WO2023155464A1 - 泳池清扫方法、装置、电子设备及存储介质 - Google Patents

泳池清扫方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023155464A1
WO2023155464A1 PCT/CN2022/126951 CN2022126951W WO2023155464A1 WO 2023155464 A1 WO2023155464 A1 WO 2023155464A1 CN 2022126951 W CN2022126951 W CN 2022126951W WO 2023155464 A1 WO2023155464 A1 WO 2023155464A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
swimming pool
pool
cleaning
cleaning robot
Prior art date
Application number
PCT/CN2022/126951
Other languages
English (en)
French (fr)
Inventor
丁忠超
Original Assignee
智橙动力(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智橙动力(北京)科技有限公司 filed Critical 智橙动力(北京)科技有限公司
Publication of WO2023155464A1 publication Critical patent/WO2023155464A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0206Control of position or course in two dimensions specially adapted to water vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/14Parts, details or accessories not otherwise provided for
    • E04H4/16Parts, details or accessories not otherwise provided for specially adapted for cleaning
    • E04H4/1654Self-propelled cleaners
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Definitions

  • the embodiments of the present application relate to the technical field of cleaning control, and in particular to a swimming pool cleaning method, device, electronic equipment, and storage medium.
  • the swimming pool cleaning robot is a kind of cleaning robot produced according to the needs of swimming pool cleaning. It can complete the repeated cleaning of the pool bottom and the pool wall and the action of filtering the pool water in the pool.
  • embodiments of the present application provide a swimming pool cleaning method, device, electronic equipment, and computer storage medium, so as to at least partly solve the above problems.
  • a swimming pool cleaning method including: controlling the swimming pool cleaning robot to move along each cleaning path in the swimming pool to perform a cleaning operation, and acquiring the accumulated value of the cleaning path moved by the swimming pool cleaning robot; If the accumulated value satisfies the preset condition, the swimming pool cleaning robot is controlled to move along the wall detection path, so as to perform a wall detection operation of the pool wall to be detected in the swimming pool.
  • a swimming pool cleaning device including: a cleaning module, used to control the swimming pool cleaning robot to move along each cleaning path in the swimming pool to perform cleaning operations, and obtain the moving data of the swimming pool cleaning robot.
  • the cumulative value of the cleaning path used to control the swimming pool cleaning robot to move along the wall detection path when the cumulative value meets the preset conditions, so as to perform the wall detection operation of the pool wall to be detected.
  • an electronic device including: a processor; and a memory storing a program; wherein the program includes instructions, and the instructions, when executed by the processor, cause the processor to The method according to the above aspect is performed.
  • a non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to cause a computer to execute the method described in the above aspect.
  • the swimming pool cleaning solution provided by various aspects of this application can trigger the detection of the pool wall to be detected when the cumulative value of the cleaning path moved by the swimming pool cleaning robot meets the preset conditions during the cleaning operation of the swimming pool cleaning robot. Wall operation, so as to improve the cleaning efficiency and cleaning success rate of the swimming pool, and help to improve the coverage of swimming pool cleaning.
  • Fig. 1 is a processing flowchart of a swimming pool cleaning method according to an exemplary embodiment of the present application.
  • FIGS. 2A to 2F are schematic diagrams of swimming pools and cleaning paths in the swimming pools according to different embodiments of the present application.
  • Fig. 3 is a processing flowchart of a swimming pool cleaning method according to another exemplary embodiment of the present application.
  • Fig. 4 is a processing flowchart of a swimming pool cleaning method according to another exemplary embodiment of the present application.
  • 5A to 5C are schematic diagrams of different embodiments of a swimming pool cleaning robot performing cleaning operations.
  • Fig. 6 is a processing flowchart of a swimming pool cleaning method according to another exemplary embodiment of the present application.
  • Fig. 7 is a processing flowchart of a swimming pool cleaning method according to another exemplary embodiment of the present application.
  • FIGS. 8A to 8C are schematic diagrams of different embodiments of a swimming pool cleaning robot performing a collision operation.
  • Fig. 9 is a processing flowchart of a swimming pool cleaning method according to another exemplary embodiment of the present application.
  • Fig. 10 is a structural block diagram of a swimming pool cleaning device according to an exemplary embodiment of the present application.
  • FIG. 11 is a structural block diagram of an electronic device according to an exemplary embodiment of the present application.
  • 1000 swimming pool cleaning device; 1002, cleaning module; 1004, wall detection module; 1100, electronic equipment; 1101, computing unit; 1102, ROM; 1103, RAM; 1104, bus; 1105, input and output interface; 1106, input unit; 1107, an output unit; 1108, a storage unit; 1109, a communication unit.
  • Fig. 1 is a processing flowchart of a swimming pool cleaning method according to an exemplary embodiment of the present application. As shown in the figure, this embodiment mainly includes the following steps:
  • Step S102 controlling the swimming pool cleaning robot to move along each cleaning path in the swimming pool to perform a cleaning operation, and acquiring the accumulated value of the cleaning path moved by the swimming pool cleaning robot.
  • the swimming pool may be a regular shaped swimming pool.
  • a regular shaped swimming pool For example, a square, a rectangle (refer to FIG. 2A ), a circle, an ellipse (refer to FIG. 2B ), a hexagon (refer to FIG. 2C ), and the like.
  • the swimming pool may be a swimming pool having an irregular shape, as shown in the examples shown in FIGS. 2D to 2F .
  • each cleaning path in the swimming pool can be generated according to the initial position and initial orientation of the swimming pool cleaning robot.
  • various cleaning paths L1, L2, L3, L4, etc. in the swimming pool can be generated according to the initial position (eg position a0) and initial orientation (eg X direction) of the swimming pool cleaning robot.
  • each cleaning path for example, cleaning paths L1, L2, L3, L4
  • the extension direction of each cleaning path is substantially parallel to the initial orientation (for example, X direction) of the swimming pool cleaning robot; A certain degree of offset, therefore, the extension direction of each cleaning path (for example, cleaning path L1, L2, L3, L4) may not be completely parallel to the initial orientation of the swimming pool cleaning robot; in addition, if the initial orientation has a certain offset Angle, each cleaning path constitutes a parallel slash-style cleaning path diagram.
  • the initial position and initial orientation of the swimming pool cleaning robot can be determined according to the position and orientation of the swimming pool cleaning robot freely sinking to the bottom of the swimming pool. Specifically, after the swimming pool cleaning robot is put into the swimming pool, the position and orientation of the swimming pool cleaning robot when it freely sinks to the bottom of the swimming pool can be determined as the initial position and initial orientation of the swimming pool cleaning robot.
  • the swimming pool cleaning robot can also be controlled to move to a designated position and a designated orientation relative to the swimming pool, and the designated position and designated orientation can be determined as the initial position and initial orientation of the swimming pool cleaning robot. Specifically, after the swimming pool cleaning robot sinks into the pool bottom of the swimming pool, the swimming pool cleaning robot can be controlled to move relative to the pool bottom of the swimming pool according to the movement instruction until the expected specified position and specified orientation are met, so as to determine the initial position of the swimming pool cleaning robot and initial orientation.
  • the swimming pool cleaning robot can be controlled to move serpentinely along the arrow directions in each cleaning path, so as to perform the cleaning operation of each cleaning path.
  • the black block part is the head end part of the swimming pool cleaning robot.
  • two reference pool walls and two detection walls to be detected relative to the current path may be defined.
  • the two reference pool walls may be located on opposite sides of the current path along a first direction parallel to the extension direction of the current path, and the two pool walls to be detected are located on the current path along a second direction perpendicular to the extension direction of the current path. opposite sides.
  • the two reference pool walls A, B of the swimming pool are located along the first direction (X direction) parallel to the extension direction of the current path (for example, any one of L1, L2, L3, L4).
  • the two pool walls C and D to be detected are located in the current opposite sides of the path.
  • the reference pool wall of the swimming pool or the pool wall to be detected can be linear (referring to FIG. 2A ), arc-shaped (referring to FIG. 2B , FIG. 2E1 , and FIG. 2F ), or broken-line (referring to FIG. Figure 2D) et al.
  • the two reference pool walls or the two pool walls to be detected in the same swimming pool may have the same shape or different shapes according to the actual shape of the swimming pool.
  • the two reference pool walls of the swimming pool and the two pool walls to be detected are both linear; in the oval-shaped swimming pool example shown in Figure 2B, the swimming pool's The two reference pool walls and the two pool walls to be detected are all arc-shaped, but the arc size of the two reference pool walls is different from the arc size of the two pool walls to be detected; the hexagonal shape shown in Figure 2C In the swimming pool example, the two reference pool walls of the pool are linear, and the two to-be-detected pool walls are both broken lines.
  • the pool wall C to be detected is curved; in the example of the irregularly shaped swimming pool shown in FIG. 2F , the pool wall C to be detected is curved.
  • the reference pool wall of the swimming pool or the pool wall to be detected may also be segmented.
  • the reference wall A of the swimming pool is composed of two segments A1 and A2
  • the pool wall C to be detected is composed of two segments C1 and C2 .
  • reference pool wall or the pool wall to be detected in this application are relatively defined concepts rather than absolutely defined concepts, which can be adjusted accordingly according to changes in the current path of the swimming pool cleaning robot.
  • the entire pool wall C (including C1 and C2) can be positioned as the pool wall to be detected on the current path L1;
  • the C1 segment in the pool wall C will be positioned as the reference pool wall of the current path L2, and the C2 segment in the pool wall C will be defined as the waiting path of the current path L2.
  • the entire pool wall C (including C1 and C2) can be defined as the pool wall to be detected in the current path L1
  • the A1 segment in pool wall A is defined as the reference pool wall of the current path L1; when the current path of the pool cleaning robot is currently L2, only the C2 segment in the pool wall C will be positioned as the current path L2
  • the pool wall to be detected, and the A2 segment in pool wall A will be defined as the reference pool wall of the current path L2.
  • the number of the cleaning paths moved by the swimming pool cleaning robot may be cumulatively updated to generate an accumulated value of the cleaning paths moved by the swimming pool cleaning robot.
  • Step S104 if the accumulated value satisfies the preset condition, control the swimming pool cleaning robot to move along the wall detection path, so as to perform the wall detection operation of the pool wall to be detected.
  • a determination result that the accumulated value satisfies the preset condition can be obtained.
  • the preset path value can be a fixed value set by the system by default, or an adjustable value that can be set arbitrarily according to actual cleaning requirements.
  • the default path value can be set to any value such as 10, 15 or 20.
  • the swimming pool cleaning robot can perform a wall detection operation after every 15 cleaning paths.
  • the number of areas in the cleaning area that the swimming pool cleaning robot has moved can be calculated, and if the number of areas meets the preset area value, the judgment result that the cumulative value meets the preset condition is obtained .
  • each cleaning area can be set, for example, each cleaning area is set to include 10, 15, or 20 cleaning paths.
  • the preset area value can be a fixed value set by the system by default, or an adjustable value that can be set arbitrarily according to actual cleaning needs.
  • the swimming pool cleaning robot can perform a wall detection operation after every 2 cleaning areas.
  • the swimming pool cleaning method provided in this embodiment improves the swimming pool cleaning efficiency by controlling the swimming pool cleaning robot to perform wall detection operations at intervals during the cleaning operation.
  • FIG. 3 is a processing flowchart of a swimming pool cleaning method according to another embodiment of the present application.
  • This embodiment is a specific implementation of the above step S102. As shown in the figure, this embodiment mainly includes the following steps:
  • Step S302 execute the step of determining the area to be cleaned, determine one of the two pool walls to be detected as the target pool wall, and determine the area to be cleaned in the swimming pool according to the current position of the swimming pool cleaning robot and the target pool wall.
  • the swimming pool cleaning robot if the swimming pool cleaning robot is currently at position a0, its current path is L1. According to the extension direction of the current path L1, the two pool walls C and D is defined as the pool wall to be detected.
  • the slash shaded area in Figure 5A (that is, the area between the current path L1 and the pool wall C) is determined to be the area to be cleaned; If wall D is determined as the target pool wall, then the dot matrix shaded area in Fig. 5A (that is, the area between the current path L1 and the pool wall D) is determined as the area to be cleaned.
  • Step S304 perform the step of cleaning the area to be cleaned, control the swimming pool cleaning robot to move along each cleaning path in the area to be cleaned, so as to perform the cleaning operation of the area to be cleaned, and accumulate the cleaning paths moved by the swimming pool cleaning robot to obtain the accumulated value.
  • the swimming pool cleaning robot can be controlled to perform cleaning operations on the area to be cleaned along the cleaning paths L1 , L2 , L3 , etc. in the area to be cleaned.
  • the number of cleaning paths moved by the swimming pool cleaning robot can be cumulatively updated to generate an accumulated value of the cleaning paths moved by the swimming pool cleaning robot.
  • Fig. 4 shows the specific embodiment of the step of cleaning the area to be cleaned in the above step S304, which mainly includes the following steps:
  • Step S402 the step of determining the current path, determining a cleaning path currently located by the swimming pool cleaning robot as the current path, and generating an accumulative value corresponding to the current path.
  • the swimming pool cleaning robot starts to perform cleaning operations from position a0 in the swimming pool, and the initial value of the cumulative value is set to 0, then when the swimming pool cleaning robot is currently located in the cleaning path L1, its corresponding cumulative value is 0; when the pool cleaning robot is currently on the cleaning path L2, its corresponding cumulative value is 1; when the pool cleaning robot is currently on the cleaning path Ln, its corresponding cumulative value is n-1, and so on.
  • Step S404 judging whether the accumulated value satisfies the preset condition, if yes, go to step S406, if not, go to step S104.
  • step S406 For example, if the cumulative value of the current path satisfies the preset path value (for example, there are 10 cleaning paths accumulated by the swimming pool cleaning robot), go to step S406.
  • the preset path value for example, there are 10 cleaning paths accumulated by the swimming pool cleaning robot
  • step S406 the path cleaning step is executed, and the swimming pool cleaning robot is controlled to move along the current path, so as to clean the current path.
  • the swimming pool cleaning robot can be controlled to move backward along the current path until it collides with one of the two reference pool walls, and then control the swimming pool cleaning robot to move forward along the current path until it collides with the two reference pool walls Another one in to perform a cleanup of the current path.
  • the swimming pool cleaning robot can be controlled to move backward along the current path L1 until it hits the reference pool wall B, and then control the swimming pool cleaning robot to move forward along the current path L1. Until it hits the reference pool wall A to complete the cleaning of the current path L1.
  • Step S408 according to the preset path-finding algorithm, control the swimming pool cleaning robot to move from the current path to a cleaning path in the swimming pool that is adjacent to the current path and has not finished cleaning, and returns to step S402.
