WO2023272527A1 - 加热控制方法、装置、油泵电机和热交换系统 - Google Patents

加热控制方法、装置、油泵电机和热交换系统 Download PDF

Info

Publication number
WO2023272527A1
WO2023272527A1 PCT/CN2021/103273 CN2021103273W WO2023272527A1 WO 2023272527 A1 WO2023272527 A1 WO 2023272527A1 CN 2021103273 W CN2021103273 W CN 2021103273W WO 2023272527 A1 WO2023272527 A1 WO 2023272527A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
heating
oil
vector
Prior art date
Application number
PCT/CN2021/103273
Other languages
English (en)
French (fr)
Inventor
石超杰
额尔和木巴亚尔
毋超强
王少华
谢小威
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202180002903.1A priority Critical patent/CN113939994B/zh
Priority to EP21947483.0A priority patent/EP4340210A1/en
Priority to PCT/CN2021/103273 priority patent/WO2023272527A1/zh
Publication of WO2023272527A1 publication Critical patent/WO2023272527A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0646Units comprising pumps and their driving means the pump being electrically driven the hollow pump or motor shaft being the conduit for the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0077Safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/34Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor

Definitions

  • the present application relates to the field of control technology, in particular to a heating control method, device, oil pump motor and heat exchange system.
  • the application provides a heating control method and a related device, which can quickly heat the oil in the vicinity of the motor.
  • the embodiment of the present application provides a heating control method, the method comprising:
  • the first motor is an oil pump motor in an oil pump;
  • the heating current satisfies the following control objectives: when the first motor is in an unstarted state, the heating current is a zero torque current, and the zero torque The torque that can be generated by the current is zero; and/or, when the first motor is in the starting state, the heating current is a heating current, and the heating power of the heating current is greater than that of the energy-saving current, wherein,
  • the energy-saving current is a current that can make the first motor reach a target operating condition when the oil temperature is greater than a preset temperature threshold.
  • the self-heating of the first motor can be used to quickly heat the oil in the vicinity of the first motor, thereby enabling the first motor to enter a high-speed rotation state as soon as possible.
  • the cold conditions include:
  • the temperature of the vicinity of the first motor is lower than the preset temperature threshold; or,
  • the rotational speed of the first electric motor operating based on the energy-saving current is less than a preset rotational speed threshold, wherein the preset rotational speed threshold is a target rotational speed in the target operating condition.
  • the cold conditions include:
  • the operating condition of the first motor is a low-loss condition, wherein the loss heating power of the low-loss condition is less than the expected loss heating power threshold; or,
  • the loss heating power corresponding to the operating condition of the first motor is less than the expected loss heating power threshold
  • the expected loss heating power is used to make the first motor raise the oil temperature to the preset temperature threshold within a preset time.
  • the method further includes:
  • the energy-saving current is injected into the first motor.
  • the energy-saving current is a current used to make the first motor reach the target operating condition and meet the condition of a small amplitude, or the energy-saving current is used to make the The current at which the first electric motor reaches the target operating condition and meets the energy efficiency conditions of the mechanical energy conversion of the whole machine.
  • the heating current is a first heating current or a second heating current
  • the total power of the first heating current is equal to the total power of the energy saving current, and the proportion of the heating power of the first heating current to the total power of the first heating current is greater than that of the energy saving current The ratio of the heating power of the current to the total power of the energy-saving current;
  • the ratio of the heating power of the second heating current to the total power of the second heating current is equal to the ratio of the heating power of the second heating current to the total power of the second heating current, and, The total power of the second heating current is greater than the total power of the energy-saving current.
  • the heating current is a first heating current or a second heating current
  • the amplitude of the integrated vector current corresponding to the first heating current in the dq rotating coordinate system is equal to the amplitude of the integrated vector current corresponding to the energy-saving current, and the torque that can be generated by the second heating current is less than The torque that can be produced by the energy-saving current;
  • the torque that can be produced by the first heating current is equal to the torque that can be produced by the energy-saving current, and the magnitude of the integrated vector current corresponding to the first heating current in the dq rotating coordinate system is greater than the energy-saving current The magnitude of the integrated vector current corresponding to the current.
  • injecting heating current into the first motor when the cold condition is satisfied includes:
  • the first motor when the first motor is in the locked-rotor state, the first motor is in the starting state and the speed that the first motor can achieve based on the energy-saving current is less than or equal to the cold-state speed threshold; the cold-state speed threshold is 0 or the rotational speed that the first motor can reach when the oil temperature is equal to the cold temperature threshold; the cold temperature threshold is less than or equal to the preset temperature threshold.
  • injecting heating current into the first motor when the cold condition is satisfied includes:
  • the high-speed state speed threshold is the first The rotational speed that a motor can reach when the oil temperature is greater than or equal to the high-speed temperature threshold, and the high-speed temperature threshold is greater than the cold temperature threshold.
  • the first motor is an SPM motor or an IPM motor
  • the direct-axis current of the comprehensive vector current corresponding to the first heating current in the dq rotating coordinate system is not zero and the quadrature-axis current is zero.
  • the first motor is an SPM motor
  • the integrated vector current corresponding to the second heating current in the dq rotating coordinate system is the second vector current;
  • the integrated vector current corresponding to the energy saving current in the dq rotating coordinate system is the energy saving vector current;
  • the direct-axis current of the second vector current is equal to the direct-axis current of the energy-saving vector current, and the magnitude of the second vector current is equal to the maximum magnitude supported by the first motor.
  • the first motor is an IPM motor
  • the integrated vector current corresponding to the second heating current in the dq rotating coordinate system is the second vector current;
  • the integrated vector current corresponding to the energy saving current in the dq rotating coordinate system is the energy saving vector current;
  • the energy-saving vector current is the vector current with the smallest amplitude that can generate the target torque
  • the second vector current is a vector current capable of generating a target torque and having an amplitude greater than the energy-saving vector current
  • the magnitude of the second vector current is less than or equal to the maximum magnitude supported by the first motor shown.
  • the integrated vector current corresponding to the first heating current in the dq rotating coordinate system is the first vector current; the first vector current meets the following control objectives:
  • the angle between the first vector current and the d-axis is 0, and the flow mode of the zero torque vector current is: AC mode;
  • the AC mode means that the magnitude of the first vector current changes with time.
  • the integrated vector current corresponding to the second heating current in the dq rotating coordinate system is the second vector current; the second vector current satisfies any of the following Control objectives:
  • the flow mode of the second vector current is a DC mode, and the angle between the second vector current and the d-axis changes with time; or,
  • the flow mode of the second vector current is an AC mode
  • the DC mode indicates that the amplitude of the second vector current does not change with time
  • the AC mode indicates that the amplitude of the second vector current changes with time
  • the comprehensive vector current corresponding to the zero torque current in the dq rotating coordinate system is a zero torque vector current; the zero torque vector current meets the following control objectives:
  • the angle between the zero torque vector current and the d-axis is 0, and the flow mode of the zero torque vector current is: AC mode;
  • the AC mode means that the magnitude of the zero torque vector current changes with time.
  • the first motor includes a motor cavity communicated with the oil pipeline; the motor cavity is used to accommodate the stator and rotor of the first motor; the stator of the first motor The air gap between the rotor and the rotor communicates with the oil pipeline;
  • the cavity of the motor is filled with oil, and the rotor is in contact with the oil in the cavity of the motor.
  • the integrated vector current corresponding to the heating current in the dq coordinate system can meet any of the following control objectives:
  • the flow mode is a direct current mode, and the angle between the integrated vector current corresponding to the heating current and the d-axis changes with time; or,
  • the flow mode is AC mode without DC bias
  • the flow mode is AC mode with DC bias.
  • the method before injecting heating current into the first motor, the method includes:
  • the second motor is an oil-cooled motor
  • the first motor is used to drive cooling oil to flow to the second motor through the oil pipeline
  • the method further includes:
  • the heat dissipation power loss in the operating condition is less than the cold-state heat dissipation power threshold; the cold-state heat dissipation power threshold is determined according to the cold-state speed threshold, and the cold-state speed threshold is at The rotation speed that the first motor can reach when the oil temperature reaches the cold-state temperature threshold, and the cold-state rotation speed threshold is less than or equal to the preset temperature threshold.
  • the method further includes:
  • the heat loss power of the operating condition is greater than the high-speed heat dissipation power threshold; the high-speed state heat dissipation power threshold is determined according to the high-speed state speed threshold, and the high-speed state speed threshold is The speed that the first electric motor can reach when the oil temperature reaches the high-speed state temperature threshold.
  • the second motor is a driving motor for driving wheels in an electric vehicle;
  • the electric vehicle further includes: a heat collecting device;
  • the heat collecting device is a battery or a cabin heating device;
  • the heat collecting device forms a heat exchange connection with the oil delivery pipeline through a heat exchanger;
  • the heat exchanger is located on the oil delivery pipeline where the cooling oil flows from the second motor to the first motor;
  • the method further includes:
  • the embodiment of the present application provides a heating control method, including:
  • the first motor is an oil pump motor in an oil pump, and the heating power of the heating current is greater than that of the energy-saving current; the energy-saving current can make the first motor reach The current of the target operating condition.
  • the method further includes:
  • the energy-saving current is injected into the first motor when the rotation speed of the first motor working based on the heat-increasing current is greater than or equal to the target rotation speed.
  • the embodiment of the present application provides a heating control method, including:
  • the first motor is an oil pump motor in an oil pump
  • the low-loss working condition includes: the loss heating power corresponding to the operating condition of the first motor is less than the expected loss heating power threshold, or the first The operating condition of the motor is a low-loss working condition, wherein the loss heating power of the low-loss working condition is less than the expected loss heating power threshold; the heating power of the heating current is greater than the heating power of the energy-saving current, wherein the energy-saving The current is the current that can make the first motor reach the target operating condition when the oil temperature is greater than the preset temperature threshold.
  • an embodiment of the present application provides an oil pump, including: a first motor and a control device, wherein the control device is configured to implement the method described in any one of the first aspect to the third aspect.
  • an embodiment of the present application provides a heat exchange system, including: a first motor, a control device, a second motor, an oil pipeline, a heat exchanger, and a heat collection device;
  • the second motor is an oil-cooled motor
  • the first motor is an oil pump motor in an oil pump, and the oil pump is used to provide cooling oil to the second motor through the oil delivery pipeline;
  • the heat exchanger is located on the oil pipeline where the cooling oil flows from the second motor to the first motor; the heat collector forms a heat exchange connection with the oil pipeline through the heat exchanger;
  • the control device is used to implement the method described in any one of the first aspect to the third aspect.
  • the heat collecting device is: a battery; or a cabin heating device
  • an embodiment of the present application provides a control device, including: a memory and a processor;
  • the memory is used to store instructions
  • the processor is used to execute instructions to implement the method described in any one of the first aspect to the third aspect.
  • the embodiment of the present application provides a control device, the device includes a processing module and a transceiver module, and the processing unit executes instructions to control the device to execute the method in any possible design of the first aspect to the third aspect.
  • the device may further include a storage module.
  • the device may be a controller, or a chip in the controller.
  • the processing module may be a processor, and the transceiver module may be a transceiver; if the device further includes a storage module, the storage module may be a memory.
  • the processing module can be a processor, and the transceiver module can be an input/output interface, a pin or a circuit, etc.; if a storage module is also included, the storage module can be a storage module in the chip (for example, a register, a cache, etc.), or a storage module (for example, a read-only memory, a random access memory, etc.) outside the chip.
  • the processor mentioned in any of the above can be a general-purpose central processing unit (Central Processing Unit, referred to as CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, referred to as ASIC), or one or A plurality of integrated circuits for controlling program execution of the spatial multiplexing method of the above aspects.
  • CPU Central Processing Unit
  • ASIC application-specific integrated circuit
  • the controller may be a control center of an electric vehicle.
  • the present application provides a computer-readable storage medium having instructions stored therein, and the instructions can be executed by one or more processors on a processing circuit.
  • the computer is made to execute the method in any possible implementation manner in the first aspect to the third aspect above.
  • a computer program product including instructions, which, when run on a computer, causes the computer to execute the method in any possible implementation manners of the first aspect to the third aspect above.
  • Fig. 1 is a structural schematic diagram 1 of the first motor in the embodiment of the present application.
  • Fig. 2 is the second structural diagram of the first motor in the embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of an oil pump including a first motor in an embodiment of the present application
  • Fig. 4A is a structural schematic diagram 1 of an oil pump applying the heating control method in the embodiment of the present application;
  • Fig. 4B is a schematic structural diagram of a heat exchange system applying the heating control method in the embodiment of the present application.
  • Fig. 4C is another structural schematic diagram of the heat exchange system applying the heating control method in the embodiment of the present application.
  • FIG. 5A is a schematic structural diagram of a three-phase full-bridge circuit in an embodiment of the present application.
  • Fig. 5B is a schematic diagram of the d-axis current vector in the embodiment of the present application.
  • 5C is a schematic diagram of the integrated vector current in the dq-axis rotating coordinate system in the embodiment of the present application.
  • 5D is a schematic diagram of the integrated vector current in the three-phase rotating coordinate system in the embodiment of the present application.
  • Fig. 6 is a schematic flow diagram 1 of the heating control method in the embodiment of the present application.
  • Fig. 7 is a schematic flow diagram II of the heating control method in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the heating mode current applied to the SPM motor in the embodiment of the present application.
  • Fig. 9 is a schematic diagram of the heating mode current determined based on the Min-TPA method in the embodiment of the present application.
  • FIG. 10 is a schematic diagram of the mapping relationship between the external characteristic curve corresponding to the operating condition of the first motor and the corresponding loss heating power in the embodiment of the present application;
  • Fig. 11 is a schematic flow chart III of the heating control method provided by the embodiment of the present application.
  • FIG. 12 is a first structural schematic diagram of the control device in the embodiment of the present application.
  • FIG. 13 is a second structural schematic diagram of the control device in the embodiment of the present application.
  • Embodiments of the present application provide a set of heating control methods and devices, and a first motor and heat exchange system applying the heating control method.
  • the adjacent area of the first motor may be provided with passages for allowing liquid to pass through.
  • the first motor may be an oil pump motor, an oil-cooled motor, etc.
  • the liquid used in conjunction with the first motor may be oil.
  • the oil pump motor may be an electric pump or a motor used to drive fluid flow in an oil pump.
  • the oil pump may be provided with a pump oil chamber for accommodating the oil to be driven, and the oil pump motor may drive the oil in the pump oil chamber through transmission connectors such as fan blades.
  • the oil-cooled motor may be a motor that uses cooling oil to cool down the temperature of the motor.
  • a passage allowing oil to pass through may be provided inside the oil-cooled motor, or the oil-cooled motor may be located in a cooling chamber containing cooling oil.
  • the oil flowing through the internal passage of the oil-cooled motor or the oil flowing through the cooling cavity outside the oil-cooled motor can be used to take away the heat generated during the operation of the oil-cooled motor.
  • the oil pump motor can be cooled by oil cooling or by other cooling methods.
  • the oil pump motor can also be provided with a passage allowing oil to pass through or the oil pump motor can also be set in the In the cooling chamber, the oil pump motor with this arrangement is also an oil-cooled motor.
  • allowing oil to pass through a certain space may be referred to as an oil passage
  • the passage or space region allowing oil to pass may be referred to as an oil passage or an oil passage area.
  • the oil used in conjunction with the first motor may be cooling oil, lubricating oil, insulating oil, high-pressure resistant oil, and the like.
  • the first motor In some low temperature scenarios, due to the high viscosity of the oil, the first motor cannot work normally. For example, for an oil pump motor, when the oil temperature in the pump oil chamber is low, the output torque of the oil pump motor after starting cannot push the oil to move, and the oil pump motor cannot even rotate. For oil-cooled motors, when the oil temperature inside or outside the adjacent area of the oil-cooled motor is low, the flow capacity of the oil drops to an extremely low level, resulting in that the heat generated by the oil-cooled motor cannot be taken away in time, and the motor may be burned. risks of.
