WO2023155444A1 - 倒装led芯片及其制备方法、led封装体及显示装置 - Google Patents

倒装led芯片及其制备方法、led封装体及显示装置 Download PDF

Info

Publication number
WO2023155444A1
WO2023155444A1 PCT/CN2022/123211 CN2022123211W WO2023155444A1 WO 2023155444 A1 WO2023155444 A1 WO 2023155444A1 CN 2022123211 W CN2022123211 W CN 2022123211W WO 2023155444 A1 WO2023155444 A1 WO 2023155444A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
hole
metal connection
insulating substrate
Prior art date
Application number
PCT/CN2022/123211
Other languages
English (en)
French (fr)
Inventor
邬新根
刘英策
刘伟
林锋杰
王锐
崔恒平
蔡玉梅
蔡海防
Original Assignee
厦门乾照光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门乾照光电股份有限公司 filed Critical 厦门乾照光电股份有限公司
Publication of WO2023155444A1 publication Critical patent/WO2023155444A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • the invention relates to the field of light-emitting diodes, in particular to a flip-chip LED chip and a preparation method thereof, an LED packaging body and a display device.
  • the LED chip as the core component of the LED lamp, has the function of converting electrical energy into light energy. Specifically, it includes an epitaxial wafer and N-type electrodes and P-type electrodes respectively arranged on the epitaxial wafers.
  • the epitaxial wafer includes a P-type semiconductor layer, an N-type semiconductor layer, and an active layer between the N-type semiconductor layer and the P-type semiconductor layer.
  • the structure of the mainstream thin-film LED chips on the market can refer to the patent number: CN201310165612.1, the patent name: a laser peeling thin-film LED and its preparation method, the main structure recorded; its main features are: through the perforation to make the two poles
  • the bonding and alignment of the first electrode and the second electrode cannot be performed separately, the second electrode still needs to be bonded during the packaging process; thus This results in a loss of light-emitting area and a risk of gold wire breakage.
  • the inventor specially designed a flip-chip LED chip and its preparation method, LED package and display device, and this case arose from this.
  • the object of the present invention is to provide a flip-chip LED chip and its preparation method, LED package and display device, so as to avoid the difficulty of bonding alignment and the loss of light-emitting area.
  • a flip-chip LED chip comprising:
  • the insulating substrate is provided with a plurality of metal-filled holes penetrating through the insulating substrate and independent of each other;
  • a light-emitting structure is flip-chip fixed on the surface of the insulating substrate through a bonding process;
  • the light-emitting structure includes an epitaxial stack, a first insulating layer, a first electrode, and a second electrode;
  • the epitaxial stack includes a first-type semiconductor layer, an active region, and a second-type semiconductor layer stacked in sequence along a first direction, and a local area of the epitaxial stack is etched to part of the first-type semiconductor layers forming grooves and mesas; the first direction is perpendicular to the insulating substrate and directed from the epitaxial stack to the insulating substrate;
  • the first insulating layer covers the surface of the epitaxial stack, and has a first through hole exposing the bottom surface of the groove and a second through hole exposing the mesa; the first electrode is stacked on the first a through hole; the second electrode is stacked on the second through hole;
  • the first electrode and the second electrode are respectively bonded to the metal filling of the insulating substrate through a bonding process to form a whole.
  • it also includes a first metal connection layer and a second metal connection layer; and a local area of the epitaxial stack is etched to a part of the first type semiconductor layer to form a mesa and several grooves, and the first insulating
  • the layer has a second through hole corresponding to the mesa and the groove and several first through holes; the first metal connection layer is arranged in each of the first through holes and then connected to the first electrode, so The second metal connection layer is disposed behind the second through hole and connected to the second electrode.
  • a reflective layer is provided on the surface of the mesa, and the second metal connection layer is stacked on the surface of the reflective layer through the second through hole.
  • the reflective layer includes a metal mirror.
  • an anti-diffusion layer is provided on the surface of the reflective layer away from the mesa, and the second metal connection layer is stacked on the surface of the anti-diffusion layer through the second through hole.
  • a current spreading layer is provided on the surface of the mesa, and the second metal connection layer is stacked on the surface of the current spreading layer through the second via hole.
  • a second insulating layer is provided on the surface of the LED chip, and the second insulating layer has a third through hole and a fourth through hole that respectively expose the first metal connection layer and the second metal connection layer. hole; the first electrode is stacked in the third through hole to form contact with the first metal connection layer; the second electrode is stacked in the fourth through hole to form contact with the second metal connection layer.
  • a metal bump is provided on the surface of the metal-filled hole of the insulating substrate, and the first electrode and the second electrode are respectively bonded to the metal bump through a bonding process to form an integral body.
  • the first through hole and/or the second through hole have inclined sidewalls.
  • the third through hole and/or the fourth through hole have inclined side walls.
  • the first insulating layer and/or the second insulating layer includes an insulating reflective layer.
  • the insulating reflection layer includes distributed Bragg reflection.
  • the present invention also provides a method for preparing a flip-chip LED chip, said preparation method comprising the following steps:
  • Step S01 providing a growth substrate
  • Step S02 stacking an epitaxial stack on the surface of the growth substrate, the epitaxial stack includes a first-type semiconductor layer, an active region, and a second-type semiconductor layer stacked in sequence along a first direction, the first direction perpendicular to the substrate and directed from the growth substrate to the epitaxial stack;
  • Step S03 etching a local area of the epitaxial stack to a part of the first-type semiconductor layer to form a mesa and several grooves;
  • Step S04 sequentially forming a reflective layer and an anti-diffusion layer on the table
  • Step S05 growing a first insulating layer, the first insulating layer covers the epitaxial stack, and has a first through hole exposing the bottom surface of the groove and a second through hole exposing the anti-diffusion layer;
  • Step S06 making a first metal connection layer and a second metal connection layer arranged away from each other, the first metal connection layer is arranged in each of the first through holes, and the second metal connection layer is arranged in the second through hole;
  • Step S07 growing a second insulating layer on the surface of the LED chip, and the second insulating layer has a third through hole and a fourth through hole exposing the first metal connection layer and the second metal connection layer respectively;
  • Step S08 making a first electrode and a second electrode, the first electrode is stacked on the third through hole to form contact with the first metal connection layer; the second electrode is stacked on the fourth through hole and the second metal connection layer forms a contact;
  • Step S09 providing an insulating substrate, the insulating substrate is provided with a plurality of metal filling holes penetrating through the insulating substrate and independent of each other;
  • Step S10 through a bonding process, respectively bonding the first electrode and the second electrode to the metal filling of the insulating substrate to form an integral body;
  • Step S11 peeling off the growth substrate.
  • the present invention also provides a method for preparing a flip-chip LED chip, said preparation method comprising the following steps:
  • Step A01 providing a growth substrate
  • Step A02 stacking an epitaxial stack on the surface of the growth substrate, the epitaxial stack includes a first-type semiconductor layer, an active region, and a second-type semiconductor layer stacked in sequence along a first direction, the first direction perpendicular to the substrate and directed from the growth substrate to the epitaxial stack;
  • Step A03 etching a local area of the epitaxial stack to a part of the first-type semiconductor layer to form a mesa and several grooves;
  • Step A04 forming a current spreading layer on the mesa
  • Step A05 growing a first insulating layer, the first insulating layer covers the epitaxial stack, and has a first through hole exposing the bottom surface of the groove and a second through hole exposing the current spreading layer;
  • Step A06 making a first metal connection layer and a second metal connection layer arranged away from each other, the first metal connection layer is arranged in each of the first through holes, and the second metal connection layer is arranged in the second through hole;
  • Step A07 growing a second insulating layer on the surface of the LED chip, and the second insulating layer has a third through hole and a fourth through hole exposing the first metal connection layer and the second metal connection layer respectively;
  • Step A08 making a first electrode and a second electrode, the first electrode is stacked on the third through hole to form contact with the first metal connection layer; the second electrode is stacked on the fourth through hole and the second metal connection layer forms a contact;
  • Step A09 providing an insulating substrate, the insulating substrate is provided with a plurality of metal filling holes penetrating through the insulating substrate and independent of each other;
  • Step A10 through a bonding process, respectively bonding the first electrode and the second electrode to the metal filling of the insulating substrate to form an integral body;
  • Step A11 peeling off the growth substrate.
  • the present invention also provides a kind of LED packaging body, it comprises:
  • the present invention also provides a display device, comprising the above-mentioned LED packaging body.
  • the flip-chip LED chip and its preparation method, LED package and display device include an insulating substrate and a light-emitting structure flip-chip fixed on the surface of the insulating substrate through a bonding process, wherein, the insulating substrate is provided with a plurality of metal filling holes that run through the insulating substrate and are independent of each other, and the first electrode and the second electrode are respectively bonded to the metal filling holes of the insulating substrate through a bonding process.
  • Integral that is, through the use of metal-filled hole-type insulating substrates, it is possible to realize that the first electrode and the second electrode do not need to be aligned during the bonding process, which reduces the loss of the epitaxial layer and improves the brightness of the chip; at the same time, in the packaging process There is no need to wire electrodes in the process, and a high-reliability LED display device packaged without gold wires can be realized.
  • the preparation method of the flip-chip LED chip provided by the present invention realizes the beneficial effect of the above-mentioned flip-chip LED chip, and at the same time, its manufacturing process is simple and convenient, and it is convenient for production.
  • FIG. 1 is a schematic structural diagram of a flip-chip LED chip provided in Embodiment 1 of the present invention.
  • Figures 1.1 to 1.10 are structural schematic diagrams corresponding to the steps of the method for preparing a flip-chip LED chip provided in Example 1 of the present invention
  • Fig. 2 is a schematic structural diagram of a flip-chip LED chip provided by Embodiment 2 of the present invention.
  • Figures 2.1 to 2.11 are structural schematic diagrams corresponding to the steps of the method for preparing a flip-chip LED chip provided in Example 2 of the present invention.
  • Embodiment 3 is a schematic structural view of a flip-chip LED chip provided by Embodiment 3 of the present invention.
  • Figure 3.1 to Figure 3.10 are structural schematic diagrams corresponding to the steps of the method for preparing a flip-chip LED chip provided in Embodiment 3 of the present invention.
  • Fig. 4 is a schematic structural diagram of a flip-chip LED chip provided by Embodiment 4 of the present invention.
  • Figures 4.1 to 4.11 are structural schematic diagrams corresponding to the steps of the method for preparing a flip-chip LED chip provided in Example 4 of the present invention.
