰撞;若是,则读取预设偏航角,以供泳池清洁机器人调整当前机身姿态;前进移动第一预设距离,前方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;在控制泳池清洁机器人前进移动第一预设距离之后,根据预设偏航角调整泳池清洁机器人的当前机身姿态,并基于调整后的机身姿态确定当前行进方向。
值得注意的是,在方式4中,泳池清洁机器人在碰撞到前方边界时读取预设偏航角,并自前方边界的碰撞位置开始前进一段距离后再基于之前所读取的预设偏航角调整机身姿态。
方式5:检测到泳池清洁机器人前进移动到达池底作业区域的前方边界后,控制泳池清洁机器人调头,控制泳池清洁机器人后退移动,并持续检测是否与前方边界发生碰撞;若是,前进移动第一预设距离,前方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;以及在控制泳池清洁机器人前进移动第一预设距离时,读取预设偏航角,并根据预设偏航角调整泳池清洁机器人的当前机身姿态,并基于调整后的机身姿态确定当前行进方向。
值得注意的是,在方式5中,泳池清洁机器人在碰撞到前方边界时并不读取预设偏航角,而是自前方边界的碰撞位置开始前进一段距离后读取预设偏航角,并基于实时读取的预设偏航角调整机身姿态。
为了便于理解,以图8a至图11b为例进行说明。图8a至图11b对应的路径规划图形对应的是在初始构建阶段不进行机身姿态调整的场景。
指定列可以是全部列,也即可以全部列进行机身姿态调整。指定列可以是部分列,也即可以部分列进行机身姿态调整。例如,在图8a中,将除规划路径1至2之外的其他列均作为指定列,这样除了规划路径1至2的偏航角较为随机之外,规划路径3至11等多条规划路径对应的偏航角为同一偏航角,规划路径3至11之间呈现出实质相互平行的状态,这样获得的路径规划图形具有较好的规律性。图8b所示的路径规划图形即为按照图8a所示的路径规划策略得到的图形。
针对每个区域中的实际情况中,可以按需选择指定列。进一步可选的,在路径规划图形划分为多个区域的情况下,指定列可以是每个区域中的某一条规划路径,这样,对每个区域中的一条规划路径调整偏航角。参见图9a,整个路径规划图形包括由第1列至第4列组成的区域1、由第4列至第8列组成的区域2、由第9列至第12列组成的区域3。在这种情况下,路径规划图形中的各个指定列对应的偏航角为同一偏航角,除指定列之外的其他列的偏航角基本相同,随机性较小,于是,该路径规划图形中各个指定列之间呈现出实质相互平行的状态,具有较好的规律性,而除指定列之外的其他列基本保持实质相互平行的状态,随机性较小。图9b所示的路径规划图形即为按照图9a所示的路径规划策略得到的图形。
在图10a中,对奇数列进行机身姿态调整。这样规划路径3、5、7、9等多条奇数列对应的偏航角为同一偏航角,这些规划路径3、5、7、9之间呈现出实质相互平行的状态,具有较好的规律性,而规划路径1、以及各个偶数列对应的偏航角基本相同,随机性较小。图10b所示的路径规划图形即为按照图10a所示的路径规划策略得到的图形。
在图11a中,对偶数列进行机身姿态调整。这样规划路径4、6、8等多条偶数列对应的偏航角为同一偏航角,这些规划路径4、6、8之间呈现出实质相互平行的状态,具有较好的规律性,而规划路径2、以及各个奇数列对应的偏航角基本相同,随机性较小。图11b所示的路径规划图形即为按照图11a所示的路径规划策略得到的图形。
值得注意的是,泳池清洁机器人在规划需要调整的规划路径之前,可以在探测到第一边或第二边之后,控制泳池清洁机器人调头,并在调头后执行当前机身姿态调整操作,也可以在调头后并向前移动移动距离后再执行当前机身姿态调整操作,对此不做限制。
本申请实施例提供的技术方案,调整泳池清洁机器人的机身姿态以控制泳池清洁机器人的行进方向,进而控制泳池清洁机器人在池底作业区域中的各条规划路径之间呈现出实质相互平行的状态,使得获取规律性较好的路径 规划图形成为可能,特别是使得获取实质平行斜杠式的路径规划图形成为可能。规律性较好的路径规划图形能够帮助泳池清洁机器人提高清洁覆盖率,减少遗漏清洁的区域,提高清洁效率。
本申请实施例提供还提供一种泳池清洁机器人的清洁方法,在执行泳池池底的清洁任务过程中,根据前述实施例的泳池清洁机器人的路径规划方法进行路径规划。
图12为本申请实施例提供的一种泳池清洁机器人的路径规划装置的结构示意图。该装置可以由软件和/或硬件组成,一般可集成在泳池清洁机器人中。参见图12,该装置可以包括:
调整模块10,用于调整泳池清洁机器人的当前机身姿态以确定当前行进方向;
控制模块20,用于控制泳池清洁机器人按照当前行进方向在界定池底作业区域的边界之间进行移动以生成一条规划路径;
生成模块30,用于根据各当前行进方向对应的多条规划路径,生成覆盖池底作业区域的路径规划图形。