  • the heating control method in the embodiment of the present application can use the first motor to heat the oil in the vicinity of the first motor to solve the above problem.
  • the adjacent area of the first motor may include an oil passing area inside the first motor and an oil passing area outside the first motor.
  • FIG. 1 is a first structural schematic diagram of a first motor in an embodiment of the present application.
  • the first motor may include: a stator, a rotor, and a motor housing.
  • a motor machine cavity is arranged around the motor shell, and the motor machine cavity can be used to accommodate the stator and the rotor.
  • the stator may include a stator core and a stator winding, and the rotor may rotate around a rotor shaft disposed in the machine cavity of the motor.
  • the number of rotors may be three. This embodiment of the present application does not limit this.
  • one or more oil passing areas that allow oil passing may be provided inside the first motor.
  • an oil passage for passing oil may be provided in the rotor shaft.
  • the oil passage can be used to communicate with an oil delivery pipeline located outside the first motor. It should be noted that the communication between the oil channel and the oil pipeline may not pass through the cavity in the motor cavity.
  • an oil hole for passing oil may be provided in the rotor.
  • the oil hole can be used to communicate with the oil pipeline. It should be noted that the communication between the oil hole and the oil pipeline may not pass through the cavity in the motor cavity.
  • the motor cavity can be used to communicate with the oil pipeline.
  • the cavity portion shown in FIG. 1 may be a region where oil can pass through in the motor cavity. It should be noted that when the motor cavity is connected with the oil delivery pipeline, the oil passage and the oil hole can also be connected with the oil delivery pipeline through the motor cavity.
  • the motor cavity can also pass through the oil, and the rotor located in the motor cavity can be immersed in the oil, so that the rotor and the oil can be in direct contact and the heat transfer surface between the two Larger, when the heat of the first motor is used to heat the oil, the efficiency of the first motor to heat the oil can be improved.
  • the gap between the rotor and the stator windings can be called an air gap, and the air gap between the rotor and the stator windings can be used to communicate with the oil pipeline.
  • the air gap may communicate with the motor cavity, and communicate with the oil pipeline through the motor cavity.
  • the air gap can also pass through the oil, so that the heat transfer surface between the heated rotor and the oil is larger and more direct, thereby improving the efficiency of the first motor to heat the oil.
  • the first motor when the first motor is an oil pump motor, a manner of connecting the motor cavity with the oil delivery pipeline and the air gap with the oil delivery pipeline may be adopted.
  • the first motor is a non-oil pump motor mainly used to output mechanical energy, for example, when the drive motor in an electric vehicle is cooled by oil cooling, it can be set that the motor cavity and the air gap are not connected to the oil pipeline. With this arrangement, the ratio of the electric energy injected into the electric current into heat energy can be controlled when the oil-cooled motor is in a rotating state.
  • FIG. 2 is a second structural schematic diagram of the first motor in the embodiment of the present application.
  • the cavity and the air gap between the stator and the rotor in FIG. 2 may not communicate with the oil pipeline.
  • the air gap does not pass through the oil.
  • the oil passing area outside the first motor can be set in the following implementation manners.
  • the following description will be made by taking the first motor as an oil pump motor in an oil pump as an example.
  • Fig. 3 is a schematic structural diagram of an oil pump including a first motor in an embodiment of the present application.
  • the oil pump may include components such as a pump oil chamber and fan blades (not shown in the figure).
  • the oil pump motor can be located in the oil pump chamber of the oil pump, and the liquid inlet and liquid outlet of the oil pump chamber can be connected with the oil delivery pipeline respectively.
  • the outer side of the motor housing of the first motor can be in contact with the oil in the pump oil chamber.
  • the first motor can be used to heat the oil inside the first motor and the oil outside the first motor and inside the pump oil chamber. That is, the oil in the vicinity of the oil pump motor may include oil located in the pump oil chamber.
  • the oil-cooled motor may also be arranged in a cooling chamber through which oil can pass, that is, the oil in the vicinity of the oil-cooled motor may include the oil located in the cooling chamber.
  • the first motor applying the heating control method provided by the embodiment of the present application may have at least one of the above-mentioned various internal oil-passing areas or the above-mentioned various external oil-passing areas.
  • the execution subject of the heating control method may be a control device.
  • the control unit can be set in a variety of ways.
  • control device may be provided on the first motor.
  • the control device may be a control unit in the oil pump motor or drive motor, and the control unit may be realized by software or hardware.
  • the control device may be provided on the oil pump.
  • the oil pump 81 may include: an oil pump motor 82 and a control device 90 .
  • the first motor may be an oil pump motor in an oil pump
  • the oil pump is an oil pump used to drive oil in a heat transfer oil circuit in a heat exchange system
  • the control device may be located in the heat exchange system.
  • the heat exchange system 900 may include: a control device 90 , a heating device 83 , an oil pump 81 including an oil pump motor 82 , a heat collecting device 84 and an oil delivery pipeline.
  • the oil delivery pipeline is not shown in Fig. 4B.
  • the oil pipeline can be used to sequentially connect the oil pump, the heating device, and the heat collecting device to form a circulation loop.
  • the heat exchange system may be an electric vehicle or be located on an electric vehicle.
  • the heat generating device may be a drive motor driving tires in an electric vehicle, or other heat-generating electrical appliances in the electric vehicle.
  • the heat collecting device may include a battery in an electric vehicle, a cabin heating device, and other devices that need to collect and utilize heat energy.
  • the battery may be used for a drive motor that turns drive tires in an electric vehicle, appliances, and the like. Batteries can also be called battery packs.
  • the cabin heating device may be a vehicle air conditioner or the like. In practical applications, a temperature sensor may also be provided in the battery pack or the cabin heating device.
  • FIG. 4C is another schematic structural diagram of the heat exchange system applying the heating control method provided by the embodiment of the present application.
  • the heat exchange system may include devices disposed on two circulating heat conduction loops.
  • the devices on the oil circuit include: the drive motor, heat exchanger and oil pump connected in sequence through the oil pipeline;
  • the devices on the water circuit include the micro control unit MCU, which is connected in sequence through the water pipe. heat exchanger and battery.
  • the heat exchanger is used to transfer the heat of the oil in the oil circuit to the water in the water circuit.
  • control device may be located on the oil pump motor, or the control device may be located on the driving motor, or the control device may be located in the control center of the electric vehicle.
  • the control device can be electrically connected with the oil pump motor and the drive motor. The position of the control means is not shown in Figure 4C.
  • the heat collection device may include a heat exchanger, a heat exchange circuit, and a battery.
  • the battery is located on the heat exchange circuit, and the heat exchanger is also located on the heat exchange circuit.
  • the heat exchanger may be an oil-water heat exchanger, and the oil-water heat exchanger may be a passive device.
  • the heat exchange circuit may be a water pipe corresponding to the water circuit in FIG. 4C .
  • the heat exchange system may further include one or more temperature sensors.
  • a temperature sensor may be located in the vicinity of the first motor for obtaining the temperature of the oil in the vicinity of the oil pump motor.
  • the temperature sensor may be located in the vicinity of the driving motor or in the oil pipeline for obtaining the temperature of the oil in the vicinity of the driving motor or in the oil pipeline.
  • the control device can use various temperature data obtained by the sensor to perform corresponding control. In other embodiments of the present application, the control steps in the control scenario of the heat exchange system will be described in detail.
  • the first motor to which the heating control method is applied may also be a motor with built-in permanent magnets.
  • the rotor in the first electric machine may be made with permanent magnets.
  • the first motor may be a surface-mounted permanent magnet motor (Surface-Mounted Permanent Magnet Machine, SPM), wherein the SPM motor is a permanent magnet motor in which permanent magnets are fixed on the rotor surface.
  • the first motor may be an interior permanent magnet machine (Interior Permanent Magnet Machine, IPM), wherein the IPM motor may be a permanent magnet motor with permanent magnets embedded inside the rotor.
  • the first motor with a built-in permanent magnet can stimulate more loss and heat when injecting a heating current.
  • the heating current injected into a motor with a built-in permanent magnet, the heating injected into an SPM motor and an IPM motor current in detail.
  • the first motor may include a three-phase circuit, and the three-phase circuit is used to inject three-phase currents into the three rotors.
  • various heating currents injected into the first motor by the heating control method in the embodiment of the present application may be three-phase currents injected into the first motor by using a three-phase circuit.
  • the three-phase circuit can be a three-phase full-bridge circuit, a three-phase half-bridge circuit, a three-phase series-parallel circuit, etc. See Figure 5A for an example of a three-phase full-bridge circuit, and Figure 5B for the d-axis current vector An example of . This embodiment of the present application does not limit this.
  • the three-phase current may also be referred to as three-phase electricity.
  • Three-phase electricity can be a group of three-phase AC electricity with equal amplitude, equal frequency, and 120° phase difference.
  • the three-phase currents can be expressed as ia, ib and ic (or i u , iv and i w ).
  • the various current control targets involved in the heating control method in the embodiment of the present application may be replaced by an equivalent integrated vector current control target.
  • the three-phase current in the stationary three-phase coordinate system can be transformed into the comprehensive vector current in the rotating coordinate system by using Park Transformation, thereby simplifying the motor analysis.
  • the rotating coordinate system may be a dq rotating coordinate system, and the d-axis in the dq rotating coordinate system is the same as the a-axis where i a is located (or the u-axis where i u is located) in the three-phase coordinate system.
  • 5C is a schematic diagram of the integrated vector current in the dq rotating coordinate system in the embodiment of the present application. As shown in FIG.
  • the integrated vector current Is corresponding to the three-phase current in the dq rotating coordinate system can be expressed as a direct axis Or d-axis, d-axis) current Id and quadrature axis (quadrature axis or q-axis, q-axis) current Iq determined resultant vector.
  • the integrated vector current Is can also be represented by an amplitude and a position angle ⁇ , where the position angle ⁇ is the angle between the integrated vector current Is and the d-axis.
  • the integrated vector current Is can also be represented by the quadrature axis current Iq and the current lead angle ⁇ . Among them, the current lead angle ⁇ is the angle between the integrated current vector Is and the quadrature axis q.
  • the rotating coordinate system may also be a three-phase rotating coordinate system.
  • FIG. 5D is a schematic diagram of an integrated vector current under the three-phase rotating coordinate system in the embodiment of the present application.
  • the integrated current vector is also referred to as the integrated vector current, and the adjustment of the integrated vector current can be realized by adjusting the magnitude of the direct axis current, the magnitude of the quadrature axis current, and the size of the position angle ⁇ .
  • the integrated vector current can be realized by adjusting the magnitude of the direct axis current, the magnitude of the quadrature axis current, and the size of the position angle ⁇ .
  • the heating control method provided by the embodiment of the present application will be exemplarily described below.
  • embodiments of the present application provide a set of heating control methods.
  • the control device can heat the oil in the vicinity of the first motor by injecting heating current into the first motor to stimulate the first motor to heat itself.
  • the temperature of the first motor before starting is close to the temperature of the operating environment of the first motor.
  • the first motor is injected with operating current, and the first motor is running.
  • the first motor generates heat, and part of the electric energy is converted into heat energy, so that the temperature of the first motor and the adjacent area gradually rises.
  • control device may first determine whether the first motor has reached a cold condition, and inject heating current into the first motor when it is determined that the first motor needs to be heated, wherein the cold condition may be based on the proximity of the first motor
  • the temperature of the area, the oil temperature of the adjacent area of the first motor, the speed of the first motor and other decision-making information are set.
  • the oil flow rate is related to the oil temperature.
  • the oil flow rate is related to the rotation speed of the first motor.
  • Table 1 shows a set of oil temperature and oil flow rate.
  • the oil temperature reaches the high-speed state temperature threshold
  • the oil flow rate can reach the high-speed state flow rate threshold
  • the achievable speed of the first motor can reach the high-speed state speed threshold.
  • the oil temperature is as low as the cold temperature threshold
  • the flow rate of the oil is reduced to the locked-rotor state flow rate threshold
  • the achievable speed of the first motor is reduced to the locked-rotor state speed threshold
  • the locked-rotor state flow rate threshold can be 0 or a smaller value
  • the stalled speed threshold can be 0 or a smaller value.
  • the cold temperature threshold may be a temperature at which the viscosity of the oil reaches a preset viscosity threshold, and when the oil viscosity reaches a preset viscosity threshold, the The moving speed of the oil driven by the starting torque of the first electric motor is less than or equal to the preset low-speed state flow rate threshold.
  • the preset low-speed flow rate threshold may be 0, and when the oil temperature is lower than the cold-state temperature threshold, the viscosity of the oil may reach an extremely high level, and because the viscosity is too high, the first motor starts The resulting torque doesn't even push the oil.
  • the control device may determine that the cooling condition is satisfied when the oil temperature does not reach the high-speed state temperature threshold, or the oil flow rate does not reach the high-speed state flow rate threshold, or when the rotational speed of the first motor does not reach the high-speed state rotational speed threshold. State conditions. It should be noted that, using the rotational speed of the first motor to determine whether the temperature of the operating environment of the first motor is lower than the high-speed state temperature threshold, it is not necessary to set Temperature Sensor.
  • control device can also set different cold conditions before or after the first motor is started, and set corresponding heating currents for different cold conditions.
  • Table 2 is a set of illustrations of different cold conditions and the corresponding heating current and energy-saving current.
  • the cold state condition when the first motor is in the non-starting state, the cold state condition can be a cold state preheating condition, and when the first motor is in the starting state, the cold state condition can be a locked-rotor state heat-increasing condition, a low-speed state heat-increasing condition condition.
  • the control device when the heating condition is not satisfied, can be set not to inject heating current into the first motor, and according to the target operating condition of the first motor, energy-saving current can be injected into the first motor, wherein the energy-saving current can be In order to enable the first electric motor to reach the target torque and the target rotational speed with the smallest amplitude or the current with the highest energy efficiency, so as to avoid unnecessary heat loss.
  • energy-saving current can be In order to enable the first electric motor to reach the target torque and the target rotational speed with the smallest amplitude or the current with the highest energy efficiency, so as to avoid unnecessary heat loss.
  • FIG. 6 is a first schematic flow diagram of the heating control method in the embodiment of the present application. As shown in Figure 6, the steps of the embodiment of the present application may include:
  • the control device may set the first motor to enter a preheating mode, and may directly start the first motor when the preheating condition in a cold state is not met.
  • Table 1 is a schematic representation of a group of embodiments of cold preheating conditions.
  • the control device can determine whether the temperature reaches the cold temperature based on the temperature data acquired by the temperature sensor installed in other equipment in the vicinity of the first motor. State preheating conditions.
  • control device may not inject preheating current to the first motor when the first motor is in a static state and the temperature of the vicinity of the first motor is higher than a cold temperature threshold.
  • the preheating current may use one or a combination of the following implementations.
  • the comprehensive vector current corresponding to the preheating current I 1 is recorded as the first vector current Is 1
  • the direct axis current of the first vector current is I d1
  • the quadrature axis current is I q1
  • I MAX is the maximum current supported by the first motor amplitude as an example.
  • the direction angle of the first vector current corresponding to the preheating current is variable, and/or, the magnitude of the first vector current The value is a variable; wherein, the direction angle of the first vector current is the angle between the first vector current and the d-axis in the dq rotating coordinate system.
  • control device can be implemented by setting the flow mode of the integrated vector current corresponding to the preheating current.
  • Table 4 is a set of schematic diagrams of the preheating current and loss types of the first motor.
  • the first vector current can adopt any one of the integrated current vector flow modes shown in Table 4.
  • the flow modes in Table 4 include DC, AC, and AC with DC bias.
  • DC means that the magnitude of the preheating current does not change with time.
  • Alternating means that the magnitude of the preheating current changes over time.
  • AC with DC bias means that the amplitude varies with time, and the average value of the current over a cycle is not zero, and can be positive or negative (or only on the positive half axis or only on the negative half axis).