  • an embodiment of the present invention provides a flip-chip LED chip, including:
  • An insulating substrate 15, the insulating substrate 15 is provided with a number of metal filling holes 15.1 that run through the insulating substrate 15 and are independent of each other;
  • a light-emitting structure is flip-chip fixed on the surface of the insulating substrate 15 through a bonding process;
  • the light-emitting structure includes an epitaxial stack, a first insulating layer 7, a first electrode 12, and a second electrode 13;
  • the epitaxial stack includes a first-type semiconductor layer 2, an active region 3, and a second-type semiconductor layer 4 stacked in sequence along the first direction, and a local area of the epitaxial stack is etched to a part of the first-type semiconductor layer 2 to form The groove 4.1 and the mesa 4.2; the first direction is perpendicular to the insulating substrate 15, and is directed to the insulating substrate 15 from the epitaxial stack;
  • the first insulating layer 7 covers the surface of the epitaxial stack, and has a first through hole 7.1 that exposes the bottom surface of the groove 4.1 and a second through hole 7.2 that exposes the terrace surface 4.2; the first electrode 12 is stacked on the first through hole 7.1; the second The electrode 13 is stacked on the second through hole 7.2;
  • the first electrode 12 and the second electrode 13 are respectively bonded with the metal filling of the insulating substrate 15 through a bonding process to form an integral body.
  • the types of the epitaxial stacked first-type semiconductor layer 2, active region 3, and second-type semiconductor layer 4 are not limited in the flip-chip LED chip of this embodiment, for example, the first-type The semiconductor layer 2 may be but not limited to a gallium nitride layer, and correspondingly, the second-type semiconductor layer 4 may be but not limited to a gallium nitride layer.
  • the first metal connection layer 8 and the second metal connection layer 9 are also included; and the local area of the epitaxial stack is etched to a part of the first type semiconductor layer 2 to form a mesa 4.2 and several grooves 4.1, the first An insulating layer 7 has a second through hole 7.2 corresponding to the mesa 4.2 and the groove 4.1 and a plurality of first through holes 7.1; the first metal connection layer 8 is arranged in each of the first through holes 7.1 and then connected to the first electrode 12 , the second metal connection layer 9 is disposed on the second through hole 7.2 and then connected to the second electrode 13 .
  • the first metal connection layer 8 and the second metal connection layer 9 include one or more metal stacks selected from Cr, Ni, Al, Ti, Pt, Au, Pd and Ag.
  • the reflective layer 5 is provided on the surface of the mesa 4.2, and the second electrode 13 is stacked on the surface of the reflective layer 5 through the second through hole 7.2. It is worth mentioning that the reflective layer 5 includes a metal reflector.
  • an anti-diffusion layer 6 is provided on the surface of the reflective layer 5 facing away from the mesa 4.2, and the second electrode 13 is stacked on the surface of the anti-diffusion layer 6 through the second through hole 7.2.
  • a metal bump 16 is provided on the surface of the metal-filled hole 15.1 of the insulating substrate 15, and the first electrode 12 and the second electrode 13 are respectively bonded to the metal bump 16 to form an integral body through a bonding process.
  • the first through hole 7.1 and/or the second through hole 7.2 have inclined side walls.
  • the first insulating layer 7 includes an insulating reflective layer.
  • the insulating reflection layer includes distributed Bragg reflection.
  • the embodiment of the present invention also provides a method for preparing a flip-chip LED chip.
  • the method includes the following steps:
  • Step B01 as shown in Figure 1.1, providing a growth substrate 1;
  • Step B02 stacking an epitaxial stack on the surface of the growth substrate 1, the epitaxial stack includes a first-type semiconductor layer 2, an active region 3, and a second-type semiconductor layer 4 stacked in sequence along the growth direction;
  • Step B03 as shown in Figure 1.3, etching the local area of the epitaxial stack to a part of the first-type semiconductor layer 2 to form a mesa 4.2 and several grooves 4.1;
  • Step B04 sequentially form a reflective layer 5 and an anti-diffusion layer 6 on the table 4.2;
  • Step B05 as shown in Figure 1.5, grow the first insulating layer 7, the first insulating layer 7 covers the epitaxial stack, and has the first through hole 7.1 exposing the bottom surface of the groove 4.1 and the second through hole exposing the anti-diffusion layer 6 7.2;
  • Step B06 as shown in Figure 1.6, make the first metal connection layer 8 and the second metal connection layer 9, the first metal connection layer 8 is set in each first through hole 7.1, and the second metal connection layer 9 is set in the second through hole hole 7.2;
  • Step B07 as shown in Figure 1.7, making the first electrode 12 and the second electrode 13, the first electrode 12 is laminated on the surface of the first metal connection layer 8; the second electrode 13 is laminated on the surface of the second metal connection layer 9;
  • Step B08 as shown in Figure 1.8, an insulating substrate 15 is provided, and the insulating substrate 15 is provided with a number of metal filling holes 15.1 that penetrate the insulating substrate 15 and are independent of each other. Further, the surface of the metal filling holes 15.1 is provided with metal protrusions. point 16;
  • Step B09 as shown in Figure 1.9, through the bonding process, the first electrode 12 and the second electrode 13 are respectively bonded to the metal filling of the insulating substrate 15 to form an integral body;
  • Step B10 as shown in FIG. 1.10, the growth substrate 1 is peeled off.
  • the embodiment of the present invention also provides an LED package, which includes:
  • the flip-chip LED chip of any one of the above, and the package body and the flip-chip LED chip are electrically connected through the metal filling hole 15.1 of the insulating substrate 15.
  • An embodiment of the present invention also provides a display device, including the above-mentioned LED package.
  • the flip-chip LED chip and its preparation method, LED package and display device provided by the present invention include an insulating substrate 15 and a light-emitting structure flip-chip fixed on the surface of the insulating substrate 15 through a bonding process, Among them, the insulating substrate 15 is provided with a number of metal filling holes 15.1 that run through the insulating substrate 15 and are independent of each other. The first electrode 12 and the second electrode 13 are respectively bonded with the metal filling of the insulating substrate 15 through a bonding process.
  • Integral that is, through the use of metal-filled holes 15.1 type insulating substrate 15, it is possible to realize that the first electrode 12 and the second electrode 13 do not need to be aligned during the bonding process, reducing the loss of the epitaxial layer, thereby improving the brightness of the chip; at the same time In the process of encapsulation, there is no need to wire the electrodes, and a high-reliability LED display device without gold wire encapsulation can be realized.
  • the preparation method of the flip-chip LED chip provided by the present invention realizes the beneficial effect of the above-mentioned flip-chip LED chip, and at the same time, its manufacturing process is simple and convenient, and it is convenient for production.
  • an embodiment of the present invention provides a flip-chip LED chip, including:
  • An insulating substrate 15, the insulating substrate 15 is provided with a number of metal filling holes 15.1 that run through the insulating substrate 15 and are independent of each other;
  • a light-emitting structure is flip-chip fixed on the surface of the insulating substrate 15 through a bonding process;
  • the light-emitting structure includes an epitaxial stack, a first insulating layer 7, a first electrode 12, and a second electrode 13;
  • the epitaxial stack includes the first type semiconductor layer 2, the active region 3 and the second type semiconductor layer 4 stacked in sequence along the first direction, and the local area of the epitaxial stack is etched to a part of the first type semiconductor layer 2 to form The groove 4.1 and the mesa 4.2; the first direction is perpendicular to the insulating substrate 15, and is directed to the insulating substrate 15 from the epitaxial stack;
  • the first insulating layer 7 covers the surface of the epitaxial stack, and has a first through hole 7.1 that exposes the bottom surface of the groove 4.1 and a second through hole 7.2 that exposes the terrace surface 4.2; the first electrode 12 is stacked on the first through hole 7.1; the second The electrode 13 is stacked on the second through hole 7.2;
  • the first electrode 12 and the second electrode 13 are respectively bonded with the metal filling of the insulating substrate 15 through a bonding process to form an integral body.
  • the types of the epitaxial stacked first-type semiconductor layer 2, active region 3, and second-type semiconductor layer 4 are not limited in the flip-chip LED chip of this embodiment, for example, the first-type The semiconductor layer 2 may be but not limited to a gallium nitride layer, and correspondingly, the second-type semiconductor layer 4 may be but not limited to a gallium nitride layer.
  • the first metal connection layer 8 and the second metal connection layer 9 are also included; and the local area of the epitaxial stack is etched to a part of the first type semiconductor layer 2 to form a mesa 4.2 and several grooves 4.1, the first An insulating layer 7 has a second through hole 7.2 corresponding to the mesa 4.2 and the groove 4.1 and a plurality of first through holes 7.1; the first metal connection layer 8 is arranged in each of the first through holes 7.1 and then connected to the first electrode 12 , the second metal connection layer 9 is disposed on the second through hole 7.2 and then connected to the second electrode 13 .
  • the first metal connection layer 8 and the second metal connection layer 9 include one or more metal stacks selected from Cr, Ni, Al, Ti, Pt, Au, Pd and Ag.
  • the reflective layer 5 is provided on the surface of the mesa 4.2, and the second metal connection layer 9 is stacked on the surface of the reflective layer 5 through the second through hole 7.2. It is worth mentioning that the reflective layer 5 includes a metal reflector.
  • an anti-diffusion layer 6 is provided on the surface of the reflective layer 5 facing away from the mesa 4.2, and the second metal connection layer 9 is stacked on the surface of the anti-diffusion layer 6 through the second through hole 7.2.
  • a second insulating layer 14 is also provided on the surface of the LED chip, and the second insulating layer 14 has a third through hole 14.1 and a second Four through holes 14.2; the first electrode 12 is stacked in the third through hole 14.1 to form contact with the first metal connection layer 8; the second electrode 13 is stacked in the fourth through hole 14.2 to form contact with the second metal connection layer 9.
  • a metal bump 16 is provided on the surface of the metal-filled hole 15.1 of the insulating substrate 15, and the first electrode 12 and the second electrode 13 are respectively bonded to the metal bump 16 to form an integral body through a bonding process.
  • the first through hole 7.1 and/or the second through hole 7.2 have inclined side walls.
  • the third through hole 14.1 and/or the fourth through hole 14.2 have inclined side walls.
  • the first insulating layer 7 and/or the second insulating layer 14 includes an insulating reflective layer.
  • the insulating reflection layer includes distributed Bragg reflection.
  • the embodiment of the present invention also provides a method for preparing a flip-chip LED chip.
