WO2023155413A1 - 一种动力电池组装置、加热控制系统及电动汽车 - Google Patents

一种动力电池组装置、加热控制系统及电动汽车 Download PDF

Info

Publication number
WO2023155413A1
WO2023155413A1 PCT/CN2022/115792 CN2022115792W WO2023155413A1 WO 2023155413 A1 WO2023155413 A1 WO 2023155413A1 CN 2022115792 W CN2022115792 W CN 2022115792W WO 2023155413 A1 WO2023155413 A1 WO 2023155413A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch module
power battery
period
battery pack
switch
Prior art date
Application number
PCT/CN2022/115792
Other languages
English (en)
French (fr)
Inventor
黄炜华
石超杰
方振
毋超强
Original Assignee
华为电动技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为电动技术有限公司 filed Critical 华为电动技术有限公司
Publication of WO2023155413A1 publication Critical patent/WO2023155413A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of power battery heating, in particular to a power battery pack device, a heating control system and an electric vehicle.
  • Lithium battery is a new type of rechargeable battery with high voltage and high energy density. It has the advantages of light weight, large energy storage, no pollution, no memory effect and long service life. It has become the most common power battery pack for electric vehicles. A battery material used.
  • the application provides a power battery pack device, a heating control system and an electric vehicle, which are used to form a loop between two power battery packs, and use the high-frequency pulse current generated in the loop to heat the power battery pack to It solves the technical problem of high circuit cost and complexity that requires an additional heating device to heat the power battery pack.
  • the present application provides a power battery pack device, including a first battery unit and a second battery unit, the first battery unit includes a first power battery pack, a first switch module and a first energy storage module, and the first battery unit includes a first power battery pack, a first switch module and a first energy storage module.
  • the first DC terminal of a switch module is connected to the anode of the first power battery pack
  • the second DC terminal of the first switch module is connected to the cathode of the first power battery pack
  • the AC terminal of the first switch module is connected to the first storage battery.
  • the first end of the energy module, the second module includes a second power battery pack, a second switch module and a second energy storage module, the first DC end of the second switch module is connected to the anode of the second power battery pack , the second DC terminal of the second switch module is connected to the cathode of the second power battery pack, the AC terminal of the second switch module is connected to the first terminal of the second energy storage module, and the second terminal of the first energy storage module
  • the end is connected to the second end of the second energy storage module, the anode of the first power battery group is connected to the anode of the second power battery group, or the cathode of the first power battery group is connected to the cathode of the second power battery group.
  • the first switch module includes a first three-phase rectifier bridge
  • the first energy storage module includes a first three-phase winding
  • the first ends of the three windings in the first three-phase winding are connected to the first three
  • the three AC ends of the phase rectification bridge and the second ends of the three windings in the first three-phase winding are connected to form the second end of the first energy storage module.
  • the second switch module includes a second three-phase rectifier bridge
  • the second energy storage module includes a second three-phase winding
  • the first ends of the three windings in the second three-phase winding are connected to the second three-phase
  • the three AC ends of the phase rectification bridge and the second ends of the three windings in the second three-phase winding are connected to form the second end of the second energy storage module.
  • the first three-phase winding and the second three-phase winding meet one of the following conditions: the first three-phase winding and the second three-phase winding are two three-phase motors; the first three-phase winding and the second three-phase winding The second three-phase winding belongs to a six-phase motor; or, the first three-phase winding and the second three-phase winding belong to a motor with two sets of independent three-phase windings.
  • the aforementioned motor may be an inherent motor in the electric vehicle. In this way, by using the inherent motor in the electric vehicle as the energy storage module in the power battery pack device, the inherent components in the electric vehicle can be used to realize the function of heating the power battery pack, thereby avoiding additional components and helping to save circuit costs and space.
  • the rectifier tubes in the first three-phase rectifier bridge and/or the second three-phase rectifier bridge are switch modules with anti-parallel diodes. In this way, even if the semiconductor device in the switch module is turned off, the freewheeling current of the switch module can be realized by using the diode in antiparallel connection with the semiconductor device.
  • the first switch module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module and a sixth switch module, and the first switch module and the second switch module
  • the switch modules are connected in series; the third switch module and the fourth switch module are connected in series; the fifth switch module and the sixth switch module are connected in series; One end of the non-series node of the switch module and one end of the non-series node of the fifth switch module relative to the sixth switch module are respectively connected to the anode of the first power battery pack; One end of the non-series node of the fourth switch module relative to the third switch module and one end of the non-series node of the sixth switch module relative to the fifth switch module are respectively connected to the cathode of the first power battery pack, and the first switch module and the second switch module
  • the series node of the third switch module and the fourth switch module, the series node of the fifth switch module and the sixth switch module are connected to the first ends of the three windings in
  • the second switch module includes the seventh switch module, the eighth switch module, the ninth switch module, the tenth switch module, the eleventh switch module and the twelfth switch module, the seventh switch module and the eighth switch module In series connection, one end of the non-serial node of the seventh switch module relative to the eighth switch module, one end of the non-serial node of the ninth switch module relative to the tenth switch module, and a non-serial node of the eleventh switch module relative to the twelfth switch module One end is respectively connected to the anode of the second power battery pack, one end of the eighth switch module is connected to the non-series node of the seventh switch module, one end of the tenth switch module is connected to the non-series node of the ninth switch module, and the twelfth switch module is connected to the One end of the non-series node of the eleventh switch module is respectively connected to the cathode of the second power battery pack, and the series node of the seventh switch module and
  • the switch module as a three-phase full-wave rectifier bridge
  • the six switch modules on the three-phase full-wave rectifier bridge can be used to accurately control whether each winding connected is working or not, which is convenient for realization Energy storage function based on one winding or multiple windings.
  • the embodiment of the present application provides a heating control system, including a control device and a power battery pack device as described in any one of the above-mentioned first aspects, and the control device is used to: control the first switch module and The second switch module controls the alternate discharge of the first power battery pack and the second power battery pack, the electricity released by the first power battery pack is used to charge the second power battery pack, and the electricity released by the second power battery pack is the first power battery pack group charging.
  • a high-frequency pulse current can be generated in the circuit, so as to effectively and quickly heat the power battery pack in a low temperature environment.
  • the first energy storage module and the second energy storage module include motors
  • the control device includes a main controller, a battery manager, and a motor controller
  • the battery manager communicates with the main controller
  • the first power The battery pack is connected to the second power battery pack
  • the motor controller is respectively connected to the main controller, the first switch module, the second switch module, the first energy storage module and the second energy storage module.
  • the battery manager is used to obtain the state of charge and current temperature of each power battery pack
  • the motor controller is used to obtain the working state of each energy storage module
  • the main controller is also used to determine the state of charge of each power battery pack The sum of the power of each power battery pack is enough to start the electric vehicle.
  • each power battery pack According to the current temperature of each power battery pack, it is determined that each power battery pack is in a low temperature state. According to the working state of each energy storage module, it is determined that each energy storage module is not After working, generate a control signal and send it to the motor controller, so that the motor controller can control the first power by controlling the on and off of each switch module in the first switch module and the second switch module according to the control signal
  • the battery pack and the second power battery pack are alternately discharged.
  • the control device can only perform heating control when it is determined that the state of the motor and the battery meets the preset heating conditions, and does not perform heating control when the preset heating conditions are not met, thus avoiding meaningless heating operations , saving the processing resources of the control device.
  • the control device can use the temperature difference between the ambient temperature and the target temperature, The preset heating time length, and the corresponding relationship between the preset temperature difference, heating time length and high-frequency pulse current determine the target high-frequency pulse current, and when the target high-frequency pulse current is less than the first current threshold, by controlling the first switch module and the second switch module to control the first power battery pack and the second power battery pack to alternately discharge through one of the corresponding three-phase windings, when the target high-frequency pulse current is not less than the first current threshold and less than the second current When the threshold is reached, by controlling the first switch module and the second switch module, the first power battery pack and the second power battery pack are controlled to discharge alternately through the two windings of the corresponding three-phase windings.
  • the first switch module and the second switch module When the target high-frequency pulse current When it is not less than the second current threshold, by controlling the first switch module and the second switch module, the first power battery group and the second power battery group are controlled to discharge alternately through three windings of the corresponding three-phase windings.
  • the required target high-frequency pulse current select as few windings as possible among the windings that can provide the target high-frequency current to achieve heating, which can ensure that the power battery pack will be heated within the preset heating time.
  • the temperature is heated to the target temperature, and the frequency of use of the winding can be reduced as much as possible to prolong the service life of the motor.
  • the control device when the temperature difference and the preset heating duration correspond to multiple high-frequency pulse currents, the control device starts from multiple high-frequency pulse currents. Select the target high-frequency pulse current from the high-frequency pulse current, and then obtain the first maximum current of the first three-phase winding at the frequency corresponding to the target high-frequency pulse current, and the maximum current of the second three-phase winding at the frequency corresponding to the target high-frequency pulse current.
  • the second maximum current, and the third maximum current corresponding to the connection node of the first three-phase winding and the second three-phase winding, after that, if the target high-frequency pulse current is greater than the first maximum current, the second maximum current and the third maximum current The minimum value in , then reselect the target high-frequency pulse current from multiple high-frequency pulse currents.
  • the target high-frequency pulse current when the power battery pack device cannot carry the target high-frequency pulse current, it can ensure that the target high-frequency pulse current that the power battery pack device can carry is used to complete the heating, which in turn helps It is used to protect the safety of each device in the power battery pack device.
  • an alternate cycle includes a first period and a second period, the first period is located before the second period, the cathode of the first power battery group is connected to the cathode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the control device is specifically used to: In the first sub-period of a period, one or more of the first switch module, the third switch module and the fifth switch module are controlled to be turned on, and other switch modules except the turned-on switch module are controlled to be turned off; In the second sub-period of the first period, control the first to twelfth switch modules to turn off; in the first sub-period of the second period, control the second switch module, the fourth switch module and the sixth One or more of the switch modules, and one or more of the seventh switch module, the ninth switch module, and the eleventh switch module are turned on, and the other switch modules except the turned-on switch module are controlled to be turned off; In the second sub-period of the second period, one or more of the seventh switch module, the ninth switch module and the eleventh switch module
  • an alternate cycle includes a first period and a second period, the first period is located after the second period, the cathode of the first power battery group is connected to the cathode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the control device is specifically used to: In the first sub-period of the second period, one or more of the second switch module, the fourth switch module and the sixth switch module, and one or more of the seventh switch module, the ninth switch module and the eleventh switch module are controlled.
  • One or more are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the second sub-period of the second period, the seventh switch module, the ninth switch module and the eleventh switch module are controlled One or more of them are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the first sub-period of the first period, the first switch module, the third switch module and the fifth switch module are controlled. One or more of the switch modules are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the second sub-period of the first period, the first switch module to the twelfth switch module are controlled to be turned off. broken.
  • an alternate cycle includes a first period and a second period, the first period is located before the second period, the cathode of the first power battery group is connected to the cathode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the control device is specifically used to: In the first sub-period of a period, control one or more of the first switch module, the third switch module and the fifth switch module, and one or more of the eighth switch module, the tenth switch module and the twelfth switch module One or more are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the second sub-period of the first period, control the first switch module, the third switch module and the fifth switch module One or more of the switches are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the first sub-period of the second period, the seventh switch module, the ninth switch module and the eleventh switch module are controlled.
  • One or more of the switch modules are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the second sub-period of the second period, the first switch module to the twelfth switch module are controlled to be turned off. broken.
  • each switch module is controlled according to the above-mentioned control logic, so that Electric energy flows from the first power battery pack with low voltage to the second power battery pack with high voltage in the previous period of a cycle, that is, the power battery pack device works in Boost mode, and the electric energy flows from the high voltage power battery pack in the latter period of a cycle.
  • the second power battery pack flows to the first power battery pack with low voltage, that is, the power battery pack device works in Buck mode. It can be seen that this design can realize heating control in Boost mode first and then Buck mode.
  • an alternate cycle includes a first period and a second period, the first period is located after the second period, the cathode of the first power battery group is connected to the cathode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the control device is specifically used to: In the first sub-period of the second period, one or more of the seventh switch module, the ninth switch module and the eleventh switch module are controlled to be turned on, and other switch modules except the turned-on switch module are controlled to be turned off ; In the second sub-period of the second period, control the first switch module to the twelfth switch module to turn off; in the first sub-period of the first period, control the first switch module, the third switch module and the twelfth switch module One or more of the five switch modules, and one or more of the eighth switch module, the tenth switch module and the twelfth switch module are turned on, and the other switch modules except the turned-on switch module are controlled to be turned off ; In the second sub-period of the first period, one or more of the seventh switch module, the ninth switch module and the eleventh switch module are controlled to be turned on, and other switch modules except the turned-on switch module are controlled to be turned off ; In the second sub-period of
  • each switch module is controlled according to the above-mentioned control logic, so that Electric energy flows from the second power battery pack with high voltage to the first power battery pack with low voltage in the previous period of a cycle, that is, the power battery pack device works in Buck mode, and the electric energy flows from the low voltage to the first power battery pack in the latter period of a cycle.
  • the first power battery pack flows to the second power battery pack with high voltage, that is, the power battery pack device works in Boost mode. It can be seen that this design can realize heating in Buck mode first and then Boost mode.
  • an alternate cycle includes a first period and a second period, the first period is located before the second period, the anode of the first power battery group is connected to the anode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the control device is specifically used to: In the first sub-period of a period, one or more of the second switch module, the fourth switch module and the sixth switch module are controlled to be turned on, and other switch modules except the turned-on switch module are controlled to be turned off; In the second sub-period of the first period, control the first switch module to the twelfth switch module to turn off; in the first sub-period of the second period, control the first switch module, the third switch module and the fifth switch module One or more of the switch modules, and one or more of the eighth switch module, the tenth switch module, and the twelfth switch module are turned on, and the other switch modules except the turned-on switch module are controlled to be turned off; In the second sub-period of the second period, one or more of the eighth switch module,
  • an alternate cycle includes a first period and a second period, the first period is located after the second period, the anode of the first power battery group is connected to the anode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the control device is specifically used to: In the first sub-period of the second period, one or more of the first switch module, the third switch module and the fifth switch module, and one or more of the eighth switch module, the tenth switch module and the twelfth switch module are controlled.
  • One or more are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the second sub-period of the second period, the eighth switch module, the tenth switch module and the twelfth switch module are controlled One or more of them are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the first sub-period of the first period, the second switch module, the fourth switch module and the sixth switch module are controlled. One or more of the switch modules are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the second sub-period of the first period, the first switch module to the twelfth switch module are controlled to be turned off. broken.
  • an alternate cycle includes a first period and a second period, the first period is located before the second period, the anode of the first power battery group is connected to the anode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the control device is specifically used to: In the first sub-period of a period, control one or more of the second switch module, the fourth switch module and the sixth switch module, and one or more of the seventh switch module, the ninth switch module and the eleventh switch module One or more are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the second sub-period of the first period, control the second switch module, the fourth switch module and the sixth switch module One or more of the switches are turned on, and other switch modules are controlled to be turned off except for the turned-on switch module; in the first sub-period of the second period, the eighth switch module, the tenth switch module and the twelfth switch module are controlled One or more of the switch modules are turned on, and other switch modules except the turned-on switch module are controlled
  • an alternate cycle includes a first period and a second period, the first period is located after the second period, the anode of the first power battery group is connected to the anode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the control device is specifically used to: In the first sub-period of the second period, one or more of the eighth switch module, the tenth switch module and the twelfth switch module are controlled to be turned on, and other switch modules except the turned-on switch module are controlled to be turned off ; In the second sub-period of the second period, control the first switch module to the twelfth switch module to turn off; in the first sub-period of the first period, control the second switch module, the fourth switch module and the twelfth switch module One or more of the six switch modules, and one or more of the seventh switch module, the ninth switch module and the eleventh switch module are turned on, and the other switch modules except the turned-on switch module are controlled to be turned off ; In the second sub-period of the first period, one or
  • the present application provides a heating control method, which is suitable for the control device, and the control device is connected to the power battery pack device according to any one of the above-mentioned first aspects, the method includes: by controlling the first switch module and the second switch module to control the alternate discharge of the first power battery pack and the second power battery pack. Battery pack charging.
  • the method before controlling the first switch module and the second switch module, the method further includes: obtaining the state of charge and current temperature of each power battery pack, and the working condition of each energy storage module According to the state of charge of each power battery group, it is determined that the sum of the electric quantities of each power battery group is sufficient to start the electric vehicle. According to the current temperature of each power battery group, it is determined that each power battery group is in a low temperature state. According to each energy storage The working status of the modules determines that each energy storage module is not working.
  • the first energy storage module includes the first three-phase winding and the second energy storage module includes the second three-phase winding
  • control the alternate discharge of the first power battery group and the second power battery group including: according to the temperature difference between the ambient temperature and the target temperature, the preset heating time, and the corresponding relationship between the preset temperature difference, heating time and high-frequency pulse current , to determine the target high-frequency pulse current; when the target high-frequency pulse current is less than the first current threshold, by controlling the first switch module and the second switch module, the first power battery pack and the second power battery pack are controlled to pass through the corresponding One of the three-phase windings is alternately discharged; when the target high-frequency pulse current is not less than the first current threshold and is less than the second current threshold, the first power battery is controlled by controlling the first switch module and the second switch module group and the second power battery group are alternately discharged through two windings in the corresponding three-phase winding; when the target high-
  • the method further includes: first starting with Select the target high-frequency pulse current from multiple high-frequency pulse currents, and then obtain the first maximum current of the first three-phase winding at the frequency corresponding to the target high-frequency pulse current, and the first maximum current of the second three-phase winding at the frequency corresponding to the target high-frequency pulse current.
  • the second maximum current at the frequency, and the third maximum current corresponding to the connection node of the first three-phase winding and the second three-phase winding after that, if the target high-frequency pulse current is less than the first maximum current, the second maximum current and the first If the minimum value among the three maximum currents is selected, the target high-frequency pulse current is reselected from multiple high-frequency pulse currents.
  • an alternate cycle includes a first period and a second period, the first period is located before the second period, the cathode of the first power battery group is connected to the cathode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the ninth switch module, the tenth switch module, the eleventh switch module, and the twelfth switch module if the voltage of the first power battery pack is greater than the voltage of the second power battery pack, then control the first switch module and the second power battery pack
  • Two switch modules including: in the first sub-period of the first period, one or more of the first switch module, the third switch module and the fifth switch module are controlled to be turned on, and the switches that are not turned on are controlled Other switch modules other than the switch module are turned off; in the second sub-period of the first period, the first switch module to the twelfth switch module are controlled to be turned off; in the first sub-period of the second period, the second switch is controlled module, one or more of the fourth switch module and the sixth switch module, and one or more of the seventh switch module, the ninth switch module and the eleventh switch module are turned on, and control the switch except the conduction Other switch modules other than the switch module are turned off; in the second sub-period of the second period
  • an alternate cycle includes a first period and a second period, the first period is located after the second period, the cathode of the first power battery group is connected to the cathode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the ninth switch module, the tenth switch module, the eleventh switch module, and the twelfth switch module if the voltage of the first power battery pack is greater than the voltage of the second power battery pack, then control the first switch module and the second power battery pack
  • Two switch modules including: in the first sub-period of the second period, control one or more of the second switch module, the fourth switch module and the sixth switch module, and the seventh switch module and the ninth switch module and one or more of the eleventh switch modules are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the second sub-period of the second period, control the seventh switch module, the One or more of the ninth switch module and the eleventh switch module are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the first sub-period of the first period, the first switch is controlled One or more of the switching module, the third switching module and the fifth switching module are turned on, and other switching modules except the turned-on switching module are controlled
  • an alternate cycle includes a first period and a second period, the first period is located before the second period, the cathode of the first power battery group is connected to the cathode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the ninth switch module, the tenth switch module, the eleventh switch module, and the twelfth switch module if the voltage of the second power battery pack is greater than the voltage of the first power battery pack, the first switch module and the second power battery pack are controlled.
  • Two switch modules including: in the first sub-period of the first period, control one or more of the first switch module, the third switch module and the fifth switch module, and the eighth switch module, the tenth switch One or more of the switch modules and the twelfth switch module are turned on, and other switch modules other than the turned-on switch module are controlled to be turned off; in the second sub-period of the first period, the first switch module, the second switch module are controlled One or more of the three switch modules and the fifth switch module are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the first sub-period of the second period, the seventh switch module is controlled One or more of the ninth switch module and the eleventh switch module are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the second sub-period of the second period, the first The switch modules to the twelfth switch modules are turned off.
  • an alternate cycle may include a first period and a second period, the first period is located after the second period, the cathode of the first power battery group is connected to the cathode of the second power battery group, and the first
  • the switch module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, In the case of the ninth switch module, the tenth switch module, the eleventh switch module and the twelfth switch module, if the voltage of the second power battery pack is greater than the voltage of the first power battery pack, control the first switch module and
  • the second switch module includes: in the first sub-period of the second period, controlling one or more of the seventh switch module, the ninth switch module and the eleventh switch module to conduct, and controlling the de-conduction
  • the other switch modules other than the switch module are turned off; in the second sub-period of the second period, the first switch
  • an alternate cycle includes a first period and a second period, the first period is located before the second period, the anode of the first power battery group is connected to the anode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the ninth switch module, the tenth switch module, the eleventh switch module, and the twelfth switch module if the voltage of the first power battery pack is greater than the voltage of the second power battery pack, then control the first switch module and the second power battery pack
  • Two switch modules including: in the first sub-period of the first period, one or more of the second switch module, the fourth switch module and the sixth switch module are controlled to be turned on, and the switches that are not turned on are controlled Other switch modules other than the switch module are turned off; in the second sub-period of the first period, the first switch module to the twelfth switch module are controlled to be turned off; in the first sub-period of the second period, the first switch is controlled One or more of the module, the third switch module and the fifth switch module, and one or more of the eighth switch module, the tenth switch module and the twelfth switch module conduct, and control the switch except conduction Other switch modules other than the switch module are turned off; in the second sub-period of
  • an alternate cycle includes a first period and a second period, the first period is located after the second period, the anode of the first power battery group is connected to the anode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module, and the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the ninth switch module if the voltage of the first power battery pack is greater than the voltage of the second power battery pack, then control the first switch module and the second power battery pack
  • Two switch modules including: in the first sub-period of the second period, control one or more of the first switch module, the third switch module and the fifth switch module, and the eighth switch module, the tenth switch One or more of the switching module and the twelfth switching module are turned on, and other switching modules are controlled to be turned off except for the switching module that is turned on; in the second sub-period of the second period, the eighth switching module, the twelfth switching module are controlled One or more of the tenth switch module and the twelfth switch module are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the first sub-period of the first period, the second switch is controlled One or more of the switching module, the fourth switching module
  • an alternate cycle includes a first period and a second period, the first period is located before the second period, the anode of the first power battery group is connected to the anode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module
  • the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the ninth switch module, the tenth switch module, the eleventh switch module, and the twelfth switch module if the voltage of the second power battery pack is greater than the voltage of the first power battery pack, the first switch module and the second power battery pack are controlled.
  • Two switch modules including: in the first sub-period of the first period, control one or more of the second switch module, the fourth switch module and the sixth switch module, as well as the seventh switch module and the ninth switch Module and one or more of the eleventh switch modules are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the second sub-period of the first period, control the second switch module, the second One or more of the four switch modules and the sixth switch module are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the first sub-period of the second period, the eighth switch module is controlled One or more of the tenth switch module and the twelfth switch module are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the second sub-period of the second period, the first The switch modules to the twelfth switch modules are turned off.
  • an alternate cycle includes a first period and a second period, the first period is located after the second period, the anode of the first power battery group is connected to the anode of the second power battery group, and the first switch
  • the module includes a first switch module, a second switch module, a third switch module, a fourth switch module, a fifth switch module, and a sixth switch module
  • the second switch module includes a seventh switch module, an eighth switch module, and a sixth switch module.
  • the ninth switch module, the tenth switch module, the eleventh switch module, and the twelfth switch module if the voltage of the second power battery pack is greater than the voltage of the first power battery pack, the first switch module and the second power battery pack are controlled.
  • Two switch modules including: in the first sub-period of the second period, control one or more of the eighth switch module, the tenth switch module and the twelfth switch module to conduct, and control the The other switch modules other than the switch module are turned off; in the second sub-period of the second period, the first switch module to the twelfth switch module are controlled to be turned off; in the first sub-period of the first period, the second One or more of the switch module, the fourth switch module and the sixth switch module, and one or more of the seventh switch module, the ninth switch module and the eleventh switch module are turned on, and the The other switch modules other than the switch module are turned off; in the second sub-period of the first period, one or more of the second switch module, the fourth switch module and the sixth switch module are controlled to be turned on, and other than the conduction Switching modules other than the switching module are turned off.
  • the present application provides a heating control device, which includes a processor, the processor is connected to a memory, and the processor is used to execute a computer program stored in the memory, so that the heating control device performs any one of the above third aspects. Design the method described.
  • the present application provides a chip, including a processor and a communication interface, and the processor can read instructions through the communication interface to execute the method corresponding to any one of the designs in the third aspect above.
  • the present application provides a computer-readable storage medium, the computer-readable medium stores program codes, and when the program codes run on the computer, the computer executes the corresponding design in any one of the third aspects above. method.
  • the present application provides a computer program product.
  • the computer program product is run on a processor, the method corresponding to any one of the designs in the third aspect above is realized.
  • the present application provides an electric vehicle, including the heating control system as designed in any one of the above-mentioned second aspects.
  • FIG. 1 exemplarily shows a schematic diagram of an application scenario of an electric vehicle provided by an embodiment of the present application
  • FIG. 2 exemplarily shows a schematic structural diagram of a possible heating control system provided by the industry
  • Fig. 3 exemplarily shows a schematic structural diagram of a power battery pack device provided in Embodiment 1 of the present application;
  • FIG. 4 exemplarily shows a schematic structural diagram of a heating control system provided in Embodiment 1 of the present application
  • Fig. 5 exemplarily shows a schematic flow chart of a heating control method provided in Embodiment 1 of the present application
  • FIG. 6 exemplarily shows a schematic structural diagram of a heating control system provided in Embodiment 2 of the present application
  • FIG. 7 exemplarily shows a schematic circuit diagram of a heating control circuit provided by Embodiment 2 of the present application through three windings;
  • Fig. 8 exemplarily shows a schematic circuit diagram of a heating control through two windings provided in Embodiment 2 of the present application;
  • FIG. 9 exemplarily shows a schematic circuit diagram of a heating control circuit provided by Embodiment 2 of the present application through one winding;
  • Fig. 10 exemplarily shows another schematic circuit diagram of heating control through three windings provided in Embodiment 2 of the present application;
  • Fig. 11 exemplarily shows another schematic circuit diagram of heating control through two windings provided in Embodiment 2 of the present application;
  • Fig. 12 exemplarily shows another schematic circuit diagram of a heating control circuit provided by Embodiment 2 of the present application.
  • Fig. 13 exemplarily shows a schematic structural diagram of a heating control system provided in Embodiment 3 of the present application
  • Fig. 14 exemplarily shows a schematic circuit diagram of heating control through three windings provided in Embodiment 3 of the present application;
  • Fig. 15 exemplarily shows a schematic circuit diagram of a heating control through two windings provided in Embodiment 3 of the present application;
  • FIG. 16 exemplarily shows a schematic circuit diagram of a heating control circuit provided by Embodiment 3 of the present application through one winding;
  • Fig. 17 exemplarily shows another schematic circuit diagram of heating control through three windings provided in Embodiment 3 of the present application;
  • Fig. 18 exemplarily shows another schematic circuit diagram of heating control through two windings provided by Embodiment 3 of the present application;
  • FIG. 19 exemplarily shows another schematic diagram of a heating control circuit provided by Embodiment 3 of the present application through one winding.
  • the terminal device can be a smart device using a power battery pack, including but not limited to: smart home devices, such as TVs, sweeping robots, smart desk lamps, audio systems, smart lighting systems, electrical control systems, home background music, home theater systems , intercom system, video surveillance, etc.; intelligent transportation equipment, such as electric vehicles, electric ships, electric drones, electric trains, electric trucks, electric trucks, etc.; intelligent manufacturing equipment, such as robots, industrial equipment, intelligent logistics, intelligent factories wait.
  • smart home devices such as TVs, sweeping robots, smart desk lamps, audio systems, smart lighting systems, electrical control systems, home background music, home theater systems , intercom system, video surveillance, etc.
  • intelligent transportation equipment such as electric vehicles, electric ships, electric drones, electric trains, electric trucks, electric trucks, etc.
  • intelligent manufacturing equipment such as robots, industrial equipment, intelligent logistics, intelligent factories wait.
  • the terminal device may also be a computer device using a power battery pack, such as a desktop computer, a personal computer, a server, and the like.
  • the terminal device can also be a portable electronic device using a power battery pack, such as a mobile phone, a tablet computer, a handheld computer, an earphone, an audio system, a wearable device (such as a smart watch), a vehicle device, a virtual reality device, an augmented reality device, etc. equipment etc.
  • portable electronic devices include, but are not limited to Or portable electronic devices with other operating systems.
  • the aforementioned portable electronic device may also be, for example, a laptop computer (Laptop) with a touch-sensitive surface (such as a touch panel).
  • the solution disclosed in this application can be applied to an electric vehicle, which is also called a new energy vehicle, and is a vehicle driven by electric energy.
  • Fig. 1 exemplarily shows a schematic diagram of an application scenario of an electric vehicle provided by an embodiment of the present application.
  • the electric vehicle 10 mainly includes a main controller 111, a power battery pack 112, and a motor control unit (motor control unit, MCU). 113, motor 114 and wheel 12.
  • the power battery pack 112 is a large-capacity, high-power storage battery, specifically a storage battery with lithium ions as the battery material, referred to as a lithium battery for short.
  • the master controller 111 can also be called a vehicle controller.
  • the power battery pack 112 can supply power to the motor 114 through the motor controller 113, and then the motor 114 converts the electric energy provided by the power battery pack 112 into mechanical energy, thereby driving the wheels 12 rotations to realize vehicle travel.
  • the best working temperature of lithium batteries is about 20°C.
  • the activity decreases, resulting in a decrease in the number of lithium ions moving inside the battery, and a loss of the capacity of the lithium battery; (2) at low temperatures, the electrolyte in the lithium battery solidifies, resulting in a change in the diffusion and movement of charged ions in the positive and negative materials of the battery. Poor, the electric energy transmission speed is reduced, and the discharge speed of the lithium battery is reduced; (3) at low temperature, the lattice of the negative electrode material of the lithium battery cell shrinks, the insertion of lithium ions is difficult, and the charging speed of the lithium battery decreases. Therefore, when designing an electric vehicle, how to effectively and quickly heat the power battery pack in a low temperature environment is necessary and important for the electric vehicle.
  • the industry usually installs a heating device around the power battery pack.
  • the heating device is first driven to heat the power battery pack to the optimum operating temperature, and then the power battery pack is driven to discharge.
  • this method requires an additional heating device in the electric vehicle, which not only increases the cost and occupied space of the electric vehicle, but also increases the design difficulty of the electric vehicle, which is not conducive to the installation layout of the electric vehicle.
  • the high-frequency pulse current is a current that generates a strong magnetic beam with instantaneous polarity changes in the circuit by frequently changing the direction of the current flow.
  • the strong magnetic beam will penetrate the entire power battery. group, a large eddy current is generated in the direction opposite to the high-frequency pulse current inside the power battery pack, and then Joule heat is generated under the action of the resistance of the power battery pack, so that the temperature of the power battery pack itself rises rapidly, thus effectively and quickly Completely complete the heating of the power battery pack.
  • FIG. 2 shows a schematic diagram of a possible heating control system provided by the industry.
  • the heating control system 11 includes a main controller 111, a motor controller 113, a power The battery pack 112, the motor switch module 115 connected in parallel to both ends of the power battery pack 112, and the motor 114 connected to the AC end of the motor switch module 115, the motor 114 is specifically a three-phase motor.
  • the motor switch module 115 may specifically be a three-phase rectifier bridge, the first DC terminal b1 of the three-phase rectifier bridge is connected to the anode of the power battery pack 112 (that is, the terminal indicated by "+” in the figure), and the three-phase rectifier The second DC terminal b2 of the bridge is connected to the cathode of the power battery pack 112 (that is, the terminal indicated by "-” in the figure), and the first AC terminal a1 of the three-phase rectifier bridge is connected to the first winding U of the three-phase motor 114.
  • the second AC end a2 of the three-phase rectifier bridge is connected to the first end of the winding V in the three-phase motor 114
  • the third AC end a3 of the three - phase rectifier bridge is connected to the first end of the winding W in the three-phase motor 114
  • the second end of the winding U, the second end of the winding V and the second end of the winding W of the three-phase motor 114 are connected.
  • the main controller 111 can turn on or off the switch modules K 1 ⁇ K 6 in the motor switch module 115 through the motor controller 113, and the power battery pack
  • the anode of 112, the motor switch module 115, the winding U, the winding V and the winding W in the three-phase motor 114, and the cathode of the power battery pack 112 form a loop, and make the electric energy output by the anode of the power battery pack 112 in one
  • the transmission is in one direction in the circuit
  • the second half of a cycle the transmission is in the opposite direction in the circuit.
  • the main controller 111 controls the switch module K 1 , the switch module K 3 and the switch module K 6 to be turned on, and controls other switch modules to be turned off, so that the power battery pack 112
  • the electric energy released by the anode of the can be provided to the winding U through the turned-on switch module K 1 , and to the winding V through the turned-on switch module K 3 , and then, after the second ends of the winding U and the winding V are combined into one circuit, Flow back to the cathode of the power battery pack 112 through the winding W and the switched-on switch module K 6 ; on the contrary, in the second half of a cycle, the main controller 111 controls the switch module K 2 , the switch module K 4 and the switch module K 5 turn on, and control other switch modules to turn off, so that the electric energy released by the anode of the power battery pack 112 can be provided to the winding W through the turned-on switch module K5 , and then, the
  • the current direction in the loop will change, so that a high-frequency pulse current can be formed in the loop, and the high-frequency pulse current passes through the power battery pack 112 itself
  • the internal resistance generates heat, so as to realize the heating of the power battery pack 112 .
  • the power battery pack can be heated by high-frequency pulse current
  • at least one of the three windings of the three-phase motor 114 has a different current direction from the other windings.
  • the magnetic field in the three-phase motor 114 is asymmetric, so that the q-axis current (also called direct-axis current or vertical-axis current, refers to the generated on the axis coincident with the magnetic pole axis in the motor) will inevitably be generated in the three-phase motor 114 current), and the q-axis current will generate torque on the motor shaft of the three-phase motor 114, which is not conducive to maintaining the life of the three-phase motor 114, and even directly burns the three-phase motor 114 in severe cases.
  • the q-axis current also called direct-axis current or vertical-axis current, refers to the generated on the axis coincident with the magnetic pole axis in the motor
  • the embodiment of the present application provides a power battery pack device, which is used to form a circuit between two power battery packs, and use the alternate charge and discharge between the two power battery packs to generate high-frequency pulses in the loop Current, to use high-frequency pulse current to heat the power battery pack, but also to ensure that the current direction of each winding of the motor is consistent, try to avoid generating q-axis current, and effectively maintain the life of the motor.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • And/or describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the following one (s) or more (s) or similar expressions refer to any combination of these items, including any combination of a single item (s) or a plurality of items (s).
  • one item (unit) or multiple items (units) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single, It can also be multiple.
  • ordinal numerals such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the priority or importance of multiple objects.
  • first power battery group and the second power battery group are only used to distinguish different power battery groups, and do not represent the difference in priority or importance of these power battery groups.
  • FIG. 3 exemplarily shows a schematic structural diagram of a power battery pack device provided in Embodiment 1 of the present application.
  • the power battery pack device 30 includes a first battery unit 310 and a second battery unit 320.
  • the first battery unit 310 includes a first power battery pack 311, a first switch module 312, and a first energy storage module 313.
  • the first DC terminal (a 11 ) of the first switch module 312 is connected to the first power
  • the anode of the battery pack 311 (the electrode indicated by "+” in the figure)
  • the second DC terminal (a 12 ) of the first switch module 312 is connected to the cathode of the first power battery pack 311 (the electrode indicated by "-” in the figure) electrode
  • the AC terminal (a 13 ) of the first switch module 312 is connected to the first terminal (b 11 ) of the first energy storage module 313 .
  • the second battery unit 320 includes a second power battery pack 321, a second switch module 322 and a second energy storage module 323, and the first DC terminal (a 21 ) of the second switch module 322 is connected to the second The anode of the power battery pack 321, the second DC terminal (a 22 ) of the second switch module 322 is connected to the cathode of the second power battery pack 321, and the AC terminal (a 23 ) of the second switch module 322 is connected to the second energy storage The first end (b 21 ) of the module 323 .
  • the second end (b 12 ) of the first energy storage module 313 is connected to the second end (b 22 ) of the second energy storage module 323, and the first power battery pack 311 and the second power battery pack 321 can be as follows:
  • the anodes shown in (A) in FIG. 3 are connected (also called a common anode), or alternatively, the cathodes shown in FIG. 3 (B) can be connected (also called a common cathode).
  • connection between any two of the above-mentioned components can be realized in various ways, for example, in one example, the second end b 12 of the first energy storage module 313 and the second
  • the connection of the two terminals b 22 can be realized by cables or relays, the connection of the anode of the first power battery group 311 and the anode of the second power battery group 321, or the connection of the cathode of the first power battery group 311 and the second power battery group 321
  • the connection of the cathode can be made via a cable. Since cables and relays are relatively common and low-cost devices, connecting related devices in two battery cells through cables and relays can reduce the cost of circuit design while constructing a circuit between two battery cells. Of course, if the cost is not considered, the connection of these ports may also be implemented by other components or a combination of components capable of realizing the electrical connection function, which is not specifically limited in this embodiment of the present application.
  • the first switch module 312 and the second switch module 322 may be any components or a combination of components capable of realizing on and off functions.
  • the first switch module 312 and/or the second switch module 322 may include a three-phase rectifier bridge, and the rectifier tubes in the three-phase rectifier bridge may be switch modules with antiparallel diodes, for example, with antiparallel Diode insulated gate bipolar transistor (insulated gate bipolar transistor, IGBT), silicon carbide (silicon carbide, SIC) or other types of switch tubes, etc.
  • a three-phase rectifier bridge as a switch module, not only the switching function of the switch module can be realized, but also the stability of the current waveform and the power of the battery unit can be improved through the unique rectification and filtering function of the three-phase rectifier bridge. utilization rate.
  • the first energy storage module 313 and the second energy storage module 323 may be any component or combination of components capable of realizing the energy storage function.
  • the first energy storage module 313 and/or the second energy storage module 323 may include a three-phase winding, and the three-phase winding may specifically be a three-phase winding in a motor, such as the electric vehicle shown in FIG. 1 The three-phase winding in the motor 114 of 10.
  • both the first energy storage module 313 and the second energy storage module 323 include three-phase windings
  • the two three-phase windings may respectively belong to a three-phase motor, or may both belong to a six-phase motor, or It belongs to a motor with two three-phase windings, and the neutral point (corresponding to the second end of the energy storage module) of the two three-phase windings in the motor is connected.
  • the inherent motor in the electric vehicle as the energy storage module in the power battery pack device, the inherent devices in the electric vehicle can be used to realize the power battery pack device while avoiding additional devices, which helps to save circuits cost and space.
  • each winding of the energy storage module can have a consistent current direction, thereby avoiding the generation of q-axis current in the energy storage module as far as possible, and effectively maintaining the service life of the energy storage module.
  • FIG. 4 shows a schematic structural diagram of a heating control system provided by an embodiment of the present application.
  • the heating control system includes a control device 40 is connected to the power battery pack device 30, the cathode of the first power battery pack 311 in the power battery pack device 30 is connected to the cathode of the second power battery pack 321, and the control device 40 is connected to the first switch module 312 in the power battery pack device 30 and the second switch module 322 .
  • the control device 40 can control the on and off of the switch modules in the first switch module 312 and the second switch module 322 to realize heating of the first power battery pack 311 and the second power battery pack.
  • Alternate discharge between groups 321 When the first power battery group 311 is discharged, the discharged electric energy is transmitted to the second power battery group 321 along the V1 direction (or V2 direction) in the illustrated circuit to realize the first power battery group 321.
  • the charging of the second power battery pack 321; when the second power battery pack 321 is discharged, the electric energy discharged is reversely transmitted to the first power battery pack 311 along the V 2 direction (or V 1 direction) in this circuit, to realize Charging of the first power battery pack 311.
  • Fig. 5 exemplarily shows a schematic flowchart of a heating control method provided by the embodiment of the present application, The method is applicable to the control device 40 shown in FIG. 4, and as shown in FIG. 5, the method includes:
  • step 501 the control device determines that the power battery pack is to be heated, and acquires battery parameters and motor parameters.
  • the control device 40 may include a main controller 410, a battery manager 420, and a motor controller 430.
  • the battery manager 420 and the motor controller 430 are respectively connected to the main controller 410, and the battery
  • the manager 420 is also connected to the first power battery pack 311 and the second power battery pack 321
  • the motor controller 430 is also connected to the first switch module 312, the second switch module 322, the first energy storage module 313 and the second power storage module.
  • the driver may first send an instruction to the main controller 410 to heat the power battery pack through the vehicle LCD panel or the keys on the vehicle key. After receiving the instruction, the main controller 410 determines to heat the power battery pack, and then may send the first acquisition instruction to the battery manager 420 and the second acquisition instruction to the motor controller 430 .
  • the battery manager 420 acquires the battery parameters of each power battery pack according to the first acquisition instruction, and sends the acquired battery parameters to the main controller 410, wherein, for example, the battery parameters of any power battery pack may include but not limited to: The state of charge (state of charge, SOC) of the power battery pack (also known as the remaining power, used to indicate the ratio of the remaining capacity of the power battery pack to the capacity of the fully charged state after a period of use or long-term storage) and the power battery pack The current temperature of the group, etc.
  • SOC state of charge
  • the remaining power also known as the remaining power, used to indicate the ratio of the remaining capacity of the power battery pack to the capacity of the fully charged state after a period of use or long-term storage