  • the included angle may refer to the phase of the integrated vector current.
  • the loss types excited in Table 4 include copper loss, iron loss and permanent magnet loss.
  • copper loss can refer to the heat generated by AC/DC current passing through the copper conductor, and the heating power is calculated by I 2 R, where I is the passing current (DC, or the effective value of AC), and R is the conductor resistance.
  • Iron loss may refer to the loss generated by ferromagnetic materials (such as steel, silicon steel sheets, etc.) in an alternating magnetic field, and iron loss may include hysteresis loss, eddy current loss, and additional loss.
  • the reason for the permanent magnet loss is that the permanent magnet material has electrical conductivity, which will induce eddy current in the alternating magnetic field, and thus generate the corresponding eddy current loss.
  • the loss of the permanent magnet can also be calculated by I 2 R, where I is the induction The eddy current generated, R is the resistance of the eddy current circuit.
  • the magnetic field types in Table 4 include constant magnetic field, rotating magnetic field, and pulsed magnetic field.
  • the pulsating magnetic field may refer to a magnetic field whose direction does not change but whose amplitude changes periodically with time.
  • the rotating magnetic field may refer to a magnetic field whose amplitude can be variable or constant, and whose direction changes with time, space, and circumference with time.
  • a constant magnetic field may refer to a magnetic field whose magnitude and direction do not change with time.
  • the integrated vector currents shown in Table 4 with numbers 1, 4, and 7 can be used as the implementation of the preheating current, which can avoid the loss of part of the electric energy due to torque generation. converted into mechanical energy.
  • the comprehensive vector currents corresponding to the combinations of flow modes and direction angles with serial numbers 4 and 7 can not only stimulate copper loss and iron loss, but also stimulate permanent magnet loss. These two comprehensive vector currents are used as In the implementation of the preheating current, the loss heating power of the first motor is larger, and the oil in the vicinity of the first motor can be heated more quickly.
  • the first motor can use a motor with built-in permanent magnets, such as an SPM motor and an IPM motor, so as to stimulate more losses in the preheating mode, thereby enabling faster heating of the motor located in the vicinity of the first motor. Oil.
  • the preheating current may be a zero torque current, and the zero torque current can make the torque generated by the first motor be zero.
  • the first motor injects a zero-torque current, the first motor does not rotate. At this time, the electric energy of the first motor will not be converted into mechanical energy, so that the proportion of electric energy corresponding to the preheating current into heat energy can be higher.
  • Table 5 is a set of illustrations of the preheating currents corresponding to the SPM motor and the IPM motor.
  • the flow mode of the direct axis current I d1 can be DC, AC or AC with DC bias, where DC means a waveform whose amplitude and phase do not change with time; AC means that its phase does not change, A waveform whose amplitude changes positively and negatively over time and has an average value of zero; AC with a DC bias means that its phase does not change, and its amplitude changes positively and negatively (or only on the positive half axis or only on the negative half axis) over time, A waveform with a non-zero average.
  • S102 is not a necessary step in this embodiment of the present application.
  • injecting preheating current into the first motor can promote self-heating of the first motor when the first motor is at rest , and use the heat generated by the first motor to heat the oil in the vicinity of the first motor, so that the temperature of the oil in the vicinity rises above the cold temperature threshold as soon as possible, and the viscosity of the oil drops to the point where the first motor can push or
  • the degree of easier pushing can avoid the problem that the motor is extremely difficult to start and rotate due to the extremely poor fluidity of the oil when the oil temperature is lower than the cold state temperature threshold, and the first motor can push the oil more easily when starting to rotate.
  • the heating current may be a heating current.
  • FIG. 7 is a second schematic flow diagram of the heating control method in the embodiment of the present application.
  • the steps of the embodiment of the present application may include:
  • Table 6 is a schematic representation of the heating conditions in the locked-rotor state.
  • the control target of the first heating current when the rotational speed of the first motor is 0, the control target of the first heating current may be the same as the preheating current in the foregoing embodiments. As an example, when the rotational speed of the first motor is not 0, the control target of the first heating current may be the same as that of the heating current in the foregoing embodiments.
  • S111 and S112 are not mandatory steps in this embodiment of the present application.
  • Table 7 is a schematic representation of the heating conditions in the low-speed state.
  • the control device may selectively set the first motor to increase heat based on whether the first motor satisfies the heating condition mode or energy saving mode.
  • the first motor when it is determined that the first motor meets the heating condition and needs to increase heat generation, the first motor is set to a heating mode. When it is determined that the first motor does not meet the heating condition, the first motor is set to an energy-saving mode. When the first motor is in the heating mode, the control device can control the first motor to work based on the heating current. When the first motor is in the energy-saving mode, the control device can control the first motor to work based on the energy-saving current.
  • control target of the second heating current may be the same as that of the heating current in the foregoing embodiments.
  • the amplitude of the integrated vector current corresponding to the heating current is greater than the amplitude of the integrated vector current corresponding to the energy saving current.
  • the energy-saving current may be a comprehensive vector current used to make the first motor reach the target operating condition and meet the condition of a small amplitude, or the energy-saving current is used to make the first motor The integrated vector current that reaches the target operating condition and meets the efficiency conditions of the whole machine.
  • the smaller amplitude condition may be the integrated vector current with the smallest amplitude that enables the first motor to reach the target operating condition.
  • the overall machine efficiency condition may be a comprehensive vector current that enables the first motor to reach a target operating condition and has the highest overall machine efficiency.
  • the overall machine efficiency may be determined according to the proportion of lost heating power in the total power.
  • the integrated vector current that can be determined according to the maximum efficiency unit current control method (Max efficiency per ampere, MEPA) can be regarded as the integrated vector current that satisfies the highest efficiency of the whole machine.
  • control device may first determine the energy-saving current corresponding to the current target operating condition of the first motor, and then obtain heating current.
  • FIG. 8 is a schematic diagram of the heating current applied to the SPM motor in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the heating current determined based on the Min-TPA method in the embodiment of the present application.
  • Table 8 is a set of illustrations of the energy-saving current and heating current corresponding to the SPM motor and the IPM motor.
  • Max-TPA control maximum torque per unit current control, Maximum Torque Per Ampere
  • Min-TPA control minimum torque per unit current control, Minimum Torque Per Ampere
  • Tem1 and Tem2 are equal torque curves, where T em1 >T em2 .
  • the circle with point O as the center is the current relationship circle of the orthogonal and direct axis, and the relationship circle adopts Sure.
  • the three ellipses with the coordinates (- ⁇ f ,0) as the center point are the speed-voltage relationship ellipses represented by current, and the relationship ellipse adopts (L q I q ) 2 +(L d I d + ⁇ f ) 2 ⁇ (u lim / ⁇ ) 2 is determined.
  • L d is the inductance
  • u lim is the DC bus voltage limit
  • is the speed
  • ⁇ f is the permanent magnet flux linkage generated by the permanent magnet
  • the speeds corresponding to the three ellipses satisfy ⁇ 1 ⁇ 2 ⁇ 3 .
  • the operating points determined by Max-TPA and Min-TPA need to be located within the circle of the current relationship between the orthogonal and direct axes, and within the ellipse of the relationship between the speed and voltage corresponding to the speed in the target operating condition.
  • the operating point determined by the comprehensive vector current that can reach the torque Tem1 to Tem2 and has the smallest amplitude can form a curve from point A to point B, where point A is the amplitude that can reach the torque Tem1
  • point B may be the operating point of the integrated vector current with the smallest amplitude that can reach the torque Tem2.
  • the current with the maximum amplitude that can reach the torque Tem2 can be C.
  • the operating point determined by Max-TPA control method is at point A in Figure 8, that is, point A is the coordinate point of the integrated vector current corresponding to the energy-saving current, and Min-TPA control is adopted
  • the working point determined by the method is at point C in Fig. 8, that is, point A is the coordinate point of the integrated vector current corresponding to the heat-increasing current, as shown in Fig. 8, point C and point A are located on the equal torque curve Tem1, that is, two Two operating points can meet the same torque output, but their operating current amplitudes are different.
  • the current amplitude of point C can reach the maximum value supported, and the current amplitude of point C is greater than that of point A. Therefore, the operating condition of point C is at Under the premise of satisfying the same torque output, the heat generation of the motor can be further improved.
  • the heating current can also be on the curve from point A to point C
  • the current amplitude and current lead angle corresponding to a set of loads and torques can be tested in advance, and then the current lead angle can be adjusted positively or negatively directly according to the current amplitude. It should be noted that the current lead angle is adjusted so that the torque of the final heat-increasing mode current is larger than the energy-saving mode current determined by using Max-TPA. This determination method may also be referred to as a Min-TPA control method.
  • the heat-increasing current can adopt the embodiment of the flow mode and the angle combination of the integrated current vector corresponding to the serial numbers of the torque generated in Table 4 as 2, 3, 5, 6, 8, and 9 any of them.
  • the first motor when the first motor is in the start-up state, the first motor can reach the target operating condition, while continuously heating the oil in the vicinity of the first motor.
  • control device may also determine whether to inject heating current when the rotational speed of the first motor belongs to one or more states of static state, locked-rotor state, and low-speed state, and when it is determined that heating current needs to be injected Inject the heating current corresponding to each state.
  • Table 9 is a set of representations of the corresponding relationship of the heating current injected by the first motor in various states in the embodiment of the present application.
  • the embodiment of the present application also provides an optional implementation of heating conditions.
  • the heating condition in any of the heating control methods in the foregoing embodiments may also be a low-loss working condition.
  • the control device can inject heating current into the first motor when the low-loss working condition is satisfied.
  • the heating current can be any one of the aforementioned embodiments.
  • Table 10 is an example of low loss operating conditions.
  • the operating conditions of the first electric motor may include two operating parameters of a rotational speed and a torque.
  • the low-loss operating condition may be a combination of a set of rotational speed and torque corresponding to a loss heating power lower than an expected loss heating power threshold.
  • the control device may collect the corresponding loss heating power when the first motor operates in at least two operating conditions, and then, the corresponding The operating condition in which the loss heating power is lower than the expected loss heating power threshold is determined as a low loss working condition.
  • the operating condition in which the loss heating power is greater than the expected loss heating power threshold may be called a high loss working condition.
  • the loss heating power can make the first electric motor get rid of any one of the aforementioned cold-state conditions within the expected start-up time.
  • the loss heating power of the first electric motor is greater than the expected loss heating power.
  • other optional implementation manners of determining the low-loss working condition and selecting the expected loss heating power threshold will be described in detail, and details will not be repeated here.
  • the expected loss heating power threshold may also be determined using the following implementation manners.
  • the value range of the loss heating power of the first motor includes at least two power intervals that do not overlap each other; the expected loss heating power is the at least The maximum power value of the minimum power interval in the two power intervals; the combination of speed and torque corresponding to the low loss working condition belongs to the combination value interval of speed and torque corresponding to the minimum power interval.
  • the value range of the loss heating power of the first electric motor is determined according to the combined value range of the rotational speed and torque of the first electric motor.
  • the loss heating power corresponding to different operating conditions is collected in advance, and the loss heating power corresponding to different operating conditions is divided according to the distribution law of power values to obtain several power intervals, where the loss in each power interval The variance between the heating power and the middle value of the power interval is smaller than the deviation threshold.
  • the maximum heat loss heating power can be divided into several equal parts to obtain several power intervals, and the number of divisions can be 2, 3, etc.
  • the expected loss heating power is the maximum loss heating power of the first motor multiplied by an expected heat energy conversion ratio.
  • the expected thermal energy conversion ratio may be 30%, 50%, etc.
  • FIG. 10 is a schematic diagram of the mapping relationship between the external characteristic curve corresponding to the operating condition of the first electric motor and the corresponding loss heating power in the embodiment of the present application.
  • the external characteristic curve of the first motor during operation may be a curve of power or torque varying with the rotational speed measured when the first motor is running at full load, from which the available external characteristic curve of the first motor can be obtained.
  • the outer envelope curve of the working range may be a curve of power or torque varying with the rotational speed measured when the first motor is running at full load, from which the available external characteristic curve of the first motor can be obtained.
  • the heating power loss can be divided into at least two levels according to the distribution of the heating power loss.
  • the heating power loss in Fig. 10 can be divided into three levels, which are the heating power loss corresponding to operating condition I, operating condition II, and operating condition III, where the heating loss power of I> The loss heating power of II is greater than the loss heating power of III.
  • the point loss heating power in operating condition III It is greater than the point loss heating power in operating condition I.
  • operating condition I may be selected as the low-loss condition.
  • the first motor when the first motor is started, it can be directly determined whether to inject heating current into the first motor (or set the first motor to enter the heating mode) according to whether the current operating condition is a low-loss condition, without the need
  • calculate the real-time loss heating power of the first motor to determine whether the real-time loss heating power of the first motor can make the first motor quickly get rid of the cold condition.
  • the expected loss heating power threshold may be determined according to the difference between the oil temperature in the vicinity of the first electric machine and the cold state temperature threshold.
  • control device may respectively determine the oil temperature change value corresponding to each operating condition per unit time for the heat loss power of each operating condition in at least two operating conditions, wherein the The oil temperature change value is an increase in the temperature of the oil in the vicinity of the first electric machine.
  • control device may also adjust the expected loss heating power threshold according to the oil temperature in the vicinity of the first electric machine.
  • the control device may set the expected loss heating power threshold to decrease as the temperature of the vicinity of the first motor increases.
  • the expected loss heating power threshold is the maximum loss heating power of the first motor; at the second moment after the first moment, the expected The loss heating power threshold decreases as the temperature of the vicinity of the first electrical machine increases.
  • the control device may determine the expected loss heating power threshold according to the temperature of the oil in the adjacent area.
  • the expected loss heating power threshold of the first motor can be determined according to the temperature of the oil in the vicinity of the first motor; the first motor The target operating condition of the electric vehicle is determined according to the actual demand. For example, when the load of the electric vehicle is high, the torque that the first motor needs to provide is relatively large; high.
  • the expected loss heating power threshold of the first motor when the first motor is an oil pump motor, the expected loss heating power threshold of the first motor may be determined according to the temperature of the oil in the vicinity of the first motor
  • the target operating condition of the first motor is determined according to actual needs. For example, when the drive motor of the electric vehicle is operating in a high-loss condition, the heat generated by the drive motor is relatively large, and the first motor needs to provide a higher speed. In order to speed up the circulation of the cooling oil, when the drive motor works in a low-loss condition, the heat generated by the drive motor is small, and the rotational speed that the first motor needs to provide can be small. When the temperature of the oil in the vicinity of the first motor is lower than When the temperature threshold is cold, the viscosity of the oil is high, and the first motor needs to generate a larger torque to drive the oil.
  • the heating condition may be a combination of a cold condition and a low loss working condition.
  • control device may inject the booster into the first motor when the operating condition of the first motor is a low-loss condition and the temperature in the vicinity of the first motor is lower than the cold temperature threshold. thermal mode current. It will be described in other embodiments of the present application, and will not be repeated here.
  • control device may inject energy-saving mode current into the first electric motor when the temperature in the vicinity of the first electric motor is higher than the high flow rate temperature threshold or the first electric motor is not operating in a low-loss condition. It will be described in other embodiments of the present application, and will not be repeated here.
  • the embodiment of the present application also provides a heating control method. This method can be applied to the heat exchange system in the foregoing embodiments.
  • the execution subject of the embodiment of the present application may be a control device, and the control device may be located in the heat exchange system in the foregoing embodiments.
  • FIG. 11 is a third schematic flow chart of the heating control method provided by the embodiment of the present application. As shown in Figure 11, the steps in this embodiment of the application may include:
  • obtaining the start-up instruction of the heat collecting device may also adopt obtaining the start-up instruction of the second electric motor as an alternative implementation manner.
  • a preheating current is injected into the first electric motor.