  • the method includes the following steps:
  • Step S01 as shown in Figure 2.1, providing a growth substrate 1;
  • Step S02 stacking an epitaxial stack on the surface of the growth substrate 1, the epitaxial stack includes a first-type semiconductor layer 2, an active region 3, and a second-type semiconductor layer 4 stacked in sequence along the growth direction;
  • Step S03 as shown in FIG. 2.3, etching a local area of the epitaxial stack to a part of the first-type semiconductor layer 2 to form a mesa 4.2 and several grooves 4.1;
  • Step S04 sequentially form a reflective layer 5 and an anti-diffusion layer 6 on the table 4.2;
  • Step S05 as shown in Figure 2.5, grow the first insulating layer 7, the first insulating layer 7 covers the epitaxial stack, and has the first through hole 7.1 exposing the bottom surface of the groove 4.1 and the second through hole exposing the anti-diffusion layer 6 7.2;
  • Step S06 as shown in Figure 2.6, fabricate the first metal connection layer 8 and the second metal connection layer 9, the first metal connection layer 8 is arranged in each first through hole 7.1, and the second metal connection layer 9 is arranged in the second through hole hole 7.2;
  • Step S07 as shown in Figure 2.7, grow a second insulating layer 14 on the surface of the LED chip, and the second insulating layer 14 has third through holes 14.1 and Fourth through hole 14.2;
  • Step S08 as shown in Figure 2.8, fabricate the first electrode 12 and the second electrode 13, the first electrode 12 is stacked on the third through hole 14.1 to form contact with the first metal connection layer 8; the second electrode 13 is stacked on the fourth through hole The hole 14.2 makes contact with the second metal connection layer 9;
  • Step S09 as shown in Figure 2.9, provide an insulating substrate 15, the insulating substrate 15 is provided with a number of metal filling holes 15.1 that penetrate the insulating substrate 15 and are independent of each other, further, the surface of the metal filling holes 15.1 is provided with metal protrusions point 16;
  • Step S10 as shown in FIG. 2.10, the first electrode 12 and the second electrode 13 are respectively bonded to the metal filling of the insulating substrate 15 to form an integral body through a bonding process;
  • Step S11 as shown in FIG. 2.11 , the growth substrate 1 is peeled off.
  • the embodiment of the present invention also provides an LED package, which includes:
  • the flip-chip LED chip of any one of the above, and the package body and the flip-chip LED chip are electrically connected through the metal filling hole 15.1 of the insulating substrate 15.
  • An embodiment of the present invention also provides a display device, including the above-mentioned LED package.
  • the flip-chip LED chip and its preparation method, LED package and display device provided by the present invention include an insulating substrate 15 and a light-emitting structure flip-chip fixed on the surface of the insulating substrate 15 through a bonding process, Among them, the insulating substrate 15 is provided with a number of metal filling holes 15.1 that run through the insulating substrate 15 and are independent of each other, and the first electrode 12 and the second electrode 13 are respectively bonded with the metal filling of the insulating substrate 15 through a bonding process.
  • Integral that is, through the use of metal-filled holes 15.1 type insulating substrate 15, the first electrode 12 and the second electrode 13 do not need to be aligned during the bonding process, reducing the loss of the epitaxial layer, thereby improving the brightness of the chip; at the same time In the process of encapsulation, there is no need to wire the electrodes, and a high-reliability LED display device without gold wire encapsulation can be realized.
  • the preparation method of the flip-chip LED chip provided by the present invention realizes the beneficial effect of the above-mentioned flip-chip LED chip, and at the same time, its manufacturing process is simple and convenient, and it is convenient for production.
  • an embodiment of the present invention provides a flip-chip LED chip, including:
  • An insulating substrate 15, the insulating substrate 15 is provided with a number of metal filling holes 15.1 that run through the insulating substrate 15 and are independent of each other;
  • a light-emitting structure is flip-chip fixed on the surface of the insulating substrate 15 through a bonding process;
  • the light-emitting structure includes an epitaxial stack, a first insulating layer 7, a first electrode 12, and a second electrode 13;
  • the epitaxial stack includes a first-type semiconductor layer 2, an active region 3, and a second-type semiconductor layer 4 stacked in sequence along the first direction, and a local area of the epitaxial stack is etched to a part of the first-type semiconductor layer 2 to form The groove 4.1 and the mesa 4.2; the first direction is perpendicular to the insulating substrate 15, and is directed to the insulating substrate 15 from the epitaxial stack;
  • the first insulating layer 7 covers the surface of the epitaxial stack, and has a first through hole 7.1 that exposes the bottom surface of the groove 4.1 and a second through hole 7.2 that exposes the terrace surface 4.2; the first electrode 12 is stacked on the first through hole 7.1; the second The electrode 13 is stacked on the second through hole 7.2;
  • the first electrode 12 and the second electrode 13 are respectively bonded with the metal filling of the insulating substrate 15 through a bonding process to form an integral body.
  • the types of the epitaxial stacked first-type semiconductor layer 2, active region 3, and second-type semiconductor layer 4 are not limited in the flip-chip LED chip of this embodiment, for example, the first-type The semiconductor layer 2 may be but not limited to a gallium nitride layer, and correspondingly, the second-type semiconductor layer 4 may be but not limited to a gallium nitride layer.
  • a current spreading layer 6.1 is provided on the surface of the mesa 4.2, and the second electrode 13 is stacked on the surface of the current spreading layer 6.1 through the second through hole 7.2.
  • a current blocking layer 5.1 is further provided between the current spreading layer 6.1 and the mesa 4.2, and the current blocking layer 5.1 is arranged within the projection range of the second electrode 13 on the mesa 4.2, and the current spreading layer 6.1 Cover the current blocking layer 5.1.
  • a metal bump 16 is provided on the surface of the metal-filled hole 15.1 of the insulating substrate 15, and the first electrode 12 and the second electrode 13 are respectively bonded to the metal bump 16 to form an integral body through a bonding process.
  • the first through hole 7.1 and/or the second through hole 7.2 have inclined side walls.
  • the first insulating layer 7 includes an insulating reflective layer.
  • the insulating reflection layer includes distributed Bragg reflection.
  • the embodiment of the present invention also provides a method for preparing a flip-chip LED chip.
  • the method includes the following steps:
  • Step C01 as shown in Figure 3.1, providing a growth substrate 1;
  • Step C02 stack an epitaxial stack on the surface of the growth substrate 1, the epitaxial stack includes a first-type semiconductor layer 2, an active region 3, and a second-type semiconductor layer 4 stacked in sequence along the growth direction;
  • Step C03 as shown in Figure 3.3, etching the local area of the epitaxial stack to a part of the first-type semiconductor layer 2 to form a mesa 4.2 and several grooves 4.1;
  • Step C04 as shown in Figure 3.4, forming a current blocking layer 5.1 and a current spreading layer 6.1 on the mesa 4.2 in sequence, and the current spreading layer 6.1 covers the current blocking layer 5.1;
  • Step C05 as shown in Figure 3.5, grow the first insulating layer 7, the first insulating layer 7 covers the epitaxial stack, and has the first through hole 7.1 exposing the bottom surface of the groove 4.1 and the second through hole exposing the current spreading layer 6.1 7.2, further, the second through hole 7.2 is located above the current blocking layer 5.1;
  • Step C06 make the first metal connection layer 8 and the second metal connection layer 9, the first metal connection layer 8 is arranged in each first through hole 7.1, and the second metal connection layer 9 is arranged in the second through hole hole 7.2;
  • Step C07 as shown in Figure 3.7, make the first electrode 12 and the second electrode 13, the first electrode 12 is stacked on the first through hole 7.1; the second electrode 13 is stacked on the second through hole 7.2, and the current blocking layer 5.1 is set within the projection range of the second electrode 13 on the mesa 4.2;
  • Step C08 as shown in Figure 3.8, an insulating substrate 15 is provided, and the insulating substrate 15 is provided with a number of metal filling holes 15.1 that penetrate the insulating substrate 15 and are independent of each other. Further, the surface of the metal filling holes 15.1 is provided with metal protrusions. point 16;
  • Step C09 as shown in Figure 3.9, through the bonding process, the first electrode 12 and the second electrode 13 are respectively bonded to the metal filling of the insulating substrate 15 to form an integral body;
  • Step C10 as shown in FIG. 3.10, the growth substrate 1 is peeled off.
  • the embodiment of the present invention also provides an LED package, which includes:
  • the flip-chip LED chip of any one of the above, and the package body and the flip-chip LED chip are electrically connected through the metal filling hole 15.1 of the insulating substrate 15.
  • An embodiment of the present invention also provides a display device, including the above-mentioned LED package.
  • the flip-chip LED chip and its preparation method, LED package and display device provided by the present invention include an insulating substrate 15 and a light-emitting structure flip-chip fixed on the surface of the insulating substrate 15 through a bonding process, Among them, the insulating substrate 15 is provided with a number of metal filling holes 15.1 that run through the insulating substrate 15 and are independent of each other, and the first electrode 12 and the second electrode 13 are respectively bonded with the metal filling of the insulating substrate 15 through a bonding process.
  • Integral that is, through the use of metal-filled holes 15.1 type insulating substrate 15, the first electrode 12 and the second electrode 13 do not need to be aligned during the bonding process, reducing the loss of the epitaxial layer, thereby improving the brightness of the chip; at the same time In the process of encapsulation, there is no need to wire the electrodes, and a high-reliability LED display device without gold wire encapsulation can be realized.
  • the preparation method of the flip-chip LED chip provided by the present invention realizes the beneficial effect of the above-mentioned flip-chip LED chip, and at the same time, its manufacturing process is simple and convenient, and it is convenient for production.
  • an embodiment of the present invention provides a flip-chip LED chip, including:
  • An insulating substrate 15, the insulating substrate 15 is provided with a number of metal filling holes 15.1 that run through the insulating substrate 15 and are independent of each other;
  • a light-emitting structure is flip-chip fixed on the surface of the insulating substrate 15 through a bonding process;
  • the light-emitting structure includes an epitaxial stack, a first insulating layer 7, a first electrode 12, and a second electrode 13;
  • the epitaxial stack includes the first type semiconductor layer 2, the active region 3 and the second type semiconductor layer 4 stacked in sequence along the first direction, and the local area of the epitaxial stack is etched to a part of the first type semiconductor layer 2 to form The groove 4.1 and the mesa 4.2; the first direction is perpendicular to the insulating substrate 15, and is directed to the insulating substrate 15 from the epitaxial stack;
  • the first insulating layer 7 covers the surface of the epitaxial stack, and has a first through hole 7.1 that exposes the bottom surface of the groove 4.1 and a second through hole 7.2 that exposes the terrace surface 4.2; the first electrode 12 is stacked on the first through hole 7.1; the second The electrode 13 is stacked on the second through hole 7.2;
  • the first electrode 12 and the second electrode 13 are respectively bonded with the metal filling of the insulating substrate 15 through a bonding process to form an integral body.