  • the power battery pack The current temperature of the group, etc.
  • the motor controller 430 acquires the motor parameters of each energy storage module according to the second acquisition instruction, and sends the acquired motor parameters to the main controller 410, wherein, the motor parameters of any energy storage module can be, for example, Including but not limited to the running state of the energy storage module, the running state is used to indicate whether the energy storage module is currently working, that is, whether it is driving the electric vehicle.
  • Step 502 the control device judges whether the battery parameters and motor parameters meet the preset heating conditions, if not, execute step 503, and if yes, execute step 504.
  • the preset heating conditions may include one or more of the following conditions 1 to 3:
  • Condition 1 the sum of the electricity of the power battery pack is higher than the electricity required to start the electric vehicle
  • the current temperature of the power battery pack is lower than the preset temperature threshold, and the preset temperature threshold is used to indicate the highest temperature of the power battery pack in a low-temperature state.
  • the main controller 410 receives the battery parameters of each power battery pack sent by the battery manager 420 and the battery parameters of each energy storage module sent by the motor controller 430. After the motor parameters, the following judgment can be performed: obtain the state of charge of the power battery contained in the battery parameters of each power battery, multiply the state of charge by the rated power of the power battery to obtain the remaining power of the power battery, Then determine whether the sum of the remaining power of the two power battery packs is greater than the power required to start the electric vehicle; obtain the current temperature of the power battery pack contained in the battery parameters of each power battery pack, and judge the current temperature of each power battery pack Whether it is lower than the preset temperature threshold; obtain the running state of the energy storage module included in the motor parameters of each energy storage module, and determine whether each energy storage module is not running.
  • the main controller 410 may determine that the battery parameters and the motor parameters meet the preset heating conditions.
  • the main controller 410 may determine that the battery parameters and motor parameters do not meet the preset heating conditions.
  • step 503 the control device determines that an error occurs in the process of heating the power battery pack.
  • step 503 when the main controller 410 determines that the state of the motor and the battery does not meet the preset heating conditions, it may determine that an error occurs in the process of heating the power battery pack, and then end the current heating control process. In this way, heating control is performed when the state of the motor and the battery meets the preset heating conditions, and heating control is not performed when the preset heating conditions are not met, so that meaningless heating operations can be avoided and the processing of the control device can be saved resource.
  • the main controller 410 may also perform some other operations when it is determined that an error occurs in the process of heating the power battery pack. For example, in the case that other preset heating conditions are met, if the main controller 410 determines that there is at least one power battery pack that is not in a low temperature state, it can also directly use one or more power units in the at least one power battery pack. The battery pack discharges to the motor so that the available power battery pack can be directly used to start the electric vehicle quickly and improve the starting efficiency.
  • the main controller 410 can also feed back a response message of insufficient power to the driver, so that the driver can charge the electric vehicle in time.
  • other preset heating conditions if at least one energy storage module is running, it usually means that the electric vehicle has been started, and there is no need to start the electric vehicle repeatedly.
  • the main controller 410 may also feed back a response message that the energy storage module is working to the driver, so as to inform the driver that there is a problem with the current heating instruction.
  • the manner of feeding back the response message may be voice broadcast, screen display, or SMS notification.
  • Step 504 the control device determines the target high-frequency pulse current according to the temperature difference between the ambient temperature and the target temperature, the preset heating duration and the preset temperature difference, and the corresponding relationship between the heating duration and the high-frequency pulse current.
  • the main controller 410 can select from the two power battery packs according to actual needs.
  • a target power battery pack and determine the current temperature of the target power battery pack as the ambient temperature.
  • the target power battery pack can be, for example, the power battery pack with the highest current temperature, so as to heat up to the target temperature as soon as possible, so as to start the electric vehicle faster, or it can also be the power battery pack with the most remaining power, so as to improve the battery life of the electric vehicle wait.
  • the main controller 410 may determine the same current temperature as the ambient temperature.
  • the main controller 410 can calculate the temperature difference between the ambient temperature and the target temperature, and then query the correspondence between the preset temperature difference, the heating duration and the high-frequency pulse current according to the temperature difference and the preset heating duration, and The high-frequency pulse current corresponding to the obtained temperature difference and the preset heating duration is used as the target high-frequency pulse current.
  • the target temperature, the preset heating time, and the preset temperature difference, the corresponding relationship between the heating time and the high-frequency pulse current can be pre-configured in the main controller 410, and can also support user modification, or can also be Carried in the instruction for heating the power battery pack indicated to the main controller 410 .
  • the target temperature may be preconfigured as a temperature that can exert the best performance of the power battery pack, such as 20°C.
  • the preset heating duration can be set in stages according to the ambient temperature, and the preset heating duration of each stage can also decrease as the ambient temperature increases. For example, when the ambient temperature is below -20°C, the preset The heating time can be set to 1min. When the ambient temperature is -20°C ⁇ -10°C, the preset heating time can be set to 0.5min. When the ambient temperature is -10°C ⁇ 0°C, the preset heating time can be set to 0.3 min, so that by further refining the time required for the heating process, the heating speed can be increased as much as possible when the heating is realized.
  • the corresponding relationship between the preset temperature difference, heating duration and high-frequency pulse current can be obtained through experimental verification.
  • the loop in the battery pack device forms high-frequency pulse currents with different current frequencies and current magnitudes, and records the heating time required to heat the power battery pack at ambient temperature to the target temperature under the high-frequency pulse currents of each current frequency and current magnitude , and finally obtained by statistics of the temperature difference between the various ambient temperatures and the target temperature, the high-frequency pulse current and the heating time.
  • the main controller 410 can select a high-frequency pulse current as the target high-frequency pulse current from among the multiple high-frequency pulse currents obtained from the query.
  • the high-frequency pulse current with the largest size can be used to increase the heating rate, or the high-frequency pulse current with medium current frequency or medium current size can be selected to improve the stability of heating, or the phenomenon of lithium precipitation will not occur (the phenomenon of lithium precipitation is It refers to the phenomenon that lithium batteries precipitate lithium ions in a low temperature environment.
  • the lithium ion current of lithium batteries will increase with the increase of current frequency) among the high-frequency pulse currents with the largest current frequency and current magnitude. To improve the heating speed as much as possible while ensuring that the capacity of the lithium battery remains unchanged, and so on.
  • the main controller 410 can also obtain the first energy storage module 313 at the current frequency of the target high-frequency pulse current.
  • the maximum current, the second maximum current of the second energy storage module 323 at the current frequency of the target high-frequency pulse current, and the connection node between the first energy storage module 313 and the second energy storage module 323 that is, as shown in FIG.
  • the third maximum current corresponding to the indicated b 12 or b 22 if the current size of the target high-frequency pulse current is greater than the minimum value among the first maximum current, the second maximum current and the third maximum current, it means that the selected target The high-frequency pulse current has exceeded the maximum flow capacity currently supported by the power battery pack device.
  • the main controller 410 may reselect a target high-frequency pulse current from the multiple high-frequency pulse currents obtained from the above query, and then obtain a new first maximum value based on the current frequency of the re-selected target high-frequency pulse current.
  • this example can select a target high-frequency pulse current that does not exceed the flow capacity of the power battery pack device, and use the target high-frequency pulse current to heat the power battery pack. Rapid heating can ensure the safety of the power battery pack device.
  • the first maximum current can be obtained by querying the corresponding relationship between the current frequency and the maximum current of the first energy storage module according to the current frequency of the target high-frequency pulse current
  • the second maximum current can be obtained according to the target high-frequency pulse current.
  • the current frequency of the high-frequency pulse current is obtained by querying the corresponding relationship between the current frequency of the second energy storage module and the maximum current.
  • the third maximum current may be determined by the material and thickness of the cable used at the connecting node. The above two correspondences and the third maximum current can be calculated and configured in the main controller 410 through experimental calibration after the power battery pack device is set up, and support certain process deviation or calibration error.
  • Step 505 the control device controls each switch module in the first switch module and the second switch module according to the target high-frequency pulse current, so as to control the alternate discharge of the first power battery group and the second power battery group.
  • step 505 after the main controller 410 determines the target high-frequency pulse current, it can generate a control signal according to the target high-frequency pulse current and send it to the motor controller 430, so that the motor controller 430 can control the first motor controller 430 according to the control signal.
  • Turning on and off of each switch module in the first switch module 312 and the second switch module 322 realizes the alternate discharge of the first power battery pack 311 and the second power battery pack 321 .
  • the alternate discharge of the first power battery group 311 and the second power battery group 321 may specifically mean that the first power battery group 311 and the second power battery group 321 are discharged in a periodic manner, and in each cycle the first Both the power battery pack 311 and the second power battery pack 321 are discharged once.
  • the first power battery pack 311 is discharged, and the second power battery pack 321 is charged.
  • the power battery pack 321 is discharged, and the first power battery pack 311 is charged, or, in a period before a cycle, the second power battery pack 321 is discharged, and the first power battery pack 311 is charged, and in a later period of the cycle, the first power battery pack 311
  • the power battery pack 311 is discharged, and the second power battery pack 321 is charged.
  • the time length of the previous time period and the time length of the next time period of any cycle may be the same or different, which is not specifically limited.
  • any power battery pack can pass through one or the other of the three-phase windings. Multiple windings are discharged, while another power battery pack can be charged through one or more of the three-phase windings.
  • the main controller 410 may also be pre-configured with a first current threshold and a second current threshold, and the first current threshold may be exemplarily obtained through experiments The calibrated maximum current that can be supported by one of the three-phase windings, the second current threshold can be exemplarily the maximum current that can be supported by two of the three-phase windings calibrated through experiments And, the first current threshold is smaller than the second current threshold.
  • the main controller 410 calculates the target high-frequency pulse current, it can also perform corresponding heating according to one of the following branch 1 to branch 3. Control operation:
  • Branch 1 if the current magnitude of the target high-frequency pulse current is less than the first current threshold, it means that only a relatively small current needs to be passed between the two power battery packs for charging and discharging, and one of the three-phase windings is sufficient to provide this current.
  • the main controller 410 can control the on and off of the switch modules in the first switch module 312 and the second switch module 322 through the motor controller 430 turn off, so that the first power battery group 311 and the second power battery group 321 are alternately discharged through one of the corresponding three-phase windings, and this winding can be the winding with the least loss in the energy storage module for example, so that both It can realize the flow of the target high-frequency pulse current required for alternating discharge through one winding, and can balance the wear degree of each winding by reducing the number of times of use of the winding with large loss, so as to maintain the service life of the motor as much as possible.
  • Branch 2 when the current magnitude of the target high-frequency pulse current is not less than the first current threshold and less than the second current threshold, it means that the two power battery packs need to pass a relatively medium current for charging and discharging, and only use three-phase One of the windings is not enough to supply this current, but two windings are sufficient.
  • the main controller 410 can control the on and off of the switch modules in the first switch module 312 and the second switch module 322 through the motor controller 430, so that the first power battery pack 311 and the second power battery
  • the battery pack 321 is alternately discharged through the two windings of the corresponding three-phase windings.
  • the two windings may be the two windings with the least loss in the energy storage module. In this way, the alternate discharge can be realized through the two windings.
  • the flow of high-frequency pulse current required by the target can avoid the use of windings with large losses as much as possible, so as to ensure that the motor can be used for a longer period of time.
  • Branch three when the current of the target high-frequency pulse current is not less than the second current threshold, it means that a relatively large current needs to be charged and discharged between the two power battery packs, and only one or two of the three-phase windings are used. None of the windings is sufficient to provide this current, and only three of the three-phase windings can be utilized.
  • the main controller 410 can control the on and off of the switch modules in the first switch module 312 and the second switch module 322 through the motor controller 430, so that the first power battery pack 311 and the second power battery
  • the battery pack 321 discharges alternately through the three windings of the corresponding three-phase windings, so as to make full use of the maximum flow capacity supported by the three windings and meet the current rapid heating demand.
  • the above-mentioned branch one uses three windings to realize heating, so that there will be currents in the same direction in the three windings. A q-axis current is generated. If the currents on the three windings are different in size, a q-axis current will be generated in the energy storage module.
  • the above branch 2 and branch 3 use one or two windings to realize heating, so at least one of the three windings must have no current. In this case, a q-axis current will be generated in the energy storage module.
  • the required target high-frequency pulse current by referring to the required target high-frequency pulse current, selecting as few windings as possible among the windings that can provide the target high-frequency current to achieve heating, it can ensure that the power battery will be heated within the preset heating time.
  • the temperature of the group is heated to the target temperature, and the frequency of use of the winding can be reduced as much as possible to maintain the service life of the energy storage module.
  • different numbers of windings participate in heating, and correspondingly generate high-frequency pulse currents of different magnitudes, so that the range of pulse currents in the power battery pack device can be expanded.
  • main controller 410 can also select any one of one, two or three windings to form a loop, and connect high Frequency pulse current to increase the flexibility of heating control while expanding the range of pulse current regulation.
  • Step 506 the control device judges whether the current temperature of the power battery pack is greater than or equal to the target temperature, if yes, execute step 507 , if not, continue to execute step 505 .
  • Step 507 the control device stops heating the power battery pack.
  • the main controller 410 can also periodically acquire the current temperature of each power battery pack, and compare the current temperature of each power battery pack with the target temperature, once a certain If the current temperature of the power battery pack is greater than or equal to the target temperature, then stop heating the power battery pack, and the power battery pack that reaches the target temperature first can be used to drive the motor to rotate, so as to start the electric vehicle as soon as possible.
  • the current temperature of each power battery pack may be collected and reported to the main controller 410 actively by the battery manager 420 in a periodic manner, or may be obtained and reported by the main controller 410 instructing the battery manager 420 in a periodic manner. , without limitation.
  • the above is only a possible example of stopping the heating of the power battery pack.
  • the main controller 410 stops heating the power battery pack only when the current temperature of the target power battery pack is greater than or equal to the target temperature, And after stopping the heating, use the target power battery pack to drive the motor to rotate to start the electric vehicle. It should be understood that there are many possible stopping manners, which are not specifically limited in this embodiment of the present application.
  • the actual flow capacity of the power battery pack device can be not exceeded Under the circumstances, the alternate discharge between the two power battery packs can be realized as soon as possible, and then the heating of the power battery pack can be realized automatically.
  • the controllability of this heating logic is good, and it can effectively and quickly heat the power battery pack in a low temperature environment. .
  • the first switch module 312 and the second switch module 322 both include a three-phase rectifier bridge, and the first energy storage module 313 and the second energy storage module 323 both include Including the three-phase winding as an example, the specific control logic of heating the power battery pack is further introduced through Embodiment 2 and Embodiment 3.
  • FIG. 6 exemplarily shows a schematic structural diagram of a heating control system provided in Embodiment 2 of the present application.
  • the heating control system includes a control device 40 and a power battery pack device 30 .
  • the power battery pack device 30 includes a first power battery pack 311, a first switch module 312, a first energy storage module 313, a second power battery pack 321, a second switch module 322 and a second energy storage module 323 , the cathode of the first power battery group 311 is connected to the cathode of the second power battery group 321 .
  • the first switch module 312 includes a first three-phase rectifier bridge
  • the second switch module 322 includes a second three-phase rectifier bridge
  • the rectifier tubes in the first three-phase rectifier bridge and the second three-phase rectifier bridge are antiparallel diodes
  • the switch module such as the IGBT shown in Figure 6, is a switch module that includes a diode and a transistor connected in parallel, and the conduction direction of the transistor is opposite to that of the diode.
  • the first energy storage module 313 includes a first three-phase winding, the first three-phase winding includes a winding U 1 , a winding V 1 and a winding W 1 , the second energy storage module 323 includes a second three-phase winding, the second three The phase windings include winding U 2 , winding V 2 and winding W 2 .
  • the control device 40 includes a main controller 410, a battery manager 420 and a motor controller 430 connected to the main controller 410, the battery manager 420 is also connected to the first power battery pack 311 and the second power battery pack 321, and the motor controller 430
  • the first switch module 312 , the first energy storage module 313 , the second switch module 322 and the second energy storage module 323 are also connected.
  • the first power battery pack 311 may include a series power battery pack V 01 and a resistor R 1
  • the second power battery pack 321 may include a series series power battery pack V 02 and a resistor R 1 .
  • Resistor R2 may be included in the first power battery pack 311 .
  • the anode of the power battery pack V 01 is connected to the first end of the resistor R 1 , the second end of the resistor R 1 is used as the anode of the first power battery pack 311, and the cathode of the power battery pack V 01 is used as the first power battery pack 311
  • the cathode of the power battery pack V 02 is connected to the first end of the resistor R 2 , the second end of the resistor R 2 is used as the anode of the second power battery pack 321, and the cathode of the power battery pack V 02 is used as the second power battery pack 321 cathode, and the cathode of the power battery pack V 01 and the cathode of the power battery pack V 02 can be connected by cables to realize the common cathode of the two power battery packs.
  • the resistor R 1 in the first power battery pack 311 or the resistor R 2 in the second power battery pack 321 can be used to adjust the current in the loop, specifically, the resistor R 1 or the resistor R 2 can also be set to be variable Resistance, in order to increase the flexibility of adjusting the current size.
  • the first power battery pack 311 may also include only the power battery pack V 01 without the resistor R 1
  • the second power battery pack 321 may also only include the power battery pack V 02 without
  • the resistor R 2 is not specifically limited in this embodiment of the present application.
  • the power battery pack device 30 may further include a capacitor C 1 and/or a capacitor C 2 , the capacitor C 1 is connected in parallel to both ends of the first power battery pack 311, and the capacitor C 2 is connected in parallel at both ends of the second power battery pack 321 .
  • the capacitor C 1 or capacitor C2 In the circuit formed by the first power battery group 311 and the second power battery group 321, when the voltage decreases due to some unstable factors, the capacitor C1 or capacitor C2 will discharge, and when the voltage is reduced due to some unstable factors When the factor increases, the capacitor C 1 or capacitor C 2 will be charged. It can be seen that the capacitor C 1 or capacitor C 2 is used to maintain the stability of the voltage in the circuit and protect the circuit devices.
  • the first switch module 312 may include a first switch module K 11 and a second switch module K 12 connected in series, a third switch module K 13 and a fourth switch module connected in series K 14 , and the fifth switch module K 15 and the sixth switch module K 16 in series
  • the second switch module 322 may include the seventh switch module K 21 and the eighth switch module K 22 in series, the ninth switch module in series The module K 23 and the tenth switching module K 24 , and the eleventh switching module K 25 and the twelfth switching module K 26 connected in series.
  • the non-serial node end m 11 of the first switch module K 11 relative to the second switch module K 12 , the non-serial node end m 13 of the third switch module K 13 relative to the fourth switch module K 14 , and the fifth switch module K 15 is connected to the anode of the first power battery pack 311 with respect to the non-serial node end m 15 of the sixth switch module K 16
  • the second switch module K 12 is connected to the non-serial node end m 12 of the first switch module K 11
  • the second One terminal m 14 of the non-series node of the fourth switch module K 14 relative to the third switch module K 13 and one terminal m 16 of the non-series node of the sixth switch module K 16 relative to the fifth switch module K 15 are connected to the first power battery pack 311 cathode
  • the series node a 131 of the first switch module K 11 and the second switch module K 12 is connected to the first end of the winding U 1 in the first three-phase wind
  • the non-serial node end m 21 of the seventh switch module K 21 relative to the eighth switch module K 22 the non-serial node end m 23 of the ninth switch module K 23 relative to the tenth switch module K 24 and the eleventh switch module K 24
  • the switch module K 25 is connected to the anode of the second power battery pack 321 with respect to the non-series node end m 25 of the twelfth switch module K 26
  • the eighth switch module K 22 is connected to the non-series node end m of the seventh switch module K 21 22.
  • the non-serial node end m 24 of the tenth switch module K 24 relative to the ninth switch module K 23 and the non-serial node end m 26 of the twelfth switch module K 26 relative to the eleventh switch module K 25 are connected to the second The cathode of the power battery pack 321, and the series node a 231 of the seventh switch module K 21 and the eighth switch module K 22 is connected to the first end of the winding U 2 in the second three-phase winding, the ninth switch module K 23 and the tenth switch module
  • the series node a 232 of the switch module K 24 is connected to the first end of the winding V 2 in the second three-phase winding, and the series node a 233 of the eleventh switch module K 25 and the twelfth switch module K 26 is connected to the second three-phase winding The first end of winding W2 .
  • the second end of the winding U1 in the first three-phase winding (the end marked "2" in the figure), the second end of the winding V1 and the second end of the winding W1 are connected to form the first energy storage module
  • the second end b 12 of 313, the second end of winding U 2 in the second three-phase winding, the second end of winding V 2 and the second end of winding W 2 are connected to form the second end of the second energy storage module 323 Terminal b 22
  • the second terminal b 12 of the first energy storage module 313 is connected to the second terminal to form the second terminal b 22 of the second energy storage module 323 through a cable or a relay.
  • the main controller 410 can control the switch modules K11 - K16 and the switch modules K21 - K26 to be turned on or off through the motor controller 430, One or more of the power battery pack V 01 , resistor R 1 , winding U 1 , winding V 1 , winding W 1 , winding U 2 , winding V 2 , winding W 2 , resistor R 2 and power battery pack V 2
  • a loop is formed under the action of the switched-on switch module, so that the current direction of the loop in the previous period of a cycle is different from the current direction in the subsequent period, so as to generate high-frequency pulse current in the loop, and use the power battery pack
  • the main controller 410 before the main controller 410 controls the switch modules K 11 -K 16 and the switch modules K 21 -K 26 through the motor controller 430 , it can also obtain the heating mode corresponding to the power battery pack device 30 ,
  • the heating mode can be Buck first and then Boost mode or Boost first and then Buck mode.
  • the heating mode can be pre-configured in the main controller 410, or can be configured by the user, for example, it can be a heating power battery carried by the user
  • the instructions of the group are sent to the main controller 410 together.
  • Buck first and then Boost mode means that the control loop constitutes a step-down circuit (that is, the output voltage is lower than the input voltage) in the first period of a cycle, and the control loop constitutes a boost circuit (that is, the output voltage greater than the input voltage), while the first Boost and then Buck mode means that the control loop forms a boost circuit in the first period of a cycle, and the control loop forms a step-down circuit in the latter period of a cycle.
  • the battery parameters acquired by the battery manager 420 may also include the voltage of each power battery pack, and after the main controller 410 determines the number of windings to achieve alternate discharge according to the target high-frequency pulse current, it may also combine the The number of windings, the magnitude relationship between the voltage of the first power battery pack 311 and the voltage of the second power battery pack 321 and the acquired heating mode generate corresponding control signals and send them to the motor controller 430 so that the motor controller 430
  • the control signal controls the switch modules K 11 -K 16 and the switch modules K 21 -K 26 to realize heating of the voltage of the first power battery pack 311 and the second power battery pack 321 according to the corresponding number of windings in the corresponding heating mode.
  • the control signal generated by the main controller 410 is used to control the switch module K 11 , the switch module One or more of K 13 and switch module K 15 are turned on, and control other switch modules except the turned-on switch module to turn off; in the second sub-period of the previous period of each cycle, control all The switch module is turned off; in the first sub-period of the next period of each cycle, one or more of the switch module K 12 , the switch module K 14 and the switch module K 16 , and the switch module K 21 , the switch One or more of the module K 23 and the switch module K 25 are turned on, and control other switch modules except the turned-on switch module to be turned off; in the second sub-period of the next period of each cycle, the control switch One or more of the module K 21 , the switch module K 23 and the switch module K 25 are turned on, and other switch modules except the turned-on switch module are controlled to be turned off.
  • the first sub-period of the previous period may refer to the conduction period of the previous period, which may be specifically represented by the product of the duration of the previous period and the duty ratio corresponding to the previous period
  • the second sub-period of the previous period may refer to the off period of the previous period, which may be specifically represented by the difference between the duration of the previous period and the first sub-period of the previous period.
  • the first sub-period of the latter period may refer to the on-period of the latter period, which may be specifically represented by the product of the duration of the latter period and the duty cycle corresponding to the latter period
  • the second sub-period of the latter period may refer to the off-period of the later period, which may be specifically represented by the difference between the duration of the latter period and the first sub-period of the latter period.
  • the duration of the previous period and the duration of the subsequent period may be the same or different
  • the duty cycle corresponding to the previous period may be the same or different from the duty cycle corresponding to the subsequent period. Specific not limited.
  • one or more can be any of one, two, or three.
  • switch control logic one or more of switch module K 11 , switch module K 13 and switch module K 15 is turned on in the first sub-period of the previous period, and there are three situations in which one switch module is turned on Possibly, there are three possibilities for turning on two switch modules, and one possibility for turning on three switch modules. Therefore, there are 7 switch control modes in the first sub-period of the previous period.
  • one or more of the switch module K 12 , the switch module K 14 and the switch module K 16 , as well as the switch module K 21 , the switch module K 23 and the switch module K are turned on in the first sub-period of the latter period.
  • One or more of 25 turn on one switch module in switch module K 12 , switch module K 14 and switch module K 16 and turn on one switch in switch module K 21 , switch module K 23 and switch module K 25
  • the module one switch module among switch module K 12 , switch module K 14 and switch module K 16 is turned on and two of switch module K 21 , switch module K 23 and switch module K 25 are turned on
  • the switch module one switch module among the switch module K 12 , the switch module K 14 and the switch module K 16 is turned on and three of the switch module K 21 , the switch module K 23 and the switch module K 25 are turned on.
  • the not less than here is derived from the fact that one or more of the switch module K 21 , switch module K 23 and switch module K 25 turned on in the second sub-period of the later period is related to the subsequent One or more of the switch module K 21 , the switch module K 23 and the switch module K 25 that are turned on in the first sub-period of a period may also be different. As for how many different situations exist, It can be deduced with reference to the above content, and the present application will not list them one by one.
  • the following example uses the same number of windings in the two three-phase windings as an example to introduce the specific circuit implementation of heating control.
  • the previous period of a cycle is T 1
  • the duty cycle corresponding to the previous period is D 1
  • the subsequent period of a cycle is T 2
  • the duty cycle corresponding to the latter period is D 2
  • the first sub-period of the previous period is denoted as D 1 ⁇ T 1
  • the second sub-period of the previous period is denoted as (1-D 1 ) ⁇ T 1
  • the first sub-period of the latter period is denoted as D 2 ⁇ T 2
  • the second sub-period of the latter period is expressed as (1-D 2 ) ⁇ T 2 , based on this:
  • FIG. 7 exemplarily shows a circuit diagram for heating control through three windings provided in Embodiment 2 of the present application, wherein:
  • FIG. 7 shows the circuit diagram in the first sub-period D 1 ⁇ T 1 of the previous period T 1 , referring to (A) shown in Fig. 7, in the first sub-period D 1 of the previous period T 1
  • the transistors in the switch module K 11 , the switch module K 13 and the switch module K 15 are turned on, and the transistors in the other switch modules are turned off.
  • the electric energy released by the power battery pack V 01 is divided into three paths, one path flows into the winding U 1 through the triode in the switch module K 11 , the other path flows into the winding V 1 through the triode in the switch module K 13 , and the other path flows into the winding V 1 through the switch module K 13
  • the triode in module K 15 flows into winding W 1 , thereby storing energy in winding U 1 , winding V 1 and winding W 1 .
  • the electric energy passes through the second ends of the three windings and then flows out into one path, which is divided into three paths to flow to winding U 2 , winding V 2 and winding W 2 , thereby storing energy in winding U 2 , winding V 2 and winding W 2 in.
  • the electric energy flowing out from the winding U2 flows out through the antiparallel diode in the switch module K21 , the electric energy flowing out from the winding V2 flows out through the antiparallel diode in the switch module K23 , and the electric energy flowing out from the winding W2 It flows out through the anti-parallel diode in the switch module K 25 , and then flows into the anode of the power battery V 02 , and flows from the cathode of the power battery V 02 to the cathode of the power battery V 01 .
  • FIG. 7 shows the circuit diagram in the second sub-period (1-D 1 ) ⁇ T 1 of the previous period T 1 .
  • the previous period T 1 In the second sub-period (1-D 1 ) ⁇ T 1 , all transistors in the switch modules are turned off.
  • FIG. 7 shows the circuit diagram in the first sub-period D 2 ⁇ T 2 of the latter period T 2 , referring to Fig. 7 (C), in the first sub-period D 2 of the latter period T 2
  • the transistors in the switch module K 12 , the switch module K 14 , the switch module K 16 , the switch module K 21 , the switch module K 23 and the switch module K 25 are turned on, and the transistors in the other switch modules off.
  • the electric energy released by the power battery pack V 02 is divided into three paths, one path flows into the winding U 2 through the triode in the switch module K 21 , the other path flows into the winding V 2 through the triode in the switch module K 23 , and the other path flows into the winding V 2 through the switch module K 23
  • the triode in module K 25 flows into winding W 2 , thereby storing energy in winding U 2 , winding V 2 and winding W 2 .
  • the electric energy is combined into one path through the second ends of the three windings and flows out, and is divided into three paths to flow to winding U 1 , winding V 1 and winding W 1 , thereby storing energy in winding U 1 , winding V 1 and winding W 1 in.
  • FIG. 7 shows the circuit diagram in the second sub-period (1-D 2 ) ⁇ T 2 of the latter period T 2 , referring to (D) shown in Fig. 7 , in the latter period T 2
  • the transistors in the switch module K 21 , the switch module K 23 and the switch module K 25 are turned on, and the transistors in the other switch modules are turned off.
  • the electric energy released by the power battery pack V 02 is divided into three paths, which flow into the winding U 2 , winding V 2 and winding W 2 through the triodes in the switch module K 21 , switch module K 23 and switch module K 25 respectively.
  • the current flow direction in the power battery pack device 30 changes, so that a high-frequency pulse current is generated in the power battery pack device 30, and the high-frequency pulse current flows through the power battery pack V 01 and the power battery pack V 02 , Joule heat is generated due to the internal resistance of the power battery pack V 01 and the power battery pack V 02 , and the power battery pack V 01 and the power battery pack V 02 are effectively heated by using the Joule heat energy.
  • Fig. 8 exemplarily shows a circuit diagram for heating control through two windings provided in Embodiment 2 of the present application, wherein:
  • FIG. 8 shows the circuit diagram in the first sub-period D 1 ⁇ T 1 of the previous period T 1.
  • switch module K 11 in the first sub-period D 1 of the previous period T 1
  • switch module K 13 In sub-period D 1 ⁇ T 1 , select two switch modules among switch module K 11 , switch module K 13 and switch module K 15 , turn on the triodes in these two switch modules, and turn off the transistors in other switch modules Triode.
  • the electric energy is combined into one path through the second end of the winding V 1 and the winding W 1 , and then divided into three paths to flow to the winding U 2 , the winding V 2 and the winding W 2 , so that the energy is stored in the winding U 2 , the winding V 2 and the winding Winding W2 .
  • the electrical energy flowing out of winding U2 flows out through the anti-parallel diode in the switch module K 21 , the electrical energy flowing out of the winding V2 flows out through the anti-parallel diode in the switching module K 23 , and the electrical energy flowing out of the winding W2 flows out through the switch
  • the anti-parallel diodes in the module K 25 flow out, then all flow into the anode of the power battery V 02 , and flow from the cathode of the power battery V 02 to the cathode of the power battery V 01 .
  • FIG. 8 shows the circuit diagram in the second sub-period (1-D 1 ) ⁇ T 1 of the previous period T 1 , referring to (B) in Fig. 8 , in the previous period T 1 In the second sub-period (1-D 1 ) ⁇ T 1 , all transistors in the switch modules are turned off.
  • winding V 1 , winding W 1 , winding U 2 , winding V 2 and winding W 2 have stored energy in the first sub-period D 1 ⁇ T 1
  • winding V 1 , winding W 1 , winding U 2 , winding V 2 and winding W 2 will release the previously stored electric energy, and then through the anti-parallel diode and switch in switch module K 21 respectively
  • the anti-parallel diode in the module K 23 and the anti-parallel diode in the switch module K 25 flow into the anode of the power battery V 02 and flow out from the cathode of the power battery V 02 , and then pass through the anti-parallel diode in the switch module K 12 respectively
  • the anti-parallel diodes in the switch module K 14 and the anti-parallel diodes in the switch module K 16 flow into the first three-phase winding.
  • FIG. 8 shows the circuit diagram in the first sub-period D 2 ⁇ T 2 of the latter period T 2.
  • select two switch modules among switch module K 12 , switch module K 14 and switch module K 16 and select two switch modules among switch module K 21 , switch module K 23 and switch module K 25 switch modules, turn on the transistors of these four switch modules, and turn off the transistors in other switch modules.
  • switch module K 12 switch module K 14 and switch module K 16
  • switch module K 21 select two switch modules among switch module K 21 , switch module K 23 and switch module K 25 switch modules
  • the electric energy flowing out from the winding U1 flows out through the triode in the switch module K12 , and the electric energy flowing out from the winding W1 flows out through the triode in the switch module K16 , and then flows into the cathode of the power battery pack V02 together. It can be seen that in the first sub-period D 2 ⁇ T 2 of the latter period T 2 , the electric energy released by the power battery pack V 02 stores energy for two windings in each three-phase winding;
  • FIG. 8 shows the circuit diagram in the second sub-period (1-D 2 ) ⁇ T 2 of the latter period T 2 , referring to (D) shown in Fig. 8 , in the latter period T 2
  • the second sub-period (1-D 2 ) ⁇ T 2 select the same two switches in the switch module K 21 , switch module K 23 and switch module K 25 as those selected in the first sub-period D 2 ⁇ T 2 switch modules, turn on the transistors in these two switch modules, and turn off the transistors in the other switch modules.
  • the electric energy released by the power battery pack V 02 is divided into The two channels respectively flow into the winding V 2 and the winding W 2 through the triodes in the switch module K 23 and the switch module K 25 , and then combine the previously stored
  • the electric energy flows into the anode of the power battery pack V 01 through the anti-parallel diode in the switch module K 11 , the anti-parallel diode in the switch module K 13 and the anti-parallel diode in the switch module K 15 , and flows from the power battery pack V 01
  • the cathode flows out to the cathode of the power battery pack V 02 .
  • the above-mentioned implementation method can realize the alternate discharge between the two power battery packs through the two windings of the three-phase winding as much as possible, which helps to generate high-frequency pulse current to heat the power battery pack while reducing the winding load. Frequency of use, to extend the life of the motor as much as possible.
  • FIG . 8 is only an exemplary introduction of a possible switch control mode for heating through two windings. 13 and any two of the switch module K 15 , that is, there are three possible switch control modes in the previous period T1 , namely: switch module K 11 and switch module K 13 , or switch module K 11 and switch module K 15 , or switch module K 13 and switch module K 15 ; any two of switch module K 12 , switch module K 14 and switch module K 16 and switch module K 21 , switch module K 23 and switch Any two of the modules K 25 , that is, there are nine possible switch control modes in the latter period T 2 , namely: switch module K 12 , switch module K 14 , switch module K 21 and switch module K 23 , or switch module K 12 , switch module K 14 , switch module K 21 and switch module K 25 , or switch module K 12 , switch module K 14 , switch module K 23 and switch module K 25 , or switch module K 12 , switch module K 16 , Switch module K 21
  • the main The controller 410 may select one of the 27 switch control modes randomly or according to certain rules to control the heating under the two windings, which is not specifically limited in this embodiment of the present application.
  • FIG. 9 exemplarily shows a circuit diagram for heating control through one winding provided in Embodiment 2 of the present application, wherein:
  • FIG. 9 shows the circuit diagram in the first sub-period D 1 ⁇ T 1 of the previous period T 1.
  • switch module K 11 in the first sub-period D 1 of the previous period T 1
  • switch module K 13 In sub-period D 1 ⁇ T 1 , select a switch module among switch module K 11 , switch module K 13 and switch module K 15 , turn on the transistors in this switch module, and turn off the transistors in other switch modules.
  • the electric energy flowing out from the winding U2 flows out through the anti-parallel diode in the switch module K21
  • the electric energy flowing out from the winding V2 flows out through the anti-parallel diode in the switch module K23
  • the electric energy flowing out from the winding W2 It flows out through the anti-parallel diode in the switch module K 25 , and then flows into the anode of the power battery pack V 02 , and flows from the cathode of the power battery pack V 02 to the cathode of the power battery pack V 01 .
  • FIG. 9 shows the circuit diagram in the second sub-period (1-D 1 ) ⁇ T 1 of the previous period T 1 , referring to (B) shown in Figure 9 , in the previous period T 1 In the second sub-period (1-D 1 ) ⁇ T 1 , all transistors in the switch modules are turned off.
  • winding W 1 , winding U 2 , winding V 2 and winding W 2 have stored energy in the first sub-period D 1 ⁇ T 1 , therefore, based on the characteristics of the windings blocking current changes, windings W 1 , Winding U 2 , winding V 2 and winding W 2 will release the previously stored electrical energy, and then pass through the anti-parallel diode in the switch module K 21 , the anti-parallel diode in the switch module K 23 and the anti-parallel diode in the switch module K 25 respectively.
  • the diodes flow into the anode of the power battery V 02 and flow out from the cathode of the power battery V 02 , and then pass through the anti-parallel diode in the switch module K 12 , the anti-parallel diode in the switch module K 14 and the switch module K 16 respectively.
  • the anti-parallel diodes flow to the first three-phase winding. It can be seen that in the second sub-period (1-D 1 ) ⁇ T 1 of the previous period T 1 , the electric energy stored in one winding of the first three-phase winding and three windings of the second three-phase winding is transferred to the power battery group V 02 , continue to charge the power battery group V 02 ;
  • FIG. 9 shows the circuit diagram in the first sub-period D 2 ⁇ T 2 of the latter period T 2 , referring to Fig. 9 (C), in the first sub-period D 2 of the latter period T 2
  • select one switch module among switch module K 12 , switch module K 14 and switch module K 16 and select one switch among switch module K 21 , switch module K 23 and switch module K 25 module, turn on the transistors of these two switch modules, and turn off the transistors in other switch modules.
  • FIG. 9 shows the circuit diagram in the second sub-period (1-D 2 ) ⁇ T 2 of the latter period T 2 , referring to (D) shown in Fig. 9 , in the latter period T 2
  • the switch module select the same one among switch module K 21 , switch module K 23 and switch module K 25 as that selected in the first sub-period D 2 ⁇ T 2
  • the switch module turns on the transistors in the switch module and turns off the transistors in other switch modules. For example, as shown in (D) in FIG.
  • the above-mentioned implementation method can realize the alternate discharge between the two power battery packs through one winding in each three-phase winding as much as possible, which helps to further reduce the The frequency of use of the windings further prolongs the life of the motor.
  • FIG. 9 is only an exemplary introduction of a possible switch control mode for heating through two windings . 13 and any one of switch module K 15 , that is, there are three possible switch control modes in the previous period T1 , namely: switch module K 11 , or switch module K 13 , or switch module K 15 ; Any one of switch module K 12 , switch module K 14 , and switch module K 16 and any one of switch module K 21 , switch module K 23 , and switch module K 25 are selected to be turned on, that is, the latter period T 2 coexists for 9
  • a possible switch control mode namely: switch module K 12 and switch module K 21 , or switch module K 12 and switch module K 23 , or switch module K 12 and switch module K 25 , or switch module K 14 and switch module K 21 , or switch module K 14 and switch module K 23 , or switch module K 14 and switch module K 25 , or switch module K 16 and switch module K 21 , or switch module K 16 and switch module K 23 ,
  • the main control The controller 410 can randomly or according to certain rules select one of the 27 switch control modes to perform heating control under one winding, which is not specifically limited in this embodiment of the present application.
  • the above-mentioned cases 1 to 3 are only to introduce specific switch control methods by controlling the use of the same number of windings in the two three-phase windings for heating as an example.
  • the main controller can control the two three-phase windings to use the same or different numbers of windings for heating, for example, the first three-phase winding is selected by controlling the switch modules K 11 to K 16 in the first switch module
  • any number of the three windings of the second three-phase winding can be selected by controlling the switch modules K 21 ⁇ K 26 in the second switch module, such as selecting the first Three windings or two windings or one winding among the two three-phase windings.
  • the main controller can select any one of the no less than 343 switch control modes to perform heating control, so as to use different winding combinations For heating, by changing the number of winding combinations, the adjustable range of the high-frequency pulse current used for heating in the power battery pack device can be effectively improved.
  • the schemes of selecting different numbers of windings for heating can be directly derived by referring to the schemes of the above-mentioned cases 1 to 3 without creative effort, so the embodiments of the present application will not list them one by one.
  • the control signal generated by the main controller 410 is used to control the switch module K 12 , switch One or more of the module K 14 and the switch module K 16 , and one or more of the switch module K 21 , the switch module K 23 and the switch module K 25 are turned on, and control other than the turned on switch module
  • the switch module is turned off; in the second sub-period of the previous period of each cycle, one or more of the switch module K 21 , the switch module K 23 and the switch module K 25 are controlled to be turned on, and the Switching modules other than the switching module are turned off; in the first sub-period of the next period of each cycle, one or more of the switching module K 11 , the switching module K 13 and the switching module K 15 are controlled to be turned on, And control other switch modules except the switched-on switch module to turn off; in the second sub-period of the next period of each cycle, control all the switch modules to turn off.
  • the control method of Buck first and then Boost mode is used in the previous period of Boost and then Buck mode, and the control method of Boost and then Buck mode is adopted in the latter period of Boost and then Buck mode.
  • the control mode in the previous period of the Buck mode and then the Boost mode please refer to the above-mentioned FIG. 7 to FIG. 9 for the specific control implementation logic, and this embodiment of the present application will not repeat them one by one.
  • the Buck first then Boost mode when the voltage of the first power battery pack 311 is greater than the voltage of the second power battery pack 321, there are no less than 343 switch control modes in the Buck first then Boost mode.
  • the controller can choose any one of these no less than 343 switch control methods to perform heating control in Buck first and then Boost mode, so that different winding combinations can be used for heating, and the power can be effectively improved by changing the number of winding combinations. Adjustable range of high-frequency pulse current for heating in battery pack devices.
  • the control signal generated by the main controller 410 is used to: control the switch module K 11 , the switch module One or more of K 13 and switch module K 15 , and corresponding one or more of switch module K 22 , switch module K 24 and switch module K 26 conduct, and control the switch modules other than the conduction Other switch modules are turned off; in the second sub-period of the previous period of each cycle, one or more of the switch module K 11 , the switch module K 13 and the switch module K 15 are controlled to be turned on, and the off-conduction The switch modules other than the switch module are turned off; in the first sub-period of the next period of each cycle, one or more of the switch module K 21 , the switch module K 23 and the switch module K 25 are controlled to be turned on , and control the other switch modules except the switched-on switch module to be turned off; in the second sub-period of the next period of each cycle, control all the switch modules to be turned off.
  • one or more can be any of one, two, or three.
  • one or more of switch module K 11 , switch module K 13 and switch module K 15 , and switch module K 22 and switch module K 24 are turned on in the first sub-period of the previous period and one or more of the switch modules K 26 , turn on one switch module in the switch module K 11 , the switch module K 13 and the switch module K 15 and turn on the switch module K 22 , the switch module K 24 and the switch module K 26
  • There are 9 possibilities in the case of one of the switch modules one of switch module K 11 , switch module K 13 and switch module K 15 is turned on and switch module K 22 , switch module K 24 and switch module K 26 are turned on
  • There are nine possibilities in the case of two switch modules in turn on one of switch module K 11 , switch module K 13 and switch module K 15 and turn on switch module K 22 , switch module K 24 and switch module K
  • There are three possibilities for the three switch modules in 26 turn on two switch modules in switch module K 11
  • switch module K 24 and switch module K 26 There is one possibility for three switch modules in switch module K 24 and switch module K 26 , so there are 49 switch control modes in the first sub-period of the previous period.
  • one or more of the switch module K 21 , the switch module K 23 and the switch module K 25 are turned on in the first sub-period of the latter period, and there are three possibilities for turning on one switch module.
  • There are three possibilities in the case of two switch modules, and one possibility in the case of turning on three switch modules. Therefore, there are 7 switch control modes in the first sub-period of the previous period. It can be seen that there are no less than 49 ⁇ 7 343 switch control modes in the above heating control logic.
  • the not less than here is derived from the fact that one or more of the switch module K 11 , the switch module K 13 and the switch module K 15 turned on in the second sub-period of the previous period is different from the previous one.
  • One or more of the switch module K 11 , the switch module K 13 and the switch module K 15 that are turned on in the first sub-period of a period may also be different, and as for how many different situations exist, It can be deduced with reference to the above content, and the present application will not list them one by one.
  • the following example uses the same number of windings in the two three-phase windings as an example to introduce the specific circuit implementation of heating control.
  • the first sub-period of the previous period is denoted as D 1 ⁇ T 1
  • the second sub-period of the previous period is denoted as (1-D 1 ) ⁇ T 1
  • the first sub-period of the subsequent period is The sub-period is expressed as D 2 ⁇ T 2
  • the second sub-period of the latter period is expressed as (1-D 2 ) ⁇ T 2 , then:
  • FIG. 10 exemplarily shows another circuit diagram for heating control through three windings provided in Embodiment 2 of the present application, wherein:
  • FIG. 10 shows the circuit diagram in the first sub-period D 1 ⁇ T 1 of the previous period T 1 , referring to (A) shown in Fig. 10, in the first sub-period D 1 of the previous period T 1
  • the transistors in the switch module K 11 , the switch module K 13 , the switch module K 15 , the switch module K 22 , the switch module K 24 and the switch module K 26 are turned on, and the transistors in the other switch modules off.
  • the electric energy released by the power battery pack V 01 is divided into three paths, one path flows into the winding U 1 through the triode in the switch module K 11 , the other path flows into the winding V 1 through the triode in the switch module K 13 , and the other path flows into the winding V 1 through the switch module K 13
  • the triode in module K 15 flows into winding W 1 , thereby storing energy in winding U 1 , winding V 1 and winding W 1 .
  • the electric energy flows to the winding U 2 , the winding V 2 and the winding W 2 after passing through the second ends of the three windings, so that the energy is stored in the winding U 2 , the winding V 2 and the winding W 2 .
  • the electric energy flowing out from the winding U2 flows out through the transistor in the switch module K 22
  • the electric energy flowing out from the winding V2 flows out through the transistor in the switch module K 24
  • the electric energy flowing out from the winding W2 flows out through the switch module K
  • the triode in 26 flows out, and then all flow into the cathode of the power battery pack V 01 . It can be seen that in the first sub-period D 1 ⁇ T 1 of the previous period T 1 , the electric energy released by the power battery pack V 01 stores energy for three windings in each three-phase winding;
  • FIG. 10 shows the circuit diagram in the second sub-period (1-D 1 ) ⁇ T 1 of the previous period T 1 , referring to (B) in Figure 10 , in the previous period T 1 In the second sub-period (1-D 1 ) ⁇ T 1 , the transistors in the switch module K 11 , the switch module K 13 and the switch module K 15 are turned on, and the transistors in the other switch modules are turned off.
  • the electric energy released by the power battery pack V 01 is divided into three paths, one path flows into the winding U 1 through the triode in the switch module K 11 , the other path flows into the winding V 1 through the triode in the switch module K 13 , and the other path flows into the winding V 1 through the switch module K 13
  • the triode in module K 15 flows into winding W 1 .