  • the preset pathfinding algorithm may include the A-STAR algorithm, but it is not limited thereto, and other pathfinding algorithms may also be used, which is not limited in this application.
  • the swimming pool cleaning robot is currently in the cleaning path L1 shown in Figure 5B, according to the two path endpoints of each cleaning path that has not completed cleaning in the area to be cleaned, and based on the preset pathfinding algorithm, find the The nearest path end point is the cleaning path L2, and the swimming pool cleaning robot is controlled to move from the cleaning path L1 to the cleaning path L2.
  • the swimming pool cleaning robot can be controlled to perform differential motion at the end of the cleaning path L1 close to the reference pool wall A, so as to move from the cleaning path L1 to the cleaning path L2.
  • the cleaning method provided in this embodiment can ensure that the swimming pool cleaning robot completely cleans each cleaning path by controlling the swimming pool cleaning robot to collide with the pool walls (reference pool walls) at opposite ends of each cleaning path. Controlling the movement of the swimming pool cleaning robot between different cleaning paths based on a preset path-finding algorithm can improve the moving efficiency of the swimming pool cleaning robot, so as to improve the cleaning efficiency of the area to be cleaned.
  • Fig. 6 shows a processing flowchart of a swimming pool cleaning method according to another embodiment of the present application.
  • This embodiment shows a specific implementation of the above step S104. As shown in the figure, this embodiment mainly includes the following steps:
  • Step S602 controlling the swimming pool cleaning robot to move towards the target pool wall from the current path, so as to perform a wall detection operation of the target pool wall.
  • the swimming pool cleaning robot moves to the cleaning path L10, it is judged that the cumulative value of the cleaning path L10 has met the preset path value (for example, when the swimming pool cleaning robot has moved a total of 10 cleaning paths), then it can be
  • the swimming pool cleaning robot is controlled to move from the current path L10 toward the target pool wall C along a second direction (eg, Y direction) perpendicular to the extension direction of the current path L10 , so as to perform a wall detection operation of the target pool wall C.
  • a second direction eg, Y direction
  • Step S604 judging whether it has collided with the target pool wall, if not, execute step S606, and if yes, execute step S608.
  • step S606 if the swimming pool cleaning robot does not collide with the target pool wall C, execute step S606 ; if the swimming pool cleaning robot collides with the target pool wall C, execute step S608 .
  • Step S606 execute the wall detection failure step, clear the cumulative value of the current path, and control the swimming pool cleaning robot to return to the current path, and continue to execute the path cleaning step of step S406.
  • the swimming pool cleaning robot does not collide with the target pool wall C, then the cumulative value of the current path is cleared to return to the current path L10, and the cumulative counting is re-executed from the current path L10, and returns to step S406, To continue to move along each cleaning path in the swimming pool, perform the cleaning operation of the next cycle, until the accumulated value meets the preset condition again, then perform the wall detection operation of the target pool wall C again.
  • the swimming pool cleaning robot will reciprocate along the target pool wall to iterate Update the accumulated value until the accumulated value meets the preset condition.
  • the swimming pool cleaning robot when the swimming pool cleaning robot moves to the cleaning path L15, and its corresponding cumulative value does not meet the preset path value, the swimming pool cleaning robot will reciprocate along the target pool wall C (that is, along the cleaning path L15) Move until the corresponding accumulated value is updated to 9.
  • Step S608 execute the wall detection success step, clear the cumulative value of the current path, and clear the cleaning status of each cleaning path in the swimming pool, and control the swimming pool cleaning robot to move to the reset position in the swimming pool, and choose to execute step S302.
  • the swimming pool cleaning robot collides with the target pool wall C, the cleaning cycle operation of the currently determined area to be cleaned will be ended, the accumulated value of the current path will be cleared, and the cleaning status of each cleaning path in the swimming pool will be cleared , and control the swimming pool cleaning robot to move to the reset position in the swimming pool, and return to the step of determining the area to be cleaned in step S302, to re-determine a new area to be cleaned based on the reset position, and perform the cleaning operation of the next area to be cleaned.
  • the reset position may include any one of the first reset position, the second reset position, and the third reset position.
  • any position in the cleaning path including the initial position of the swimming pool cleaning robot may be determined as the first reset position.
  • the initial position of the swimming pool cleaning robot when the swimming pool cleaning robot collides with the target pool wall C at position e1, the initial position of the swimming pool cleaning robot, that is, position a0 may be determined as the first reset position to control the swimming pool cleaning robot to move from position c to position a0; or, with the pool cleaning robot facing the target pool wall C, the pool cleaning robot can be controlled to move backward at position e1 until it reaches the cleaning path L1 including the initial position a0 of the pool cleaning robot, and the swimming pool The current position a1 of the cleaning robot in the cleaning path L1 is determined as the first reset position; or, when the swimming pool cleaning robot faces the target pool wall C, the swimming pool cleaning robot can be controlled to perform a U-turn operation at position e1, so as to Move from position e1 to position e2, and then move forward from position e2 until reaching the cleaning path L1 including the initial position a0 of the swimming pool cleaning robot, and determine the current position a2 of the swimming pool cleaning robot in the cleaning path L1 as
  • the two pools to be detected can be The pool wall D to be detected that has not been determined as the target pool wall in the wall is determined as the new target pool wall, so as to control the swimming pool cleaning robot from right to left, and continue to execute for the area to be cleaned between the cleaning path L1 and the target pool wall D Sweeping operation.
  • the second collision position where it collides with the target pool wall can be determined as the second reset position.
  • the position e1 is directly determined as the second reset position.
  • the pool wall D to be detected that has not been determined as the target pool wall among the two pool walls to be detected can be determined as the new target pool wall, to control the swimming pool cleaning robot to start from the cleaning path Ln adjacent to the target pool wall C, and clean from right to left, so as to continue for the area to be cleaned between the pool wall C to be detected and the pool wall D to be detected (target pool wall) Perform a cleanup operation.
  • the swimming pool cleaning robot can be controlled to move from the secondary collision position to the other pool wall to be detected that is not determined as the target pool wall among the two pool walls to be detected, and collide the swimming pool cleaning robot to be detected The position of the pool wall is determined as the third reset position.
  • the swimming pool cleaning robot when the swimming pool cleaning robot collides with the target pool wall C at position e1, the swimming pool cleaning robot can be controlled to perform backward movement at position e1 while the swimming pool cleaning robot is facing the target pool wall C until the collision is resolved.
  • the pool wall D to be detected is determined as the target pool wall, and the position g1 where the swimming pool cleaning robot collides with the pool wall D to be detected is determined as the third reset position; or, the swimming pool cleaning robot can face the target pool wall C
  • control the swimming pool cleaning robot to perform a U-turn operation at position e1, so as to move from position e1 to position e2, and then move forward from position e2 until it collides with the pool wall D to be detected that is not determined as the target pool wall, and the swimming pool cleaning robot
  • the position g2 that collides with the pool wall D to be detected is determined as the third reset position.
  • the pool wall C to be detected can still be determined as the target pool wall, so as to control the swimming pool cleaning robot from adjacent to the pool wall D to be detected Starting from the cleaning path L1-i, sweep from left to right to continue the cleaning operation on the area to be cleaned between the pool wall D to be detected and the pool wall C to be detected (the target pool wall).
  • Fig. 7 is a processing flowchart of a swimming pool cleaning method according to another exemplary embodiment of the present application.
  • This embodiment is a specific implementation of the above step S602. As shown in the figure, this embodiment includes the following steps:
  • Step S702 controlling the swimming pool cleaning robot to move in the second direction toward the target pool wall for a preset wall detection distance at the first wall detection position of the current path, so as to perform the first wall detection operation.
  • the preset detection distance can be determined based on the length of the roller brush of the swimming pool cleaning robot.
  • the value range of the preset wall detection distance can be between 1% of the length of the rolling brush of the swimming pool cleaning robot (the rolling brush of the swimming pool cleaning robot in this application is composed of two sub-rollers, and the length of the rolling brush is the total length of the two sub-rollers). times to 3 times.
  • the swimming pool cleaning robot can be controlled to move (for example, move forward) a preset wall detection distance along the second direction (Y direction) toward the target pool wall C at the first wall detection position d1 of the current path L10 to perform The first wall detection operation.
  • one of the two reference pool walls may be determined as the reference pool wall, and the swimming pool cleaning robot is controlled to move along the current path by a first moving distance in a direction away from the reference pool wall, so as to determine the distance of the current path.
  • the first detection wall position may be determined as the reference pool wall, and the swimming pool cleaning robot is controlled to move along the current path by a first moving distance in a direction away from the reference pool wall, so as to determine the distance of the current path.
  • one of the two reference pool walls that is closer to the swimming pool cleaning robot may be determined as the reference pool wall.
  • the reference pool wall A is a reference pool wall that is closer to the pool cleaning robot, and then the reference pool wall A can be determined as the reference pool wall. pool wall.
  • the swimming pool cleaning robot in the case where the swimming pool cleaning robot is currently facing the reference pool wall B (i.e. the example shown in FIG. 8A ), the swimming pool cleaning robot can be controlled to move forward along the current path L10 in a direction away from the reference pool wall A for a first moving distance, To determine the first detection wall position d1 of the current path L10; or, when the swimming pool cleaning robot is currently facing the reference pool wall A, the swimming pool cleaning robot can be controlled to move backward along the current path L10 in a direction away from the reference pool wall A The first moving distance is used to determine the first detection wall position d1 of the current path L10.
  • the first moving distance may be determined based on the length of the roller brush of the swimming pool cleaning robot.
  • Step S704 judging whether the first wall detection operation collides with the target pool wall, if not, execute step S606, if yes, execute step S706.
  • step S706 executes the successful step of detecting the wall in step S706.
  • Step S706 controlling the swimming pool cleaning robot to move in the second direction to the target pool wall for a preset wall detection distance at the second wall detection position of the current path, so as to perform a second wall detection operation.
  • the swimming pool cleaning robot can be controlled to move toward the target pool wall C again in the second direction (Y direction) at the second wall detection position d2 of the current path L10 to perform the second wall detection operation.
  • the swimming pool cleaning robot can be controlled to move along the current path at the first wall detection position for a second moving distance in a direction away from the reference pool wall to determine The second sounding wall position of the current path.
  • the swimming pool cleaning robot can be controlled to move backward from the primary collision position e3 that collided with the target pool wall C when performing the first wall detection operation, Return to the first detection wall position d1 of the current path L10, and move the second moving distance in the direction away from the reference pool wall A again along the current path L10 at the first detection wall position d1, so as to determine the second detection distance of the current path L10 Wall position d2.
  • the swimming pool cleaning robot when the swimming pool cleaning robot is currently facing the reference pool wall B (that is, the example shown in Figure 8B), the swimming pool cleaning robot can be controlled to move away from the reference pool wall A along the current path L10 at the first wall detection position d1 Move the second moving distance forward to determine the second wall detection position d2 of the current path L10; or, in the case that the swimming pool cleaning robot is currently facing the reference pool wall A, the swimming pool cleaning robot can be controlled to move along the first wall detection position d1
  • the current path L10 is moved backward for a second moving distance in a direction away from the reference pool wall A, so as to determine a second detection wall position d2 of the current path L10.
  • the first moving distance and the second moving distance may be the same or different.
  • Step S708 judging whether the second wall detection operation collides with the target pool wall, if not, you can choose to execute any one of step S606 or step S710, if yes, execute step S706.
  • step S606 when the wall detection failure step of step S606 is selected to be executed, the cumulative value of the current path can be cleared, and the swimming pool cleaning robot is controlled to return to the current path and continue to perform path cleaning steps.
  • the cumulative value of the current path L10 can be cleared, and the swimming pool cleaning robot can be controlled to return to the current path L10 from the current position e4, and continue to perform the cleaning operation of the area to be cleaned from the current path L10.
  • Step S710 clearing the cumulative value of the current path to zero, and controlling the swimming pool cleaning robot to move toward the current path in the direction of the current path by a return distance less than the preset wall detection distance, and proceed to step S402.
  • the cumulative value of the current path L10 can be cleared, and the swimming pool cleaning robot can be controlled to move from the current position e4 to the current path L10 by a preset return distance less than the preset wall detection distance to reach the cleaning path L11. And continue to execute the step of determining the current path in step S402, so as to continue to perform the cleaning operation of the area to be cleaned between the cleaning path L11 and the target pool wall C2.
  • the preset return distance can be set to 0, so that the swimming pool cleaning robot directly returns to the current path determination step of step S402 to continue cleaning between the cleaning path L12 and the target pool wall C2 without performing a return movement.
  • the cleaning operation of the area to be cleaned can be set to 0, so that the swimming pool cleaning robot directly returns to the current path determination step of step S402 to continue cleaning between the cleaning path L12 and the target pool wall C2 without performing a return movement.
  • Fig. 9 shows a processing flowchart of a swimming pool cleaning method according to another embodiment of the present application.
  • step S902 when the reset position in step S608 is the second reset position or the third reset position, after step S608 is performed, step S902 can be selected to be continued.
  • step S902 one of the two pool walls to be detected is determined as the target pool wall, and an area to be cleaned in the swimming pool is determined according to the current position of the pool cleaning robot and the target pool wall.
  • the swimming pool cleaning robot when the swimming pool cleaning robot is currently at the second reset position e1 or e2 (refer to FIG. 5B ) that collides with the pool wall C to be detected, the pool wall D to be detected located on the opposite side of the pool wall C to be detected can be determined as the target The pool wall, and according to the current position e1 or e2 of the pool cleaning robot and the target pool wall D, determine the area to be cleaned in the pool.