  • the types of the epitaxial stacked first-type semiconductor layer 2, active region 3, and second-type semiconductor layer 4 are not limited in the flip-chip LED chip of this embodiment, for example, the first-type The semiconductor layer 2 may be but not limited to a gallium nitride layer, and correspondingly, the second-type semiconductor layer 4 may be but not limited to a gallium nitride layer.
  • the first metal connection layer 8 and the second metal connection layer 9 are also included; and the local area of the epitaxial stack is etched to a part of the first type semiconductor layer 2 to form a mesa 4.2 and several grooves 4.1, the first An insulating layer 7 has a second through hole 7.2 corresponding to the mesa 4.2 and the groove 4.1 and several first through holes 7.1; the first metal connection layer 8 covers each of the first through holes 7.1 and is connected to the first electrode 12, The second metal connection layer 9 is connected to the second electrode 13 after filling the second through hole 7.2.
  • the first metal connection layer 8 and the second metal connection layer 9 include one or more metal stacks selected from Cr, Ni, Al, Ti, Pt, Au, Pd and Ag.
  • the current spreading layer 6.1 is provided on the surface of the mesa 4.2, and the second metal connection layer 9 is stacked on the surface of the current spreading layer 6.1 through the second through hole 7.2.
  • a second insulating layer 14 is also provided on the surface of the LED chip, and the second insulating layer 14 has a third through hole 14.1 and a second Four through holes 14.2; the first electrode 12 is stacked in the third through hole 14.1 to form contact with the first metal connection layer 8; the second electrode 13 is stacked in the fourth through hole 14.2 to form contact with the second metal connection layer 9.
  • a metal bump 16 is provided on the surface of the metal-filled hole 15.1 of the insulating substrate 15, and the first electrode 12 and the second electrode 13 are respectively bonded to the metal bump 16 to form an integral body through a bonding process.
  • the first through hole 7.1 and/or the second through hole 7.2 have inclined side walls.
  • the third through hole 14.1 and/or the fourth through hole 14.2 have inclined side walls.
  • the first insulating layer 7 and/or the second insulating layer 14 includes an insulating reflective layer.
  • the insulating reflection layer includes distributed Bragg reflection.
  • the embodiment of the present invention also provides a method for preparing a flip-chip LED chip.
  • the method includes the following steps:
  • Step A01 as shown in Figure 4.1, providing a growth substrate 1;
  • Step A02 stacking an epitaxial stack on the surface of the growth substrate 1, the epitaxial stack includes a first-type semiconductor layer 2, an active region 3, and a second-type semiconductor layer 4 stacked in sequence along the growth direction;
  • Step A03 as shown in FIG. 4.3, etching a local area of the epitaxial stack to a part of the first-type semiconductor layer 2 to form a mesa 4.2 and several grooves 4.1;
  • Step A04 as shown in Figure 4.4, forming a current blocking layer 5.1 and a current spreading layer 6.1 on the mesa 4.2 in sequence, and the current spreading layer 6.1 covers the current blocking layer 5.1;
  • Step A05 as shown in Figure 4.5, grow the first insulating layer 7, the first insulating layer 7 covers the epitaxial stack, and has the first through hole 7.1 exposing the bottom surface of the groove 4.1 and the second through hole exposing the current spreading layer 6.1 7.2, further, the second through hole 7.2 is located above the current blocking layer 5.1;
  • Step A06 make the first metal connection layer 8 and the second metal connection layer 9, the first metal connection layer 8 covers each first through hole 7.1, and the second metal connection layer 9 fills the second through hole 7.2 ;
  • Step A07 as shown in Figure 4.7, grow a second insulating layer 14 on the surface of the LED chip, and the second insulating layer 14 has third through holes 14.1 and Fourth through hole 14.2;
  • Step A08 make the first electrode 12 and the second electrode 13, the first electrode 12 is stacked on the third through hole 14.1 to form contact with the first metal connection layer 8; the second electrode 13 is stacked on the fourth through hole
  • the hole 14.2 is in contact with the second metal connection layer 9, and the current blocking layer 5.1 is disposed within the projection range of the second electrode 13 on the mesa 4.2;
  • Step A09 as shown in Figure 4.9, an insulating substrate 15 is provided, and the insulating substrate 15 is provided with a number of metal filling holes 15.1 that penetrate the insulating substrate 15 and are independent of each other. Further, the surface of the metal filling holes 15.1 is provided with metal protrusions. point 16;
  • Step A10 as shown in Figure 4.10, the first electrode 12 and the second electrode 13 are respectively bonded to the metal filling of the insulating substrate 15 to form an integral body through a bonding process;
  • Step A11 as shown in Figure 4.11, peel off the growth substrate 1.
  • the embodiment of the present invention also provides an LED package, which includes:
