WO2020056646A1 - 无人机及其控制方法、控制装置和计算机可读存储介质 - Google Patents

无人机及其控制方法、控制装置和计算机可读存储介质 Download PDF

Info

Publication number
WO2020056646A1
WO2020056646A1 PCT/CN2018/106565 CN2018106565W WO2020056646A1 WO 2020056646 A1 WO2020056646 A1 WO 2020056646A1 CN 2018106565 W CN2018106565 W CN 2018106565W WO 2020056646 A1 WO2020056646 A1 WO 2020056646A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
preset
drone
current
controlling
Prior art date
Application number
PCT/CN2018/106565
Other languages
English (en)
French (fr)
Inventor
李阳
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880029907.7A priority Critical patent/CN110612493A/zh
Priority to PCT/CN2018/106565 priority patent/WO2020056646A1/zh
Publication of WO2020056646A1 publication Critical patent/WO2020056646A1/zh
Priority to US17/204,865 priority patent/US20210349461A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0094Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/185Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/20Transmission of mechanical power to rotors or propellers
    • B64U50/27Transmission of mechanical power to rotors or propellers with a single motor serving two or more rotors or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs

Definitions

  • the present invention relates to the field of unmanned aerial vehicles, and more particularly, to an unmanned aerial vehicle and a control method thereof, a control device, and a computer-readable storage medium.
  • the distance between the subject and the lens group needs to be changed, which results in a large enough space for the lens to accommodate the movement of the lens group. Therefore, the camera's optical zoom lens is often longer.
  • the size of the gimbal is affected by the camera, so the size of the camera determines the size of the gimbal, and the size and range of the gimbal determine the entire The size of aerial drones.
  • the smaller the camera the less likely it is to interfere, and the more compact the gimbal structure; the larger the camera, the more likely it is to interfere, and the larger the gimbal structure is.
  • the present invention aims to solve at least the technical problems existing in the prior art.
  • the technical solution of the first aspect of the present invention provides a control method of an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes a fuselage and a photographing device disposed on the fuselage.
  • the photographing device The lens can be retracted relative to the body, and the control method includes: detecting whether a preset trigger event for determining that the lens is to interfere with an obstacle around the lens; if not, controlling the The lens is in an extended state; if it is, the lens is controlled to be in a retracted state to prevent the lens from interfering with the obstacle.
  • the technical solution of the second aspect of the present invention provides a control device for a drone.
  • the drone includes a body and a photographing device provided on the body.
  • the lens of the photographing device can be relative to The body is retractable, and the control device includes: a memory and a processor; the memory is used to store program code; the processor is used to call the program code to execute: detecting whether it occurs to determine the lens and the camera The preset trigger event of the obstacle around the lens to be interfered with; if not, the lens is controlled to be extended; if it is, the lens is controlled to be retracted to prevent the lens from extending and Obstacles interfere.
  • the technical solution of the third aspect of the present invention provides an unmanned aerial vehicle, including: the control device according to any one of the above technical solutions.
  • the technical solution of the fourth aspect of the present invention provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the control method according to any one of the foregoing technical solutions are implemented.
  • the lens by detecting the occurrence of a preset trigger event, the lens can be controlled to be in an extended state when the preset trigger event does not occur, so that the shooting device can perform operations such as high-power optical zoom to meet shooting requirements.
  • the lens when a preset trigger event occurs, the lens can be controlled to be retracted to prevent the lens from interfering with an obstacle and damaging the lens.
  • controlling the retraction of the lens can also reduce the size of the drone, which is not only conducive to improving the portability and transportability of the drone, but also to improve the stable control of the gimbal when high-power optical zoom is not needed. Under the premise of achieving optical zoom, the structure of the drone can be made more compact.
  • FIG. 1 is a schematic structural diagram of a drone according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a control method of a drone according to the first embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for controlling a drone according to a second embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a control method of a drone according to a third embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for controlling a drone according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a control device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a drone according to an embodiment of the present invention.
  • the drone 100 includes a main body 118 and a photographing device provided on the main body 118.
  • the photographing device may be directly connected to the main body 118, or the photographing device may be indirectly connected to the main body 118 through an intermediate connecting member.
  • the intermediate connecting member may include, but is not limited to, a gimbal.
  • the photographing device may include a lens 20 that is capable of retracting and retracting relative to the body 118.
  • the dotted frame can indicate the lens in the retracted state. For example, when carrying and storing a drone, the size of the drone can be reduced by retracting the lens, thereby saving the space occupied by the drone.
  • the lens can perform high-power optical zoom when the lens is extended, and the lens can perform low-power optical zoom when the lens is retracted.
  • the shooting device in this embodiment may also have a digital zoom function to meet different shooting needs.
  • the method for controlling a drone provided by the embodiment of the present invention can control the extension and retraction of a lens according to the detection result by detecting whether a preset trigger event for determining that the lens and an obstacle around the lens are to interfere. While realizing the optical zoom performance and meeting the needs of taking pictures, the size of the lens can be reduced according to needs, thereby reducing the size of the drone and greatly improving the portability of the drone.
  • a method for controlling an unmanned aerial vehicle includes:
  • step S10 it is detected whether a preset trigger event for determining that the lens is to interfere with an obstacle around the lens is generated.
  • a preset trigger event can be set in advance.
  • the preset trigger event can be used to determine that the lens of the shooting device is to interfere with obstacles around the lens, that is, if a preset trigger event occurs, it means that the lens of the shooting device will have a great possibility of Obstacles interfere, and the extension or extension of the lens needs to be controlled according to the strategy. On the contrary, it means that the lens of the shooting device has greater security. It can be defaulted at least before the next detection of a preset trigger event. Does not interfere with obstacles around the lens, the lens can be extended or retracted as required.
  • the obstacles around the lens may refer to obstacles that may interfere with the lens and cause damage to the lens when the lens is extended relative to the body in the current state of the shooting device, or may cause the lens and other obstacles Obstacles that interfere with the object and cause damage to the lens. Therefore, the obstacle may be an obstacle on the extension line of the current extension direction of the lens, or an obstacle on the extension line in a direction at an arbitrary angle to the current extension direction of the lens.
  • the obstacle may include a downward obstacle in the vertical direction of the drone in the current state
  • the lower obstacle may include an obstacle below the lens in the vertical direction in the current state and / or Obstacles below the fuselage in the vertical direction in the current state. That is, this type of obstacle may cause the lens to interfere directly with it (for example, the lens is now protruding vertically downward), or it may cause the lens to interfere with obstacles other than this type of obstacle (for example, the lens At this time, it does not protrude downward in the vertical direction, and there are other obstacles on the extension line of the lens extension direction).
  • the lens protruding downward it can also be rotated in the horizontal plane, vertical plane, or in the plane between the horizontal plane and the vertical plane (or, (The orientation of the lens may also change due to changes in the position of the drone, resulting in changes in the position of the directly connected camera.) Therefore, when the lens is extended with respect to the body, the projection direction of the lens is not necessarily vertically downward.
  • the obstacle may further include an obstacle along the extending direction of the lens in the current state of the drone, thereby directly preventing the lens from extending in the extending direction and the extending direction in the extended state and the extended state. Obstacles on the line interfere.
  • the obstacle may be the ground, or stones, a table on the ground, or a building.
  • control device for executing the control method of the drone may perform step S10 periodically or step S10 from time to time.
  • step S10 may be started.
  • step S10 may be started in the case where a pan / tilt is mounted on the fuselage.
  • the preset trigger event in this embodiment may be that the drone has been set at the factory, that is, the factory setting of the drone, or may be set by the user.
  • step S20 is executed to control the lens to be extended.
  • the lens can be controlled to be in the extended state to meet the shooting requirements of the shooting device under the optical zoom condition.
  • the extended state refers to a state where the lens is extended relative to the body.
  • the size of the extended length of the lens may be limited as required, or may not be limited as required.
  • step S30 is executed to control the lens to be retracted to prevent the lens from interfering with obstacles.
  • a preset trigger event when a preset trigger event occurs, it means that the extension of the lens is likely to cause the lens to interfere with an obstacle, and the lens can be controlled to retract to prevent the lens from interfering with the protrusion of the obstacle.
  • the retracted state refers to a state where the lens is retracted relative to the body.
  • the retracted state may refer to a state where the lens is fully retracted relative to the body.
  • the retracted state may be a state where the lens is fully retracted relative to the body, or a state where the lens is not fully retracted relative to the body but is only partially retracted (i.e. Compared with the current state, the extension length is shortened), and the specific telescopic state can be controlled as needed.
  • the expansion and contraction of the lens is controlled by detecting whether a preset trigger event occurs, so that the state of the lens (extended or retracted) corresponds to the detection result of the preset trigger event, so that when a high-power optical zoom is required and the lens is extended
  • the storage or transportation or the lens When the storage or transportation or the lens is extended and the obstacle may interfere with the obstacle, you can control the entire lens Or partially retracted, so that the lens can be prevented from being damaged due to interference between the extension and the obstacle, and the size of the drone can be reduced under the premise of optical zoom, which facilitates the transportation of the drone, reduces the transportation cost, and facilitates the user Carry and enhance the portability of the drone.
  • step S10 detects whether a preset trigger event for determining that the lens is to interfere with an obstacle around the lens, and specifically includes steps S102, S104, and S106. And step S108.
  • Step S102 Obtain distance information between the drone and the obstacle.
  • the shooting device is mounted on the body of the drone, and the relative position relationship between the shooting device and the body of the drone is relatively fixed. Therefore, the distance between the lens and the obstacle can be determined by detecting the distance between the drone and the obstacle, so that the above distance information can be used to determine whether a preset trigger event has occurred, and whether the lens will reach the obstacle if it is extended. Thing.
  • the distance information may be obtained through a ranging sensor.
  • the ranging sensor may include, but is not limited to, at least one of a binocular vision sensor, a TOF sensor, an ultrasonic ranging sensor, a laser ranging sensor, an infrared ranging sensor, a radar ranging sensor, and a sonar sensor.
  • step S104 it is detected whether the distance between the drone and the obstacle is within a preset distance range according to the distance information.
  • a preset distance range can be set in advance, and the preset distance range can be used to judge the current distance state between the drone and the obstacle, to indicate whether a preset trigger event occurs, and then to indicate whether the lens and the obstacle around the lens are Will wait for interference.
  • the preset distance range in this embodiment may be that the drone is already set at the factory, that is, the factory setting of the drone, or may be set by the user.
  • step S106 if the distance is outside the preset distance range, it is determined that a preset trigger event occurs, and the lens is controlled to be retracted.
  • the lens when the distance between the drone and the obstacle is outside the preset distance range, it can be determined that a preset trigger event occurs, and the lens may interfere with the obstacles around it, and the lens can be controlled to be retracted.
  • the preset distance range is greater than 5 meters.
  • the preset trigger event can be assumed to occur by default, and the lens can be controlled to retract.
  • the preset distance range corresponding to obstacles with different relative positions from the drone may be different.
  • the preset distance range corresponding to obstacles below the drone is in the current state with the drone.
  • the preset distance range corresponding to the obstacle along the extending direction of the lens may be different.
  • the corresponding preset distance ranges may also be different, for example, the preset distance range corresponding to a living obstacle and the preset distance range corresponding to an inanimate obstacle. In this way, the telescopic and extended length of the lens can be controlled according to different scenes, which is more conducive to meeting different shooting needs.
  • step S108 if the distance is within a preset range, it is determined that a preset trigger event has not occurred, and the lens is controlled to be in an extended state.
  • the lens when the distance between the drone and the obstacle is within a preset distance range, it can be determined that a preset trigger event has not occurred, and the lens may not interfere with the obstacles around it, and the lens can be controlled to extend. .
  • the preset distance range is greater than 5 meters.
  • the preset trigger event can be defaulted, and the lens can be controlled to retract.
  • the lens extension when the distance between the drone and the obstacle is large and the distance is within a preset distance range, it can be determined that the lens extension does not interfere with the obstacle, and the lens can be controlled to be in the extended state.
  • the lens can be preset to interfere with the obstacle by default, and the lens can be controlled to retract to avoid the lens due to the obstacle Impacted by an object and damaged by an obstacle.
  • it is simple and reliable to determine whether the lens extension will interfere with the obstacle through the distance information of the drone and the obstacle, and the implementation cost is low.
  • controlling the expansion and contraction of the lens through the distance between the obstacle and the drone can be beneficial to the obstacle and the obstacle.
  • the lens of the control device is adjusted as required and can be extended to achieve shooting requirements such as high-power optical zoom.
  • the control method of this embodiment can be applied to a state where the drone is off the ground (that is, when it leaves the take-off platform, such as the ground), for example, the control method of this embodiment is used to control the expansion and contraction of the lens in a flight state or a return flight state.
  • the control method of this embodiment is used to control the expansion and contraction of the lens in a flight state or a return flight state.
  • step S104 when the obstacle is an obstacle below the drone, it means that the drone is off the ground and is in flight. Therefore, before step S104, it may further include a step of detecting whether the rotor of the drone is rotating. If the rotor rotates, it indicates that the drone is about to leave the ground or has left the ground and is in flight. The drone may have a non-zero flying height, then step S104 may be performed. Off the ground (or the drone is not activated, for example, the drone is placed on the hand, but has a certain height relative to the ground), then step S104 may not be performed. It can be understood that the step of detecting whether the rotor is rotating may occur before or after step S102 described above.
  • whether the rotor rotates can be detected by detecting whether the controller issues an instruction to control the rotation of the rotor or detecting the working state of a motor driving the rotation of the rotor.
  • the lens when the rotor is not rotated, the lens may not be extended, and only operations such as focusing, small-range zoom, and digital zoom may be performed.
  • a wide-range optical zoom operation can be performed and the lens can be extended.
  • the lens can be retracted to limit the wide-range optical zoom function.
  • the rotor by detecting whether the rotor is rotating and judging the current state of the drone, when the drone is off the ground and has a certain flying height, it can control the expansion and contraction of the lens according to the obtained distance information between the drone and the obstacle.
  • the shooting requirements can also prevent the lens from colliding with the obstacle and cause the lens to be damaged, but the rotor is not rotated, that is, when the drone is not off the ground, the lens is controlled to retract, which can prevent the lens from reaching out and touching the obstacle (especially the ground). ), Causing damage to the lens.
  • step S10 detects whether a preset trigger event for determining that the lens is to interfere with an obstacle around the lens, and may specifically include steps S102, S104, and S106. And step S108.
  • Step S102 Obtain working parameters of the gimbal mounted by the drone.
  • the drone may further include a gimbal and a driving device.
  • the gimbal is disposed on the body, and the lens is disposed on the gimbal, and can be extended and retracted relative to the gimbal.
  • the driving device is connected to the gimbal for driving the cloud.
  • the stage moves relative to the fuselage.
  • the gimbal can be a single-axis gimbal, a dual-axis gimbal, or a three-axis gimbal, and can be configured to rotate around at least one axis to achieve stabilization or adjustment of a shooting device on the gimbal.
  • the driving device may include, but is not limited to, a motor. Further, the motor is a brushless motor.
  • the lens can be moved relative to the body along with the pan / tilt head in addition to being telescopic relative to the body. Therefore, the working parameters of the gimbal can be used to judge whether the lens extension will interfere with the obstacle.
  • the working parameters of the gimbal may include, but are not limited to, attitude parameters of the gimbal and / or driving parameters of a driving device of the gimbal. That is, on the one hand, since the shooting device is relatively fixed to the PTZ, the attitude of the PTZ can determine the attitude of the shooting device, and the direction of the lens extension is related to the attitude parameters of the PTZ. Therefore, in order to detect whether the lens is to interfere with the obstacles around it, the attitude parameters of the gimbal can be obtained. On the other hand, when obstacles exist, the obstacles may obstruct the movement of the gimbal. In order to resist the resistance, the driving parameters of the gimbal will be different from the driving parameters during normal operation. Therefore, in order to detect whether the lens is to interfere with an obstacle around it, the driving parameters of the driving device can be obtained.