  • the swimming pool cleaning robot when the swimming pool cleaning robot is currently at the third reset position g1 or g2 (refer to FIG. 5B ) that collides with the pool wall D to be detected, the pool wall C to be detected located on the opposite side of the pool wall D to be detected can be determined as Target the pool wall, and determine the area to be cleaned in the pool according to the current position g1 or g2 of the pool cleaning robot and the target pool wall C.
  • Step S904 controlling the swimming pool cleaning robot to move along each cleaning path in the area to be cleaned, so as to perform the cleaning operation of the area to be cleaned.
  • the cleaning step in this step is basically the same as the above step S304, the difference is that this step does not perform the accumulation operation of the accumulated value and the wall detection operation when the accumulated value meets the preset condition, that is, this step will control the swimming pool
  • the cleaning robot performs cleaning according to each cleaning path in the area to be cleaned until all cleaning paths are cleaned.
  • step S904 one of step S302 or step S902 may be selected to be continued to perform repeated cleaning of the swimming pool.
  • the swimming pool cleaning method provided by each embodiment of the present application accumulates the cumulative value of the cleaning path that the swimming pool cleaning robot has moved, and when the cumulative value meets the preset condition, triggers the execution of the wall detection operation of the pool wall to be detected , so as to improve the efficiency of swimming pool cleaning and improve the coverage of swimming pool cleaning.
  • Fig. 10 is a structural block diagram of a swimming pool cleaning device according to an exemplary embodiment of the present application.
  • the swimming pool cleaning device 1000 of this embodiment mainly includes a cleaning module 1002 and a wall detection module 1004 .
  • the cleaning module 1002 is configured to control the swimming pool cleaning robot to move along each cleaning path in the swimming pool to perform cleaning operations, and obtain the accumulated value of the cleaning path that the swimming pool cleaning robot has moved.
  • the wall detection module 1004 is configured to control the swimming pool cleaning robot to move along the wall detection path when the accumulated value satisfies a preset condition, so as to perform a wall detection operation of the pool wall to be detected in the swimming pool.
  • the swimming pool cleaning device 1000 further includes a path generation module (not shown), configured to generate each cleaning path in the swimming pool according to the initial position and initial orientation of the swimming pool cleaning robot; wherein, each cleaning path The extending direction is substantially parallel to the initial orientation of the pool cleaning robot.
  • a path generation module (not shown), configured to generate each cleaning path in the swimming pool according to the initial position and initial orientation of the swimming pool cleaning robot; wherein, each cleaning path The extending direction is substantially parallel to the initial orientation of the pool cleaning robot.
  • the path generation module is also used to: determine the initial position and initial orientation of the swimming pool cleaning robot according to the position and orientation of the swimming pool cleaning robot freely sinking to the bottom of the swimming pool; or, control the swimming pool cleaning The robot moves to a specified position and a specified orientation relative to the bottom of the swimming pool, and determines the specified position and the specified orientation as an initial position and an initial orientation of the swimming pool cleaning robot.
  • the swimming pool cleaning device 1000 is further configured to: define two reference pool walls and two target detection walls relative to the current path according to the current path of the swimming pool cleaning robot in each cleaning path; Wherein, the two reference pool walls are located on opposite sides of the current path along a first direction parallel to the extension direction of the current path, and the two to-be-detected pool walls are located along a direction perpendicular to the current path. The second direction of the extension direction is located on opposite sides of the current path.
  • the cleaning module 1002 is further configured to: execute the step of determining the area to be cleaned, determine one of the two pool walls to be detected as the target pool wall, and determine the target pool wall according to the current position of the swimming pool cleaning robot and the target pool wall. Wall, determine the area to be cleaned in the swimming pool; perform the cleaning step of the area to be cleaned, control the swimming pool cleaning robot to move along each cleaning path in the area to be cleaned, so as to perform the cleaning operation of the area to be cleaned, and Accumulate the cleaning paths that the swimming pool cleaning robot has moved to obtain the accumulated value.
  • the cleaning module 1002 is further configured to: perform the step of determining the current path, determine a cleaning path currently located by the swimming pool cleaning robot as the current path, and generate an accumulated value corresponding to the current path; perform path cleaning Step, in the case that the accumulated value does not satisfy the preset condition, control the swimming pool cleaning robot to move along the current path to perform cleaning on the current path; according to a preset pathfinding algorithm, control the The swimming pool cleaning robot moves from the current path to a cleaning path in the swimming pool that is adjacent to the current path and has not finished cleaning, and returns to perform the step of determining the current path.
  • the cleaning module 1002 is further configured to: control the swimming pool cleaning robot to move backward along the current path until it collides with one of the two reference pool walls; control the swimming pool cleaning robot to move forward along the current path move until it hits the other of the two reference pool walls to perform the sweep of the current path.
  • the wall detection module 1004 may judge whether the accumulated value satisfies the preset condition in any of the following ways: if the accumulated value of the cleaning path that the swimming pool cleaning robot has moved meets the preset path value, obtain the The judgment result that the accumulated value satisfies the preset condition; or, according to the accumulated value of the cleaning path that the swimming pool cleaning robot has moved, calculate the area number of the cleaning area that the swimming pool cleaning robot has moved, if the number of areas Satisfy the preset area value, and obtain a determination result that the accumulated value satisfies the preset condition.
  • the wall detection module 1004 is further configured to: control the swimming pool cleaning robot to move from the current path towards the target pool wall, so as to perform a wall detection operation on the target pool wall; if the robot does not collide with the target pool wall, execute the wall detection failure step, and if it collides with the target pool wall, perform the wall detection success step; wherein, the wall detection failure step includes: clearing the cumulative value of the current path to zero, and controlling the swimming pool The cleaning robot returns to the current path, and continues to perform the path cleaning step; the successful wall detection step includes: clearing the accumulated value of the current path, and clearing the cleaning status of each cleaning path in the swimming pool, And control the swimming pool cleaning robot to move to the reset position in the swimming pool, and return to perform the step of determining the area to be cleaned.
  • the wall detection module 1004 is further configured to: control the swimming pool cleaning robot to move a preset wall detection distance along the second direction toward the target pool wall at the first wall detection position of the current path, so as to Execute the first wall detection operation; if the first wall detection operation does not collide with the target pool wall, execute the wall detection failure step; if the first wall detection operation collides with the target pool wall, control the The swimming pool cleaning robot is at the second wall-detection position of the current path, and moves the preset wall-detection distance again along the second direction toward the target pool wall to perform a second wall-detection operation; if the first If the second wall detection operation does not collide with the target pool wall, perform the wall detection failure step; if the second wall detection operation collides with the target pool wall, perform the wall detection success step.
  • the preset wall detection distance may be determined based on the length of the roller brush of the swimming pool cleaning robot.
  • the wall detection module 1004 is further configured to: determine the first wall detection position and the second wall detection position of the current path, including the two reference pool walls that are closer to the swimming pool cleaning robot A reference pool wall is determined as a reference pool wall; controlling the swimming pool cleaning robot to move along the current path by a first moving distance in a direction away from the reference pool wall, so as to determine a first detection wall position of the current path; When the first wall detection operation collides with the target pool wall, control the swimming pool cleaning robot to move a second distance away from the reference pool wall along the current path at the first wall detection position Two moving distances to determine a second detection wall position of the current path; wherein, the first moving distance and the second moving distance are the same or different.
  • the wall detection module 1004 is further configured to perform a first replacement step that can replace the wall detection failure step when the second wall detection operation does not collide with the target pool wall, which includes: Clear the cumulative value of the current path, and control the swimming pool cleaning robot to move in the direction of the current path at the current position by a preset return distance less than the preset wall detection distance, and continue to execute the current path Determine steps.
  • a first replacement step that can replace the wall detection failure step when the second wall detection operation does not collide with the target pool wall, which includes: Clear the cumulative value of the current path, and control the swimming pool cleaning robot to move in the direction of the current path at the current position by a preset return distance less than the preset wall detection distance, and continue to execute the current path Determine steps.
  • the reset position includes any one of the first reset position, the second reset position, and the third reset position.
  • the wall detection module 1004 is further configured to: determine any position in the cleaning path including the initial position of the swimming pool cleaning robot as the first reset position; During the second wall detection operation, the secondary collision position that hits the target pool wall is determined as the second reset position; or the swimming pool cleaning robot is controlled to move from the secondary collision position to the two waiting positions. Detecting movement of a pool wall to be detected that is not determined as the target pool wall, and determining a position where the pool cleaning robot collides with the pool wall to be detected as the third reset position.
  • the wall detection module 1004 is further configured to: Determining one of the two pool walls to be detected as a target pool wall, determining an area to be cleaned in the pool according to the current position of the pool cleaning robot and the target pool wall; controlling the pool cleaning robot Moving along each cleaning path in the area to be cleaned to perform a cleaning operation on the area to be cleaned.
  • An exemplary embodiment of the present application further provides an electronic device, including: at least one processor; and a memory communicatively connected to the at least one processor.
  • the memory stores a computer program executable by the at least one processor, and the computer program is configured to cause the electronic device to execute the method according to various embodiments of the present application when executed by the at least one processor.
  • Exemplary embodiments of the present application also provide a non-transitory computer-readable storage medium storing a computer program, wherein, when the computer program is executed by a processor of a computer, the computer is used to make the computer execute the computer program according to various embodiments of the present application. Methods.
  • Exemplary embodiments of the present application further provide a computer program product, including a computer program, wherein, when the computer program is executed by a processor of a computer, the computer executes the method according to each embodiment of the present application.
  • Electronic device is intended to mean various forms of digital electronic computing equipment, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframes, and other suitable computers.
  • Electronic devices may also represent various forms of mobile devices, such as personal digital processing, cellular telephones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions, are by way of example only, and are not intended to limit implementations of the applications described and/or claimed herein.
  • an electronic device 1100 includes a computing unit 1101, which can perform calculations according to a computer program stored in a read-only memory (ROM) 1102 or a computer program loaded from a storage unit 1108 into a random access memory (RAM) 1103. Various appropriate actions and processes are performed. In the RAM 1103, various programs and data necessary for the operation of the device 1100 can also be stored.
  • the computing unit 1101, ROM 1102, and RAM 1103 are connected to each other through a bus 1104.
  • An input/output (I/O) interface 1105 is also connected to the bus 1104 .
  • the input unit 1106 can be any type of device capable of inputting information to the electronic device 1100.
  • the input unit 1106 can receive input digital or character information, and generate key signal input related to user settings and/or function control of the electronic device.
  • the output unit 1107 may be any type of device capable of presenting information, and may include, but is not limited to, a display, a speaker, a video/audio output terminal, a vibrator, and/or a printer.
  • the storage unit 1104 may include, but is not limited to, a magnetic disk and an optical disk.
  • the communication unit 1109 allows the electronic device 1100 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunication networks, and may include but not limited to a modem, a network card, an infrared communication device, a wireless communication transceiver and/or a chip Groups, such as BluetoothTM devices, WiFi devices, WiMax devices, cellular communication devices, and/or the like.
  • the computing unit 1101 may be various general-purpose and/or special-purpose processing components having processing and computing capabilities. Some examples of computing units 1101 include, but are not limited to, central processing units (CPUs), graphics processing units (GPUs), various dedicated artificial intelligence (AI) computing chips, various computing units that run machine learning model algorithms, digital signal processing processor (DSP), and any suitable processor, controller, microcontroller, etc.
  • the computing unit 1101 executes the various methods and processes described above.
  • the pool cleaning methods of the foregoing embodiments may be implemented as a computer software program tangibly embodied on a machine-readable medium, such as storage unit 1108 .
  • part or all of the computer program can be loaded and/or installed on the electronic device 1100 via the ROM 1102 and/or the communication unit 1109.
  • the computing unit 1101 may be configured in any other appropriate manner (for example, by means of firmware) to execute the swimming pool cleaning methods of the foregoing embodiments.
  • Program codes for implementing the methods of the present application may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, a special purpose computer, or other programmable data processing devices, so that the program codes, when executed by the processor or controller, make the functions/functions specified in the flow diagrams and/or block diagrams Action is implemented.
  • the program code may execute entirely on the machine, partly on the machine, as a stand-alone software package partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • a machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • a machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, portable computer discs, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM compact disk read only memory
  • magnetic storage or any suitable combination of the foregoing.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or means for providing machine instructions and/or data to a programmable processor (eg, magnetic disk, optical disk, memory, programmable logic device (PLD)), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein can be implemented on a computer having a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user. ); and a keyboard and pointing device (eg, a mouse or a trackball) through which a user can provide input to the computer.
  • a display device e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or a trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and can be in any form (including Acoustic input, speech input or, tactile input) to receive input from the user.
  • the systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN) and the Internet.
  • a computer system may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)
  • Cleaning In General (AREA)