  • the voltage of the power battery pack V 01 is lower than the voltage of the power battery pack V 02 , since the winding U 1 , winding V 1 , winding W 1 , winding U 2 , winding V 2 and winding W 2 are in the first sub-period Energy has been stored in D 1 ⁇ T 1 , therefore, in order to maintain the original direction of the current, winding U 1 , winding V 1 , winding W 1 , winding U 2 , winding V 2 and winding W 2 will release the previously stored electric energy, The electric energy released by the winding combined with the electric energy released by the power battery V 01 flows into the power battery through the anti-parallel diode in the switch module K 21 , the anti-parallel diode in the switch module K 23 and the anti-parallel diode in the switch module K 25 respectively The anode of V 02 , and flows out from the cathode of the power battery pack V 02 to the cathode of the power battery pack V 01 .
  • the power battery pack V 01 combines the electric energy stored in the three windings of each three-phase winding to form the power battery pack V 02 Charge;
  • FIG. 10 shows is the circuit diagram in the first sub-period D 2 ⁇ T 2 of the latter period T 2 , referring to Fig. 10 (C), in the first sub-period D 2 ⁇ T 2 of the latter period In the sub-period D 2 ⁇ T 2 , the transistors in the switch module K 21 , the switch module K 23 and the switch module K 25 are turned on, and the transistors in the other switch modules are turned off.
  • the electric energy released by the power battery pack V 02 is divided into three paths, one path flows into the winding U 2 through the triode in the switch module K 21 , the other path flows into the winding V 2 through the triode in the switch module K 23 , and the other path flows into the winding V 2 through the switch module K 23
  • the triode in module K 25 flows into winding W 2 , thereby storing energy in winding U 2 , winding V 2 and winding W 2 .
  • the electric energy flows to the winding U 1 , the winding V 1 and the winding W 1 via the second ends of the three windings, so that the energy is stored in the winding U 1 , the winding V 1 and the winding W 1 .
  • the electric energy flowing out of the winding U1 flows out through the anti-parallel diode of the switch module K11
  • the electric energy flowing out of the winding V1 flows out through the anti-parallel diode of the switch module K13
  • the electric energy flowing out of the winding W1 flows out through the anti-parallel diode of the switch module K15
  • the diode flows out, then flows into the anode of the power battery pack V 01 , and flows through the cathode of the power battery pack V 01 to the cathode of the power battery pack V 02 .
  • FIG. 10 shows the circuit diagram in the second sub-period (1- D 2 ) ⁇ T 2 of the latter period T 2 , referring to (D) shown in Figure 10 , in the latter period T 2 In the second sub-period (1-D 2 ) ⁇ T 2 , all transistors in the switch modules are turned off.
  • winding U 1 , winding V 1 , winding W 1 , winding U 2 , winding V 2 and winding W 2 have stored energy in the first sub-period D 2 ⁇ T 2 , therefore, for the maintenance current In the original direction, the winding U 2 , winding V 2 , winding W 2 , winding U 1 , winding V 1 and winding W 1 will release the previously stored electric energy, and then pass through the anti-parallel diode in the switch module K 11 and the switch module K respectively.
  • the anti-parallel diode in 13 and the anti-parallel diode in the switch module K 15 flow into the anode of the power battery pack V 01 , and flow out from the cathode of the power battery pack V 01 , respectively through the anti-parallel diode in the switch module K 22 , the switch module
  • the anti-parallel diode in K 24 and the anti-parallel diode in switching module K 26 flow into winding U 2 , winding V 2 and winding W 2 .
  • the current flow direction in the power battery pack device 30 changes, so that a high-frequency pulse current is generated in the power battery pack device 30, and the high-frequency pulse current flows through the power battery pack V 01 and the power battery pack V 02 , Joule heat is generated due to the internal resistance of the power battery pack V 01 and the power battery pack V 02 , and the power battery pack V 01 and the power battery pack V 02 are effectively heated by using the Joule heat energy.
  • FIG. 11 exemplarily shows another circuit diagram for heating control through two windings provided in Embodiment 2 of the present application, wherein:
  • FIG. 11 shows the circuit diagram in the first sub-period D 1 ⁇ T 1 of the previous period T 1.
  • a switch module is used to turn on the transistors in the four switch modules and turn off the transistors in other switch modules. For example, as shown in (A) in FIG.
  • the electric energy flowing out of the winding U2 flows out through the triode in the switch module K22 , and the electric energy flowing out of the winding W2 flows out through the triode in the switch module K26 , and then both flow into the cathode of the power battery pack V01 . It can be seen that in the first sub-period D 1 ⁇ T 1 of the previous period T 1 , the electric energy released by the power battery pack V 01 stores energy for two windings in each three-phase winding;
  • FIG. 11 shows the circuit diagram in the second sub-period (1-D 1 ) ⁇ T 1 of the previous period T 1 , referring to (B) in Figure 11 , in the previous period T 1
  • the second sub-period (1-D 1 ) ⁇ T 1 select the same two switch modules as the first sub-period D 1 ⁇ T 1 among switch module K 11 , switch module K 13 and switch module K 15 , The transistors in these two switch modules are turned on, and the transistors in the other switch modules are turned off.
  • winding U 1 , winding V 1 , winding U 2 and winding W 2 have stored in the first sub-period D 1 ⁇ T 1 Therefore, in order to maintain the original direction of the current, winding U 1 , winding V 1 , winding U 2 and winding W 2 will release the electric energy stored before, and the electric energy released by the windings will be combined with the electric energy released by the power battery pack V 01 , respectively.
  • FIG. 11 shows is the circuit diagram in the first sub-period D 2 ⁇ T 2 of the latter period T 2.
  • the first sub-period D 2 ⁇ T 2 of the latter period In sub-period D 2 ⁇ T 2 , select two switch modules among switch module K 21 , switch module K 23 and switch module K 25 , turn on the triodes in these two switch modules, and turn off the transistors in other switch modules Triode.
  • the electric energy flowing out of the winding U1 flows out through the anti-parallel diode of the switch module K11
  • the electric energy flowing out of the winding V1 flows out through the anti-parallel diode of the switch module K13
  • the electric energy flowing out of the winding W1 flows out through the anti-parallel diode of the switch module K15
  • the diode flows out, and then flows into the anode of the power battery pack V 01 , and flows through the cathode of the power battery pack V 01 to the cathode of the power battery pack V 02 .
  • FIG. 11 shows the circuit diagram in the second sub-period (1- D 2 ) ⁇ T 2 of the latter period T 2 , referring to (D) shown in Fig. 11 , in the latter period T 2 In the second sub-period (1-D 2 ) ⁇ T 2 , all transistors in the switch modules are turned off.
  • winding U 1 , winding V 1 , winding W 1 , winding V 2 and winding W 2 have stored energy in the first sub-period D 2 ⁇ T 2 , in order to maintain the original direction of the current, the winding V 2 , winding W 2 , winding U 1 , winding V 1 and winding W 1 will release the previously stored electrical energy, and then pass through the anti-parallel diode in the switch module K 11 , the anti-parallel diode in the switch module K 13 and the switch
  • the anti-parallel diode in the module K 15 flows into the anode of the power battery pack V 01 , and flows out from the cathode of the power battery pack V 01 , and then passes through the anti-parallel diode in the switch module K 22 and the anti-parallel diode in the switch module K 24 respectively and the anti-parallel diodes in the switch module K 26 flow into the second three-phase winding.
  • the above-mentioned implementation method can realize the alternate discharge between the two power battery packs through two windings in each three-phase winding as much as possible, which is helpful to generate high-frequency pulse current to heat the power battery pack while reducing the The frequency of use of the windings is used to extend the life of the motor as much as possible.
  • Fig . 11 is only an exemplary introduction of a possible switch control mode for heating through two windings. 13 and any two of the switch module K 15 and any two of the switch module K 22 , the switch module K 24 and the switch module K 26 , that is, there are nine possible switch control modes in the previous period T1 , namely: Switch module K 11 , switch module K 13 , switch module K 22 and switch module K 24 , or switch module K 11 , switch module K 13 , switch module K 22 and switch module K 26 , or switch module K 11 , switch module K 13.
  • Switch module K 24 and switch module K 26 or switch module K 11 , switch module K 15 , switch module K 22 and switch module K 24 , or switch module K 11 , switch module K 15 , switch module K 22 and switch Module K 26 , or switch module K 11 , switch module K 15 , switch module K 22 and switch Module K 26 , or switch module K 11 , switch module K 15 , switch module K 24 and switch module K 26 , or switch module K 13 , switch module K 15 , switch module K 22 and switch module K 24 , or switch module K 13.
  • the main The controller 410 may select one of the 27 switch control modes randomly or according to certain rules to control the heating under the two windings, which is not specifically limited in this embodiment of the present application.
  • FIG. 12 exemplarily shows another circuit diagram for heating control through one winding provided in Embodiment 2 of the present application, wherein:
  • FIG. 12 shows the circuit diagram in the first sub-period D 1 ⁇ T 1 of the previous period T 1.
  • select one switch module among switch module K 11 , switch module K 13 and switch module K 15 select one switch module among switch module K 11 , switch module K 13 and switch module K 15 , and select a corresponding one among switch module K 22 , switch module K 24 and switch module K 26
  • a switch module is used to turn on the transistors in the two switch modules and turn off the transistors in the other switch modules.
  • FIG. 12 shows the circuit diagram in the second sub-period (1-D 1 ) ⁇ T 1 of the previous period T 1 , referring to (B) in Figure 12 , in the previous period T 1 In the second sub-period (1-D 1 ) ⁇ T 1 , select the same switch module as the first sub-period D 1 ⁇ T 1 among switch module K 11 , switch module K 13 and switch module K 15 , leading to Turn on the transistor in this switch module, and turn off the transistor in other switch modules.
  • FIG. 12 shows the circuit diagram in the first sub-period D 2 ⁇ T 2 of the latter period T 2.
  • switch module K 21 switch module K 23 and switch module K 25
  • turn on the transistor in this switch module and turn off the transistors in other switch modules.
  • the electric energy flowing out of the winding U1 flows out through the anti-parallel diode of the switch module K11
  • the electric energy flowing out of the winding V1 flows out through the anti-parallel diode of the switch module K13
  • the electric energy flowing out of the winding W1 flows out through the anti-parallel diode of the switch module K15
  • the diode flows out, and then flows into the anode of the power battery pack V 01 , and flows through the cathode of the power battery pack V 01 to the cathode of the power battery pack V 02 .
  • FIG. 12 shows the circuit diagram in the second sub-period (1- D 2 ) ⁇ T 2 of the latter period T 2 , referring to (D) shown in Figure 12 , in the latter period T 2 In the second sub-period (1-D 2 ) ⁇ T 2 , all transistors in the switch modules are turned off.
  • winding W 2 , winding U 1 , winding V 1 and winding W 1 have stored energy in the first sub-period D 2 ⁇ T 2 , in order to maintain the original direction of current, winding W 2 , winding U 1 , winding V 1 and winding W 1 will release the previously stored electrical energy, and then pass through the anti-parallel diode in the switch module K 11 , the anti-parallel diode in the switch module K 13 and the anti-parallel diode in the switch module K 15 respectively It flows into the anode of the power battery pack V 01 and flows out from the cathode of the power battery pack V 01 to the second three-phase winding.
  • the above implementation method can realize the alternate discharge between the two power battery packs through one winding in each three-phase winding, which is helpful to generate high-frequency pulse current to heat the power battery pack while further reducing the power consumption of the windings.
  • the frequency of use further prolongs the life of the motor.
  • FIG. 12 is only an exemplary introduction of a possible switch control mode for heating through one winding.
  • any one of the switch module K 15 , and any one of the switch module K 22 , the switch module K 24 and the switch module K 26 that is, there are 9 possible switch control modes in the previous period T1 , namely: the switch module K 11 and switch module K 22 , or switch module K 11 and switch module K 24 , or switch module K 11 and switch module K 26 , or switch module K 13 and switch module K 22 , or switch module K 13 and switch module K 24 , or switch module K 13 and switch module K 26 , or switch module K 15 and switch module K 22 , or switch module K 15 and switch module K 24 , or switch module K 15 and switch module K 26 ;
  • Select any one of switch module K 21 , switch module K 23 and switch module K 25 to be turned on, that is, there are three possible switch control modes in the latter period T 2 namely: switch module K 21 or switch module K 23 , or
  • the main control The controller 410 can randomly or according to certain rules select one of the 27 switch control modes to perform heating control under one winding, which is not specifically limited in this embodiment of the present application.
  • the above-mentioned cases 1 to 3 are only to introduce specific switch control methods by controlling the use of the same number of windings in the two three-phase windings for heating as an example.
  • the main controller can control the two three-phase windings to use the same or different numbers of windings for heating.
  • the adjustable range of high-frequency pulse current used for heating in the power battery pack device can be effectively improved.
  • the control signal generated by the main controller 410 is used to control the switch module K 21 , switch One or more of the module K 23 and the switch module K 25 are turned on, and control other switch modules except the turned-on switch module to be turned off; in the second sub-period of the previous period of each cycle, control all The switch module is turned off; in the first sub-period of the next period of each cycle, one or more of the switch module K 11 , the switch module K 13 and the switch module K 15 , and the switch module K 22 , the switch One or more of the module K 24 and the switch module K 26 are turned on, and control other switch modules except the turned-on switch module to be turned off; in the second sub-period of the next period of each cycle, the control switch One or more of the module K 11 , the switch module K 13 and the switch module K 15 are turned on, and other switch modules except the turned-on switch module are controlled to be turned off.
  • the control method of Boost and then Buck mode is adopted in the previous period of Buck and then Boost mode, and the control method of Boost and then Buck mode is adopted in the latter period of Buck and then Boost mode.
  • the control mode in the previous period of Boost first and then Buck mode please refer to the above-mentioned FIG. 10 to FIG. 12 for the specific control implementation logic, which will not be repeated in this embodiment of the present application.
  • the controller can select any one of these no less than 343 switch control modes to perform heating control in Buck mode first and then Boost mode.
  • the heating control logic can also refer to the situation that the voltage of the first power battery pack 311 is lower than the voltage of the second power battery pack 321 to execute the corresponding heating control logic, which is not specifically limited.
  • a circuit can be formed between the cathodes of the two power battery groups and the two three-phase windings , which in turn can facilitate the generation of high-frequency pulse current in the circuit to heat the two power battery packs.
  • FIG. 13 exemplarily shows a schematic structural view of a heating control system provided in Embodiment 3 of the present application.
  • the heating control system includes a control device 40 and a power battery pack device 30 .
  • the specific structure of the control device 40 and the power battery pack device 30 can refer to the second embodiment above, the difference is that the cathode of the first power battery pack 311 in the second embodiment is connected with the cathode of the second power battery pack 321, and the implementation The anode of the first power battery group 311 in Example 3 is connected to the anode of the second power battery group 321 .
  • the control signal generated by the main controller 410 is used to: control the switch module K 12 , the switch module One or more of K 14 and switch module K 16 are turned on, and control other switch modules except the turned on switch module to turn off; in the second sub-period of the previous period of each cycle, control all switches The module is turned off; in the first sub-period of the next period of each cycle, one or more of the switch module K 11 , the switch module K 13 and the switch module K 15 , as well as the switch module K 22 and the switch module One or more of the K 24 and the switch module K 26 are turned on, and other switch modules except the turned-on switch module are controlled to be turned off; in the second sub-period of the next period of each cycle, the control switch module One or more of the K 22 , the switch module K 24 and the switch module K 26 are turned on, and other switch modules except the turned-on switch module are controlled to be turned off.
  • one or more can be any of one, two, or three.
  • the switch module K 12 , the switch module K 14 and the switch module K 16 are turned on in the first sub-period of the previous period, and there are three situations in which one switch module is turned on Possibly, there are three possibilities for turning on two switch modules, and one possibility for turning on three switch modules. Therefore, there are 7 switch control modes in the first sub-period of the previous period.
  • switch module K 11 , switch module K 13 and switch module K 15 , switch module K 22 , switch module K 24 and switch module K are turned on in the first sub-period of the latter period.
  • One or more of 26 turn on one switch module in switch module K 11 , switch module K 13 and switch module K 15 and turn on one switch in switch module K 22 , switch module K 24 and switch module K 26
  • the module one switch module among switch module K 11 , switch module K 13 and switch module K 15 is turned on and two of switch module K 22 , switch module K 24 and switch module K 26 are turned on
  • the switch module one switch module among the switch module K 11 , switch module K 13 and switch module K 15 is turned on and three of the switch module K 22 , switch module K 24 and switch module K 26 are turned on.
  • the not less here is derived from the fact that one or more of the switch module K 22 , the switch module K 24 and the switch module K 26 turned on in the second sub-period of the later period is related to the subsequent One or more of the switch module K 22 , the switch module K 24 and the switch module K 26 that are turned on in the first sub-period of a period may also be different, and as for how many different situations exist, It can be deduced with reference to the above content, and the present application will not list them one by one.
  • the following example uses the same number of windings in the two three-phase windings as an example to introduce the specific circuit implementation of heating control.
  • the first sub-period of the previous period is denoted as D 1 ⁇ T 1
  • the second sub-period of the previous period is denoted as (1-D 1 ) ⁇ T 1
  • the first sub-period of the subsequent period is The sub-period is expressed as D 2 ⁇ T 2
  • the second sub-period of the latter period is expressed as (1-D 2 ) ⁇ T 2 , then:
  • FIG. 14 exemplarily shows a circuit diagram for heating control through three windings provided by Embodiment 3 of the present application, wherein:
  • FIG. 14 shows the circuit diagram in the first sub-period D 1 ⁇ T 1 of the previous period T 1.
  • the transistors in the switch module K 12 , the switch module K 14 and the switch module K 16 are turned on, and the transistors in the other switch modules are turned off.
  • the electric energy released by the power battery pack V 01 flows into the anode of the power battery pack V 02 , and then passes through the cathode of the power battery pack V 02 to be divided into three paths, and one path flows into the winding U through the anti-parallel diode in the switch module K 22 2 , the other way flows into the winding V 2 through the anti-parallel diode in the switch module K 24 , and the other way flows into the winding W 2 through the anti-parallel diode in the switch module K 26 , so that energy is stored in the winding U 2 , winding V 2 and winding W 2 in.
  • the electric energy passes through the second ends of the three windings and then flows out into one path, which is divided into three paths to flow to winding U 1 , winding V 1 and winding W 1 , so that energy is stored in winding U 1 , winding V 1 and winding W 1 in.
  • the electric energy flowing out from the winding U1 flows out through the transistor in the switch module K12
  • the electric energy flowing out from the winding V1 flows out through the transistor in the switch module K14
  • the electric energy flowing out from the winding W1 flows out through the switch module K
  • the triode in 16 flows out, and then all flow into the cathode of the power battery pack V 01 .
  • FIG. 14 shows the circuit diagram in the second sub-period (1-D 1 ) ⁇ T 1 of the previous period T 1 .
  • the previous period T 1 In the second sub-period (1-D 1 ) ⁇ T 1 , all transistors in the switch modules are turned off.
  • each of the three-phase windings has stored energy in the first sub-period D 1 ⁇ T 1 , when the power battery pack V 01 is cut off, in order to maintain the original direction of the current, each The three windings in the first three-phase winding will release the previously stored electric energy, and then flow out through the anti-parallel diode in the switch module K 11 , the anti-parallel diode in the switch module K 13 and the anti-parallel diode in the switch module K 15 , then all flow into the anode of the power battery pack V 02 , and flow out from the cathode of the power battery pack V 02 , respectively through the anti-parallel diode in the switch module K 22 , the anti-parallel diode in the switch module K 24 and the switch module K 26
  • the anti-parallel diodes of are out to winding U 2 , winding V 2 and winding W 2 .
  • FIG. 14 shows the circuit diagram in the first sub-period D 2 ⁇ T 2 of the latter period T 2 , referring to (C) shown in Fig. 14, in the first In the sub-period D 2 ⁇ T 2 , the transistors in the switch module K 11 , the switch module K 13 , the switch module K 15 , the switch module K 22 , the switch module K 24 and the switch module K 26 are turned on, and the transistors in the other switch modules off.
  • the electric energy released by the power battery pack V 02 is divided into three paths, one path flows into the winding U 1 through the triode in the switch module K 11 , the other path flows into the winding V 1 through the triode in the switch module K 13 , and the other path flows into the winding V 1 through the switch module K 13
  • the triode in module K 15 flows into winding W 1 , thereby storing energy in winding U 1 , winding V 1 and winding W 1 .
  • the electric energy flows out through the second ends of the three windings, and is divided into three flows to the winding U 2 , the winding V 2 and the winding W 2 , so that the energy is stored in the winding U 2 , the winding V 2 and the winding W 2 in.
  • the electric energy flowing out of the winding U2 flows out through the transistor in the switch module K22
  • the electric energy flowing out of the winding V2 flows out through the transistor in the switch module K24
  • the electric energy flowing out of the winding W2 flows out through the transistor in the switch module K26 ,
  • all flow into the negative electrode of the power battery pack V 02 It can be seen that in the first sub-period D 2 ⁇ T 2 of the latter period T 2 , the electric energy released by the power battery pack V 02 stores energy for three windings in each three-phase winding;
  • FIG. 14 shows the circuit diagram in the second sub-period (1-D 2 ) ⁇ T 2 of the latter period T 2 .
  • the transistors in the switch module K 22 , the switch module K 24 and the switch module K 26 are turned on, and the transistors in the other switch modules are turned off.
  • the electric energy flowing out of the cathode of the power battery pack V 01 is divided into three paths, one path flows into the winding U 1 through the anti-parallel diode in the switch module K 12 , and the other path flows into the winding V through the anti-parallel diode in the switch module K 14 1 , and then flows into the winding W 1 through the anti-parallel diode in the switch module K 16 . It can be seen that in the second sub-period (1-D 2 ) ⁇ T 2 of the latter period T 2 , the power battery pack V 02 combines the electric energy stored in the three windings of each three-phase winding to form the power battery pack V 01 Charge.
  • the current flow direction in the power battery pack device 30 changes, so that a high-frequency pulse current is generated in the power battery pack device 30, and the high-frequency pulse current flows through the power battery pack V 01 and the power battery pack V 02 , Joule heat is generated due to the internal resistance of the power battery pack V 01 and the power battery pack V 02 , and the power battery pack V 01 and the power battery pack V 02 are effectively heated by using the Joule heat energy.
  • FIG. 15 exemplarily shows a circuit diagram for heating control through two windings provided by Embodiment 3 of the present application, wherein:
  • FIG. 15 shows the circuit diagram in the first sub-period D 1 ⁇ T 1 of the previous period T 1.
  • select two switch modules among switch module K 12 , switch module K 14 and switch module K 16 turn on the triodes in these two switch modules, and turn off the transistors in other switch modules Triode.
  • the electric energy passes through the second ends of the three windings and then flows out into one path, which is divided into two paths to flow to the winding V 1 and the winding W 1 , so that the energy is stored in the winding V 1 and the winding W 1 .
  • the electric energy flowing out of the winding V1 flows out through the triode in the switch module K14
  • the electric energy flowing out of the winding W1 flows out through the triode in the switch module K16 , and then both flow into the cathode of the power battery pack V01 .
  • FIG. 15 shows the circuit diagram in the second sub-period (1-D 1 ) ⁇ T 1 of the previous period T 1 .
  • the previous period T 1 In the second sub-period (1-D 1 ) ⁇ T 1 , all transistors in the switch modules are turned off.
  • FIG. 15 shows is the circuit diagram in the first sub-period D 2 ⁇ T 2 of the latter period T 2 , referring to (C) shown in Fig. 15 , in the first In sub-period D 2 ⁇ T 2 , select two switch modules among switch module K 11 , switch module K 13 and switch module K 15 , and select two switch modules among switch module K 22 , switch module K 24 and switch module K 26 switch modules, turn on the transistors in these four switch modules, and turn off the transistors in other switch modules. For example, as shown in (C) in FIG.
  • the electric energy flows out through the combination of the winding U1 and the second end of the winding W1 , and flows into two paths to the winding U2 and the winding V2 , thereby storing energy in the winding U2 and the winding V2 .
  • the electric energy flowing out of the winding U2 flows out through the triode in the switch module K22
  • the electric energy flowing out of the winding V2 flows out through the triode in the power switch module K24 , and then both flow into the cathode of the power battery pack V02 . It can be seen that in the first sub-period D 2 ⁇ T 2 of the latter period T 2 , the electric energy released by the power battery pack V 02 stores energy for two windings in each three-phase winding;
  • FIG. 15 shows the circuit diagram in the second sub-period (1-D 2 ) ⁇ T 2 of the latter period T 2 .
  • the latter period T 2 In the second sub-period (1-D 2 ) ⁇ T 2 , select the same two switch modules as the first sub-period D 2 ⁇ T 2 among the switch module K 22 , the switch module K 24 and the switch module K 26 , The transistors in these two switch modules are turned on, and the transistors in the other switch modules are turned off.
  • the electric energy flowing out of the cathode of the power battery pack V 01 flows into the first three-phase winding through the anti-parallel diode in the switch module K 12 , the anti-parallel diode in the switch module K 14 and the anti-parallel diode in the switch module K 16 respectively.
  • the power battery pack V 02 combines the electric energy stored in the two windings of each three-phase winding to form the power battery pack V 01 Charge.
  • the above-mentioned implementation method can realize the alternate discharge between the two power battery packs through the two windings of the three-phase winding as much as possible, which helps to generate high-frequency pulse current to heat the power battery pack while reducing the winding load. Frequency of use, to extend the life of the motor as much as possible.
  • the main The controller 410 may select one of the 27 switch control modes randomly or according to certain rules to control the heating under the two windings, which is not specifically limited in this embodiment of the present application.
  • FIG. 16 exemplarily shows a circuit diagram for heating control through one winding provided in Embodiment 3 of the present application, wherein:
  • FIG. 16 shows the circuit diagram in the first sub-period D 1 ⁇ T 1 of the previous period T 1.
  • select a switch module among switch module K 12 , switch module K 14 and switch module K 16 turn on the transistor in this switch module, and turn off the transistors in other switch modules.
  • the electric energy flows out to the winding V 1 through the second ends of the three windings, and then is stored in the winding V 1 .
  • the electric energy flowing out from the winding V 1 flows out to the cathode of the power battery pack V 01 through the triode in the switch module K 14 . It can be seen that in the first sub-period D 1 ⁇ T 1 of the previous period T 1 , the electric energy released by the power battery pack V 01 passes through three windings in the second three-phase winding and one winding in the first three-phase winding Charging the power battery pack V02 , and three windings in the second three-phase winding and one winding in the first three-phase winding also store energy;
  • FIG. 16 shows the circuit diagram in the second sub-period (1-D 1 ) ⁇ T 1 of the previous period T 1 .
  • the previous period T 1 In the second sub-period (1-D 1 ) ⁇ T 1 , all transistors in the switch modules are turned off.
  • FIG. 16 shows the circuit diagram in the first sub-period D 2 ⁇ T 2 of the latter period T 2 , referring to (C) shown in Fig. 16, in the first sub-period D 2 of the latter period
  • select one switch module among switch module K 11 , switch module K 13 and switch module K 15 select one switch module among switch module K 22 , switch module K 24 and switch module K 26 module, turn on the transistors in these two switch modules, and turn off the transistors in other switch modules.
  • FIG. 16 shows the circuit diagram in the second sub-period (1-D 2 ) ⁇ T 2 of the latter period T 2 .
  • the latter period T 2 In the second sub-period (1-D 2 ) ⁇ T 2 , select a switch module that is the same as the first sub-period D 2 ⁇ T 2 among switch module K 22 , switch module K 24 and switch module K 26 , leading to Turn on the transistor in this switch module, and turn off the transistor in other switch modules.
  • the electric energy flowing out of the cathode of the power battery pack V 01 flows into the first three-phase winding through the anti-parallel diode in the switch module K 12 , the anti-parallel diode in the switch module K 14 , and the anti-parallel diode in the switch module K 16 respectively.
  • the power battery pack V 02 charges the power battery pack V 01 together with the electric energy stored in one winding of each three-phase winding .
  • the above-mentioned implementation method can realize the alternate discharge between the two power battery packs through one winding in each three-phase winding as much as possible, which helps to further reduce the The frequency of use of the windings further prolongs the life of the motor.
  • any one of the switch modules K 16 that is, there are three possible switch control modes in the previous period T1 , namely: switch module K 12 , or switch module K 14 , or switch module K 16 ; the latter period can be selected Turn on any one of switch module K 11 , switch module K 13 , and switch module K 15 and any one of switch module K 22 , switch module K 24 , and switch module K 26 , that is, there are nine types in the latter period T 2
  • Possible switch control modes namely: switch module K 11 and switch module K 22 , or switch module K 11 and switch module K 24 , or switch module K 11 and switch module K 26 , or switch module K 13 and switch module K 22 , or switch module K 13 and switch module K 24 , or switch module K 13 and switch module K 26 , or switch module K 15 and switch module K 22 , or switch module K 15 and switch module K 24 , or
  • the main control The controller 410 can randomly or according to certain rules select one of the 27 switch control modes to perform heating control under one winding, which is not specifically limited in this embodiment of the present application.
  • the above-mentioned cases 1 to 3 are only to introduce specific switch control methods by controlling the use of the same number of windings in the two three-phase windings for heating as an example.
  • the main controller can control the two three-phase windings to use the same or different numbers of windings for heating.
  • the adjustable range of high-frequency pulse current used for heating in the power battery pack device can be effectively improved.
  • the control signal generated by the main controller 410 is used to control the switch module K 11 , switch One or more of the module K 13 and the switch module K 15 , and one or more of the switch module K 22 , the switch module K 24 and the switch module K 26 conduct, and control other than the conduction switch module
  • the switch module is turned off; in the second sub-period of the previous period of each cycle, one or more of the switch module K 22 , the switch module K 24 and the switch module K 26 are controlled to be turned on, and the Switching modules other than the switching module are turned off; in the first sub-period of the next period of each cycle, one or more of the switching module K 12 , the switching module K 14 and the switching module K 16 are controlled to be turned on, And control other switch modules except the switched-on switch module to be turned off; in the second sub-period of the next period of each cycle, control all the switch modules to be turned off.
  • the control method of Buck first and then Boost mode is used in the previous period of Boost and then Buck mode, and the control method of Boost and then Buck mode is adopted in the latter period of Boost and then Buck mode.
  • the control mode in the previous period of the Buck mode and then the Boost mode please refer to the above-mentioned FIG. 14 to FIG. 16 for the specific control implementation logic, and this embodiment of the present application will not repeat them one by one.
  • the controller can choose any one of these no less than 343 switch control methods to perform heating control in Buck first and then Boost mode, so as to use different winding combinations for heating. By changing the number of winding combinations, the power can be effectively improved. Adjustable range of high-frequency pulse current for heating in battery pack devices.
  • the control signal generated by the main controller 410 is used to control the switch module K 12 , the switch module One or more of K 14 and switch module K 16 , and one or more of switch module K 21 , switch module K 23 , and switch module K 25 conduct, and control other switches except the conduction switch module
  • the module is turned off; in the second sub-period of the previous period of each cycle, one or more of the switch module K 12 , the switch module K 14 and the switch module K 16 are controlled to conduct, and the switches other than conduction are controlled Other switch modules other than the switch module are turned off; in the first sub-period of the next period of each cycle, one or more of the switch module K 22 , the switch module K 24 and the switch module K 26 are controlled to be turned on, and Control other switching modules except the switched-on switching module to turn off; in the second sub-period of the next period of each cycle, control all the switching modules to turn off.
  • one or more can be any of one, two, or three.
  • one or more of the switch module K 12 , the switch module K 14 and the switch module K 16 , and the switch module K 21 and the switch module K 23 are turned on in the first sub-period of the previous period and one or more of the switch modules K 25 , one switch module in the switch module K 12 , the switch module K 14 and the switch module K 16 is turned on and the switch module K 21 , the switch module K 23 and the switch module K 25 are turned on
  • There are nine possibilities in the case of two switch modules in turn on one switch module among switch module K 12 , switch module K 14 and switch module K 16 and turn on switch module K 21 , switch module K 23 and switch module K
  • switch module K 23 and switch module K 25 there is one possibility for three switch modules in switch module K 23 and switch module K 25 , so there are 49 switch control modes in the first sub-period of the previous period.
  • one or more of the switch module K 22 , the switch module K 24 and the switch module K 26 are turned on in the first sub-period of the latter period, and there are three possibilities for turning on one switch module.
  • There are three possibilities in the case of two switch modules, and one possibility in the case of turning on three switch modules. Therefore, there are 7 switch control modes in the first sub-period of the previous period. It can be seen that there are no less than 49 ⁇ 7 343 switch control modes in the above heating control logic.
  • the switch module K 12 , the switch module K 14 and the switch module K 16 turned on in the second sub-period of the previous period is the same as the previous one.
  • One or more of the switch module K 12 , the switch module K 14 and the switch module K 16 that are turned on in the first sub-period of a period may also be different, and as for how many different situations exist, It can be deduced with reference to the above content, and the present application will not list them one by one.
  • the following example uses the same number of windings in the two three-phase windings as an example to introduce the specific circuit implementation of heating control.
  • the first sub-period of the previous period is denoted as D 1 ⁇ T 1
  • the second sub-period of the previous period is denoted as (1-D 1 ) ⁇ T 1
  • the first sub-period of the subsequent period is The sub-period is expressed as D 2 ⁇ T 2
  • the second sub-period of the latter period is expressed as (1-D 2 ) ⁇ T 2 , then:
  • FIG. 17 exemplarily shows another circuit diagram for heating control through three windings provided by Embodiment 3 of the present application, wherein:
  • FIG. 17 shows the circuit diagram in the first sub-period D 1 ⁇ T 1 of the previous period T 1.
  • the transistors in the switch module K 12 , the switch module K 14 , the switch module K 16 , the switch module K 21 , the switch module K 23 and the switch module K 25 are turned on, and the transistors in the other switch modules off.
  • the electric energy released by the anode of the power battery pack V 01 is divided into three paths, one path flows into the winding U 2 through the triode in the switch module K 21 , the other path flows into the winding V 2 through the triode in the switch module K 23 , and the other path flows into the winding V 2 through the triode in the switch module K 23
  • the energy flows into the winding W 2 through the triode in the switch module K 25 , so that energy is stored in the winding U 2 , the winding V 2 and the winding W 2 .
  • the electric energy passes through the second ends of the three windings and combines into one path, and then divides into three paths to flow to winding U 1 , winding V 1 and winding W 1 , thereby storing energy in winding U 1 , winding V 1 and winding W 1 in.
  • the electric energy flowing out from the winding U1 flows out through the transistor in the switch module K12
  • the electric energy flowing out from the winding V1 flows out through the transistor in the switch module K14
  • the electric energy flowing out from the winding W1 flows out through the switch module K
  • the triode in 16 flows out, and then all flow into the cathode of the power battery pack V 01 . It can be seen that in the first sub-period D 1 ⁇ T 1 of the previous period T 1 , the electric energy released by the power battery pack V 01 stores energy for three windings in each three-phase winding;
  • FIG. 17 shows the circuit diagram in the second sub-period (1-D 1 ) ⁇ T 1 of the previous period T 1 .
  • the transistors in the switch module K 12 , the switch module K 14 and the switch module K 16 are turned on, and the transistors in the other switch modules are turned off.
  • the power battery pack V 01 combines the electric energy stored in the three windings of each three-phase winding to form the power battery pack V 02 Charge;
  • FIG. 17 shows the circuit diagram in the first sub-period D 2 ⁇ T 2 of the latter period T 2 , referring to (C) shown in Fig. 17, in the first In the sub-period D 2 ⁇ T 2 , the transistors in the switch module K 22 , the switch module K 24 and the switch module K 26 are turned on, and the transistors in the other switch modules are turned off.
  • the electric energy released by the anode of the power battery pack V 02 flows into the anode of the power battery pack V 01 , and the electric energy flowing out of the cathode of the power battery pack V 01 is divided into three paths, one of which passes through the anti-parallel diode in the switch module K 12 It flows into the winding U 1 , the other way flows into the winding V 1 through the anti-parallel diode in the switch module K 14 , and the other way flows into the winding W 1 through the anti-parallel diode in the switch module K 16 , so that energy is stored in the winding U 1 and winding V 1 and winding W1 .
  • the electric energy is combined into one path through the second ends of the three windings, and then divided into three paths to flow to winding U 2 , winding V 2 and winding W 2 , thereby storing energy in winding U 2 , winding V 2 and winding W 2 in.
  • the electric energy flowing out of the winding U2 flows out through the transistor of the switch module K22
  • the electric energy flowing out of the winding V2 flows out through the transistor of the switch module K24
  • the electric energy flowing out of the winding W2 flows out through the transistor of the switch module K26 , and then flows into the power The cathode of the battery pack V 02 .
  • FIG. 17 shows the circuit diagram in the second sub-period (1-D 2 ) ⁇ T 2 of the latter period T 2 .
  • T 2 In the second sub-period (1-D 2 ) ⁇ T 2 , all transistors in the switch modules are turned off.
  • winding U 1 , winding V 1 , winding W 1 , winding U 2 , winding V 2 and winding W 2 have stored energy in the first sub-period D 2 ⁇ T 2 , therefore, for the maintenance current In the original direction, the winding U 2 , winding V 2 , winding W 2 , winding U 1 , winding V 1 and winding W 1 will release the previously stored electric energy, and then pass through the anti-parallel diode in the switch module K 21 and the switch module K respectively.
  • the anti-parallel diode in 23 and the anti-parallel diode in the switch module K 25 flow into the anode of the power battery pack V 01 , and flow out from the cathode of the power battery pack V 01 , and then pass through the anti-parallel diode in the switch module K 12 , the switch
  • the anti-parallel diode in module K 14 and the anti-parallel diode in switching module K 16 flow into winding U 1 , winding V 1 and winding W 1 .
  • the current flow direction in the power battery pack device 30 changes, so that a high-frequency pulse current is generated in the power battery pack device 30, and the high-frequency pulse current flows through the power battery pack V 01 and the power battery pack V 02 , Joule heat is generated due to the internal resistance of the power battery pack V 01 and the power battery pack V 02 , and the power battery pack V 01 and the power battery pack V 02 are effectively heated by using the Joule heat energy.
  • FIG. 18 exemplarily shows another circuit diagram for heating control through two windings provided by Embodiment 3 of the present application, wherein:
  • FIG. 18 shows the circuit diagram in the first sub-period D 1 ⁇ T 1 of the previous period T 1.
  • select two switch modules among switch module K 12 , switch module K 14 and switch module K 16 , and select two switch modules among switch module K 21 , switch module K 23 and switch module K 25 A switch module is used to turn on the transistors in the four switch modules and turn off the transistors in other switch modules. For example, as shown in (A) in FIG.
  • the electric energy is combined into one path through the second end of the winding U 2 and the winding W 2 , and then divided into two paths to flow to the winding U 1 and the winding V 1 , thereby storing energy in the winding U 1 and the winding V 1 .
  • the electric energy flowing out of the winding U1 flows out through the triode in the switch module K12
  • the electric energy flowing out of the winding V1 flows out through the triode in the switch module K14 , and then both flow into the cathode of the power battery pack V01 . It can be seen that in the first sub-period D 1 ⁇ T 1 of the previous period T 1 , the electric energy released by the power battery pack V 01 stores energy for two windings in each three-phase winding;
  • FIG. 18 shows the circuit diagram in the second sub-period (1-D 1 ) ⁇ T 1 of the previous period T 1 .
  • the switch module K 12 selects the same two switch modules as the first sub-period D 1 ⁇ T 1 from the switch module K 12 , the switch module K 14 and the switch module K 16 , The transistors in these two switch modules are turned on, and the transistors in the other switch modules are turned off.
  • Winding V 1 , winding U 2 and winding W 2 will release the previously stored electrical energy, and the electrical energy released from the windings will flow into the cathode of the power battery pack V 01 through the triode in the switch module K 12 and the triode in the switch module K 14 respectively , and then flow out to the anode of the power battery pack V 02 together with the electric energy released by the power battery pack V 01 .
  • the electric energy flowing out of the cathode of the power battery pack V 02 flows to the second three-phase winding through the anti-parallel diode in the switch module K 22 , the anti-parallel diode in the switch module K 24 and the anti-parallel diode in the switch module K 26 respectively. .
  • the power battery pack V 01 combines the electric energy stored in the two windings of each three-phase winding to form the power battery pack V 02 Charge;
  • FIG. 18 shows the circuit diagram in the first sub-period D 2 ⁇ T 2 of the latter period T 2 , referring to (C) shown in Fig. 18 , in the first In the sub-period D 2 ⁇ T 2 , select two switch modules among the switch module K 22 , the switch module K 24 and the switch module K 26 , turn on the transistors in these two switch modules, and turn off the transistors in the other switch modules. Triode.
  • the electric energy is combined into one path through the second ends of the three windings, and then divided into two paths to flow to the winding U 2 and the winding V 2 , thereby storing energy in the winding U 2 and the winding V 2 .
  • the electric energy flowing out of the winding U2 flows out through the triode of the switch module K22
  • the electric energy flowing out of the winding V2 flows out through the triode of the switching module K24 , and then flows into the cathode of the power battery pack V02 .
  • FIG. 18 shows the circuit diagram in the second sub-period (1- D 2 ) ⁇ T 2 of the latter period T 2 .
  • T 2 In the second sub-period (1-D 2 ) ⁇ T 2 , all transistors in the switch modules are turned off.
  • winding U 1 , winding V 1 , winding W 1 , winding U 2 and winding V 2 have stored energy in the first sub-period D 2 ⁇ T 2 , in order to maintain the original direction of the current, the winding U 1 , winding V 1 , winding W 1 , winding U 2 and winding V 2 will release the previously stored electrical energy, and then pass through the anti-parallel diode in the switch module K 21 , the anti-parallel diode in the switch module K 23 and the switch
  • the anti-parallel diode in the module K 25 flows into the anode of the power battery V 01 , and flows out from the cathode of the power battery V 01 , and then passes through the anti-parallel diode in the switch module K 12 and the anti-parallel diode in the switch module K 14 respectively and the anti-parallel diode in the switching module K 16 to the first three-phase winding.
  • the above-mentioned implementation method can realize the alternate discharge between the two power battery packs through two windings in each three-phase winding as much as possible, which is helpful to generate high-frequency pulse current to heat the power battery pack while reducing the The frequency of use of the windings is used to extend the life of the motor as much as possible.
  • Fig. 18 is only an exemplary introduction of a possible switch control mode for heating through two windings. 14 and any two of the switch module K 16 and any two of the switch module K 21 , switch module K 23 and switch module K 25 , that is, there are nine possible switch control modes in the previous period T 1 , namely: Switch module K 12 , switch module K 14 , switch module K 21 and switch module K 23 , or switch module K 12 , switch module K 14 , switch module K 21 and switch module K 25 , or switch module K 12 , switch module K 14.
  • Switch module K 23 and switch module K 25 or switch module K 12 , switch module K 16 , switch module K 21 and switch module K 23 , or switch module K 12 , switch module K 16 , switch module K 21 and switch Module K 25 , or switch module K 12 , switch module K 16 , switch module K 23 and switch module K 25 , or switch module K 14 , switch module K 16 , switch module K 21 and switch module K 23 , or switch module K 14.
  • the main The controller 410 may select one of the 27 switch control modes randomly or according to certain rules to control the heating under the two windings, which is not specifically limited in this embodiment of the present application.
  • FIG. 19 exemplarily shows another circuit diagram for heating control through one winding provided by Embodiment 3 of the present application, wherein:
  • FIG. 19 shows the circuit diagram in the first sub-period D 1 ⁇ T 1 of the previous period T 1.
  • select one switch module among switch module K 12 , switch module K 14 and switch module K 16 and select one switch module among switch module K 21 , switch module K 23 and switch module K 25 , turn on the transistors in the two switch modules, and turn off the transistors in the other switch modules.
  • FIG. 19 shows the circuit diagram in the second sub-period (1-D 1 ) ⁇ T 1 of the previous period T 1 .
  • the previous period T 1 In the second sub-period (1-D 1 ) ⁇ T 1 , select the same switch module as the first sub-period D 1 ⁇ T 1 among switch module K 12 , switch module K 14 and switch module K 16 , leading to Turn on the transistor in this switch module, and turn off the transistor in other switch modules.
  • the electric energy flowing out of the cathode of the power battery pack V 02 flows into the second three-phase winding through the anti-parallel diode in the switch module K 22 , the anti-parallel diode in the switch module K 24 and the anti-parallel diode in the switch module K 26 respectively.
  • the power battery pack V 01 charges the power battery pack V 02 together with the electric energy stored in one winding of each three-phase winding ;
  • FIG. 19 shows the circuit diagram in the first sub-period D 2 ⁇ T 2 of the latter period T 2 , referring to (C) shown in Fig. 19 , in the first In the sub-period D 2 ⁇ T 2 , select a switch module among switch module K 22 , switch module K 24 and switch module K 26 , turn on the transistor in this switch module, and turn off the transistors in other switch modules.
  • the electric energy flows to the winding V 2 after being combined into one path through the second ends of the three windings, so that the energy is stored in the winding V 2 . Furthermore, the electric energy flowing out of the winding V 2 flows out through the triode of the switch module K 24 and then flows into the cathode of the power battery pack V 02 . It can be seen that in the first sub-period D 2 ⁇ T 2 of the latter period T 2 , the electric energy released by the power battery pack V 02 is powered by three windings of the first three-phase winding and one winding of the second three-phase winding. The battery pack V 01 is charged, and energy is stored in three windings of the first three-phase winding and one winding of the second three-phase winding;
  • FIG. 19 shows the circuit diagram in the second sub-period (1- D 2 ) ⁇ T 2 of the latter period T 2 .
  • T 2 In the second sub-period (1-D 2 ) ⁇ T 2 , all transistors in the switch modules are turned off.
  • winding U 1 , winding V 1 , winding W 1 and winding V 2 have stored energy in the first sub-period D 2 ⁇ T 2 , in order to maintain the original direction of current, winding U 1 , winding V 1 , winding W 1 and winding V 2 will release the previously stored electric energy, and then pass through the anti-parallel diode in the switch module K 21 , the anti-parallel diode in the switch module K 23 and the anti-parallel diode in the switch module K 25 respectively It flows into the anode of the power battery pack V 01 , and flows out from the cathode of the power battery pack V 01 , and then passes through the anti-parallel diode in the switch module K 12 , the anti-parallel diode in the switch module K 14 , and the anti-parallel diode in the switch module K 16 respectively.
  • the parallel diodes flow into the first three-phase winding. It can be seen that in the second sub-period (1-D 2 ) ⁇ T 2 of the subsequent period T 2 , the electric energy stored in three windings in the first three-phase winding and one winding in the second three-phase winding is transferred to The power battery pack V 01 continues to charge the power battery pack V 01 .
  • the above implementation method can realize the alternate discharge between the two power battery packs through one winding in each three-phase winding, which is helpful to generate high-frequency pulse current to heat the power battery pack while further reducing the power consumption of the windings.
  • the frequency of use further prolongs the life of the motor.
  • any one of the switch module K 16 and any one of the switch module K 21 , switch module K 23 and switch module K 25 that is, there are nine possible switch control modes in the previous period T 1 , namely: the switch module K 12 and switch module K 21 , or switch module K 12 and switch module K 23 , or switch module K 12 and switch module K 25 , or switch module K 14 and switch module K 21 , or switch module K 14 and switch module K 23 , or switch module K 14 and switch module K 25 , or switch module K 16 and switch module K 21 , or switch module K 16 and switch module K 23 , or switch module K 16 and switch module K 25 ; the latter period can be selected Any one of the switch module K 22 , the switch module K 24 and the switch module K 26 is turned on, that is, there are three possible switch control modes in the latter period T 2 , namely: the switch module K 22 , or
  • the main control The controller 410 can randomly or according to certain rules select one of the 27 switch control modes to perform heating control under one winding, which is not specifically limited in this embodiment of the present application.
  • the above-mentioned cases 1 to 3 are only to introduce specific switch control methods by controlling the use of the same number of windings in the two three-phase windings for heating as an example.
  • the main controller can control the two three-phase windings to use the same or different numbers of windings for heating.
  • the control signal generated by the main controller 410 is used to control the switch module K 22 , switch One or more of the module K 24 and the switch module K 26 are turned on, and control other switch modules except the turned-on switch module to be turned off; in the second sub-period of the previous period of each cycle, control all The switch module is turned off; in the first sub-period of the next period of each cycle, one or more of the switch module K 12 , the switch module K 14 and the switch module K 16 , and the switch module K 21 , the switch One or more of the module K 23 and the switch module K 25 are turned on, and control other switch modules except the turned-on switch module to be turned off; in the second sub-period of the next period of each cycle, the control switch One or more of the module K 12 , the switch module K 14 and the switch module K 16 are turned on, and other switch modules except the turned-on switch module are controlled to be turned off.
  • the control method of Boost and then Buck mode is adopted in the previous period of Buck and then Boost mode, and the control method of Boost and then Buck mode is adopted in the latter period of Buck and then Boost mode.
  • the control mode in the previous period of the Boost mode and then the Buck mode please refer to the above-mentioned Fig. 17 to Fig. 19 for the specific control implementation logic, which will not be repeated in this embodiment of the present application.
  • the controller can select any one of these no less than 343 switch control modes to perform heating control in Buck mode first and then Boost mode.
  • the heating control logic can also refer to the situation that the voltage of the first power battery pack 311 is lower than the voltage of the second power battery pack 321 to execute the corresponding heating control logic, which is not specifically limited.
  • a circuit can be formed between the anodes of the two power battery groups and the two three-phase windings , which in turn can facilitate the generation of high-frequency pulse current in the circuit to heat the two power battery packs.
  • Embodiment 2 and Embodiment 3 are only introduced by taking IGBT as the switch module as an example.
  • the switch module can also choose other modules with anti-parallel diodes, and the corresponding control logic can directly refer to the above content. , which is not specifically limited in this embodiment of the present application.
  • the present application further provides an electric vehicle, including the heating control system as described above.
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to implement the control device as described above. Methods.
  • the present application also provides a computer-readable storage medium, the computer-readable medium stores program codes, and when the program codes are run on the computer, the computer realizes the above control device. method of execution.
  • the present application also provides an electronic device, the electronic device includes a processor, the processor is connected to the memory, and the processor is used to execute the computer program stored in the memory, so that the electronic device realizes the above-mentioned The method performed by the control device.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are realized in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种动力电池组装置、加热控制系统及电动汽车,动力电池组装置(30)包括依次连接的第一动力电池组(311)、第一开关模组(312)和第一储能模组(313)、以及依次连接的第二动力电池组(321)、第二开关模组(322)和第二储能模组(323),第一储能模组(313)还和第二储能模组(323)相连,第一动力电池组(311)的阳极还和第二动力电池组(321)的阳极相连,或第一动力电池组(311)的阴极还和第二动力电池组(321)的阴极相连。通过在第一动力电池组(311)、第一开关模组(312)、第一储能模组(313)、第二储能模组(323)、第二开关模组(322)和第二动力电池组(321)之间构成回路,能通过两个动力电池组之间的交替充放电在回路中形成高频脉冲电流,进而利用高频脉冲电流加热动力电池组,无需额外设置加热装置,有助于节省成本,降低设计的复杂性。