进一步可选的,调整模块10调整泳池清洁机器人的当前机身姿态以确定当前行进方向时,具体用于:检测到泳池清洁机器人前进移动到达池底作业区域的前方边界后,控制泳池清洁机器人调头,前方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;根据预设偏航角调整泳池清洁机器人的当前机身姿态,并基于调整后的机身姿态确定当前行进方向。
进一步可选的,调整模块10调整泳池清洁机器人的当前机身姿态以确定当前行进方向时,具体用于:检测到泳池清洁机器人前进移动到达池底作业区域的前方边界后,控制泳池清洁机器人调头,并前进移动第一预设距离,前方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;在控制泳池清洁机器人前进移动第一预设距离之后,根据预设偏航角调整泳池清洁机器人的当前机身姿态,并基于调整后的机身姿态确定当前行进方向。
进一步可选的,预设偏航角为预先写入泳池清洁机器人存储器的参数值, 或者为泳池清洁机器人在池底作业区域执行清洗作业的过程中实际产生的参数值。
进一步可选的,上述装置还包括获取模块,若预设偏航角为泳池清洁机器人在池底作业区域执行清洗作业的过程中实际产生的参数值,则获取模块获取预设偏航角时,具体用于:在泳池机器人首次落水下沉至池底作业区域或,在检测到泳池清洁机器人前进移动到达池底作业区域的前方边界后,控制泳池清洁机器人调头后,控制泳池清洁机器人后退移动,并持续检测是否与后方边界发生碰撞,后方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;若是,则读取泳池清洁机器人的当前偏航角作为预设偏航角;或者,控制泳池清洁机器人前进移动第二预设距离,并读取泳池清洁机器人的当前偏航角作为预设偏航角。
进一步可选的,获取模块控制泳池清洁机器人前进移动第二预设距离,并读取泳池清洁机器人的当前偏航角作为预设偏航角时,具体用于:控制泳池清洁机器人前进移动第二预设距离,读取到达池底作业区域的前方边界时泳池清洁机器人的当前偏航角作为预设偏航角,第二预设距离为从后方边界到前方边界的距离,后方边界与前方边界相对设置。
进一步可选的,调整模块10在检测到泳池清洁机器人前进移动到达池底作业区域的前方边界,并控制泳池清洁机器人调头之后,还用于:控制泳池清洁机器人后退移动,并持续检测是否与前方边界发生碰撞;若是,则读取预设偏航角,以供泳池清洁机器人调整当前机身姿态;或者,在控制泳池清洁机器人前进移动第三预设距离的情况下,读取预设偏航角以供泳池清洁机器人调整当前机身姿态。
进一步可选的,调整模块10在检测到泳池清洁机器人前进移动到达池底作业区域的前方边界,并控制泳池清洁机器人调头之后,还用于:控制所述泳池清洁机器人后退移动,并持续检测是否与所述前方边界发生碰撞;若是,则读取所述预设偏航角,以供所述泳池清洁机器人调整当前机身姿态;或者,在控制所述泳池清洁机器人前进移动所述第一预设距离时,读取所述预设偏 航角以供所述泳池清洁机器人调整当前机身姿态。
进一步可选的,调整模块10调整泳池清洁机器人的当前机身姿态以确定当前行进方向时,具体用于:在路径规划图形的奇数列,调整泳池清洁机器人的当前机身姿态以确定当前行进方向;或者,在路径规划图形的偶数列,调整泳池清洁机器人的当前机身姿态以确定当前行进方向;或者,在路径规划图形的指定列,调整泳池清洁机器人的当前机身姿态以确定当前行进方向。
图12所示的泳池清洁机器人的路径规划装置可以执行图5所示实施例的泳池清洁机器人的路径规划方法,其实现原理和技术效果不再赘述。对于上述实施例中的泳池清洁机器人的路径规划装置其中各个模块、单元执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图13为本申请实施例提供的一种电子设备的结构示意图。如图13所示,该电子设备包括:存储器21和处理器22;
存储器21,用于存储计算机程序,并可被配置为存储其它各种数据以支持在计算平台上的操作。这些数据的示例包括用于在计算平台上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。
存储器21可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
处理器22,与存储器21耦合,用于执行存储器21中的计算机程序,以用于:调整泳池清洁机器人的当前机身姿态以确定当前行进方向;控制泳池清洁机器人按照当前行进方向在界定池底作业区域的边界之间进行移动以生成一条规划路径;根据各当前行进方向对应的多条规划路径,生成覆盖池底作业区域的路径规划图形。
进一步可选的,处理器22调整泳池清洁机器人的当前机身姿态以确定当前行进方向时,具体用于:检测到泳池清洁机器人前进移动到达池底作业区域的前方边界后,控制泳池清洁机器人调头,前方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;根据预设偏航角调整泳池清洁机器 人的当前机身姿态,并基于调整后的机身姿态确定当前行进方向。