Abstract

本申请提供一种泳池清扫方法、装置、电子设备及存储介质,包括控制泳池清洁机器人沿基于泳池中的各清扫路径移动,以执行清扫操作,并获取泳池清洁机器人已移动的清扫路径的累计值;若累计值满足所述预设条件,控制泳池清洁机器人沿探壁路径移动,以执行泳池的待探测池壁的探壁操作。本申请可提高泳池清扫效率以及泳池清扫覆盖率。

Description

泳池清扫方法、装置、电子设备及存储介质
相关申请的交叉引用
本申请要求PCT/CN2022/076907号专利申请的优先权,其专利名称为“WALL COLLISION U-TURNING ME1THOD AND APPARATUS FOR SWIMMING POOL CLE1ANING ROBOT,AND SWIMMING POOL EDGE CLE1ANING ME1THOD AND APPARATUS”,申请日期为2022年2月18日,以及第CN202211270843.4号专利申请的优先权,其专利名称为“泳池清扫方法、装置、电子设备及存储介质”,申请日期为2022年10月17日,上述两件专利申请的全部内容通过引用并入本申请。
技术领域
本申请实施例涉及清扫控制技术领域,尤其涉及一种泳池清扫方法、装置、电子设备、及存储介质。
背景技术
泳池清洁机器人是针对泳池清洁需求而产生的一种清洁机器人,可以完成对池底及泳池壁的反复清扫以及对泳池内的池水进行过滤的动作。
现有的泳池清洁机器人,在执行泳池清扫任务时,由于清扫路径规划不尽合理,严重影响了泳池清扫任务的执行效率。
有鉴于此,需要一种改进的泳池清扫方案,可更高效地执行泳池清扫任务。
发明内容
为了解决上述问题,本申请实施例提供了一种泳池清扫方法、装置、电子设备、及计算机存储介质,以至少部分地解决上述问题。
根据本申请的一个方面,提供一种泳池清扫方法,包括:控制泳池清洁机器人沿泳池中的各清扫路径移动,以执行清扫操作,并获取所述泳池清洁机器人已移动的清扫路径的累计值;若所述累计值满足所述预设条件,控制所述泳池清洁机器人沿探壁路径移动,以执行所述泳池的待探测池壁的探壁操作。
根据本申请的另一个方面,提供一种泳池清扫装置,包括:清扫模块,用于控制 泳池清洁机器人沿泳池中的各清扫路径移动,以执行清扫操作,并获取所述泳池清洁机器人已移动的清扫路径的累计值;探壁模块,用于当所述累计值满足预设条件时,控制所述泳池清洁机器人沿探壁路径移动,以执行所述泳池的待探测池壁的探壁操作。
根据本申请的又一个方面,提供一种电子设备,包括:处理器;以及存储程序的存储器;其中,所述程序包括指令,所述指令在由所述处理器执行时,使所述处理器执行根据上述方面所述的方法。
根据本申请的再一个方面,提供一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使计算机执行上述方面所述的方法。
本申请各方面提供的泳池清扫方案,可在泳池清洁机器人执行清扫操作的过程中,当泳池清洁机器人已移动的清扫路径的累计值满足预设条件时,触发执行泳池的待探测池壁的探壁操作,借以提高泳池清扫效率以及清扫成功率,并有利于提升泳池清扫的覆盖率。
附图说明
以下附图仅旨在于对本申请做示意性说明和解释,并不限定本申请的范围。其中,
图1为本申请示例性实施例的泳池清扫方法的处理流程图。
图2A至图2F为本申请不同实施例的泳池及泳池中的清扫路径的示意图。
图3为本申请另一示例性实施例的泳池清扫方法的处理流程图。
图4为本申请另一示例性实施例的泳池清扫方法的处理流程图。
图5A至图5C为泳池清洁机器人执行清扫操作的不同实施例示意图。
图6为本申请另一示例性实施例的泳池清扫方法的处理流程图。
图7为本申请另一示例性实施例的泳池清扫方法的处理流程图。
图8A至图8C为泳池清洁机器人执行碰壁操作的不同实施例示意图。
图9为本申请另一示例性实施例的泳池清扫方法的处理流程图。
图10为本申请示例性实施例的泳池清扫装置的结构框图。
图11为本申请示例性实施例的电子设备的结构框图。
附图标记说明:
1000:泳池清扫装置;1002、清扫模块;1004、探壁模块;1100、电子设备;1101、计算单元;1102、ROM;1103、RAM;1104、总线;1105、输入输出接口;1106、输入单元;1107、输出单元;1108、存储单元;1109、通信单元。
具体实施方式
为了对本申请实施例的技术特征、目的和效果有更加清楚的理解,现对照附图说明本申请实施例的具体实施方式。
在本文中,“示意性”表示“充当实例、例子或说明”,不应将在本文中被描述为“示意性”的任何图示、实施方式解释为一种更优选的或更具优点的技术方案。
为使图面简洁,各图中只示意性地表示出了与本申请相关的部分,它们并不代表其作为产品的实际结构。另外,为使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个或多个,或仅标示出了其中的一个或多个。
图1为本申请示例性实施例的泳池清扫方法的处理流程图。如图所示,本实施例主要包括以下步骤:
步骤S102,控制泳池清洁机器人沿泳池中的各清扫路径移动,以执行清扫操作,并获取泳池清洁机器人已移动的清扫路径的累计值。
可选地,泳池可为具有规则形状的泳池。例如,方形、矩形(参考图2A)、圆形、椭圆形(参考图2B)、六边形(参考图2C)等。
可选地,泳池可为具有非规则形状的泳池,如图2D至图2F所示的示例。
可选地,可根据泳池清洁机器人的初始位置和初始朝向,生成泳池中的各清扫路径。例如,参考图2A或图2B,可根据泳池清洁机器人的初始位置(例如位置a0)和初始朝向(例如X方向),生成泳池中的各清扫路径L1、L2、L3、L4等。
其中,各清扫路径(例如,清扫路径L1、L2、L3、L4)的延伸方向与泳池清洁机器人的初始朝向(例如,X方向)实质平行;这是由于泳池清机器人在进行的过程中会存在一定程度的偏移,因此,各清扫路径(例如,清扫路径L1、L2、L3、L4)的延伸方向与泳池清洁机器人的初始朝向可能无法完全平行;另外,若初始朝向本来就有一定偏移角度,则各清扫路径构成平行斜杠式的清扫路径图。
于一实施例中,可根据泳池清洁机器人自由下沉至泳池的池底的位置和朝向,确定泳池清洁机器人的初始位置和初始朝向。具体地,可在泳池清洁机器人被放入泳池后,将泳池清洁机器人自由下沉至泳池的池底时所处的位置以及朝向,确定为泳池清洁机器人的初始位置和初始朝向。
于另一实施例中,也可控制泳池清洁机器人相对于所述泳池移动至指定位置和指定朝向,并将指定位置和指定朝向确定为泳池清洁机器人的初始位置和初始朝向。具体地,可在泳池清洁机器人沉入泳池的池底后,控制泳池清洁机器人根据移动指令相对于泳池的 池底移动,直至满足预期的指定位置和指定朝向,据以确定泳池清洁机器人的初始位置和初始朝向。
参考图2A至图2F,可控制泳池清洁机器人沿各清扫路径中的箭头方向蛇形移动,以执行各清扫路径的清扫作业。其中,在上述各附图中,黑色区块部分为泳池清洁机器人的头端部分。
可选地,可根据各清扫路径中泳池清洁机器人当前所处的当前路径,定义相对于当前路径的两个基准池壁和两个待探测探壁。
其中,两个基准池壁可沿平行于当前路径的延伸方向的第一方向位于当前路径的相对两侧,两个待探测池壁沿垂直于当前路径的延伸方向的第二方向位于当前路径的相对两侧。
例如,参考图2A或图2B,泳池的两个基准池壁A、B沿平行于当前路径(例如L1、L2、L3、L4中的任一个)的延伸方向的第一方向(X方向)位于泳池的相对两侧,泳池的两个待探测池壁C、D沿垂直于当前路径(例如L1、L2、L3、L4中的任意一个)的延伸方向的第二方向(Y方向),位于当前路径的相对两侧。
可选地,泳池的基准池壁或待探测池壁,可根据泳池形状呈直线型(参考图2A)、弧线形(参考图2B、图2E1、图2F)、折线形(参考图2C、图2D)等。
其中,同一泳池的两个基准池壁或两个待探测池壁,可根据泳池的实际形态呈相同形态或者不同形态。
例如,在图2A所示的矩形形状的泳池示例中,泳池的两个基准池壁与两个待探测池壁均为直线型;在图2B所示的椭圆形形状的泳池示例中,泳池的两个基准池壁与两个待探测池壁均为弧线形,但两个基准池壁的弧度大小与两个待探测池壁的弧度大小有所不同;在图2C所示的六角形形状的泳池示例中,泳池的两个基准池壁均是直线型的,两个待探测池壁均是折线形的。
又如,在图2E所示的非规则形状的泳池示例中,待探测池壁C呈弧线形;在图2F所示的非规则形状的泳池示例中,待探测池壁C呈曲线形。
可选地,泳池的基准池壁或待探测池壁也可呈分段形态。
例如,在图2D所示的非规则形状的泳池示例中,泳池的基准池壁A由两个分段A1和A2所构成,待探测池壁C由两个分段C1和C2构成。
再者,本申请的基准池壁或待探测池壁均为相对定义概念,而非绝对定义概念,其可根据泳池清洁机器人当前所处的当前路径的变化而相应调整。
例如,参考图2C所示示例,当泳池清洁机器人当前所处的当前路径为L1时,可将 整个池壁C(包含C1和C2)均定位为当前路径L1的待探测池壁;当泳池清洁机器人当前所处的当前路径为L2时,则池壁C中的C1分段将被定位为当前路径L2的基准池壁,而池壁C中的C2分段将被定义为当前路径L2的待探测池壁。
又如,参考图2D所示示例,当泳池清洁机器人当前所处的当前路径为L1时,可将整个池壁C(包含C1和C2)均被定义为当前路径L1的待探测池壁,而池壁A中的A1分段被定义为当前路径L1的基准池壁;当泳池清洁机器人当前所处的当前路径为L2时,则池壁C中仅C2分段将被定位为当前路径L2的待探测池壁,而池壁A中的A2分段将被定义为当前路径L2的基准池壁。
可选地,可随着待清扫区域的执行进程,累计更新泳池清洁机器人已移动的清扫路径的数量,生成泳池清洁机器人已移动的清扫路径的累计值。
步骤S104,若累计值满足预设条件,控制泳池清洁机器人沿探壁路径移动,以执行泳池的待探测池壁的探壁操作。
可选地,可当泳池清洁机器人已移动的清扫路径的累计值满足预设路径值时,获得累计值满足预设条件的判定结果。
于本实施例中,预设路径值可为系统默认设定的定值,或可根据实际清扫需求而任意设定的可调整值。
于本实施例中,预设路径值可设置为10、15或20等任意值。
例如,当预设路径值设置为15条时,可在泳池清洁机器人每移动15条清扫路径后,执行一次探壁操作。
可选地,可根据泳池清洁机器人已移动的清扫路径的累计值,计算泳池清洁机器人已移动的清扫区域的区域数量,若区域数量满足预设区域值,获得累计值满足预设条件的判定结果。
于本实施例中,可设定每一个清扫区域包含的清扫路径的数量,例如,设定每一个清扫区域包含10条、15条、或20条清扫路径。
于本实施例中,预设区域值可为系统默认设定的定值,或可根据实际清扫需求而任意设定的可调整值。
例如,当预设区域值设定为2时,可在泳池清洁机器人每移动2个清扫区域后,执行一次探壁操作。
综上所述,本实施例提供的泳池清扫方法,通过控制泳池清洁机器人在执行清扫操作的过程中,间隔性地执行探壁操作,借以提高泳池清扫效率。
图3为本申请另一实施例的泳池清扫方法的处理流程图。本实施例为上述步骤 S102的具体实施方案。如图所示,本实施例主要包括以下步骤:
步骤S302,执行待清扫区域确定步骤,将两个待探测池壁中的一个确定为目标池壁,并根据泳池清洁机器人的当前位置和目标池壁,确定泳池中的待清扫区域。
例如,在图5A所示的示例中,若泳池清洁机器人当前位于位置a0,则其当前所处的当前路径即为L1,根据当前路径L1的延伸方向,可将泳池的两个池壁C和D定义为待探测池壁。
其中,若将待探测池壁C确定为目标池壁,则将图5A中的斜杠阴影区域(即当前路径L1至池壁C之间的区域)确定为待清扫区域;若将待探测池壁D确定为目标池壁,则将图5A中的点阵阴影区域(即当前路径L1至池壁D之间的区域)确定为待清扫区域。
步骤S304,执行待清扫区域清扫步骤,控制泳池清洁机器人沿待清扫区域中的各清扫路径移动,以执行待清扫区域的清扫操作,并累计泳池清洁机器人已移动的清扫路径,获取累计值。
例如,在图5B所示的示例中,可控制泳池清洁机器人沿待清扫区域中的各清扫路径L1、L2、L3等,执行待清扫区域的清扫操作。
于本实施例中,可随着待清扫区域的执行进程,累计更新泳池清洁机器人已移动的清扫路径的数量,生成泳池清洁机器人人已移动的清扫路径的累计值。
图4示出了上述步骤S304的待清扫区域清扫步骤的具体实施方案,其主要包括以下步骤:
步骤S402,当前路径确定步骤,将泳池清洁机器人当前所处的一条清扫路径确定为当前路径,并生成对应于当前路径的累计值。
例如,参考图5A所示示例,假设泳池清洁机器人由泳池中的位置a0开始执行清扫操作,累计值的初始值设为0,则当泳池清洁机器人当前位于清扫路径L1时,其对应的累计值为0;当泳池清洁机器人当前位于清扫路径L2时,其对应的累计值为1;当泳池清洁机器人当前位于清扫路径Ln时,其对应的累计值为n-1,以此类推。
步骤S404,判断累计值是否满足预设条件,若是,进行步骤S406,若否,执行步骤S104。
例如,若当前路径的累计值满足预设路径值(例如,泳池清洁机器人已移动的清扫路径累计有10条)时,进行步骤S406。
步骤S406,执行路径清扫步骤,控制泳池清洁机器人沿当前路径移动,以执行当前路径的清扫。
可选地,可控制泳池清洁机器人沿当前路径后退移动,直至碰撞两个基准池壁中 的一个,再控制所述泳池清洁机器人沿所述当前路径前进移动,直至碰撞所述两个基准池壁中的另一个,以执行当前路径的清扫。
例如,结合参考图2A和图5B,假设泳池清洁机器人当前处于位置a0,可控制泳池清洁机器人沿当前路径L1后退移动,直至碰撞基准池壁B,再控制泳池清洁机器人沿当前路径L1前进移动,直至碰撞基准池壁A,以完成当前路径L1的清扫。
步骤S408,根据预设寻路算法,控制泳池清洁机器人由当前路径,移动至泳池中相邻于当前路径且未完成清扫的一条清扫路径,并返回步骤S402。
可选地,预设寻路算法可包括A-STAR算法,但并不以此为限,亦可采用其他寻路算法,本申请对此不作限制。
示例性地,若泳池清洁机器人当前处于图5B所示的清扫路径L1,根据待清扫区域中未完成清扫的每一个清扫路径的两个路径端点,并基于预设寻路算法,找到与之移动距离最近的路径端点为清扫路径L2,则控制泳池清洁机器人由清扫路径L1移动至清扫路径L2。
可选地,可控制泳池清洁机器人在清扫路径L1靠近基准池壁A的端部执行差速运动,以由清扫路径L1移动至清扫路径L2。
综上所述,本实施例提供的清扫方式,通过控制泳池清洁机器人分别碰撞每一条清扫路径相对两端的池壁(基准池壁),可确保泳池清洁机器人完整清扫每一条清扫路径,再者,基于预设寻路算法控制泳池清洁机器人在不同清扫路径之间移动,可提高泳池清洁机器人的移动效率,以提高待清扫区域的清扫效率。
图6示出了本申请另一实施例的泳池清扫方法的处理流程图。本实施例示出了上述步骤S104的具体实施方案。如图所示,本实施例主要包括以下步骤:
步骤S602,控制泳池清洁机器人由当前路径朝目标池壁移动,以执行目标池壁的探壁操作。
例如,参考图5B,当泳池清洁机器人移动至清洗路径L10后,判断清洗路径L10的累计值已满足预设路径值(例如,泳池清洁机器人已移动的清扫路径累计有10条时),则可控制泳池清洁机器人沿垂直于当前路径L10的延伸方向的第二方向(例如Y方向),由当前路径L10朝目标池壁C移动,以执行目标池壁C的探壁操作。
步骤S604,判断是否碰撞到目标池壁,若否,执行步骤S606,若是,执行步骤S608。
例如,参考图5B,若泳池清洁机器人未碰撞到目标池壁C,执行步骤S606,若泳池清洁机器人碰撞到目标池壁C,执行步骤S608。
步骤S606,执行探壁失败步骤,将当前路径的累计值清零,并控制泳池清洁机器人返回当前路径,并继续执行步骤S406的路径清扫步骤。
例如,参考图5B,若泳池清洁机器人未碰撞到目标池壁C,则将当前路径的累计值清零,以返回当前路径L10,并由当前路径L10开始重新执行累计计数,且返回步骤S406,以继续沿泳池中的各清扫路径移动,执行下一个循环的清扫操作,直至累计值再次满足预设条件后,再次执行目标池壁C的探壁操作。
可选地,在泳池清洁机器人执行下一循环的清扫操作过程中,若累计值尚未满足预设条件,但已碰撞到目标池壁,则泳池清洁机器人会沿着目标池壁往复移动,以迭代更新累计值,直至累计值满足预设条件为止。
例如,参考图5C,当泳池清洁机器人移动至清洗路径L15,其对应的累计值未满足预设路径值时,则泳池清洁机器人会沿着目标池壁C(也就是沿着清洗路径L15)往复移动,直至其对应的累计值更新到9为止。
步骤S608,执行探壁成功步骤,将当前路径的累计值清零,并清空泳池中每一条清扫路径的清扫状态,并控制泳池清洁机器人移动至泳池中的重置位置,并选择执行步骤S302。
例如,参考图5B,若泳池清洁机器人碰撞到目标池壁C,则结束当前确定的待清洗区域的清洗循环操作,将当前路径的累计值清零,并清空泳池中每一条清扫路径的清扫状态,并控制泳池清洁机器人移动至泳池中的重置位置,并返回步骤S302的待清扫区域确定步骤,以基于重置位置重新确定新的待清洗区域,并执行下一个待清洗区域的清洗操作。
可选地,重置位置可包括第一重置位置、第二重置位置、第三重置位置中的任意一个。
于一实施例中,可将包含泳池清洁机器人的初始位置的清扫路径中的任意一个位置确定为所述第一重置位置。
例如,参考图5B,当泳池清洁机器人在位置e1碰撞到目标池壁C时,可将泳池清洁机器人的初始位置,即位置a0确定为第一重置位置,以控制泳池清洁机器人由位置c移动至位置a0;或者,可在泳池清洁机器人面朝目标池壁C的情况下,控制泳池清洁机器人在位置e1执行后退移动,直至抵达包含泳池清洁机器人的初始位置a0的清洗路径L1,并将泳池清洁机器人在清洗路径L1中的当前位置a1确定为第一重置位置;亦或者,可在泳池清洁机器人面朝目标池壁C的情况下,控制泳池清洁机器人在位置e1执行调头操作,以由位置e1移动至位置e2,再由位置e2前进移动,直至抵达包含泳池清洁机器人 的初始位置a0的清洗路径L1,并将泳池清洁机器人在清洗路径L1中的当前位置a2确定为第一重置位置。
再者,在泳池清洁机器人移动至第一重置位置后,由于清扫路径L1至待探测池壁C之间的区域已被清扫过,因此,在返回步骤S302后,可将两个待探测池壁中尚未被确定为目标池壁的待探测池壁D确定为新的目标池壁,以控制泳池清洁机器人从右往左,针对清扫路径L1至目标池壁D之间的待清扫区域继续执行清扫操作。
于另一实施例中,可将泳池清洁机器人执行第二碰撞操作时,碰撞目标池壁的二次碰撞位置确定为第二重置位置。
例如,参考图5B,当泳池清洁机器人在位置e1碰撞到目标池壁C时,直接将位置e1确定为第二重置位置。
再者,在将位置e1确定为重置位置的情况下,在返回步骤S302后,可将两个待探测池壁中尚未被确定为目标池壁的待探测池壁D确定为新的目标池壁,以控制泳池清洁机器人由邻接目标池壁C的清扫路径Ln开始,从右往左清扫,以针对待探测池壁C与待探测池壁D(目标池壁)之间的待清扫区域继续执行清扫操作。
于另一实施例中,可控制泳池清洁机器人由二次碰撞位置,朝两个待探测池壁中未被确定为目标池壁的另一个待探测池壁移动,并将泳池清洁机器人碰撞待探测池壁的位置,确定为第三重置位置。
例如,参考图5B,当泳池清洁机器人在位置e1碰撞到目标池壁C时,可在泳池清洁机器人面朝目标池壁C的情况下,控制泳池清洁机器人在位置e1执行后退移动,直至碰撞未被确定为目标池壁的待探测池壁D,并将泳池清洁机器人碰撞待探测池壁D的位置g1确定为第三重置位置;或者,可在泳池清洁机器人面朝目标池壁C的情况下,控制泳池清洁机器人在位置e1执行调头操作,以由位置e1移动至位置e2,再由位置e2前进移动,直至碰撞未被确定为目标池壁的待探测池壁D,并将泳池清洁机器人碰撞待探测池壁D的位置g2确定为第三重置位置。
再者,在将位置g1或g2确定为重置位置的情况下,在返回步骤S302后,可仍将待探测池壁C确定为目标池壁,以控制泳池清洁机器人由邻接待探测池壁D的清扫路径L1-i开始,从左往右清扫,以针对待探测池壁D与待探测池壁C(目标池壁)之间的待清扫区域继续执行清扫操作。
图7为本申请另一示例性实施例的泳池清扫方法的处理流程图。本实施例为上述步骤S602的具体实施方案,如图所示,本实施例包括以下步骤:
步骤S702,控制泳池清洁机器人在当前路径的第一探壁位置,沿第二方向朝目标 池壁移动预设探壁距离,以执行第一探壁操作。
可选地,预设探壁距离可基于泳池清洁机器人的滚刷长度来确定。
例如,预设探壁距离的取值范围可介于泳池清洁机器人的滚刷长度(本申请泳池清洁机器人的滚刷由两个子滚轮构成,所述滚刷长度为两个子滚轮总长度)的1倍至3倍之间。
例如,参考图8A,可控制泳池清洁机器人在当前路径L10的第一探壁位置d1,沿第二方向(Y方向)朝目标池壁C移动(例如前进移动)预设探壁距离,以执行第一探壁操作。
可选地,可将两个基准池壁中的一个基准池壁确定为参考池壁,并控制泳池清洁机器人沿当前路径,朝远离参考池壁的方向移动第一移动距离,以确定当前路径的第一探壁位置。
具体地,可根据泳池清洁机器人在当前路径中的当前位置,将两个基准池壁中,距离泳池清洁机器人较近的一个基准池壁确定为参考池壁。
例如,参考图8A,当泳池清洁机器人由清洗路径L9转移至清洗路径L10时,可以确定基准池壁A为距离池清洁机器人较近的一个基准池壁,则可将基准池壁A确定为参考池壁。
其中,在泳池清洁机器人当前面朝基准池壁B的情况下(即图8A所示示例),可控制泳池清洁机器人沿当前路径L10,朝远离参考池壁A的方向前进移动第一移动距离,以确定当前路径L10的第一探壁位置d1;或者,在泳池清洁机器人当前面朝基准池壁A的情况下,可控制泳池清洁机器人沿当前路径L10,朝远离参考池壁A的方向后退移动第一移动距离,以确定当前路径L10的第一探壁位置d1。
可选地,第一移动距离可基于泳池清洁机器人的滚刷长度所确定。
步骤S704,判断第一探壁操作是否碰撞到目标池壁,若否,执行步骤S606,若是,执行步骤S706。
具体地,若泳池清洁机器人执行第一探壁操作未碰撞到目标池壁C(参考图8A所示的位置e3),执行步骤S606的探壁失败步骤,若泳池清洁机器人执行第一探壁操作碰撞到目标池壁C(参考图8B所示的位置e3),执行步骤S706的探壁成功步骤。
步骤S706,控制泳池清洁机器人在当前路径的第二探壁位置,沿第二方向朝目标池壁再次移动预设探壁距离,以执行第二探壁操作。
例如,参考图8B,可控制泳池清洁机器人在当前路径L10的第二探壁位置d2,沿第二方向(Y方向)朝目标池壁C再次移动,以执行第二探壁操作。
可选地,在第一探壁操作碰撞到目标池壁的情况下,可控制泳池清洁机器人在第一探壁位置沿当前路径,朝远离参考池壁的方向再次移动第二移动距离,以确定当前路径的第二探壁位置。
具体地,参考图8B,在第一探壁操作碰撞到目标池壁C的情况下,可控制泳池清洁机器人由执行第一探壁操作时,碰撞目标池壁C的一次碰撞位置e3后退移动,以返回当前路径L10的第一探壁位置d1,并在第一探壁位置d1沿当前路径L10,朝远离参考池壁A的方向再次移动第二移动距离,以确定当前路径L10的第二探壁位置d2。
其中,在泳池清洁机器人当前面朝基准池壁B的情况下(即图8B所示示例),可控制泳池清洁机器人在第一探壁位置d1沿当前路径L10,朝远离参考池壁A的方向前进移动第二移动距离,以确定当前路径L10的第二探壁位置d2;或者,在泳池清洁机器人当前面朝基准池壁A的情况下,可控制泳池清洁机器人在第一探壁位置d1沿当前路径L10,朝远离参考池壁A的方向后退移动第二移动距离,以确定当前路径L10的第二探壁位置d2。
可选地,第一移动距离和第二移动距离可为相同或者不同。
步骤S708,判断第二探壁操作是否碰撞到目标池壁,若否,可选择执行步骤S606或步骤S710中的任意一个,若是,执行步骤S706。
例如,参考图8C,若泳池清洁机器人在第一探壁位置d1执行第一探壁操作,并碰撞到目标池壁C中的C1分段,但在第二探壁位置d2执行第二探壁操作,未碰撞到目标池壁C的C2分段时(参考图8C所示的位置e4),可选择执行步骤S606的探壁失败步骤,或选择执行步骤S710的第一替换步骤。
于本实施例中,当选择执行步骤S606的探壁失败步骤时,可将当前路径的累计值清零,并控制泳池清洁机器人返回当前路径,并继续执行路径清扫步骤。
具体地,参考图8C,可将当前路径L10的累计值清零,并控制泳池清洁机器人由当前位置e4返回当前路径L10,并由当前路径L10开始继续执行待清扫区域的清扫操作。
步骤S710,将当前路径的累计值清零,并控制泳池清洁机器人在当前位置,朝当前路径的方向移动小于预设探壁距离的返回距离,并继续执行步骤S402。