Description

一种动力电池组装置、加热控制系统及电动汽车
相关申请的交叉引用
本申请要求在2022年02月17日提交中国专利局、申请号为202210147654.1、申请名称为“一种动力电池组装置、加热控制系统及电动汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及动力电池加热技术领域,尤其涉及一种动力电池组装置、加热控制系统及电动汽车。
背景技术
锂电池是一种新型高电压且高能量密度的可充电电池,具有重量轻、储能大、无污染、无记忆效应及使用寿命长等优点,目前已成为电动汽车的动力电池组中最常使用的一种电池材料。
然而,锂电池存在一种特性,即电池容量和充放电速度会随着环境温度的降低而降低。基于该特性,在环境温度较低的场景下,电动汽车在启动时通常还需要对动力电池组进行加热,以便充分发挥动力电池组的储能及充放电能力。但目前市面上的电动汽车通常是在动力电池组的周围设置加热装置,以便在电动汽车启动时利用加热装置对动力电池组进行加热。然而,这种额外设置加热装置的方式不仅会增加电动汽车的成本,还会增加电动汽车电路设计的复杂性,不利于电动汽车的整体布局。
因此,目前对动力电池组的加热方案还有待进一步研究。
发明内容
有鉴于此,本申请提供一种动力电池组装置、加热控制系统及电动汽车,用以在两个动力电池组之间构成回路,利用该回路中产生的高频脉冲电流加热动力电池组,以解决需要额外设置加热装置才能加热动力电池组所存在的电路成本和复杂性较高的技术问题。
第一方面,本申请提供一种动力电池组装置,包括第一电池单元和第二电池单元,第一电池单元包括第一动力电池组、第一开关模组和第一储能模组,第一开关模组的第一直流端连接第一动力电池组的阳极,第一开关模组的第二直流端连接第一动力电池组的阴极,第一开关模组的交流端连接第一储能模组的第一端,第二模块包括第二动力电池组、第二开关模组和第二储能模组,第二开关模组的第一直流端连接第二动力电池组的阳极,第二开关模组的第二直流端连接第二动力电池组的阴极,第二开关模组的交流端连接第二储能模组的第一端,且第一储能模组的第二端和第二储能模组的第二端相连,第一动力电池组的阳极和第二动力电池组的阳极相连,或者,第一动力电池组的阴极和第二动力电池组的阴极相连。
在上述设计中,通过在两个动力电池组之间构成回路,有助于通过两个动力电池组之间的交替充放电,在该回路中形成高频脉冲电流,进而能利用该高频脉冲电流加热动力电 池组,以实现动力电池组在低温环境下的有效及快速加热。该种电路设计通过线缆连接两个动力电池组之间的相关节点即可实现,而不需要额外设置加热装置,有助于节省成本,降低设计的复杂性。且,通过设置双动力电池组,还能在其中一个动力电池组出故障时,及时切换至另一个动力电池组进行放电,如此,还能通过双动力电池组的冗余备份,确保使用该动力电池组装置的设备(如电动汽车)的功能顺利实现。
一种可能的设计中,第一开关模组包括第一三相整流桥,第一储能模组包括第一三相绕组,第一三相绕组中三个绕组的第一端连接第一三相整流桥的三个交流端,第一三相绕组中三个绕组的第二端相连后构成第一储能模组的第二端。在该设计中,通过使用三相整流桥作为第一开关模组,不仅能实现第一开关模组的开关功能,还能通过三相整流桥所特有的整流滤波功能,提高第一电池单元中电流波形的稳定性和电能的利用率。
一种可能的设计中,第二开关模组包括第二三相整流桥,第二储能模组包括第二三相绕组,第二三相绕组中三个绕组的第一端连接第二三相整流桥的三个交流端,第二三相绕组中三个绕组的第二端相连后构成第二储能模组的第二端。在该设计中,通过使用三相整流桥作为第二开关模组,不仅能实现第二开关模组的开关功能,还能通过三相整流桥所特有的整流滤波功能,提高第二电池单元中电流波形的稳定性和电能的利用率。
一种可能的设计中,第一三相绕组和第二三相绕组满足如下条件中的一项:第一三相绕组和第二三相绕组为两个三相电机;第一三相绕组和第二三相绕组属于一个六相电机;或者,第一三相绕组和第二三相绕组属于一个具有两套独立的三相绕组的电机。具体地,在动力电池组装置应用于电动汽车时,上述电机可以是电动汽车中固有的电机。如此,通过将电动汽车中固有的电机作为动力电池组装置中的储能模组,能利用电动汽车中的固有器件实现加热动力电池组的功能,进而避免额外添加器件,有助于节省电路成本和空间。
一种可能的设计中,第一三相整流桥和/或第二三相整流桥中的整流管为带反并联二极管的开关模块。如此,即使开关模块中的半导体器件被关断,也能利用与半导体器件反并联的二极管实现开关模块的续流。
一种可能的设计中,第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第一开关模块和第二开关模块串联,第三开关模块和第四开关模块串联,第五开关模块和第六开关模块串联,第一开关模块相对于第二开关模块的非串联节点一端、第三开关模块相对于第四开关模块的非串联节点一端和第五开关模块相对于第六开关模块的非串联节点一端分别连接第一动力电池组的阳极,第二开关模块相对于第一开关模块的非串联节点一端、第四开关模块相对于第三开关模块的非串联节点一端和第六开关模块相对于第五开关模块的非串联节点一端分别连接第一动力电池组的阴极,且第一开关模块和第二开关模块的串联节点、第三开关模块和第四开关模块的串联节点、第五开关模块和第六开关模块的串联节点连接第一三相绕组中三个绕组的第一端。相应地,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块,第七开关模块和第八开关模块串联,第七开关模块相对于第八开关模块的非串联节点一端、第九开关模块相对于第十开关模块的非串联节点一端和第十一开关模块相对于第十二开关模块的非串联节点一端分别连接第二动力电池组的阳极,第八开关模块相对于第七开关模块的非串联节点一端、第十开关模块相对于第九开关模块的非串联节点一端和第十二开关模块相对于第十一开关模块的非串联节点一端分别连接第二动力电池组的阴极,且第七开关模块和第八开关模块的串联节 点、第九开关模块和第十开关模块的串联节点、第十一开关模块和第十二开关模块的串联节点连接第二三相绕组中三个绕组的第一端。在该设计中,通过将开关模组设计为三相全波整流桥,能利用该三相全波整流桥上的六个开关模块,精准控制所连接的每个绕组的工作与否,便于实现基于一个绕组或多个绕组的储能功能。
第二方面,本申请实施例提供一种加热控制系统,包括控制装置和如上述第一方面中任一项设计所述的动力电池组装置,控制装置用于:通过控制第一开关模组和第二开关模组,控制第一动力电池组和第二动力电池组交替放电,第一动力电池组放出的电量为第二动力电池组充电,第二动力电池组放出的电量为第一动力电池组充电。如此,通过控制两个动力电池组交替放电,能在回路中产生高频脉冲电流,以实现在低温环境下有效且快速地加热动力电池组。
一种可能的设计中,第一储能模组和第二储能模组包括电机,控制装置包括主控制器、电池管理器和电机控制器,电池管理器分别与主控制器、第一动力电池组和第二动力电池组连接,电机控制器分别与主控制器、第一开关模组、第二开关模组、第一储能模组和第二储能模组连接,该情况下,电池管理器用于获取每个动力电池组的荷电状态和当前温度,电机控制器用于获取每个储能模组的工作状态,主控制器还用于根据每个动力电池组的荷电状态确定各个动力电池组的电量之和足以启动电动汽车,根据每个动力电池组的当前温度确定每个动力电池组处于低温状态,根据每个储能模组的工作状态确定每个储能模组未工作后,生成控制信号并发送给电机控制器,以便电机控制器根据控制信号,通过控制第一开关模组和第二开关模组中的各个开关模块的导通和关断,控制第一动力电池组和第二动力电池组交替放电。通过该设计,控制装置能在确定电机和电池的状态满足预设的加热条件时才进行加热控制,而在不满足预设的加热条件时则不进行加热控制,如此可避免无意义的加热操作,节省控制装置的处理资源。
一种可能的设计中,在第一储能模组包括第一三相绕组且第二储能模组包括第二三相绕组的情况下,控制装置可以根据环境温度和目标温度的温度差、预设加热时长、以及预设的温度差、加热时长和高频脉冲电流的对应关系,确定目标高频脉冲电流,当目标高频脉冲电流小于第一电流阈值时,通过控制第一开关模组和第二开关模组,控制第一动力电池组和第二动力电池组通过所对应的三相绕组中的一个绕组交替放电,当目标高频脉冲电流不小于第一电流阈值且小于第二电流阈值时,通过控制第一开关模组和第二开关模组,控制第一动力电池组和第二动力电池组通过所对应的三相绕组中的两个绕组交替放电,当目标高频脉冲电流不小于第二电流阈值时,通过控制第一开关模组和第二开关模组,控制第一动力电池组和第二动力电池组通过所对应的三相绕组中的三个绕组交替放电。在该设计中,通过参照所需的目标高频脉冲电流,在能够提供该目标高频电流的数量的绕组中选择尽量少的绕组实现加热,既能确保在预设加热时长内将动力电池组的温度加热到目标温度,又能尽量降低绕组的使用频率,延长电机的使用寿命。
一种可能的设计中,在预设的温度差、加热时长和高频脉冲电流的对应关系中温度差和预设加热时长对应多个高频脉冲电流的情况下,控制装置先从多个高频脉冲电流中选择目标高频脉冲电流,再获取第一三相绕组在目标高频脉冲电流对应的频率下的第一最大电流、第二三相绕组在目标高频脉冲电流对应的频率下的第二最大电流、以及第一三相绕组和第二三相绕组的连接节点对应的第三最大电流,之后,若目标高频脉冲电流大于第一最大电流、第二最大电流和第三最大电流中的最小值,则从多个高频脉冲电流中重新选择目 标高频脉冲电流。在该设计中,通过在动力电池组装置无法承载目标高频脉冲电流的情况下,重新选择目标高频脉冲电流,能确保使用动力电池组装置可承载的目标高频电流完成加热,进而有助于保护动力电池组装置中各个器件的安全性。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之前,在第一动力电池组的阴极和第二动力电池组的阴极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第一动力电池组的电压大于第二动力电池组的电压,则控制装置具体用于:在第一时段的第一个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第一开关模块~第十二开关模块关断;在第二时段的第一个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个、以及第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断。
在上述设计中,在第一动力电池组和第二动力电池组共阴极且第一动力电池组的电压大于第二动力电池组的电压的情况下,通过按照上述控制逻辑控制各个开关模块的导通或关断,使得电能在一个周期的前一时段内从电压高的第一动力电池组流向电压低的第二动力电池组,即动力电池组装置工作在Buck模式,电能在一个周期的后一时段内从电压低的第二动力电池组流向电压高的第一动力电池组,即动力电池组装置工作在Boost模式,可见,该设计能实现先Buck再Boost模式的加热控制。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之后,在第一动力电池组的阴极和第二动力电池组的阴极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第一动力电池组的电压大于第二动力电池组的电压,则控制装置具体用于:在第二时段的第一个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个、以及第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第一个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第一开关模块~第十二开关模块关断。
在上述设计中,在第一动力电池组和第二动力电池组共阴极且第一动力电池组的电压大于第二动力电池组的电压的情况下,通过按照上述控制逻辑控制各个开关模块的导通和关断,使得电能在一个周期的前一时段内从电压低的第二动力电池组流向电压高的第一动力电池组,即动力电池组装置工作在Boost模式,电能在一个周期的后一时段内从电压高的第一动力电池组流向电压低的第二动力电池组,即动力电池组装置工作在Buck模式, 可见,该设计能实现先Boost再Buck模式的加热控制。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之前,在第一动力电池组的阴极和第二动力电池组的阴极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第二动力电池组的电压大于第一动力电池组的电压,则控制装置具体用于:在第一时段的第一个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个、以及第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第一个子时段内,控制第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第一开关模块~第十二开关模块关断。
在上述设计中,在第一动力电池组和第二动力电池组共阴极且第一动力电池组的电压小于第二动力电池组的电压的情况下,通过按照上述控制逻辑控制各个开关模块,使得电能在一个周期的前一时段内从电压低的第一动力电池组流向电压高的第二动力电池组,即动力电池组装置工作在Boost模式,电能在一个周期的后一时段内从电压高的第二动力电池组流向电压低的第一动力电池组,即动力电池组装置工作在Buck模式,可见,该设计能实现先Boost再Buck模式的加热控制。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之后,在第一动力电池组的阴极和第二动力电池组的阴极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第二动力电池组的电压大于第一动力电池组的电压,则控制装置具体用于:在第二时段的第一个子时段内,控制第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第一开关模块~第十二开关模块关断;在第一时段的第一个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个、以及第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断。
在上述设计中,在第一动力电池组和第二动力电池组共阴极且第一动力电池组的电压小于第二动力电池组的电压的情况下,通过按照上述控制逻辑控制各个开关模块,使得电能在一个周期的前一时段内从电压高的第二动力电池组流向电压低的第一动力电池组,即动力电池组装置工作在Buck模式,电能在一个周期的后一时段内从电压低的第一动力电池组流向电压高的第二动力电池组,即动力电池组装置工作在Boost模式,可见,该设计能实现先Buck再Boost模式的加热。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段 之前,在第一动力电池组的阳极和第二动力电池组的阳极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第一动力电池组的电压大于第二动力电池组的电压,则控制装置具体用于:在第一时段的第一个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第一开关模块~第十二开关模块关断;在第二时段的第一个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个、以及第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断。
在上述设计中,在第一动力电池组和第二动力电池组共阳极且第一动力电池组的电压大于第二动力电池组的电压的情况下,通过按照上述控制逻辑控制各个开关模块,使得电能在一个周期的前一时段内从电压高的第一动力电池组流向电压低的第二动力电池组,即动力电池组装置工作在Buck模式,电能在一个周期的后一时段内从电压低的第二动力电池组流向电压高的第一动力电池组,即动力电池组装置工作在Boost模式,可见,该设计能实现先Buck再Boost模式的加热控制。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之后,在第一动力电池组的阳极和第二动力电池组的阳极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第一动力电池组的电压大于第二动力电池组的电压,则控制装置具体用于:在第二时段的第一个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个、以及第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第一个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第一开关模块~第十二开关模块关断。
在上述设计中,在第一动力电池组和第二动力电池组共阳极且第一动力电池组的电压大于第二动力电池组的电压的情况下,通过按照上述控制逻辑控制各个开关模块,使得电能在一个周期的前一时段内从电压低的第二动力电池组流向电压高的第一动力电池组,即动力电池组装置工作在Boost模式,电能在一个周期的后一时段内从电压高的第一动力电池组流向电压低的第二动力电池组,即动力电池组装置工作在Buck模式,可见,该设计能实现先Boost再Buck模式的加热控制。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之前,在第一动力电池组的阳极和第二动力电池组的阳极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块, 第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第二动力电池组的电压大于第一动力电池组的电压,则控制装置具体用于:在第一时段的第一个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个、以及第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第一个子时段内,控制第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第一开关模块~第十二开关模块关断。
在上述设计中,在第一动力电池组和第二动力电池组共阳极且第一动力电池组的电压小于第二动力电池组的电压的情况下,通过按照上述控制逻辑控制各个开关模块,使得电能在一个周期的前一时段内从电压低的第一动力电池组流向电压高的第二动力电池组,即动力电池组装置工作在Boost模式,电能在一个周期的后一时段内从电压高的第二动力电池组流向电压低的第一动力电池组,即动力电池组装置工作在Buck模式,可见,该设计能实现先Boost再Buck模式的加热控制。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之后,在第一动力电池组的阳极和第二动力电池组的阳极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第二动力电池组的电压大于第一动力电池组的电压,则控制装置具体用于:在第二时段的第一个子时段内,控制第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第一开关模块~第十二开关模块关断;在第一时段的第一个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个、以及第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断。
在上述设计中,在第一动力电池组和第二动力电池组共阳极且第一动力电池组的电压小于第二动力电池组的电压的情况下,通过按照上述控制逻辑控制各个开关模块,使得电能在一个周期的前一时段内从电压高的第二动力电池组流向电压低的第一动力电池组,即动力电池组装置工作在Buck模式,电能在一个周期的后一时段内从电压低的第一动力电池组流向电压高的第二动力电池组,即动力电池组装置工作在Boost模式,可见,该设计能实现先Buck再Boost模式的加热控制。
第三方面,本申请提供一种加热控制方法,适用于控制装置,控制装置连接如上述第一方面中任一项设计所述的动力电池组装置,该方法包括:通过控制第一开关模组和第二开关模组,控制第一动力电池组和第二动力电池组交替放电,第一动力电池组放出的电量为第二动力电池组充电,第二动力电池组放出的电量为第一动力电池组充电。
一种可能的设计中,在控制第一开关模组和第二开关模组之前,该方法还包括:获取 每个动力电池组的荷电状态和当前温度、以及每个储能模组的工作状态,根据每个动力电池组的荷电状态确定各个动力电池组的电量之和足以启动电动汽车,根据每个动力电池组的当前温度确定每个动力电池组处于低温状态,根据每个储能模组的工作状态确定每个储能模组未工作。
一种可能的设计中,在第一储能模组包括第一三相绕组且第二储能模组包括第二三相绕组的情况下,通过控制第一开关模组和第二开关模组,控制第一动力电池组和第二动力电池组交替放电,包括:根据环境温度和目标温度的温度差、预设加热时长、以及预设的温度差、加热时长和高频脉冲电流的对应关系,确定目标高频脉冲电流;当目标高频脉冲电流小于第一电流阈值时,通过控制第一开关模组和第二开关模组,控制第一动力电池组和第二动力电池组通过所对应的三相绕组中的一个绕组交替放电;当目标高频脉冲电流不小于第一电流阈值且小于第二电流阈值时,通过控制第一开关模组和第二开关模组,控制第一动力电池组和第二动力电池组通过所对应的三相绕组中的两个绕组交替放电;当目标高频脉冲电流不小于第二电流阈值时,通过控制第一开关模组和第二开关模组,控制第一动力电池组和第二动力电池组通过所对应的三相绕组中的三个绕组交替放电。
一种可能的设计中,在预设的温度差、加热时长和高频脉冲电流的对应关系中温度差和预设加热时长对应多个高频脉冲电流的情况下,该方法还包括:先从多个高频脉冲电流中选择目标高频脉冲电流,再获取第一三相绕组在目标高频脉冲电流对应的频率下的第一最大电流、第二三相绕组在目标高频脉冲电流对应的频率下的第二最大电流、以及第一三相绕组和第二三相绕组的连接节点对应的第三最大电流,之后,若目标高频脉冲电流小于第一最大电流、第二最大电流和第三最大电流中的最小值,则从多个高频脉冲电流中重新选择目标高频脉冲电流。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之前,在第一动力电池组的阴极和第二动力电池组的阴极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第一动力电池组的电压大于第二动力电池组的电压,则控制第一开关模组和第二开关模组,包括:在第一时段的第一个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第一开关模块~第十二开关模块关断;在第二时段的第一个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个、以及第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之后,在第一动力电池组的阴极和第二动力电池组的阴极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第一动力电池组的电压大于第二动力电池组的电压,则控制第一开关模组和第二开关模组,包括:在第二时段的第一个子时段内,控制第 二开关模块、第四开关模块和第六开关模块中的一个或多个、以及第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第一个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第一开关模块~第十二开关模块关断。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之前,在第一动力电池组的阴极和第二动力电池组的阴极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第二动力电池组的电压大于第一动力电池组的电压,则控制第一开关模组和第二开关模组,包括:在第一时段的第一个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个、以及第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第一个子时段内,控制第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第一开关模块~第十二开关模块关断。
一种可能的设计中,一个交替周期可以包括第一时段和第二时段,第一时段位于第二时段之后,在第一动力电池组的阴极和第二动力电池组的阴极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第二动力电池组的电压大于第一动力电池组的电压,则控制第一开关模组和第二开关模组,包括:在第二时段的第一个子时段内,控制第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第一开关模块~第十二开关模块关断;在第一时段的第一个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个、以及第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之前,在第一动力电池组的阳极和第二动力电池组的阳极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第一动力电池组的电压大于第二动力电池组的电压,则控制第一开关模组和第二开关模组,包括:在第一时段的第一个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个导通,并控制除导通的开关模 块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第一开关模块~第十二开关模块关断;在第二时段的第一个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个、以及第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之后,在第一动力电池组的阳极和第二动力电池组的阳极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第一动力电池组的电压大于第二动力电池组的电压,则控制第一开关模组和第二开关模组,包括:在第二时段的第一个子时段内,控制第一开关模块、第三开关模块和第五开关模块中的一个或多个、以及第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第一个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第一开关模块~第十二开关模块关断。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之前,在第一动力电池组的阳极和第二动力电池组的阳极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第二动力电池组的电压大于第一动力电池组的电压,则控制第一开关模组和第二开关模组,包括:在第一时段的第一个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个、以及第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第一个子时段内,控制第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第一开关模块~第十二开关模块关断。
一种可能的设计中,一个交替周期包括第一时段和第二时段,第一时段位于第二时段之后,在第一动力电池组的阳极和第二动力电池组的阳极相连,且第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下,若第二动力电池组的电压大于第一动力电池组的电压,则控制第一开关模组和第二开关模组,包括:在第二时段的第一个子时段内,控制第八开关模块、第十开关模块和第十二开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第二时段的第二个子时段内,控制第一开关模块~第十 二开关模块关断;在第一时段的第一个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个、以及第七开关模块、第九开关模块和第十一开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在第一时段的第二个子时段内,控制第二开关模块、第四开关模块和第六开关模块中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断。
第四方面,本申请提供一种加热控制装置,该装置包括处理器,处理器与存储器连接,处理器用于执行存储器中存储的计算机程序,以使得加热控制装置执行如上述第三方面任一项设计所述的方法。
第五方面,本申请提供一种芯片,包括处理器和通信接口,处理器可以通过通信接口读取指令,以执行如上述第三方面中任一项设计所对应的方法。
第六方面,本申请提供一种计算机可读存储介质,该计算机可读介质存储有程序代码,当程序代码在计算机上运行时,使得计算机执行如上述第三方面中任一项设计所对应的方法。
第七方面,本申请提供一种计算机程序产品,当该计算机程序产品在处理器上运行时,实现如上述第三方面中任一项设计所对应的方法。
第八方面,本申请提供一种电动汽车,包括如上述第二方面中任一项设计所述的加热控制系统。
上述第三方面至第八方面的有益效果,具体请参照上述第一方面和第二方面中相应设计可以达到的技术效果,这里不再重复赘述。
附图说明
图1示例性示出本申请实施例提供的一种电动汽车的应用场景示意图;
图2示例性示出业界提供的一种可能的加热控制系统的架构示意图;
图3示例性示出本申请实施例一提供的一种动力电池组装置的结构示意图;
图4示例性示出本申请实施例一提供的一种加热控制系统的架构示意图;
图5示例性示出本申请实施例一提供的一种加热控制方法的流程示意图;
图6示例性示出本申请实施例二提供的一种加热控制系统的架构示意图;
图7示例性示出本申请实施例二提供的一种通过三个绕组进行加热控制的电路示意图;
图8示例性示出本申请实施例二提供的一种通过两个绕组进行加热控制的电路示意图;
图9示例性示出本申请实施例二提供的一种通过一个绕组进行加热控制的电路示意图;
图10示例性示出本申请实施例二提供的另一种通过三个绕组进行加热控制的电路示意图;
图11示例性示出本申请实施例二提供的另一种通过两个绕组进行加热控制的电路示意图;
图12示例性示出本申请实施例二提供的另一种通过一个绕组进行加热控制的电路示意图;
图13示例性示出本申请实施例三提供的一种加热控制系统的架构示意图;
图14示例性示出本申请实施例三提供的一种通过三个绕组进行加热控制的电路示意图;
图15示例性示出本申请实施例三提供的一种通过两个绕组进行加热控制的电路示意 图;
图16示例性示出本申请实施例三提供的一种通过一个绕组进行加热控制的电路示意图;
图17示例性示出本申请实施例三提供的另一种通过三个绕组进行加热控制的电路示意图;
图18示例性示出本申请实施例三提供的另一种通过两个绕组进行加热控制的电路示意图;
图19示例性示出本申请实施例三提供的另一种通过一个绕组进行加热控制的电路示意图。
具体实施方式
本申请所公开的方案可以应用于使用动力电池组作为动力能源的终端设备,尤其适用于使用锂离子动力电池组作为动力能源的终端设备。其中,终端设备可以是使用动力电池组的智能设备,包括但不限于:智能家居设备,诸如电视、扫地机器人、智能台灯、音响系统、智能照明系统、电器控制系统、家庭背景音乐、家庭影院系统、对讲系统、视频监控等;智能运输设备,诸如电动汽车、电动轮船、电动无人机、电动火车、电动货车、电动卡车等;智能制造设备,诸如机器人、工业设备、智能物流、智能工厂等。或者,终端设备也可以是使用动力电池组的计算机设备,例如台式机、个人计算机、服务器等。还应当理解的是,终端设备也可以是使用动力电池组的便携式电子设备,诸如手机、平板电脑、掌上电脑、耳机、音响、穿戴设备(如智能手表)、车载设备、虚拟现实设备、增强现实设备等。便携式电子设备的示例包括但不限于搭载
Figure PCTCN2022115792-appb-000001
或者其它操作系统的便携式电子设备。上述便携式电子设备也可以是诸如具有触敏表面(例如触控面板)的膝上型计算机(Laptop)等。
一种具体的应用场景中,本申请所公开的方案可以应用于电动汽车,电动汽车又称为新能源汽车,是一种以电能驱动的汽车。图1示例性示出本申请实施例提供的一种电动汽车的应用场景示意图,该示例中,电动汽车10主要包括主控制器111、动力电池组112、电机控制器(motor control unit,MCU)113、电机114和车轮12。其中,动力电池组112为大容量、高功率的蓄电池,具体可以是以锂离子作为电池材料的蓄电池,简称为锂电池。主控制器111也可称为整车控制器。在电动汽车10行驶时,在主控制器111的控制下,动力电池组112可以通过电机控制器113为电机114供电,进而由电机114将动力电池组112提供的电能转换为机械能,从而驱动车轮12转动,实现车辆行驶。
目前,锂电池的最佳工作温度为20℃左右,当环境温度较低时,锂电池将面临一系列的问题,主要包括但不限于:(1)低温下,锂电池的电芯正极材料的活性降低,导致电芯内部运动的锂离子数量下降,锂电池的容量损失;(2)低温下,锂电池中的电解液固化,导致电芯正负极材料中的带电离子的扩散运动能力变差,电能传递速度降低,锂电池的放电速度下降;(3)低温下,锂电池的电芯负极材料晶格收缩,锂离子嵌入困难,锂电池的充电速度下降。因此,在设计电动汽车时,如何能在低温环境下有效且快速地加热动力电池组,对于电动汽车而言是必要且重要的。
现阶段,业界通常在动力电池组的周围设置加热装置,在电动汽车启动时,先驱动加热装置将动力电池组加热到最佳工作温度后,再驱动动力电池组放电。然而,这种方式需要在电动汽车中额外设置加热装置,不仅会增大电动汽车的成本和占用空间,还会增加电动汽车的设计难度,不利于电动汽车的安装布局。
为解决上述问题,本申请考虑利用高频脉冲电流加热动力电池组。其中,高频脉冲电流是一种通过频繁转换电流流动方向而在回路中产生极性瞬间变化的强磁束的电流,当动力电池组中存在高频脉冲电流通过时,强磁束会贯通整个动力电池组,在动力电池组的内部与高频脉冲电流相反的方向上产生很大的涡流,进而在动力电池组的电阻作用下产生焦耳热,使动力电池组自身的温度迅速上升,从而有效且快速地完成对动力电池组的加热。
示例性地,图2示出业界提供的一种可能的加热控制系统的架构示意图,如图2所示,该示例中,加热控制系统11中包括主控制器111、电机控制器113、一个动力电池组112、并联在动力电池组112两端的电机开关模组115以及与电机开关模组115的交流端连接的电机114,电机114具体为三相电机。其中,电机开关模组115具体可以是三相整流桥,三相整流桥的第一直流端b 1连接动力电池组112的阳极(即图中“+”所示意的端),三相整流桥的第二直流端b 2连接动力电池组112的阴极(即图中“-”所示意的端),三相整流桥的第一交流端a 1连接三相电机114中绕组U的第一端,三相整流桥的第二交流端a 2连接三相电机114中绕组V的第一端,三相整流桥的第三交流端a 3连接三相电机114中绕组W的第一端,三相电机114中绕组U的第二端、绕组V的第二端和绕组W的第二端相连。
继续参照图2所示,在需要加热动力电池组112时,主控制器111可以通过电机控制器113导通或关断电机开关模组115中的开关模块K 1~K 6,在动力电池组112的阳极、电机开关模组115、三相电机114中的绕组U、绕组V和绕组W、以及动力电池组112的阴极之间构成回路,并使得动力电池组112的阳极输出的电能在一个周期的前半时段内在该回路中沿着某一方向传输,在一个周期的后半时段内在该回路中沿着反方向传输。例如,一个示例中:在一个周期的前半时段内,主控制器111控制开关模块K 1、开关模块K 3和开关模块K 6导通,并控制其它开关模块关断,如此,动力电池组112的阳极放出的电能可通过导通的开关模块K 1提供给绕组U,以及通过导通的开关模块K 3提供给绕组V,之后,在绕组U和绕组V的第二端合为一路后,通过绕组W和导通的开关模块K 6流回动力电池组112的阴极;反之,在一个周期的后半时段内,主控制器111控制开关模块K 2、开关模块K 4和开关模块K 5导通,并控制其它开关模块关断,如此,动力电池组112的阳极放出的电能可通过导通的开关模块K 5提供给绕组W,之后,在绕组W的第二端分为两路提供给绕组U和绕组V,从绕组U中流出的电能通过导通的开关模块K 2流回动力电池组112的阴极,从绕V中流出的电能通过导通的开关模块K 4流回动力电池组112的阴极。通过该种控制方式,在每个周期的前半时段和后半时段内,回路中的电流方向会发生变化,如此,该回路中可形成高频脉冲电流,高频脉冲电流经过动力电池组112自身的内阻产生热量,从而实现对动力电池组112的加热。
采用如图2所示意的加热控制系统,虽然能利用高频脉冲电流加热动力电池组, 但三相电机114的三个绕组中存在至少一个绕组和其它绕组上的电流方向不同,该情况下,三相电机114中的磁场不对称,从而导致三相电机114中必然会产生q轴电流(也称为直轴电流或纵轴电流,是指在电机中与磁极轴线相合的轴上所产生的电流),而q轴电流进而会在三相电机114的电机轴上产生扭矩,不利于维持三相电机114的寿命,严重时甚至会直接烧毁三相电机114。
有鉴于此,本申请实施例提供一种动力电池组装置,用以在两个动力电池组之间构成回路,并利用两个动力电池组之间的交替充放电在该回路中产生高频脉冲电流,以在利用高频脉冲电流加热动力电池组的同时,还能确保电机的各个绕组上的电流方向一致,尽量避免产生q轴电流,有效维护电机的寿命。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
需要指出的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下一项(个)或多项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的一项(个)或多项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的优先级或者重要程度。例如,第一动力电池组及第二动力电池组只是为了区分不同的动力电池组,而并不是表示这些动力电池组的优先级或者重要程度等的不同。
【实施例一】
图3示例性示出本申请实施例一提供的一种动力电池组装置的结构示意图,如图3所示,该示例中,动力电池组装置30中包括第一电池单元310和第二电池单元320,第一电池单元310包括第一动力电池组311、第一开关模组312和第一储能模组313,第一开关模组312的第一直流端(a 11)连接第一动力电池组311的阳极(图示“+”所示意的电极),第一开关模组312的第二直流端(a 12)连接第一动力电池组311的阴极(图示“-”所示意的电极),第一开关模组312的交流端(a 13)连接第一储能模组313的第一端(b 11)。对应的,第二电池单元320包括第二动力电池组321、第二开关模组322和第二储能模组323,第二开关模组322的第一直流端(a 21)连接第二动力电池组321的阳极,第二开关模组322的第二直流端(a 22)连接第二动力电池组321的阴极,第二开关模组322的交流端(a 23)连接第二储能模组323的第一端(b 21)。且,第一储能模组313的第二端(b 12)和第二储能模组323的第二端(b 22)相连,第一动力电池组311和第二动力电池组321可以如图3中(A)所示意的阳极相连(也称为共阳极),或者,也可以如图3中(B)所示意的阴极相连(也称为共阴极)。
示例性地,上述任意两个元器件之间的连接可以通过多种方式实现,例如,一个示例中,第一储能模组313的第二端b 12和第二储能模组323的第二端b 22的连接可以通过电缆或继电器实现,第一动力电池组311的阳极和第二动力电池组321的阳极的连接、或者第一动力电池组311的阴极和第二动力电池组321的阴极的连接可以通过电缆实现。由于电 缆和继电器属于比较常见且成本较低的器件,因此,通过电缆和继电器连接两个电池单元中的相关器件,能在构建两个电池单元之间的回路的同时,降低电路设计的成本。当然,如果不考虑成本,这些端口的连接也可以通过其它能实现电连接功能的元器件或元器件的组合实现,本申请实施例对此不作具体限定。
示例性地,第一开关模组312和第二开关模组322可以是能实现导通和关断功能的任意元器件或元器件的组合。例如,一个示例中,第一开关模组312和/或第二开关模组322可以包括三相整流桥,三相整流桥中的整流管可以是带反并联二极管的开关模块,例如带反并联二极管的绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)、碳化硅(silicon carbide,SIC)或其它类型的开关管等。该示例中,通过使用三相整流桥作为开关模组,不仅能实现开关模组的开关功能,还能通过三相整流桥所特有的整流滤波功能,提高电池单元中电流波形的稳定性和电能的利用率。
示例性地,第一储能模组313和第二储能模组323可以是能实现储能功能的任意元器件或元器件组合。例如,一个示例中,第一储能模组313和/或第二储能模组323可以包括三相绕组,三相绕组具体可以是电机中的三相绕组,诸如图1所示意的电动汽车10的电机114中的三相绕组。且,当第一储能模组313和第二储能模组323均包括三相绕组时,这两个三相绕组可以各自属于一个三相电机,也可以同属于一个六相电机,还可以同属于一个具有两个三相绕组的电机,且该电机中的两个三相绕组的中性点(对应为储能模组的第二端)相连。该示例中,通过将电动汽车中固有的电机作为动力电池组装置中的储能模组,能利用电动汽车中的固有器件实现动力电池组装置的同时,避免额外添加器件,有助于节省电路成本和空间。
在上述实施例一中,通过设置两个电池单元并连接两个电池单元之间的相关节点(包括:第一储能模组313的第二端b 12和第二储能模组323的第二端b 22,以及第一动力电池组311的阳极和第二动力电池组321的阳极,或者第一动力电池组311的阴极和第二动力电池组321的阴极),能在两个电池单元之间构成回路,进而能通过两个电池单元中的两个动力电池组的交替放电在该回路中形成高频脉冲电流,以便利用该高频脉冲电流通过动力电池组的内阻时所产生的热量有效且快速地加热动力电池组。可见,采用上述实施例一中的动力电池组装置,只需通过电缆或继电器连接两个电池单元之间的相关节点即可,既无需额外设置加热装置,有助于减小成本和占用空间,以及降低电路设计的复杂性,又能使储能模组的各个绕组具有一致的电流方向,进而能尽量避免在储能模块中产生q轴电流,有效维护储能模块的使用寿命。此外,通过设置两个动力电池组,还能在其中一个电池单元的动力电池组出故障时,及时切换至另一个电池单元中的动力电池组进行放电,以便通过动力电池组的冗余备份,确保使用该动力电池组装置的设备的功能能顺利实现。
基于上述实施例一,下面先简单介绍下本申请中的加热控制方案。
以图3中(B)所示意的动力电池组装置30为例,图4示出本申请实施例提供的一种加热控制系统的架构示意图,如图4所示,该加热控制系统包括控制装置40和动力电池组装置30,动力电池组装置30中第一动力电池组311的阴极和第二动力电池组321的阴极相连,控制装置40连接动力电池组装置30中的第一开关模组312和第二开关模组322。在需要加热动力电池组时,控制装置40可以通过控制第一开关模组312和第二开关模组322中的开关模块的导通和关断,实现第一动力电池组311和第二动力电池组321之间的交替放电:当第一动力电池组311放电时,所放出的电能在图示回路中沿着V 1方向(或 V 2方向)传输至第二动力电池组321,以实现第二动力电池组321的充电;当第二动力电池组321放电时,所放出的电能在该回路中沿着V 2方向(或V 1方向)反向传输至第一动力电池组311,以实现第一动力电池组311的充电。如此,通过控制第一动力电池组311和第二动力电池组321交替向对方放电,使得该回路中能产生高频脉冲电流,进而利用高频脉冲电流加热第一动力电池组311和第二动力电池组321。
进一步地,假设第一储能模组313和第二储能模组323均包括电机中的三相绕组,则图5示例性示出本申请实施例提供的一种加热控制方法的流程示意图,该方法适用于图4所示意的控制装置40,如图5所示,该方法包括:
步骤501,控制装置确定要加热动力电池组,则获取电池参数和电机参数。
示例性地,继续参照图4所示,控制装置40可以包括主控制器410、电池管理器420和电机控制器430,电池管理器420和电机控制器430分别与主控制器410相连,且电池管理器420还连接第一动力电池组311和第二动力电池组321,电机控制器430还连接第一开关模组312、第二开关模组322、第一储能模组313和第二储能模组323。
一种可能的场景中,在寒冷的天气中,驾驶员启动电动汽车之前,还可以先通过车辆液晶面板或车钥匙上的按键,向主控制器410发送加热动力电池组的指令。主控制器410接收到该指令,则确定要加热动力电池组,进而可以向电池管理器420发送第一获取指令,以及向电机控制器430发送第二获取指令。电池管理器420根据第一获取指令获取每个动力电池组的电池参数,并将获取到的电池参数发送给主控制器410,其中,任一动力电池组的电池参数例如可以包括但不限于:动力电池组的荷电状态(state of charge,SOC)(也称为剩余电量,用于指示动力电池组使用一段时间或长期搁置不用后的剩余容量与其完全充电状态的容量的比值)和动力电池组的当前温度等。相应地,电机控制器430根据第二获取指令获取每个储能模组的电机参数,并将获取到的电机参数发送给主控制器410,其中,任一储能模组的电机参数例如可以包括但不限于储能模组的运行状态,该运行状态用于指示储能模组当前是否正在工作,即是否正在驱动电动汽车行驶。
步骤502,控制装置判断电池参数和电机参数是否满足预设的加热条件,若否,则执行步骤503,若是,则执行步骤504。
示例性地,预设的加热条件可以包括如下条件一至条件三中的一项或多项:
条件一,动力电池组的电量之和高于启动电动汽车所需的电量;
条件二,动力电池组的当前温度均低于预设的温度阈值,预设的温度阈值用于指示动力电池组处于低温状态的最高温度,示例性地可以设置为基本能发挥动力电池组的放电性能的温度范围内的最低温度或略低于该最低温度的一个温度,如0℃或0℃以下;
条件三,储能模组均未运行。
假设预设的加热条件包含上述条件一至条件三,则主控制器410在接收到电池管理器420发送的每个动力电池组的电池参数、以及电机控制器430发送的每个储能模组的电机参数后,可以执行如下判断:获取每个动力电池组的电池参数中包含的动力电池组的荷电状态,将该荷电状态乘以动力电池组的额定电量得到动力电池组的剩余电量,进而判断两个动力电池组的剩余电量之和是否大于启动电动汽车所需的电量;获取每个动力电池组的电池参数中包含的动力电池组的当前温度,判断每个动力电池组的当前温度是否低于预设的温度阈值;获取每个储能模组的电机参数中包含的储能模组的运行状态,判断每个储能模组是否未运行。