  • step S104 it is detected whether the current working status of the PTZ meets a preset condition according to the working parameters.
  • a preset condition may be set in advance, and the preset condition may be used to judge the current working state of the gimbal, to indicate whether a preset trigger event occurs, and then to indicate whether the lens and an obstacle around the lens are to interfere.
  • the preset condition in this embodiment may be that the drone has been set at the factory, that is, the factory setting of the drone, or it may be set by the user.
  • step S106 if the current working state does not satisfy the preset condition, it is determined that a preset trigger event occurs, and the lens is controlled to be in a retracted state.
  • the lens may interfere with an obstacle around it, and the lens may be controlled to be retracted.
  • step S108 if the current working state meets a preset condition, it is determined that a preset trigger event has not occurred, and the lens is controlled to be in an extended state.
  • the lens when the current working state of the gimbal meets the preset conditions, it can be determined that a preset trigger event has not occurred, and the lens may not interfere with the obstacles around it, and the lens can be controlled to extend.
  • step S104 detecting whether the current working state of the PTZ meets a preset condition according to the working parameters includes: detecting whether the current posture of the PTZ is a preset posture according to the attitude parameters of the PTZ.
  • a three-axis head is used as an example for description.
  • the head can be configured to rotate about a pitch axis, a roll axis, and a yaw axis.
  • the attitude of the gimbal may include the attitude corresponding to the pitch axis, the attitude corresponding to the roll axis, and the attitude corresponding to the yaw axis.
  • the attitude parameters of the gimbal can be detected by an IMU (inertial measurement unit) to determine the current attitude of the gimbal.
  • the IMU may include a gyroscope and an accelerometer.
  • the current attitude of the gimbal can reflect the current attitude of the photographing device, so that it can be estimated whether the extension of the lens of the photographing device may interfere with the obstacles around it under the current attitude of the gimbal. For example, assuming that the obstacle is an obstacle below the drone, when the current posture of the photographing device is horizontally facing forward, the extension of the lens of the photographing device does not interfere with the obstacle.
  • the extension of the lens of the photographing device may interfere with the obstacle, and if the photographing device
  • the current attitude of the camera is 45 degrees obliquely upward, and the extension of the lens of the shooting device will not interfere with the obstacle. It can be known from the current attitude of the gimbal that it can be estimated whether the extension of the lens of the shooting device will interfere with the obstacle.
  • a preset attitude can be set in advance, and the preset attitude can be used to judge the current attitude of the PTZ, to indicate whether the current working state of the PTZ meets the preset conditions, and then to indicate whether a preset trigger condition occurs, and Indicates whether the lens will interfere with obstacles around the lens.
  • the preset posture may be a posture, or a posture range composed of a plurality of postures. Wherein, when the current attitude of the PTZ is not a preset attitude, it can be determined that the current working status of the PTZ does not meet the preset conditions, otherwise, when the current attitude of the PTZ is a preset attitude, the PTZ's The current working state meets the preset conditions.
  • the user can know the current ground environment and can manually remove obstacles that are not conducive to the lens extension. Then, optionally, when predicting whether the extension of the lens of the shooting device will interfere with an obstacle according to the current attitude of the gimbal, the obstacle may refer to the downward obstacle in the vertical direction of the drone in the current state. Thing. Further, when the gimbal is rotated around the pitch axis, it can directly affect the vertical tilt angle of the lens of the photographing device.
  • the preset posture may be a posture corresponding to the pitch axis, that is, it may be detected whether the current posture of the PTZ corresponding to the pitch axis is consistent with the posture corresponding to the pitch axis in the preset posture.
  • the attitude parameter of the gimbal affects the extension direction of the lens, so that the lens can be controlled to expand and contract according to the attitude parameter of the gimbal, to avoid damage caused by interference between the lens extension and obstacles, and the attitude parameter of the gimbal When it does not cause the lens to interfere with obstacles, it can control the lens to extend to achieve high-power optical zoom.
  • step S104 detecting whether the current working state of the PTZ meets a preset condition according to the working parameter includes: detecting whether the driving parameter is within a preset parameter range.
  • the driving device of the gimbal may be a motor, and the driving parameters of the driving device may include, but are not limited to, the current of the motor or the output torque of the motor.
  • the driving parameters of the driving device may include, but are not limited to, the current of the motor or the output torque of the motor.
  • the driving parameters can be changed. For example, when the gimbal interferes with an obstacle on the ground, such as a stone, the output current of the motor will be larger than that during normal stabilization.
  • a preset parameter range can be set in advance, and the preset parameter range can be used to judge the current driving parameters of the PTZ to indicate whether the current working status of the PTZ meets the preset conditions, and then to indicate whether a preset trigger condition occurs, and Indicates whether the lens will interfere with obstacles around the lens.
  • the driving parameter when the driving parameter is not within the preset parameter range, it can be determined that the current working status of the gimbal does not meet the preset conditions. Conversely, when the driving parameter is within the preset parameter range, the current working status of the gimbal is determined. To meet the conditions.
  • the driving parameters of its driving device will change, so that it can determine whether a preset trigger event occurs according to the driving parameters, so as to control the expansion and contraction of the lens and prevent the lens from extending and
  • the lens is controlled to extend to achieve high magnification optical zoom.
  • detecting whether the driving parameter is within the preset parameter range specifically includes detecting whether the current of the motor is less than the preset current.
  • the current flowing through the motor increases.
  • the lens can be controlled to retract. If the current of the motor is less than the preset current, the driving parameter is determined to be within the preset parameter range. Inside, you can control the lens to extend.
  • detecting whether the driving parameter is within the preset parameter range specifically includes: detecting whether the output torque of the motor is less than the preset output torque.
  • the output torque of the motor will increase.
  • the gimbal or lens interferes with an obstacle.
  • the current is greater than or equal to a preset current and the output torque is greater than or equal to the preset torque. It can be judged that the gimbal or the lens interferes with an obstacle, and controls the retraction of the lens to avoid damage to the lens. It can also reduce the volume of the gimbal, which is conducive to the attitude control of the gimbal. Conversely, you can judge that the PTZ or lens does not interfere with the obstacle, and control the lens to extend to meet the shooting needs.
  • step S104 detecting whether the current working status of the PTZ meets preset conditions according to the working parameters includes: detecting whether the current posture of the PTZ is a preset posture according to the attitude parameters of the PTZ, and detecting driving parameters Whether it is within the preset parameter range.
  • the control method of this embodiment can be applied to the state when the PTZ is powered on, that is, the motor is not powered off or is not sleeping.
  • the lens can be controlled to be retracted to avoid the lens from colliding with the obstacle and causing damage to the lens.
  • the control method of this embodiment can be applied to the state of taking off of the drone.
  • the drone When the drone is waiting to take off, the drone has not left the take-off platform (such as the ground), and the PTZ can be powered on.
  • the PTZ can be powered on.
  • it by detecting the working parameters of the gimbal, it can be estimated whether the extension of the lens will interfere with the obstacles around it, thereby controlling the expansion and contraction of the lens.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • step S10 detects whether a preset trigger event for determining that the lens is to interfere with an obstacle around the lens, and specifically includes steps S102, S104, and S106. And step S108.
  • step S102 the distance information between the drone and the obstacle is acquired, and the working parameters of the gimbal mounted by the drone are acquired.
  • step S104 it is detected whether the distance between the drone and the obstacle is within a preset distance range according to the distance information, and whether the current working state of the PTZ meets the preset conditions according to the working parameters.
  • step S106 if the distance is outside the preset distance range and the current working state does not meet the preset conditions, it is determined that a preset trigger event occurs and the lens is controlled to be retracted.
  • step S108 if the distance is within a preset distance range or the working state meets a preset condition, it is determined that a preset trigger event has not occurred, and the lens is controlled to be in an extended state.
  • the method for obtaining distance information and the method for detecting using distance information are as described in the second embodiment, and the method for obtaining the working parameters of the gimbal and the method for detecting using the working parameters are as described in the third embodiment, and will not be repeated here. To repeat.
  • This embodiment is different from the second embodiment and the third embodiment in that the distance information between the drone and the obstacle and the working parameters of the gimbal need to be obtained, and as long as the distance between the drone and the obstacle is located Within a preset distance or the working state of the gimbal meets the preset conditions, it can be considered that a preset trigger event has not occurred, and the lens can be controlled to extend to meet the shooting requirements of optical zoom as much as possible.
  • the distance between the drone and the obstacle and the working parameters of the gimbal are jointly detected to determine whether the lens extension will interfere with the obstacle, which enhances the accuracy of the lens telescopic control and further avoids The lens extended and collided with an obstacle causing damage to the lens.
  • control method of this embodiment can be applied to a state where the drone is off the ground.
  • the extended condition of the lens is that the extended lens does not interfere with the obstacle.
  • it can be determined by the distance between the drone and the obstacle is within a preset range or the flying height of the drone is higher than a certain level, or by the PTZ has been powered on and the working status of the PTZ meets the preset conditions to make sure.
  • the lens is retracted if the extended lens interferes with obstacles.
  • it can be determined by the distance between the drone and the obstacle is outside the preset distance range or the flying height of the drone is lower than a certain level, or the working state of the gimbal does not meet the preset conditions.
  • the flight process of the drone may include a state of not leaving the ground, a state of taking off, a state of flying in the air, and a state of returning.
  • the drone control method includes: before the drone takes off, that is, when the drone does not leave the ground (ie, does not leave the take-off platform, such as the ground), the drone's flying height is zero. .
  • the drone's flying height is zero.
  • the lens is controlled to extend; when the working status of the PTZ is determined based on the working parameters of the PTZ Controls lens retraction when preset conditions are met.
  • the drone When the drone is in the take-off state, the drone is off the ground and has a certain flying height. In order to avoid the obstacles in the vertical direction and the obstacles in the projection direction of the lens in the current state of the lens and the drone Interference. At this time, the distance between the drone and the above obstacle (such as the flying height of the drone) and / or the working parameters of the gimbal can be detected; when the distance between the drone and the above obstacle is within a preset distance or based on When the working parameters of the gimbal determine that the working state of the gimbal meets the preset conditions, the lens is controlled to extend; otherwise, the lens can be controlled to retract.
  • the distance between the drone and the above obstacle such as the flying height of the drone
  • the lens is controlled to extend; otherwise, the lens can be controlled to retract.
  • the drone When the drone is in the air, the drone is off the ground and has the same flying height (the flying height is relatively higher than the flying height at the time of take-off). In order to avoid the drone's flying height being too low or unmanned
  • the lens interferes with the downward obstacles in the vertical direction and the obstacles along the lens extension direction in the current state of the drone.
  • the distance between the drone and the obstacle (such as the flying height of the drone) and / or the working parameters of the gimbal can also be detected; when the distance between the drone and the obstacle is within a preset distance range Or, it is determined according to the working parameters of the gimbal that the working state of the gimbal meets the preset conditions, and the lens is controlled to extend; otherwise, the lens can be controlled to retract.
  • the drone may also have a landing state, and the returning state may include a landing state.
  • the distance between the drone and the above obstacles such as the flying height of the drone
  • the working parameters of the gimbal can also be detected; when the distance between the drone and the obstacles is the same
  • the lens is controlled to extend, otherwise the lens can be controlled to retract.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the method for controlling the drone further includes: if the configured lens control rule instructs the lens to be performed based on auxiliary information
  • the telescopic control controls the telescopic lens according to the auxiliary information
  • the auxiliary information is information to assist in controlling the telescopic lens based on a preset trigger event.
  • the auxiliary information may include, but is not limited to, at least one of flight information of the drone, user operation information, and environmental information of the drone.
  • the lens control rules can be set before the drone leaves the factory, or can be set by the user. If it is set by the user, the lens control rule may be received during shooting by the shooting device or before shooting, so as to perform lens expansion and contraction control according to the lens control rule. If no lens control rule is received, the steps as in the first embodiment may be performed.
  • the priority of the above-mentioned configuration of the lens control method may also be the highest priority of the auxiliary information, which can be specifically set as required.
  • the priority of the corresponding control method in the first, second, third, or fourth embodiment may be higher than that of the auxiliary information.
  • the corresponding control methods in the first, second, third, or fourth embodiment may have lower priority than the auxiliary information. Priority.
  • the lens can have multiple extended lengths relative to the body. When the lens is extended, the extended length of the lens can also be controlled.
  • the plurality of protrusion lengths may be a plurality of consecutive protrusion lengths, for example, any value between 0-10cm, or may be a plurality of intermittent protrusion lengths, such as only 2cm, 5cm, and 10cm.
  • the flight information of the drone can include the speed and speed changes of the drone, and the direction information. The change of the flight information can affect the resistance of the gimbal due to the lens extension, so it can assist in controlling the expansion and contraction of the lens based on the flight information. Extend the length.
  • the user operation information may include control information of the drone and / or control information of the lens input by the user.
  • the control information of the drone includes control information instructing the drone to return home, land, etc.
  • the control information of the lens may be Includes control information on whether the lens is extended and extended, or indicates the zoom of the shooting device.
  • User operation information can be input through mechanical keys, voice, or touch screen. The user can directly control the drone, or through a mobile terminal. Controls drones indirectly.
  • the drone's environmental information can refer to the external environmental conditions where the drone is located, such as wind direction, wind speed, and wind volume, or other weather conditions such as rain, snow, and fog.
  • the auxiliary information assists the judgment of the preset trigger event, and controls the expansion and contraction of the lens, so that the extension and extension of the lens can be matched with the auxiliary information to improve the performance of the drone.
  • the auxiliary information includes flight information and / or environmental information
  • controlling the extension and extension of the lens according to the auxiliary information can avoid excessive resistance caused by the excessive extension of the lens, thereby avoiding excessive resistance to the head. Unfavorable control, thereby avoiding unfavorable stabilization control or unfavorable angle adjustment control of the shooting device.
  • controlling the extension and extension of the lens according to the auxiliary information can further enhance human-computer interaction and enhance the user's control of the lens, so that the extension and extension of the lens can meet the needs of the user.
  • controlling the expansion and contraction of the lens according to the auxiliary information may specifically include: if the preset trigger event does not occur, the user operation information includes an operation for instructing the zoom of the photographing device, then control The extended length of the lens meets the current zoom operation of the camera. In this way, on the premise of ensuring that the lens does not interfere with the obstacles around it, the user can control the extension length of the lens according to his own needs. The extension length of the lens meets the needs of the user, so as to take photos that meet the needs of the user or video.
  • the extension length of the lens may be the extension length adapted to the current zoom operation of the shooting device. For example, if the lens length required for the current optical zoom is 10 cm, the extension length of the lens is 10 cm In order to accurately control the extension length of the lens, the extension length of the lens is adapted to the extension length of the lens required by the user, so as to meet the shooting needs of the user.
  • the extension length of the lens may be greater than the extension length adapted to the current zoom operation of the photographing device. Since the extension of the lens requires a response time, the longer the extension of the lens, the longer the extension time it takes. Therefore, the extension of the lens is greater than the extension of the current zoom operation of the shooting device. It is beneficial to save the time consumed by the next extension of the lens (on the basis of the extension length). For example, if the extension length adapted to the current zoom operation of the shooting device is 5cm, then the extension of the lens is controlled.
  • the output length is 10cm, which can meet the needs of zooming and reduce the time required for the next lens extension (such as 20cm) (the time from 10cm to 20cm is less than the time from 5cm to 20cm) Time) to meet the requirements of fast zoom.