进一步可选的,处理器22调整泳池清洁机器人的当前机身姿态以确定当前行进方向时,具体用于:检测到泳池清洁机器人前进移动到达池底作业区域的前方边界后,控制泳池清洁机器人调头,并前进移动第一预设距离,前方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;在控制泳池清洁机器人前进移动第一预设距离之后,根据预设偏航角调整泳池清洁机器人的当前机身姿态,并基于调整后的机身姿态确定当前行进方向。
进一步可选的,预设偏航角为预先写入泳池清洁机器人存储器的参数值,或者为泳池清洁机器人在池底作业区域执行清洗作业的过程中实际产生的参数值。
进一步可选的,若预设偏航角为泳池清洁机器人在池底作业区域执行清洗作业的过程中实际产生的参数值,则处理器22获取预设偏航角时,具体用于:
在泳池机器人首次落水下沉至池底作业区域,或,在检测到泳池清洁机器人前进移动到达池底作业区域的前方边界后,控制泳池清洁机器人调头;并且,控制泳池清洁机器人后退移动,并持续检测是否与后方边界发生碰撞,后方边界为池底作业区域中相对设置的第一边和第二边中任一条边界;若是,则读取泳池清洁机器人的当前偏航角作为预设偏航角;或者,控制泳池清洁机器人前进移动第二预设距离,并读取泳池清洁机器人的当前偏航角作为预设偏航角。
进一步可选的,处理器22控制泳池清洁机器人前进移动第二预设距离,并读取泳池清洁机器人的当前偏航角作为预设偏航角时,具体用于:控制泳池清洁机器人前进移动第二预设距离,读取到达池底作业区域的前方边界时泳池清洁机器人的当前偏航角作为预设偏航角,第二预设距离为从后方边界到前方边界的距离,后方边界与前方边界相对设置。
进一步可选的,在检测到泳池清洁机器人前进移动到达池底作业区域的前方边界,并控制泳池清洁机器人调头之后,处理器22还用于:控制泳池清 洁机器人后退移动,并持续检测是否与前方边界发生碰撞;若是,则读取预设偏航角,以供泳池清洁机器人调整当前机身姿态;或者,在控制泳池清洁机器人前进移动第三预设距离的情况下,读取预设偏航角以供泳池清洁机器人调整当前机身姿态。
进一步可选的,在检测到泳池清洁机器人前进移动到达池底作业区域的前方边界,并控制泳池清洁机器人调头之后,处理器22还用于:控制泳池清洁机器人后退移动,并持续检测是否与前方边界发生碰撞;若是,则读取预设偏航角,以供泳池清洁机器人调整当前机身姿态;或者,在控制泳池清洁机器人前进移动第一预设距离时,读取预设偏航角以供泳池清洁机器人调整当前机身姿态。
进一步可选的,处理器22调整泳池清洁机器人的当前机身姿态以确定当前行进方向时,具体用于:在路径规划图形的奇数列,调整泳池清洁机器人的当前机身姿态以确定当前行进方向;或者,在路径规划图形的偶数列,调整泳池清洁机器人的当前机身姿态以确定当前行进方向;或者,在路径规划图形的指定列,调整泳池清洁机器人的当前机身姿态以确定当前行进方向。
进一步,如图13所示,该电子设备还包括:通信组件23、显示器24、电源组件25、音频组件26等其它组件。图13中仅示意性给出部分组件,并不意味着电子设备只包括图13所示组件。另外,图13中虚线框内的组件为可选组件,而非必选组件,具体可视电子设备的产品形态而定。本实施例的电子设备可以实现为台式电脑、笔记本电脑、智能手机或IOT设备等终端设备,也可以是常规服务器、云服务器或服务器阵列等服务端设备。若本实施例的电子设备实现为台式电脑、笔记本电脑、智能手机等终端设备,可以包含图13中虚线框内的组件;若本实施例的电子设备实现为常规服务器、云服务器或服务器阵列等服务端设备,则可以不包含图13中虚线框内的组件。
关于处理器执行各步骤的详细实施过程可参见前述各实施例中的相关描述,在此不再赘述。
相应地,本申请实施例还提供一种存储有计算机程序的计算机可读存储介质,计算机程序被执行时能够实现上述方法实施例中可由电子设备执行的各步骤。
相应地,本申请实施例还提供一种计算机程序产品,包括计算机程序/指令,当计算机程序/指令被处理器执行时,致使处理器能够实现上述方法实施例中可由电子设备执行的各步骤。
上述通信组件被配置为便于通信组件所在设备和其他设备之间有线或无线方式的通信。通信组件所在设备可以接入基于通信标准的无线网络,如WiFi,2G、3G、4G/LTE、5G等移动通信网络,或它们的组合。在一个示例性实施例中,通信组件经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
上述显示器包括屏幕,其屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。
上述电源组件,为电源组件所在设备的各种组件提供电力。电源组件可以包括电源管理系统,一个或多个电源,及其他与为电源组件所在设备生成、管理和分配电力相关联的组件。