具体地,参考图8C,可将当前路径L10的累计值清零,并控制泳池清洁机器人由当前位置e4向当前路径L10移动小于预设探壁距离的预设返回距离,以抵达清扫路径L11,并继续执行步骤S402的当前路径确定步骤,以继续执行清洗路径L11至目标池壁C2之间的待清扫区域的清扫操作。
可选地,可将预设返回距离设置为0,以在泳池清洁机器人无需执行返回移动的 情况下,直接返回步骤S402的当前路径确定步骤,以继续执行清洗路径L12至目标池壁C2之间的待清扫区域的清扫操作。
图9示出了本申请另一实施例的泳池清扫方法的处理流程图。
于本实施例中,当步骤S608中的重置位置为第二重置位置或第三重置位置,可在执行步骤S608之后,选择继续执行步骤S902。
步骤S902,将两个待探测池壁中的一个确定为目标池壁,根据泳池清洁机器人的当前位置和目标池壁,确定泳池中的待清扫区域。
例如,在泳池清洁机器人当前位于碰撞待探测池壁C的第二重置位置e1或e2时(参考图5B),可将位于待探测池壁C的相对侧的待探测池壁D确定为目标池壁,并根据泳池清洁机器人的当前位置e1或e2,以及目标池壁D,确定泳池中的待清扫区域。
又如,在泳池清洁机器人当前位于碰撞待探测池壁D的第三重置位置g1或g2时(参考图5B),可将位于待探测池壁D的相对侧的待探测池壁C确定为目标池壁,并根据泳池清洁机器人的当前位置g1或g2,以及目标池壁C,确定泳池中的待清扫区域。
步骤S904,控制泳池清洁机器人沿待清扫区域中的各清扫路径移动,以执行待清扫区域的清扫操作。
其中,本步骤的清扫步骤与上述步骤S304基本相同,差异之处在于本步骤不再执行累计值的累计操作以及在累计值满足预设条件时的探壁操作,亦即,本步骤将控制泳池清洁机器人根据待清扫区域中的每一条清扫路径执行清扫,直至所有清扫路径均完成清扫。
可选地,在执行步骤S904后,可选择继续执行步骤S302或步骤S902中的一个,以针对泳池执行反复清扫。
综上所述,本申请各实施例提供的泳池清扫方法,通过累计泳池清洁机器人已移动的清扫路径的累计值,并当累计值满足预设条件时,触发执行待探测池壁的探壁操作,借以提高泳池清扫效率,并提升泳池清扫覆盖率。
图10为本申请示例性实施例的泳池清扫装置的结构框图。如图所示,本实施例的泳池清扫装置1000主要包括清扫模块1002、探壁模块1004。
清扫模块1002,用于控制泳池清洁机器人沿泳池中的各清扫路径移动,以执行清扫操作,并获取所述泳池清洁机器人已移动的清扫路径的累计值。
探壁模块1004,用于当所述累计值满足预设条件时,控制所述泳池清洁机器人沿探壁路径移动,以执行所述泳池的待探测池壁的探壁操作。
可选地,泳池清扫装置1000还包括路径生成模块(未图示),用于根据所述泳池清洁机器人的初始位置和初始朝向,生成所述泳池中的各清扫路径;其中,各清扫路径的 延伸方向与所述泳池清洁机器人的初始朝向实质平行。
可选地,路径生成模块还用于:根据所述泳池清洁机器人自由下沉至所述泳池的池底的位置和朝向,确定泳池清洁机器人的初始位置和初始朝向;或者,控制所述泳池清洁机器人相对于所述泳池的池底移动至指定位置和指定朝向,并将所述指定位置和所述指定朝向确定为所述泳池清洁机器人的初始位置和初始朝向。
可选地,泳池清扫装置1000还用于:根据各清扫路径中,所述泳池清洁机器人当前所处的当前路径,定义相对于所述当前路径的两个基准池壁和两个目标探壁;其中,所述两个基准池壁沿平行于所述当前路径的延伸方向的第一方向,位于所述当前路径的相对两侧,所述两个待探测池壁沿垂直于所述当前路径的延伸方向的第二方向,位于所述当前路径的相对两侧。
可选地,清扫模块1002还用于:执行待清扫区域确定步骤,将所述两个待探测池壁中的一个确定为目标池壁,根据所述泳池清洁机器人的当前位置和所述目标池壁,确定所述泳池中的待清扫区域;执行待清扫区域清扫步骤,控制所述泳池清洁机器人沿所述待清扫区域中的各清扫路径移动,以执行所述待清扫区域的清扫操作,并累计所述泳池清洁机器人已移动的清扫路径,获取所述累计值。
可选地,清扫模块1002还用于:执行当前路径确定步骤,将所述泳池清洁机器人当前所处的一条清扫路径确定为当前路径,并生成对应于所述当前路径的累计值;执行路径清扫步骤,在所述累计值不满足所述预设条件的情况下,控制所述泳池清洁机器人沿所述当前路径移动,以执行所述当前路径的清扫;根据预设寻路算法,控制所述泳池清洁机器人由所述当前路径,移动至所述泳池中相邻于所述当前路径且未完成清扫的一条清扫路径,并返回执行所述当前路径确定步骤。
可选地,清扫模块1002还用于:控制所述泳池清洁机器人沿所述当前路径后退移动,直至碰撞所述两个基准池壁中的一个;控制所述泳池清洁机器人沿所述当前路径前进移动,直至碰撞所述两个基准池壁中的另一个,以执行所述当前路径的清扫。
可选地,探壁模块1004可通过以下任意一种方式判断所述累计值是否满足所述预设条件:若所述泳池清洁机器人已移动的清扫路径的累计值满足预设路径值,获得所述累计值满足所述预设条件的判定结果;或者,根据所述泳池清洁机器人已移动的清扫路径的累计值,计算所述泳池清洁机器人已移动的清扫区域的区域数量,若所述区域数量满足预设区域值,获得所述累计值满足所述预设条件的判定结果。
可选地,探壁模块1004还用于:控制所述泳池清洁机器人由所述当前路径朝所述目标池壁移动,以执行所述目标池壁的探壁操作;若未碰撞到所述目标池壁,执行探壁失 败步骤,若碰撞到所述目标池壁,执行探壁成功步骤;其中,所述探壁失败步骤包括:将所述当前路径的累计值清零,并控制所述泳池清洁机器人返回所述当前路径,且继续执行所述路径清扫步骤;所述探壁成功步骤包括:将所述当前路径的累计值清零,并清空所述泳池中每一条清扫路径的清扫状态,并控制所述泳池清洁机器人移动至所述泳池中的重置位置,且返回执行所述待清扫区域确定步骤。
可选地,探壁模块1004还用于:控制所述泳池清洁机器人在所述当前路径的第一探壁位置,沿所述第二方向朝所述目标池壁移动预设探壁距离,以执行第一探壁操作;若所述第一探壁操作未碰撞到所述目标池壁,执行所述探壁失败步骤,若所述第一探壁操作碰撞到所述目标池壁,控制所述泳池清洁机器人在所述当前路径的第二探壁位置,沿所述第二方向朝所述目标池壁再次移动所述预设探壁距离,以执行第二探壁操作;若所述第二探壁操作未碰撞到所述目标池壁,执行所述探壁失败步骤,若所述第二探壁操作碰撞到所述目标池壁,执行所述探壁成功步骤。
可选地,所述预设探壁距离可基于所述泳池清洁机器人的滚刷长度所确定。
可选地,探壁模块1004还用于:确定所述当前路径的第一探壁位置、第二探壁位置,包括将所述两个基准池壁中,距离所述泳池清洁机器人较近的一个基准池壁确定为参考池壁;控制所述泳池清洁机器人沿所述当前路径,朝远离所述参考池壁的方向移动第一移动距离,以确定所述当前路径的第一探壁位置;在所述第一探壁操作碰撞到所述目标池壁的情况下,控制所述泳池清洁机器人在所述第一探壁位置沿所述当前路径,朝远离所述参考池壁的方向移动第二移动距离,以确定所述当前路径的第二探壁位置;其中,所述第一移动距离和所述第二移动距离为相同或不同。
可选地,探壁模块1004还用于在所述第二探壁操作未碰撞到所述目标池壁的情况下,执行可替换所述探壁失败步骤执行的第一替换步骤,其包括:将所述当前路径的累计值清零,并控制所述泳池清洁机器人在当前位置朝所述当前路径的方向移动小于所述预设探壁距离的预设返回距离,并继续执行所述当前路径确定步骤。
可选地,所述重置位置包括第一重置位置、第二重置位置、第三重置位置中的任意一个。
可选地,探壁模块1004还用于:将包含所述泳池清洁机器人的初始位置的清扫路径中的任意一个位置确定为所述第一重置位置;或者,将所述泳池清洁机器人执行所述第二探壁操作时,碰撞所述目标池壁的二次碰撞位置确定为所述第二重置位置;或者控制所述泳池清洁机器人由所述二次碰撞位置,朝所述两个待探测池壁中未被确定为所述目标池壁的一个待探测池壁移动,并将所述泳池清洁机器人碰撞所述待探测池壁的位置,确定为 所述第三重置位置。
可选地,在所述重置位置为所述第二重置位置或所述第三重置位置的情况下,所述探壁模块1004在执行所述探壁成功步骤后,还用于:将所述两个待探测池壁中的一个确定为目标池壁,根据所述泳池清洁机器人的当前位置和所述目标池壁,确定所述泳池中的待清扫区域;控制所述泳池清洁机器人沿所述待清扫区域中的各清扫路径移动,以执行所述待清扫区域的清扫操作。
本申请示例性实施例还提供一种电子设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器。所述存储器存储有能够被所述至少一个处理器执行的计算机程序,所述计算机程序在被所述至少一个处理器执行时用于使所述电子设备执行根据本申请各实施例的方法。
本申请示例性实施例还提供一种存储有计算机程序的非瞬时计算机可读存储介质,其中,所述计算机程序在被计算机的处理器执行时用于使所述计算机执行根据本申请各实施例的方法。
本申请示例性实施例还提供一种计算机程序产品,包括计算机程序,其中,所述计算机程序在被计算机的处理器执行时用于使所述计算机执行根据本申请各实施例的方法。
参考图11,现将描述可以作为本申请的服务器或客户端的电子设备1100的结构框图,其是可以应用于本申请的各方面的硬件设备的示例。电子设备旨在表示各种形式的数字电子的计算机设备,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
如图11所示,电子设备1100包括计算单元1101,其可以根据存储在只读存储器(ROM)1102中的计算机程序或者从存储单元1108加载到随机访问存储器(RAM)1103中的计算机程序,来执行各种适当的动作和处理。在RAM 1103中,还可存储设备1100操作所需的各种程序和数据。计算单元1101、ROM 1102以及RAM 1103通过总线1104彼此相连。输入/输出(I/O)接口1105也连接至总线1104。
电子设备1100中的多个部件连接至I/O接口1105,包括:输入单元1106、输出单元1107、存储单元1108以及通信单元1109。输入单元1106可以是能向电子设备1100输入信息的任何类型的设备,输入单元1106可以接收输入的数字或字符信息,以及产生 与电子设备的用户设置和/或功能控制有关的键信号输入。输出单元1107可以是能呈现信息的任何类型的设备,并且可以包括但不限于显示器、扬声器、视频/音频输出终端、振动器和/或打印机。存储单元1104可以包括但不限于磁盘、光盘。通信单元1109允许电子设备1100通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据,并且可以包括但不限于调制解调器、网卡、红外通信设备、无线通信收发机和/或芯片组,例如蓝牙TM设备、WiFi设备、WiMax设备、蜂窝通信设备和/或类似物。
计算单元1101可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元1101的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元1101执行上文所描述的各个方法和处理。例如,在一些实施例中,前述各实施例的泳池清扫方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元1108。在一些实施例中,计算机程序的部分或者全部可以经由ROM 1102和/或通信单元1109而被载入和/或安装到电子设备1100上。在一些实施例中,计算单元1101可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行前述各实施例的泳池清扫方法。
用于实施本申请的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
如本申请使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令 的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
以上所述仅为本申请实施例示意性的具体实施方式,并非用以限定本申请实施例的范围。任何本领域的技术人员,在不脱离本申请实施例的构思和原则的前提下所作的等同变化、修改与结合,均应属于本申请实施例保护的范围。