  • the extended length may be less than or equal to the maximum extended length of the lens.
  • the extended length can be the maximum extended length of the lens, so that it can be stretched into place in one step. Under the premise of meeting the zoom requirements, subsequent lenses need not be extended, and the time required for the lens to be extended is not required to meet the rapid requirements. Requirements for zoom.
  • the lens can be controlled not to retract, that is, the extension length of the lens is still maintained at 10cm. Or, you can also control the reduction of the extended length of the lens, such as retracting to a value between 5cm-10cm (including 5cm).
  • the extension length of the lens input by the user for instructing the zoom operation of the shooting device should be within the retractable range of the lens.
  • the user can also directly enter the extension length of the lens, but the The projection length needs to be less than or equal to the maximum projection length of the lens.
  • controlling the expansion and contraction of the lens according to the auxiliary information may specifically include: if the user operation information includes operation information for instructing the drone to return home or land, the lens zoom may be controlled return.
  • the lens zoom may be controlled return.
  • the lens when the drone is lowered to the lens or the distance between the drone and the ground is less than a safe distance, that is, when the distance between the drone and the obstacle is outside the preset distance range, the lens can be controlled to retract and maintain Retracted state to avoid the lens colliding with obstacles, especially to avoid the lens colliding with the ground when the distance between the lens and the ground is small. In this way, when the user triggers one-touch landing and one-click return, the lens can be retracted, limiting the wide-range optical zoom function.
  • controlling the expansion and contraction of the lens according to the auxiliary information may specifically include: if a preset trigger event does not occur and the flight information indicates that the drone is in a turning state and / or an acceleration state, Then, the extended length of the control lens is controlled to a first preset length.
  • the extended length of the lens can be controlled to a first preset length, which can be less than The maximum extended length of the lens.
  • the extended length of the lens can be controlled to be the first preset length, otherwise, it can be performed in the same manner as in Implementation 1.
  • the flight information includes the acceleration information of the drone, when the drone is determined to be accelerating according to the acceleration information, the extension length of the lens can be controlled to the first preset length, otherwise, the If the flight information includes the drone's steering information and acceleration information, then according to the steering information, when the drone is in the steering state or the drone is in the acceleration state, the extension length of the lens can be controlled to be the first The preset length, otherwise, the corresponding steps can be performed in the same manner as in the first implementation.
  • controlling the extension length of the lens to the first preset length may include the following situations:
  • the lens is currently fully retracted. At this time, if there is no need for high-power optical zoom, the current state of the lens can be maintained, that is, the extended length of the lens is zero. If there is a need for high-power optical zoom, then the extension length of the lens can be controlled to meet the current optical zoom requirements.
  • the lens is currently in a partially retracted state, that is, the lens is extended, but the extended length is less than the maximum extended length.
  • the current state of the lens can be maintained, or the extension length of the lens can be reduced relative to the current extension length, and it can also be fully retracted, that is, the extension length of the lens is zero. If there is a need for high-power optical zoom, then the extension length of the lens can be controlled to meet the current optical zoom requirements.
  • the lens is currently in a fully extended state, that is, the extended length of the lens is the maximum extended length.
  • the extended length of the lens is the maximum extended length.
  • the size of the extension length of the lens can be reduced to control the drone or the gimbal.
  • the unfavorable resistance is conducive to the control of the PTZ, and can avoid the excessive energy consumption of the motor and shorten the life.
  • the lens can be controlled to be retracted, that is, according to the logic pair in which the preset trigger event occurs.
  • the telescoping of the lens is controlled.
  • controlling the expansion and contraction of the lens according to the auxiliary information may specifically include: when a preset trigger event does not occur and the environmental information indicates that the current wind speed of the environment where the drone is located is greater than the preset wind speed And / or when the angle between the wind direction and the extension direction of the lens is greater than a preset angle, the extension length of the lens is controlled to a second preset length.
  • a preset trigger event does not occur and the environmental information indicates that the current wind speed of the environment where the drone is located is greater than the preset wind speed And / or when the angle between the wind direction and the extension direction of the lens is greater than a preset angle
  • the extension length of the lens is controlled to a second preset length.
  • the extension length of the lens can be controlled to a second preset length, otherwise, the corresponding steps can be performed in the same manner as in the first implementation; If the environmental information includes wind direction information, when the angle between the wind direction and the extension direction of the lens is determined to be greater than a preset angle according to the wind direction information, the extension length of the lens can be controlled to a second preset length, otherwise, it can be implemented as follows.
  • the environmental information includes wind speed information and wind direction information, determine that the current wind speed is greater than a preset wind speed or determine that the angle between the wind direction and the projection direction of the lens is greater than a preset angle based on the wind speed information.
  • the extended length of the lens can be controlled to be the second preset length, otherwise, the corresponding steps can be performed in the same manner as in the first embodiment.
  • controlling the projection length of the lens to a second preset length may It includes the following situations:
  • the lens is currently fully retracted. At this time, if there is no need for high-power optical zoom, the current state of the lens can be maintained, that is, the extended length of the lens is zero. If there is a need for high-power optical zoom, then the extension length of the lens can be controlled to meet the current optical zoom requirements.
  • the lens is currently in a partially retracted state, that is, the lens is extended, but the extended length is less than the maximum extended length.
  • the current state of the lens can be maintained, or the extension length of the lens can be reduced relative to the current extension length, and it can also be fully retracted, that is, the extension length of the lens is zero. If there is a need for high-power optical zoom, then the extension length of the lens can be controlled to meet the current optical zoom requirements.
  • the lens is currently in a fully extended state, that is, the extended length of the lens is the maximum extended length.
  • the extended length of the lens is the maximum extended length.
  • the extension length of the lens when the wind speed is greater than the preset wind speed and / or the angle between the wind direction and the extension direction of the lens is greater than the preset angle, by controlling the extension length of the lens, it can be reduced due to the size of the extension length of the lens.
  • the unfavourable resistance encountered during the control of the drone or the gimbal is beneficial to the control of the gimbal, and it can avoid excessive motor energy consumption and shorten the life.
  • the lens can be controlled to shrink Back to the state, that is, to control the expansion and contraction of the lens according to the logic of the preset trigger event.
  • the priority of the user operation information may be the highest, that is, when the flight information and the drone ’s
  • the lens is preferentially expanded and contracted according to the user operation information, so that the extended length of the lens meets the user's shooting requirements. For example, it is necessary to control the lens retraction according to the current flight information, but to control the lens extension according to the user operation information, and then control the lens extension at this time.
  • an embodiment of the present invention further provides a control device, including: a memory 200 and a processor 300.
  • the method according to the embodiment of the present invention may be processed by one or more processes.
  • the processor 300 may be a processor that is separate and communicates with the drone ’s flight control, or may be a flight processor disposed in the drone, or may be configured to control the drone. Intelligent mobile terminal for man-machine flight.
  • the memory 200 is used to store the program code; the processor 300 is used to call the program code to execute: detecting whether a preset trigger event for determining that the lens and an obstacle around the lens is to interfere; if not, controlling the lens to extend Out state; if so, control the lens to retract to prevent the lens from interfering with obstacles.
  • the obstacle includes an obstacle below the drone in the vertical direction in the current state; and / or, the obstacle includes an obstacle along the extension direction of the lens in the current state of the drone.
  • the processor 300 is specifically configured to: obtain distance information between the drone and the obstacle, and / or obtain operating parameters of the gimbal mounted by the drone, the gimbal is used to carry a photographing device ; Detect whether a preset trigger event occurs according to the distance information and / or working parameters.
  • the processor 300 is further configured to detect whether the distance between the drone and the obstacle is within a preset distance range according to the distance information; if the distance is outside the preset distance range, determine that a preset trigger event occurs.
  • the current state of the drone is a flight state or a home state.
  • the processor 300 is configured to detect whether the current working status of the PTZ meets a preset condition according to the working parameters; if the current working status does not satisfy the preset condition, determine that a preset trigger event occurs.
  • the current state of the drone is a state to be taken off.
  • the processor 300 is configured to detect whether the distance between the drone and the obstacle is within a preset distance range according to the distance information, and detect whether the current working state of the PTZ meets a preset condition according to the working parameter; if If the distance is outside the preset distance range, and the current working state does not meet the preset conditions, it is determined that a preset trigger event occurs.
  • the working parameters include a posture parameter of the gimbal and / or a driving parameter of a driving device of the gimbal.
  • the driving device includes a motor
  • the driving parameter includes a current of the motor or an output torque of the motor
  • the processor 300 is configured to detect whether the current attitude of the PTZ is a preset attitude according to the attitude parameters of the PTZ; if the current attitude is not a preset attitude, determine that the current working state does not meet the preset conditions.
  • the current state of the drone is a flight state or a home state.
  • the processor 300 is configured to: detect whether the driving parameter is within the preset parameter range; if the driving parameter is not within the preset parameter range, determine that the current working state does not satisfy the preset parameter range.
  • the processor 300 is configured to detect whether the current attitude of the PTZ is a preset attitude according to the attitude parameters of the PTZ, and detect whether the driving parameter is within the preset parameter range; if the current attitude is not a preset attitude And if the driving parameter is not within the preset parameter range, it is determined that the current working state does not meet the preset condition.
  • the preset posture is a posture corresponding to the pitch axis.
  • the processor 300 is configured to: detect whether the current of the motor is less than a preset current; if the current of the motor is not less than the preset current, determine that the driving parameter is not within the preset parameter range.
  • the processor 300 is configured to: detect whether the output torque of the motor is less than a preset output torque; if the output torque of the motor is not less than the preset output torque, determine that the driving parameter is not within the preset parameter range.
  • the processor 300 is configured to: detect whether the drone's rotor rotates; if the rotor rotates, execute the step of detecting whether the distance between the drone and the obstacle is within a preset distance range according to the distance information .
  • the processor 300 is configured to: if the rotor does not rotate, control the lens to a retracted state.
  • the processor 300 is configured to: if the configured lens control rule instructs the lens to be controlled based on auxiliary information, control the expansion and contraction of the lens according to the auxiliary information, and the auxiliary information is to control the lens based on a preset trigger event Telescopic information.
  • the auxiliary information includes at least one of flight information of the drone, user operation information, and environmental information of the drone.
  • the user operation information has the highest priority among the auxiliary information.
  • the processor 300 is configured to: when the auxiliary information includes user operation information, if the user operation information includes operation information for instructing the drone to return home or land, control the lens to a retracted state.
  • the lens has a plurality of extended lengths relative to the body.
  • the processor 300 is configured to: when the auxiliary information includes user operation information, if a preset trigger event does not occur, and the user operation includes a method for instructing the shooting device.
  • the zoom operation controls the extended length of the lens to meet the current zoom operation of the shooting device.
  • the extension length of the lens is the extension length adapted to the current zoom operation of the photographing device.
  • the extended length of the lens is greater than the extended length of the current zoom operation adapted to the photographing device.
  • the extended length of the lens is the maximum extended length of the lens.
  • the processor 300 is configured to: when the auxiliary information includes flight information, if the preset trigger event does not occur and the flight information indicates that the drone is in a steering state and / or an acceleration state, control the extension of the lens
  • the length is a first preset length, and the first preset length is less than a maximum extension length of the lens.
  • the processor 300 is configured to: when the auxiliary information includes environmental information, when a preset trigger event does not occur, and the environmental information indicates that the current wind speed of the environment where the drone is located is greater than the preset wind speed and / or wind direction and lens If the angle between the extension directions is greater than the preset angle, the extension length of the lens is controlled to a second preset length, and the second preset length is less than the maximum extension length of the lens.
  • the invention also provides an unmanned aerial vehicle, including the control device of any one of the above embodiments.
  • the unmanned aerial vehicle includes a fuselage 118, a rotor 106 provided on the fuselage 118, a head 102 provided on the fuselage 118, and a load fixed on the head 102 such as a photographing device 104.
  • the drone further includes a controller 108 and a sensing system 110.
  • the sensing system 110 acquires signals and sends the signals to the controller 108.
  • the controller 108 controls the drone accordingly according to the received signals.
  • the sensing system 110 includes a ranging sensor, a wind direction sensor, and the like. Taking the ranging sensor as an example, the ranging sensor detects the distance information between the drone and the obstacle, and sends the distance information to the controller.
  • the controller controls the distance information based on the distance information. Telescopic lens.
  • the sensing system 110 may detect whether a preset trigger event for determining that the lens and an obstacle around the lens are to interfere, and send a detection result to the controller 108, and the controller 108 controls shooting according to the detection result.
  • the expansion and contraction of the lens of the device 101 specifically, when the preset trigger event does not occur, the controller 108 controls the lens to extend, and when the preset trigger event occurs, the controller 108 controls the lens to retract to avoid the lens The protrusion interferes with the obstacle.
  • the drone may be communicatively connected with the terminal 112.
  • the terminal 112 may provide control data to one or more of the drone, the gimbal 102 and the shooting device 104, and from one or more of the drone, the gimbal 102 and the shooting device 104 It receives information (such as drone, position and / or motion information of the PTZ 102, data sensed by the shooting device 104, such as captured image data).
  • the drone may communicate with other remote devices other than the terminal 112, and the terminal 112 may also communicate with other remote devices other than the drone.
  • the drone and / or terminal 112 may communicate with another drone or another gimbal or load of the drone.
  • the other remote device may be a terminal other than the terminal 112 or a computing device.
  • the zoom operation of the shooting device 104 may be controlled by the terminal 112.
  • the terminal 112 may be a remote control terminal, which is located away from the drone, the PTZ 102 and / or the shooting device 104.
  • the terminal 112 may be located on or affixed to the supporting platform.
  • the terminal 112 may be handheld or wearable.
  • the terminal 112 may include a user interface, such as a keyboard, a mouse, a joystick, a touch screen, or a display. Any suitable user input may interact with the terminal 112, such as manually inputting instructions, sound control, gesture control, or position control (such as movement, position, or tilt through the terminal 112).
  • the telescopic control of the lens of the shooting device 104 is not only conducive to achieving more shooting needs, the portability and compact structure of the drone, but also to reduce the damage rate of the lens.
  • the service life of the lens is accordingly increased.
  • the telescopic control of the lens especially the telescopic control of a lens with a long extension length, can reduce the resistance and shake caused by unnecessary telescopic lens, which is beneficial to the attitude control of the PTZ 102 or drone.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present invention essentially or part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium Including instructions for causing a computer processor to perform all or part of the steps of the method of each embodiment of the present invention.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes .
  • the drone control method provided by the embodiment of the present invention can make the drone more compact in structure, smaller in size, and better in portability on the premise of ensuring the optical zoom function.
  • connection means two or more than two unless explicitly stated and defined otherwise; unless otherwise specified or stated, the terms “connected”, “fixed”, etc. shall be broadly defined It is understood that, for example, “connection” may be a fixed connection, a detachable connection, or an integral connection, or an electrical connection; it may be a direct connection or an indirect connection through an intermediate medium.
  • connection may be a fixed connection, a detachable connection, or an integral connection, or an electrical connection; it may be a direct connection or an indirect connection through an intermediate medium.