上述音频组件,可被配置为输出和/或输入音频信号。例如,音频组件包括一个麦克风(MIC),当音频组件所在设备处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器或经由通信组件发送。在一些实施例中,音频组件还包括一个扬声器,用于输出音频信号。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、 或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、 程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (13)

  1. 一种泳池清洁机器人的路径规划方法,其特征在于,包括:
    调整泳池清洁机器人的当前机身姿态以确定当前行进方向;
    控制所述泳池清洁机器人按照所述当前行进方向在界定池底作业区域的边界之间进行移动以生成一条规划路径;
    根据各所述当前行进方向对应的多条规划路径,生成覆盖所述池底作业区域的路径规划图形。
  2. 根据权利要求1所述的方法,其特征在于,所述调整泳池清洁机器人的当前机身姿态以确定当前行进方向,包括:
    检测到所述泳池清洁机器人前进移动到达所述池底作业区域的前方边界后,控制所述泳池清洁机器人调头,所述前方边界为所述池底作业区域中相对设置的第一边和第二边中任一条边界;
    根据预设偏航角调整所述泳池清洁机器人的当前机身姿态,并基于调整后的机身姿态确定所述当前行进方向。
  3. 根据权利要求1所述的方法,其特征在于,所述调整泳池清洁机器人的当前机身姿态以确定当前行进方向,包括:
    检测到所述泳池清洁机器人前进移动到达所述池底作业区域的前方边界后,控制所述泳池清洁机器人调头,并前进移动第一预设距离,所述前方边界为所述池底作业区域中相对设置的第一边和第二边中任一条边界;
    在控制所述泳池清洁机器人前进移动所述第一预设距离之后,根据预设偏航角调整所述泳池清洁机器人的当前机身姿态,并基于调整后的机身姿态确定所述当前行进方向。
  4. 根据权利要求2或3所述的方法,其特征在于,所述预设偏航角为预先写入所述泳池清洁机器人存储器的参数值,或者为所述泳池清洁机器人在所述池底作业区域执行清洗作业的过程中实际产生的参数值。
  5. 根据权利要求4所述的方法,其特征在于,若所述预设偏航角为所述泳池清洁机器人在所述池底作业区域执行清洗作业的过程中实际产生的参数值, 则所述预设偏航角的获取方式包括:
    在所述泳池机器人首次落水下沉至所述池底作业区域,或,在检测到所述泳池清洁机器人前进移动到达所述池底作业区域的前方边界后,控制所述泳池清洁机器人调头;并且,
    控制所述泳池清洁机器人后退移动,并持续检测是否与后方边界发生碰撞,所述后方边界为所述池底作业区域中相对设置的第一边和第二边中任一条边界;
    若是,则读取所述泳池清洁机器人的当前偏航角作为所述预设偏航角;或者,控制所述泳池清洁机器人前进移动第二预设距离,并读取所述泳池清洁机器人的当前偏航角作为所述预设偏航角。
  6. 根据权利要求5所述的方法,其特征在于,所述控制所述泳池清洁机器人前进移动第二预设距离,并读取所述泳池清洁机器人的当前偏航角作为所述预设偏航角,包括:
    控制所述泳池清洁机器人前进移动所述第二预设距离,读取到达所述池底作业区域的前方边界时所述泳池清洁机器人的当前偏航角作为所述预设偏航角,所述第二预设距离为从所述后方边界到所述前方边界的距离,所述后方边界与所述前方边界相对设置。
  7. 根据权利要求2所述的方法,其特征在于,在检测到所述泳池清洁机器人前进移动到达所述池底作业区域的前方边界,并控制所述泳池清洁机器人调头之后,还包括:
    控制所述泳池清洁机器人后退移动,并持续检测是否与所述前方边界发生碰撞;
    若是,则读取所述预设偏航角,以供所述泳池清洁机器人调整当前机身姿态;或者,在控制所述泳池清洁机器人前进移动第三预设距离的情况下,读取所述预设偏航角以供所述泳池清洁机器人调整当前机身姿态。
  8. 根据权利要求3所述的方法,其特征在于,在检测到所述泳池清洁机器人前进移动到达所述池底作业区域的前方边界,并控制所述泳池清洁机器人调 头之后,还包括:
    控制所述泳池清洁机器人后退移动,并持续检测是否与所述前方边界发生碰撞;
    若是,则读取所述预设偏航角,以供所述泳池清洁机器人调整当前机身姿态;或者,在控制所述泳池清洁机器人前进移动所述第一预设距离时,读取所述预设偏航角以供所述泳池清洁机器人调整当前机身姿态。
  9. 根据权利要求1-3任一所述的方法,其特征在于,所述调整泳池清洁机器人的当前机身姿态以确定当前行进方向,包括:
    在所述路径规划图形的奇数列,调整所述泳池清洁机器人的当前机身姿态以确定当前行进方向;或者,
    在所述路径规划图形的偶数列,调整所述泳池清洁机器人的当前机身姿态以确定当前行进方向;或者,
    在所述路径规划图形的指定列,调整所述泳池清洁机器人的当前机身姿态以确定当前行进方向。