  • the flip-chip LED chip of any one of the above, and the package body and the flip-chip LED chip are electrically connected through the metal filling hole 15.1 of the insulating substrate 15.
  • An embodiment of the present invention also provides a display device, including the above-mentioned LED package.
  • the flip-chip LED chip and its preparation method, LED package and display device provided by the present invention include an insulating substrate 15 and a light-emitting structure flip-chip fixed on the surface of the insulating substrate 15 through a bonding process, Among them, the insulating substrate 15 is provided with a number of metal filling holes 15.1 that run through the insulating substrate 15 and are independent of each other, and the first electrode 12 and the second electrode 13 are respectively bonded with the metal filling of the insulating substrate 15 through a bonding process.
  • Integral that is, through the use of metal-filled holes 15.1 type insulating substrate 15, the first electrode 12 and the second electrode 13 do not need to be aligned during the bonding process, reducing the loss of the epitaxial layer, thereby improving the brightness of the chip; at the same time In the process of encapsulation, there is no need to wire the electrodes, and a high-reliability LED display device without gold wire encapsulation can be realized.
  • the preparation method of the flip-chip LED chip provided by the present invention realizes the beneficial effect of the above-mentioned flip-chip LED chip, and at the same time, its manufacturing process is simple and convenient, and it is convenient for production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

本发明提供了一种倒装LED芯片及其制备方法、LED封装体及显示装置,包括绝缘衬底和通过键合工艺倒装固定于所述绝缘衬底表面的发光结构,其中,所述绝缘衬底设有若干个贯穿所述绝缘衬底且相互独立的金属填充孔,第一电极和第二电极通过键合工艺分别与所述绝缘衬底的金属填充物键合形成一体;也即通过金属填充孔型绝缘衬底的使用,可以实现第一电极和第二电极在键合过程中无需对准,减少了外延层的损失,藉以提升芯片亮度;同时,在封装过程中无需对电极进行打线,可以实现高可靠性无金线封装的LED显示装置。

Description

倒装LED芯片及其制备方法、LED封装体及显示装置
本申请要求于2022年02月17日提交中国专利局、申请号为202210144087.4、发明名称为“倒装LED芯片及其制备方法、LED封装体及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及发光二极管领域,尤其涉及倒装LED芯片及其制备方法、LED封装体及显示装置。
背景技术
随着LED技术的快速发展以及LED光效的逐步提高,LED的应用也越来越广泛,人们越来越关注LED在显示屏的发展前景。LED芯片,作为LED灯的核心组件,其功能就是把电能转化为光能,具体的,包括外延片和分别设置在外延片上的N型电极和P型电极。所述外延片包括P型半导体层、N型半导体层以及位于所述N型半导体层和P型半导体层之间的有源层,当有电流通过LED芯片时,P型半导体中的空穴和N型半导体中的电子会向有源层移动,并在所述有源层复合,使得LED芯片发光。
目前,市场上主流的薄膜LED芯片的结构,可参考专利号:CN201310165612.1,专利名称:一种激光剥离薄膜LED及其制备方法,所记载的主体结构;其主要特点是:通过穿孔使两极性电极形成垂直结构,然而在上述结构的应用基础上,由于无法分别针对第一电极、第二电极进行键合对准, 导致对其封装过程中,仍旧需要对第二电极进行打线;如此导致发光面积损失,且有金线断裂的风险。
有鉴于此,为克服现有技术薄膜LED芯片的上述缺陷,本发明人专门设计了一种倒装LED芯片及其制备方法、LED封装体及显示装置,本案由此产生。
发明内容
本发明的目的在于提供一种倒装LED芯片及其制备方法、LED封装体及显示装置,以避免键合对准的困难和发光面积的损失。
为了实现上述目的,本发明采用的技术方案如下:
一种倒装LED芯片,包括:
绝缘衬底,所述绝缘衬底设有若干个贯穿所述绝缘衬底且相互独立的金属填充孔;
发光结构,所述发光结构通过键合工艺倒装固定于所述绝缘衬底的表面;所述发光结构包括外延叠层、第一绝缘层、第一电极以及第二电极;
其中,所述外延叠层包括沿第一方向依次堆叠的第一型半导体层、有源区及第二型半导体层,且所述外延叠层的局部区域蚀刻至部分所述的第一型半导体层形成凹槽及台面;所述第一方向垂直于所述绝缘衬底,并由所述外延叠层指向所述绝缘衬底;
所述第一绝缘层覆盖所述外延叠层的表面,且具有裸露所述凹槽底面的第一通孔和裸露所述台面的第二通孔;所述第一电极层叠于所述第一通孔;所述第二电极层叠于所述第二通孔;
所述第一电极和第二电极通过键合工艺分别与所述绝缘衬底的金属填充 物键合形成一体。
优选地,还包括第一金属连接层和第二金属连接层;且所述外延叠层的局部区域蚀刻至部分所述的第一型半导体层形成台面及若干个凹槽,所述第一绝缘层具有分别与所述台面、凹槽对应的第二通孔和若干个第一通孔;所述第一金属连接层设置于各所述第一通孔后连接至所述第一电极,所述第二金属连接层设置于所述第二通孔后连接至所述第二电极。
优选地,在所述台面表面设有反射层,且所述第二金属连接层通过所述第二通孔层叠于所述反射层的表面。
优选地,所述反射层包括金属反射镜。
优选地,在所述反射层背离所述台面的一侧表面设有防扩散层,且所述第二金属连接层通过所述第二通孔层叠于所述防扩散层的表面。
优选地,在所述台面表面设有电流扩展层,且所述第二金属连接层通过所述第二通孔层叠于所述电流扩展层的表面。
优选地,在所述LED芯片的表面还设有第二绝缘层,且所述第二绝缘层具有分别裸露所述第一金属连接层、第二金属连接层的第三通孔和第四通孔;所述第一电极层叠于所述第三通孔与所述第一金属连接层形成接触;所述第二电极层叠于所述第四通孔与所述第二金属连接层形成接触。
优选地,在所述绝缘衬底的金属填充孔表面设有金属凸点,所述第一电极与所述第二电极通过键合工艺分别与所述金属凸点键合形成一体。
优选地,所述第一通孔和/或所述第二通孔具有斜侧壁。
优选地,所述第三通孔和/或所述第四通孔具有斜侧壁。
优选地,所述第一绝缘层和/或第二绝缘层包括绝缘反射层。
优选地,所述绝缘反射层包括分布布拉格反射。
本发明还提供了一种倒装LED芯片的制备方法,所述制备方法包括如下步骤:
步骤S01、提供一生长衬底;
步骤S02、层叠一外延叠层于所述生长衬底表面,所述外延叠层包括沿第一方向依次堆叠的第一型半导体层、有源区以及第二型半导体层,所述第一方向垂直于所述衬底,并由所述生长衬底指向所述外延叠层;
步骤S03、将所述外延叠层的局部区域蚀刻至部分所述的第一型半导体层形成台面及若干个凹槽;
步骤S04、在所述台面依次形成反射层、防扩散层;
步骤S05、生长第一绝缘层,所述第一绝缘层覆盖所述外延叠层,且具有裸露所述凹槽底面的第一通孔和裸露所述防扩散层的第二通孔;
步骤S06、制作相互远离设置的第一金属连接层和第二金属连接层,所述第一金属连接层设置于各所述第一通孔,所述第二金属连接层设置于所述第二通孔;
步骤S07、在LED芯片的表面生长第二绝缘层,且所述第二绝缘层具有分别裸露所述第一金属连接层、第二金属连接层的第三通孔和第四通孔;
步骤S08、制作第一电极和第二电极,所述第一电极层叠于所述第三通孔与所述第一金属连接层形成接触;所述第二电极层叠于所述第四通孔与所述第二金属连接层形成接触;
步骤S09、提供一绝缘衬底,所述绝缘衬底设有若干个贯穿所述绝缘衬底且相互独立的金属填充孔;
步骤S10、通过键合工艺,将所述第一电极和第二电极分别与所述绝缘衬底的金属填充物键合形成一体;
步骤S11、剥离所述生长衬底。
本发明还提供了一种倒装LED芯片的制备方法,所述制备方法包括如下步骤:
步骤A01、提供一生长衬底;
步骤A02、层叠一外延叠层于所述生长衬底表面,所述外延叠层包括沿第一方向依次堆叠的第一型半导体层、有源区以及第二型半导体层,所述第一方向垂直于所述衬底,并由所述生长衬底指向所述外延叠层;
步骤A03、将所述外延叠层的局部区域蚀刻至部分所述的第一型半导体层形成台面及若干个凹槽;
步骤A04、在所述台面形成电流扩展层;
步骤A05、生长第一绝缘层,所述第一绝缘层覆盖所述外延叠层,且具有裸露所述凹槽底面的第一通孔和裸露所述电流扩展层的第二通孔;
步骤A06、制作相互远离设置的第一金属连接层和第二金属连接层,所述第一金属连接层设置于各所述第一通孔,所述第二金属连接层设置于所述第二通孔;
步骤A07、在LED芯片的表面生长第二绝缘层,且所述第二绝缘层具有分别裸露所述第一金属连接层、第二金属连接层的第三通孔和第四通孔;
步骤A08、制作第一电极和第二电极,所述第一电极层叠于所述第三通孔与所述第一金属连接层形成接触;所述第二电极层叠于所述第四通孔与所述第二金属连接层形成接触;
步骤A09、提供一绝缘衬底,所述绝缘衬底设有若干个贯穿所述绝缘衬底且相互独立的金属填充孔;
步骤A10、通过键合工艺,将所述第一电极和第二电极分别与所述绝缘衬底的金属填充物键合形成一体;
步骤A11、剥离所述生长衬底。
本发明还提供了一种LED封装体,其包括:
封装本体;
上述任一项所述的倒装LED芯片,且所述封装本体与所述倒装LED芯片通过所述绝缘衬底的金属填充孔形成电连接。
本发明还提供了一种显示装置,包括上述的LED封装体。
经由上述的技术方案可知,本发明提供的倒装LED芯片及其制备方法、LED封装体及显示装置,包括绝缘衬底和通过键合工艺倒装固定于所述绝缘衬底表面的发光结构,其中,所述绝缘衬底设有若干个贯穿所述绝缘衬底且相互独立的金属填充孔,第一电极和第二电极通过键合工艺分别与所述绝缘衬底的金属填充物键合形成一体;也即通过金属填充孔型绝缘衬底的使用,可以实现第一电极和第二电极在键合过程中无需对准,减少了外延层的损失,藉以提升芯片亮度;同时,在封装过程中无需对电极进行打线,可以实现高可靠性无金线封装的LED显示装置。
同时,本发明提供的倒装LED芯片的制备方法,在实现上述倒装LED芯片的有益效果的同时,其工艺制作简单便捷,便于生产化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例1所提供的倒装LED芯片的结构示意图;
图1.1至图1.10为本发明实施例1所提供的倒装LED芯片的制备方法步骤所对应的结构示意图;