  • the loss and heat generation of the second electric machine in the operating condition is lower than the low-loss mode heat generation power threshold.
  • the control device may synchronously increase the heating power threshold in the low-loss mode when the rotation speed of the first motor increases.
  • the increase ratio of the heating power in the low-loss mode may be linearly related to the increase ratio of the rotational speed of the first electric motor.
  • the heat generated by the second motor is transferred to the heat collecting device through the heat exchanger.
  • the temperature of the oil in the vicinity of the first motor can be raised to a cold state by first injecting a preheating current into the first motor Above the temperature threshold, the first motor can be rotated as soon as possible, and then the oil in the vicinity of the first motor is continuously heated by injecting heating current into the first motor, so that the oil temperature rises to the peak flow rate, so that the oil used for the The heat dissipation capacity of the oil-cooling circulation loop for the cooling of the second motor reaches the maximum.
  • the second motor works in a low-loss mode, which can avoid the heat dissipation capacity of the oil-cooling circulation loop not reaching the maximum.
  • the second motor can gradually increase the loss and heat generation, or the heat dissipation capacity of the oil cooling circuit reaches the maximum
  • the second motor can enter a high-loss mode, both of which can make the heat collecting device obtain heat energy as soon as possible.
  • the heating control method in the embodiment of the present application can be applied to single-motor control scenarios such as oil pump motors or oil-cooled motors, and heat exchange system control scenarios.
  • the heating control method in the embodiment of the present application mainly involves the following processing procedures.
  • the control device may inject heating current into the first motor before or after starting the first motor after acquiring the start instruction of the first motor.
  • the control device may inject heating current into the first motor before starting, a control method of preheating the first motor and then starting the first motor can be realized, and the oil can be preheated first when the temperature of the first motor is the lowest. This enables the first motor to quickly break away from the state of being unable to rotate.
  • the control device can determine whether the first motor reaches the heating condition according to at least one kind of control decision information such as the temperature in the vicinity of the first motor, the rotational speed or the working condition of the first motor, that is, determine whether the first motor needs to be heated. hot. After it is determined that the heating condition is met, a heating current is injected into the first motor. Among them, determining whether the heating condition is reached according to the temperature and rotational speed conditions is used to determine whether the first motor is working in a low-temperature environment, and determining whether the heating condition is reached according to the working condition can be used to determine whether the current heat generation of the first motor can make the first motor adjacent to the area The temperature is raised to the required temperature as soon as possible.
  • control device may determine the control target of the heating current for heating according to at least one control reference information such as the temperature of the vicinity of the first motor, the operating state of the first motor, and the type of the first motor.
  • control target is mainly used to control the torque and thermal energy generated by the current injected into the first motor.
  • the control target is mainly used to control the torque and thermal energy generated by the current injected into the first motor.
  • the quadrature-axis current when the first motor is an SPM motor, in a locked-rotor state, the quadrature-axis current can be set to be zero, and the direct-axis current can be set to be non-zero.
  • the amplitude of the heating current when the first motor is an IPM motor, in the locked-rotor state and the low-speed state, the amplitude of the heating current can be set to reach the maximum torque.
  • the heating control method in the embodiment of the present application may mainly include: in the heat exchange system, between the first motor located in the oil pump, the driving motor that uses oil cooling to cool down, and the heat collecting device that needs to be heated collaborative process.
  • the control objectives of the collaborative process include the following aspects:
  • the flow rate of the oil in the oil pipeline reaches the high-speed flow rate threshold within a short period of time, so as to avoid the temperature of the driving motor from exceeding the limit.
  • the oil pump motor assists in heating the oil, thereby increasing the circulation rate of the oil pump and speeding up the overall heat dissipation structure that takes out the heat from the drive motor.
  • the specific implementation method can be described as:
  • the cooling water first passes through the MCU, absorbs the heat generated by the MCU, and then absorbs the oil through the oil-water heat exchanger to take out the heat;
  • cooling water refers to the cooling liquid added with antifreeze, not specifically pure water or an aqueous solution of a certain composition, as long as the above-mentioned cooling function can be realized.
  • control device may be located in the control center of the electric vehicle, and the control device may obtain the start control instructions of various components in the electric vehicle.
  • the preheating current into the first motor when the first motor is in a static state may include: acquiring a startup control instruction of the second motor; wherein, the second motor It is an oil-cooled motor; the first motor is used to drive cooling oil to flow to the second motor through the oil pipeline.
  • the method further includes: starting the second motor; controlling the second motor to operate in a low heat generation condition; wherein, The heating power loss in the low heating condition is less than the heating power threshold in the limited working condition; the heating power threshold in the limited working condition is determined according to the rotational speed of the first motor.
  • the method further includes: when the oil temperature of the cooling oil exceeds a high flow rate temperature threshold, controlling the second motor to operate under a high heat generation condition; wherein, the high heat generation condition
  • the heating power loss under the limited working condition is greater than the heating power threshold under the limited working condition; the heating power threshold under the limited working condition is determined according to the rotational speed of the first motor.
  • the second motor is a drive motor for driving wheels in an electric vehicle;
  • the electric vehicle further includes: a battery; It also includes: obtaining the startup instruction of the battery; wherein, the battery is connected to the downlink oil pipeline through a heat exchanger; the downlink oil pipeline is connected between the second motor and the liquid inlet of the first motor oil pipeline.
  • the technical solution provided by the embodiment of the application can be used as a control method for the operation of the oil pump motor.
  • This method is used in conjunction with the oil pump motor immersed in air gap, and can use the extra heat of the oil pump to heat the oil at low temperature. , so that its viscosity is reduced, so that the speed of the oil pump can be quickly increased, and the circulating cooling oil is normally provided; thereby improving the ability of the oil to take away the heat from the motor when the vehicle is started at low temperature, and accelerating the self-heating efficiency of the motor when the vehicle is started at low temperature.
  • the technical solutions provided by the embodiments of the present application can continuously provide additional heat to heat the oil.
  • the technical solution provided by the embodiments of the present application can help improve the ability of the driving motor to generate heat and heat the battery pack by promoting oil circulation.
  • the embodiment of the present application also provides a control device.
  • FIG. 12 is a first structural schematic diagram of the control device in the embodiment of the present application.
  • the control device 1200 may include: a processing module 1201 and an injection module 1202 .
  • the apparatus 1200 may further include an acquisition module 1203 and a storage module 1204 .
  • the acquiring module can be used to acquire at least one decision information in the foregoing embodiments, for example, the rotational speed of the first motor, the rotational speed of the vicinity of the first motor, the temperature of the vicinity of the first motor, the operation of the first motor operating conditions, the loss heating power corresponding to the operating conditions of the first motor, and the like.
  • the memory module is used to store instructions and data.
  • the processing module is used to inject heating current into the first motor through the injection module when the cold state condition is satisfied;
  • the first motor is an oil pump motor in an oil pump;
  • the heating current satisfies the following control objectives: when the first motor is in an unstarted state, the heating current is a zero torque current, and the zero torque The torque that can be generated by the current is zero; and/or, when the first motor is in the starting state, the heating current is a heating current, and the heating power of the heating current is greater than that of the energy-saving current, wherein,
  • the energy-saving current is a current that can make the first motor reach a target operating condition when the oil temperature is greater than a preset temperature threshold.
  • the cold conditions may include:
  • the temperature of the vicinity of the first motor is lower than the preset temperature threshold; or,
  • the rotational speed of the first electric motor operating based on the energy-saving current is less than a preset rotational speed threshold, wherein the preset rotational speed threshold is a target rotational speed in the target operating condition.
  • the cold conditions may include:
  • the operating condition of the first motor is a low-loss condition, wherein the loss heating power of the low-loss condition is less than the expected loss heating power threshold; or,
  • the loss heating power corresponding to the operating condition of the first motor is less than the expected loss heating power threshold
  • the expected loss heating power is used to make the first motor raise the oil temperature to the preset temperature threshold within a preset time.
  • the processing module is further configured to inject the energy-saving current into the first motor through an injection module when the cold state condition is not met.
  • the energy-saving current is a current used to make the first motor reach the target operating condition and meet the condition of a small amplitude, or the energy-saving current is used to make the The current of the first electric motor reaching the target operating condition and satisfying the energy efficiency condition of mechanical energy conversion of the whole machine.
  • the heating current is the first heating current or the second heating current
  • the total power of the first heating current is equal to the total power of the energy saving current, and the proportion of the heating power of the first heating current to the total power of the first heating current is greater than that of the energy saving current The ratio of the heating power of the current to the total power of the energy-saving current;
  • the ratio of the heating power of the second heating current to the total power of the second heating current is equal to the ratio of the heating power of the second heating current to the total power of the second heating current, and, The total power of the second heating current is greater than the total power of the energy-saving current.
  • the heating current is the first heating current or the second heating current
  • the amplitude of the integrated vector current corresponding to the first heating current in the dq rotating coordinate system is equal to the amplitude of the integrated vector current corresponding to the energy-saving current, and the torque that can be generated by the second heating current is less than The torque that can be produced by the energy-saving current;
  • the torque that can be produced by the first heating current is equal to the torque that can be produced by the energy-saving current, and the magnitude of the integrated vector current corresponding to the first heating current in the dq rotating coordinate system is greater than the energy-saving current The magnitude of the integrated vector current corresponding to the current.
  • the processing module may be specifically configured to inject the first heating current into the first motor through the injection module when the first motor is in a locked-rotor state; wherein, the When the first motor is in the locked-rotor state, the first motor is in the starting state and the speed that the first motor can reach based on the energy-saving current is less than or equal to the cold-state speed threshold; the cold-state speed threshold is 0 or the The rotational speed that the first motor can reach when the oil temperature is equal to the cold temperature threshold; the cold temperature threshold is less than or equal to the preset temperature threshold.
  • the processing module is specifically configured to inject the second heating current into the first motor when the first motor is in a low-speed state; wherein, the first motor is in a low-speed state In the state, the first motor is in the starting state and the speed that the first motor can achieve based on the energy-saving current is less than the high-speed state speed threshold; the high-speed state speed threshold is the first motor when the oil temperature is greater than or equal to the high-speed state The rotational speed that can be reached when the high-speed state temperature threshold is greater than the cold-state temperature threshold.
  • the first motor is an SPM motor or an IPM motor; the direct axis current of the comprehensive vector current corresponding to the first heating current in the dq rotating coordinate system is not 0 and the quadrature axis current is Current is 0.
  • the first motor is an SPM motor
  • the integrated vector current corresponding to the second heating current in the dq rotating coordinate system is the second vector current;
  • the integrated vector current corresponding to the energy saving current in the dq rotating coordinate system is the energy saving vector current;
  • the direct-axis current of the second vector current is equal to the direct-axis current of the energy-saving vector current, and the magnitude of the second vector current is equal to the maximum magnitude supported by the first motor.
  • the first motor is an IPM motor
  • the integrated vector current corresponding to the second heating current in the dq rotating coordinate system is the second vector current;
  • the integrated vector current corresponding to the energy saving current in the dq rotating coordinate system is the energy saving vector current;
  • the energy-saving vector current is the vector current with the smallest amplitude that can generate the target torque
  • the second vector current is a vector current capable of generating a target torque and having an amplitude greater than the energy-saving vector current
  • the magnitude of the second vector current is less than or equal to the maximum magnitude supported by the first motor shown.
  • the integrated vector current corresponding to the first heating current in the dq rotating coordinate system is the first vector current; the first vector current meets the following control objectives:
  • the angle between the first vector current and the d-axis is 0, and the flow mode of the zero torque vector current is: AC mode;
  • the AC mode means that the amplitude of the preheating vector current changes with time.
  • the integrated vector current corresponding to the second heating current in the dq rotating coordinate system is the second vector current; the second vector current satisfies any of the following One control target:
  • the flow mode of the second vector current is a DC mode, and the angle between the second vector current and the d-axis changes with time; or,
  • the flow mode of the second vector current is an AC mode
  • the DC mode indicates that the amplitude of the second vector current does not change with time
  • the AC mode indicates that the amplitude of the second vector current changes with time
  • the integrated vector current corresponding to the zero torque current in the dq rotating coordinate system is a zero torque vector current; the zero torque vector current meets the following control objectives:
  • the angle between the zero torque vector current and the d-axis is 0, and the flow mode of the zero torque vector current is: AC mode;
  • the AC mode means that the amplitude of the preheating vector current changes with time.
  • the integrated vector current corresponding to the heating current in the dq coordinate system can satisfy any of the following control objectives:
  • the flow mode is a direct current mode, and the angle between the integrated vector current corresponding to the heating current and the d-axis changes with time; or,
  • the flow mode is AC mode without DC bias
  • the flow mode is AC mode with DC bias.
  • the first motor includes a motor cavity communicated with the oil pipeline; the motor cavity is used to accommodate the stator and rotor of the first motor; The air gap between the stator and the rotor communicates with the oil pipeline;
  • the cavity of the motor is filled with oil, and the rotor is in contact with the oil in the cavity of the motor.
  • the obtaining module is used to obtain the starting instruction of the second motor before injecting heating current into the first motor through the injection module; wherein, the second motor is an oil-cooled motor; the first A motor is used to drive the cooling oil to flow to the second motor through the oil pipeline;
  • the processing module is further configured to start the second motor through the injection module after the startup instruction of the second motor is acquired; and control the second motor to operate in a low-loss mode through the injection module;
  • the heat dissipation power loss in the operating condition is less than the cold-state heat dissipation power threshold; the cold-state heat dissipation power threshold is determined according to the cold-state speed threshold, and the cold-state speed threshold is at The rotation speed that the first motor can reach when the oil temperature reaches the cold-state temperature threshold, and the cold-state rotation speed threshold is less than or equal to the preset temperature threshold.
  • the processing module is further configured to control the second motor to operate in a high loss mode through the injection module when the rotation speed of the first motor is greater than or equal to a high flow speed threshold;
  • the heat loss power of the operating condition is greater than the high-speed heat dissipation power threshold; the high-speed state heat dissipation power threshold is determined according to the high-speed state speed threshold, and the high-speed state speed threshold is The speed that the first electric motor can reach when the oil temperature reaches the high-speed state temperature threshold.
  • the obtaining module is further configured to obtain the start-up instruction of the heat collecting device before obtaining the start-up control instruction of the second motor;
  • the second motor is a driving motor for driving wheels in an electric vehicle; the electric vehicle also includes: a heat collecting device; the heat collecting device is a battery or a cabin heating device; the heat collecting device communicates with the The oil delivery pipeline forms a heat exchange connection; the heat exchanger is located on the oil delivery pipeline where the cooling oil flows from the second motor to the first motor.
  • FIG. 13 is a second structural schematic diagram of the control device in the embodiment of the present application.
  • the embodiment of the present application further provides a control device 1300 .
  • a control device 1300 includes: a processor 1310 and an interface 1320 .
  • the control device 1300 may further include a memory and a bus 1360 .
  • the processor may be used to realize the functions of the processing module in the foregoing embodiments
  • the interface may be used to realize the functions of the acquisition module and the injection module in the foregoing embodiments.
  • the device may be a controller, or a chip in the controller.
  • the processing module may be a processor, and the transceiver module may be a transceiver; if the device further includes a storage module, the storage module may be a memory.
  • the processing module can be a processor, and the transceiver module can be an input/output interface, a pin or a circuit, etc.; if a storage module is also included, the storage module can be a storage module in the chip (for example, a register, a cache, etc.), or a storage module (for example, a read-only memory, a random access memory, etc.) outside the chip.
  • the processor mentioned in any of the above places can be a general-purpose central processing unit (Central Processing Unit, referred to as CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, referred to as ASIC), or one or A plurality of integrated circuits for controlling program execution of the spatial multiplexing method of the above aspects.
  • CPU Central Processing Unit
  • ASIC application-specific integrated circuit
  • the controller may be a control center of an electric vehicle.