  10. 一种泳池清洁机器人的清洁方法,其特征在于,包括:在执行泳池池底的清洁任务过程中,根据权利要求1-9任一项所述的泳池清洁机器人的路径规划方法进行路径规划。
  11. 一种泳池清洁机器人的路径规划装置,其特征在于,包括:
    调整模块,用于调整泳池清洁机器人的当前机身姿态以确定当前行进方向;
    控制模块,用于控制所述泳池清洁机器人按照所述当前行进方向在界定池底作业区域的边界之间进行移动以生成一条规划路径;
    生成模块,用于根据各所述当前行进方向对应的多条规划路径,生成覆盖所述池底作业区域的路径规划图形。
  12. 一种电子设备,其特征在于,包括:
    处理器;以及
    存储程序的存储器;
    其中,所述程序包括指令,所述指令在由所述处理器执行时使所述处理器 执行根据权利要求1-9中任一项所述的泳池清洁机器人的路径规划方法或执行根据权利要求10所述的泳池清洁机器人的清洁方法。
  13. 一种存储有计算机指令的计算机可读存储介质,其特征在于,其中,所述计算机指令用于使计算机执行根据权利要求1-9中任一项所述的泳池清洁机器人的路径规划方法或执行根据权利要求10所述的泳池清洁机器人的清洁方法。
PCT/CN2022/127062 2022-02-18 2022-10-24 泳池清洁机器人的路径规划及清洁方法、装置及设备 WO2023155465A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNPCT/CN2022/076907 2022-02-18
PCT/CN2022/076907 WO2023155159A1 (en) 2022-02-18 2022-02-18 Wall collision u-turning method and apparatus for swimming pool cleaning robot, and swimming pool edge cleaning method and apparatus
CN202211262352.5A CN115822334A (zh) 2022-02-18 2022-10-14 泳池清洁机器人的路径规划及清洁方法、装置及设备
CN202211262352.5 2022-10-14

Publications (1)

Publication Number Publication Date
WO2023155465A1 true WO2023155465A1 (zh) 2023-08-24

Family

ID=85524796

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/076907 WO2023155159A1 (en) 2022-02-18 2022-02-18 Wall collision u-turning method and apparatus for swimming pool cleaning robot, and swimming pool edge cleaning method and apparatus
PCT/CN2022/126951 WO2023155464A1 (zh) 2022-02-18 2022-10-24 泳池清扫方法、装置、电子设备及存储介质
PCT/CN2022/127062 WO2023155465A1 (zh) 2022-02-18 2022-10-24 泳池清洁机器人的路径规划及清洁方法、装置及设备

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/076907 WO2023155159A1 (en) 2022-02-18 2022-02-18 Wall collision u-turning method and apparatus for swimming pool cleaning robot, and swimming pool edge cleaning method and apparatus
PCT/CN2022/126951 WO2023155464A1 (zh) 2022-02-18 2022-10-24 泳池清扫方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (2) CN115822334A (zh)
WO (3) WO2023155159A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299699B1 (en) * 1999-04-01 2001-10-09 Aqua Products Inc. Pool cleaner directional control method and apparatus