图2为本发明实施例2所提供的倒装LED芯片的结构示意图;
图2.1至图2.11为本发明实施例2所提供的倒装LED芯片的制备方法步骤所对应的结构示意图;
图3为本发明实施例3所提供的倒装LED芯片的结构示意图;
图3.1至图3.10为本发明实施例3所提供的倒装LED芯片的制备方法步骤所对应的结构示意图;
图4为本发明实施例4所提供的倒装LED芯片的结构示意图;
图4.1至图4.11为本发明实施例4所提供的倒装LED芯片的制备方法步骤所对应的结构示意图;
图中符号说明:1、生长衬底,2、第一型半导体层,3、有源区,4、第二型半导体层,4.1、凹槽,4.2、台面,5、反射层,5.1、电流阻挡层,6、防扩散层,6.1、电流扩展层,7、第一绝缘层,7.1、第一通孔,7.2、第二通孔,8、第一金属连接层,9、第二金属连接层,10、键合层,11、导电衬底,12、第一电极,13、第二电极,14、第二绝缘层,14.1、第三通孔,14.2、第四通孔,15、绝缘衬底,15.1、金属填充孔,16、金属凸点。
具体实施方式
为使本发明的内容更加清晰,下面结合附图对本发明的内容作进一步说明。本发明不局限于该具体实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,本发明实施例提供了一种倒装LED芯片,包括:
绝缘衬底15,绝缘衬底15设有若干个贯穿绝缘衬底15且相互独立的金属填充孔15.1;
发光结构,发光结构通过键合工艺倒装固定于绝缘衬底15的表面;发光结构包括外延叠层、第一绝缘层7、第一电极12以及第二电极13;
其中,外延叠层包括沿第一方向依次堆叠的第一型半导体层2、有源区3及第二型半导体层4,且外延叠层的局部区域蚀刻至部分的第一型半导体层2形成凹槽4.1及台面4.2;第一方向垂直于绝缘衬底15,并由外延叠层指向绝缘衬底15;
第一绝缘层7覆盖外延叠层的表面,且具有裸露凹槽4.1底面的第一通孔7.1和裸露台面4.2的第二通孔7.2;第一电极12层叠于第一通孔7.1;第二电极13层叠于第二通孔7.2;
第一电极12和第二电极13通过键合工艺分别与绝缘衬底15的金属填充物键合形成一体。
值得一提的是,外延叠层的第一型半导体层2、有源区3以及第二型半导 体层4的类型在本实施例的倒装LED芯片也可以不受限制,例如,第一型半导体层2可以是但不限于氮化镓层,相应地,第二型半导体层4可以是但不限于氮化镓层。
本发明实施例中,还包括第一金属连接层8和第二金属连接层9;且外延叠层的局部区域蚀刻至部分的第一型半导体层2形成台面4.2及若干个凹槽4.1,第一绝缘层7具有分别与台面4.2、凹槽4.1对应的第二通孔7.2和若干个第一通孔7.1;第一金属连接层8设置于各第一通孔7.1后连接至第一电极12,第二金属连接层9设置于第二通孔7.2后连接至第二电极13。
本发明实施例中,第一金属连接层8和第二金属连接层9包括Cr、Ni、Al、Ti、Pt、Au、Pd及Ag中的一种或多种金属叠层。
本发明实施例中,在台面4.2表面设有反射层5,且第二电极13通过第二通孔7.2层叠于反射层5的表面。值得一提的是,反射层5包括金属反射镜。
本发明实施例中,在反射层5背离台面4.2的一侧表面设有防扩散层6,且第二电极13通过第二通孔7.2层叠于防扩散层6的表面。
本发明实施例中,在绝缘衬底15的金属填充孔15.1表面设有金属凸点16,第一电极12与第二电极13通过键合工艺分别与金属凸点16键合形成一体。
本发明实施例中,第一通孔7.1和/或第二通孔7.2具有斜侧壁。
本发明实施例中,第一绝缘层7包括绝缘反射层。
本发明实施例中,绝缘反射层包括分布布拉格反射。
本发明实施例还提供了一种倒装LED芯片的制备方法,制备方法包括如下步骤:
步骤B01、如图1.1所示,提供一生长衬底1;
步骤B02、如图1.2所示,层叠一外延叠层于生长衬底1表面,外延叠层包括沿生长方向依次堆叠的第一型半导体层2、有源区3以及第二型半导体层4;
步骤B03、如图1.3所示,将外延叠层的局部区域蚀刻至部分的第一型半导体层2形成台面4.2及若干个凹槽4.1;
步骤B04、如图1.4所示,在台面4.2依次形成反射层5、防扩散层6;
步骤B05、如图1.5所示,生长第一绝缘层7,第一绝缘层7覆盖外延叠层,且具有裸露凹槽4.1底面的第一通孔7.1和裸露防扩散层6的第二通孔7.2;
步骤B06、如图1.6所示,制作第一金属连接层8和第二金属连接层9,第一金属连接层8设置于各第一通孔7.1,第二金属连接层9设置于第二通孔7.2;
步骤B07、如图1.7所示,制作第一电极12和第二电极13,第一电极12层叠于第一金属连接层8的表面;第二电极13层叠于第二金属连接层9的表面;
步骤B08、如图1.8所示,提供一绝缘衬底15,绝缘衬底15设有若干个贯穿绝缘衬底15且相互独立的金属填充孔15.1,进一步地,金属填充孔15.1表面设有金属凸点16;
步骤B09、如图1.9所示,通过键合工艺,将第一电极12和第二电极13分别与绝缘衬底15的金属填充物键合形成一体;
步骤B10、如图1.10所示,剥离生长衬底1。
本发明实施例还提供了一种LED封装体,其包括:
封装本体;
上述任一项的倒装LED芯片,且封装本体与倒装LED芯片通过绝缘衬底15的金属填充孔15.1形成电连接。
本发明实施例还提供了一种显示装置,包括上述的LED封装体。
经由上述的技术方案可知,本发明提供的倒装LED芯片及其制备方法、LED封装体及显示装置,包括绝缘衬底15和通过键合工艺倒装固定于绝缘衬底15表面的发光结构,其中,绝缘衬底15设有若干个贯穿绝缘衬底15且相互独立的金属填充孔15.1,第一电极12和第二电极13通过键合工艺分别与绝缘衬底15的金属填充物键合形成一体;也即通过金属填充孔15.1型绝缘衬底15的使用,可以实现第一电极12和第二电极13在键合过程中无需对准,减少了外延层的损失,藉以提升芯片亮度;同时,在封装过程中无需对电极进行打线,可以实现高可靠性无金线封装的LED显示装置。
同时,本发明提供的倒装LED芯片的制备方法,在实现上述倒装LED芯片的有益效果的同时,其工艺制作简单便捷,便于生产化。
实施例2
如图2所示,本发明实施例提供了一种倒装LED芯片,包括:
绝缘衬底15,绝缘衬底15设有若干个贯穿绝缘衬底15且相互独立的金属填充孔15.1;
发光结构,发光结构通过键合工艺倒装固定于绝缘衬底15的表面;发光结构包括外延叠层、第一绝缘层7、第一电极12以及第二电极13;
其中,外延叠层包括沿第一方向依次堆叠的第一型半导体层2、有源区3 及第二型半导体层4,且外延叠层的局部区域蚀刻至部分的第一型半导体层2形成凹槽4.1及台面4.2;第一方向垂直于绝缘衬底15,并由外延叠层指向绝缘衬底15;
第一绝缘层7覆盖外延叠层的表面,且具有裸露凹槽4.1底面的第一通孔7.1和裸露台面4.2的第二通孔7.2;第一电极12层叠于第一通孔7.1;第二电极13层叠于第二通孔7.2;
第一电极12和第二电极13通过键合工艺分别与绝缘衬底15的金属填充物键合形成一体。
值得一提的是,外延叠层的第一型半导体层2、有源区3以及第二型半导体层4的类型在本实施例的倒装LED芯片也可以不受限制,例如,第一型半导体层2可以是但不限于氮化镓层,相应地,第二型半导体层4可以是但不限于氮化镓层。
本发明实施例中,还包括第一金属连接层8和第二金属连接层9;且外延叠层的局部区域蚀刻至部分的第一型半导体层2形成台面4.2及若干个凹槽4.1,第一绝缘层7具有分别与台面4.2、凹槽4.1对应的第二通孔7.2和若干个第一通孔7.1;第一金属连接层8设置于各第一通孔7.1后连接至第一电极12,第二金属连接层9设置于第二通孔7.2后连接至第二电极13。
本发明实施例中,第一金属连接层8和第二金属连接层9包括Cr、Ni、Al、Ti、Pt、Au、Pd及Ag中的一种或多种金属叠层。
本发明实施例中,在台面4.2表面设有反射层5,且第二金属连接层9通过第二通孔7.2层叠于反射层5的表面。值得一提的是,反射层5包括金属反射镜。
本发明实施例中,在反射层5背离台面4.2的一侧表面设有防扩散层6,且第二金属连接层9通过第二通孔7.2层叠于防扩散层6的表面。
本发明实施例中,在LED芯片的表面还设有第二绝缘层14,且第二绝缘层14具有分别裸露第一金属连接层8、第二金属连接层9的第三通孔14.1和第四通孔14.2;第一电极12层叠于第三通孔14.1与第一金属连接层8形成接触;第二电极13层叠于第四通孔14.2与第二金属连接层9形成接触。
本发明实施例中,在绝缘衬底15的金属填充孔15.1表面设有金属凸点16,第一电极12与第二电极13通过键合工艺分别与金属凸点16键合形成一体。
本发明实施例中,第一通孔7.1和/或第二通孔7.2具有斜侧壁。
本发明实施例中,第三通孔14.1和/或第四通孔14.2具有斜侧壁。
本发明实施例中,第一绝缘层7和/或第二绝缘层14包括绝缘反射层。
本发明实施例中,绝缘反射层包括分布布拉格反射。
本发明实施例还提供了一种倒装LED芯片的制备方法,制备方法包括如下步骤:
步骤S01、如图2.1所示,提供一生长衬底1;
步骤S02、如图2.2所示,层叠一外延叠层于生长衬底1表面,外延叠层包括沿生长方向依次堆叠的第一型半导体层2、有源区3以及第二型半导体层4;
步骤S03、如图2.3所示,将外延叠层的局部区域蚀刻至部分的第一型半导体层2形成台面4.2及若干个凹槽4.1;
步骤S04、如图2.4所示,在台面4.2依次形成反射层5、防扩散层6;
步骤S05、如图2.5所示,生长第一绝缘层7,第一绝缘层7覆盖外延叠层,且具有裸露凹槽4.1底面的第一通孔7.1和裸露防扩散层6的第二通孔7.2;
步骤S06、如图2.6所示,制作第一金属连接层8和第二金属连接层9,第一金属连接层8设置于各第一通孔7.1,第二金属连接层9设置于第二通孔7.2;
步骤S07、如图2.7所示,在LED芯片的表面生长第二绝缘层14,且第二绝缘层14具有分别裸露第一金属连接层8、第二金属连接层9的第三通孔14.1和第四通孔14.2;
步骤S08、如图2.8所示,制作第一电极12和第二电极13,第一电极12层叠于第三通孔14.1与第一金属连接层8形成接触;第二电极13层叠于第四通孔14.2与第二金属连接层9形成接触;
步骤S09、如图2.9所示,提供一绝缘衬底15,绝缘衬底15设有若干个贯穿绝缘衬底15且相互独立的金属填充孔15.1,进一步地,金属填充孔15.1表面设有金属凸点16;
步骤S10、如图2.10所示,通过键合工艺,将第一电极12和第二电极13分别与绝缘衬底15的金属填充物键合形成一体;
步骤S11、如图2.11所示,剥离生长衬底1。
本发明实施例还提供了一种LED封装体,其包括:
封装本体;
上述任一项的倒装LED芯片,且封装本体与倒装LED芯片通过绝缘衬底15的金属填充孔15.1形成电连接。
本发明实施例还提供了一种显示装置,包括上述的LED封装体。
经由上述的技术方案可知,本发明提供的倒装LED芯片及其制备方法、LED封装体及显示装置,包括绝缘衬底15和通过键合工艺倒装固定于绝缘衬底15表面的发光结构,其中,绝缘衬底15设有若干个贯穿绝缘衬底15且相互独立的金属填充孔15.1,第一电极12和第二电极13通过键合工艺分别与绝缘衬底15的金属填充物键合形成一体;也即通过金属填充孔15.1型绝缘衬底15的使用,可以实现第一电极12和第二电极13在键合过程中无需对准,减少了外延层的损失,藉以提升芯片亮度;同时,在封装过程中无需对电极进行打线,可以实现高可靠性无金线封装的LED显示装置。
同时,本发明提供的倒装LED芯片的制备方法,在实现上述倒装LED芯片的有益效果的同时,其工艺制作简单便捷,便于生产化。
实施例3
如图3所示,本发明实施例提供了一种倒装LED芯片,包括:
绝缘衬底15,绝缘衬底15设有若干个贯穿绝缘衬底15且相互独立的金属填充孔15.1;
发光结构,发光结构通过键合工艺倒装固定于绝缘衬底15的表面;发光结构包括外延叠层、第一绝缘层7、第一电极12以及第二电极13;
其中,外延叠层包括沿第一方向依次堆叠的第一型半导体层2、有源区3及第二型半导体层4,且外延叠层的局部区域蚀刻至部分的第一型半导体层2形成凹槽4.1及台面4.2;第一方向垂直于绝缘衬底15,并由外延叠层指向绝缘衬底15;
第一绝缘层7覆盖外延叠层的表面,且具有裸露凹槽4.1底面的第一通孔 7.1和裸露台面4.2的第二通孔7.2;第一电极12层叠于第一通孔7.1;第二电极13层叠于第二通孔7.2;
第一电极12和第二电极13通过键合工艺分别与绝缘衬底15的金属填充物键合形成一体。