  • the present application provides a computer-readable storage medium having instructions stored therein, and the instructions can be executed by one or more processors on a processing circuit. When it runs on the computer, the computer is made to execute the method in any possible implementation manner in the foregoing first embodiment.
  • a computer program product including instructions, which, when run on a computer, causes the computer to execute the methods in any possible implementation manners of the aforementioned embodiments.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a Solid State Disk).

Abstract

一种加热控制方法、装置、油泵及热交换系统,其中,方法包括:在冷态时,向油泵电机注入发热电流;其中,在油泵电机未启动时,发热电流能产生的转矩为零;在油泵电机启动后,发热电流的发热功率大于节能电流的发热功率,节能电流为在油温大于预设温度阈值时,能够使得第一电机达到目标运行工况的电流。

Description

加热控制方法、装置、油泵电机和热交换系统 技术领域
本申请涉及控制技术领域,尤其涉及一种加热控制方法、装置、油泵电机和热交换系统。
背景技术
在电机运行环境的温度较低时,由于电机中的油在低温条件下的粘稠度较高,导致电机中的油的流速非常缓慢,进而导致电机难以正常工作。
目前,亟需一种能够较快加热电机中的油的技术方案。
发明内容
本申请提供了一种加热控制方法及相关装置,能够快速加热电机邻近区域的油。
第一方面,本申请实施例提供一种加热控制方法,所述方法包括:
在满足冷态条件时,向第一电机注入发热电流;
其中,所述第一电机为油泵中的油泵电机;所述发热电流满足以下控制目标:在所述第一电机处于未启动状态时,所述发热电流为零转矩电流,所述零转矩电流能够产生的转矩为零;和/或,在所述第一电机处于启动状态时,所述发热电流为增热电流,所述增热电流的发热功率大于节能电流的发热功率,其中,所述节能电流为在油温大于预设温度阈值时,能够使得第一电机达到目标运行工况的电流。
采用这种方式,能够利用第一电机自发热,快速加热第一电机邻近区域的油,进而能够使得第一电机尽早进入高速转动状态。
在一种可能的实现方式中,所述冷态条件包括:
所述第一电机的邻近区域的温度低于所述预设温度阈值;或者,
基于所述节能电流工作的第一电机的转速小于预设转速阈值,其中,所述预设转速阈值为所述目标运行工况中的目标转速。
在一种可能的实现方式中,所述冷态条件包括:
所述第一电机的运行工况为低损耗工况,其中,所述低损耗工况的损耗发热功率小于所述期望损耗发热功率阈值;或者,
所述第一电机的运行工况对应的损耗发热功率小于期望损耗发热功率阈值;
其中,所述期望损耗发热功率用于使得所述第一电机在预设时间内将所述油温提升至所述预设温度阈值。
在一种可能的实现方式中,所述方法还包括:
在不满足所述冷态条件时,向所述第一电机注入所述节能电流。
在一种可能的实现方式中,所述节能电流为用于使得所述第一电机达到所述目标运行工况且满足幅值较小条件的电流,或者,所述节能电流为用于使得所述第一电机达到所述目标运行工况且满足整机机械能转化能效条件的电流。
在一种可能的实现方式中,所述增热电流为第一增热电流或者第二增热电流;
其中,所述第一增热电流的总功率等于所述节能电流的总功率,并且,所述第一增热电流的发热功率占所述第一增热电流的总功率的比例大于所述节能电流的发热功率占所述节能电流的总功率的比例;
所述第二增热电流的发热功率占所述第二增热电流的总功率的比例等于所述第二增热电流的发热功率占所述第二增热电流的总功率的比例,并且,所述第二增热电流的总功率大于所述节能电流的总功率。
在一种可能的实现方式中,所述增热电流为第一增热电流或者第二增热电流;
所述第一增热电流在dq旋转坐标系中对应的综合矢量电流的幅值等于所述节能电流对应的综合矢量电流的幅值,并且,所述第二增热电流能够产生的转矩小于所述节能电流能够产生的转矩;
所述第一增热电流能够产生的转矩等于所述节能电流能够产生的转矩,并且,所述第一增热电流在dq旋转坐标系中对应的综合矢量电流的幅值大于所述节能电流对应的综合矢量电流的幅值。
在一种可能的实现方式中,所述在满足冷态条件时,向第一电机注入发热电流,包括:
在所述第一电机处于堵转态时,向所述第一电机注入所述第一增热电流;
其中,所述第一电机处于堵转态时所述第一电机处于启动状态且所述第一电机基于所述节能电流能够达到的转速小于或者等于冷态转速阈值;所述冷态转速阈值为0或者所述第一电机在油温等于冷态温度阈值时能够达到的转速;所述冷态温度阈值小于或者等于所述预设温度阈值。
在一种可能的实现方式中,所述在满足冷态条件时,向第一电机注入发热电流,包括:
在所述第一电机处于低速态时,向所述第一电机注入所述第二增热电流;
其中,所述第一电机处于低速态时所述第一电机处于启动状态且所述第一电机基于所述节能电流能够达到的转速小于高速态转速阈值;所述高速态转速阈值为所述第一电机在油温大于或者等于高速态温度阈值时能够达到的转速,所述高速态温度阈值大于所述冷态温度阈值。
在一种可能的实现方式中,所述第一电机为SPM电机或者IPM电机;
所述第一增热电流在dq旋转坐标系中对应的综合矢量电流的直轴电流不为0且交轴电流为0。
在一种可能的实现方式中,所述第一电机为SPM电机;
所述第二增热电流在dq旋转坐标系中对应的综合矢量电流为第二矢量电流;所述节能电流在dq旋转坐标系中对应的综合矢量电流为节能矢量电流;
所述第二矢量电流的直轴电流等于所述节能矢量电流的直轴电流,所述第二矢量电流的幅值等于所述第一电机支持的最大幅值。
在一种可能的实现方式中,所述第一电机为IPM电机;
所述第二增热电流在dq旋转坐标系中对应的综合矢量电流为第二矢量电流;所述节能电流在dq旋转坐标系中对应的综合矢量电流为节能矢量电流;
所述节能矢量电流为能够产生目标转矩的幅值最小的矢量电流;
所述第二矢量电流为能够产生目标转矩且幅值大于节能矢量电流的矢量电流,
其中,所述第二矢量电流的幅值小于或者等于所示第一电机支持的最大幅值。
在一种可能的实现方式中,所述第一增热电流在dq旋转坐标系中对应的综合矢量电流为第一矢量电流;所述第一矢量电流满足以下控制目标:
所述第一矢量电流与d轴之间夹角为0,并且,所述零转矩矢量电流的通流方式为:交流方式;
其中,所述交流方式表示所述第一矢量电流的幅值随时间改变。
在一种可能的实现方式中,在dq旋转坐标系中,所述第二增热电流在dq旋转坐标系中对应的综合矢量电流为第二矢量电流;所述第二矢量电流满足以下任一控制目标:
所述第二矢量电流的通流方式为直流方式,并且,所述第二矢量电流与d轴之间的夹角随时间变化;或者,
所述第二矢量电流的通流方式为交流方式;
其中,所述直流方式表示所述第二矢量电流的幅值不随时间改变,所述交流方式表示所述第二矢量电流的幅值随时间改变。
在一种可能的实现方式中,所述零转矩电流在dq旋转坐标系中对应的综合矢量电流为零转矩矢量电流;所述零转矩矢量电流满足以下控制目标:
所述零转矩矢量电流与d轴之间夹角为0,并且,所述零转矩矢量电流的通流方式为:交流方式;
其中,所述交流方式表示所述零转矩矢量电流的幅值随时间改变。
在一种可能的实现方式中,所述第一电机包括与输油管路连通的电机腔体;所述电机腔体用于容置所述第一电机的定子和转子;所述第一电机的定子和转子之间的气隙与所述输油管路连通;
在所述油泵电机工作时,所述电机腔体内填充有油,所述转子与所述电机腔体内的油接触。
在一种可能的实现方式中,发热电流在dq坐标系中对应的综合矢量电流可以满足以下任一种控制目标:
通流方式为直流方式,且,发热电流对应的综合矢量电流与d轴之间的夹角随时间变化;或者,
通流方式为不带直流偏置的交流方式;
通流方式为带直流偏置的交流方式。
在一种可能的实现方式中,在向第一电机注入发热电流之前,包括:
获取第二电机的启动指示;其中,所述第二电机为油冷电机;所述第一电机用于驱动冷却油经输油管路流向所述第二电机;
在所述获取第二电机的启动指示之后,所述方法还包括:
启动所述第二电机;
控制所述第二电机运行于低损耗模式;
其中,所述第二电机运行于低损耗模式时的运行工况的损耗发热功率小于冷态散热功率阈值;所述冷态散热功率阈值根据冷态转速阈值确定,所述冷态转速阈值为在 所述油温达到所述冷态温度阈值时所述第一电机能够达到的转速,所述冷态转速阈值小于或者等于所述预设温度阈值。
在一种可能的实现方式中,所述方法还包括:
在所述第一电机的转速大于或者等于高流速转速阈值时,控制所述第二电机运行于高损耗模式;
其中,所述第二电机运行于高损耗模式时的运行工况的损耗发热功率大于高速态散热功率阈值;所述高速态散热功率阈值根据高速态转速阈值确定,所述高速态转速阈值为所述油温达到所述高速态温度阈值时所述第一电机能够达到的转速。
在一种可能的实现方式中,所述第二电机为电动汽车中驱动车轮转动的驱动电机;所述电动汽车还包括:集热装置;所述集热装置为电池或者座舱加热装置;所述集热装置通过换热器与所述输油管路形成换热连接;所述换热器位于所述冷却油从所述第二电机流向所述第一电机的所述输油管路上;
在所述获取第二电机的启动控制指示之前,所述方法还包括:
获取所述集热装置的启动指示。
第二方面,本申请实施例提供一种加热控制方法,包括:
在基于节能电流工作的第一电机的转速小于目标运行工况中的目标转速时,向所述第一电机注入增热电流;
其中,所述第一电机为油泵中的油泵电机,所述增热电流的发热功率大于节能电流的发热功率;所述节能电流为在油温大于预设温度阈值时,能够使得第一电机达到所述目标运行工况的电流。
在一种可能的实现方式中,所述方法还包括:
在基于增热电流工作的第一电机的转速大于或者等于所述目标转速时,向所述第一电机注入所述节能电流。
第三方面,本申请实施例提供一种加热控制方法,包括:
在第一电机满足低损耗工况条件时,向所述第一电机注入增热电流;
其中,所述第一电机为油泵中的油泵电机;所述低损耗工况条件包括:所述第一电机的运行工况对应的损耗发热功率小于期望损耗发热功率阈值,或者,所述第一电机的运行工况为低损耗工况,其中,所述低损耗工况的损耗发热功率小于期望损耗发热功率阈值;所述增热电流的发热功率大于节能电流的发热功率,其中,所述节能电流为在油温大于预设温度阈值时,能够使得第一电机达到所述目标运行工况的电流。
又一方面,本申请实施例提供一种油泵,包括:第一电机和控制装置,其中,所述控制装置用于执行第一方面至第三方面中任一所述的方法。
又一方面,本申请实施例提供一种热交换系统,包括:第一电机,控制装置,第二电机、输油管路、换热器和集热装置;
其中,所述第二电机为油冷电机;所述第一电机为油泵中的油泵电机,所述油泵用于通过所述输油管路向所述第二电机提供冷却油;
所述换热器位于所述冷却油从所述第二电机流向所述第一电机的输油管路上;所述集热装置通过所述换热器与所述输油管路形成换热连接;
所述控制装置用于执行以实现第一方面至第三方面中任一所述的方法。
在一种可能的实现方式中,所述集热装置为:电池;或者,座舱加热装置
又一方面,本申请实施例提供一种控制装置,包括:存储器和处理器;
其中,所述存储器用于存储指令,所述处理器用于执行指令以实现第一方面至第三方面中任一所述的方法。
又一方面,本申请实施例提供一种控制装置,该装置包括处理模块和收发模块,处理单元执行指令以控制该装置执行第一方面至第三方面中任意一种可能的设计中的方法。
在一种可能的实现方式中,该装置还可以包括存储模块。
在一种可能的实现方式中,该装置可以是控制器,也可以是控制器内的芯片。
当该装置是控制器时,处理模块可以是处理器,收发模块可以是收发器;若还包括存储模块,存储模块可以是存储器。
当该装置是控制器内的芯片时,处理模块可以是处理器,收发模块可以是输入/输出接口、管脚或电路等;若还包括存储模块,该存储模块可以是该芯片内的存储模块(例如,寄存器、缓存等),也可以是该芯片外部的存储模块(例如,只读存储器、随机存取存储器等)。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(Central Processing Unit,简称CPU),微处理器,特定应用集成电路(application-specific integrated circuit,简称ASIC),或一个或多个用于控制上述各方面空间复用方法的程序执行的集成电路。
在一示例中,控制器可以为电动汽车的控制中心。
又一方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中任意可能的实现方式中的方法。
又一方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面至第三方面中任意可能的实现方式中的方法。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中第一电机的结构示意图一;
图2为本申请实施例中第一电机的结构示意图二;
图3为本申请实施例中包含第一电机的油泵的一种结构示意图;
图4A为应用本申请实施例中的加热控制方法的油泵的结构示意图一;
图4B为应用本申请实施例中加热控制方法的热交换系统的一种结构示意图;
图4C为应用本申请实施例中加热控制方法的热交换系统的又一种结构示意图;
图5A为本申请实施例中的三相全桥电路的一种结构示意图;
图5B为本申请实施例中d轴电流矢量的一种示意;
图5C为本申请实施例中在dq轴旋转坐标系下的综合矢量电流的示意图;
图5D为本申请实施例中在三相旋转坐标系下的综合矢量电流的示意图;
图6为本申请实施例中加热控制方法的流程示意图一;
图7为本申请实施例中加热控制方法的流程示意图二;
图8为本申请实施例中应用于SPM电机的增热模式电流的示意图;
图9为本申请实施例中基于Min-TPA方式确定的增热模式电流的示意图;
图10为本申请实施例中第一电机的运行工况对应的外特性曲线和对应的损耗发热功率的映射关系的一种示意图;
图11为本申请实施例提供的加热控制方法的流程示意图三;
图12为本申请实施例中的控制装置的结构示意图一;
图13为本申请实施例中的控制装置的结构示意图二。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
实施例一
本申请实施例提供一组加热控制方法、装置及应用加热控制方法的第一电机和热交换系统。其中,第一电机的邻近区域可以设置有用于允许液体通过的通路。
举例来说,第一电机可以为油泵电机、油冷电机等,与第一电机配合使用的液体可以为油。