Claims (18)

  1. 一种泳池清扫方法,包括:
    控制泳池清洁机器人沿泳池中的各清扫路径移动,以执行清扫操作,并获取所述泳池清洁机器人已移动的清扫路径的累计值;
    若所述累计值满足所述预设条件,控制所述泳池清洁机器人沿探壁路径移动,以执行所述泳池的待探测池壁的探壁操作。
  2. 根据权利要求1所述的方法,其中,各清扫路径通过以下方式生成:
    根据所述泳池清洁机器人的初始位置和初始朝向,生成所述泳池中的各清扫路径;
    其中,各清扫路径的延伸方向与所述泳池清洁机器人的初始朝向实质平行。
  3. 根据权利要求2所述的方法,其中,所述泳池清洁机器人的初始位置和初始朝向通过以下方式获取:
    根据所述泳池清洁机器人自由下沉至所述泳池的池底的位置和朝向,确定泳池清洁机器人的初始位置和初始朝向;或者,
    控制所述泳池清洁机器人相对于所述泳池的池底移动至指定位置和指定朝向,并将所述指定位置和所述指定朝向确定为所述泳池清洁机器人的初始位置和初始朝向。
  4. 根据权利要求1或2所述的方法,其中,所述泳池还包括基准池壁,其中,所述泳池的基准池壁和待探测池壁通过以下方式定义:
    根据各清扫路径中,所述泳池清洁机器人当前所处的当前路径,定义相对于所述当前路径的两个基准池壁和两个目标探壁;
    其中,所述两个基准池壁沿平行于所述当前路径的延伸方向的第一方向,位于所述当前路径的相对两侧,所述两个待探测池壁沿垂直于所述当前路径的延伸方向的第二方向,位于所述当前路径的相对两侧。
  5. 根据权利要求4所述的方法,其中,所述控制泳池清洁机器人沿泳池中的各清扫路径移动,以执行清扫操作,并获取所述泳池清洁机器人已移动的清扫路径的累计值,包括:
    待清扫区域确定步骤,将所述两个待探测池壁中的一个确定为目标池壁,根据所述泳池清洁机器人的当前位置和所述目标池壁,确定所述泳池中的待清扫区域;
    待清扫区域清扫步骤,控制所述泳池清洁机器人沿所述待清扫区域中的各清扫路径移动,以执行所述待清扫区域的清扫操作,并累计所述泳池清洁机器人已移动的清扫路径,获取所述累计值。
  6. 根据权利要求5所述的方法,其中,所述待清扫区域清扫步骤包括:
    当前路径确定步骤,将所述泳池清洁机器人当前所处的一条清扫路径确定为当前路径,并生成对应于所述当前路径的累计值;
    路径清扫步骤,在所述累计值不满足所述预设条件的情况下,控制所述泳池清洁机器人沿所述当前路径移动,以执行所述当前路径的清扫;
    根据预设寻路算法,控制所述泳池清洁机器人由所述当前路径,移动至所述泳池中相邻于所述当前路径且未完成清扫的一条清扫路径,并返回执行所述当前路径确定步骤。
  7. 根据权利要求6所述的方法,其中,所述路径清扫步骤包括:
    控制所述泳池清洁机器人沿所述当前路径后退移动,直至碰撞所述两个基准池壁中的一个;
    控制所述泳池清洁机器人沿所述当前路径前进移动,直至碰撞所述两个基准池壁中的另一个,以执行所述当前路径的清扫。
  8. 根据权利要求6所述的方法,其中,可通过以下任意一种方式判断所述累计值是否满足所述预设条件:
    若所述泳池清洁机器人已移动的清扫路径的累计值满足预设路径值,获得所述累计值满足所述预设条件的判定结果;或者,
    根据所述泳池清洁机器人已移动的清扫路径的累计值,计算所述泳池清洁机器人已移动的清扫区域的区域数量,若所述区域数量满足预设区域值,获得所述累计值满足所述预设条件的判定结果。
  9. 根据权利要求6所述的方法,其中,所述若所述累计值满足预设条件,控制所述泳池清洁机器人沿探壁路径移动,以执行所述泳池的待探测池壁的探壁操作,包括:
    控制所述泳池清洁机器人由所述当前路径朝所述目标池壁移动,以执行所述目标池壁的探壁操作;
    若未碰撞到所述目标池壁,执行探壁失败步骤,若碰撞到所述目标池壁,执行探壁成功步骤;其中,
    所述探壁失败步骤包括:将所述当前路径的累计值清零,并控制所述泳池清洁机器人返回所述当前路径,且继续执行所述路径清扫步骤;
    所述探壁成功步骤包括:将所述当前路径的累计值清零,并清空所述泳池中每一条清扫路径的清扫状态,并控制所述泳池清洁机器人移动至所述泳池中的重置位置,且返回执行所述待清扫区域确定步骤。
  10. 根据权利要求9所述的方法,其中,所述目标池壁的探壁操作包括:
    控制所述泳池清洁机器人在所述当前路径的第一探壁位置,沿所述第二方向朝所述目标池壁移动预设探壁距离,以执行第一探壁操作;
    若所述第一探壁操作未碰撞到所述目标池壁,执行所述探壁失败步骤,若所述第一探壁操作碰撞到所述目标池壁,控制所述泳池清洁机器人在所述当前路径的第二探壁位置,沿所述第二方向朝所述目标池壁再次移动所述预设探壁距离,以执行第二探壁操作;
    若所述第二探壁操作未碰撞到所述目标池壁,执行所述探壁失败步骤,若所述第二探壁操作碰撞到所述目标池壁,执行所述探壁成功步骤。
  11. 根据权利要求10所述的方法,其中,所述预设探壁距离可基于所述泳池清洁机器人的滚刷长度所确定。
  12. 根据权利要求10所述的方法,其中,所述当前路径的第一探壁位置、第二探壁位置通过以下方式确定:
    将所述两个基准池壁中,距离所述泳池清洁机器人较近的一个基准池壁确定为参考池壁;
    控制所述泳池清洁机器人沿所述当前路径,朝远离所述参考池壁的方向移动第一移动距离,以确定所述当前路径的第一探壁位置;
    在所述第一探壁操作碰撞到所述目标池壁的情况下,控制所述泳池清洁机器人在所述第一探壁位置沿所述当前路径,朝远离所述参考池壁的方向移动第二移动距离,以确定所述当前路径的第二探壁位置;
    其中,所述第一移动距离和所述第二移动距离为相同或不同。
  13. 根据权利要求12所述的方法,其中,在所述第二探壁操作未碰撞到所述目标池壁的情况下,所述方法还包括可替换所述探壁失败步骤执行的第一替换步骤:
    将所述当前路径的累计值清零,并控制所述泳池清洁机器人在当前位置朝所述当前路径的方向移动小于所述预设探壁距离的预设返回距离,并继续执行所述当前路径确定步骤。
  14. 根据权利要求10所述的方法,其中,所述重置位置包括第一重置位置、第二重置位置、第三重置位置中的任意一个;
    其中,所述第一重置位置、第二重置位置、第三重置位置可分别通过以下方式确定;
    将包含所述泳池清洁机器人的初始位置的清扫路径中的任意一个位置确定为所述第一重置位置;
    将所述泳池清洁机器人执行所述第二探壁操作时,碰撞所述目标池壁的二次碰撞位置确定为所述第二重置位置;
    控制所述泳池清洁机器人由所述二次碰撞位置,朝所述两个待探测池壁中未被确定为所述目标池壁的一个待探测池壁移动,并将所述泳池清洁机器人碰撞所述待探测池壁的位置,确定为所述第三重置位置。
  15. 根据权利要求14所述的方法,其中,在所述重置位置为所述第二重置位置或所述第三重置位置的情况下,在执行所述探壁成功步骤后,所述方法还包括:
    将所述两个待探测池壁中的一个确定为目标池壁,根据所述泳池清洁机器人的当前位置和所述目标池壁,确定所述泳池中的待清扫区域;
    控制所述泳池清洁机器人沿所述待清扫区域中的各清扫路径移动,以执行所述待清扫 区域的清扫操作。
  16. 一种泳池清扫装置,包括:
    清扫模块,用于控制泳池清洁机器人沿泳池中的各清扫路径移动,以执行清扫操作,并获取所述泳池清洁机器人已移动的清扫路径的累计值;
    探壁模块,用于当所述累计值满足预设条件时,控制所述泳池清洁机器人沿探壁路径移动,以执行所述泳池的待探测池壁的探壁操作。
  17. 一种电子设备,包括:
    处理器;以及
    存储程序的存储器;
    其中,所述程序包括指令,所述指令在由所述处理器执行时,使所述处理器执行根据权利要求1-15中任一项所述的方法。
  18. 一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使计算机执行根据权利要求1-15中任一项所述的方法。
PCT/CN2022/126951 2022-02-18 2022-10-24 泳池清扫方法、装置、电子设备及存储介质 WO2023155464A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/076907 WO2023155159A1 (en) 2022-02-18 2022-02-18 Wall collision u-turning method and apparatus for swimming pool cleaning robot, and swimming pool edge cleaning method and apparatus
CNPCT/CN2022/076907 2022-02-18
CN202211270843.4 2022-10-17
CN202211270843.4A CN116048059B (zh) 2022-02-18 2022-10-17 泳池清扫方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023155464A1 true WO2023155464A1 (zh) 2023-08-24