值得一提的是,外延叠层的第一型半导体层2、有源区3以及第二型半导体层4的类型在本实施例的倒装LED芯片也可以不受限制,例如,第一型半导体层2可以是但不限于氮化镓层,相应地,第二型半导体层4可以是但不限于氮化镓层。
本发明实施例中,在台面4.2表面设有电流扩展层6.1,且第二电极13通过第二通孔7.2层叠于电流扩展层6.1的表面。
在本发明的其他实施例中,在电流扩展层6.1与台面4.2之间还设有电流阻挡层5.1,且电流阻挡层5.1设置于第二电极13在台面4.2的投影范围内,电流扩展层6.1覆盖电流阻挡层5.1。
本发明实施例中,在绝缘衬底15的金属填充孔15.1表面设有金属凸点16,第一电极12与第二电极13通过键合工艺分别与金属凸点16键合形成一体。
本发明实施例中,第一通孔7.1和/或第二通孔7.2具有斜侧壁。
本发明实施例中,第一绝缘层7包括绝缘反射层。
本发明实施例中,绝缘反射层包括分布布拉格反射。
本发明实施例还提供了一种倒装LED芯片的制备方法,制备方法包括如下步骤:
步骤C01、如图3.1所示,提供一生长衬底1;
步骤C02、如图3.2所示,层叠一外延叠层于生长衬底1表面,外延叠层包括沿生长方向依次堆叠的第一型半导体层2、有源区3以及第二型半导体层4;
步骤C03、如图3.3所示,将外延叠层的局部区域蚀刻至部分的第一型半导体层2形成台面4.2及若干个凹槽4.1;
步骤C04、如图3.4所示,在台面4.2形成依次形成电流阻挡层5.1及电流扩展层6.1,且电流扩展层6.1覆盖电流阻挡层5.1;
步骤C05、如图3.5所示,生长第一绝缘层7,第一绝缘层7覆盖外延叠层,且具有裸露凹槽4.1底面的第一通孔7.1和裸露电流扩展层6.1的第二通孔7.2,进一步地,第二通孔7.2位于电流阻挡层5.1的上方;
步骤C06、如图3.6所示,制作第一金属连接层8和第二金属连接层9,第一金属连接层8设置于各第一通孔7.1,第二金属连接层9设置于第二通孔7.2;
步骤C07、如图3.7所示,制作第一电极12和第二电极13,第一电极12层叠于第一通孔7.1;第二电极13层叠于第二通孔7.2,且电流阻挡层5.1设置于第二电极13在台面4.2的投影范围内;
步骤C08、如图3.8所示,提供一绝缘衬底15,绝缘衬底15设有若干个贯穿绝缘衬底15且相互独立的金属填充孔15.1,进一步地,金属填充孔15.1表面设有金属凸点16;
步骤C09、如图3.9所示,通过键合工艺,将第一电极12和第二电极13分别与绝缘衬底15的金属填充物键合形成一体;
步骤C10、如图3.10所示,剥离生长衬底1。
本发明实施例还提供了一种LED封装体,其包括:
封装本体;
上述任一项的倒装LED芯片,且封装本体与倒装LED芯片通过绝缘衬底15的金属填充孔15.1形成电连接。
本发明实施例还提供了一种显示装置,包括上述的LED封装体。
经由上述的技术方案可知,本发明提供的倒装LED芯片及其制备方法、LED封装体及显示装置,包括绝缘衬底15和通过键合工艺倒装固定于绝缘衬底15表面的发光结构,其中,绝缘衬底15设有若干个贯穿绝缘衬底15且相互独立的金属填充孔15.1,第一电极12和第二电极13通过键合工艺分别与绝缘衬底15的金属填充物键合形成一体;也即通过金属填充孔15.1型绝缘衬底15的使用,可以实现第一电极12和第二电极13在键合过程中无需对准,减少了外延层的损失,藉以提升芯片亮度;同时,在封装过程中无需对电极进行打线,可以实现高可靠性无金线封装的LED显示装置。
同时,本发明提供的倒装LED芯片的制备方法,在实现上述倒装LED芯片的有益效果的同时,其工艺制作简单便捷,便于生产化。
实施例4
如图4所示,本发明实施例提供了一种倒装LED芯片,包括:
绝缘衬底15,绝缘衬底15设有若干个贯穿绝缘衬底15且相互独立的金属填充孔15.1;
发光结构,发光结构通过键合工艺倒装固定于绝缘衬底15的表面;发光结构包括外延叠层、第一绝缘层7、第一电极12以及第二电极13;
其中,外延叠层包括沿第一方向依次堆叠的第一型半导体层2、有源区3 及第二型半导体层4,且外延叠层的局部区域蚀刻至部分的第一型半导体层2形成凹槽4.1及台面4.2;第一方向垂直于绝缘衬底15,并由外延叠层指向绝缘衬底15;
第一绝缘层7覆盖外延叠层的表面,且具有裸露凹槽4.1底面的第一通孔7.1和裸露台面4.2的第二通孔7.2;第一电极12层叠于第一通孔7.1;第二电极13层叠于第二通孔7.2;
第一电极12和第二电极13通过键合工艺分别与绝缘衬底15的金属填充物键合形成一体。
值得一提的是,外延叠层的第一型半导体层2、有源区3以及第二型半导体层4的类型在本实施例的倒装LED芯片也可以不受限制,例如,第一型半导体层2可以是但不限于氮化镓层,相应地,第二型半导体层4可以是但不限于氮化镓层。
本发明实施例中,还包括第一金属连接层8和第二金属连接层9;且外延叠层的局部区域蚀刻至部分的第一型半导体层2形成台面4.2及若干个凹槽4.1,第一绝缘层7具有分别与台面4.2、凹槽4.1对应的第二通孔7.2和若干个第一通孔7.1;第一金属连接层8覆盖各第一通孔7.1后连接至第一电极12,第二金属连接层9填充第二通孔7.2后连接至第二电极13。
本发明实施例中,第一金属连接层8和第二金属连接层9包括Cr、Ni、Al、Ti、Pt、Au、Pd及Ag中的一种或多种金属叠层。
本发明实施例中,在台面4.2表面设有电流扩展层6.1,且第二金属连接层9通过第二通孔7.2层叠于电流扩展层6.1的表面。
本发明实施例中,在LED芯片的表面还设有第二绝缘层14,且第二绝缘 层14具有分别裸露第一金属连接层8、第二金属连接层9的第三通孔14.1和第四通孔14.2;第一电极12层叠于第三通孔14.1与第一金属连接层8形成接触;第二电极13层叠于第四通孔14.2与第二金属连接层9形成接触。
本发明实施例中,在绝缘衬底15的金属填充孔15.1表面设有金属凸点16,第一电极12与第二电极13通过键合工艺分别与金属凸点16键合形成一体。
本发明实施例中,第一通孔7.1和/或第二通孔7.2具有斜侧壁。
本发明实施例中,第三通孔14.1和/或第四通孔14.2具有斜侧壁。
本发明实施例中,第一绝缘层7和/或第二绝缘层14包括绝缘反射层。
本发明实施例中,绝缘反射层包括分布布拉格反射。
本发明实施例还提供了一种倒装LED芯片的制备方法,制备方法包括如下步骤:
步骤A01、如图4.1所示,提供一生长衬底1;
步骤A02、如图4.2所示,层叠一外延叠层于生长衬底1表面,外延叠层包括沿生长方向依次堆叠的第一型半导体层2、有源区3以及第二型半导体层4;
步骤A03、如图4.3所示,将外延叠层的局部区域蚀刻至部分的第一型半导体层2形成台面4.2及若干个凹槽4.1;
步骤A04、如图4.4所示,在台面4.2形成依次形成电流阻挡层5.1及电流扩展层6.1,且电流扩展层6.1覆盖电流阻挡层5.1;
步骤A05、如图4.5所示,生长第一绝缘层7,第一绝缘层7覆盖外延叠层,且具有裸露凹槽4.1底面的第一通孔7.1和裸露电流扩展层6.1的第二通 孔7.2,进一步地,第二通孔7.2位于电流阻挡层5.1的上方;
步骤A06、如图4.6所示,制作第一金属连接层8和第二金属连接层9,第一金属连接层8覆盖各第一通孔7.1,第二金属连接层9填充第二通孔7.2;
步骤A07、如图4.7所示,在LED芯片的表面生长第二绝缘层14,且第二绝缘层14具有分别裸露第一金属连接层8、第二金属连接层9的第三通孔14.1和第四通孔14.2;
步骤A08、如图4.8所示,制作第一电极12和第二电极13,第一电极12层叠于第三通孔14.1与第一金属连接层8形成接触;第二电极13层叠于第四通孔14.2与第二金属连接层9形成接触,且电流阻挡层5.1设置于第二电极13在台面4.2的投影范围内;
步骤A09、如图4.9所示,提供一绝缘衬底15,绝缘衬底15设有若干个贯穿绝缘衬底15且相互独立的金属填充孔15.1,进一步地,金属填充孔15.1表面设有金属凸点16;
步骤A10、如图4.10所示,通过键合工艺,将第一电极12和第二电极13分别与绝缘衬底15的金属填充物键合形成一体;
步骤A11、如图4.11所示,剥离生长衬底1。
本发明实施例还提供了一种LED封装体,其包括:
封装本体;
上述任一项的倒装LED芯片,且封装本体与倒装LED芯片通过绝缘衬底15的金属填充孔15.1形成电连接。
本发明实施例还提供了一种显示装置,包括上述的LED封装体。
经由上述的技术方案可知,本发明提供的倒装LED芯片及其制备方法、LED 封装体及显示装置,包括绝缘衬底15和通过键合工艺倒装固定于绝缘衬底15表面的发光结构,其中,绝缘衬底15设有若干个贯穿绝缘衬底15且相互独立的金属填充孔15.1,第一电极12和第二电极13通过键合工艺分别与绝缘衬底15的金属填充物键合形成一体;也即通过金属填充孔15.1型绝缘衬底15的使用,可以实现第一电极12和第二电极13在键合过程中无需对准,减少了外延层的损失,藉以提升芯片亮度;同时,在封装过程中无需对电极进行打线,可以实现高可靠性无金线封装的LED显示装置。
同时,本发明提供的倒装LED芯片的制备方法,在实现上述倒装LED芯片的有益效果的同时,其工艺制作简单便捷,便于生产化。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括上述要素的物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在 其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种倒装LED芯片,其特征在于,包括:
    绝缘衬底,所述绝缘衬底设有若干个贯穿所述绝缘衬底且相互独立的金属填充孔;
    发光结构,所述发光结构通过键合工艺倒装固定于所述绝缘衬底的表面;所述发光结构包括外延叠层、第一绝缘层、第一电极以及第二电极;
    其中,所述外延叠层包括沿第一方向依次堆叠的第一型半导体层、有源区及第二型半导体层,且所述外延叠层的局部区域蚀刻至部分所述的第一型半导体层形成凹槽及台面;所述第一方向垂直于所述绝缘衬底,并由所述外延叠层指向所述绝缘衬底;
    所述第一绝缘层覆盖所述外延叠层的表面,且具有裸露所述凹槽底面的第一通孔和裸露所述台面的第二通孔;所述第一电极层叠于所述第一通孔;所述第二电极层叠于所述第二通孔;
    所述第一电极和第二电极通过键合工艺分别与所述绝缘衬底的金属填充物键合形成一体。
  2. 根据权利要求1所述的倒装LED芯片,其特征在于,还包括第一金属连接层和第二金属连接层;且所述外延叠层的局部区域蚀刻至部分所述的第一型半导体层形成台面及若干个凹槽,所述第一绝缘层具有分别与所述台面、凹槽对应的第二通孔和若干个第一通孔;所述第一金属连接层设置于各所述第一通孔后连接至所述第一电极,所述第二金属连接层设置于所述第二通孔后连接至所述第二电极。
  3. 根据权利要求2所述的倒装LED芯片,其特征在于,在所述台面表面设有反射层,且所述第二金属连接层通过所述第二通孔层叠于所述反射层的表面。
  4. 根据权利要求3所述的倒装LED芯片,其特征在于,在所述反射层背离所述台面的一侧表面设有防扩散层,且所述第二金属连接层通过所述第二通孔层叠于所述防扩散层的表面。
  5. 根据权利要求2所述的倒装LED芯片,其特征在于,在所述台面表面设有电流扩展层,且所述第二金属连接层通过所述第二通孔层叠于所述电流扩展层的表面。
  6. 根据权利要求3或5所述的倒装LED芯片,其特征在于,在所述LED芯片的表面还设有第二绝缘层,且所述第二绝缘层具有分别裸露所述第一金属连接层、第二金属连接层的第三通孔和第四通孔;所述第一电极层叠于所述第三通孔与所述第一金属连接层形成接触;所述第二电极层叠于所述第四通孔与所述第二金属连接层形成接触。
  7. 根据权利要求1所述的倒装LED芯片,其特征在于,在所述绝缘衬底的金属填充孔表面设有金属凸点,所述第一电极与所述第二电极通过键合工艺分别与所述金属凸点键合形成一体。
  8. 根据权利要求1所述的倒装LED芯片,其特征在于,所述第一通孔和/或所述第二通孔具有斜侧壁。
  9. 根据权利要求6所述的倒装LED芯片,其特征在于,所述第三通孔和/或所述第四通孔具有斜侧壁。
  10. 根据权利要求6所述的倒装LED芯片,其特征在于,所述第一绝缘层 和/或第二绝缘层包括绝缘反射层。
  11. 根据权利要求10所述的倒装LED芯片,其特征在于,所述绝缘反射层包括分布布拉格反射。
  12. 一种倒装LED芯片的制备方法,其特征在于,所述制备方法包括如下步骤:
    步骤S01、提供一生长衬底;