US6309468B1 (en) * 1998-09-23 2001-10-30 3S Systemtechnik Ag Working method and cleaning device for cleaning a swimming pool
CN101481957A (zh) * 2009-02-05 2009-07-15 付桂兰 遥控有序泳池清洁机器人及其有序清洗方法
CN106325287A (zh) * 2015-06-14 2017-01-11 复旦大学 一种基于惯性/磁传感器marg姿态检测的智能割草机直线行走控制系统
CN107340768A (zh) * 2016-12-29 2017-11-10 珠海市微半导体有限公司 一种智能机器人的路径规划方法
CN110955262A (zh) * 2019-12-10 2020-04-03 河海大学常州校区 光伏组件清洁机器人的路径规划与跟踪的控制方法及系统
CN111199677A (zh) * 2019-12-25 2020-05-26 邦鼓思电子科技(上海)有限公司 一种室外区域的工作地图自动建立方法,装置,存储介质及工作设备
CN112631281A (zh) * 2020-12-10 2021-04-09 尚科宁家(中国)科技有限公司 清洁机器人的路径规划方法及清洁机器人

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086942B2 (ja) * 2008-09-02 2012-11-28 トヨタ自動車株式会社 経路探索装置、経路探索方法、及び経路探索プログラム
CN102799180A (zh) * 2012-07-26 2012-11-28 杭州高越科技有限公司 一种清洗机行走控制方法与装置
US20180224856A1 (en) * 2016-04-11 2018-08-09 Aqua Products, Inc. Method for modifying an onboard control system of a pool cleaner, and power source for a pool cleaner
US11124982B2 (en) * 2016-05-25 2021-09-21 Maytronics Ltd. Pool cleaner with drive motor navigation capabilities
CN208110385U (zh) * 2018-03-07 2018-11-16 中国石油大学(华东) 一种激光导航机器人救援系统
KR20190123673A (ko) * 2018-04-06 2019-11-01 엘지전자 주식회사 이동 로봇 및 그 제어방법
CN108634886B (zh) * 2018-05-29 2020-08-28 珠海市一微半导体有限公司 机器人清扫中断后的控制方法及芯片
EP3809231B1 (en) * 2019-10-17 2023-10-18 Nokia Solutions and Networks Oy Controlling movement of a device
CN111466846B (zh) * 2020-03-31 2022-03-08 深圳市银星智能科技股份有限公司 清洁机器人的清洁方法、芯片以及清洁机器人
CN111596662B (zh) * 2020-05-26 2023-03-10 珠海一微半导体股份有限公司 一种沿全局工作区域一圈的判断方法、芯片及视觉机器人
CN111906779B (zh) * 2020-06-30 2022-05-10 珠海一微半导体股份有限公司 一种越障结束判断方法、越障控制方法、芯片及机器人
AU2021324636A1 (en) * 2020-08-10 2023-01-19 Zodiac Pool Care Europe Systems and methods of operating automatic swimming pool cleaners, especially when approaching walls or other objects
CN112540611A (zh) * 2020-09-23 2021-03-23 深圳市银星智能科技股份有限公司 一种机器人的路径规划方法、机器人及主控芯片
CN112947408B (zh) * 2021-01-19 2021-12-03 佛山市顺德区一拓电气有限公司 一种清洁设备的控制方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309468B1 (en) * 1998-09-23 2001-10-30 3S Systemtechnik Ag Working method and cleaning device for cleaning a swimming pool