Abstract

一种无人机(100)及其控制方法、控制装置和计算机可读存储介质,无人机(100)的控制方法包括:检测是否发生用于确定镜头(20)与镜头(20)周围的障碍物待发生干涉的预设触发事件;若否,则控制镜头(20)为伸出状态;若是,则控制镜头(20)为缩回状态,以避免镜头(20)伸出与障碍物发生干涉。该无人机控制方法通过镜头的伸出和缩回实现光学变焦性能、满足拍照需求的同时,能够缩小镜头的尺寸,从而减小无人机的体积,提高无人机的便携性。

Description

无人机及其控制方法、控制装置和计算机可读存储介质 技术领域
本发明涉及无人机领域,更具体而言,涉及一种无人机及其控制方法、控制装置和计算机可读存储介质。
背景技术
对于具有光学变焦镜头的相机而言,为了调整相机的焦距需要改变被摄物体与透镜组之间的距离,这就导致镜头要有足够大的空间容纳透镜组的运动。因此,相机的光学变焦镜头往往比较长。
对于航拍无人机而言,由于云台自身不能与相机产生干涉,因而云台的大小受到相机的影响,从而相机的大小决定了云台的大小,云台的大小和运动范围则决定了整个航拍无人机的大小。然而,相机越小越不易产生干涉,云台结构越紧凑;相机越大越容易产生干涉,云台结构也需要越大。
因此,需要控制具有光学变焦的镜头,以能够提高云台或无人机的结构紧凑性。
发明内容
本发明旨在至少解决现有技术中存在的技术问题。
为实现上述目的,本发明的第一个方面的技术方案提供了一种无人机的控制方法,所述无人机包括机身和设置在所述机身上的拍摄装置,所述拍摄装置的镜头能够相对于所述机身伸缩,所述控制方法包括:检测是否发生用于确定所述镜头与所述镜头周围的障碍物待发生干涉的预设触发事件;若否,则控制所述镜头为伸出状态;若是,则控制所述镜头为缩回状态,以避免所述镜头伸出与所述障碍物发生干涉。
本发明第二个方面的技术方案提供一种控制装置,用于无人机,所述无人 机包括机身和设置在所述机身上的拍摄装置,所述拍摄装置的镜头能够相对于所述机身伸缩,所述控制装置包括:存储器和处理器;所述存储器,用于存储程序代码;处理器,用于调用所述程序代码执行:检测是否发生用于确定所述镜头与所述镜头周围的障碍物待发生干涉的预设触发事件;若否,则控制所述镜头为伸出状态;若是,则控制所述镜头为缩回状态,以避免所述镜头伸出与所述障碍物发生干涉。
本发明第三个方面的技术方案提供一种无人机,包括:如上述技术方案中任一项所述的控制装置。
本发明第四个方面的技术方案提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述技术方案中任一项所述控制方法的步骤。
本发明上述技术方案具有如下有益效果:
本发明实施例中,通过检测预设触发事件的发生,可以在未发生预设触发事件时,控制镜头为伸出状态,以使得拍摄装置可以进行诸如高倍光学变焦操作,满足拍摄需求。且可以在发生预设触发事件时,控制镜头为缩回状态,避免镜头与障碍物发生干涉而损坏镜头。同时,控制镜头缩回还能减小无人机的体积,不仅有利于提高无人机的便携性和运输性,也有利于在不需要诸如高倍光学变焦时提高对云台的稳定控制,从而在实现光学变焦的前提下,能够使得无人机的结构更加紧凑。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明的一个实施例所述的无人机的结构示意图;
图2是本发明的实施例一所述的无人机的控制方法的流程示意图;
图3是本发明的实施例二所述的无人机的控制方法的流程示意图;
图4是本发明的实施例三所述的无人机的控制方法的流程示意图;
图5是本发明的实施例四所述的无人机的控制方法的流程示意图;
图6是本发明的一个实施例所述的控制装置的示意框图;
图7是本发明的一个实施例所述的无人机的结构示意图。
其中,图1、图6、图7中附图标记与部件名称之间的对应关系为:
100无人机,102云台,104拍摄装置,106旋翼,108控制器,110触感系统,112控制终端,118机身,20镜头,200存储器,300处理器。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面参照附图描述根据本发明一些实施例的无人机的控制方法、控制装置、无人机和计算机可读存储介质。
如图1所示,无人机100包括机身118和设置在机身118上的拍摄装置。拍摄装置可以直接连接在机身118上,或者拍摄装置可以通过中间连接件间接连接在机身118上,中间连接件可以包括但不限于云台。拍摄装置可以包括镜头20,镜头20能够相对于机身118伸缩。其中,虚线框可以示意缩回状态下的镜头。例如当携带和收纳无人机时,通过镜头缩回,可以减小无人机的尺寸,从而节省无人机的占用空间。
其中,镜头在伸出状态时可以进行高倍光学变焦,镜头在缩回状态时,可以进行低倍光学变焦。当然,本实施例中的拍摄装置也可以具有数码变焦功能,以满足不同的拍摄需求。
本发明实施例提供的无人机的控制方法,通过检测是否发生用于确定镜头与镜头周围的障碍物待发生干涉的预设触发事件,可以根据检测结果控制镜头的伸出和缩回,以在实现光学变焦性能、满足拍照需求的同时,能够根据需要缩小镜头的尺寸,从而减小无人机的体积,极大地提高了无人机的便携性。
实施例一:
如图2所示,根据本发明一些实施例提供的一种无人机的控制方法,包括:
步骤S10,检测是否发生用于确定镜头与镜头周围的障碍物待发生干涉的预设触发事件。
具体的,在无人机搭载有拍摄装置,且该拍摄装置具有光学变焦功能时,该拍摄装置的镜头可以相对于机身进行伸缩。为了避免拍摄装置在拍摄过程中由于光学变焦而进行镜头的伸缩时,使得镜头与障碍物发生干涉而导致镜头的损坏,可以预先设置预设触发事件。该预设触发事件可以用于确定拍摄装置的镜头与镜头周围的障碍物待发生干涉,也即,若发生预设触发事件,则意味着拍摄装置的镜头将有极大的可能与镜头周围的障碍物发生干涉,镜头的伸出或伸出长度需要根据策略进行控制,反之,则意味着拍摄装置的镜头具有较大的安全性,可以默认该镜头至少在下一次检测是否发生预设触发事件之前不会与镜头周围的障碍物发生干涉,镜头可以根据需要任意伸出或缩回。
其中,镜头周围的障碍物可以指的是在拍摄装置的当前状态下,当镜头相对于机身伸出时,可能与镜头相干涉以致造成镜头损坏的障碍物,或者,可能导致镜头与其它障碍物相干涉以致镜头损坏的障碍物。因此,该障碍物可以是镜头的当前伸出方向的延伸线上的障碍物,也可以是与镜头的当前伸出方向呈任意角度的方向的延伸线上的障碍物。
可选的,本实施例中,障碍物可以包括无人机在当前状态下沿竖直方向的下方障碍物,该下方障碍物可以包括当前状态下沿竖直方向镜头下方的障碍物和/或当前状态下沿竖直方向机身下方的障碍物。也即,该类障碍物可能导致镜头与其直接发生干涉(例如,镜头此时为沿竖直方向朝下伸出),也有可能导致镜头与该类障碍物以外的障碍物发生干涉(例如,镜头此时未沿竖直方向朝下伸出,镜头的伸出方向的延伸线上存在其它障碍物)。
而镜头除向下伸出外,还可以在中间连接件的作用下,例如云台,相对于机身在水平面内、竖直平面内或在水平面与竖直平面之间的平面内转动(或者,也可以由于无人机的位姿发生改变,而导致直连的拍摄装置的位姿发生改变,从而镜头的朝向发生改变)。因此,当镜头相对于机身伸出时,镜头的伸出方 向不一定是竖直向下的。如此,可选的,障碍物还可以包括无人机在当前状态下沿镜头的伸出方向的障碍物,从而可以直接防止镜头在伸出过程中及伸出状态下,与伸出方向的延伸线上的障碍物发生干涉。
其中,根据无人机及镜头所处的环境,该障碍物可以是地面,也可以是地面上的石子、桌面,还可以是建筑物等。
示例性的,用于执行该无人机的控制方法的控制装置可以周期性地执行步骤S10,也可以不定期地执行步骤S10。例如,可以在需要利用光学变焦功能进行拍摄时或检测到无人机旋翼转动时,开始执行步骤S10。又例如,对于机身上挂载有云台的情况,也可以是当云台上电时,开始执行步骤S10。
可以理解,本实施例中的预设触发事件可以是无人机在出厂时已经设置完成,即属于无人机的出厂设置,也可以是由用户自行设置。
若否,则执行步骤S20,控制镜头为伸出状态。
具体的,当未发生预设触发事件时,意味着镜头的伸出可能是安全的,则可以控制镜头为伸出状态,以满足拍摄装置在光学变焦条件下的拍摄需求。
其中,伸出状态指的是镜头相对于机身伸出的状态。
可以理解,当镜头为伸出状态时,镜头的伸出长度的大小可以根据需要进行限定,也可以根据需要不进行限定。
若是,则执行步骤S30,控制镜头为缩回状态,以避免镜头伸出与障碍物发生干涉。
具体的,当发生预设触发事件时,意味着镜头的伸出极有可能导致镜头与障碍物发生干涉,则可以控制镜头为缩回状态,以避免镜头伸出于障碍物发生干涉。
其中,缩回状态指的是镜头相对于机身缩回的状态。对于镜头相对于机身只有一个伸出长度的情况,缩回状态可以指的是镜头相对于机身完全缩回的状态。对于镜头相对于机身有多个伸出长度的情况,缩回状态可以是镜头相对于机身完全缩回的状态,或者是镜头相对于机身未完全缩回只是部分缩回的状态(即相比于当前状态,伸出长度缩短),具体为何种伸缩状态可以根据需要进行控制。
可以理解的是,不管镜头是处于完全缩回的状态还是部分缩回的状态,都 应该满足此时镜头的伸缩状态不会导致镜头与障碍物发生干涉。
本实施例中,通过检测预设触发事件是否发生控制镜头的伸缩,使得镜头的状态(伸出或缩回)与预设触发事件的检测结果相对应,从而在需要高倍光学变焦且镜头伸出不会与障碍物发生干涉时,可以控制镜头的伸出,以改变拍摄装置的焦距,满足拍摄要求,而在收纳或运输或镜头伸出状态与障碍物可能待发生干涉时,可以控制镜头全部或部分缩回,从而能够避免镜头因伸出与障碍物发生干涉而损坏,也能够在实现光学变焦的前提下缩小无人机的体积,方便无人机的运输,降低运输成本,且方便用户携带,增强无人机的便携性。
实施例二:
在实施例一的基础上,如图3所示,步骤S10,检测是否发生用于确定镜头与镜头周围的障碍物待发生干涉的预设触发事件,具体可以包括步骤S102、步骤S104、步骤S106和步骤S108。
步骤S102,获取无人机与障碍物之间的距离信息。
具体的,拍摄装置挂载在无人机的机身上,拍摄装置与无人机的机身之间的相对位置关系较为固定。因此,可以通过检测无人机与障碍物之间的距离判断镜头与障碍物之间的距离,从而可以上述距离信息可以判断预设触发事件是否发生,进而可以判断镜头伸出是否会碰到障碍物。
示例性的,可以通过测距传感器获取该距离信息。测距传感器可以包括但不限于双目视觉传感器、飞行时间TOF传感器、超声波测距传感器、激光测距传感器、红外测距传感器、雷达测距传感器、声呐传感器中的至少一种。步骤S104,根据距离信息检测无人机与障碍物的距离是否位于预设距离范围内。
具体的,可以预先设置预设距离范围,该预设距离范围可以用于判断无人机当前与障碍物的距离状态,以指示是否发生预设触发事件,进而指示镜头与镜头周围的障碍物是否会待发生干涉。
可以理解,本实施例中的预设距离范围可以是无人机在出厂时已经设置完成,即属于无人机的出厂设置,也可以是由用户自行设置。
步骤S106,若距离位于预设距离范围外,则确定发生预设触发事件,控制镜头为缩回状态。
具体的,当无人机与障碍物的距离位于预设距离范围外时,可以确定发生 预设触发事件,镜头可能与其周围的障碍物待发生干涉,则可以控制镜头为缩回状态。
例如,假设障碍物为无人机下方的障碍物,预设距离范围为大于5米。如此,当障碍物与无人机的距离为5米或小于5米时,即可以默认为发生预设触发事件,可以控制镜头为缩回状态。
可以理解,对于与无人机的相对位置不同的障碍物,其对应的预设距离范围可以不同,例如,无人机下方的障碍物对应的预设距离范围,与无人机在当前状态下沿镜头的伸出方向的障碍物对应的预设距离范围可以不同。同时,对于不同类型的障碍物,其对应的预设距离范围也可以不同,例如,有生命的障碍物对应的预设距离范围,与无生命的障碍物对应的预设距离范围。如此,可以根据不同的场景控制镜头的伸缩及伸出长度,更有利于满足不同的拍摄需求。
步骤S108,若距离位于预设范围内,则确定未发生预设触发事件,控制镜头为伸出状态。
具体的,当无人机与障碍物的距离位于预设距离范围内时,可以确定未发生预设触发事件,镜头可能不会与其周围的障碍物待发生干涉,则可以控制镜头为伸出状态。
例如,假设障碍物为无人机下方的障碍物,预设距离范围为大于5米。如此,当障碍物与无人机的距离为6米时,即可以默认为未发生预设触发事件,可以控制镜头为缩回状态。
本实施例中,当无人机与障碍物的距离较大,且距离位于预设距离范围内时,可以确定镜头伸出不会与障碍物发生干涉,则可以控制镜头为伸出状态。当无人机与障碍物的距离较小且该距离位于预设距离范围外时,可以默认镜头伸出将会与障碍物发生干涉,则可以控制镜头为缩回状态,以避免镜头由于与障碍物撞击而被障碍物损坏。同时,通过无人机与障碍物的距离信息来判断镜头伸出是否会与障碍物干涉,简单可靠,实施成本低。
其中,当上述障碍物为无人机在当前状态下沿竖直方向的下方障碍物时,通过该障碍物与无人机之间的距离来控制镜头的伸缩,可以有利于在障碍物与无人机之间的距离在预设距离范围内,即为安全距离时,控制拍摄装置的镜头 根据需要进行朝向的任意调整并进行伸出以实现诸如高倍光学变焦的拍摄需求。优选的,该实施例的控制方法可以适用于无人机离地的状态(即离开起飞平台,如地面),例如在飞行状态或返航状态应用该实施例的控制方法来控制镜头的伸缩。当然,在返航状态时,也可以控制镜头一直处于缩回状态,具体可以根据需要进行不同场景的控制。
在一些实施例中,当障碍物为无人机下方的障碍物时,意味着无人机已离地并处于飞行状态。因此,在步骤S104之前,还可以进一步包括检测无人机的旋翼是否发生转动的步骤。若旋翼发生转动,说明无人机即将离地或已离地并处于飞行状态,无人机可能具有不为零的飞行高度,则可以执行步骤S104,若旋翼未发生转动,说明无人机未离地(或无人机未启动,例如,无人机置于手上,但相对地面具有一定高度),则可以不执行步骤S104。可以理解,检测旋翼是否转动的步骤可以发生在上述步骤S102之前或之后。
其中,可以通过检测控制器是否发出控制旋翼转动的指令或者检测驱动旋翼转动的电机的工作状态,判断旋翼是否转动。
具体的,当旋翼未转动时,镜头可以不伸出,只进行对焦、小范围变焦、数码变焦等操作。当旋翼转动且检测到无人机飞行高度高于一定水平(例如,无人机与地面的距离位于预设距离范围内)时,可进行大范围光学变焦操作,镜头可伸出。当旋翼转动且检测到高度低于一定水平(例如,无人机与地面的距离位于预设距离范围外)时,则镜头可缩回,对大范围光学变焦功能进行限制。
如此,通过检测旋翼是否发生转动,判断无人机的当前状态,可以在无人机离地并具有一定飞行高度时,根据获取的无人机与障碍物的距离信息控制镜头的伸缩,既满足拍摄要求,又能够避免镜头与障碍物碰撞导致镜头损坏,而旋翼未转动,即无人机未离地时,控制镜头为缩回状态,可以防止镜头伸出触碰到障碍物(尤其是地面),造成镜头的损坏。
实施例三:
在实施例一的基础上,如图4所示,步骤S10,检测是否发生用于确定镜头与镜头周围的障碍物待发生干涉的预设触发事件,具体可以包括步骤S102、步骤S104、步骤S106和步骤S108。
步骤S102,获取无人机挂载的云台的工作参数。
具体的,无人机还可以包括云台和驱动装置,云台设置在机身上,镜头设置在云台上,并能够相对于云台伸缩,驱动装置与云台相连接,用于驱动云台相对于机身运动。其中,云台可以为单轴云台、双轴云台或三轴云台,可以被配置为绕至少一个轴转动,以实现对云台上的拍摄装置的增稳或拍摄角度的调节。驱动装置可以包括但不限于电机。进一步地,电机为无刷电机。
当拍摄装置设置在云台上时,镜头除相对于机身伸缩外,还可以随云台相对于机身运动。因此,通过云台的工作参数可以判断镜头伸出是否会与障碍物待发生干涉。
其中,云台的工作参数可以包括但不限于云台的姿态参数和/或云台的驱动装置的驱动参数。也即,一方面,由于拍摄装置与云台相对固定,云台的姿态可以确定拍摄装置的姿态,则镜头的伸出方向与云台的姿态参数有关。因此,为检测镜头是否与其其周围的障碍物待发生干涉,可以获取云台的姿态参数。另一方面,由于存在障碍物时,障碍物可能阻挡云台的运动,则云台为了抵抗阻力,驱动参数与其正常工作时的驱动参数将不同。因此,为检测镜头是否与其周围的障碍物待发生干涉,可以获取驱动装置的驱动参数。
步骤S104,根据工作参数检测云台的当前工作状态是否满足预设条件。