进一步地,当上述判断全部为是,则意味着电动汽车中的电机未运行,电动汽车中的两个动力电池组当前均处于低温状态,且两个动力电池组的电量之和足够启动电动汽车,该情况下,主控制器410可以确定电池参数和电机参数满足预设的加热条件。反之,当上述判断中存在至少一项为否,例如可能是存在至少一个动力电池组当前未处于低温状态,因此可直接利用温度合适的动力电池组放电以启动电动汽车,而没有必要额外进行加热,也可能是电动汽车中的电机正在运行,从而无法利用电机的储能功能完成上述高频脉冲加热操作,还可能是电动汽车中的两个动力电池组的电量不足以启动电动汽车,因此即使加热动力电池组也没有意义,该情况下,主控制器410可以确定电池参数和电机参数不满足预设的加热条件。
步骤503,控制装置确定加热动力电池组的流程出现错误。
在上述步骤503中,主控制器410在确定电机和电池的状态不满足预设的加热条件时,可以确定加热动力电池组的流程出现错误,进而可以结束当前的加热控制流程。如此,通过在电机和电池的状态满足预设的加热条件时才进行加热控制,而在不满足预设的加热条件时则不进行加热控制,可以避免无意义的加热操作,节省控制装置的处理资源。
示例性地,主控制器410在确定加热动力电池组的流程出现错误的情况下,还可以执行一些其它操作。例如,在其它预设的加热条件都满足的情况下,若主控制器410确定存在至少一个动力电池组未处于低温状态,则还可以直接利用该至少一个动力电池组中的一个或多个动力电池组向电机放电,以便直接利用可用的动力电池组快速启动电动汽车,提高启动效率。又例如,在其它预设的加热条件都满足的情况下,如果两个动力电池组的电量之和不足以启动电动汽车,即使将其中一个动力电池组的电量都传给另一个动力电池组,另一个动力电池组的电量也不足以驱动电机,该情况下,主控制器410还可以向驾驶员反馈电量不足的响应消息,以便驾驶员及时为电动汽车充电。又例如,在其它预设的加热条件都满足的情况下,如果存在至少一个储能模组正在运行,通常意味着电动汽车已经启动,而无需再重复启动电动汽车,该情况下,主控制器410还可以向驾驶员反馈储能模组正在工作的响应消息,以便告知驾驶员当前的加热指示存在问题。其中,反馈响应消息的方式可以为语音播报、屏幕显示或短信通知等。如此,通过在不同的加热场景下采用不同的响应方式,不仅能赋予主控制器更智能的控制逻辑,提高电动汽车的智能化程度,还能节省经由人工响应下一步操作所导致的时延。
步骤504,控制装置根据环境温度和目标温度的温度差、预设加热时长和预设的温度差、加热时长与高频脉冲电流的对应关系,确定目标高频脉冲电流。
示例性地,当两个动力电池组的当前温度都低于预设的温度阈值,且两个动力电池组的当前温度不同时,主控制器410可以根据实际需求从两个动力电池组中选择目标动力电池组,并将该目标动力电池组的当前温度确定为环境温度。其中,目标动力电池组例如可以是当前温度最高的动力电池组,以便尽快加热到目标温度,从而更快启动电动汽车,或者也可以是电量剩余最多的动力电池组,以提高电动汽车的续航能力等。反之,当两个动力电池组的当前温度都低于预设的温度阈值,且两个动力电池组的当前温度相同时,主控制器410可以将该相同的当前温度确定为环境温度。
示例性地,主控制器410可以计算环境温度和目标温度的温度差,然后根据该温度差和预设加热时长,查询预设的温度差、加热时长与高频脉冲电流的对应关系,并将查询得到的该温度差和预设加热时长所对应的高频脉冲电流作为目标高频脉冲电流。其中,目标 温度、预设加热时长、以及预设的温度差、加热时长与高频脉冲电流的对应关系可以是预配置在主控制器410中的,且还可以支持用户修改,或者也可以是携带在上述加热动力电池组的指令中指示给主控制器410的。例如,一个示例中,目标温度可以预配置为能发挥动力电池组最好性能的温度,例如20℃。一个示例中,预设加热时长可以根据环境温度进行分档设置,且各档预设加热时长还可以随着环境温度的升高而减小,例如在环境温度为-20℃以下时,预设加热时长可以设置为1min,在环境温度为-20℃~-10℃时,预设加热时长可以设置为0.5min,在环境温度为-10℃~0℃时,预设加热时长可以设置为0.3min,如此可通过进一步细化加热流程所需的时长,在实现加热的情况下,尽量提高加热速度。一个示例中,预设的温度差、加热时长与高频脉冲电流的对应关系可以根据实验验证得到,例如可以是将加热控制系统放置在各种环境温度下,并在每种环境温度下控制动力电池组装置中的回路形成不同电流频率和电流大小的高频脉冲电流,并记录每种电流频率和电流大小的高频脉冲电流下将环境温度的动力电池组加热到目标温度所需要的加热时长,最后统计各种环境温度和目标温度的温度差、高频脉冲电流和加热时长的对应关系而得到的。
进一步示例性地,由于高频脉冲电流包含电流频率和电流大小,因此针对于同一温度差和预设加热时长,查询预设的温度差、加热时长与高频脉冲电流的对应关系,可能会获得多个高频脉冲电流,多个高频脉冲电流中的任意两个高频脉冲电流的电流频率和/或电流大小不同。该情况下,主控制器410可以从查询得到的多个高频脉冲电流中选择一个高频脉冲电流作为目标高频脉冲电流,选择的方式可以是随机选取,也可以是选择电流频率最大或电流大小最大的高频脉冲电流以提高加热速度,还可以是选择电流频率中等或电流大小中等的高频脉冲电流以提高加热的稳定性,亦可以是在不会出现析锂现象(析锂现象是指锂电池在低温环境下析出锂离子的现象,锂电池的析锂电流会随着电流频率的升高而增大)的高频脉冲电流中选择电流频率和电流大小最大的高频脉冲电流,以在确保锂电池容量不变的情况下尽量提高加热的速度,等等。
进一步示例性地,在按照上述方式选择一个高频脉冲电流作为目标高频脉冲电流后,主控制器410还可以获取第一储能模组313在目标高频脉冲电流的电流频率下的第一最大电流、第二储能模组323在目标高频脉冲电流的电流频率下的第二最大电流、以及第一储能模组313和第二储能模组323的连接节点(即图4所示意的b 12或b 22)对应的第三最大电流,若目标高频脉冲电流的电流大小大于第一最大电流、第二最大电流和第三最大电流中的最小值,意味着所选取的目标高频脉冲电流已超过动力电池组装置当前所能支持的最大通流能力。该情况下,主控制器410可以从上述查询得到的多个高频脉冲电流中重新选择一个目标高频脉冲电流,进而再基于重新选择的目标高频脉冲电流的电流频率获取新的第一最大电流和第二最大电流,当重新选择的目标高频脉冲电流的电流大小不大于第三最大电流、新的第一最大电流和第二最大电流中的最小值时,使用该目标高频脉冲电流执行后续计算。反之,则继续重新选择目标高频脉冲电流,直至找到电流大小满足要求的目标高频脉冲电流为止。如此,该示例能够选择出一个不超过动力电池组装置的通流能力的目标高频脉冲电流,采用该目标高频脉冲电流加热动力电池组,既能实现低温环境下对动力电池组的有效及快速加热,又能确保动力电池组装置的安全性。
在上述示例中,第一最大电流可以是根据目标高频脉冲电流的电流频率查询第一储能模组对应的电流频率和最大电流的对应关系而得到的,第二最大电流可以是根据目标高频脉冲电流的电流频率查询第二储能模组对应的电流频率和最大电流的对应关系而得到的, 第三最大电流则可以是由连接节点处使用的电缆的材料及粗细程度等决定的。上述两个对应关系和第三最大电流可以是在动力电池组装置设置好之后通过实验标定的方式统计并可配置在主控制器410中的,且支持一定的工艺偏差或标定误差。
步骤505,控制装置根据目标高频脉冲电流,控制第一开关模组和第二开关模组中的各个开关模块,以控制第一动力电池组和第二动力电池组交替放电。
在上述步骤505中,主控制器410在确定出目标高频脉冲电流后,可以根据该目标高频脉冲电流生成控制信号并发送给电机控制器430,以便电机控制器430根据该控制信号控制第一开关模组312和第二开关模组322中的各个开关模块的导通和关断,实现第一动力电池组311和第二动力电池组321的交替放电。示例性地,第一动力电池组311和第二动力电池组321的交替放电,具体可以是指第一动力电池组311和第二动力电池组321按照周期方式放电,且每个周期内第一动力电池组311和第二动力电池组321均放电一次,例如在一个周期的前一时段,第一动力电池组311放电,第二动力电池组321充电,在该周期的后一时段,第二动力电池组321放电,第一动力电池组311充电,或者,在一个周期的前一时段,第二动力电池组321放电,第一动力电池组311充电,在该周期的后一时段,第一动力电池组311放电,第二动力电池组321充电。其中,任一周期的前一时段的时长和后一时段的时长可以相同,也可以不同,具体不作限定。
一种可选地实施方式中,当第一储能模组313和第二储能模组323均为电机中的三相绕组时,任一动力电池组都可以通过三相绕组中的一个或多个绕组放电,而另一个动力电池组都可以通过三相绕组中的一个或多个绕组充电。由于充放电的电流大小会随着绕组数量的增多而增大,因此,主控制器410中还可以预配置有第一电流阈值和第二电流阈值,第一电流阈值示例性地可以是经由实验标定出的三相绕组中的一个绕组所能支持的最大通流电流,第二电流阈值示例性地可以是经由实验标定出的三相绕组中的两个绕组所能支持的最大通流电流之和,第一电流阈值小于第二电流阈值,该情况下,主控制器410在计算出目标高频脉冲电流后,还可以按照如下分支一至分支三中的所满足的一种分支执行对应的加热控制操作:
分支一,如果目标高频脉冲电流的电流大小小于第一电流阈值,意味着两个动力电池组之间只需要通过一个比较小的电流进行充放电,而三相绕组中的一个绕组足以提供该电流。该情形下,为尽量降低加热动力电池组对绕组的寿命影响,主控制器410可以通过电机控制器430控制第一开关模组312和第二开关模组322中的开关模块的导通和关断,使得第一动力电池组311和第二动力电池组321通过所对应的三相绕组中的一个绕组交替放电,该绕组示例性地可以是储能模组中损耗最小的绕组,如此,既能通过一个绕组实现交替放电所需的目标高频脉冲电流的流动,又能通过降低损耗较大的绕组的使用次数以均衡各个绕组的磨损程度,尽量维持电机的使用寿命。
分支二,当目标高频脉冲电流的电流大小不小于第一电流阈值且小于第二电流阈值时,意味着两个动力电池组之间需要通过一个比较中等的电流进行充放电,仅利用三相绕组中的一个绕组不足以提供该电流,但两个绕组足以提供该电流。该情形下,主控制器410可以通过电机控制器430控制第一开关模组312和第二开关模组322中的开关模块的导通和关断,使得第一动力电池组311和第二动力电池组321通过所对应的三相绕组中的两个绕组交替放电,该两个绕组示例性地可以是储能模组中损耗最小的两个绕组,如此,既能通过两个绕组实现交替放电所需的目标高频脉冲电流的流动,又能尽量避免使用损耗较大的 绕组,以确保电机能够使用更长时间。
分支三,当目标高频脉冲电流的电流大小不小于第二电流阈值时,意味着两个动力电池组之间需要通过一个比较大的电流进行充放电,仅利用三相绕组中的一个或两个绕组都不足以提供该电流,而只能利用三相绕组中的三个绕组。该情形下,主控制器410可以通过电机控制器430控制第一开关模组312和第二开关模组322中的开关模块的导通和关断,使得第一动力电池组311和第二动力电池组321通过所对应的三相绕组中的三个绕组交替放电,以便充分利用三个绕组所能支持的最大通流能力,满足当前快速的加热需求。
需要说明的是,上述分支一利用三个绕组实现加热,从而三个绕组中都会存在方向一致的电流,该情况下,如果三个绕组上的电流大小也一致,则储能模组中不会产生q轴电流,如果三个绕组上的电流大小不同,则储能模组中会产生q轴电流。而上述分支二和分支三利用一个或两个绕组实现加热,从而三个绕组中必然存在至少一个绕组不存在电流,该情况下,储能模组中会产生q轴电流。
在上述实施方式中,通过参照所需的目标高频脉冲电流,在能够提供该目标高频电流的数量的绕组中选择尽量少的绕组实现加热,既能确保在预设加热时长内将动力电池组的温度加热到目标温度,又能尽量降低绕组的使用频率,维持储能模组的使用寿命。且,不同数量的绕组参与加热,还能对应产生不同大小的高频脉冲电流,如此可扩大动力电池组装置中的脉冲电流的范围。
应理解,上述只是一种可选地实施方式,在其它实施方式中,主控制器410还可以选择一个、两个或三个绕组中的任意一种构成回路,并在该回路中通入高频脉冲电流,以在扩大脉冲电流调节范围的同时,提高加热控制的灵活性。
此外,关于如何控制每个开关模组中开关模块的通断,以实现两个动力电池组通过一个或多个绕组的交替充放电,具体将在如下实施例二和实施例三中介绍,此处先不作说明。
步骤506,控制装置判断动力电池组的当前温度是否大于或等于目标温度,若是,则执行步骤507,若否,则继续执行步骤505。
步骤507,控制装置停止加热动力电池组。
示例性地,在加热动力电池组的过程中,主控制器410还可以按照周期方式获取每个动力电池组的当前温度,并比较每个动力电池组的当前温度和目标温度,一旦发现某一动力电池组的当前温度大于或等于目标温度,则停止加热动力电池组,并可以利用该最先达到目标温度的动力电池组驱动电机转动,以尽快启动电动汽车。其中,每个动力电池组的当前温度例如可以是电池管理器420主动按照周期方式采集并上报给主控制器410的,也可以是主控制器410按照周期方式指示电池管理器420获取并上报的,具体不作限定。
需要说明的是,上述只是一种停止加热动力电池组的可能示例。另一个示例中,当上述步骤504中的环境温度对应为目标动力电池组的当前温度,则只有目标动力电池组的当前温度大于或等于目标温度时,主控制器410才停止加热动力电池组,并再停止加热后利用目标动力电池组驱动电机转动,以启动电动汽车。应理解,可能的停止方式还有很多,本申请实施例对此不作具体限定。
采用上述加热控制方案,通过参照环境温度和目标温度选择合适的目标高频脉冲电流,并参照目标高频脉冲电流选择合适数量的绕组构成回路,能在不超出动力电池组装置的实际通流能力的情况下,尽快实现两个动力电池组之间的交替放电,进而自动实现对动力电池组的加热,该加热逻辑的可控性较好,能在低温环境下有效且快速地加热动力电池组。
为进一步介绍加热控制方案的具体实现过程,下面以第一开关模组312和第二开关模组322均包括三相整流桥,且第一储能模组313和第二储能模组323均包括三相绕组为例,通过实施例二和实施例三进一步介绍加热动力电池组的具体控制逻辑。
【实施例二】
图6示例性示出本申请实施例二提供的一种加热控制系统的架构示意图,如图6所示,该示例中,加热控制系统包括控制装置40和动力电池组装置30。其中,动力电池组装置30包括第一动力电池组311、第一开关模组312、第一储能模组313、第二动力电池组321、第二开关模组322和第二储能模组323,第一动力电池组311的阴极与第二动力电池组321的阴极相连。第一开关模组312包括第一三相整流桥,第二开关模组322包括第二三相整流桥,第一三相整流桥和第二三相整流桥中的整流管为带反并联二极管的开关模块,如图6所示意的IGBT,IGBT是一种包含并联的二极管和三极管且三极管的导通方向和二极管的导通方向相反的开关模块。第一储能模组313包括第一三相绕组,第一三相绕组中包括绕组U 1、绕组V 1和绕组W 1,第二储能模组323包括第二三相绕组,第二三相绕组中包括绕组U 2、绕组V 2和绕组W 2。控制装置40包括主控制器410和与主控制器410连接的电池管理器420和电机控制器430,电池管理器420还连接第一动力电池组311和第二动力电池组321,电机控制器430还连接第一开关模组312、第一储能模组313、第二开关模组322和第二储能模组323。
进一步示例性地,继续参见图6所示,第一动力电池组311中可以包括串联的动力电池组V 01和电阻R 1,第二动力电池组321中可以包括串联的动力电池组V 02和电阻R 2。其中,动力电池组V 01的阳极与电阻R 1的第一端相连,电阻R 1的第二端作为第一动力电池组311的阳极,动力电池组V 01的阴极作为第一动力电池组311的阴极,动力电池组V 02的阳极与电阻R 2的第一端相连,电阻R 2的第二端作为第二动力电池组321的阳极,动力电池组V 02的阴极作为第二动力电池组321的阴极,且动力电池组V 01的阴极和动力电池组V 02的阴极可以通过电缆相连,以实现两个动力电池组共阴极。其中,第一动力电池组311中的电阻R 1或第二动力电池组321中的电阻R 2可用于调节回路中的电流大小,具体地,电阻R 1或电阻R 2还可以设置为可变电阻,以便增加调节电流大小的灵活性。应理解,在其它示例中,第一动力电池组311中也可以仅包括动力电池组V 01而不包括电阻R 1,第二动力电池组321中也可以仅包括动力电池组V 02而不包括电阻R 2,本申请实施例对此不作具体限定。
进一步示例性地,继续参见图6所示,动力电池组装置30中还可以包括电容C 1和/或电容C 2,电容C 1并联在第一动力电池组311的两端,电容C 2并联在第二动力电池组321的两端。在第一动力电池组311和第二动力电池组321所构成的回路中,当电压由于某些不稳定的因素而降低时,电容C 1或电容C 2会放电,当电压由于某些不稳定的因素而升高时,电容C 1或电容C 2会充电,可见,电容C 1或电容C 2用于维持回路中电压的稳定性,起到保护电路器件的目的。
进一步示例性地,继续参见图6所示,第一开关模组312中可以包括串联的第一开关模块K 11和第二开关模块K 12、串联的第三开关模块K 13和第四开关模块K 14、以及串联的第五开关模块K 15和第六开关模块K 16,第二开关模组322中可以包括串联的第七开关模块K 21和第八开关模块K 22、串联的第九开关模块K 23和第十开关模块K 24、以及串联的第十 一开关模块K 25和第十二开关模块K 26。其中,第一开关模块K 11相对于第二开关模块K 12的非串联节点一端m 11、第三开关模块K 13相对于第四开关模块K 14的非串联节点一端m 13和第五开关模块K 15相对于第六开关模块K 16的非串联节点一端m 15连接第一动力电池组311的阳极,第二开关模块K 12相对于第一开关模块K 11的非串联节点一端m 12、第四开关模块K 14相对于第三开关模块K 13的非串联节点一端m 14和第六开关模块K 16相对于第五开关模块K 15的非串联节点一端m 16连接第一动力电池组311的阴极,且第一开关模块K 11和第二开关模块K 12的串联节点a 131连接第一三相绕组中绕组U 1的第一端(图示标注“1”的端),第三开关模块K 13和第四开关模块K 14的串联节点a 132连接第一三相绕组中绕组V 1的第一端,第五开关模块K 15和第六开关模块K 16的串联节点a 133连接第一三相绕组中绕组W 1的第一端。相应地,第七开关模块K 21相对于第八开关模块K 22的非串联节点一端m 21、第九开关模块K 23相对于第十开关模块K 24的非串联节点一端m 23和第十一开关模块K 25相对于第十二开关模块K 26的非串联节点一端m 25连接第二动力电池组321的阳极,第八开关模块K 22相对于第七开关模块K 21的非串联节点一端m 22、第十开关模块K 24相对于第九开关模块K 23的非串联节点一端m 24和第十二开关模块K 26相对于第十一开关模块K 25的非串联节点一端m 26连接第二动力电池组321的阴极,且第七开关模块K 21和第八开关模块K 22的串联节点a 231连接第二三相绕组中绕组U 2的第一端,第九开关模块K 23和第十开关模块K 24的串联节点a 232连接第二三相绕组中绕组V 2的第一端,第十一开关模块K 25和第十二开关模块K 26的串联节点a 233连接第二三相绕组中绕组W 2的第一端。且,第一三相绕组中绕组U 1的第二端(图示标注“2”的端)、绕组V 1的第二端和绕组W 1的第二端相连后构成第一储能模组313的第二端b 12,第二三相绕组中绕组U 2的第二端、绕组V 2的第二端和绕组W 2的第二端相连后构成第二储能模组323的第二端b 22,第一储能模组313的第二端b 12和第二端相连后构成第二储能模组323的第二端b 22通过电缆或继电器实现连接。
采用图6所示意的加热控制系统,在加热动力电池组时,主控制器410可以通过电机控制器430控制开关模块K 11~K 16和开关模块K 21~K 26的导通或关断,使得动力电池组V 01、电阻R 1、绕组U 1、绕组V 1、绕组W 1、绕组U 2、绕组V 2、绕组W 2、电阻R 2和动力电池组V 2中的一个或多个在导通的开关模块的作用下构成回路,进而使得回路在一个周期的前一时段内的电流方向和后一时段内的电流方向不同,以便在回路中产生高频脉冲电流,利用动力电池组V 1和动力电池组V 2的内阻在高频脉冲电流流过时产生的焦耳热来加热动力电池组V 1和动力电池组V 2
一种可选地实施方式中,主控制器410在通过电机控制器430控制开关模块K 11~K 16和开关模块K 21~K 26之前,还可以获取动力电池组装置30对应的加热模式,该加热模式可以为先Buck再Boost模式或先Boost再Buck模式,该加热模式可以是预配置在主控制器410中的,也可以是由用户进行配置的,例如可以是用户携带在加热动力电池组的指令中一起发送给主控制器410的。其中,先Buck再Boost模式是指在一个周期的前一时段内控制回路构成降压电路(即输出电压小于输入电压),在一个周期的后一时段内控制回路构成升压电路(即输出电压大于输入电压),而先Boost再Buck模式则是指在一个周期的前一时段内控制回路构成升压电路,在一个周期的后一时段内控制回路构成降压电路。该情况下,电池管理器420获取到的电池参数中还可以包括每个动力电池组的电压,主控制器410在根据目标高频脉冲电流确定出实现交替放电的绕组数量之后,还可以结合该绕组数 量、第一动力电池组311的电压和第二动力电池组321的电压的大小关系以及获取到的加热模式生成对应的控制信号,并发送给电机控制器430,以便电机控制器430根据该控制信号控制开关模块K 11~K 16和开关模块K 21~K 26,实现在对应的加热模式下按照对应的绕组数量加热第一动力电池组311的电压和第二动力电池组321。
按照上述实施方式,基于图6所示意的加热控制系统,分别介绍不同情况下的具体控制逻辑:
第一动力电池组311的电压大于第二动力电池组321的电压的情况下:
一个示例中,如果加热模式为先Buck再Boost模式,则主控制器410生成的控制信号用于:在每个周期的前一时段的第一个子时段内,控制开关模块K 11、开关模块K 13和开关模块K 15中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的前一时段的第二个子时段内,控制全部的开关模块关断;在每个周期的后一时段的第一个子时段内,控制开关模块K 12、开关模块K 14和开关模块K 16中的一个或多个、以及开关模块K 21、开关模块K 23和开关模块K 25中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的后一时段的第二个子时段内,控制开关模块K 21、开关模块K 23和开关模块K 25中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断。其中,前一时段的第一子时段可以是指前一时段的导通时段,具体可以由前一时段的时长与前一时段对应的占空比的乘积来表示,前一时段的第二子时段可以是指前一时段的关断时段,具体可以由前一时段的时长与前一时段的第一子时段的差值来表示。相应地,后一时段的第一子时段可以是指后一时段的导通时段,具体可以由后一时段的时长与后一时段对应的占空比的乘积来表示,后一时段的第二子时段可以是指后一时段的关断时段,具体可以由后一时段的时长与后一时段的第一子时段的差值来表示。且,本申请实施例中,前一时段的时长和后一时段的时长可以相同,也可以不同,前一时段对应的占空比和后一时段对应的占空比可以相同,也可以不同,具体不作限定。
在上述示例中,一个或多个可以是一个、两个或三个中的任一个。在上述开关控制逻辑中,前一时段的第一个子时段内导通开关模块K 11、开关模块K 13和开关模块K 15中的一个或多个,导通一个开关模块的情况存在3种可能,导通两个开关模块的情况存在3种可能,导通三个开关模块的情况存在1种可能,因此前一时段的第一子时段内共存在7种开关控制方式。对应的,后一时段的第一个子时段内导通开关模块K 12、开关模块K 14和开关模块K 16中的一个或多个、以及开关模块K 21、开关模块K 23和开关模块K 25中的一个或多个,导通开关模块K 12、开关模块K 14和开关模块K 16中的一个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的一个开关模块的情况存在9种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的一个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的两个开关模块的情况存在9种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的一个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的三个开关模块的情况存在3种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的两个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的一个开关模块的情况存在9种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的两个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的两个开关模块的情况存在9种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的两个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的三个开关模块的情况存在3种可能,导通开关模块K 12、开关 模块K 14和开关模块K 16中的三个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的一个开关模块的情况存在3种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的三个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的两个开关模块的情况存在3种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的三个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的三个开关模块的情况存在1种可能,因此后一时段的第一子时段内共存在49种开关控制方式。可见,上述加热控制逻辑共存在不少于7×49=343种开关控制方式。需要说明的是,此处的不少于,源自于后一时段的第二个子时段内所导通的开关模块K 21、开关模块K 23和开关模块K 25中的一个或多个与后一时段的第一个子时段内所导通的开关模块K 21、开关模块K 23和开关模块K 25中的一个或多个也可能不相同,而至于具体不相同的情况存在多少种可能,可参照上述内容推理得到,本申请对此不再一一列举。
为便于更清晰地理解上述加热控制逻辑,下文示例性地以尽量通过两个三相绕组中的相同数量的绕组进行加热为例,介绍加热控制的具体电路实现。
该示例中,假设一个周期的前一时段为T 1,前一时段对应的占空比为D 1,一个周期的后一时段为T 2,后一时段对应的占空比为D 2,则前一时段的第一个子时段表示为D 1×T 1,前一时段的第二个子时段表示为(1-D 1)×T 1,后一时段的第一个子时段表示为D 2×T 2,后一时段的第二个子时段表示为(1-D 2)×T 2,基于此:
情形一:通过三个绕组进行加热
假设主控制器410根据目标高频脉冲电流确定采用三个绕组进行加热,则图7示例性示出本申请实施例二提供的一种通过三个绕组进行加热控制的电路示意图,其中:
图7中(A)示出的是前一时段T 1的第一个子时段D 1×T 1内的电路图,参照图7中(A)所示,在前一时段T 1的第一个子时段D 1×T 1内,开关模块K 11、开关模块K 13和开关模块K 15中的三极管导通,其它开关模块中的三极管关断。该情况下,动力电池组V 01放出的电能分为三路,一路经由开关模块K 11中的三极管流入绕组U 1,另一路经由开关模块K 13中的三极管流入绕组V 1,再一路经由开关模块K 15中的三极管流入绕组W 1,从而储能在绕组U 1、绕组V 1和绕组W 1中。之后,电能经过这三个绕组的第二端合为一路后流出,分为三路流至绕组U 2、绕组V 2和绕组W 2,从而储能在绕组U 2、绕组V 2和绕组W 2中。之后,从绕组U 2中流出的电能经由开关模块K 21中的反并联二极管流出,从绕组V 2中流出的电能经由开关模块K 23中的反并联二极管流出,从绕组W 2中流出的电能经由开关模块K 25中的反并联二极管流出,之后均流入动力电池组V 02的阳极,并从动力电池组V 02的阴极流程至动力电池组V 01的阴极。可见,在前一时段T 1的第一个子时段D 1×T 1内,动力电池组V 01放出的电能通过每个三相绕组中的三个绕组为动力电池组V 02充电,且每个三相绕组中的三个绕组还进行了储能;
图7中(B)示出的是前一时段T 1的第二个子时段(1-D 1)×T 1内的电路图,参照图7中(B)所示,在前一时段T 1的第二个子时段(1-D 1)×T 1内,全部开关模块中的三极管都关断。该情况下,由于每个三相绕组中的三相绕组在第一个子时段D 1×T 1内已储能,因此当动力电池组V 01被隔断后,基于绕组阻碍电流变化的特性,为维持电流的原方向,绕组U 1、绕组V 1、绕组W 1、绕组U 2、绕组V 2和绕组W 2会将之前储存的电能放出,分别经由开关模块K 21中的反并联二极管、开关模块K 23中的反并联二极管和开关模块K 25中的反并联二极管流出,之后均流入动力电池组V 02的阳极,并从动力电池组V 02的阴极流出,进 而分别经由开关模块K 12中的反并联二极管、开关模块K 14中的反并联二极管和开关模块K 16中的反并联二极管流入绕组U 1、绕组V 1和绕组W 1。可见,在前一时段T 1的第二个子时段(1-D 1)×T 1内,每个三相绕组的三个绕组中储存的电能转移至动力电池组V 02,继续为动力电池组V 02充电;
图7中(C)示出的是后一时段T 2的第一个子时段D 2×T 2内的电路图,参照图7中(C)所示,在后一时段T 2的第一个子时段D 2×T 2内,开关模块K 12、开关模块K 14、开关模块K 16、开关模块K 21、开关模块K 23和开关模块K 25中的三极管导通,其它开关模块中的三极管关断。该情况下,动力电池组V 02放出的电能分为三路,一路经由开关模块K 21中的三极管流入绕组U 2,另一路经由开关模块K 23中的三极管流入绕组V 2,再一路经由开关模块K 25中的三极管流入绕组W 2,从而储能在绕组U 2、绕组V 2和绕组W 2中。之后,电能经由这三个绕组的第二端合为一路后流出,分为三路流至绕组U 1、绕组V 1和绕组W 1,从而储能在绕组U 1、绕组V 1和绕组W 1中。由于动力电池组V 01的电压大于动力电池组V 02的电压,因此开关模块K 11、开关模块K 13及开关模块K 15的非串联节点一端的电动势均高于串联节点一端的电动势,从而绕组U 1、绕组V1和绕组W 1流出的电能不会通过开关模块K 11、开关模块K 13及开关模块K 15的反并联二极管流向图示上方,而是分别通过开关模块K 12中的三极管、开关模块K 14中的三极管及开关模块K 16中的三极管流入动力电池组V 02的阴极。可见,在后一时段T 2的第一个子时段D 2×T 2内,动力电池组V 02放出的电能为每个三相绕组中的三个绕组储能;
图7中(D)示出的是后一时段T 2的第二个子时段(1-D 2)×T 2内的电路图,参照图7中(D)所示,在后一时段T 2的第二个子时段(1-D 2)×T 2内,开关模块K 21、开关模块K 23和开关模块K 25中的三极管导通,其它开关模块中的三极管关断。该情况下,动力电池组V 02放出的电能分为三路,分别经由开关模块K 21、开关模块K 23和开关模块K 25中的三极管流入绕组U 2、绕组V 2和绕组W 2。且,虽然动力电池组V 02的电压小于动力电池组V 01的电压,但由于绕组U 2、绕组V 2、绕组W 2、绕组U 1、绕组V 1和绕组W 1在第一个子时段D 2×T 2内已储能,因此,基于绕组阻碍电流变化的特性,绕组U 2、绕组V 2、绕组W 2、绕组U 1、绕组V 1和绕组W 1会将之前储存的电能放出,绕组放出的电能结合动力电池组V 02放出的电能一起,分别经由开关模块K 11中的反并联二极管、开关模块K 13中的反并联二极管和开关模块K 15中的反并联二极管流入动力电池组V 01的阳极,并从动力电池组V 01的阴极流出至动力电池组V 02的阴极。可见,在后一时段T 2的第二个子时段(1-D 2)×T 2内,动力电池组V 02联合每个三相绕组中储存的电能一起为动力电池组V 01充电。
由此可知,在一个周期的前一时段T 1内,电能从电压高的动力电池组V 01流向电压低的动力电池组V 02,动力电池组装置30工作在Buck模式,而在一个周期的后一时段T 2内,电能从电压低的动力电池组V 02流向电压高的动力电池组V 01,动力电池组装置30工作在Boost模式。可见,在一个周期内,动力电池组装置30中的电流流向发生改变,从而动力电池组装置30中产生高频脉冲电流,该高频脉冲电流流过动力电池组V 01和动力电池组V 02时,由于动力电池组V 01和动力电池组V 02的内阻作用而产生焦耳热,利用该焦耳热能有效加热动力电池组V 01和动力电池组V 02
情形二:通过两个绕组进行加热
假设主控制器410根据目标高频脉冲电流确定采用两个绕组进行加热,则图8示例性示出本申请实施例二提供的一种通过两个绕组进行加热控制的电路示意图,其中:
图8中(A)示出的是前一时段T 1的第一个子时段D 1×T 1内的电路图,参照图8中(A)所示,在前一时段T 1的第一个子时段D 1×T 1内,在开关模块K 11、开关模块K 13和开关模块K 15中选择两个开关模块,导通这两个开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图8中(A)所示意的,当导通开关模块K 13和开关模块K 15中的三极管,并关断其它开关模块中的三极管时,动力电池组V 01放出的电能分为两路,一路经由开关模块K 13中的三极管流入绕组V 1,另一路经由开关模块K 15中的三极管流入绕组W 1,从而储能在绕组V 1和绕组W 1中。之后,电能经由绕组V 1和绕组W 1的第二端合为一路,之后分为三路流至绕组U 2、绕组V 2和绕组W 2,从而储能在绕组U 2、绕组V 2和绕组W 2中。从绕组U 2中流出的电能经由开关模块K 21中的反并联二极管流出,从绕组V 2中流出的电能经由开关模块K 23中的反并联二极管流出,从绕组W 2中流出的电能经由开关模块K 25中的反并联二极管流出,之后均流入动力电池组V 02的阳极,并从动力电池组V 02的阴极流程至动力电池组V 01的阴极。可见,在前一时段T 1的第一个子时段D 1×T 1内,动力电池组V 01放出的电能通过第一三相绕组中的两个绕组和第二三相绕组中的三个绕组为动力电池组V 02充电,且第一三相绕组中的两个绕组和第二三相绕组中的三个绕组还进行了储能;
图8中(B)示出的是前一时段T 1的第二个子时段(1-D 1)×T 1内的电路图,参照图8中(B)所示,在前一时段T 1的第二个子时段(1-D 1)×T 1内,全部开关模块中的三极管都关断。该情况下,由于绕组V 1、绕组W 1、绕组U 2、绕组V 2和绕组W 2在第一个子时段D 1×T 1内已储能,因此当动力电池组V 01被隔断后,基于绕组阻碍电流变化的特性,绕组V 1、绕组W 1、绕组U 2、绕组V 2和绕组W 2会将之前储存的电能放出,进而分别经由开关模块K 21中的反并联二极管、开关模块K 23中的反并联二极管和开关模块K 25中的反并联二极管流入动力电池组V 02的阳极,并从动力电池组V 02的阴极流出,之后分别经由开关模块K 12中的反并联二极管、开关模块K 14中的反并联二极管和开关模块K 16中的反并联二极管流入第一三相绕组。可见,在前一时段T 1的第二个子时段(1-D 1)×T 1内,第一三相绕组的两个绕组和第二三相绕组的三个绕组中储存的电能转移至动力电池组V 02,继续为动力电池组V 02充电;
图8中(C)示出的是后一时段T 2的第一个子时段D 2×T 2内的电路图,参照图8中(C)所示,在后一时段T 2的第一个子时段D 2×T 2内,在开关模块K 12、开关模块K 14和开关模块K 16中选择两个开关模块,并在开关模块K 21、开关模块K 23和开关模块K 25中选择两个开关模块,导通这四个开关模块的三极管,并关断其它开关模块中的三极管。例如,按照图8中(C)所示意的,当导通开关模块K 12、开关模块K 16、开关模块K 23和开关模块K 25中的三极管,并关断其它开关模块中的三极管时,动力电池组V 02放出的电能分为两路,一路经由开关模块K 23中的三极管流入绕组V 2,另一路经由开关模块K 25中的三极管流入绕组W 2,从而储能在绕组V 2和绕组W 2中。之后,电能经由绕组V 2和绕组W 2的第二端后流至绕组U 1和绕组W 1,从而储能在U 1和绕组W 1中。从绕组U 1流出的电能通过开关模块K 12中的三极管流出,绕组W 1流出的电能通过开关模块K 16中的三极管流出,之后一起流入动力电池组V 02的阴极。可见,在后一时段T 2的第一个子时段D 2×T 2内,动力电池组V 02放出的电能为每个三相绕组中的两个绕组储能;
图8中(D)示出的是后一时段T 2的第二个子时段(1-D 2)×T 2内的电路图,参照图8中(D)所示,在后一时段T 2的第二个子时段(1-D 2)×T 2内,在开关模块K 21、开关模块 K 23和开关模块K 25中选择与第一个子时段D 2×T 2内所选的相同的两个开关模块,导通这两个开关模块中的三极管,并关断其它开关模块中的三极管。例如,参照图8中(D)所示意的,当导通开关模块K 23和开关模块K 25中的三极管,并关断其它开关模块中的三极管时,动力电池组V 02放出的电能分为两路,分别经由开关模块K 23和开关模块K 25中的三极管流入绕组V 2和绕组W 2,之后,结合绕组V 2和绕组W 2、绕组U 1和绕组W 1放出的之前所储存的电能,分别经由开关模块K 11中的反并联二极管、开关模块K 13中的反并联二极管和开关模块K 15中的反并联二极管流入动力电池组V 01的阳极,并从动力电池组V 01的阴极流出至动力电池组V 02的阴极。可见,在后一时段T 2的第二个子时段(1-D 2)×T 2内,动力电池组V 02联合每个三相绕组的两个绕组中所储存的电能一起为动力电池组V 01充电。
由此可知,上述实现方式能尽量通过三相绕组中的两个绕组实现两个动力电池组之间的交替放电,有助于在产生高频脉冲电流以加热动力电池组的同时,降低绕组的使用频率,尽量延长电机的寿命。
应理解,上述图8只是示例性地介绍通过两个绕组进行加热的一种可能的开关控制方式,本申请实施例中,由于前一时段T 1可以选择导通开关模块K 11、开关模块K 13和开关模块K 15中的任意两个,即前一时段T 1共存在3种可能的开关控制方式,即:开关模块K 11和开关模块K 13,或者开关模块K 11和开关模块K 15,或者开关模块K 13和开关模块K 15;后一时段可以选择导通开关模块K 12、开关模块K 14和开关模块K 16中的任意两个以及开关模块K 21、开关模块K 23和开关模块K 25中的任意两个,即后一时段T 2共存在9种可能的开关控制方式,即:开关模块K 12、开关模块K 14、开关模块K 21和开关模块K 23,或者开关模块K 12、开关模块K 14、开关模块K 21和开关模块K 25,或者开关模块K 12、开关模块K 14、开关模块K 23和开关模块K 25,或者开关模块K 12、开关模块K 16、开关模块K 21和开关模块K 23,或者开关模块K 12、开关模块K 16、开关模块K 21和开关模块K 25,或者开关模块K 12、开关模块K 16、开关模块K 23和开关模块K 25,或者开关模块K 14、开关模块K 16、开关模块K 21和开关模块K 23,或者开关模块K 14、开关模块K 16、开关模块K 21和开关模块K 25,或者开关模块K 14、开关模块K 16、开关模块K 23和开关模块K 25。如此,在通过两个绕组进行加热的情况下,结合第一时段的3种开关控制方式和第二时段的9种开关控制方式,一个周期内共存在3×9=27种开关控制方式,主控制器410可以随机或者按照某种规则选择这27种开关控制方式中的一种进行两个绕组下的加热控制,本申请实施例对此不作具体限定。
情形三:通过一个绕组进行加热
假设主控制器410根据目标高频脉冲电流确定采用一个绕组进行加热,则图9示例性示出本申请实施例二提供的一种通过一个绕组进行加热控制的电路示意图,其中:
图9中(A)示出的是前一时段T 1的第一个子时段D 1×T 1内的电路图,参照图9中(A)所示,在前一时段T 1的第一个子时段D 1×T 1内,在开关模块K 11、开关模块K 13和开关模块K 15中选择一个开关模块,导通这该开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图9中(A)所示意的,当导通开关模块K 15中的三极管,并关断其它开关模块中的三极管时,动力电池组V 01放出的电能经由开关模块K 15中的三极管流入绕组W 1,从而储能在绕组W 1中。之后,电能经由绕组W 1的第二端后流至绕组U 2、绕组V 2和绕组W 2,从而储能在绕组U 2、绕组V 2和绕组W 2中。进而,从绕组U 2中流出的电能经由开关模块K 21中的反并联二极管流出,从绕组V 2中流出的电能经由开关模块K 23中 的反并联二极管流出,从绕组W 2中流出的电能经由开关模块K 25中的反并联二极管流出,之后均流入动力电池组V 02的阳极,并从动力电池组V 02的阴极流程至动力电池组V 01的阴极。可见,在前一时段T 1的第一个子时段D 1×T 1内,动力电池组V 01放出的电能通过第一三相绕组中的一个绕组和第二三相绕组中的三个绕组为动力电池组V 02充电,且第一三相绕组中的一个绕组和第二三相绕组中的三个绕组还进行了储能;
图9中(B)示出的是前一时段T 1的第二个子时段(1-D 1)×T 1内的电路图,参照图9中(B)所示,在前一时段T 1的第二个子时段(1-D 1)×T 1内,全部开关模块中的三极管都关断。该情况下,由于绕组W 1、绕组U 2、绕组V 2和绕组W 2在第一个子时段D 1×T 1内已储能,因此,基于绕组阻碍电流变化的特性,绕组W 1、绕组U 2、绕组V 2和绕组W 2会将之前储存的电能放出,进而分别经由开关模块K 21中的反并联二极管、开关模块K 23中的反并联二极管和开关模块K 25中的反并联二极管流入动力电池组V 02的阳极,并从动力电池组V 02的阴极流出,之后分别经由开关模块K 12中的反并联二极管、开关模块K 14中的反并联二极管和开关模块K 16中的反并联二极管流至第一三相绕组。可见,在前一时段T 1的第二个子时段(1-D 1)×T 1内,第一三相绕组的一个绕组和第二三相绕组的三个绕组中储存的电能转移至动力电池组V 02,继续为动力电池组V 02充电;
图9中(C)示出的是后一时段T 2的第一个子时段D 2×T 2内的电路图,参照图9中(C)所示,在后一时段T 2的第一个子时段D 2×T 2内,在开关模块K 12、开关模块K 14和开关模块K 16中选择一个开关模块,并在开关模块K 21、开关模块K 23和开关模块K 25中选择一个开关模块,导通这两个开关模块的三极管,并关断其它开关模块中的三极管。例如,按照图9中(C)所示意的,当导通开关模块K 14和开关模块K 21中的三极管,并关断其它开关模块中的三极管时,动力电池组V 02放出的电能经由开关模块K 21中的三极管流入绕组U 2,从而储能在绕组U 2中。之后,电能经由绕组U 2的第二端后流至绕组V 1,从而储能在绕组V 1中。进而,绕组V 1流出的电能通过开关模块K 14中的三极管流出后流入动力电池组V 02的阴极。可见,在后一时段T 2的第一个子时段D 2×T 2内,动力电池组V 02放出的电能为每个三相绕组中的一个绕组储能;
图9中(D)示出的是后一时段T 2的第二个子时段(1-D 2)×T 2内的电路图,参照图9中(D)所示,在后一时段T 2的第二个子时段(1-D 2)×T 2内,在开关模块K 21、开关模块K 23和开关模块K 25中选择与第一个子时段D 2×T 2内所选的相同的一个开关模块,导通该开关模块中的三极管,并关断其它开关模块中的三极管。例如,参照图9中(D)所示意的,当导通开关模块K 21中的三极管,并关断其它开关模块中的三极管时,动力电池组V 02放出的电能经由开关模块K 21流入绕组U 2,之后,结合绕组U 2和绕组V 1所放出的之前储存的电能,分别经由开关模块K 11中的反并联二极管、开关模块K 13中的反并联二极管和开关模块K 15中的反并联二极管流入动力电池组V 01的阳极,并从动力电池组V 01的阴极流出至动力电池组V 02的阴极。可见,在后一时段T 2的第二个子时段(1-D 2)×T 2内,动力电池组V 02联合每个三相绕组的一个绕组中储存的电能为动力电池组V 01充电。
由此可知,上述实现方式能尽量通过每个三相绕组中的一个绕组实现两个动力电池组之间的交替放电,有助于在产生高频脉冲电流以加热动力电池组的同时,进一步降低绕组的使用频率,进一步延长电机的寿命。
应理解,上述图9只是示例性地介绍通过两个绕组进行加热的一种可能的开关控制方式,本申请实施例中,由于前一时段T 1可以选择导通开关模块K 11、开关模块K 13和开关 模块K 15中的任意一个,即前一时段T 1共存在3种可能的开关控制方式,即:开关模块K 11,或者开关模块K 13,或者开关模块K 15;后一时段可以选择导通开关模块K 12、开关模块K 14和开关模块K 16中的任意一个以及开关模块K 21、开关模块K 23和开关模块K 25中的任意一个,即后一时段T 2共存在9种可能的开关控制方式,即:开关模块K 12和开关模块K 21,或者开关模块K 12和开关模块K 23,或者开关模块K 12和开关模块K 25,或者开关模块K 14和开关模块K 21,或者开关模块K 14和开关模块K 23,或者开关模块K 14和开关模块K 25,或者开关模块K 16和开关模块K 21,或者开关模块K 16和开关模块K 23,或者开关模块K 16和开关模块K 25。如此,在通过一个绕组进行加热的情况下,结合第一时段的3种开关控制方式和第二时段的9种开关控制方式,一个周期内共存在3×9=27种开关控制方式,主控制器410可以随机或者按照某种规则选择这27种开关控制方式中的一种进行一个绕组下的加热控制,本申请实施例对此不作具体限定。
此外,需要说明的是,上述情形一至情形三仅仅是以通过尽量控制两个三相绕组中使用同样数量的绕组进行加热为例介绍具体的开关控制方式。在实际操作中,主控制器可以控制两个三相绕组中使用相同或不同数量的绕组进行加热,例如在通过控制第一开关模组中的开关模块K 11~K 16选中第一三相绕组的三个绕组中的任意多个绕组的情况下,可以通过控制第二开关模组中的开关模块K 21~K 26选中第二三相绕组的三个绕组中的任意多个,如选中第二三相绕组三个绕组中的三个绕组或者两个绕组或者一个绕组。本申请实施例中,全部可能的开关控制方式共有不少于343种,主控制器可以选择这不少于343种开关控制方式中的任一种执行加热控制,以便采用不同的绕组组合方式进行加热,通过改变绕组合方式的数量,有效提高动力电池组装置中用于加热的高频脉冲电流的可调节范围。应理解,选中不同数量的绕组进行加热的方案可参照上述情形一至情形三的方案直接推导得到,且无需付出创造性劳动,因此本申请实施例对此不再一一列举。