Family

ID=85524796

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/076907 WO2023155159A1 (en) 2022-02-18 2022-02-18 Wall collision u-turning method and apparatus for swimming pool cleaning robot, and swimming pool edge cleaning method and apparatus
PCT/CN2022/127062 WO2023155465A1 (zh) 2022-02-18 2022-10-24 泳池清洁机器人的路径规划及清洁方法、装置及设备
PCT/CN2022/126951 WO2023155464A1 (zh) 2022-02-18 2022-10-24 泳池清扫方法、装置、电子设备及存储介质

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/076907 WO2023155159A1 (en) 2022-02-18 2022-02-18 Wall collision u-turning method and apparatus for swimming pool cleaning robot, and swimming pool edge cleaning method and apparatus
PCT/CN2022/127062 WO2023155465A1 (zh) 2022-02-18 2022-10-24 泳池清洁机器人的路径规划及清洁方法、装置及设备

Country Status (2)

Country Link
CN (2) CN115822334A (zh)
WO (3) WO2023155159A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799180A (zh) * 2012-07-26 2012-11-28 杭州高越科技有限公司 一种清洗机行走控制方法与装置
US20170342733A1 (en) * 2016-05-25 2017-11-30 Maytronics Ltd. Pool cleaner with drive motor navigation capabilities
US20180224856A1 (en) * 2016-04-11 2018-08-09 Aqua Products, Inc. Method for modifying an onboard control system of a pool cleaner, and power source for a pool cleaner
CN112540611A (zh) * 2020-09-23 2021-03-23 深圳市银星智能科技股份有限公司 一种机器人的路径规划方法、机器人及主控芯片
CN112947408A (zh) * 2021-01-19 2021-06-11 广州菲亚兰德科技有限公司 一种清洁设备的控制方法及装置
US20220043450A1 (en) * 2020-08-10 2022-02-10 Zodiac Pool Care Europe Systems and methods of operating automatic swimming pool cleaners, especially when approaching walls or other objects

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2210925T3 (es) * 1998-09-23 2004-07-01 3S Systemtechnik Ag Metodo de trabajo y dispositivo de limpieza para limpiar una piscina.
US6299699B1 (en) * 1999-04-01 2001-10-09 Aqua Products Inc. Pool cleaner directional control method and apparatus
JP5086942B2 (ja) * 2008-09-02 2012-11-28 トヨタ自動車株式会社 経路探索装置、経路探索方法、及び経路探索プログラム
CN101481957B (zh) * 2009-02-05 2011-06-08 天津望圆工贸有限责任公司 遥控有序泳池清洁机器人及其有序清洗方法
CN106325287A (zh) * 2015-06-14 2017-01-11 复旦大学 一种基于惯性/磁传感器marg姿态检测的智能割草机直线行走控制系统
CN107340768B (zh) * 2016-12-29 2020-08-28 珠海市一微半导体有限公司 一种智能机器人的路径规划方法
CN208110385U (zh) * 2018-03-07 2018-11-16 中国石油大学(华东) 一种激光导航机器人救援系统
EP3782774B1 (en) * 2018-04-06 2023-11-08 LG Electronics Inc. Mobile robot
CN108634886B (zh) * 2018-05-29 2020-08-28 珠海市一微半导体有限公司 机器人清扫中断后的控制方法及芯片
EP3809231B1 (en) * 2019-10-17 2023-10-18 Nokia Solutions and Networks Oy Controlling movement of a device
CN110955262B (zh) * 2019-12-10 2023-04-07 河海大学常州校区 光伏组件清洁机器人的路径规划与跟踪的控制方法及系统
CN111199677B (zh) * 2019-12-25 2022-02-18 邦鼓思电子科技(上海)有限公司 一种室外区域的工作地图自动建立方法,装置,存储介质及工作设备
CN111466846B (zh) * 2020-03-31 2022-03-08 深圳市银星智能科技股份有限公司 清洁机器人的清洁方法、芯片以及清洁机器人
CN111596662B (zh) * 2020-05-26 2023-03-10 珠海一微半导体股份有限公司 一种沿全局工作区域一圈的判断方法、芯片及视觉机器人
CN111906779B (zh) * 2020-06-30 2022-05-10 珠海一微半导体股份有限公司 一种越障结束判断方法、越障控制方法、芯片及机器人
CN112631281A (zh) * 2020-12-10 2021-04-09 尚科宁家(中国)科技有限公司 清洁机器人的路径规划方法及清洁机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799180A (zh) * 2012-07-26 2012-11-28 杭州高越科技有限公司 一种清洗机行走控制方法与装置
US20180224856A1 (en) * 2016-04-11 2018-08-09 Aqua Products, Inc. Method for modifying an onboard control system of a pool cleaner, and power source for a pool cleaner
US20170342733A1 (en) * 2016-05-25 2017-11-30 Maytronics Ltd. Pool cleaner with drive motor navigation capabilities
US20220043450A1 (en) * 2020-08-10 2022-02-10 Zodiac Pool Care Europe Systems and methods of operating automatic swimming pool cleaners, especially when approaching walls or other objects
CN112540611A (zh) * 2020-09-23 2021-03-23 深圳市银星智能科技股份有限公司 一种机器人的路径规划方法、机器人及主控芯片
CN112947408A (zh) * 2021-01-19 2021-06-11 广州菲亚兰德科技有限公司 一种清洁设备的控制方法及装置

Also Published As

Publication number Publication date
CN115822334A (zh) 2023-03-21
WO2023155465A1 (zh) 2023-08-24
CN116048059B (zh) 2023-10-20
WO2023155159A1 (en) 2023-08-24
CN116048059A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
CN109341707B (zh) 未知环境下移动机器人三维地图构建方法
WO2021232652A1 (zh) 目标跟踪方法、装置、电子设备及计算机可读存储介质
US20210109537A1 (en) Autonomous exploration framework for indoor mobile robotics using reduced approximated generalized voronoi graph
CN110332943B (zh) 一种快速遍历的机器人全覆盖路径规划方法
CN109984689A (zh) 一种清洁机器人及清洁机器人的路径优化方法
JP7314411B2 (ja) 移動ロボットの障害物情報感知方法、装置
CN109375618A (zh) 清洁机器人的导航避障方法及终端设备
CN115185282B (zh) 泳池清洁机器人的池壁避障移动方法、装置、电子设备
WO2019006289A1 (en) SYSTEMS AND METHODS FOR SCAN ENHANCEMENT AND CORRECTION
EP3937077B1 (en) Lane marking detecting method, apparatus, electronic device, storage medium, and vehicle
WO2020107326A1 (zh) 车道线检测方法、设备、计算机可读存储介质
CN110763247A (zh) 基于可视图和贪心算法结合的机器人路径规划方法
WO2023155464A1 (zh) 泳池清扫方法、装置、电子设备及存储介质
CN102831628B (zh) 用于更新动态场景的Voronoi图的方法及设备
CN114319954B (zh) 泳池清洁机器人的碰壁调头及泳池边缘清洗方法、装置
CN115716482A (zh) 掉头轨迹规划方法、装置、设备及存储介质
WO2023155157A1 (en) Method and apparatus for cleaning swimming pools, and electronic device and storage medium thereof
CN114545939B (zh) 泳池清洁机器人的驱动控制方法、装置、电子设备
WO2024026822A1 (en) Method for generating pool wall cleaning path, method for cleaning pool wall, device thereof, and electronic device
CN112633186B (zh) 室内环境下可行驶路面的分割方法、装置、介质和机器人
CN112001987B (zh) 一种多边形的裁剪方法、装置、电子设备及存储介质
CN114442639A (zh) 泳池清洁机器人的靠边控制方法、装置、电子设备
CN114419187B (zh) 地图构建方法、装置、电子设备和可读存储介质
CN115527109B (zh) 一种水下混凝土病害监测方法、装置、水下机器人及介质
CN111443864B (zh) 基于iOS的曲线绘制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926768

Country of ref document: EP

Kind code of ref document: A1