具体的,可以预先设置预设条件,该预设条件可以用于判断云台的当前工作状态,以指示是否发生预设触发事件,进而指示镜头与镜头周围的障碍物是否会待发生干涉。
可以理解,本实施例中的预设条件可以是无人机在出厂时已经设置完成,即属于无人机的出厂设置,也可以是由用户自行设置。
步骤S106,若当前工作状态不满足预设条件,则确定发生预设触发事件,控制镜头为缩回状态。
具体的,当云台的当前工作状态不满足预设条件时,可以确定发生预设触发事件,镜头可能与其周围的障碍物待发生干涉,则可以控制镜头为缩回状态。
步骤S108,若当前工作状态满足预设条件,则确定未发生预设触发事件,控制镜头为伸出状态。
具体的,当云台的当前工作状态满足预设条件时,可以确定未发生预设触 发事件,镜头可能不会与其周围的障碍物待发生干涉,则可以控制镜头为伸出状态。
本实施例中,根据云台的工作参数确定是否会发生预设触发事件,从而控制镜头的伸缩,可以确保镜头伸出不会碰到障碍物,防止镜头被障碍物损坏,还可以在镜头伸出不与障碍物干涉时,控制镜头伸出,满足拍摄需求。
优选地,在一些实施例中,步骤S104根据工作参数检测云台的当前工作状态是否满足预设条件包括:根据云台的姿态参数检测云台的当前姿态是否为预设姿态。
具体的,以云台为三轴云台为例进行说明,该云台可以被配置成绕俯仰轴、横滚轴、偏航轴旋转。相应的,云台的姿态可以包括对应俯仰轴的姿态、对应横滚轴的姿态、对应偏航轴的姿态。在实际应用中,可以通过IMU(惯性测量单元)检测云台的姿态参数,以确定云台的当前姿态。其中,IMU可以包括陀螺仪、加速度计。
云台的当前姿态可以反映拍摄装置的当前姿态,从而可以预估在云台的当前姿态下,拍摄装置的镜头的伸出是否可能会与其周围的障碍物待发生干涉。例如,假设障碍物为无人机的下方障碍物,则当拍摄装置的当前姿态为水平朝前时,拍摄装置的镜头的伸出并不会与该障碍物发生干涉。而若障碍物为拍摄装置前方的障碍物,如石头,则当拍摄装置的当前姿态仍为水平朝前时,拍摄装置的镜头的伸出将有可能与该障碍物发生干涉,而若拍摄装置的当前姿态为斜向上45度,则拍摄装置的镜头的伸出将不会与障碍物待发生干涉。由此可知,通过云台的当前姿态可以预估拍摄装置的镜头的伸出是否会与障碍物待发生干涉。
在实际应用中,可以预先设置预设姿态,该预设姿态可以用于判断云台的当前姿态,以指示云台的当前工作状态是否满足预设条件,进而指示是否发生预设触发条件,并指示镜头与镜头周围的障碍物是否会待发生干涉。该预设姿态可以一个姿态,也可以是由多个姿态构成的一个姿态范围。其中,当云台的当前姿态不为预设姿态时,则可以确定云台的当前工作状态不满足预设条件,反之,当云台的当前姿态为预设姿态时,则可以确定云台的当前工作状态满足预设条件。
可以理解,当无人机位于地面时,用户可获知当前的地面环境,并可以人为排除不利于镜头伸出的障碍物。那么可选的,在根据云台的当前姿态预估拍摄装置的镜头的伸出是否会与障碍物待发生干涉时,该障碍物可以指无人机在当前状态下沿竖直方向的下方障碍物。进一步的,由于云台在绕俯仰轴转动时,可以直接影响拍摄装置的镜头的上下俯仰角度。那么可选的,预设姿态可以为对应俯仰轴的姿态,也即,可以检测云台当前对应俯仰轴的姿态是否符合预设姿态中对应俯仰轴的姿态。
本实施例中,云台的姿态参数影响镜头的伸出方向,从而可以根据云台的姿态参数控制镜头的伸缩,避免镜头伸出与障碍物发生干涉而受损,且在云台的姿态参数不会导致镜头与障碍物干涉时,能够控制镜头伸出,实现诸如高倍光学变焦。
优选地,在一些实施例中,步骤S104根据工作参数检测云台的当前工作状态是否满足预设条件包括:检测驱动参数是否位于预设参数范围内。
具体的,云台的驱动装置可以为电机,驱动装置的驱动参数可以包括但不限于电机的电流或电机的输出扭矩。当云台与镜头或自身周围的障碍物发生干涉时,可能导致镜头的伸出与障碍物发生干涉而造成镜头的损坏,而云台与障碍物发生干涉时,电机由于抵抗阻力的作用,其驱动参数可以发生变化。例如,当云台与地面的障碍物如石头发生干涉时,电机的输出电流会相比正常增稳时要大。如此,可以预先设置预设参数范围,该预设参数范围可以用于判断云台的当前驱动参数,以指示云台的当前工作状态是否满足预设条件,进而指示是否发生预设触发条件,并指示镜头与镜头周围的障碍物是否会待发生干涉。其中,当驱动参数不位于预设参数范围内时,则可以确定云台的当前工作状态不满足预设条件,反之,当驱动参数位于预设参数范围内时,则确定云台的当前工作状态满足条件。
本实施例中,云台或镜头与障碍物发生干涉时,其驱动装置的驱动参数会发生变化,从而可以根据驱动参数判断预设触发事件是否发生,从而控制镜头的伸缩,避免镜头伸出与障碍物发生干涉而受损,而且镜头与障碍物不会发生干涉时,控制镜头伸出,实现高倍光学变焦。
进一步地,检测驱动参数是否位于预设参数范围内具体包括:检测电机的 电流是否小于预设电流。当云台或镜头与障碍物干涉时,流经电机的电流增大,通过检测电机的电流,可以获知云台或镜头是否与障碍物干涉。因此,若电机的电流不小于预设电流,则确定驱动参数不位于预设参数范围内,可以控制镜头为缩回状态,若电机的电流小于预设电流,则确定驱动参数位于预设参数范围内,可以控制镜头为伸出状态。或者,检测驱动参数是否位于预设参数范围内具体包括:检测电机的输出扭矩是否小于预设输出扭矩。当云台或镜头与障碍物干涉时,电机的输出扭矩会增大,通过检测电机的输出扭矩,可以获知云台或镜头是否与障碍物干涉。因此,若电机的输出扭矩不小于预设输出扭矩,则确定驱动参数不位于预设参数范围内,可以控制镜头为缩回状态,若电机的输出扭矩小于预设输出扭矩,则确定驱动参数位于预设参数范围内,可以控制镜头为伸出状态。
可以理解,在实际应用中,也可以同时检测电机的电流是否小于预设电流、电机的输出扭矩是否小于预设输出扭矩,则在电机的电流小于预设电流,且电机的输出扭矩小于预设输出扭矩时,可以确定驱动参数位于预设参数范围内,反之,则确定驱动参数不位于预设参数范围内,此处不做具体限定。
本实施例中,根据电机的电流和/或输出扭矩的大小,可以判断云台或镜头是否与障碍物发生干涉,在电流大于或等于预设电流,且输出扭矩大于或等于预设扭矩时,可以判断云台或镜头与障碍物相干涉,并控制镜头缩回,避免镜头受损,且还能够减小云台的体积,有利于实现对云台的姿态控制。反之,则可以判断云台或镜头不与障碍物相干涉,并控制镜头伸出,满足拍摄需求。
优选地,在一些实施例中,步骤S104根据工作参数检测云台的当前工作状态是否满足预设条件包括:根据云台的姿态参数检测云台的当前姿态是否为预设姿态,并检测驱动参数是否位于预设参数范围内。
可以理解,本实施例中的相应内容可以参考前述实施例,在此不再赘述。其中,当云台的当前姿态不为预设姿态,且云台的驱动参数不位于预设参数范围内,则可以确定云台的当前工作状态不满足预设条件,可以控制镜头为伸出状态,反之,则可以确定云台的当前工作状态满足预设条件,可以控制镜头为缩回状态。
综上所述,本实施例的控制方法可以应用于云台上电时的状态,即电机未 下电或未休眠。通过获取云台的工作参数,可以检测云台的当前状态是否满足预设条件,来确定是否发生预设触发事件,从而控制镜头的伸缩。也即,当根据云台的工作参数确定镜头伸出不会与障碍物待发生干涉时,可以控制镜头为伸出状态,满足高倍光学变焦的拍摄需求,当根据云台的工作参数确定镜头在当前的伸出长度上或再伸出时会与障碍物待发生干涉时,可以控制镜头为缩回状态,以避免镜头伸出与障碍物碰撞造成镜头的损坏。
优选地,该实施例的控制方法可以适用于无人机的待起飞状态。当无人机处于待起飞状态时,无人机并未离开起飞平台(如地面),云台可以上电。此时,通过检测云台的工作参数即可预估镜头的伸出是否会与其周围的障碍物待发生干涉,从而对镜头的伸缩进行控制。
实施例四:
在实施例一的基础上,如图5所示,步骤S10,检测是否发生用于确定镜头与镜头周围的障碍物待发生干涉的预设触发事件,具体可以包括步骤S102、步骤S104、步骤S106和步骤S108。
步骤S102,获取无人机与障碍物之间的距离信息,获取无人机挂载的云台的工作参数。
步骤S104,根据距离信息检测无人机与障碍物的距离是否位于预设距离范围内,并根据工作参数检测云台的当前工作状态是否满足预设条件。
步骤S106,若距离位于预设距离范围外,且当前工作状态不满足预设条件,则确定发生预设触发事件,控制镜头为缩回状态。
步骤S108,若距离位于预设距离范围内或者工作状态满足预设条件,则确定未发生预设触发事件,控制镜头为伸出状态。
其中,获取距离信息的方法以及利用距离信息进行检测的方法如实施例二所述,且获取云台的工作参数的方法以及利用工作参数进行检测的方法如实施例三所述,在此不再赘述。
本实施例与实施例二以及实施例三的不同之处在于:需要获取无人机与障碍物之间的距离信息、云台的工作参数,且只要无人机与障碍物之间的距离位于预设距离范围内或云台的工作状态满足预设条件,即可认为未发生预设触发事件,可以控制镜头为伸出状态,以尽可能地满足光学变焦的拍摄需求。
本实施例中,通过对无人机与障碍物的距离和云台的工作参数共同进行检测,共同判断镜头伸出是否会与障碍物发生干涉,增强了对镜头伸缩控制的精确性,进一步避免镜头伸出与障碍物碰撞造成镜头的损坏。
优选地,该实施例的控制方法可以适用于无人机离地的状态。
综上几个实施例所述,镜头的伸出条件为:伸出的镜头不会与障碍物发生干涉。例如,可以通过无人机与障碍物的距离在预设范围内或无人机的飞行高度高于一定水平来确定,或者,通过云台已经上电、并且云台的工作状态满足预设条件来确定。镜头的缩回条件为:伸出的镜头会与障碍物发生干涉。例如,可以通过无人机与障碍物的距离在预设距离范围外或无人机的飞行高度低于一定水平来确定,或云台的工作状态不满足预设条件来确定。
其中,无人机的飞行过程可以包括:未离地的状态、起飞状态、空中飞行状态、返航状态。
在一个具体的实施例中,无人机的控制方法包括:在无人机起飞前,即无人机未离地(即未离开起飞平台,如地面)时,无人机的飞行高度为零。此时,可以只检测云台的工作参数;当依据云台的工作参数确定云台的工作状态满足预设条件时,控制镜头伸出;当依据云台的工作参数确定云台的工作状态不满足预设条件时,控制镜头缩回。
在无人机为起飞状态时,无人机已离地并已具有一定的飞行高度,为避免镜头与无人机当前状态下沿竖直方向的下方障碍物及沿镜头的伸出方向的障碍物发生干涉。此时,可以检测无人机与上述障碍物的距离(如无人机的飞行高度)和/或云台的工作参数;当无人机与上述障碍物的距离位于预设距离范围内或依据云台的工作参数确定云台的工作状态满足预设条件时,控制镜头伸出,反之,则可以控制镜头缩回。
在无人机为空中飞行状态时,无人机已离地并已同样具有飞行高度(该飞行高度相对高于起飞状态时的飞行高度),为避免无人机的飞行高度过低或无人机在飞行过程中存在建筑物等障碍物时,镜头与无人机当前状态下沿竖直方向的下方障碍物及沿镜头的伸出方向的障碍物发生干涉。此时,也同样可以检测无人机与上述障碍物的距离(如无人机的飞行高度)和/或云台的工作参数;当无人机与上述障碍物的距离位于预设距离范围内或依据云台的工作参数确 定云台的工作状态满足预设条件时,控制镜头伸出,反之,则可以控制镜头缩回。
在无人机为返航状态时,可以默认无人机已完成拍摄任务,控制镜头缩回。当然,在返航状态时,也可以根据无人机的飞行高度和/或云台的工作参数,控制镜头的伸缩,以避免镜头伸出与障碍物发生干涉,或在返航过程中有光学变焦的拍摄需求。可以理解,可以在接收到返航指令时,即控制镜头缩回,也可以在接收到返航指令后,在返航的过程中控制镜头缩回。
进一步的,无人机也可以存在降落状态,返航状态可以包括降落状态。在无人机处于降落状态时,也同样可以检测无人机与上述障碍物的距离(如无人机的飞行高度)和/或云台的工作参数;当无人机与上述障碍物的距离位于预设距离范围内或依据云台的工作参数确定云台的工作状态满足预设条件时,控制镜头伸出,反之,则可以控制镜头缩回。
其中,可以理解,在无人机处于起飞状态、空中飞行状态、返航状态或降落状态时,由于无人机的避障功能的存在,可能较少出现无人机的云台直接撞击障碍物而导致云台的驱动参数发生变化的情况。因此,对于云台的工作参数,可以只对云台的姿态参数进行检测,以根据云台的姿态参数判断云台的当前姿态是否会导致镜头的伸出与其周围的障碍物待发生干涉,以控制镜头的伸缩。当然,在利用云台的姿态参数进行相应判断时,还可以结合无人机与上述障碍物之间的距离。
实施例五:
如图7所示,在实施例一、实施例二、实施例三或实施例四的基础上,无人机的控制方法还包括:若配置的镜头控制规则中指示了基于辅助信息对镜头进行伸缩控制,则根据辅助信息控制镜头的伸缩,辅助信息为辅助基于预设触发事件控制镜头伸缩的信息。
辅助信息可以包括但不限于无人机的飞行信息、用户操作信息、无人机的环境信息中的至少一种。具体的,镜头控制规则可以在无人机出厂前设定,也可以由用户定义设置。若由用户自定义设置,该镜头控制规则可以是在利用拍摄装置进行拍摄的过程中或在拍摄前接收得到,以根据镜头控制规则进行镜头的伸缩控制。如果没有接收到镜头控制规则,则可以执行如实施例一的步骤。
在具体实施时,可以配置镜头控制方式的优先级,即:防止镜头伸出与其周围的障碍物待发生干涉的优先级最高;其次,在存在辅助信息时,则根据辅助信息进行镜头的伸缩控制。如此,能够尽量保证镜头安全的情况下,满足更多的镜头控制需求。
可以理解,上述配置镜头控制方式的优先级也可以是辅助信息的优先级最高,具体可以根据需要进行设置。而在实际应用中,在镜头可能与周围的障碍物待发生干涉的情况下,如实施例一、实施例二、实施例三或实施例四中相应的控制方式的优先级可以高于辅助信息的优先级,而在保障镜头伸出不会与其周围的障碍物发生干涉时,如实施例一、实施例二、实施例三或实施例四中相应的控制方式的优先级可以低于辅助信息的优先级。
镜头相对于机身可以具有多个伸出长度,在镜头伸出时,还可以控制镜头的伸出长度。该多个伸出长度可以是连续的多个伸出长度,例如可以是0-10cm之间的任一值,也可以是间断的多个伸出长度,例如只能为2cm、5cm、10cm。其中,无人机的飞行信息可以包括无人机的速度及速度变化、方向信息,飞行信息的改变可以影响到云台由于镜头伸出所受到的阻力,因此可以根据飞行信息辅助控制镜头的伸缩及伸出长度。用户操作信息可以包括用户输入的对无人机的控制信息和/或对镜头的控制信息,对无人机的控制信息包括指示无人机返航、降落等的控制信息,对镜头的控制信息可以包括对镜头是否伸出及伸出长度或指示拍摄装置变焦的控制信息,用户操作信息可以通过机械按键、语音或触屏等方式输入,用户可以直接对无人机进行控制,也可以通过移动终端间接对无人机进行控制。无人机的环境信息可以指无人机所处的外界环境情况,例如风向、风速、风量等信息,或者其它的雨、雪、雾等天气情况。
通过辅助信息辅助对预设触发事件的判断,控制镜头的伸缩,使得镜头的伸缩及伸出长度能够与辅助信息相适配,提高无人机的使用性能。其中,当辅助信息包括飞行信息和/或环境信息时,根据辅助信息控制镜头的伸缩及伸出长度,能够避免镜头伸出长度过大造成云台受到的阻力过大,从而避免对云台的不利控制,进而避免对拍摄装置的不利增稳控制或不利角度调节控制。而当辅助信息包括用户操作信息时,根据辅助信息控制镜头的伸缩及伸出长度,能够进一步增强人机交互,增强用户对镜头的控制,使得镜头的伸缩及伸出长度 能够满足用户的需求。
在一些实施例中,当辅助信息包括用户操作信息时,根据辅助信息控制镜头的伸缩,具体可以包括:若未发生预设触发事件,用户操作信息包括用于指示拍摄装置变焦的操作,则控制镜头的伸出长度满足拍摄装置的当前变焦操作。这样,可以在保证镜头不会与其周围的障碍物发生干涉的前提下,用户可根据自身的需求控制镜头的伸出长度,镜头的伸出长度满足用户的需求,从而拍摄满足用户需求的照片或视频。
在第一个具体的实施例中,镜头的伸出长度可以为适配拍摄装置的当前变焦操作的伸出长度,例如,当前光学变焦需要的镜头长度为10cm,则镜头的伸出长度为10cm,以准确地控制镜头的伸出长度,使得镜头的伸出长度与用户需求的镜头伸出长度相适配,从而满足用户的拍摄需求。