另一个示例中,如果加热模式为先Boost再Buck模式,则主控制器410生成的控制信号用于:在每个周期的前一时段的第一个子时段内,控制开关模块K 12、开关模块K 14和开关模块K 16中的一个或多个、以及开关模块K 21、开关模块K 23和开关模块K 25中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的前一时段的第二个子时段内,控制开关模块K 21、开关模块K 23和开关模块K 25中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的后一时段的第一个子时段内,控制开关模块K 11、开关模块K 13和开关模块K 15中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的后一时段的第二个子时段内,控制全部的开关模块关断。换句话说,与先Buck再Boost模式对应的控制方式相比,先Boost再Buck模式的前一时段采用先Buck再Boost模式的后一时段的控制方式,先Boost再Buck模式的后一时段采用先Buck再Boost模式的前一时段的控制方式,具体的控制实现逻辑请直接参照上述图7至图9,本申请实施例对此不再一一重复赘述。
此外,与先Buck再Boost模式相似的,在第一动力电池组311的电压大于第二动力电池组321的电压的情况下,先Buck再Boost模式也存在不少于343种开关控制方式,主控制器可以选择这不少于343种开关控制方式中的任一种执行先Buck再Boost模式下的加热控制,以便采用不同的绕组组合方式进行加热,通过改变绕组合方式的数量,有效提高动力电池组装置中用于加热的高频脉冲电流的可调节范围。
第一动力电池组311的电压小于第二动力电池组321的电压的情况下:
一个示例中,如果加热模式为先Boost再Buck模式,则主控制器410生成的控制信号用于:在每个周期的前一时段的第一个子时段内,控制开关模块K 11、开关模块K 13和开关模块K 15中的一个或多个、以及开关模块K 22、开关模块K 24和开关模块K 26中的对应的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的前一时段的第二个子时段内,控制开关模块K 11、开关模块K 13和开关模块K 15中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的后一时段的第一个子时段内,控制开关模块K 21、开关模块K 23和开关模块K 25中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的后一时段的第二个子时段内,控制全部的开关模块关断。
在上述示例中,一个或多个可以是一个、两个或三个中的任一个。在上述开关控制逻辑中,前一时段的第一个子时段内导通开关模块K 11、开关模块K 13和开关模块K 15中的一个或多个、以及开关模块K 22、开关模块K 24和开关模块K 26中的一个或多个,导通开关模块K 11、开关模块K 13和开关模块K 15中的一个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的一个开关模块的情况存在9种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的一个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的两个开关模块的情况存在9种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的一个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的三个开关模块的情况存在3种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的两个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的一个开关模块的情况存在9种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的两个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的两个开关模块的情况存在9种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的两个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的三个开关模块的情况存在3种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的三个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的一个开关模块的情况存在3种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的三个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的两个开关模块的情况存在3种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的三个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的三个开关模块的情况存在1种可能,因此前一时段的第一子时段内共存在49种开关控制方式。对应的,后一时段的第一个子时段内导通开关模块K 21、开关模块K 23和开关模块K 25中的一个或多个,导通一个开关模块的情况存在3种可能,导通两个开关模块的情况存在3种可能,导通三个开关模块的情况存在1种可能,因此前一时段的第一子时段内共存在7种开关控制方式。可见,上述加热控制逻辑共存在不少于49×7=343种开关控制方式。需要说明的是,此处的不少于,源自于前一时段的第二个子时段内所导通的开关模块K 11、开关模块K 13和开关模块K 15中的一个或多个与前一时段的第一个子时段内所导通的开关模块K 11、开关模块K 13和开关模块K 15中的一个或多个也可能不相同,而至于具体不相同的情况存在多少种可能,可参照上述内容推理得到,本申请对此不再一一列举。
为便于更清晰地理解上述加热控制逻辑,下文示例性地以尽量通过两个三相绕组中的相同数量的绕组进行加热为例,介绍加热控制的具体电路实现。
在该示例中,假设前一时段的第一个子时段表示为D 1×T 1,前一时段的第二个子时段 表示为(1-D 1)×T 1,后一时段的第一个子时段表示为D 2×T 2,后一时段的第二个子时段表示为(1-D 2)×T 2,则:
情形一:通过三个绕组进行加热
假设主控制器410根据目标高频脉冲电流确定采用三个绕组进行加热,则图10示例性示出本申请实施例二提供的另一种通过三个绕组进行加热控制的电路示意图,其中:
图10中(A)示出的是前一时段T 1的第一个子时段D 1×T 1内的电路图,参照图10中(A)所示,在前一时段T 1的第一个子时段D 1×T 1内,开关模块K 11、开关模块K 13、开关模块K 15、开关模块K 22、开关模块K 24和开关模块K 26中的三极管导通,其它开关模块中的三极管关断。该情况下,动力电池组V 01放出的电能分为三路,一路经由开关模块K 11中的三极管流入绕组U 1,另一路经由开关模块K 13中的三极管流入绕组V 1,再一路经由开关模块K 15中的三极管流入绕组W 1,从而储能在绕组U 1、绕组V 1和绕组W 1中。之后,电能经过这三个绕组的第二端后流至绕组U 2、绕组V 2和绕组W 2,从而储能在绕组U 2、绕组V 2和绕组W 2中。进而,从绕组U 2中流出的电能经由开关模块K 22中的三极管流出,从绕组V 2中流出的电能经由开关模块K 24中的三极管流出,从绕组W 2中流出的电能经由开关模块K 26中的三极管流出,之后均流入动力电池组V 01的阴极。可见,在前一时段T 1的第一个子时段D 1×T 1内,动力电池组V 01放出的电能为每个三相绕组中的三个绕组储能;
图10中(B)示出的是前一时段T 1的第二个子时段(1-D 1)×T 1内的电路图,参照图10中(B)所示,在前一时段T 1的第二个子时段(1-D 1)×T 1内,开关模块K 11、开关模块K 13和开关模块K 15中的三极管导通,其它开关模块中的三极管关断。该情况下,动力电池组V 01放出的电能分为三路,一路经由开关模块K 11中的三极管流入绕组U 1,另一路经由开关模块K 13中的三极管流入绕组V 1,再一路经由开关模块K 15中的三极管流入绕组W 1。且,虽然动力电池组V 01的电压小于动力电池组V 02的电压,但由于绕组U 1、绕组V 1、绕组W 1、绕组U 2、绕组V 2和绕组W 2在第一个子时段D 1×T 1内已储能,因此,为维持电流的原方向,绕组U 1、绕组V 1、绕组W 1、绕组U 2、绕组V 2和绕组W 2会将之前储存的电能放出,绕组放出的电能结合动力电池组V 01放出的电能一起,分别经由开关模块K 21中的反并联二极管、开关模块K 23中的反并联二极管和开关模块K 25中的反并联二极管流入动力电池组V 02的阳极,并从动力电池组V 02的阴极流出至动力电池组V 01的阴极。可见,在前一时段T 1的第二个子时段(1-D 1)×T 1内,动力电池组V 01联合每个三相绕组的三个绕组中储存的电能一起为动力电池组V 02充电;
图10中(C)示出的是后一时段T 2的第一个子时段D 2×T 2内的电路图,参照图10中(C)所示,在后一时段T 2的第一个子时段D 2×T 2内,开关模块K 21、开关模块K 23和开关模块K 25中的三极管导通,其它开关模块中的三极管关断。该情况下,动力电池组V 02放出的电能分为三路,一路经由开关模块K 21中的三极管流入绕组U 2,另一路经由开关模块K 23中的三极管流入绕组V 2,再一路经由开关模块K 25中的三极管流入绕组W 2,从而储能在绕组U 2、绕组V 2和绕组W 2中。之后,电能经由这三个绕组的第二端后流至绕组U 1、绕组V 1和绕组W 1,从而储能在绕组U 1、绕组V 1和绕组W 1中。进而,绕组U 1流出的电能通过开关模块K 11的反并联二极管流出,绕组V 1流出的电能通过开关模块K 13的反并联二极管流出,绕组W 1流出的电能通过开关模块K 15的反并联二极管流出,之后流入动力电池组V 01的阳极,通过动力电池组V 01的阴极流至动力电池组V 02的阴极。可见,在后一时段T 2的第一个子时段D 2×T 2内,动力电池组V 02放出的电能为动力电池组V 01充电,且 每个三相绕组的三个绕组中进行了储能;
图10中(D)示出的是后一时段T 2的第二个子时段(1-D 2)×T 2内的电路图,参照图10中(D)所示,在后一时段T 2的第二个子时段(1-D 2)×T 2内,全部开关模块中的三极管都关断。该情况下,由于绕组U 1、绕组V 1、绕组W 1、绕组U 2、绕组V 2和绕组W 2在第一个子时段D 2×T 2内已储能,因此,为维持电流的原方向,绕组U 2、绕组V 2、绕组W 2、绕组U 1、绕组V 1和绕组W 1会将之前储存的电能放出,进而分别经由开关模块K 11中的反并联二极管、开关模块K 13中的反并联二极管和开关模块K 15中的反并联二极管流入动力电池组V 01的阳极,并从动力电池组V 01的阴极流出,分别经由开关模块K 22中的反并联二极管、开关模块K 24中的反并联二极管和开关模块K 26中的反并联二极管流入至绕组U 2、绕组V 2和绕组W 2。可见,在后一时段T 2的第二个子时段(1-D 2)×T 2内,每个三相绕组的三个绕组中储存的电能转移至动力电池组V 01,继续为动力电池组V 01充电。
由此可知,在一个周期的前一时段T 1内,电能从电压低的动力电池组V 01流向电压高的动力电池组V 02,动力电池组装置30工作在Boost模式,而在一个周期的后一时段T 2内,电能从电压高的动力电池组V 02流向电压低的动力电池组V 01,动力电池组装置30工作在Buck模式。可见,在一个周期内,动力电池组装置30中的电流流向发生改变,从而动力电池组装置30中产生高频脉冲电流,该高频脉冲电流流过动力电池组V 01和动力电池组V 02时,由于动力电池组V 01和动力电池组V 02的内阻作用而产生焦耳热,利用该焦耳热能有效加热动力电池组V 01和动力电池组V 02
情形二:通过两个绕组进行加热
假设主控制器410根据目标高频脉冲电流确定采用两个绕组进行加热,则图11示例性示出本申请实施例二提供的另一种通过两个绕组进行加热控制的电路示意图,其中:
图11中(A)示出的是前一时段T 1的第一个子时段D 1×T 1内的电路图,参照图11中(A)所示,在前一时段T 1的第一个子时段D 1×T 1内,在开关模块K 11、开关模块K 13和开关模块K 15中选择两个开关模块,在开关模块K 22、开关模块K 24和开关模块K 26中选择两个开关模块,导通这四个开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图11中(A)所示意的,当导通开关模块K 11、开关模块K 13、开关模块K 22和开关模块K 26中的三极管,并关断其它开关模块中的三极管时,动力电池组V 01放出的电能分为两路,一路经由开关模块K 11中的三极管流入绕组U 1,另一路经由开关模块K 13中的三极管流入绕组V 1,从而储能在绕组U 1和绕组V 1中。之后,电能经过绕组U 1和绕组V 1的第二端后流至绕组U 2和绕组W 2,从而储能在绕组U 2和绕组W 2中。进而,从绕组U 2中流出的电能经由开关模块K 22中的三极管流出,从绕组W 2中流出的电能经由开关模块K 26中的三极管流出,之后均流入动力电池组V 01的阴极。可见,在前一时段T 1的第一个子时段D 1×T 1内,动力电池组V 01放出的电能为每个三相绕组中的两个绕组储能;
图11中(B)示出的是前一时段T 1的第二个子时段(1-D 1)×T 1内的电路图,参照图11中(B)所示,在前一时段T 1的第二个子时段(1-D 1)×T 1内,在开关模块K 11、开关模块K 13和开关模块K 15中选择与第一个子时段D 1×T 1相同的两个开关模块,导通这两个开关模块中的三极管,并关断其它开关模块中的三极管。例如,参照11中(B)所示意的,当导通开关模块K 11和开关模块K 13中的三极管,并关断其它开关模块中的三极管时,动力电池组V 01放出的电能分为两路,一路经由开关模块K 11中的三极管流入绕组U 1,另一路经由开关模块K 13中的三极管流入绕组V 1。且,虽然动力电池组V 01的电压小于动力电池组 V 02的电压,但由于绕组U 1、绕组V 1、绕组U 2和绕组W 2在第一个子时段D 1×T 1内已储能,因此,为维持电流的原方向,绕组U 1、绕组V 1、绕组U 2和绕组W 2会将之前储存的电能放出,绕组放出的电能结合动力电池组V 01放出的电能一起,分别经由开关模块K 21中的反并联二极管、开关模块K 23中的反并联二极管和开关模块K 25中的反并联二极管流入动力电池组V 02的阳极,并从动力电池组V 02的阴极流出至动力电池组V 01的阴极。可见,在前一时段T 1的第二个子时段(1-D 1)×T 1内,动力电池组V 01联合每个三相绕组的两个绕组中所储存的电能一起为动力电池组V 02充电;
图11中(C)示出的是后一时段T 2的第一个子时段D 2×T 2内的电路图,参照图11中(C)所示,在后一时段T 2的第一个子时段D 2×T 2内,在开关模块K 21、开关模块K 23和开关模块K 25中选择两个开关模块,导通这两个开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图11中(C)所示意的,当导通开关模块K 23和开关模块K 25中的三极管,并关断其它开关模块中的三极管时,动力电池组V 02放出的电能分为两路,一路经由开关模块K 23中的三极管流入绕组V 2,另一路经由开关模块K 25中的三极管流入绕组W 2,从而储能在绕组V 2和绕组W 2中。之后,电能经由绕组V 2和绕组W 2的第二端后流至绕组U 1、绕组V 1和绕组W 1,从而储能在绕组U 1、绕组V 1和绕组W 1中。进而,绕组U 1流出的电能通过开关模块K 11的反并联二极管流出,绕组V 1流出的电能通过开关模块K 13的反并联二极管流出,绕组W 1流出的电能通过开关模块K 15的反并联二极管流出,之后流入动力电池组V 01的阳极,通过动力电池组V 01的阴极流至动力电池组V 02的阴极。可见,在后一时段T 2的第一个子时段D 2×T 2内,动力电池组V 02放出的电能通过第二三相绕组中的两个绕组和第一三相绕组中的三个绕组为动力电池组V 01充电,且第二三相绕组中的两个绕组和第一三相绕组中的三个绕组进行了储能;
图11中(D)示出的是后一时段T 2的第二个子时段(1-D 2)×T 2内的电路图,参照图11中(D)所示,在后一时段T 2的第二个子时段(1-D 2)×T 2内,关断全部开关模块中的三极管。该情况下,由于绕组U 1、绕组V 1、绕组W 1、绕组V 2和绕组W 2在第一个子时段D 2×T 2内已储能,因此,为维持电流的原方向,绕组V 2、绕组W 2、绕组U 1、绕组V 1和绕组W 1会将之前储存的电能放出,进而分别经由开关模块K 11中的反并联二极管、开关模块K 13中的反并联二极管和开关模块K 15中的反并联二极管流入动力电池组V 01的阳极,并从动力电池组V 01的阴极流出,之后分别经由开关模块K 22中的反并联二极管、开关模块K 24中的反并联二极管和开关模块K 26中的反并联二极管流入至第二三相绕组。可见,在后一时段T 2的第二个子时段(1-D 2)×T 2内,第二三相绕组中的两个绕组和第一三相绕组中的三个绕组所储存的电能转移至动力电池组V 01,继续为动力电池组V 01充电。
由此可知,上述实现方式能尽量通过每个三相绕组中的两个绕组实现两个动力电池组之间的交替放电,有助于在产生高频脉冲电流以加热动力电池组的同时,降低绕组的使用频率,尽量延长电机的寿命。
应理解,上述图11只是示例性地介绍通过两个绕组进行加热的一种可能的开关控制方式,本申请实施例中,由于前一时段T 1可以选择导通开关模块K 11、开关模块K 13和开关模块K 15中的任意两个以及开关模块K 22、开关模块K 24和开关模块K 26中的任意两个,即前一时段T 1共存在9种可能的开关控制方式,即:开关模块K 11、开关模块K 13、开关模块K 22和开关模块K 24,或者开关模块K 11、开关模块K 13、开关模块K 22和开关模块K 26,或者开关模块K 11、开关模块K 13、开关模块K 24和开关模块K 26,或者开关模块K 11、开关 模块K 15、开关模块K 22和开关模块K 24,或者开关模块K 11、开关模块K 15、开关模块K 22和开关模块K 26,或者开关模块K 11、开关模块K 15、开关模块K 24和开关模块K 26,或者开关模块K 13、开关模块K 15、开关模块K 22和开关模块K 24,或者开关模块K 13、开关模块K 15、开关模块K 22和开关模块K 26,或者开关模块K 13、开关模块K 15、开关模块K 24和开关模块K 26;后一时段可以选择导通开关模块K 21、开关模块K 23和开关模块K 25中的任意两个,即后一时段T 2共存在3种可能的开关控制方式,即:开关模块K 21和开关模块K 23,或者开关模块K 21和开关模块K 25,或者开关模块K 23和开关模块K 25。如此,在通过两个绕组进行加热的情况下,结合第一时段的9种开关控制方式和第二时段的3种开关控制方式,一个周期内共存在9×3=27种开关控制方式,主控制器410可以随机或者按照某种规则选择这27种开关控制方式中的一种进行两个绕组下的加热控制,本申请实施例对此不作具体限定。
情形三:通过一个绕组进行加热
假设主控制器410根据目标高频脉冲电流确定采用一个绕组进行加热,则图12示例性示出本申请实施例二提供的另一种通过一个绕组进行加热控制的电路示意图,其中:
图12中(A)示出的是前一时段T 1的第一个子时段D 1×T 1内的电路图,参照图12中(A)所示,在前一时段T 1的第一个子时段D 1×T 1内,在开关模块K 11、开关模块K 13和开关模块K 15中选择一个开关模块,在开关模块K 22、开关模块K 24和开关模块K 26中选择对应的一个开关模块,导通这两个开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图12中(A)所示意的,当导通开关模块K 13和开关模块K 24中的三极管,并关断其它开关模块中的三极管时,动力电池组V 01放出的电能经由开关模块K 13中的三极管流入绕组V 1,从而储能在绕组V 1中。之后,电能经过绕组V 1的第二端后流至绕组V 2,从而储能在绕组V 2中。进而,从绕组V 2中流出的电能经由开关模块K 24中的三极管流出,之后均流入动力电池组V 01的阴极。可见,在前一时段T 1的第一个子时段D 1×T 1内,动力电池组V 01放出的电能为每个三相绕组中的一个绕组储能;
图12中(B)示出的是前一时段T 1的第二个子时段(1-D 1)×T 1内的电路图,参照图12中(B)所示,在前一时段T 1的第二个子时段(1-D 1)×T 1内,在开关模块K 11、开关模块K 13和开关模块K 15中选择与第一个子时段D 1×T 1相同的一个开关模块,导通该开关模块中的三极管,并关断其它开关模块中的三极管。例如,参照图12中(B)所示意的,当导通开关模块K 13中的三极管,并关断其它开关模块中的三极管时,动力电池组V 01放出的电能经由开关模块K 13中的三极管流入绕组V 1。且,绕组V 1和绕组V 2在第一个子时段D 1×T 1内已储能,因此,为维持电流的原方向,绕组V 1和绕组V 2会将之前储存的电能放出,绕组放出的电能结合动力电池组V 01放出的电能一起,分别经由开关模块K 21中的反并联二极管、开关模块K 23中的反并联二极管和开关模块K 25中的反并联二极管流入动力电池组V 02的阳极,并从动力电池组V 02的阴极流出至动力电池组V 01的阴极。可见,在前一时段T 1的第二个子时段(1-D 1)×T 1内,动力电池组V 01联合每个三相绕组的一个绕组中储存的电能一起为动力电池组V 02充电;
图12中(C)示出的是后一时段T 2的第一个子时段D 2×T 2内的电路图,参照图12中(C)所示,在后一时段T 2的第一个子时段D 2×T 2内,在开关模块K 21、开关模块K 23和开关模块K 25中选择一个开关模块,导通该开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图12中(C)所示意的,当导通开关模块K 25中的三极管,并关断其 它开关模块中的三极管时,动力电池组V 02放出的电能经由开关模块K 25中的三极管流入绕组W 2,从而储能在绕组W 2中。之后,电能经由绕组W 2的第二端后流至绕组U 1、绕组V 1和绕组W 1,从而储能在绕组U 1、绕组V 1和绕组W 1中。进而,绕组U 1流出的电能通过开关模块K 11的反并联二极管流出,绕组V 1流出的电能通过开关模块K 13的反并联二极管流出,绕组W 1流出的电能通过开关模块K 15的反并联二极管流出,之后流入动力电池组V 01的阳极,通过动力电池组V 01的阴极流至动力电池组V 02的阴极。可见,在后一时段T 2的第一个子时段D 2×T 2内,动力电池组V 02放出的电能通过第二三相绕组中的一个绕组和第一三相绕组中的三个绕组为动力电池组V 01充电,且第二三相绕组中的一个绕组和第一三相绕组中的三个绕组进行了储能;
图12中(D)示出的是后一时段T 2的第二个子时段(1-D 2)×T 2内的电路图,参照图12中(D)所示,在后一时段T 2的第二个子时段(1-D 2)×T 2内,关断全部开关模块中的三极管。该情况下,由于绕组W 2、绕组U 1、绕组V 1和绕组W 1在第一个子时段D 2×T 2内已储能,因此,为维持电流的原方向,绕组W 2、绕组U 1、绕组V 1和绕组W 1会将之前储存的电能放出,进而分别经由开关模块K 11中的反并联二极管、开关模块K 13中的反并联二极管和开关模块K 15中的反并联二极管流入动力电池组V 01的阳极,并从动力电池组V 01的阴极流出至第二三相绕组。可见,在后一时段T 2的第二个子时段(1-D 2)×T 2内,第二三相绕组中的一个绕组和第一三相绕组中的三个绕组所储存的电能转移至动力电池组V 01,继续为动力电池组V 01充电。
由此可知,上述实现方式能通过每个三相绕组中的一个绕组实现两个动力电池组之间的交替放电,有助于在产生高频脉冲电流以加热动力电池组的同时,进一步降低绕组的使用频率,进一步延长电机的寿命。
应理解,上述图12只是示例性地介绍通过一个绕组进行加热的一种可能的开关控制方式,本申请实施例中,由于前一时段T 1可以选择导通开关模块K 11、开关模块K 13和开关模块K 15中的任意一个、以及开关模块K 22、开关模块K 24和开关模块K 26中的任意一个,即前一时段T 1共存在9种可能的开关控制方式,即:开关模块K 11和开关模块K 22,或者开关模块K 11和开关模块K 24,或者开关模块K 11和开关模块K 26,或者开关模块K 13和开关模块K 22,或者开关模块K 13和开关模块K 24,或者开关模块K 13和开关模块K 26,或者开关模块K 15和开关模块K 22,或者开关模块K 15和开关模块K 24,或者开关模块K 15和开关模块K 26;后一时段可以选择导通开关模块K 21、开关模块K 23和开关模块K 25中的任意一个,即后一时段T 2共存在3种可能的开关控制方式,即:开关模块K 21,或者开关模块K 23,或者开关模块K 25。如此,在通过一个绕组进行加热的情况下,结合第一时段的9种开关控制方式和第二时段的3种开关控制方式,一个周期内共存在9×3=27种开关控制方式,主控制器410可以随机或者按照某种规则选择这27种开关控制方式中的一种进行一个绕组下的加热控制,本申请实施例对此不作具体限定。
此外,需要说明的是,上述情形一至情形三仅仅是以通过尽量控制两个三相绕组中使用同样数量的绕组进行加热为例介绍具体的开关控制方式。在实际操作中,主控制器可以控制两个三相绕组中使用相同或不同数量的绕组进行加热,全部可能的开关控制方式共有不少于343种,主控制器可以选择这不少于343种开关控制方式中的任一种执行加热控制,以便采用不同的绕组组合方式进行加热,通过改变绕组合方式的数量,有效提高动力电池组装置中用于加热的高频脉冲电流的可调节范围。
另一个示例中,如果加热模式为先Buck再Boost模式,则主控制器410生成的控制信号用于:在每个周期的前一时段的第一个子时段内,控制开关模块K 21、开关模块K 23和开关模块K 25中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的前一时段的第二个子时段内,控制全部开关模块关断;在每个周期的后一时段的第一个子时段内,控制开关模块K 11、开关模块K 13和开关模块K 15中的一个或多个、以及开关模块K 22、开关模块K 24和开关模块K 26中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的后一时段的第二个子时段内,控制开关模块K 11、开关模块K 13和开关模块K 15中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断。换句话说,与先Boost再Buck模式对应的控制方式相比,先Buck再Boost模式的前一时段采用先Boost再Buck模式的后一时段的控制方式,先Buck再Boost模式的后一时段采用先Boost再Buck模式的前一时段的控制方式,具体的控制实现逻辑请直接参照上述图10至图12,本申请实施例对此不再一一重复赘述。
此外,在第一动力电池组311的电压大于第二动力电池组321的电压的情况下,与先Boost再Buck模式相似的,先Buck再Boost模式也存在不少于343种开关控制方式,主控制器可以选择这不少于343种开关控制方式中的任一种执行先Buck再Boost模式下的加热控制。
第一动力电池组311的电压等于第二动力电池组321的电压的情况下:
在第一动力电池组311的电压等于第二动力电池组321的电压的情况下,主控制器410可以按照上述第一动力电池组311的电压大于第二动力电池组321的电压的情况执行对应的加热控制逻辑,也可以参照上述第一动力电池组311的电压小于第二动力电池组321的电压的情况执行对应的加热控制逻辑,具体不作限定。
在上述实施例二中,通过将两个三相绕组的第二端相连,以及将两个动力电池组的阴极相连,能在两个动力电池组的阴极和两个三相绕组之间构成回路,进而能便于在该回路中生成高频脉冲电流以加热两个动力电池组。
【实施例三】
图13示例性示出本申请实施例三提供的一种加热控制系统的结构示意图,如图13所示,该示例中,加热控制系统包括控制装置40和动力电池组装置30。其中,控制装置40和动力电池组装置30的具体结构可参照上述实施例二,区别在于:实施例二中的第一动力电池组311的阴极与第二动力电池组321的阴极相连,而实施例三中的第一动力电池组311的阳极与第二动力电池组321的阳极相连。
下面基于图13所示意的加热控制系统,分别介绍不同情况下的具体控制逻辑:
第一动力电池组311的电压大于第二动力电池组321的电压的情况下:
一个示例中,如果加热模式为先Buck再Boost模式,则主控制器410生成的控制信号用于:在每个周期的前一时段的第一个子时段内,控制开关模块K 12、开关模块K 14和开关模块K 16中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的前一时段的第二个子时段内,控制全部开关模块关断;在每个周期的后一时段的第一个子时段内,控制开关模块K 11、开关模块K 13和开关模块K 15中的一个或多个、以及开关模块K 22、开关模块K 24和开关模块K 26中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的后一时段的第二个子时段内,控制开关模块K 22、 开关模块K 24和开关模块K 26中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断。
在上述示例中,一个或多个可以是一个、两个或三个中的任一个。在上述开关控制逻辑中,前一时段的第一个子时段内导通开关模块K 12、开关模块K 14和开关模块K 16中的一个或多个,导通一个开关模块的情况存在3种可能,导通两个开关模块的情况存在3种可能,导通三个开关模块的情况存在1种可能,因此前一时段的第一子时段内共存在7种开关控制方式。对应的,后一时段的第一个子时段内导通开关模块K 11、开关模块K 13和开关模块K 15中的一个或多个、以及开关模块K 22、开关模块K 24和开关模块K 26中的一个或多个,导通开关模块K 11、开关模块K 13和开关模块K 15中的一个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的一个开关模块的情况存在9种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的一个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的两个开关模块的情况存在9种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的一个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的三个开关模块的情况存在3种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的两个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的一个开关模块的情况存在9种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的两个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的两个开关模块的情况存在9种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的两个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的三个开关模块的情况存在3种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的三个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的一个开关模块的情况存在3种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的三个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的两个开关模块的情况存在3种可能,导通开关模块K 11、开关模块K 13和开关模块K 15中的三个开关模块且导通开关模块K 22、开关模块K 24和开关模块K 26中的三个开关模块的情况存在1种可能,因此后一时段的第一子时段内共存在49种开关控制方式。可见,上述加热控制逻辑共存在不少于7×49=343种开关控制方式。需要说明的是,此处的不少于,源自于后一时段的第二个子时段内所导通的开关模块K 22、开关模块K 24和开关模块K 26中的一个或多个与后一时段的第一个子时段内所导通的开关模块K 22、开关模块K 24和开关模块K 26中的一个或多个也可能不相同,而至于具体不相同的情况存在多少种可能,可参照上述内容推理得到,本申请对此不再一一列举。
为便于更清晰地理解上述加热控制逻辑,下文示例性地以尽量通过两个三相绕组中的相同数量的绕组进行加热为例,介绍加热控制的具体电路实现。
在该示例中,假设前一时段的第一个子时段表示为D 1×T 1,前一时段的第二个子时段表示为(1-D 1)×T 1,后一时段的第一个子时段表示为D 2×T 2,后一时段的第二个子时段表示为(1-D 2)×T 2,则:
情形一:通过三个绕组进行加热
假设主控制器410根据目标高频脉冲电流确定采用三个绕组进行加热,则图14示例性示出本申请实施例三提供的一种通过三个绕组进行加热控制的电路示意图,其中:
图14中(A)示出的是前一时段T 1的第一个子时段D 1×T 1内的电路图,参照图14中(A)所示,在前一时段T 1的第一个子时段D 1×T 1内,开关模块K 12、开关模块K 14和开 关模块K 16中的三极管导通,其它开关模块中的三极管关断。该情况下,动力电池组V 01放出的电能流入至动力电池组V 02的阳极,之后经过动力电池组V 02的阴极分为三路,一路经由开关模块K 22中的反并联二极管流入绕组U 2,另一路经由开关模块K 24中的反并联二极管流入绕组V 2,再一路经由开关模块K 26中的反并联二极管流入绕组W 2,从而储能在绕组U 2、绕组V 2和绕组W 2中。之后,电能经过这三个绕组的第二端合为一路后流出,分为三路流至绕组U 1、绕组V 1和绕组W 1,从而储能在绕组U 1、绕组V 1和绕组W 1中。之后,从绕组U 1中流出的电能经由开关模块K 12中的三极管流出,从绕组V 1中流出的电能经由开关模块K 14中的三极管流出,从绕组W 1中流出的电能经由开关模块K 16中的三极管流出,之后均流入动力电池组V 01的阴极。可见,在前一时段T 1的第一个子时段D 1×T 1内,动力电池组V 01放出的电能通过每个三相绕组中的三个绕组为动力电池组V 02充电,且每个三相绕组中的三个绕组还进行了储能;
图14中(B)示出的是前一时段T 1的第二个子时段(1-D 1)×T 1内的电路图,参照图14中(B)所示,在前一时段T 1的第二个子时段(1-D 1)×T 1内,全部开关模块中的三极管都关断。该情况下,由于每个三相绕组中的三相绕组在第一个子时段D 1×T 1内已储能,因此当动力电池组V 01被隔断后,为维持电流的原方向,每个三相绕组中的三个绕组会将之前储存的电能放出,进而分别经由开关模块K 11中的反并联二极管、开关模块K 13中的反并联二极管和开关模块K 15中的反并联二极管流出,之后均流入动力电池组V 02的阳极,并从动力电池组V 02的阴极流出,分别经由开关模块K 22中的反并联二极管、开关模块K 24中的反并联二极管和开关模块K 26中的反并联二极管流出至绕组U 2、绕组V 2和绕组W 2。可见,在前一时段T 1的第二个子时段(1-D 1)×T 1内,每个三相绕组的三个绕组中储存的电能转移至动力电池组V 02,继续为动力电池组V 02充电;
图14中(C)示出的是后一时段T 2的第一个子时段D 2×T 2内的电路图,参照图14中(C)所示,在后一时段T 2的第一个子时段D 2×T 2内,开关模块K 11、开关模块K 13、开关模块K 15、开关模块K 22、开关模块K 24和开关模块K 26中的三极管导通,其它开关模块中的三极管关断。该情况下,动力电池组V 02放出的电能分为三路,一路经由开关模块K 11中的三极管流入绕组U 1,另一路经由开关模块K 13中的三极管流入绕组V 1,再一路经由开关模块K 15中的三极管流入绕组W 1,从而储能在绕组U 1、绕组V 1和绕组W 1中。之后,电能经由这三个绕组的第二端合为一路后流出,分为三路流至绕组U 2、绕组V 2和绕组W 2,从而储能在绕组U 2、绕组V 2和绕组W 2中。之后,绕组U 2流出的电能通过开关模块K 22中的三极管流出,绕组V 2流出的电能通过开关模块K 24中的三极管流出,绕组W 2流出的电能通过开关模块K 26中的三极管流出,之后均流入动力电池组V 02的阴极。可见,在后一时段T 2的第一个子时段D 2×T 2内,动力电池组V 02放出的电能为每个三相绕组中的三个绕组储能;
图14中(D)示出的是后一时段T 2的第二个子时段(1-D 2)×T 2内的电路图,参照图14中(D)所示,在后一时段T 2的第二个子时段(1-D 2)×T 2内,开关模块K 22、开关模块K 24和开关模块K 26中的三极管导通,其它开关模块中的三极管关断。该情况下,虽然动力电池组V 02的电压小于动力电池组V 01的电压,但由于绕组U 2、绕组V 2、绕组W 2、绕组U 1、绕组V 1和绕组W 1在第一个子时段D 2×T 2内已储能,因此,为维持电流的原方向,绕组U 2、绕组V 2、绕组W 2、绕组U 1、绕组V 1和绕组W 1会将之前储存的电能放出,绕组放出的电能结合动力电池组V 02的阳极放出的电能一起流入至动力电池组V 01的阳极。之 后,动力电池组V 01的阴极流出的电能分为三路,一路经由开关模块K 12中的反并联二极管流入至绕组U 1,另一路经由开关模块K 14中的反并联二极管流入至绕组V 1,再一路经由开关模块K 16中的反并联二极管流入至绕组W 1。可见,在后一时段T 2的第二个子时段(1-D 2)×T 2内,动力电池组V 02联合每个三相绕组的三个绕组中储存的电能一起为动力电池组V 01充电。
由此可知,在一个周期的前一时段T 1内,电能从电压高的动力电池组V 01流向电压低的动力电池组V 02,动力电池组装置30工作在Buck模式,而在一个周期的后一时段T 2内,电能从电压低的动力电池组V 02流向电压高的动力电池组V 01,动力电池组装置30工作在Boost模式。可见,在一个周期内,动力电池组装置30中的电流流向发生改变,从而动力电池组装置30中产生高频脉冲电流,该高频脉冲电流流过动力电池组V 01和动力电池组V 02时,由于动力电池组V 01和动力电池组V 02的内阻作用而产生焦耳热,利用该焦耳热能有效加热动力电池组V 01和动力电池组V 02
情形二:通过两个绕组进行加热
假设主控制器410根据目标高频脉冲电流确定采用两个绕组进行加热,则图15示例性示出本申请实施例三提供的一种通过两个绕组进行加热控制的电路示意图,其中:
图15中(A)示出的是前一时段T 1的第一个子时段D 1×T 1内的电路图,参照图15中(A)所示,在前一时段T 1的第一个子时段D 1×T 1内,在开关模块K 12、开关模块K 14和开关模块K 16中选择两个开关模块,导通这两个开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图15中(A)所示意的,当导通开关模块K 14和开关模块K 16中的三极管,并关断其它开关模块中的三极管时,动力电池组V 01放出的电能流入至动力电池组V 02的阳极,之后经过动力电池组V 02的阴极分为三路,一路经由开关模块K 22中的反并联二极管流入绕组U 2,另一路经由开关模块K 24中的反并联二极管流入绕组V 2,再一路经由开关模块K 26中的反并联二极管流入绕组W 2,从而储能在绕组U 2、绕组V 2和绕组W 2中。之后,电能经过这三个绕组的第二端合为一路后流出,分为两路流至绕组V 1和绕组W 1,从而储能在绕组V 1和绕组W 1中。之后,从绕组V 1中流出的电能经由开关模块K 14中的三极管流出,从绕组W 1中流出的电能经由开关模块K 16中的三极管流出,之后均流入动力电池组V 01的阴极。可见,在前一时段T 1的第一个子时段D 1×T 1内,动力电池组V 01放出的电能通过第二三相绕组中的三个绕组和第一三相绕组中的两个绕组为动力电池组V 02充电,且第二三相绕组中的三个绕组和第一三相绕组中的两个绕组还进行了储能;
图15中(B)示出的是前一时段T 1的第二个子时段(1-D 1)×T 1内的电路图,参照图15中(B)所示,在前一时段T 1的第二个子时段(1-D 1)×T 1内,全部开关模块中的三极管都关断。该情况下,由于绕组U 2、绕组V 2、绕组W 2、绕组V 1和绕组W 1在第一个子时段D 1×T 1内已储能,因此当动力电池组V 01被隔断后,为维持电流的原方向,绕组U 2、绕组V 2、绕组W 2、绕组V 1和绕组W 1会将之前储存的电能放出,进而分别经由开关模块K 11中的反并联二极管、开关模块K 13中的反并联二极管和开关模块K 15中的反并联二极管流出,之后均流入动力电池组V 02的阳极,并从动力电池组V 02的阴极流出至绕组U 2、绕组V 2和绕组W 2。可见,在前一时段T 1的第二个子时段(1-D 1)×T 1内,第二三相绕组中的三个绕组和第一三相绕组中的两个绕组中储存的电能转移至动力电池组V 02,继续为动力电池组V 02充电;
图15中(C)示出的是后一时段T 2的第一个子时段D 2×T 2内的电路图,参照图15中 (C)所示,在后一时段T 2的第一个子时段D 2×T 2内,在开关模块K 11、开关模块K 13和开关模块K 15中选择两个开关模块,以及在开关模块K 22、开关模块K 24和开关模块K 26中选择两个开关模块,导通这四个开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图15中(C)所示意的,当导通开关模块K 11、开关模块K 15、开关模块K 22和开关模块K 24中的三极管,并关断其它开关模块中的三极管时,动力电池组V 02放出的电能分为两路,一路经由开关模块K 11中的三极管流入绕组U 1,另一路经由开关模块K 15中的三极管流入绕组W 1,从而储能在绕组U 1和绕组W 1中。之后,电能经由绕组U 1和绕组W 1的第二端合为一路后流出,分为两路流至绕组U 2和绕组V 2,从而储能在绕组U 2和绕组V 2中。进而,绕组U 2流出的电能通过开关模块K 22中的三极管流出,绕组V 2流出的电能开关模块K 24中的三极管流出,之后均流入动力电池组V 02的阴极。可见,在后一时段T 2的第一个子时段D 2×T 2内,动力电池组V 02放出的电能为每个三相绕组中的两个绕组储能;
图15中(D)示出的是后一时段T 2的第二个子时段(1-D 2)×T 2内的电路图,参照图15中(D)所示,在后一时段T 2的第二个子时段(1-D 2)×T 2内,在开关模块K 22、开关模块K 24和开关模块K 26中选择与第一个子时段D 2×T 2相同的两个开关模块,导通这两个开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图15中(D)所示意的,当导通开关模块K 22和开关模块K 24中的三极管,并关断其它开关模块中的三极管时,虽然动力电池组V 02的电压小于动力电池组V 01的电压,但由于绕组U 2、绕组V 2、绕组U 1和绕组W 1在第一个子时段D 2×T 2内已储能,因此,为维持电流的原方向,绕组U 2、绕组V 2、绕组U 1和绕组W 1会将之前储存的电能放出,绕组放出的电能结合动力电池组V 02的阳极放出的电能一起流入至动力电池组V 01的阳极。之后,动力电池组V 01的阴极流出的电能分别经由开关模块K 12中的反并联二极管、开关模块K 14中的反并联二极管和开关模块K 16中的反并联二极管流入至第一三相绕组。可见,在后一时段T 2的第二个子时段(1-D 2)×T 2内,动力电池组V 02联合每个三相绕组的两个绕组中储存的电能一起为动力电池组V 01充电。
由此可知,上述实现方式能尽量通过三相绕组中的两个绕组实现两个动力电池组之间的交替放电,有助于在产生高频脉冲电流以加热动力电池组的同时,降低绕组的使用频率,尽量延长电机的寿命。
应理解,上述图15只是示例性地介绍通过两个绕组进行加热的一种可能的开关控制方式,本申请实施例中,由于前一时段T 1可以选择导通开关模块K 12、开关模块K 14和开关模块K 16中的任意两个,即前一时段T 1共存在3种可能的开关控制方式,即:开关模块K 12和开关模块K 14,或者开关模块K 12和开关模块K 16,或者开关模块K 14和开关模块K 16;后一时段可以选择导通开关模块K 11、开关模块K 13和开关模块K 15中的任意两个以及开关模块K 22、开关模块K 24和开关模块K 26中的任意两个,即后一时段T 2共存在9种可能的开关控制方式,即:开关模块K 11、开关模块K 13、开关模块K 22和开关模块K 24,或者开关模块K 11、开关模块K 13、开关模块K 22和开关模块K 26,或者开关模块K 11、开关模块K 13、开关模块K 24和开关模块K 26,或者开关模块K 11、开关模块K 15、开关模块K 22和开关模块K 24,或者开关模块K 11、开关模块K 15、开关模块K 22和开关模块K 26,或者开关模块K 11、开关模块K 15、开关模块K 24和开关模块K 26,或者开关模块K 13、开关模块K 15、开关模块K 22和开关模块K 24,或者开关模块K 13、开关模块K 15、开关模块K 22和开关模 块K 26,或者开关模块K 13、开关模块K 15、开关模块K 24和开关模块K 26。如此,在通过两个绕组进行加热的情况下,结合第一时段的3种开关控制方式和第二时段的9种开关控制方式,一个周期内共存在3×9=27种开关控制方式,主控制器410可以随机或者按照某种规则选择这27种开关控制方式中的一种进行两个绕组下的加热控制,本申请实施例对此不作具体限定。
情形三:通过一个绕组进行加热
假设主控制器410根据目标高频脉冲电流确定采用一个绕组进行加热,则图16示例性示出本申请实施例三提供的一种通过一个绕组进行加热控制的电路示意图,其中:
图16中(A)示出的是前一时段T 1的第一个子时段D 1×T 1内的电路图,参照图16中(A)所示,在前一时段T 1的第一个子时段D 1×T 1内,在开关模块K 12、开关模块K 14和开关模块K 16中选择一个开关模块,导通该开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图16中(A)所示意的,当导通开关模块K 14中的三极管,并关断其它开关模块中的三极管时,动力电池组V 01放出的电能流入至动力电池组V 02的阳极,之后经过动力电池组V 02的阴极分为三路,一路经由开关模块K 22中的反并联二极管流入绕组U 2,另一路经由开关模块K 24中的反并联二极管流入绕组V 2,再一路经由开关模块K 26中的反并联二极管流入绕组W 2,从而储能在绕组U 2、绕组V 2和绕组W 2中。之后,电能经过这三个绕组的第二端合为一路后流出至绕组V 1,从而储能在绕组V 1中。之后,从绕组V 1中流出的电能经由开关模块K 14中的三极管流出至动力电池组V 01的阴极。可见,在前一时段T 1的第一个子时段D 1×T 1内,动力电池组V 01放出的电能通过第二三相绕组中的三个绕组和第一三相绕组中的一个绕组为动力电池组V 02充电,且第二三相绕组中的三个绕组和第一三相绕组中的一个绕组还进行了储能;