作为一种示例,油泵电机可以为电泵或油泵中用于驱动液体流动的电机。油泵中可以设置用于容置待驱动的油的泵油腔,油泵电机可以通过扇叶等传动连接件驱动泵油腔中的油。
作为一种示例,油冷电机可以为采用冷却油对电机进行降温的电机。油冷电机内部可设置允许油通过的通路,或者,油冷电机可以位于容置有冷却油的降温腔内。油冷电机的内部通路中流过的油或者油冷电机外部的降温腔内流过的油,可用于带走油冷电机在运转过程中产生的热量。
需要说明的是,油泵电机可以采用油冷的方式降温也可以采用其他降温方式降温,当油泵电机采用油冷方式降温时,油泵电机内部也可设置允许油通过的通路或者油泵电机也可以设置位于降温腔内,采用这种设置方式的油泵电机也是一种油冷电机。在本申请实施例中,允许油在在一定空间内通过可以称为过油,允许油通过的通路或者空间区域可以称为过油通路或者过油区域。
作为一种示例,与第一电机相配合使用的油可以为冷却油、润滑油、绝缘油、耐高压油等。
在一些低温场景下,由于油的粘稠度较高,第一电机无法正常工作。例如,对于油泵电机来说,当泵油腔内的油温较低时,油泵电机启动后输出的转矩无法推动油移动,油泵电机甚至无法转动。对于油冷电机来说,当油冷电机内部或外部邻近区域的 油温较低时,油的流动能力降至极低水平,导致油冷电机产生的热量无法及时被带走,存在电机被烧的风险。
本申请实施例中的加热控制方法可利用第一电机对第一电机的邻近区域的油进行加热,以解决上述问题。
在本申请实施例中,第一电机的邻近区域可以包括位于第一电机内部的过油区域和位于第一电机外部的过油区域。在本申请其他实施例中将结合第一电机的结构和所处的位置进行详细说明。
下面对本申请实施例中的第一电机的结构进行示例性说明。
图1为本申请实施例中第一电机的结构示意图一。
如图1所示,第一电机可以包括:定子、转子、电机外壳。其中,电机外壳围设一电机机腔,电机机腔可用于容置定子和转子。作为一种示例,定子可包括定子铁芯、定子绕组,转子可围绕设置于电机机腔内的转子转轴旋转。作为一种示例,转子的数量可以为3。本申请实施例对此不做限制。
在本申请实施例中,可参看图1所示,第一电机内部可以设置一种或多种允许过油的过油区域。
作为一种可选的实施方式,转子转轴内可以设置用于过油的油道。其中,该油道可以用于与位于第一电机之外的输油管路连通。需要说明的是,油道与输油管路连通可以不经过电机机腔内的空腔。
作为一种可选的实施方式,转子中可以设置用于过油的油孔。其中,该油孔可以用于与输油管路连通。需要说明的是,油孔与输油管路连通可以不经过电机机腔内的空腔。
作为一种可选的实施方式,电机机腔可用于与输油管路连通。作为一种示例,可参看图1所示的空腔部分可以为电机机腔中可以过油的区域。需要说明的是,当电机机腔与输油管路连通时,油道和油孔也可以通过电机机腔与输油管路连通。
采用这种设置方式,当输油管路过油时,电机机腔内也可以过油,位于电机机腔内的转子可以浸在油中,使得转子与油可以直接接触且二者之间的传热面更大,在利用第一电机的发热对油进行加热时,能够提高第一电机加热油的效率。
作为一种可选的实施方式,转子和定子绕组之间的空隙可以称为气隙,转子和定子绕组之间的气隙可用于与输油管路连通。作为一种示例,气隙可以与电机机腔连通,并通过电机机腔与输油管路连通。
采用这种设置方式,在电机机腔内存在油时,气隙也可以过油,使得发热的转子与油之间的传热面更大更直接,进而可以提高第一电机加热油的效率。
在本申请实施例中,作为一种可选的实施方式,可以当第一电机为油泵电机时,采用将电机机腔与输油管路连通以及气隙与输油管路连通的方式。当第一电机为主要 用于输出机械能的非油泵电机时,例如,电动汽车中的采用油冷方式降温的驱动电机时,可以设置电机机腔和气隙均不与输油管路连通。采用这种设置方式,可以控制油冷电机处于转动状态时注入电流电能转化为热能的比例。
图2为本申请实施例中第一电机的结构示意图二。
与图1所示结构不同的是,作为一种示例,图2中的空腔以及定子和转子之间的气隙可以不与输油管路连通。在这种设置方式中,气隙不过油。采用在驱动电机中设置气隙为不允许过油区域的方式,可以减少电能转化为热能的比例,进而减少发热损耗,将电能更多地转化为机械势能。
在本申请实施例中,第一电机外部的过油区域可以采用以下实施方式设置。下面以第一电机为油泵中的油泵电机为例进行说明。
图3为本申请实施例中包含第一电机的油泵的一种结构示意图。
如图3所示,作为一种示例,油泵可以包括:泵油腔、扇叶(图中未示出)等部件。其中,油泵电机可位于油泵的泵油腔内,泵油腔可的进液口和出液口可以分别与输油管路相连通。此时,第一电机的电机机壳外侧可以与泵油腔内的油接触。第一电机可以用于加热位于第一电机内的油以及位于第一电机外且位于泵油腔内的油。即油泵电机的邻近区域的油可以包括位于泵油腔内的油。在本申请其他实施例中,油冷电机也可以设置于可过油的降温腔内,即油冷电机的邻近区域的油可以包括位于降温腔内的油。
需要说明的是,应用本申请实施例提供的加热控制方法的第一电机可以具有上述各种内部过油区域或者上述各种外部过油区域中的至少一种过油区域。
在本申请实施例中,加热控制方法的执行主体可以为控制装置。控制装置可以有多种设置方式。
在一示例中,控制装置可以设置在第一电机上。例如,当第一电机为油泵电机或者驱动电机时,控制装置可以为油泵电机或者驱动电机中的控制单元,该控制单元可以是通过软件或者硬件实现的。
在又一示例中,当第一电机为油泵中的油泵电机时,控制装置可以设置在油泵上。
可参看图4A为应用本申请实施例中的加热控制方法的油泵的一种结构示意图。作为一种示例,如图4A所示,油泵81可以包括:油泵电机82和控制装置90。
在再一示例中,第一电机可以为油泵中的油泵电机,且该油泵为热交换系统中用于驱动传热油路中的油的油泵,控制装置可以位于该热交换系统中。
可参看图4B为应用本申请实施例中的加热控制方法的热交换系统的一种结构示意图。如图4B所示,作为一种示例,热交换系统900可以包括:控制装置90、发热装置83、包含油泵电机82的油泵81、集热装置84和输油管路。其中,图4B中未示 出输油管路。在一示例中,输油管路可用于将油泵、发热装置、集热装置依次连接成循环回路。
在实际应用中,举例来说,热交换系统可以为电动汽车或者位于电动汽车上。
作为一种示例,发热装置可以为电动汽车中驱动轮胎转动的驱动电机,或者,电动汽车中的其他可发热的电器。
作为一种示例,集热装置可以包括电动汽车中的电池、座舱加热装置等需要收集和利用热能的装置。示例性地,电池可以用于向电动汽车中的驱动轮胎转动的驱动电机、电器等。电池也可以称为电池包。在一示例中,座舱加热装置可以是车载空调等。在实际应用中,电池包或者座舱加热装置中还可以设置有温度传感器。
以热交换系统的发热装置可以为驱动电机,热交换系统中的集热装置包括电池为例,图4C为应用本申请实施例提供的加热控制方法的热交换系统的又一种结构示意图。
如图4C所示,该热交换系统可以包括设置于两个循环导热回路上的器件。其中,位于油路上的器件包括:通过输油管路依次相连的驱动电机、换热器和油泵;位于水路(图中仅为水路的部分示意)上的器件包括通过水管依次相连的微控制单元MCU、换热器和电池。其中,换热器用于将油路中油的热量传递至水路中的水中。
需要说明的是,控制装置可以位于油泵电机上,或者,控制装置可以位于驱动电机上,或者,控制装置可以位于电动汽车的控制中心中。控制装置可以与油泵电机、驱动电机存在电连接。图4C中未示出控制装置的位置。
在热交换系统的一种可选的实施方式中,作为一种示例,集热装置可包括的换热器、换热回路和电池。其中,电池位于换热回路上,换热器还位于换热回路上。在一示例中,换热器可以为油水换热器,油水换热器可以为无源器件。在一示例中,换热回路可以为图4C中的水路对应的水管。
在热交换系统的一种可选的实施方式中,作为一种示例,热交换系统中还可以包括一个或多个温度传感器。
作为一种示例,温度传感器可以位于第一电机的邻近区域,用于获得油泵电机邻近区域的油的温度。在一示例中,温度传感器可以位于驱动电机的邻近区域或者输油管路,用于获得驱动电机邻近区域或者输油管路中的油的温度。控制装置可利用通过传感器获得地各项温度数据进行相应的控制。本申请其他实施例中将对热交换系统控制场景中的控制步骤进行详细说明。
在本申请实施例中,应用加热控制方法的第一电机还可以为内置永磁体的电机。
作为一种示例,第一电机中的转子可以为采用永磁体制成的。在一示例中,第一电机可以为表贴式永磁电机(Surface-Mounted Permanent Magnet Machine,SPM),其中,SPM电机为永磁体固定在转子表面的永磁电机。在又一示例中,第一电机可以 为内置式永磁电机(Interior Permanent Magnet Machine,IPM),其中,IPM电机可以为永磁体内嵌在转子内部的永磁电机。
采用内置永磁体的第一电机,能够在注入发热电流时激发更多的损耗发热,在本申请其他实施例中将对内置永磁体的电机注入的发热电流、对SPM电机和IPM电机注入的发热电流进行详细说明。
在本申请实施例中,第一电机可以包括三相电路,三相电路用于向三个转子注入三相电流。
以第一电机具有三个转子为例,本申请实施例中加热控制方法向第一电机注入的各种发热电流可以为利用三相电路向第一电机注入的三相电流。举例来说,三相电路可以为三相全桥电路、三相半桥电路、三相串并联电路等,可参看图5A为三相全桥电路的一种示例,图5B为d轴电流矢量的一种示例。本申请实施例对此不做限制。
需要说明的是,三相电流也可称为三相电。三相电可以是一组幅值相等、频率相等、相位互相差120°的三相交流电。在静止的三相坐标系中,三相电流可以表示为i a、i b和i c(或者i u、i v和i w)。本申请实施例中的加热控制方法涉及的各种电流的控制目标可以采用与之等效的综合矢量电流的控制目标作为替代。在电机分析过程中,利用派克变换(Park Transformation),可以将静止的三相坐标系中的三相电流变换为旋转坐标系中的综合矢量电流,进而简化电机分析。
举例来说,旋转坐标系可以为dq旋转坐标系,dq旋转坐标系中的d轴与三相坐标系中i a所在的a轴(或者i u所在的u轴)相同。图5C为本申请实施例中在dq旋转坐标系下的综合矢量电流的示意图,如图5C所示,三相电流在dq旋转坐标系中对应的综合矢量电流Is可以表示为直轴(direct axis或d-axis,d轴)电流Id和交轴(quadrature axis或q-axis,q轴)电流Iq确定的合矢量。综合矢量电流Is还可以采用幅值和位置角θ表示,其中,位置角θ为综合矢量电流Is与d轴之间的夹角。综合矢量电流Is还可以采用交轴电流Iq和电流超前角γ表示。其中,电流超前角γ为综合电流矢量Is与交轴q轴之间的夹角。
作为另一种示例,旋转坐标系还可以为三相旋转坐标系,图5D为本申请实施例中在三相旋转坐标系下的综合矢量电流的示意图。
在实际应用中,综合电流矢量也作综合矢量电流,对综合矢量电流的调节可以通过调节直轴电流的大小、交轴电流的大小、位置角θ的大小等实现,在下面的实施例中将对加热控制方法注入第一电机的各种发热电流进行详细说明。
下面对本申请实施例提供的加热控制方法进行示例性说明。
基于前述实施例中提供的任一种第一电机,本申请实施例提供一组加热控制方法。控制装置可以通过向第一电机注入发热电流,激发第一电机自发热,来实现加热 第一电机邻近区域的油。
在实际应用中,第一电机在启动前的温度接近第一电机的运行环境的温度,在第一电机启动后,为了达到目标运行工况,第一电机被注入工作电流,第一电机运行过程中,第一电机会产生发热,部分电能转化为热能,使得第一电机以及邻近区域的温度逐渐升高。
在本申请实施例中,控制装置可以先确定第一电机是否达到冷态条件,在确定第一电机需要加热时,向第一电机注入发热电流,其中,冷态条件可以基于第一电机的邻近区域的温度、第一电机邻近区域的油温、第一电机的转速等决策信息设置。
需要说明的是,油的流速与油温有关,当第一电机为油泵电机时,油的流速与第一电机的转速有关,表1为油温与油的流速的一组示意。
表1
Figure PCTCN2021103273-appb-000001
其中,油温、油的流速、第一电机的转速存在线性关系,在油温达到高速态温度阈值时,油的流速可以达到高速态流速阈值,第一电机可达到的转速达到高速态转速阈值,在油温低至冷温度阈值时,油的流速降低至堵转态流速阈值,第一电机可达到的转速降低至堵转态转速阈值,堵转态流速阈值例如可以为0或者一个较小的数值,堵转态转速阈值可以为0或者一个较小的数值。在油温从冷态温度阈值上升至高速态温度阈值时,油的流速可以从堵转态流速阈值上升至高速态流速阈值,第一电机的转速可以从堵转态转速阈值逐渐上升至高速态转速阈值。作为一种示例,冷态温度阈值可以为使得油的粘稠度达到预设粘稠度阈值的温度,在油的粘稠度达到预设粘稠度阈值时,位于第一电机的邻近区域的油在第一电机的启动转矩的推动下的移动速度小于 或者等于预设低速态流速阈值。在一示例中,预设低速态流速阈值可以为0,在油温低于冷态温度阈值时,油的粘稠度可以达到一个极高的水平,由于粘稠度太高,第一电机启动时的产生的转矩甚至无法推动油。
基于表1所示,控制装置可以在油温未达到高速态温度阈值,或者,油的流速未达到高速态流速阈值,或者,在第一电机的转速未达到高速态转速阈值时,确定满足冷态条件。需要说明的是,采用第一电机的转速,确定第一电机的运行环境的温度是否低于高速态温度阈值,可以不需要在第一电机的邻近区域,如输油管路和泵油腔中,设置温度传感器。
在本申请实施例中,控制装置还可以在在第一电机启动前或者启动后,设置不同的冷态条件,以及,针对不同的冷态条件设置对应的发热电流的实施方式。
表2为不同冷态条件及对应的发热电流和节能电流的一组示意。
表2
Figure PCTCN2021103273-appb-000002
Figure PCTCN2021103273-appb-000003
如表2所示,在第一电机处于未启动状态,冷态条件可以为冷态预热条件,在第一电机处于启动状态,冷态条件可以为堵转态增热条件、低速态增热条件。
如表2所示,在不满足加热条件时,控制装置可以设置不向第一电机注入发热电流,根据第一电机的目标运行工况,可以向第一电机注入节能电流,其中,节能电流可以为能够使得第一电机达到目标转矩和目标转速的幅值最小或者能效最高的电流,以避免不必要的发热损耗。在下面的实施例中将结合实际应用中的处理流程,对表2所示的各种冷态条件和发热电流的可选的实施方式进行详细说明。
下面对本申请实施例提供的加热控制方法的处理流程的可选的实施方式进行说明。需要说明的是,在本申请实施例中的各种可选的实施方式可以单独使用也可以组合使用。
图6为本申请实施例中加热控制方法的处流程示意图一。如图6所示,本申请实施例的步骤可以包括:
S101,在第一电机处于未启动状态时,获取到第一电机的启动指示。
S102,确定第一电机是否满足冷态预热条件,若是,执行S103,若否,执行S104。
其中,作为一种示例,在确定满足冷态预热条件时,控制装置可以设置第一电机进入预热模式,在不满足冷态预热条件时,可以直接启动第一电机。
在本申请实施例中,冷态预热条件有多种实施方式。表1为冷态预热条件的一组实施方式的示意。
表3