在第二个具体的实施例中,镜头的伸出长度可以大于适配拍摄装置的当前变焦操作的伸出长度。由于镜头的伸出需要响应时间,而镜头的伸出长度越长,其所耗费的伸出时间越长,因此,镜头的伸出长度大于适配拍摄装置的当前变焦操作的伸出长度,能够有利于节约镜头下次伸出(在此次伸出长度的基础上再次伸出)所耗费的时间,例如适配拍摄装置的当前变焦操作的伸出长度为5cm,则此次控制镜头的伸出长度为10cm,这样既能满足变焦需求,还能减小下次镜头伸长(如伸长至20cm)所用的时间(从10cm伸长至20cm所用的时间小于从5cm伸长至20cm所用的时间),满足快速变焦的要求。该伸出长度可以小于或等于镜头的最大伸出长度。优选地,该伸出长度可以为镜头的最大伸出长度,这样能够一步伸长到位,在满足变焦需求的前提下,后续镜头无需再伸长,无需耗费镜头再伸长所用的时间,满足快速变焦的要求。
可以理解,若镜头当前的伸出长度为10cm,用户操作信息指示拍摄装置变焦时所需要的镜头的伸出长度为5cm,则可以控制镜头不缩回,即保持镜头的伸出长度仍为10cm,或者,也可以控制镜头的伸出长度减小,如缩回至5cm-10cm之间的数值(包括5cm)。
可选的,用户输入的用于指示拍摄装置变焦的操作需要的镜头的伸出长度应该在镜头的可伸缩范围内,例如,用户也可以直接输入镜头的伸出长度,但用户输入的镜头的伸出长度需要小于或等于镜头的最大伸出长度。
在一些实施例中,当辅助信息包括用户操作信息时,根据辅助信息控制镜头的伸缩,具体可以包括:若用户操作信息包括用于指示无人机返航或降落的操作信息,则可以控制镜头缩回。在接收到用于指示无人机返航或降落的操作信息时,可以默认无人机拍摄完成,则可以控制镜头缩回并维持缩回状态,也可以在镜头降落或返航过程中,控制镜头缩回并维持缩回状态。优选地,可以在无人机降落至镜头或无人机与地面的距离小于安全距离时,也即,无人机与障碍物的距离位于预设距离范围外时,可以控制镜头缩回并维持缩回状态,以避免镜头与障碍物碰撞,尤其是避免镜头与诸如地面的距离较小时而与地面发生碰撞。如此,当用户触发一键降落、一键返航时,镜头可以缩回,对大范围光学变焦功能进行限制。
在一些实施例中,当辅助信息包括飞行信息时,根据辅助信息控制镜头的伸缩,具体可以包括:若未发生预设触发事件,且飞行信息指示无人机处于转向状态和/或加速状态,则控制镜头的伸出长度为第一预设长度。在无人机的飞行过程中,当无人机处于转向状态和/或加速状态时,镜头的伸出长度过长时会增大无人机或云台运动所受到的阻力。因此,为了避免镜头的伸出长度过长而导致的阻力问题,并能够有效解决拍摄装置的光学变焦需求,可以控制镜头的伸出长度为第一预设长度,该第一预设长度可以小于镜头的最大伸出长度。
其中,若飞行信息包括无人机的转向信息,则根据转向信息确定无人机处于转向状态时,可以控制镜头的伸出长度为第一预设长度,反之,可以按照如实施一的方式执行相应的步骤;若飞行信息包括无人机的加速信息,则根据加速信息确定无人机处于加速状态时,可以控制镜头的伸出长度为第一预设长度,反之,可以按照如实施一的方式执行相应的步骤;若飞行信息包括无人机的转向信息和加速信息,则根据转向信息确定无人机处于转向状态或无人机处于加速状态时,可以控制镜头的伸出长度为第一预设长度,反之,可以按照如实施一的方式执行相应的步骤。
具体的,在未发生预设触发事件,且无人机处于转向状态和/或加速状态时,控制镜头的伸出长度为第一预设长度可以包括以下几种情况:
1、示例性的,镜头当前处于完全缩回状态。此时,若无高倍光学变焦需 求,可以保持镜头的当前状态,即镜头的伸出长度为零。若有高倍光学变焦需求,那可以控制镜头的伸出长度能够满足当前的光学变焦需求即可。
2、示例性的,镜头当前处于部分缩回状态,即镜头有伸出,但伸出长度小于最大伸出长度。此时,若无高倍光学变焦需求,可以保持镜头的当前状态,也可以控制镜头的伸出长度相对当前的伸出长度减小,还可以完全缩回,即镜头的伸出长度为零。若有高倍光学变焦需求,那可以控制镜头的伸出长度能够满足当前的光学变焦需求即可。
3、示例性的,镜头当前处于完全伸出状态,即镜头的伸出长度为最大伸出长度。此时,若无高倍光学变焦需求,可以控制镜头的伸出长度相对当前的伸出长度减小,还可以完全缩回,即镜头的伸出长度为零。若有高倍光学变焦需求,那可以控制镜头的伸出长度能够满足当前的光学变焦需求即可。
如此,在无人机处于转向状态和/或加速状态时,通过控制镜头的伸出长度,可以减小由于镜头的伸出长度的大小的原因而导致在无人机或云台的控制过程中受到的不利阻力,有利于实现对云台的控制,并能够避免电机能耗过大而缩短寿命。
可以理解,在本实施例中,若发生预设触发事件,则不管无人机当前是否处于转向状态和/或加速状态,可以控制镜头为缩回状态,即按照发生预设触发事件的逻辑对镜头的伸缩进行控制。
在一些实施例中,当辅助信息包括环境信息时,根据辅助信息控制镜头的伸缩,具体可以包括:当未发生预设触发事件,且环境信息指示无人机所在环境的当前风速大于预设风速和/或风向与镜头的伸出方向之间的角度大于预设角度时,则控制镜头的伸出长度为第二预设长度。在无人机的飞行过程中,可能会遇到一些较为恶劣的环境,如风速过大,或风向与无人机的当前飞行方向相反,这些环境因素都可能不利于无人机的飞行控制,而镜头的过长伸出,也会相应增加无人机或云台在运动过程中受到的阻力。因此,为了避免镜头的伸出长度过长而导致的阻力问题,并能够有效解决拍摄装置的光学变焦需求,可以控制镜头的伸出长度为第二预设长度,该第二预设长度小于镜头的最大伸出长度。
其中,若环境信息包括风速信息,则根据风速信息确定当前风速大于预设 风速时,可以控制镜头的伸出长度为第二预设长度,反之,可以按照如实施一的方式执行相应的步骤;若环境信息包括风向信息,则根据风向信息确定风向与镜头的伸出方向之间的角度大于预设角度时,可以控制镜头的伸出长度为第二预设长度,反之,可以按照如实施一的方式执行相应的步骤;若环境信息包括风速信息和风向信息,则根据风速信息确定当前风速大于预设风速或根据风向信息确定风向与镜头的伸出方向之间的角度大于预设角度时,可以控制镜头的伸出长度为第二预设长度,反之,可以按照如实施一的方式执行相应的步骤。
具体的,在未发生预设触发事件,且风速大于预设风速和/或风向与镜头的伸出方向之间的角度大于预设角度时,控制镜头的伸出长度为第二预设长度可以包括以下几种情况:
1、示例性的,镜头当前处于完全缩回状态。此时,若无高倍光学变焦需求,可以保持镜头的当前状态,即镜头的伸出长度为零。若有高倍光学变焦需求,那可以控制镜头的伸出长度能够满足当前的光学变焦需求即可。
2、示例性的,镜头当前处于部分缩回状态,即镜头有伸出,但伸出长度小于最大伸出长度。此时,若无高倍光学变焦需求,可以保持镜头的当前状态,也可以控制镜头的伸出长度相对当前的伸出长度减小,还可以完全缩回,即镜头的伸出长度为零。若有高倍光学变焦需求,那可以控制镜头的伸出长度能够满足当前的光学变焦需求即可。
3、示例性的,镜头当前处于完全伸出状态,即镜头的伸出长度为最大伸出长度。此时,若无高倍光学变焦需求,可以控制镜头的伸出长度相对当前的伸出长度减小,还可以完全缩回,即镜头的伸出长度为零。若有高倍光学变焦需求,那可以控制镜头的伸出长度能够满足当前的光学变焦需求即可。
如此,在风速大于预设风速和/或风向与镜头的伸出方向之间的角度大于预设角度时,通过控制镜头的伸出长度,可以减小由于镜头的伸出长度的大小的原因而导致在无人机或云台的控制过程中受到的不利阻力,有利于实现对云台的控制,并能够避免电机能耗过大而缩短寿命。
可以理解,在本实施例中,若发生预设触发事件,则不管当前风速是否大于预设风速和/或风向与镜头的伸出方向之间的角度是否大于预设角度,可以控制镜头为缩回状态,即按照发生预设触发事件的逻辑对镜头的伸缩进行控 制。
进一步的,当辅助信息包括多个,在根据飞行信息、用户操作信息、无人机的环境信息对镜头伸缩进行控制时,用户操作信息的优先级可以最高,即当飞行信息和无人机的环境信息中的至少一个与用户操作信息同时存在时,优先根据用户操作信息对镜头进行伸缩,使得镜头的伸出长度满足用户的拍摄要求。例如根据当前飞行信息,需要控制镜头缩回,但根据用户操作信息需要控制镜头伸出,则此时控制镜头伸出。
如图6所示,基于上述的无人机的控制方法,本发明的实施方式还提供一种控制装置,包括:存储器200和处理器300,本发明实施例的方法可以由一个或多个处理器300来实现,处理器300具体可以为单独的且与无人机的飞控通信的处理器,或者,也可以为设置在无人机中的飞行处理器、或者是被配置用于控制无人机飞行的智能移动终端。
存储器200,用于存储程序代码;处理器300,用于调用程序代码执行:检测是否发生用于确定镜头与镜头周围的障碍物待发生干涉的预设触发事件;若否,则控制镜头为伸出状态;若是,则控制镜头为缩回状态,以避免镜头伸出与障碍物发生干涉。
在一些实施例中,障碍物包括无人机在当前状态下沿竖直方向的下方障碍物;和/或,障碍物包括无人机在当前状态下沿镜头的伸出方向的障碍物。
在一些实施例中,处理器300具体用于:获取无人机与障碍物之间的距离信息,和/或,获取无人机挂载的云台的工作参数,云台用于承载拍摄装置;根据距离信息和/或工作参数检测是否发生预设触发事件。
在一些实施例中,处理器300还用于:根据距离信息检测无人机与障碍物的距离是否位于预设距离范围内;若距离位于预设距离范围外,则确定发生预设触发事件。优选的,无人机的当前状态为飞行状态或返航状态。
在一些实施例中,处理器300用于:根据工作参数检测云台的当前工作状态是否满足预设条件;若当前工作状态不满足预设条件,则确定发生预设触发事件。优选的,无人机的当前状态为待起飞状态。
在一些实施例中,处理器300用于:根据距离信息检测无人机与障碍物的距离是否位于预设距离范围内,并根据工作参数检测云台的当前工作状态是否 满足预设条件;若距离位于预设距离范围外,且当前工作状态不满足预设条件,则确定发生预设触发事件。
在一些实施例中,工作参数包括云台的姿态参数和/或云台的驱动装置的驱动参数。
在一些实施例中,驱动装置包括电机,驱动参数包括电机的电流或电机的输出扭矩。
在一些实施例中,处理器300用于:根据云台的姿态参数检测云台的当前姿态是否为预设姿态;若当前姿态不为预设姿态,则确定当前工作状态不满足预设条件。优选的,无人机的当前状态为飞行状态或返航状态。
在一些实施例中,处理器300用于:检测驱动参数是否位于预设参数范围内;若驱动参数不位于预设参数范围内,则确定当前工作状态不满足预设参数范围。
在一些实施例中,处理器300用于:根据云台的姿态参数检测云台的当前姿态是否为预设姿态,并检测驱动参数是否位于预设参数范围内;若当前姿态不为预设姿态,且驱动参数不位于预设参数范围内,则确定当前工作状态不满足预设条件。
在一些实施例中,预设姿态为对应俯仰轴的姿态。
在一些实施例中,处理器300用于:检测电机的电流是否小于预设电流;若电机的电流不小于预设电流,则确定驱动参数不位于预设参数范围内。
在一些实施例中,处理器300用于:检测电机的输出扭矩是否小于预设输出扭矩;若电机的输出扭矩不小于预设输出扭矩,则确定驱动参数不位于预设参数范围内。
在一些实施例中,处理器300用于:检测无人机的旋翼是否发生转动;若旋翼发生转动,则执行根据距离信息检测无人机与障碍物的距离是否位于预设距离范围内的步骤。
在一些实施例中,处理器300用于:若旋翼未发生转动,则控制镜头为缩回状态。
在一些实施例中,处理器300用于:若配置的镜头控制规则中指示了基于辅助信息对镜头进行伸缩控制,则根据辅助信息控制镜头的伸缩,辅助信息为 辅助基于预设触发事件控制镜头伸缩的信息。
在一些实施例中,辅助信息包括无人机的飞行信息、用户操作信息、无人机的环境信息中的至少一种。
在一些实施例中,辅助信息中用户操作信息的优先级最高。
在一些实施例中,处理器300用于:当辅助信息包括用户操作信息时,若用户操作信息包括用于指示无人机返航或降落的操作信息,则控制镜头为缩回状态。
在一些实施例中,镜头相对于机身具有多个伸出长度,处理器300用于:当辅助信息包括用户操作信息时,若未发生预设触发事件,且用户操作包括用于指示拍摄装置变焦的操作,则控制镜头的伸出长度满足拍摄装置的当前变焦操作。在一些实施例中,镜头的伸出长度为适配拍摄装置的当前变焦操作的伸出长度。在一些实施例中,镜头的伸出长度大于适配拍摄装置的当前变焦操作的伸出长度。在一些实施例中,镜头的伸出长度为镜头的最大伸出长度。
在一些实施例中,处理器300用于:当辅助信息包括飞行信息时,若未发生预设触发事件,且飞行信息指示无人机处于转向状态和/或加速状态,则控制镜头的伸出长度为第一预设长度,第一预设长度小于镜头的最大伸出长度。
在一些实施例中,处理器300用于:当辅助信息包括环境信息时,当未发生预设触发事件,且环境信息指示无人机所在环境的当前风速大于预设风速和/或风向与镜头的伸出方向之间的角度大于预设角度,则控制镜头的伸出长度为第二预设长度,第二预设长度小于镜头的最大伸出长度。
本发明还提供一种无人机,包括上述任一实施例的控制装置。
如图7所示,无人机包括机身118、设置在机身118上的旋翼106、设置在机身118上的云台102、固定在云台102上的负载如拍摄装置104。无人机还包括控制器108及传感系统110,传感系统110获取信号,并将信号发送给控制器108,控制器108根据接收到的信号对无人机进行相应的控制。传感系统110包括测距传感器、风向传感器等,以测距传感器为例,测距传感器检测无人机与障碍物的距离信息,并将距离信息发送给控制器,控制器根据该距离信息控制镜头的伸缩。
示例性的,传感系统110可以检测是否发生用于确定镜头与镜头周围的障 碍物待发生干涉的预设触发事件,并将检测结果发送给控制器108,控制器108根据该检测结果控制拍摄装置101的镜头的伸缩,具体的,当未发生预设触发事件时,控制器108控制镜头为伸出状态,当发生预设触发事件时,控制器108控制镜头为缩回状态,以避免镜头伸出与障碍物发生干涉。
无人机可与终端112通信连接。在某些实施例中,终端112可以向无人机、云台102及拍摄装置104中的一个或者多个提供控制数据,并且从无人机、云台102及拍摄装置104中的一个或者多个中接收信息(如无人机、云台102的位置及/或运动信息,拍摄装置104感测的数据,如捕获的影像数据)。
在某些实施例中,无人机可以与除终端112之外的其它远程设备通讯,终端112也可以与除无人机之外的其它远程设备进行通讯。例如,无人机及/或终端112可以与另一个无人机或者另一个无人机的云台或负载通讯。当有需要的时候,所述另外的远程设备可以是终端112以外的其它终端或者计算设备。
在某些实施例中,无人机的飞行、云台102的运动及拍摄装置104相对固定参照物(如外部环境)的运动,及/或者彼此间的运动,及/或相应功能的执行,例如,拍摄装置104的变焦操作,都可以由终端112所控制。所述终端112可以是远程控制终端,位于远离无人机、云台102及/或拍摄装置104的地方。终端112可以位于或者粘贴于支撑平台上。可选的,所述终端112可以是手持的或者穿戴式的。所述终端112可以包括用户界面,如键盘、鼠标、操纵杆、触摸屏或者显示器。任何适合的用户输入可以与终端112交互,如手动输入指令、声音控制、手势控制或者位置控制(如通过终端112的运动、位置或者倾斜)。
如此,对于航拍无人机而言,对拍摄装置104的镜头进行伸缩控制,不仅有利于实现更多的拍摄需求以及无人机的便携性、结构紧凑性,也有利于降低镜头的损坏率,相应提高了镜头的使用寿命。同时,对镜头的伸缩控制,尤其是具有较长伸出长度的镜头的伸缩控制,可以减少不必要的镜头伸缩造成的阻力与抖动,有利于云台102或无人机的姿态控制。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的 形式实现。集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
综上所述,本发明实施例提供的无人机的控制方法,在保证光学变焦功能的前提下,能够使无人机结构更紧凑、体积更小、便携性更好。
在本发明的描述中,除非另有明确的规定和限定,术语“多个”是指两个或两个以上;除非另有规定或说明,术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本说明书的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本发明的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (58)