    步骤S02、层叠一外延叠层于所述生长衬底表面,所述外延叠层包括沿第一方向依次堆叠的第一型半导体层、有源区以及第二型半导体层,所述第一方向垂直于所述衬底,并由所述生长衬底指向所述外延叠层;
    步骤S03、将所述外延叠层的局部区域蚀刻至部分所述的第一型半导体层形成台面及若干个凹槽;
    步骤S04、在所述台面依次形成反射层、防扩散层;
    步骤S05、生长第一绝缘层,所述第一绝缘层覆盖所述外延叠层,且具有裸露所述凹槽底面的第一通孔和裸露所述防扩散层的第二通孔;
    步骤S06、制作相互远离设置的第一金属连接层和第二金属连接层,所述第一金属连接层设置于各所述第一通孔,所述第二金属连接层设置于所述第二通孔;
    步骤S07、在LED芯片的表面生长第二绝缘层,且所述第二绝缘层具有分别裸露所述第一金属连接层、第二金属连接层的第三通孔和第四通孔;
    步骤S08、制作第一电极和第二电极,所述第一电极层叠于所述第三通孔与所述第一金属连接层形成接触;所述第二电极层叠于所述第四通孔与所述第二金属连接层形成接触;
    步骤S09、提供一绝缘衬底,所述绝缘衬底设有若干个贯穿所述绝缘衬底且相互独立的金属填充孔;
    步骤S10、通过键合工艺,将所述第一电极和第二电极分别与所述绝缘衬底的金属填充物键合形成一体;
    步骤S11、剥离所述生长衬底。
  13. 一种倒装LED芯片的制备方法,其特征在于,所述制备方法包括如下步骤:
    步骤A01、提供一生长衬底;
    步骤A02、层叠一外延叠层于所述生长衬底表面,所述外延叠层包括沿第一方向依次堆叠的第一型半导体层、有源区以及第二型半导体层,所述第一方向垂直于所述衬底,并由所述生长衬底指向所述外延叠层;
    步骤A03、将所述外延叠层的局部区域蚀刻至部分所述的第一型半导体层形成台面及若干个凹槽;
    步骤A04、在所述台面形成电流扩展层;
    步骤A05、生长第一绝缘层,所述第一绝缘层覆盖所述外延叠层,且具有裸露所述凹槽底面的第一通孔和裸露所述电流扩展层的第二通孔;
    步骤A06、制作相互远离设置的第一金属连接层和第二金属连接层,所述第一金属连接层设置于各所述第一通孔,所述第二金属连接层设置于所述第二通孔;
    步骤A07、在LED芯片的表面生长第二绝缘层,且所述第二绝缘层具有分别裸露所述第一金属连接层、第二金属连接层的第三通孔和第四通孔;
    步骤A08、制作第一电极和第二电极,所述第一电极层叠于所述第三通孔 与所述第一金属连接层形成接触;所述第二电极层叠于所述第四通孔与所述第二金属连接层形成接触;
    步骤A09、提供一绝缘衬底,所述绝缘衬底设有若干个贯穿所述绝缘衬底且相互独立的金属填充孔;
    步骤A10、通过键合工艺,将所述第一电极和第二电极分别与所述绝缘衬底的金属填充物键合形成一体;
    步骤A11、剥离所述生长衬底。
  14. 一种LED封装体,其特征在于,包括:
    封装本体;
    权利要求1至11任一项所述的倒装LED芯片,且所述封装本体与所述倒装LED芯片通过所述绝缘衬底的金属填充孔形成电连接。
  15. 一种显示装置,其特征在于,包括根据权利要求14所述的LED封装体。
PCT/CN2022/123211 2022-02-17 2022-09-30 倒装led芯片及其制备方法、led封装体及显示装置 WO2023155444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210144087.4A CN114512592A (zh) 2022-02-17 2022-02-17 倒装led芯片及其制备方法、led封装体及显示装置
CN202210144087.4 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023155444A1 true WO2023155444A1 (zh) 2023-08-24

Family

ID=81552283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123211 WO2023155444A1 (zh) 2022-02-17 2022-09-30 倒装led芯片及其制备方法、led封装体及显示装置

Country Status (2)

Country Link
CN (1) CN114512592A (zh)
WO (1) WO2023155444A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116885084A (zh) * 2023-09-07 2023-10-13 元旭半导体科技(无锡)有限公司 一种自带封装基板的led芯片及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512592A (zh) * 2022-02-17 2022-05-17 厦门乾照光电股份有限公司 倒装led芯片及其制备方法、led封装体及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110012164A1 (en) * 2009-07-20 2011-01-20 Yu-Sik Kim Light-emitting element and method of fabricating the same
CN110335925A (zh) * 2019-07-22 2019-10-15 广东省半导体产业技术研究院 一种芯片结构及其制作方法
CN110797331A (zh) * 2018-08-02 2020-02-14 普因特工程有限公司 微发光二极管构造体及其制造方法
CN111640830A (zh) * 2020-06-11 2020-09-08 厦门乾照光电股份有限公司 一种倒装led芯片及其制备方法
CN113764456A (zh) * 2021-09-09 2021-12-07 杭州士兰明芯科技有限公司 Led芯片光源及其制备方法
CN114512592A (zh) * 2022-02-17 2022-05-17 厦门乾照光电股份有限公司 倒装led芯片及其制备方法、led封装体及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040188696A1 (en) * 2003-03-28 2004-09-30 Gelcore, Llc LED power package
CN1702880A (zh) * 2005-06-27 2005-11-30 金芃 半导体发光二极管(led)通孔倒扣焊芯片及生产工艺
CN105428471A (zh) * 2015-11-12 2016-03-23 晶能光电(江西)有限公司 薄膜倒装led芯片及其制备方法以及白光led芯片
CN107910407A (zh) * 2017-11-10 2018-04-13 江苏新广联半导体有限公司 一种大功率倒装led芯片的制作方法
CN109037408A (zh) * 2018-08-15 2018-12-18 厦门乾照光电股份有限公司 倒装发光芯片及其制造方法
CN111261766A (zh) * 2020-01-21 2020-06-09 厦门乾照光电股份有限公司 一种倒装薄膜led芯片结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110012164A1 (en) * 2009-07-20 2011-01-20 Yu-Sik Kim Light-emitting element and method of fabricating the same
CN110797331A (zh) * 2018-08-02 2020-02-14 普因特工程有限公司 微发光二极管构造体及其制造方法
CN110335925A (zh) * 2019-07-22 2019-10-15 广东省半导体产业技术研究院 一种芯片结构及其制作方法
CN111640830A (zh) * 2020-06-11 2020-09-08 厦门乾照光电股份有限公司 一种倒装led芯片及其制备方法
CN113764456A (zh) * 2021-09-09 2021-12-07 杭州士兰明芯科技有限公司 Led芯片光源及其制备方法
CN114512592A (zh) * 2022-02-17 2022-05-17 厦门乾照光电股份有限公司 倒装led芯片及其制备方法、led封装体及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116885084A (zh) * 2023-09-07 2023-10-13 元旭半导体科技(无锡)有限公司 一种自带封装基板的led芯片及其制备方法
CN116885084B (zh) * 2023-09-07 2023-12-15 元旭半导体科技(无锡)有限公司 一种自带封装基板的led芯片及其制备方法

Also Published As

Publication number Publication date
CN114512592A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2023155444A1 (zh) 倒装led芯片及其制备方法、led封装体及显示装置
US8288787B2 (en) Thin film light emitting diode
US8026527B2 (en) LED structure
TWI244228B (en) Light emitting device and manufacture method thereof
US7829911B2 (en) Light emitting diode
US8847267B2 (en) Light emitting diode with metal piles and multi-passivation layers and its manufacturing method
US10505077B2 (en) Light emitting element including metal bulk
JP2014146848A (ja) 発光素子
US20150295151A1 (en) High performance light emitting diode with vias
JP2010034608A (ja) 発光素子
JP2011171743A (ja) 発光素子及び発光素子パッケージ
WO2009089671A1 (fr) Led, structure de boîtier comportant la led et procédé de fabrication de la led
KR20160149827A (ko) 복수의 파장변환부를 포함하는 발광 소자 및 그 제조 방법
US9362449B2 (en) High efficiency light emitting diode and method of fabricating the same
WO2020155530A1 (zh) 发光装置
WO2014105403A1 (en) High performance light emitting diode
KR20220004002A (ko) 발광 소자
EP3951895A1 (en) Semiconductor light-emitting device
JPH10209496A (ja) 半導体発光素子
JP3752339B2 (ja) 半導体発光素子
JP2004297095A (ja) 化合物半導体発光素子の製造方法
US9082892B2 (en) GaN Based LED having reduced thickness and method for making the same
KR20110135103A (ko) 반도체 발광 소자 및 그 제조 방법
JP2004343138A (ja) 化合物半導体発光素子の製造方法
JP3917619B2 (ja) 半導体発光素子の製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926749

Country of ref document: EP

Kind code of ref document: A1