Figure PCTCN2021103273-appb-000004
如表3所示,作为一种可选的实施方式,控制装置可以在第一电机处于未启动状态时,通过第一电机邻近区域的其他设备中设置的温度传感器获取的温度数据确定是否达到冷态预热条件。
在本申请其他实施例中,作为一种示例,控制装置可以当第一电机处于静止状态且第一电机的邻近区域的温度高于冷态温度阈值时,不向第一电机注入预热电流。
S103,向第一电机注入预热电流。
在本申请实施例中,预热电流可以采用以下一种或多种实施方式的组合。下面以预热电流I 1对应的综合矢量电流记为第一矢量电流Is 1,第一矢量电流的直轴电流为I d1,交轴电流为I q1,I MAX为第一电机支持的最大电流幅值为例进行说明。
在预热电流的一种实施方式中,当第一电机为内置永磁体的电机时,预热电流对应的第一矢量电流的方向角为变量,和/或,所述第一矢量电流的幅值为变量;其中,所述第一矢量电流的方向角为第一矢量电流与dq旋转坐标系中的d轴之间的夹角。
在实际应用中,控制装置可以设置预热电流对应的综合矢量电流的通流方式来实现。表4为第一电机的预热电流与损耗类型的一组示意图。第一矢量电流可以采用表4所示的任一种综合电流矢量通流方式。
表4
Figure PCTCN2021103273-appb-000005
Figure PCTCN2021103273-appb-000006
表4中的通流方式包括直流、交流、带直流偏置的交流。其中,直流表示预热电流的幅值不随时间改变。交流表示预热电流的幅值随时间改变。带直流偏置的交流表示幅值随时间变化,且电流在一个周期内的平均值不为零,可以为正或者负(或仅在正半轴或仅在负半轴)。夹角可以是指综合矢量电流的相位。
上述任一种通流方式和方向角组合都可以激发第一电机产生发热损耗。
表4中激发的损耗类型包括铜耗、铁耗和永磁体损耗。其中,铜耗可以是指交流/直流电流通过铜导体产生的热量,发热功率用I 2R计算,其中I为通过的电流(直流,或交流量的有效值),R为导体电阻。铁耗可以是指铁磁材料(如钢、硅钢片等)在交变的磁场中产生的损耗,铁耗可以包括磁滞损耗、涡流损耗和附加损耗等。永磁体损耗的产生原因是永磁体材料具有电导率,在交变磁场中会感应产生涡流,并由此产生相应的涡流损耗,永磁体损耗的大小同样可利用I 2R计算,其中I为感应产生的涡流,R为涡流回路电阻。
表4中的磁场类型包括恒定磁场、旋转磁场、脉振磁场。其中,脉振磁场可以是指方向不变,仅幅值随时间周期性变化的磁场。旋转磁场可以是指幅值可变可不变,方向随时间在空间在圆周上随时间周期变化的磁场。恒定磁场可以是指幅值、方向皆不随时间变化的磁场。
表4中序号为1、4、7的通流方式和方向角组合对应的综合矢量电流不会产生转矩,表4中其他序号的通流方式和方向角组合对应的综合矢量电流会产生转矩。
需要说明的是,当第一电机处于未启动状态时,可以采用表4中序号为1、4、7所示的综合矢量电流作为预热电流的实施方式,可以避免由于产生转矩将部分电能转化为机械能。
还需要说明的是,序号为4和7的通流方式和方向角组合对应的综合矢量电流除了能够激发铜耗和铁耗之外,还可以激发永磁损耗,采用这两种综合矢量电流作为预热电流的实施方式,第一电机的损耗发热功率更大,能够更快速地加热第一电机邻近区域的油。
在本申请实施例中,第一电机可以采用内置永磁体的电机,如SPM电机、IPM电机,从而在预热模式下激发更多的损耗,进而能够更快加热位于第一电机邻近区域内的油。
在预热电流的另一种实施方式中,预热电流可以为零转矩电流,零转矩电流能够使第一电机产生的转矩为零。当第一电机注入零转矩电流时,第一电机不发生转动,此时,第一电机的电能不会转化为机械能,从而可以使预热电流对应的电能转化为热能的比例更高。
在实际应用中,表5为SPM电机和IPM电机对应的预热电流的一组示意。
表5
Figure PCTCN2021103273-appb-000007
需要说明的是,直轴电流I d1的通流方式可以是直流、交流或带直流偏置的交流形式,其中直流表示其幅值、相位均不随时间变化的波形;交流表示其相位不变,幅值随时间正负交替变化且平均值为零的波形;带直流偏置的交流表示其相位不变,幅值随时间正负(或仅在正半轴或仅在负半轴)变化,且平均值不为零的波形。
S104,启动第一电机。
需要说明的是,S102不是本申请实施例必须执行的步骤。
采用这种在第一电机处于静止状态且邻近区域的温度低于冷态温度阈值时,向第一电机注入预热电流的方式,能够在第一电机处于静止状态时,促使第一电机自发热,并利用第一电机产生的热量加热位于第一电机邻近区域的油,进而使得邻近区域的油的温度尽快上升至冷态温度阈值之上,油的粘稠度下降至第一电机能够推动或者较容易推动的程度,可以避免由于油温低于冷态温度阈值时油的流动性极差导致的电机启动转动极其困难的问题,第一电机在启动转动时就能够较容易推动油。
在加热控制方法的第二种可选的实施方式中,发热电流可以为增热电流。
图7为本申请实施例中加热控制方法的流程示意图二。
如图7所示,在第一电机处于启动状态时,本申请实施例的步骤可以包括:
S111,在第一电机处于堵转态时,确定第一电机是否满足堵转态增热条件,若是,执行S112,若否,执行S113。
其中,表6为堵转态增热条件的一种示意。
表6
Figure PCTCN2021103273-appb-000008
S112,向第一电机注入第一增热电流。
其中,作为一种示例,在第一电机的转速为0时,第一增热电流的控制目标可以与前述实施例中的预热电流相同。作为一种示例,在第一电机的转速不为0时,第一增热电流的控制目标可以与前述实施例中的增热电流相同。
需要说明的是,S111和S112不是本申请实施例必须执行的步骤。
S113,在第一电机处于低速态时,确定第一电机是否满足低速态增热条件,若是,执行S114,若否执行S115。
其中,表7为低速态增热条件的一种示意。
表7
Figure PCTCN2021103273-appb-000009
在本申请实施例中,作为一种可选的实施方式,基于判断条件示例2所示的加热条件,控制装置可以基于第一电机是否满足加热条件,选择性地将第一电机设置为增热模式或者节能模式。
示例性地,在确定第一电机满足加热条件需要增加发热时,将第一电机设置为增热模式。在确定第一电机不满足加热条件时,将第一电机设置为节能模式。在第一电机处于增热模式时,控制装置可以控制第一电机基于增热电流进行工作。在第一电机处于节能模式时,控制装置可以控制第一电机基于节能电流进行工作。
S114,向第一电机注入第二增热电流。
其中,作为一种示例,第二增热电流的控制目标可以与前述实施例中的增热电流相同。
在本申请实施例中,增热电流对应的综合矢量电流的幅值大于节能电流对应的综合矢量电流的幅值。
在本申请实施例中,节能电流可以为用于使得所述第一电机达到目标运行工况且满足幅值较小条件的综合矢量电流,或者,所述节能电流为用于使得所述第一电机达到目标运行工况且满足整机效率条件的综合矢量电流。
在一示例中,幅值较小条件可以为使得第一电机达到目标运行工况的幅值最小的综合矢量电流。在一示例中,整机效率条件可以为使得第一电机达到目标运行工况且整机效率最高的综合矢量电流。其中,作为一种示例,整机效率可以根据损耗发热功率在总功率中的占比确定。作为一种示例,可以根据最大效率单位电流控制方式(Max efficiency per ampere,MEPA)确定的综合矢量电流可以认为时满足整机效率最高的综合矢量电流。
在本申请实施例中,作为一种可选的实施方式,控制装置可以先确定第一电机的当前目标运行工况对应的节能电流,然后,通过调节节能电流对应综合矢量电流的电流超前角得到增热电流。
在实际应用中,图8为为本申请实施例中应用于SPM电机的增热电流的示意图。图9为本申请实施例中基于Min-TPA方式确定的增热电流的示意图。表8为SPM电机和IPM电机对应的节能电流和增热电流的一组示意。
表8
Figure PCTCN2021103273-appb-000010
需要说明的是,针对IPM油泵电机,在运行中可以采用Max-TPA控制(单位电流最大转矩控制,Maximum Torque Per Ampere),在本申请实施例中,通过调整电流超前角(即电流综合矢量与q轴的夹角),采用Min-TPA控制(单位电流最小转矩控 制,Minimum Torque Per Ampere)的方式,还能够在运行中增加油泵电机的发热,进一步提升对周围油的加热效果。
可参看图9所示,Tem1和Tem2为等转矩曲线,其中,T em1>T em2。以O点为圆心的圆为交直轴电流关系圆,其中,关系圆采用
Figure PCTCN2021103273-appb-000011
确定。以坐标(-ψ f,0)为中心点的三个椭圆为以电流表示的转速电压关系椭圆,其中,关系椭圆采用(L qI q) 2+(L dI df) 2≤(u lim/ω) 2确定。其中,L d为电感,u lim为直流母线电压限值,ω为转速,ψ f为永磁体产生的永磁磁链,三个椭圆对应的转速满足ω 123。采用Max-TPA和Min-TPA确定的工作点均需要位于交直轴电流关系圆内,且位于目标运行工况中的转速对应的转速电压关系椭圆内。
作为一种示例,能够达到转矩Tem1至Tem2且幅值最小的综合矢量电流所确定的工作点可以组成从A点至B点之间的曲线,其中,A点为能够达到转矩Tem1的幅值最小的综合矢量电流的工作点,B点可以为能够达到转矩Tem2的幅值最小的综合矢量电流的工作点。能够达到转矩Tem2的幅值最大的电流可以为C。
正常工作模式下,当需要转矩为Tem2时,采用Max-TPA控制方式确定的工作点在图8中A点,即A点为节能电流对应的综合矢量电流的坐标点,采用Min-TPA控制方式确定的工作点在图8中C点,即A点为增热电流对应的综合矢量电流的坐标点,可参看图8所示,C点与A点位于等转矩曲线Tem1上,即两个工作点能够满足相同的转矩输出,但其工作电流幅值不同,C点的电流幅值可以达到支持的最大值,C点的电流幅值要大于A点,因此C点运行工况在满足相同的转矩输出的前提下,能够进一步提升电机发热。作为一种可选的实施方式,增热电流也可以为由A点至C点之间的曲线上
在本申请实施例中,可以预先测试一组负载和转矩对应的电流幅值和电流超前角,之后,可以直接根据该电流幅值,正负调整电流超前角。需要说明的是,调整电流超前角,使得最终得到的增热模式电流的转矩相对于采用Max-TPA确定的节能模式电流变大。这种确定方式也可以称为Min-TPA控制方式。
作为一种可选的实施方式,增热电流可以采用表4中产生转矩的序号为2、3、5、6、8、9对应的综合电流矢量的通流方式和夹角组合的实施方式中任意一种。
需要说明的是,S113和S114不是本申请实施例必须执行的步骤。
S115,向第一电机注入节能电流。
在本申请实施例中,节能电流的实施方式可参见S114中的相关说明。
采用本申请实施例提供的增热电流,可以在第一电机处于启动状态时,使得第一 电机能够达到目标运行工况,同时持续加热第一电机邻近区域的油。
在本申请实施例中,控制装置也可以在第一电机的转速属于静止态、堵转态、低速态中一个或多个状态时,确定是否需要注入发热电流,并在确定需要注入发热电流时注入各个状态对应的发热电流。
表9为本申请实施例中第一电机在各个状态下注入的发热电流的对应关系的一组示意。
表9
Figure PCTCN2021103273-appb-000012
还需要说明的是,本申请实施例中,各项发热条件、冷态条件各种判断等均可以作为是否需要加热第一电机邻近区域的油的判断条件,且上述判断条件可以在不同阶段组合使用。
在本申请实施例中,作为一种示例,对于油泵电机为SPM电机,冷态下油泵电机和驱动电机首先同时采用“Id=交流,Iq=0”或“Id直流,Iq=0”的模式加热油;待周围油温升高后,对于负载转矩达到最大转矩的工况,直接给满功率运行,Iq=Iq_max,对于负载转矩未达到最大转矩的工况,调节电流超前角,使输出转矩满足负载需求,同时I=I_max,保持损耗。其中,Id=交流表示直轴电流的通流方式为交流方式,即直轴电流的幅值随时间改变,Id=直流表示直轴电流的通流方式为直流方式,即直轴电流的幅值不随时间改变。
在本申请实施例中,作为一种示例,对于内置式永磁电机(IPM)类的油泵,冷态下油泵电机和驱动电机首先同时采用“Id=交流,Iq=0”或“Id直流,Iq=0”的模式加热油;待周围油温升高后,将传统的Max-TPA控制改为Min-TPA控制,进一步加热油;其中,Id=交流表示直轴电流的通流方式为交流方式,即直轴电流的幅值随时间改变,Id=直流表示直轴电流的通流方式为直流方式,即直轴电流的幅值不随时间改变。
实施例二
本申请实施例还提供一种加热条件的可选的实施方式。
在加热控制方法的第三种可选的实施方式中,在第一电机处于启动状态时,前述实施例中的任一加热控制方法中的加热条件还可以为低损耗工况条件。控制装置可以在满足低损耗工况条件时,向第一电机注入发热电流。其中,发热电流可以为前述实 施例中任一种实施方式。
表10为低损耗工况条件的一种示例。
表10
Figure PCTCN2021103273-appb-000013
在本申请实施例中,第一电机的运行工况可以包括转速和转矩两个工作参数。低损耗工况可以为对应的损耗发热功率低于期望损耗发热功率阈值的一组转速和转矩的组合。在本申请实施例中,作为一种可选的实施方式,在确定是否满足加热条件之前,控制装置可以采集第一电机运行于至少两种运行工况时对应的损耗发热功率,之后,将对应的损耗发热功率低于期望损耗发热功率阈值的运行工况,确定为低损耗工况。
在本申请实施例中,需要说明的是,期望损耗发热功率的选择有多种实施方式。举例来说,损耗发热功率大于期望损耗发热功率阈值的运行工况,可以称为高损耗工况。当第一电机运行于高损耗工况时的损耗发热功率能够使得第一电机在预期的启动时间内摆脱处于前述任一种冷态条件的情况。例如,第一电机运行于高损耗工况时,第一电机的损耗发热功率大于期望损耗发热功率。在本申请其他实施例中将对确定低损耗工况以及选择期望损耗发热功率阈值的其他可选的实施方式进行详细说明,此处暂不赘述。
在本申请实施例中,期望损耗发热功率阈值还可以采用下面的实施方式确定。
在确定期望损耗发热功率阈值的一种可能的实施方式中,所述第一电机的损耗发热功率的取值范围包括相互不重叠的至少两个功率区间;所述预期损耗发热功率为所述至少两个功率区间中的最小功率区间的最大功率值;所述低损耗工况对应的转速和转矩的组合属于所述最小功率区间对应的转速和转矩的组合取值区间。其中,第一电机的损耗发热功率的取值范围为根据第一电机的转速和转矩的组合的取值范围确定的。
作为一种示例,预先采集不同运行工况对应的损耗发热功率,将不同工况对应的损耗发热功率按照功率值的分布规律进行划分,得到若干个功率区间,其中,每个功率区间中的损耗发热功率与功率区间的中间值之间的方差小于偏差阈值。之后,可以将最大损耗发热功率等分为若干份,得到若干个功率区间,划分的数量可以为2个、3个等。
在确定期望损耗发热功率阈值的另一种可能的实施方式中,所述预期损耗发热功率为所述第一电机的最大损耗发热功率乘以预期热能转换比例。在一示例中,预期热 能转换比例可以为30%、50%等。