US6299699B1 (en) * 1999-04-01 2001-10-09 Aqua Products Inc. Pool cleaner directional control method and apparatus
CN101481957A (zh) * 2009-02-05 2009-07-15 付桂兰 遥控有序泳池清洁机器人及其有序清洗方法
CN106325287A (zh) * 2015-06-14 2017-01-11 复旦大学 一种基于惯性/磁传感器marg姿态检测的智能割草机直线行走控制系统
CN107340768A (zh) * 2016-12-29 2017-11-10 珠海市微半导体有限公司 一种智能机器人的路径规划方法
CN110955262A (zh) * 2019-12-10 2020-04-03 河海大学常州校区 光伏组件清洁机器人的路径规划与跟踪的控制方法及系统
CN111199677A (zh) * 2019-12-25 2020-05-26 邦鼓思电子科技(上海)有限公司 一种室外区域的工作地图自动建立方法,装置,存储介质及工作设备
CN112631281A (zh) * 2020-12-10 2021-04-09 尚科宁家(中国)科技有限公司 清洁机器人的路径规划方法及清洁机器人

Also Published As

Publication number Publication date
CN115822334A (zh) 2023-03-21
CN116048059B (zh) 2023-10-20
WO2023155464A1 (zh) 2023-08-24
CN116048059A (zh) 2023-05-02
WO2023155159A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
EP3718704B1 (en) Moving device for cleaning, cooperative cleaning system and method for controlling same
EP3199725B1 (en) Method of operating a pool cleaning robot
WO2019144541A1 (zh) 一种清洁机器人
US9481087B2 (en) Robot and control method thereof
US20190090711A1 (en) Robot cleaner and control method thereof
US12016502B2 (en) Control method of cleaning robot
CN100541226C (zh) 应用于自走装置的虚拟墙系统
CN113352325B (zh) 养殖舱自动清洗方法及设备
WO2020215945A1 (zh) 清洁方法、擦窗机器人及存储介质
WO2023155465A1 (zh) 泳池清洁机器人的路径规划及清洁方法、装置及设备
WO2019174166A1 (zh) 一种基于投影手机的无人机飞行控制系统
CN209936937U (zh) 一种人脸跟踪机器人
WO2024149199A1 (zh) 水池清洁机器人的控制方法以及计算机可读存储介质
US20210369070A1 (en) User apparatus, cleaning robot including the same, and method of controlling cleaning robot
WO2024149200A1 (zh) 水池清洁机器人的路径规划方法和计算机可读存储介质
CN114468894A (zh) 一种扫地机器人的控制方法、系统及存储介质
WO2020056646A1 (zh) 无人机及其控制方法、控制装置和计算机可读存储介质
CN115542922B (zh) 一种泳池清洁机器人及控制方法、电子设备与存储介质
WO2024092854A1 (zh) 泳池清洁机器人的控制方法及泳池清洁机器人
CN115500737B (zh) 一种地面介质探测方法、装置及清洁设备
CN105334852A (zh) 扫地机器人的干涉系统与电脑系统
CN116300875A (zh) 水位线信息的获取方法、装置以及泳池清洁机器人
JP5110824B2 (ja) 複数の振動波モータを駆動源として用いる駆動装置の制御方法、該制御方法をコンピュータに実行させるプログラム、及び該駆動装置の制御装置
JP2022027301A (ja) 掃除機システム、走行経路表示方法、および、プログラム
WO2024149206A1 (zh) 水池水位线检测装置以及水位线信息的获取方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926769

Country of ref document: EP

Kind code of ref document: A1