  1. 一种无人机的控制方法,其特征在于,所述无人机包括机身和设置在所述机身上的拍摄装置,所述拍摄装置的镜头能够相对于所述机身伸缩,所述控制方法包括:
    检测是否发生用于确定所述镜头与所述镜头周围的障碍物待发生干涉的预设触发事件;
    若否,则控制所述镜头为伸出状态;
    若是,则控制所述镜头为缩回状态,以避免所述镜头伸出与所述障碍物发生干涉。
  2. 根据权利要求1所述的无人机的控制方法,其特征在于,所述障碍物包括所述无人机在当前状态下沿竖直方向的下方障碍物;和/或,
    所述障碍物包括所述无人机在当前状态下沿所述镜头的伸出方向的障碍物。
  3. 根据权利要求1所述的无人机的控制方法,其特征在于,所述检测是否发生用于确定所述镜头与所述镜头周围的障碍物待发生干涉的预设触发事件,具体包括:
    获取所述无人机与所述障碍物之间的距离信息,和/或,获取所述无人机挂载的云台的工作参数,所述云台用于承载所述拍摄装置;
    根据所述距离信息和/或所述工作参数检测是否发生所述预设触发事件。
  4. 根据权利要求3所述的无人机的控制方法,其特征在于,所述根据所述距离信息和/或所述工作参数检测是否发生所述预设触发事件,具体包括:
    根据所述距离信息检测所述无人机与所述障碍物的距离是否位于预设距离范围内;
    若所述距离位于所述预设距离范围外,则确定发生所述预设触发事件。
  5. 根据权利要求3所述的无人机的控制方法,其特征在于,所述根据所述距离信息和/或所述工作参数检测是否发生所述预设触发事件,具体包括:
    根据所述工作参数检测所述云台的当前工作状态是否满足预设条件;
    若所述当前工作状态不满足所述预设条件,则确定发生预设触发事件。
  6. 根据权利要求3所述的无人机的控制方法,其特征在于,所述根据所述距离信息和/或所述工作参数检测是否发生所述预设触发事件,具体包括:
    根据所述距离信息检测所述无人机与所述障碍物的距离是否位于预设距离范围内,并根据所述工作参数检测所述云台的当前工作状态是否满足预设条件;
    若所述距离位于所述预设距离范围外,且所述当前工作状态不满足所述预设条件,则确定发生所述预设触发事件。
  7. 根据权利要求5或6所述的无人机的控制方法,其特征在于,所述工作参数包括所述云台的姿态参数和/或所述云台的驱动装置的驱动参数。
  8. 根据权利要求7所述的无人机的控制方法,其特征在于,所述驱动装置包括电机,所述驱动参数包括所述电机的电流和/或所述电机的输出扭矩。
  9. 根据权利要求8所述的无人机的控制方法,其特征在于,所述根据所述工作参数检测所述云台的当前工作状态是否满足预设条件,具体包括:
    根据所述云台的姿态参数检测所述云台的当前姿态是否为预设姿态;
    若所述当前姿态不为所述预设姿态,则确定所述当前工作状态不满足所述预设条件。
  10. 根据权利要求8所述的无人机的控制方法,其特征在于,所述根据所述工作参数检测所述云台的当前工作状态是否满足预设条件,具体包括:
    检测所述驱动参数是否位于预设参数范围内;
    若所述驱动参数不位于所述预设参数范围内,则确定所述当前工作状态不满足所述预设条件。
  11. 根据权利要求8所述的无人机的控制方法,其特征在于,所述根据所述工作参数检测所述云台的当前工作状态是否满足预设条件,具体包括:
    根据所述云台的姿态参数检测所述云台的当前姿态是否为预设姿态,并检测所述驱动参数是否位于预设参数范围内;
    若所述当前姿态不为所述预设姿态,且所述驱动参数不位于所述预设参数范围内,则确定所述当前工作状态不满足所述预设条件。
  12. 根据权利要求9或11所述的无人机的控制方法,其特征在于,所述 预设姿态为对应俯仰轴的姿态。
  13. 根据权利要求10或11所述的无人机的控制方法,其特征在于,所述检测所述驱动参数是否位于预设参数范围内,具体包括:
    检测所述电机的电流是否小于预设电流;
    若所述电机的电流不小于所述预设电流,则确定所述驱动参数不位于所述预设参数范围内。
  14. 根据权利要求10或11所述的无人机的控制方法,其特征在于,所述检测所述驱动参数是否位于预设参数范围内,具体包括:
    检测所述电机的输出扭矩是否小于预设输出扭矩;
    若所述电机的输出扭矩不小于所述预设输出扭矩,则确定所述驱动参数不位于所述预设参数范围内。
  15. 根据权利要求5所述的无人机的控制方法,其特征在于,所述无人机的当前状态为待起飞状态。
  16. 根据权利要求4或9所述的无人机的控制方法,其特征在于,所述无人机的当前状态为飞行状态或返航状态。
  17. 根据权利要求4或6所述的无人机的控制方法,其特征在于,在所述根据所述距离信息检测所述无人机与所述障碍物的距离是否位于预设距离范围内之前,所述方法还包括:
    检测所述无人机的旋翼是否发生转动;
    若所述旋翼发生转动,则执行所述根据所述距离信息检测所述无人机与所述障碍物的距离是否位于预设距离范围内的步骤。
  18. 根据权利要求17所述的无人机的控制方法,其特征在于,所述方法还包括:
    若所述旋翼未发生转动,则控制所述镜头为所述缩回状态。
  19. 根据权利要求1至18中任一项所述的无人机的控制方法,其特征在于,所述方法还包括:
    若配置的镜头控制规则中指示了基于辅助信息对所述镜头进行伸缩控制,则根据所述辅助信息控制所述镜头的伸缩,所述辅助信息为辅助基于所述预设触发事件控制所述镜头伸缩的信息。
  20. 根据权利要求19所述的无人机的控制方法,其特征在于,所述辅助信息包括所述无人机的飞行信息、用户操作信息、无人机的环境信息中的至少一种。
  21. 根据权利要求20所述的无人机的控制方法,其特征在于,所述辅助信息中所述用户操作信息的优先级最高。
  22. 根据权利要求20所述的无人机的控制方法,其特征在于,当所述辅助信息包括所述用户操作信息时,所述根据所述辅助信息控制所述镜头的伸缩,具体包括:
    若所述用户操作信息包括用于指示所述无人机返航或降落的操作信息,则控制所述镜头为所述缩回状态。
  23. 根据权利要求20所述的无人机的控制方法,其特征在于,所述镜头相对于所述机身具有多个伸出长度,当所述辅助信息包括所述用户操作信息时,所述根据所述辅助信息控制所述镜头的伸缩,具体包括:
    若未发生所述预设触发事件,且所述用户操作信息包括用于指示所述拍摄装置变焦的操作,则控制所述镜头的伸出长度满足所述拍摄装置的当前变焦操作。
  24. 根据权利要求23所述的无人机的控制方法,其特征在于,所述镜头的伸出长度为适配所述拍摄装置的当前变焦操作的伸出长度。
  25. 根据权利要求23所述的无人机的控制方法,其特征在于,所述镜头的伸出长度大于适配所述拍摄装置的当前变焦操作的伸出长度。
  26. 根据权利要求25所述的无人机的控制方法,其特征在于,所述镜头的伸出长度为所述镜头的最大伸出长度。
  27. 根据权利要求20所述的无人机的控制方法,其特征在于,当所述辅助信息包括所述飞行信息时,所述根据所述辅助信息控制所述镜头的伸缩,具体包括:
    若未发生所述预设触发事件,且所述飞行信息指示所述无人机处于转向状态和/或加速状态,则控制所述镜头的伸出长度为第一预设长度,所述第一预设长度小于所述镜头的最大伸出长度。
  28. 根据权利要求20所述的无人机的控制方法,其特征在于,当所述辅 助信息包括所述环境信息时,所述根据所述辅助信息控制所述镜头的伸缩,具体包括:
    当未发生所述预设触发事件,且所述环境信息指示所述无人机所在环境的当前风速大于预设风速和/或所述风向与所述镜头的伸出方向之间的角度大于预设角度,则控制所述镜头的伸出长度为第二预设长度,所述第二预设长度小于所述镜头的最大伸出长度。
  29. 一种控制装置,用于无人机,其特征在于,所述无人机包括机身和设置在所述机身上的拍摄装置,所述拍摄装置的镜头能够相对于所述机身伸缩,所述控制装置包括:存储器和处理器;
    所述存储器,用于存储程序代码;
    所述处理器,用于调用所述程序代码执行:
    检测是否发生用于确定所述镜头与所述镜头周围的障碍物待发生干涉的预设触发事件;
    若否,则控制所述镜头为伸出状态;
    若是,则控制所述镜头为缩回状态,以避免所述镜头伸出与所述障碍物发生干涉。
  30. 根据权利要求29所述的控制装置,其特征在于,所述障碍物包括所述无人机在当前状态下沿竖直方向的下方障碍物;和/或,
    所述障碍物包括所述无人机在当前状态下沿所述镜头的伸出方向的障碍物。
  31. 根据权利要求29所述的控制装置,其特征在于,所述处理器具体用于:
    获取所述无人机与所述障碍物之间的距离信息,和/或,获取所述无人机挂载的云台的工作参数,所述云台用于承载所述拍摄装置;
    根据所述距离信息和/或所述工作参数检测是否发生所述预设触发事件。
  32. 根据权利要求31所述的控制装置,其特征在于,所述处理器还用于:
    根据所述距离信息检测所述无人机与所述障碍物的距离是否位于预设距离范围内;
    若所述距离位于所述预设距离范围外,则确定发生所述预设触发事件。
  33. 根据权利要求31所述的控制装置,其特征在于,所述处理器用于:
    根据所述工作参数检测所述云台的当前工作状态是否满足预设条件;
    若所述当前工作状态不满足所述预设条件,则确定发生预设触发事件。
  34. 根据权利要求31所述的控制装置,其特征在于,所述处理器用于:
    根据所述距离信息检测所述无人机与所述障碍物的距离是否位于预设距离范围内,并根据所述工作参数检测所述云台的当前工作状态是否满足预设条件;
    若所述距离位于所述预设距离范围外,且所述当前工作状态不满足所述预设条件,则确定发生所述预设触发事件。
  35. 根据权利要求33或34所述的控制装置,其特征在于,所述工作参数包括所述云台的姿态参数和/或所述云台的驱动装置的驱动参数。
  36. 根据权利要求35所述的控制装置,其特征在于,所述驱动装置包括电机,所述驱动参数包括所述电机的电流或所述电机的输出扭矩。
  37. 根据权利要求36所述的控制装置,其特征在于,所述处理器用于:
    根据所述云台的姿态参数检测所述云台的当前姿态是否为预设姿态;
    若所述当前姿态不为所述预设姿态,则确定所述当前工作状态不满足所述预设条件。
  38. 根据权利要求36所述的控制装置,其特征在于,所述处理器用于:
    检测所述驱动参数是否位于预设参数范围内;
    若所述驱动参数不位于所述预设参数范围内,则确定所述当前工作状态不满足所述预设参数范围。
  39. 根据权利要求36所述的控制装置,其特征在于,所述处理器用于:
    根据所述云台的姿态参数检测所述云台的当前姿态是否为预设姿态,并检测所述驱动参数是否位于预设参数范围内;
    若所述当前姿态不为所述预设姿态,且所述驱动参数不位于所述预设参数范围内,则确定所述当前工作状态不满足所述预设条件。
  40. 根据权利要求37或39所述的控制装置,其特征在于,所述预设姿态为对应俯仰轴的姿态。
  41. 根据权利要求38或39所述的控制装置,其特征在于,所述处理器用 于:
    检测所述电机的电流是否小于预设电流;
    若所述电机的电流不小于所述预设电流,则确定所述驱动参数不位于所述预设参数范围内。
  42. 根据权利要求38或39所述的控制装置,其特征在于,所述处理器用于:
    检测所述电机的输出扭矩是否小于预设输出扭矩;
    若所述电机的输出扭矩不小于所述预设输出扭矩,则确定所述驱动参数不位于所述预设参数范围内。
  43. 根据权利要求33所述的控制装置,其特征在于,所述无人机的当前状态为待起飞状态。
  44. 根据权利要求32或37所述的控制装置,其特征在于,所述无人机的当前状态为飞行状态或返航状态。
  45. 根据权利要求32或34所述的控制装置,其特征在于,所述处理器用于:
    检测所述无人机的旋翼是否发生转动;
    若所述旋翼发生转动,则执行所述根据所述距离信息检测所述无人机与所述障碍物的距离是否位于预设距离范围内的步骤。
  46. 根据权利要求45所述的控制装置,其特征在于,所述处理器用于:
    若所述旋翼未发生转动,则控制所述镜头为所述缩回状态。
  47. 根据权利要求1至46中任一项所述的控制装置,其特征在于,所述处理器用于:
    若配置的镜头控制规则中指示了基于辅助信息对所述镜头进行伸缩控制,则根据所述辅助信息控制所述镜头的伸缩,所述辅助信息为辅助基于所述预设触发事件控制所述镜头伸缩的信息。
  48. 根据权利要求47所述的控制装置,其特征在于,所述辅助信息包括所述无人机的飞行信息、用户操作信息、无人机的环境信息中的至少一种。
  49. 根据权利要求48所述的控制装置,其特征在于,所述辅助信息中所述用户操作信息的优先级最高。
  50. 根据权利要求48所述的控制装置,其特征在于,所述处理器用于:
    当所述辅助信息包括所述用户操作信息时,若所述用户操作信息包括用于指示所述无人机返航或降落的操作信息,则控制所述镜头为所述缩回状态。
  51. 根据权利要求48所述的控制装置,其特征在于,所述镜头相对于所述机身具有多个伸出长度,所述处理器用于:
    当所述辅助信息包括所述用户操作信息时,若未发生所述预设触发事件,且所述用户操作信息包括用于指示所述拍摄装置变焦的操作,则控制所述镜头的伸出长度满足所述拍摄装置的当前变焦操作。
  52. 根据权利要求51所述的控制装置,其特征在于,所述镜头的伸出长度为适配所述拍摄装置的当前变焦操作的伸出长度。
  53. 根据权利要求51所述的控制装置,其特征在于,所述镜头的伸出长度大于适配所述拍摄装置的当前变焦操作的伸出长度。
  54. 根据权利要求53所述的控制装置,其特征在于,所述镜头的伸出长度为所述镜头的最大伸出长度。
  55. 根据权利要求48所述的控制装置,其特征在于,所述处理器用于:
    当所述辅助信息包括所述飞行信息时,若未发生所述预设触发事件,且所述飞行信息指示所述无人机处于转向状态和/或加速状态,则控制所述镜头的伸出长度为第一预设长度,所述第一预设长度小于所述镜头的最大伸出长度。
  56. 根据权利要求48所述的控制装置,其特征在于,所述处理器用于:
    当所述辅助信息包括所述环境信息时,当未发生所述预设触发事件,且所述环境信息指示所述无人机所在环境的当前风速大于预设风速和/或所述风向与所述镜头的伸出方向之间的角度大于预设角度,则控制所述镜头的伸出长度为第二预设长度,所述第二预设长度小于所述镜头的最大伸出长度。
  57. 一种无人机,其特征在于,包括:如权利要求29至56中任一项所述的控制装置。
  58. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至28中任一项所述控制方法的步骤。
PCT/CN2018/106565 2018-09-19 2018-09-19 无人机及其控制方法、控制装置和计算机可读存储介质 WO2020056646A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880029907.7A CN110612493A (zh) 2018-09-19 2018-09-19 无人机及其控制方法、控制装置和计算机可读存储介质
PCT/CN2018/106565 WO2020056646A1 (zh) 2018-09-19 2018-09-19 无人机及其控制方法、控制装置和计算机可读存储介质
US17/204,865 US20210349461A1 (en) 2018-09-19 2021-03-17 Unmanned aerial vehicle, method for controlling unmanned aerial vehicle, control apparatus, and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/106565 WO2020056646A1 (zh) 2018-09-19 2018-09-19 无人机及其控制方法、控制装置和计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/204,865 Continuation US20210349461A1 (en) 2018-09-19 2021-03-17 Unmanned aerial vehicle, method for controlling unmanned aerial vehicle, control apparatus, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2020056646A1 true WO2020056646A1 (zh) 2020-03-26