图16中(B)示出的是前一时段T 1的第二个子时段(1-D 1)×T 1内的电路图,参照图16中(B)所示,在前一时段T 1的第二个子时段(1-D 1)×T 1内,全部开关模块中的三极管都关断。该情况下,由于绕组U 2、绕组V 2、绕组W 2和绕组V 1在第一个子时段D 1×T 1内已储能,因此当动力电池组V 01被隔断后,为维持电流的原方向,绕组U 2、绕组V 2、绕组W 2和绕组V 1会将之前储存的电能放出,进而分别经由开关模块K 11中的反并联二极管、开关模块K 13中的反并联二极管和开关模块K 15中的反并联二极管流出,之后均流入动力电池组V 02的阳极,并从动力电池组V 02的阴极流出至绕组U 2、绕组V 2和绕组W 2。可见,在前一时段T 1的第二个子时段(1-D 1)×T 1内,第二三相绕组中的三个绕组和第一三相绕组中的一个绕组中储存的电能转移至动力电池组V 02,继续为动力电池组V 02充电;
图16中(C)示出的是后一时段T 2的第一个子时段D 2×T 2内的电路图,参照图16中(C)所示,在后一时段T 2的第一个子时段D 2×T 2内,在开关模块K 11、开关模块K 13和开关模块K 15中选择一个开关模块,以及在开关模块K 22、开关模块K 24和开关模块K 26中选择一个开关模块,导通这两个开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图16中(C)所示意的,当导通开关模块K 11和开关模块K 22中的三极管,并关断其它开关模块中的三极管时,动力电池组V 02放出的电能经由开关模块K 11中的三极管流入绕组U 1,从而储能在绕组U 1中。之后,绕组U 1流出的电能流至绕组U 2,从而储能在绕组U 2中。进而,绕组U 2流出的电能通过开关模块K 22中的三极管流出,之后流入动力电池组V 02的阴极。可见,在后一时段T 2的第一个子时段D 2×T 2内,动力电池组V 02放出的电能为每个三相绕组中的一个绕组储能;
图16中(D)示出的是后一时段T 2的第二个子时段(1-D 2)×T 2内的电路图,参照图16中(D)所示,在后一时段T 2的第二个子时段(1-D 2)×T 2内,在开关模块K 22、开关模块K 24和开关模块K 26中选择与第一个子时段D 2×T 2相同的一个开关模块,导通该开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图16中(D)所示意的,当导通开关模块K 22中的三极管,并关断其它开关模块中的三极管时,虽然动力电池组V 02的电压小于动力电池组V 01的电压,但由于绕组U 2和绕组U 1在第一个子时段D 2×T 2内已储能,因此,为维持电流的原方向,绕组U 2和绕组U 1会将之前储存的电能放出,绕组放出的电能结合动力电池组V 02的阳极放出的电能一起流入至动力电池组V 01的阳极。之后,动力电池组V 01的阴极流出的电能分别经由开关模块K 12中的反并联二极管、开关模块K 14中的反并联二极管和开关模块K 16中的反并联二极管流入至第一三相绕组。可见,在后一时段T 2的第二个子时段(1-D 2)×T 2内,动力电池组V 02联合每个三相绕组的一个绕组中储存的电能一起为动力电池组V 01充电。
由此可知,上述实现方式能尽量通过每个三相绕组中的一个绕组实现两个动力电池组之间的交替放电,有助于在产生高频脉冲电流以加热动力电池组的同时,进一步降低绕组的使用频率,进一步延长电机的寿命。
应理解,上述图16只是示例性地介绍通过一个绕组进行加热的一种可能的开关控制方式,本申请实施例中,由于前一时段T 1可以选择导通开关模块K 12、开关模块K 14和开关模块K 16中的任意一个,即前一时段T 1共存在3种可能的开关控制方式,即:开关模块K 12,或者开关模块K 14,或者开关模块K 16;后一时段可以选择导通开关模块K 11、开关模块K 13和开关模块K 15中的任意一个以及开关模块K 22、开关模块K 24和开关模块K 26中的任意一个,即后一时段T 2共存在9种可能的开关控制方式,即:开关模块K 11和开关模块K 22,或者开关模块K 11和开关模块K 24,或者开关模块K 11和开关模块K 26,或者开关模块K 13和开关模块K 22,或者开关模块K 13和开关模块K 24,或者开关模块K 13和开关模块K 26,或者开关模块K 15和开关模块K 22,或者开关模块K 15和开关模块K 24,或者开关模块K 15和开关模块K 26。如此,在通过一个绕组进行加热的情况下,结合第一时段的3种开关控制方式和第二时段的9种开关控制方式,一个周期内共存在3×9=27种开关控制方式,主控制器410可以随机或者按照某种规则选择这27种开关控制方式中的一种进行一个绕组下的加热控制,本申请实施例对此不作具体限定。
此外,需要说明的是,上述情形一至情形三仅仅是以通过尽量控制两个三相绕组中使用同样数量的绕组进行加热为例介绍具体的开关控制方式。在实际操作中,主控制器可以控制两个三相绕组中使用相同或不同数量的绕组进行加热,全部可能的开关控制方式共有不少于343种,主控制器可以选择这不少于343种开关控制方式中的任一种执行加热控制,以便采用不同的绕组组合方式进行加热,通过改变绕组合方式的数量,有效提高动力电池组装置中用于加热的高频脉冲电流的可调节范围。
另一个示例中,如果加热模式为先Boost再Buck模式,则主控制器410生成的控制信号用于:在每个周期的前一时段的第一个子时段内,控制开关模块K 11、开关模块K 13和开关模块K 15中的一个或多个、以及开关模块K 22、开关模块K 24和开关模块K 26中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的前一时段的第二个子时段内,控制开关模块K 22、开关模块K 24和开关模块K 26中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的后一时段的第一个子时 段内,控制开关模块K 12、开关模块K 14和开关模块K 16中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的后一时段的第二个子时段内,控制全部开关模块关断。换句话说,与先Buck再Boost模式对应的控制方式相比,先Boost再Buck模式的前一时段采用先Buck再Boost模式的后一时段的控制方式,先Boost再Buck模式的后一时段采用先Buck再Boost模式的前一时段的控制方式,具体的控制实现逻辑请直接参照上述图14至图16,本申请实施例对此不再一一重复赘述。
此外,在第一动力电池组311的电压大于第二动力电池组321的电压的情况下,与先Buck再Boost模式相似的,先Boost再Buck模式也存在不少于343种开关控制方式,主控制器可以选择这不少于343种开关控制方式中的任一种执行先Buck再Boost模式下的加热控制,以采用不同的绕组组合方式进行加热,通过改变绕组合方式的数量,有效提高动力电池组装置中用于加热的高频脉冲电流的可调节范围。
第一动力电池组311的电压小于第二动力电池组321的电压的情况下:
一个示例中,如果加热模式为先Boost再Buck模式,则主控制器410生成的控制信号用于:在每个周期的前一时段的第一个子时段内,控制开关模块K 12、开关模块K 14和开关模块K 16中的一个或多个、以及开关模块K 21、开关模块K 23和开关模块K 25中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的前一时段的第二个子时段内,控制开关模块K 12、开关模块K 14和开关模块K 16中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的后一时段的第一个子时段内,控制开关模块K 22、开关模块K 24和开关模块K 26中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的后一时段的第二个子时段内,控制全部的开关模块关断。
在上述示例中,一个或多个可以是一个、两个或三个中的任一个。在上述开关控制逻辑中,前一时段的第一个子时段内导通开关模块K 12、开关模块K 14和开关模块K 16中的一个或多个、以及开关模块K 21、开关模块K 23和开关模块K 25中的一个或多个,导通开关模块K 12、开关模块K 14和开关模块K 16中的一个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的一个开关模块的情况存在9种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的一个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的两个开关模块的情况存在9种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的一个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的三个开关模块的情况存在3种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的两个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的一个开关模块的情况存在9种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的两个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的两个开关模块的情况存在9种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的两个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的三个开关模块的情况存在3种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的三个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的一个开关模块的情况存在3种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的三个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的两个开关模块的情况存在3种可能,导通开关模块K 12、开关模块K 14和开关模块K 16中的三个开关模块且导通开关模块K 21、开关模块K 23和开关模块K 25中的三个开关模块的情况存在1种可能,因此前一时段 的第一子时段内共存在49种开关控制方式。对应的,后一时段的第一个子时段内导通开关模块K 22、开关模块K 24和开关模块K 26中的一个或多个,导通一个开关模块的情况存在3种可能,导通两个开关模块的情况存在3种可能,导通三个开关模块的情况存在1种可能,因此前一时段的第一子时段内共存在7种开关控制方式。可见,上述加热控制逻辑共存在不少于49×7=343种开关控制方式。需要说明的是,此处的不少于,源自于前一时段的第二个子时段内所导通的开关模块K 12、开关模块K 14和开关模块K 16中的一个或多个与前一时段的第一个子时段内所导通的开关模块K 12、开关模块K 14和开关模块K 16中的一个或多个也可能不相同,而至于具体不相同的情况存在多少种可能,可参照上述内容推理得到,本申请对此不再一一列举。
为便于更清晰地理解上述加热控制逻辑,下文示例性地以尽量通过两个三相绕组中的相同数量的绕组进行加热为例,介绍加热控制的具体电路实现。
在该示例中,假设前一时段的第一个子时段表示为D 1×T 1,前一时段的第二个子时段表示为(1-D 1)×T 1,后一时段的第一个子时段表示为D 2×T 2,后一时段的第二个子时段表示为(1-D 2)×T 2,则:
情形一:通过三个绕组进行加热
假设主控制器410根据目标高频脉冲电流确定采用三个绕组进行加热,则图17示例性示出本申请实施例三提供的另一种通过三个绕组进行加热控制的电路示意图,其中:
图17中(A)示出的是前一时段T 1的第一个子时段D 1×T 1内的电路图,参照图17中(A)所示,在前一时段T 1的第一个子时段D 1×T 1内,开关模块K 12、开关模块K 14、开关模块K 16、开关模块K 21、开关模块K 23和开关模块K 25中的三极管导通,其它开关模块中的三极管关断。该情况下,动力电池组V 01的阳极放出的电能分为三路,一路经由开关模块K 21中的三极管流入绕组U 2,另一路经由开关模块K 23中的三极管流入绕组V 2,再一路经由开关模块K 25中的三极管流入绕组W 2,从而储能在绕组U 2、绕组V 2和绕组W 2中。之后,电能经过这三个绕组的第二端合为一路后,进而分为三路流至绕组U 1、绕组V 1和绕组W 1,从而储能在绕组U 1、绕组V 1和绕组W 1中。进而,从绕组U 1中流出的电能经由开关模块K 12中的三极管流出,从绕组V 1中流出的电能经由开关模块K 14中的三极管流出,从绕组W 1中流出的电能经由开关模块K 16中的三极管流出,之后均流入动力电池组V 01的阴极。可见,在前一时段T 1的第一个子时段D 1×T 1内,动力电池组V 01放出的电能为每个三相绕组中的三个绕组储能;
图17中(B)示出的是前一时段T 1的第二个子时段(1-D 1)×T 1内的电路图,参照图17中(B)所示,在前一时段T 1的第二个子时段(1-D 1)×T 1内,开关模块K 12、开关模块K 14和开关模块K 16中的三极管导通,其它开关模块中的三极管关断。该情况下,虽然动力电池组V 01的电压小于动力电池组V 02的电压,但由于绕组U 1、绕组V 1、绕组W 1、绕组U 2、绕组V 2和绕组W 2在第一个子时段D 1×T 1内已储能,因此,为维持电流的原方向,绕组U 1、绕组V 1、绕组W 1、绕组U 2、绕组V 2和绕组W 2会将之前储存的电能放出,绕组放出的电能分别经由开关模块K 12中的三极管、开关模块K 14中的三极管和开关模块K 16中的三极管流入动力电池组V 01的阴极,进而结合动力电池组V 01的阳极放出的电能一起流出至动力电池组V 02的阳极。之后,从动力电池组V 02的阴极流出的电能分别经由开关模块K 22中的反并联二极管、开关模块K 24中的反并联二极管和开关模块K 26中的反并联二极管流入绕组U 2、绕组V 2和绕组W 2。可见,在前一时段T 1的第二个子时段(1-D 1)×T 1 内,动力电池组V 01联合每个三相绕组的三个绕组中储存的电能一起为动力电池组V 02充电;
图17中(C)示出的是后一时段T 2的第一个子时段D 2×T 2内的电路图,参照图17中(C)所示,在后一时段T 2的第一个子时段D 2×T 2内,开关模块K 22、开关模块K 24和开关模块K 26中的三极管导通,其它开关模块中的三极管关断。该情况下,动力电池组V 02的阳极放出的电能流入至动力电池组V 01的阳极,动力电池组V 01的阴极流出的电能分为三路,一路经由开关模块K 12中的反并联二极管流入绕组U 1,另一路经由开关模块K 14中的反并联二极管流入绕组V 1,再一路经由开关模块K 16中的反并联二极管流入绕组W 1,从而储能在绕组U 1、绕组V 1和绕组W 1中。之后,电能经由这三个绕组的第二端合为一路后,分为三路分别流至绕组U 2、绕组V 2和绕组W 2,从而储能在绕组U 2、绕组V 2和绕组W 2中。进而,绕组U 2流出的电能通过开关模块K 22的三极管流出,绕组V 2流出的电能通过开关模块K 24的三极管流出,绕组W 2流出的电能通过开关模块K 26的三极管流出,之后流入动力电池组V 02的阴极。可见,在后一时段T 2的第一个子时段D 2×T 2内,动力电池组V 02放出的电能为动力电池组V 01充电,且每个三相绕组的三个绕组中进行了储能;
图17中(D)示出的是后一时段T 2的第二个子时段(1-D 2)×T 2内的电路图,参照图17中(D)所示,在后一时段T 2的第二个子时段(1-D 2)×T 2内,全部开关模块中的三极管都关断。该情况下,由于绕组U 1、绕组V 1、绕组W 1、绕组U 2、绕组V 2和绕组W 2在第一个子时段D 2×T 2内已储能,因此,为维持电流的原方向,绕组U 2、绕组V 2、绕组W 2、绕组U 1、绕组V 1和绕组W 1会将之前储存的电能放出,进而分别经由开关模块K 21中的反并联二极管、开关模块K 23中的反并联二极管和开关模块K 25中的反并联二极管流入动力电池组V 01的阳极,并从动力电池组V 01的阴极流出,之后分别经由开关模块K 12中的反并联二极管、开关模块K 14中的反并联二极管和开关模块K 16中的反并联二极管流入至绕组U 1、绕组V 1和绕组W 1。可见,在后一时段T 2的第二个子时段(1-D 2)×T 2内,每个三相绕组的三个绕组中储存的电能转移至动力电池组V 01,继续为动力电池组V 01充电。
由此可知,在一个周期的前一时段T 1内,电能从电压低的动力电池组V 01流向电压高的动力电池组V 02,动力电池组装置30工作在Boost模式,而在一个周期的后一时段T 2内,电能从电压高的动力电池组V 02流向电压低的动力电池组V 01,动力电池组装置30工作在Buck模式。可见,在一个周期内,动力电池组装置30中的电流流向发生改变,从而动力电池组装置30中产生高频脉冲电流,该高频脉冲电流流过动力电池组V 01和动力电池组V 02时,由于动力电池组V 01和动力电池组V 02的内阻作用而产生焦耳热,利用该焦耳热能有效加热动力电池组V 01和动力电池组V 02
情形二:通过两个绕组进行加热
假设主控制器410根据目标高频脉冲电流确定采用两个绕组进行加热,则图18示例性示出本申请实施例三提供的另一种通过两个绕组进行加热控制的电路示意图,其中:
图18中(A)示出的是前一时段T 1的第一个子时段D 1×T 1内的电路图,参照图18中(A)所示,在前一时段T 1的第一个子时段D 1×T 1内,在开关模块K 12、开关模块K 14和开关模块K 16中选择两个开关模块,在开关模块K 21、开关模块K 23和开关模块K 25中选择两个开关模块,导通这四个开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图18中(A)所示意的,当导通开关模块K 12、开关模块K 14、开关模块K 21和开关模块K 25中的三极管,并关断其它开关模块中的三极管时,动力电池组V 01的阳极放出的电 能分为两路,一路经由开关模块K 21中的三极管流入绕组U 2,另一路经由开关模块K 25中的三极管流入绕组W 2,从而储能在绕组U 2和绕组W 2中。之后,电能经过绕组U 2和绕组W 2的第二端合为一路后,进而分为两路流至绕组U 1和绕组V 1,从而储能在绕组U 1和绕组V 1中。进而,从绕组U 1中流出的电能经由开关模块K 12中的三极管流出,从绕组V 1中流出的电能经由开关模块K 14中的三极管流出,之后均流入动力电池组V 01的阴极。可见,在前一时段T 1的第一个子时段D 1×T 1内,动力电池组V 01放出的电能为每个三相绕组中的两个绕组储能;
图18中(B)示出的是前一时段T 1的第二个子时段(1-D 1)×T 1内的电路图,参照图18中(B)所示,在前一时段T 1的第二个子时段(1-D 1)×T 1内,在开关模块K 12、开关模块K 14和开关模块K 16中选择与第一个子时段D 1×T 1相同的两个开关模块,导通这两个开关模块中的三极管,并关断其它开关模块中的三极管。例如,参照18中(B)所示意的,当导通开关模块K 12和开关模块K 14中的三极管,并关断其它开关模块中的三极管时,虽然动力电池组V 01的电压小于动力电池组V 02的电压,但由于绕组U 1、绕组V 1、绕组U 2和绕组W 2在第一个子时段D 1×T 1内已储能,因此,为维持电流的原方向,绕组U 1、绕组V 1、绕组U 2和绕组W 2会将之前储存的电能放出,绕组放出的电能分别经由开关模块K 12中的三极管和开关模块K 14中的三极管流入动力电池组V 01的阴极,进而结合动力电池组V 01放出的电能一起流出至动力电池组V 02的阳极。之后,动力电池组V 02的阴极流出的电能分别经由开关模块K 22中的反并联二极管、开关模块K 24中的反并联二极管和开关模块K 26中的反并联二极管流至第二三相绕组。可见,在前一时段T 1的第二个子时段(1-D 1)×T 1内,动力电池组V 01联合每个三相绕组的两个绕组中储存的电能一起为动力电池组V 02充电;
图18中(C)示出的是后一时段T 2的第一个子时段D 2×T 2内的电路图,参照图18中(C)所示,在后一时段T 2的第一个子时段D 2×T 2内,在开关模块K 22、开关模块K 24和开关模块K 26中选择两个开关模块,导通这两个开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图18中(C)所示意的,当导通开关模块K 22和开关模块K 24中的三极管,并关断其它开关模块中的三极管时,动力电池组V 02的阳极放出的电能流入至动力电池组V 01的阳极,动力电池组V 01的阴极流出的电能分为三路,一路经由开关模块K 12中的反并联二极管流入绕组U 1,另一路经由开关模块K 14中的反并联二极管流入绕组V 1,再一路经由开关模块K 16中的反并联二极管流入绕组W 1,从而储能在绕组U 1、绕组V 1和绕组W 1中。之后,电能经由这三个绕组的第二端合为一路后,分为两路分别流至绕组U 2和绕组V 2,从而储能在绕组U 2和绕组V 2中。进而,绕组U 2流出的电能通过开关模块K 22的三极管流出,绕组V 2流出的电能通过开关模块K 24的三极管流出,之后流入动力电池组V 02的阴极。可见,在后一时段T 2的第一个子时段D 2×T 2内,动力电池组V 02放出的电能为动力电池组V 01充电,且第一三相绕组的三个绕组和第二三相绕组的两个绕组中进行了储能;
图18中(D)示出的是后一时段T 2的第二个子时段(1-D 2)×T 2内的电路图,参照图18中(D)所示,在后一时段T 2的第二个子时段(1-D 2)×T 2内,关断全部开关模块中的三极管。该情况下,由于绕组U 1、绕组V 1、绕组W 1、绕组U 2和绕组V 2在第一个子时段D 2×T 2内已储能,因此,为维持电流的原方向,绕组U 1、绕组V 1、绕组W 1、绕组U 2和绕组V 2会将之前储存的电能放出,进而分别经由开关模块K 21中的反并联二极管、开关模块 K 23中的反并联二极管和开关模块K 25中的反并联二极管流入动力电池组V 01的阳极,并从动力电池组V 01的阴极流出,之后分别经由开关模块K 12中的反并联二极管、开关模块K 14中的反并联二极管和开关模块K 16中的反并联二极管至第一三相绕组。可见,在后一时段T 2的第二个子时段(1-D 2)×T 2内,第一三相绕组中的三个绕组和第二三相绕组中的两个绕组所储存的电能转移至动力电池组V 01,继续为动力电池组V 01充电。
由此可知,上述实现方式能尽量通过每个三相绕组中的两个绕组实现两个动力电池组之间的交替放电,有助于在产生高频脉冲电流以加热动力电池组的同时,降低绕组的使用频率,尽量延长电机的寿命。
应理解,上述图18只是示例性地介绍通过两个绕组进行加热的一种可能的开关控制方式,本申请实施例中,由于前一时段T 1可以选择导通开关模块K 12、开关模块K 14和开关模块K 16中的任意两个以及开关模块K 21、开关模块K 23和开关模块K 25中的任意两个,即前一时段T 1共存在9种可能的开关控制方式,即:开关模块K 12、开关模块K 14、开关模块K 21和开关模块K 23,或者开关模块K 12、开关模块K 14、开关模块K 21和开关模块K 25,或者开关模块K 12、开关模块K 14、开关模块K 23和开关模块K 25,或者开关模块K 12、开关模块K 16、开关模块K 21和开关模块K 23,或者开关模块K 12、开关模块K 16、开关模块K 21和开关模块K 25,或者开关模块K 12、开关模块K 16、开关模块K 23和开关模块K 25,或者开关模块K 14、开关模块K 16、开关模块K 21和开关模块K 23,或者开关模块K 14、开关模块K 16、开关模块K 21和开关模块K 25,或者开关模块K 14、开关模块K 16、开关模块K 23和开关模块K 25;后一时段可以选择导通开关模块K 22、开关模块K 24和开关模块K 26中的任意两个,即后一时段T 2共存在3种可能的开关控制方式,即:开关模块K 22和开关模块K 24,或者开关模块K 22和开关模块K 26,或者开关模块K 24和开关模块K 26。如此,在通过两个绕组进行加热的情况下,结合第一时段的9种开关控制方式和第二时段的3种开关控制方式,一个周期内共存在9×3=27种开关控制方式,主控制器410可以随机或者按照某种规则选择这27种开关控制方式中的一种进行两个绕组下的加热控制,本申请实施例对此不作具体限定。
情形三:通过一个绕组进行加热
假设主控制器410根据目标高频脉冲电流确定采用一个绕组进行加热,则图19示例性示出本申请实施例三提供的另一种通过一个绕组进行加热控制的电路示意图,其中:
图19中(A)示出的是前一时段T 1的第一个子时段D 1×T 1内的电路图,参照图19中(A)所示,在前一时段T 1的第一个子时段D 1×T 1内,在开关模块K 12、开关模块K 14和开关模块K 16中选择一个开关模块,在开关模块K 21、开关模块K 23和开关模块K 25中选择一个开关模块,导通这两个开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图19中(A)所示意的,当导通开关模块K 12和开关模块K 25中的三极管,并关断其它开关模块中的三极管时,动力电池组V 01的阳极放出的电能经由开关模块K 25中的三极管流入绕组W 2,从而储能在绕组W 2中。之后,电能经过绕组W 2的第二端后流至绕组U 1,从而储能在绕组U 1中。进而,从绕组U 1中流出的电能经由开关模块K 12中的三极管流出后,流入至动力电池组V 01的阴极。可见,在前一时段T 1的第一个子时段D 1×T 1内,动力电池组V 01放出的电能为每个三相绕组中的一个绕组储能;
图19中(B)示出的是前一时段T 1的第二个子时段(1-D 1)×T 1内的电路图,参照图19中(B)所示,在前一时段T 1的第二个子时段(1-D 1)×T 1内,在开关模块K 12、开关模 块K 14和开关模块K 16中选择与第一个子时段D 1×T 1相同的一个开关模块,导通该开关模块中的三极管,并关断其它开关模块中的三极管。例如,参照19中(B)所示意的,当导通开关模块K 12中的三极管,并关断其它开关模块中的三极管时,虽然动力电池组V 01的电压小于动力电池组V 02的电压,但由于绕组W 2和绕组U 1在第一个子时段D 1×T 1内已储能,因此,为维持电流的原方向,绕组W 2和绕组U 1会将之前储存的电能放出,绕组放出的电能经由开关模块K 12中的三极管流入动力电池组V 01的阴极,进而结合动力电池组V 01放出的电能一起流出至动力电池组V 02的阳极。之后,动力电池组V 02的阴极流出的电能分别经由开关模块K 22中的反并联二极管、开关模块K 24中的反并联二极管和开关模块K 26中的反并联二极管流入至第二三相绕组。可见,在前一时段T 1的第二个子时段(1-D 1)×T 1内,动力电池组V 01联合每个三相绕组的一个绕组中储存的电能一起为动力电池组V 02充电;
图19中(C)示出的是后一时段T 2的第一个子时段D 2×T 2内的电路图,参照图19中(C)所示,在后一时段T 2的第一个子时段D 2×T 2内,在开关模块K 22、开关模块K 24和开关模块K 26中选择一个开关模块,导通该开关模块中的三极管,并关断其它开关模块中的三极管。例如,按照图19中(C)所示意的,当导通开关模块K 24中的三极管,并关断其它开关模块中的三极管时,动力电池组V 02的阳极放出的电能流入至动力电池组V 01的阳极,动力电池组V 01的阴极流出的电能分为三路,一路经由开关模块K 12中的反并联二极管流入绕组U 1,另一路经由开关模块K 14中的反并联二极管流入绕组V 1,再一路经由开关模块K 16中的反并联二极管流入绕组W 1,从而储能在绕组U 1、绕组V 1和绕组W 1中。之后,电能经由这三个绕组的第二端合为一路后,流至绕组V 2,从而储能在绕组V 2中。进而,绕组V 2流出的电能通过开关模块K 24的三极管流出后流入动力电池组V 02的阴极。可见,在后一时段T 2的第一个子时段D 2×T 2内,动力电池组V 02放出的电能通过第一三相绕组的三个绕组和第二三相绕组的一个绕组为动力电池组V 01充电,且第一三相绕组的三个绕组和第二三相绕组的一个绕组中进行了储能;
图19中(D)示出的是后一时段T 2的第二个子时段(1-D 2)×T 2内的电路图,参照图19中(D)所示,在后一时段T 2的第二个子时段(1-D 2)×T 2内,关断全部开关模块中的三极管。该情况下,由于绕组U 1、绕组V 1、绕组W 1和绕组V 2在第一个子时段D 2×T 2内已储能,因此,为维持电流的原方向,绕组U 1、绕组V 1、绕组W 1和绕组V 2会将之前储存的电能放出,进而分别经由开关模块K 21中的反并联二极管、开关模块K 23中的反并联二极管和开关模块K 25中的反并联二极管流入动力电池组V 01的阳极,并从动力电池组V 01的阴极流出,之后分别经由开关模块K 12中的反并联二极管、开关模块K 14中的反并联二极管和开关模块K 16中的反并联二极管流入至第一三相绕组。可见,在后一时段T 2的第二个子时段(1-D 2)×T 2内,第一三相绕组中的三个绕组和第二三相绕组中的一个绕组所储存的电能转移至动力电池组V 01,继续为动力电池组V 01充电。
由此可知,上述实现方式能通过每个三相绕组中的一个绕组实现两个动力电池组之间的交替放电,有助于在产生高频脉冲电流以加热动力电池组的同时,进一步降低绕组的使用频率,进一步延长电机的寿命。
应理解,上述图19只是示例性地介绍通过一个绕组进行加热的一种可能的开关控制方式,本申请实施例中,由于前一时段T 1可以选择导通开关模块K 12、开关模块K 14和开关模块K 16中的任意一个以及开关模块K 21、开关模块K 23和开关模块K 25中的任意一个, 即前一时段T 1共存在9种可能的开关控制方式,即:开关模块K 12和开关模块K 21,或者开关模块K 12和开关模块K 23,或者开关模块K 12和开关模块K 25,或者开关模块K 14和开关模块K 21,或者开关模块K 14和开关模块K 23,或者开关模块K 14和开关模块K 25,或者开关模块K 16和开关模块K 21,或者开关模块K 16和开关模块K 23,或者开关模块K 16和开关模块K 25;后一时段可以选择导通开关模块K 22、开关模块K 24和开关模块K 26中的任意一个,即后一时段T 2共存在3种可能的开关控制方式,即:开关模块K 22,或者开关模块K 24,或者开关模块K 26。如此,在通过一个绕组进行加热的情况下,结合第一时段的9种开关控制方式和第二时段的3种开关控制方式,一个周期内共存在9×3=27种开关控制方式,主控制器410可以随机或者按照某种规则选择这27种开关控制方式中的一种进行一个绕组下的加热控制,本申请实施例对此不作具体限定。
此外,需要说明的是,上述情形一至情形三仅仅是以通过尽量控制两个三相绕组中使用同样数量的绕组进行加热为例介绍具体的开关控制方式。在实际操作中,主控制器可以控制两个三相绕组中使用相同或不同数量的绕组进行加热,全部可能的开关控制方式共有不少于343种,主控制器可以选择这不少于343种开关控制方式中的任一种执行加热控制。
另一个示例中,如果加热模式为先Buck再Boost模式,则主控制器410生成的控制信号用于:在每个周期的前一时段的第一个子时段内,控制开关模块K 22、开关模块K 24和开关模块K 26中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的前一时段的第二个子时段内,控制全部开关模块关断;在每个周期的后一时段的第一个子时段内,控制开关模块K 12、开关模块K 14和开关模块K 16中的一个或多个、以及开关模块K 21、开关模块K 23和开关模块K 25中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断;在每个周期的后一时段的第二个子时段内,控制开关模块K 12、开关模块K 14和开关模块K 16中的一个或多个导通,并控制除导通的开关模块以外的其它开关模块关断。换句话说,与先Boost再Buck模式对应的控制方式相比,先Buck再Boost模式的前一时段采用先Boost再Buck模式的后一时段的控制方式,先Buck再Boost模式的后一时段采用先Boost再Buck模式的前一时段的控制方式,具体的控制实现逻辑请直接参照上述图17至图19,本申请实施例对此不再一一重复赘述。
此外,在第一动力电池组311的电压大于第二动力电池组321的电压的情况下,与先Boost再Buck模式相似的,先Buck再Boost模式也存在不少于343种开关控制方式,主控制器可以选择这不少于343种开关控制方式中的任一种执行先Buck再Boost模式下的加热控制。
第一动力电池组311的电压等于第二动力电池组321的电压的情况下:
在第一动力电池组311的电压等于第二动力电池组321的电压的情况下,主控制器410可以按照上述第一动力电池组311的电压大于第二动力电池组321的电压的情况执行对应的加热控制逻辑,也可以参照上述第一动力电池组311的电压小于第二动力电池组321的电压的情况执行对应的加热控制逻辑,具体不作限定。
在上述实施例三中,通过将两个三相绕组的第二端相连,以及将两个动力电池组的阳极相连,能在两个动力电池组的阳极和两个三相绕组之间构成回路,进而能便于在该回路中生成高频脉冲电流以加热两个动力电池组。
应理解,上述实施例二和实施例三只是以IGBT作为开关模块为例进行介绍,在实际操作中,开关模块也可以选择其它带有反并联二极管的模块,相应地控制逻辑可直接参照 上述内容,本申请实施例对此不作具体限定。
根据本申请实施例提供的方案,本申请还提供一种电动汽车,包括如上所述的加热控制系统。
根据本申请实施例提供的方案,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机实现如上述控制装置所执行的方法。
根据本申请实施例提供的方案,本申请还提供一种计算机可读存储介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机实现如上述控制装置所执行的方法。
根据本申请实施例提供的方案,本申请还提供一种电子设备,该电子设备包括处理器,处理器与存储器连接,处理器用于执行存储器中存储的计算机程序,以使得该电子设备实现如上述控制装置所执行的方法。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种动力电池组装置,其特征在于,包括:
    第一电池单元和第二电池单元;
    所述第一电池单元包括第一动力电池组、第一开关模组和第一储能模组,所述第一开关模组的第一直流端连接所述第一动力电池组的阳极,所述第一开关模组的第二直流端连接所述第一动力电池组的阴极,所述第一开关模组的交流端连接所述第一储能模组的第一端;
    所述第二电池单元包括第二动力电池组、第二开关模组和第二储能模组,所述第二开关模组的第一直流端连接所述第二动力电池组的阳极,所述第二开关模组的第二直流端连接所述第二动力电池组的阴极,所述第二开关模组的交流端连接所述第二储能模组的第一端;
    所述第一储能模组的第二端和所述第二储能模组的第二端相连;
    所述第一动力电池组的阳极和所述第二动力电池组的阳极相连,或者,所述第一动力电池组的阴极和所述第二动力电池组的阴极相连。
  2. 如权利要求1所述的装置,其特征在于,
    所述第一开关模组包括第一三相整流桥,所述第一储能模组包括第一三相绕组;
    所述第一三相绕组中三个绕组的第一端连接所述第一三相整流桥的三个交流端,所述第一三相绕组中三个绕组的第二端相连后构成所述第一储能模组的第二端。
  3. 如权利要求1或2所述的装置,其特征在于,
    所述第二开关模组包括第二三相整流桥,所述第二储能模组包括第二三相绕组;
    所述第二三相绕组中三个绕组的第一端连接所述第二三相整流桥的三个交流端,所述第二三相绕组中三个绕组的第二端相连后构成所述第二储能模组的第二端。
  4. 如权利要求3所述的装置,其特征在于,所述第一三相绕组和所述第二三相绕组满足如下条件中的一项:
    所述第一三相绕组和所述第二三相绕组为两个三相电机;
    所述第一三相绕组和所述第二三相绕组属于一个六相电机;
    或者,
    所述第一三相绕组和所述第二三相绕组属于一个具有两套独立的三相绕组的电机。
  5. 如权利要求2至4中任一项所述的装置,其特征在于,所述第一三相整流桥和/或所述第二三相整流桥中的整流管为带反并联二极管的开关模块。
  6. 如权利要求5所述的装置,其特征在于,
    所述第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,所述第一开关模块和所述第二开关模块串联,所述第三开关模块和所述第四开关模块串联,所述第五开关模块和所述第六开关模块串联,所述第一开关模块相对于所述第二开关模块的非串联节点一端、所述第三开关模块相对于所述第四开关模块的非串联节点一端和所述第五开关模块相对于所述第六开关模块的非串联节点一端分别连接所述第一动力电池组的阳极,所述第二开关模块相对于所述第一开关模块的非串联节点一端、所述第四开关模块相对于所述第三开关模块的非串联节点一端和所述第六开关模块相对于所述第五开关模块的非串联节点一端分别连接所述第一动力电池组的 阴极,且所述第一开关模块和所述第二开关模块的串联节点、所述第三开关模块和所述第四开关模块的串联节点、所述第五开关模块和第六开关模块的串联节点连接所述第一三相绕组中三个绕组的第一端;
    所述第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块,所述第七开关模块和所述第八开关模块串联,所述第七开关模块相对于所述第八开关模块的非串联节点一端、所述第九开关模块相对于所述第十开关模块的非串联节点一端和所述第十一开关模块相对于所述第十二开关模块的非串联节点一端分别连接所述第二动力电池组的阳极,所述第八开关模块相对于所述第七开关模块的非串联节点一端、所述第十开关模块相对于所述第九开关模块的非串联节点一端和所述第十二开关模块相对于所述第十一开关模块的非串联节点一端分别连接所述第二动力电池组的阴极,且所述第七开关模块和所述第八开关模块的串联节点、所述第九开关模块和所述第十开关模块的串联节点、所述第十一开关模块和第十二开关模块的串联节点连接所述第二三相绕组中三个绕组的第一端。
  7. 一种加热控制系统,其特征在于,包括控制装置和如权利要求1至6中任一项所述的动力电池组装置;
    所述控制装置,用于:
    通过控制第一开关模组和第二开关模组,控制第一动力电池组和第二动力电池组交替放电,所述第一动力电池组放出的电量为所述第二动力电池组充电,所述第二动力电池组放出的电量为所述第一动力电池组充电。
  8. 如权利要求7所述的系统,其特征在于,第一储能模组和第二储能模组包括电机,所述控制装置包括主控制器、电池管理器和电机控制器,所述电池管理器分别与所述主控制器、所述第一动力电池组和所述第二动力电池组连接,所述电机控制器分别与所述主控制器、所述第一开关模组、所述第二开关模组、所述第一储能模组和所述第二储能模组连接;
    所述电池管理器,用于获取每个动力电池组的荷电状态和当前温度;
    所述电机控制器,用于获取每个储能模组的工作状态;
    所述主控制器,还用于根据所述每个动力电池组的荷电状态确定各个动力电池组的电量之和足以启动电动汽车,根据所述每个动力电池组的当前温度确定所述每个动力电池组处于低温状态,根据所述每个储能模组的工作状态确定所述每个储能模组未工作后,生成控制信号并发送给所述电机控制器;
    所述电机控制器,用于根据所述控制信号,通过控制第一开关模组和第二开关模组中的各个开关模块的导通和关断,控制所述第一动力电池组和所述第二动力电池组交替放电。
  9. 如权利要求7或8所述的系统,其特征在于,所述第一储能模组包括第一三相绕组,所述第二储能模组包括第二三相绕组;
    所述控制装置,具体用于:
    根据所述环境温度和目标温度的温度差、预设加热时长、以及预设的温度差、加热时长和高频脉冲电流的对应关系,确定目标高频脉冲电流;
    当所述目标高频脉冲电流小于第一电流阈值时,通过控制所述第一开关模组和第二开关模组,控制所述第一动力电池组和所述第二动力电池组通过所对应的三相绕组中的一个绕组交替放电;
    当所述目标高频脉冲电流不小于所述第一电流阈值且小于第二电流阈值时,通过控制所述第一开关模组和第二开关模组,控制所述第一动力电池组和所述第二动力电池组通过所对应的三相绕组中的两个绕组交替放电;
    当所述目标高频脉冲电流不小于所述第二电流阈值时,通过控制所述第一开关模组和第二开关模组,控制所述第一动力电池组和所述第二动力电池组通过所对应的三相绕组中的三个绕组交替放电。
  10. 如权利要求9所述的系统,其特征在于,在所述预设的温度差、加热时长和高频脉冲电流的对应关系中所述温度差和预设加热时长对应多个高频脉冲电流的情况下:
    所述控制装置还用于:
    从所述多个高频脉冲电流中选择所述目标高频脉冲电流;
    获取所述第一三相绕组在所述目标高频脉冲电流对应的频率下的第一最大电流、所述第二三相绕组在所述目标高频脉冲电流对应的频率下的第二最大电流、以及所述第一三相绕组和所述第二三相绕组的连接节点对应的第三最大电流;
    若所述目标高频脉冲电流大于所述第一最大电流、所述第二最大电流和所述第三最大电流中的最小值,则从所述多个高频脉冲电流中重新选择所述目标高频脉冲电流。
  11. 如权利要求7至10中任一项所述的系统,其特征在于,一个交替周期包括第一时段和第二时段,所述第一时段位于所述第二时段之后,或者,所述第一时段位于所述第二时段之前;
    在所述第一动力电池组的阴极和所述第二动力电池组的阴极相连,且所述第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,所述第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下:
    若所述第一动力电池组的电压大于所述第二动力电池组的电压,则所述控制装置具体用于:
    在所述第一时段的第一个子时段内,控制所述第一开关模块、所述第三开关模块和所述第五开关模块中的一个或多个导通,并控制除所述导通的开关模块以外的其它开关模块关断;
    在所述第一时段的第二个子时段内,控制所述第一开关模块~所述第十二开关模块关断;
    在所述第二时段的第一个子时段内,控制所述第二开关模块、所述第四开关模块和所述第六开关模块中的一个或多个、以及所述第七开关模块、所述第九开关模块和所述第十一开关模块中的一个或多个导通,并控制除所述导通的开关模块以外的其它开关模块关断;
    在所述第二时段的第二个子时段内,控制所述第七开关模块、所述第九开关模块和所述第十一开关模块中的一个或多个导通,并控制除所述导通的开关模块以外的其它开关模块关断。
  12. 如权利要求7至11中任一项所述的系统,其特征在于,一个交替周期包括第一时段和第二时段,所述第一时段位于所述第二时段之后,或者,所述第一时段位于所述第二时段之前;
    在所述第一动力电池组的阴极和所述第二动力电池组的阴极相连,且所述第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第 六开关模块,所述第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下:
    若所述第二动力电池组的电压大于所述第一动力电池组的电压,则所述控制装置具体用于:
    在所述第一时段的第一个子时段内,控制所述第一开关模块、所述第三开关模块和所述第五开关模块中的一个或多个、以及所述第八开关模块、所述第十开关模块和所述第十二开关模块中的一个或多个导通,并控制除所述导通的开关模块以外的其它开关模块关断;
    在所述第一时段的第二个子时段内,控制所述第一开关模块、所述第三开关模块和所述第五开关模块中的一个或多个导通,并控制除所述导通的开关模块以外的其它开关模块关断;
    在所述第二时段的第一个子时段内,控制所述第七开关模块、所述第九开关模块和所述第十一开关模块中的一个或多个导通,并控制除所述导通的开关模块以外的其它开关模块关断;
    在所述第二时段的第二个子时段内,控制所述第一开关模块~所述第十二开关模块关断。
  13. 如权利要求7至10中任一项所述的系统,其特征在于,一个交替周期包括第一时段和第二时段,所述第一时段位于所述第二时段之后,或者,所述第一时段位于所述第二时段之前;
    在所述第一动力电池组的阳极和所述第二动力电池组的阳极相连,且所述第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第六开关模块,所述第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下:
    若所述第一动力电池组的电压大于所述第二动力电池组的电压,则所述控制装置具体用于:
    在所述第一时段的第一个子时段内,控制所述第二开关模块、所述第四开关模块和所述第六开关模块中的一个或多个导通,并控制除所述导通的开关模块以外的其它开关模块关断;
    在所述第一时段的第二个子时段内,控制所述第一开关模块~所述第十二开关模块关断;
    在所述第二时段的第一个子时段内,控制所述第一开关模块、所述第三开关模块和所述第五开关模块中的一个或多个、以及所述第八开关模块、所述第十开关模块和所述第十二开关模块中的一个或多个导通,并控制除所述导通的开关模块以外的其它开关模块关断;
    在所述第二时段的第二个子时段内,控制所述第八开关模块、所述第十开关模块和所述第十二开关模块中的一个或多个导通,并控制除所述导通的开关模块以外的其它开关模块关断。
  14. 如权利要求7至10中任一项或13所述的系统,其特征在于,一个交替周期包括第一时段和第二时段,所述第一时段位于所述第二时段之后,或者,所述第一时段位于所述第二时段之前;
    在所述第一动力电池组的阳极和所述第二动力电池组的阳极相连,且所述第一开关模组包括第一开关模块、第二开关模块、第三开关模块、第四开关模块、第五开关模块和第 六开关模块,所述第二开关模组包括第七开关模块、第八开关模块、第九开关模块、第十开关模块、第十一开关模块和第十二开关模块的情况下:
    若所述第二动力电池组的电压大于所述第一动力电池组的电压,则所述控制装置具体用于:
    在所述第一时段的第一个子时段内,控制所述第二开关模块、所述第四开关模块和所述第六开关模块中的一个或多个、以及所述第七开关模块、所述第九开关模块和所述第十一开关模块中的一个或多个导通,并控制除所述导通的开关模块以外的其它开关模块关断;
    在所述第一时段的第二个子时段内,控制所述第二开关模块、所述第四开关模块和所述第六开关模块中的一个或多个导通,并控制除所述导通的开关模块以外的其它开关模块关断;
    在所述第二时段的第一个子时段内,控制所述第八开关模块、所述第十开关模块和所述第十二开关模块中的一个或多个导通,并控制除所述导通的开关模块以外的其它开关模块关断;
    在所述第二时段的第二个子时段内,控制所述第一开关模块~所述第十二开关模块关断。
  15. 一种电动汽车,其特征在于,包括如权利要求7至14中任一项所述的加热控制系统。
PCT/CN2022/115792 2022-02-17 2022-08-30 一种动力电池组装置、加热控制系统及电动汽车 WO2023155413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210147654.1 2022-02-17
CN202210147654.1A CN114537164B (zh) 2022-02-17 2022-02-17 一种动力电池组装置、加热控制系统及电动汽车

Publications (1)

Publication Number Publication Date
WO2023155413A1 true WO2023155413A1 (zh) 2023-08-24

Family

ID=81675746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115792 WO2023155413A1 (zh) 2022-02-17 2022-08-30 一种动力电池组装置、加热控制系统及电动汽车

Country Status (2)

Country Link
CN (2) CN114537164B (zh)
WO (1) WO2023155413A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114537164B (zh) * 2022-02-17 2023-02-03 华为电动技术有限公司 一种动力电池组装置、加热控制系统及电动汽车
CN115097337A (zh) * 2022-05-31 2022-09-23 中国第一汽车股份有限公司 一种动力电池自加热模式下荷电状态估算方法、装置及车辆
CN115123027A (zh) * 2022-06-09 2022-09-30 中国第一汽车股份有限公司 一种动力电池脉冲加热方法、装置、终端及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110015202A (zh) * 2019-03-28 2019-07-16 清华大学 电动汽车电池加热方法
CN110970672A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组加热系统的控制系统和方法、电池组加热管理系统
CN111347937A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 动力电池的加热方法、电机控制电路及车辆
CN111884305A (zh) * 2020-01-10 2020-11-03 武汉理工大学 一种动力电池内外部联合加热装置
US20210354592A1 (en) * 2019-06-24 2021-11-18 Contemporary Amperex Technology Co., Limited Battery pack heating system and control method thereof
CN114537164A (zh) * 2022-02-17 2022-05-27 华为电动技术有限公司 一种动力电池组装置、加热控制系统及电动汽车

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9073448B2 (en) * 2007-05-07 2015-07-07 General Electric Company Method of operating propulsion system
JP4840481B2 (ja) * 2009-07-08 2011-12-21 トヨタ自動車株式会社 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
KR101230353B1 (ko) * 2010-01-28 2013-02-06 주식회사 엘지화학 전지 내부 저항을 이용한 저온 성능 개선 전지팩 시스템
US20140285135A1 (en) * 2013-03-22 2014-09-25 Ec Power, Llc Systems for heating a battery and processes thereof
DE102013208324A1 (de) * 2013-05-07 2014-11-13 Robert Bosch Gmbh Energiespeichervorrichtung und Verfahren zum Betrieb einer Energiespeichervorrichtung
US11041424B2 (en) * 2018-03-21 2021-06-22 Ford Global Technologies, Llc Method and system for operating a gaseous fuel vehicle
CN111354998B (zh) * 2018-12-21 2022-03-18 比亚迪股份有限公司 车辆及其温度控制装置
CN111347853B (zh) * 2018-12-21 2022-01-07 比亚迪股份有限公司 电机控制电路、充放电方法、加热方法及车辆
CN111354999B (zh) * 2018-12-21 2021-07-09 比亚迪股份有限公司 一种车辆及其动力电池加热装置与方法
JP7370223B2 (ja) * 2019-01-24 2023-10-27 株式会社Soken 電力変換装置
CN113733987B (zh) * 2020-05-29 2023-07-14 比亚迪股份有限公司 电池能量处理装置和方法、车辆
CN111391719B (zh) * 2020-06-04 2020-10-20 比亚迪股份有限公司 能量转换装置及车辆
CN112599889B (zh) * 2020-12-14 2022-05-06 天津市捷威动力工业有限公司 一种锂离子电池自加热控制方法
CN113085659B (zh) * 2021-04-30 2022-05-31 重庆长安新能源汽车科技有限公司 一种电动汽车、动力电池脉冲加热系统及加热方法
CN113060048B (zh) * 2021-04-30 2022-06-14 重庆长安新能源汽车科技有限公司 一种动力电池脉冲加热系统及其控制方法
CN215793298U (zh) * 2021-04-30 2022-02-11 华为数字能源技术有限公司 动力电池的加热装置及动力电池加热系统
EP4340210A1 (en) * 2021-06-29 2024-03-20 Huawei Digital Power Technologies Co., Ltd. Heating control method and apparatus, oil pump motor, and heat exchange system
CN114050330A (zh) * 2021-10-11 2022-02-15 华为数字能源技术有限公司 电池系统及供电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111347937A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 动力电池的加热方法、电机控制电路及车辆
CN110015202A (zh) * 2019-03-28 2019-07-16 清华大学 电动汽车电池加热方法
CN110970672A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组加热系统的控制系统和方法、电池组加热管理系统
US20210354592A1 (en) * 2019-06-24 2021-11-18 Contemporary Amperex Technology Co., Limited Battery pack heating system and control method thereof
CN111884305A (zh) * 2020-01-10 2020-11-03 武汉理工大学 一种动力电池内外部联合加热装置
CN114537164A (zh) * 2022-02-17 2022-05-27 华为电动技术有限公司 一种动力电池组装置、加热控制系统及电动汽车

Also Published As

Publication number Publication date
CN116080422A (zh) 2023-05-09
CN114537164A (zh) 2022-05-27
CN114537164B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2023155413A1 (zh) 一种动力电池组装置、加热控制系统及电动汽车
US20230097060A1 (en) Energy conversion device and vehicle
CN106712191B (zh) 基于外部储能单元与lc准谐振的电池组均衡电路及方法
WO2023061278A1 (zh) 电池系统及供电系统
US10170988B2 (en) Power supply system
JP2012244862A (ja) Dc/dcコンバータ装置
WO2021244641A1 (zh) 电池能量处理装置、方法及车辆
JP2023542564A (ja) 電池パック加熱方法、電池加熱システム及び電力消費装置
CN115917836B (zh) 充放电电路、系统及其控制方法
CN110676917A (zh) 充电系统及充电方法
US20230063475A1 (en) Power supply system
WO2023087331A1 (zh) 充放电电路、系统及其控制方法
WO2023207430A1 (zh) 一种开关装置、电机控制装置及电池加热系统
CN112332481B (zh) 一种多电池组并联系统的均流方法
WO2023226364A1 (zh) 一种充电装置及充电控制方法
WO2014071720A1 (zh) 功率因数校正电路以及电源电路
WO2024037112A1 (zh) 电池自加热装置和具有其的车辆
Hoque et al. Voltage equalization for series connected lithium-ion battery cells
Kadlag et al. A novel pulse charger with intelligent battery management system for fast charging of electric vehicle
WO2022104744A1 (zh) 一种高压控制装置
EP4152550A1 (en) Non-current-sharing ups apparatus, shunting method, and ups parallel connection system
WO2023230995A1 (zh) 电池调节系统、方法及其用电设备
CN104129314A (zh) 一种采用开关磁阻电机作为功率变压器的动力系统
Tiwari et al. Modified direct torque control algorithm for regeneration capability of IM driven electric vehicle by using hybrid energy storage system
CN216424147U (zh) 一种动力电池系统和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926719

Country of ref document: EP

Kind code of ref document: A1