Family

ID=68889093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106565 WO2020056646A1 (zh) 2018-09-19 2018-09-19 无人机及其控制方法、控制装置和计算机可读存储介质

Country Status (3)

Country Link
US (1) US20210349461A1 (zh)
CN (1) CN110612493A (zh)
WO (1) WO2020056646A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113757493A (zh) * 2021-07-22 2021-12-07 上海闻泰信息技术有限公司 一种升降摄像头的控制装置、控制方法及终端设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540368B (zh) * 2020-11-27 2023-07-14 重庆大学 一种用于智能扫雪机器人的障碍物检测与识别方法
CN217706281U (zh) * 2022-06-13 2022-11-01 影石创新科技股份有限公司 一种无人机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158892A1 (fr) * 2014-04-17 2015-10-22 Sagem Defense Securite Aeronef comprenant un bras escamotable muni de detecteur d'obstacles
CN204750588U (zh) * 2015-06-17 2015-11-11 盛铁丰 一种航拍无人机
CN206141851U (zh) * 2016-10-08 2017-05-03 无锡飞天侠科技有限公司 一种实时成像无人机摄像装置碰撞收纳机构
CN107458616A (zh) * 2017-07-25 2017-12-12 芜湖超源力工业设计有限公司 一种具有高清摄像头保护功能的无人机
CN206797762U (zh) * 2017-06-11 2017-12-26 何钰 一种广角航拍无人机
CN107585304A (zh) * 2017-09-29 2018-01-16 成都鑫晨航空科技有限公司 一种新型航拍无人机
CN108263627A (zh) * 2017-12-22 2018-07-10 成都才智圣有科技有限责任公司 一种航拍无人机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201316758A (zh) * 2011-10-03 2013-04-16 Altek Corp 鏡頭偵測保護裝置
CN106081141A (zh) * 2016-06-08 2016-11-09 朱新科 多旋翼无人机
KR101838525B1 (ko) * 2016-08-30 2018-03-14 (주)캠럭스 경찰차용 cctv 시스템
JP2018081208A (ja) * 2016-11-16 2018-05-24 キヤノン株式会社 光学機器、撮像装置および制御方法
CN207120897U (zh) * 2017-06-23 2018-03-20 北京理工大学珠海学院 无人飞行器的云台及无人飞行器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158892A1 (fr) * 2014-04-17 2015-10-22 Sagem Defense Securite Aeronef comprenant un bras escamotable muni de detecteur d'obstacles
CN204750588U (zh) * 2015-06-17 2015-11-11 盛铁丰 一种航拍无人机
CN206141851U (zh) * 2016-10-08 2017-05-03 无锡飞天侠科技有限公司 一种实时成像无人机摄像装置碰撞收纳机构
CN206797762U (zh) * 2017-06-11 2017-12-26 何钰 一种广角航拍无人机
CN107458616A (zh) * 2017-07-25 2017-12-12 芜湖超源力工业设计有限公司 一种具有高清摄像头保护功能的无人机
CN107585304A (zh) * 2017-09-29 2018-01-16 成都鑫晨航空科技有限公司 一种新型航拍无人机
CN108263627A (zh) * 2017-12-22 2018-07-10 成都才智圣有科技有限责任公司 一种航拍无人机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113757493A (zh) * 2021-07-22 2021-12-07 上海闻泰信息技术有限公司 一种升降摄像头的控制装置、控制方法及终端设备

Also Published As

Publication number Publication date
CN110612493A (zh) 2019-12-24
US20210349461A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
US11914370B2 (en) System and method for providing easy-to-use release and auto-positioning for drone applications
US11340606B2 (en) System and method for controller-free user drone interaction
CN104111659B (zh) 控制装置、控制方法
WO2020056646A1 (zh) 无人机及其控制方法、控制装置和计算机可读存储介质
CN110891862B (zh) 飞行系统中用于避障的系统和方法
KR102514566B1 (ko) 전자 장치 및 그의 동작 방법
US20180164801A1 (en) Method for operating unmanned aerial vehicle and electronic device for supporting the same
JP2021093215A (ja) 飛行体制御装置、飛行体制御方法、及びプログラム
WO2018107419A1 (zh) 控制方法、装置、设备及可移动平台
WO2017081898A1 (ja) 飛行制御装置、飛行制御方法、及びコンピュータ読み取り可能な記録媒体
WO2018040006A1 (zh) 控制方法、装置和系统、飞行器、载体及操纵装置
WO2020019106A1 (zh) 云台和无人机控制方法、云台及无人机
WO2018090807A1 (zh) 飞行拍摄控制系统和方法、智能移动通信终端、飞行器
US20220317708A1 (en) Unmanned aerial vehicle protection method and apparatus and unmanned aerial vehicle
CN110799422A (zh) 无人机控制方法和无人机
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
WO2021217408A1 (zh) 无人机系统及其控制方法和装置
JP6685713B2 (ja) 撮像システムおよびその制御方法、通信装置、移動撮像装置
CN108778931B (zh) 一种摄像装置的转动控制方法、控制设备以及飞行器
WO2021238743A1 (zh) 一种无人机飞行控制方法、装置及无人机
JP2018014608A (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
WO2023178487A1 (zh) 飞行器及其功耗的控制方法、控制装置和计算机存储介质
WO2022126477A1 (zh) 一种可移动平台的控制方法、装置及可移动平台
KR102035203B1 (ko) 드론 기술을 이용한 이동 로봇
CN114615432B (zh) 飞行相机和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933950

Country of ref document: EP

Kind code of ref document: A1