举例来说,图10为本申请实施例中第一电机的运行工况对应的外特性曲线和对应的损耗发热功率的映射关系的一种示意图。需要说明的是,第一电机在运行过程中的外特性曲线可以是根据第一电机在全负荷运行时测出的功率或扭矩随转速变化的曲线,从外特性曲可以获得第一电机的可工作范围的外包络曲线。
可参图10所示,其中,横轴为转速,纵轴为转矩。作为一种示例,根据损耗发热功率的分布可以将损耗发热功率划分为至少两个等级。在一示例中,图10中的损耗发热功率可被划分为3个等级,分别为运行工况Ⅰ、运行工况IⅠ、运行工况Ⅲ对应的损耗发热功率,其中,Ⅰ的损耗发热功率>IⅠ的损耗发热功率>Ⅲ的损耗发热功率。
作为一种示例,由于第一电机在外特性曲线附近的损耗发热较大,而在远离外特性的内部区域的损耗发热较小,例如,如图10中位于运行工况Ⅲ中的点损耗发热功率大于位于运行工况Ⅰ中的点损耗发热功率。
作为一种示例,可以选择运行工况I作为低损耗工况。
采用这种方式,当第一电机启动后,可以直接根据当前运行工况是否为低损耗工况,确定是否向第一电机注入发热电流(或者设置第一电机进入增热模式),而不需要在第一电机处于运行过程中计算第一电机的实时的损耗发热功率,来判断第一电机的实时损耗发热功率是否能够使得第一电机快速摆脱处于冷态条件的情况。
本申请实施例中,期望损耗功率阈值还可以有多种实施方式。
在期望损耗发热功率阈值的一种可选的实施方式中,期望损耗发热功率阈值可以为根据所述第一电机的邻近区域的油的温度和冷态温度阈值之间的差值确定的。
作为一种示例,控制装置可以分别对至少两种运行工况中的每种运行工况的损耗发热功率,确定所述每种运行工况在单位时间对应的油温变化值,其中,所述油温变化值为所述第一电机的邻近区域内的油的温度的升高量。
作为一种示例,控制装置还可以根据第一电机的邻近区域的油的温度调节期望损耗发热功率阈值。作为一种示例,控制装置可以设置期望损耗发热功率阈值随着所述第一电机的邻近区域的温度上升而下降。在实际应用中,在所述第一电机启动后的第一时刻,所述期望损耗发热功率阈值为所述第一电机的最大损耗发热功率;在第一时刻之后的第二时刻,所述期望损耗发热功率阈值随着所述第一电机的邻近区域的温度上升而下降。
在期望损耗发热功率阈值的另一种可选的实施方式中,控制装置可以根据临近区域的油的温度确定期望损耗发热功率阈值。在实际应用中,当所述第一电机为油冷驱动电机时,所述第一电机的期望损耗发热功率阈值可以根据所述第一电机的邻近区域的油的温度确定;所述第一电机的目标运行工况根据实际需求确定,例如,当电动汽车的负载较高时,第一电机需要提供的转矩较大,当电动汽车的行驶速度较高时,第一电机需要提供的转速更高。
在期望损耗发热功率阈值的又一种可选的实施方式中,当所述第一电机为油泵电机时,第一电机的期望损耗发热功率阈值可以根据第一电机的临近区域的油的温度确定;所述第一电机的目标运行工况根据实际需求确定,例如,当电动汽车的驱动电机 工作在高损耗工况时,驱动电机的发热量较大,第一电机需要提供的转速更高,以加快冷却油的循环,当驱动电机工作在低损耗工况时,驱动电机的发热量较小,第一电机需要提供的转速可以较小,当第一电机的临近区域的油的温度低于冷态温度阈值时,油的粘稠度高,第一电机需要产生更大的转矩来驱动油。
在本申请实施例中,加热条件可以为冷态条件和低损耗工况条件的组合。
作为一种示例,控制装置可以当所述第一电机的运行工况为低损耗工况且所述第一电机邻近区域的温度低于冷态温度阈值时,向所述第一电机注入所述增热模式电流。在本申请其他实施例中将进行说明,此处暂不赘述。
作为一种示例,控制装置可以当所述第一电机的邻近区域的温度高于高流速温度阈值或者所述第一电机未运行在低损耗工况时,向所述第一电机注入节能模式电流。在本申请其他实施例中将进行说明,此处暂不赘述。
本申请实施例的其他技术方案细节和技术效果可参看本申请其他实施例中的相关描述。
实施例三
本申请实施例还提供一种加热控制方法。该方法可应用于前述实施例中的热交换系统。本申请实施例的执行主体可以为控制装置,该控制装置可以位于前述实施例中的热交换系统中。
图11为本申请实施例提供的加热控制方法的流程示意图三。如图11所示,本申请实施例的步骤可以包括:
S301,获取集热装置启动指示,执行S302-1和S303-1。
其中,作为一种可选的实施方式,获取集热装置启动指示也可以采用获取第二电机的启动指示作为一种替代的实现方式。
S302-1,在第一电机处于静止状态时,向第一电机注入预热电流。
其中,作为一种示例,在第一电机处于静止状态且满足冷态预热条件时,向第一电机注入预热电流。
S302-2,启动第一电机。
S302-3,在第一电机的转速小于高速态转速阈值时,向第一电机注入增热电流。
其中,作为一种示例,在第一电机的转速小于低速态转速阈值时,向第一电机注入第一增热电流;在第一电机的转速大于低速态转速阈值且小于高速态转速阈值时,向第一电机注入第二增热电流。
S302-4,在第一电机的转速上升至高速态转速阈值时,向第一电机注入节能电流。
S303-1,启动第二电机,设置第二电机运行于低损耗模式。
其中,第二电机的运行工况的损耗发热低于低损耗模式发热功率阈值。
作为一种可选的实施方式,在S303-1之后,控制装置可以,在第一电机的转速上升时,同步增加低损耗模式发热功率阈值。低损耗模式发热功率增涨的比例可以与第一电机的转速的增涨比例成线性关系。
S304,在第一电机的转速上升至高速态转速阈值时,设置第二电机运行于高损耗模式。
需要说明的是,第二电机产生的热量通过换热器传递至集热装置。
S305,在集热装置的温度达到目标温度时,设置第二电机运行于低损耗模式。
采用本申请实施例提供的方法,能够在利用第二电机的发热加热集热装置的场景中,首先通过向第一电机注入预热电流,使得第一电机邻近区域的油的温度上升至冷态温度阈值之上,使得第一电机能够尽快转动起来,然后通过向第一电机注入增热电流,持续对第一电机邻近区域的油进行加热,使得油温上升至峰值流速,从而使得用于对第二电机进行降温的油冷循环回路的散热能力达到最大,此外,在油温未上升至峰值流速之前,第二电机工作在低损耗模式,可以避免由于油冷循环回路的散热能力未达到最大值时第二电机过热导致烧机的问题,另外,在油冷循环回路的散热能力随着油温上升时,第二电机可以逐渐增加损耗发热,或者,在油冷循环回路的散热能力达到最大值时,第二电机可以进入高损耗模式,均能够使得集热装置尽早获得热能。
本申请实施例的其他技术方案细节和技术效果可参看本申请其他实施例中的描述。
本申请实施例中的加热控制方法可应用于油泵电机或者油冷电机等单电机控制场景,以及,热交换系统控制场景。
针对于单电机控制场景,本申请实施例中的加热控制方法主要涉及以下几个方面的处理过程。
一方面,控制装置可以在获取到第一电机的启动指示后,在第一电机启动前或者启动后,向第一电机注入发热电流。采用在启动前向第一电机注入发热电流的方式,可以实现一种先预热第一电机,再启动第一电机的控制方式,能够在第一电机温度最低时,先对油进行预热,使得第一电机能够快速脱离无法转动的状态。
另一方面,控制装置可以根据第一电机的邻近区域的温度、第一电机的转速或者工况等至少一种控制决策信息,确定第一电机是否达到加热条件,即确定第一电机是否需要增热。在确定达到加热条件之后,向第一电机注入发热电流。其中,根据温度和转速条件确定是否达到加热条件用于确定第一电机是否工作在低温环境,根据工况确定是否达到加热条件可用于确定第一电机当前的发热量是否能够使第一电机邻近区域的温度尽快提升至需要的温度。
再一方面,控制装置可以根据第一电机的邻近区域的温度、第一电机的运行状态、第一电机的类型等至少一种控制参考信息,确定用于增热的发热电流的控制目标。其中,控制目标主要用于控制注入第一电机的电流产生的转矩和热能。示例性地,相对于目标运行工况中设定的目标转矩和目标转速来说,在运行状态为堵转态时,减小转矩,在运行状态为低速态时,增大转矩,在运行状态为高速态时,调整回目标转矩。在另一示例中,当第一电机为SPM电机时,在堵转态,可以设置交轴电流为零,直轴电流不为零。当第一电机为IPM电机时,在堵转态和低速态,可以设置增热电流的幅值达到最大转矩。
针对热交换系统控制场景,本申请实施例的加热控制方法可以主要包括:在热交换系统中,位于油泵中的第一电机、采用油冷方式降温的驱动电机、需要升温的集热 装置之间的协同过程。其中,该协同过程的控制目标包括以下几个方面:
一方面,使输油管路中的油的流速在较短的时间内达到高速态流速阈值,避免驱动电机的温度超限。
另一方面,使集热装置的温度在较短时间内达到目标工作温度,保证集热装置正常运转。
在本申请实施例中,油泵电机协助加热油,进而提升油泵循环速率,加快带出驱动电机热量的整体散热架构,其具体实施方式可描述为:
(1)低温下油泵不转或转速较低,通过本发明提出方法增加油泵自身发热;
(2)油泵周围的油被加热,粘性降低,油泵转速随之上升;
(3)油路循环加快,驱动电机散热能力加强,驱动电机可以增大自身发热功率,进一步加热油;
(4)油泵转速进一步提升,油路循环进一步加快,最终驱动电机散热达到良好状态,油所带出热量通过油水换热器加热水;
(5)冷却水首先通过MCU,吸收MCU发热,进而通过油水换热器吸收油带出热量;
(6)升温后的水从油水换热器流出,流入电池包冷却水管道,加热电池包,冷却水被降温;
需要说明的是,上述水(或冷却水)是指加入了防冻剂的冷却液,不特指纯水或某一特定成分的水溶液,只要能实现上述冷却功能即可。
在本申请实施例中,作为一种示例,控制装置可以位于电动汽车的控制中心,控制装置可以获取电动汽车中各个部件的启动控制指示。
作为一种可选的实施方式,在所述当第一电机处于静止状态时,向第一电机注入预热电流之前,可以包括:获取第二电机的启动控制指示;其中,所述第二电机为油冷电机;所述第一电机用于驱动冷却油经输油管路流向所述第二电机。
作为一种可选的实施方式,在所述获取第二电机的启动控制指示之后,所述方法还包括:启动所述第二电机;控制所述第二电机运行于低发热工况;其中,所述低发热工况的损耗发热功率小于限制工况发热功率阈值;所述限制工况发热功率阈值根据所述第一电机的转速确定。
作为一种可选的实施方式,所述方法还包括:在所述冷却油的油温超过高流速温度阈值时,控制所述第二电机运行于高发热工况;其中,所述高发热工况的损耗发热功率大于限制工况发热功率阈值;所述限制工况发热功率阈值根据所述第一电机的转速确定。
作为一种可选的实施方式,所述第二电机为电动汽车中驱动车轮转动的驱动电机;所述电动汽车还包括:电池;在所述获取第二电机的启动控制指示之前,所述方法还包括:获取所述电池的启动指示;其中,所述电池通过换热器与下行输油管路相连;所述下行输油管路为从所述第二电机与所述第一电机的进液口之间的输油管路。
在车辆启动,电机静止时,本申请实施例提供的技术方案可以作为油泵电机运行 的控制方法,该方法与气隙浸油的油泵电机配合使用,可以在低温状态下利用油泵的额外发热加热油,从而使其粘性下降,使油泵转速可以快速升高,正常提供循环冷却油;从而提升车辆低温启动工况下油带走电机发热的能力,加快车辆低温启动时电机自加热的效率。此外,在油泵电机运行中,本申请实施例提供的技术方案能够持续提供额外热量加热油。本申请实施例提供的技术方案能够通过促进油的循环,能够有助于提升驱动电机发热加热电池包的能力。
实施例四
本申请实施例还提供一种控制装置。
图12为本申请实施例中的控制装置的结构示意图一。如图12所述,控制装置1200可以包括:处理模块1201、注入模块1202。作为一种可选的实施方式,装置1200还可以包括获取模块1203,存储模块1204。其中,获取模块可以用于获取前述实施例中的至少一种决策信息,例如,第一电机的转速、第一电机的邻近区域的转速、第一电机的邻近区域的温度、第一电机的运行工况、第一电机的运行工况对应的损耗发热功率等。存储模块用于存储指令和数据。
处理模块用于,在满足冷态条件时,通过注入模块向第一电机注入发热电流;
其中,所述第一电机为油泵中的油泵电机;所述发热电流满足以下控制目标:在所述第一电机处于未启动状态时,所述发热电流为零转矩电流,所述零转矩电流能够产生的转矩为零;和/或,在所述第一电机处于启动状态时,所述发热电流为增热电流,所述增热电流的发热功率大于节能电流的发热功率,其中,所述节能电流为在油温大于预设温度阈值时,能够使得第一电机达到目标运行工况的电流。
在一种可选的实施方式中,所述冷态条件可以包括:
所述第一电机的邻近区域的温度低于所述预设温度阈值;或者,
基于所述节能电流工作的第一电机的转速小于预设转速阈值,其中,所述预设转速阈值为所述目标运行工况中的目标转速。
在一种可选的实施方式中,所述冷态条件可以包括:
所述第一电机的运行工况为低损耗工况,其中,所述低损耗工况的损耗发热功率小于所述期望损耗发热功率阈值;或者,
所述第一电机的运行工况对应的损耗发热功率小于期望损耗发热功率阈值;
其中,所述期望损耗发热功率用于使得所述第一电机在预设时间内将所述油温提升至所述预设温度阈值。
需要说明的是,上述两个冷态条件的实施方式也可以组合。
在一种可选的实施方式中,处理模块,还用于在不满足所述冷态条件时,通过注入模块向所述第一电机注入所述节能电流。
在一种可选的实施方式中,所述节能电流为用于使得所述第一电机达到所述目标运行工况且满足幅值较小条件的电流,或者,所述节能电流为用于使得所述第一电机达到所述目标运行工况且满足整机机械能转化能效条件的电流。
在一种可选的实施方式中,所述增热电流为第一增热电流或者第二增热电流;
其中,所述第一增热电流的总功率等于所述节能电流的总功率,并且,所述第一增热电流的发热功率占所述第一增热电流的总功率的比例大于所述节能电流的发热功率占所述节能电流的总功率的比例;
所述第二增热电流的发热功率占所述第二增热电流的总功率的比例等于所述第二增热电流的发热功率占所述第二增热电流的总功率的比例,并且,所述第二增热电流的总功率大于所述节能电流的总功率。
在一种可选的实施方式中,所述增热电流为第一增热电流或者第二增热电流;
所述第一增热电流在dq旋转坐标系中对应的综合矢量电流的幅值等于所述节能电流对应的综合矢量电流的幅值,并且,所述第二增热电流能够产生的转矩小于所述节能电流能够产生的转矩;
所述第一增热电流能够产生的转矩等于所述节能电流能够产生的转矩,并且,所述第一增热电流在dq旋转坐标系中对应的综合矢量电流的幅值大于所述节能电流对应的综合矢量电流的幅值。
在一种可选的实施方式中,处理模块,可以具体用于在所述第一电机处于堵转态时,通过注入模块向所述第一电机注入所述第一增热电流;其中,所述第一电机处于堵转态时所述第一电机处于启动状态且所述第一电机基于所述节能电流能够达到的转速小于或者等于冷态转速阈值;所述冷态转速阈值为0或者所述第一电机在油温等于冷态温度阈值时能够达到的转速;所述冷态温度阈值小于或者等于所述预设温度阈值。
在一种可选的实施方式中,处理模块具体用于在所述第一电机处于低速态时,向所述第一电机注入所述第二增热电流;其中,所述第一电机处于低速态时所述第一电机处于启动状态且所述第一电机基于所述节能电流能够达到的转速小于高速态转速阈值;所述高速态转速阈值为所述第一电机在油温大于或者等于高速态温度阈值时能够达到的转速,所述高速态温度阈值大于所述冷态温度阈值。
在一种可选的实施方式中,所述第一电机为SPM电机或者IPM电机;所述第一增热电流在dq旋转坐标系中对应的综合矢量电流的直轴电流不为0且交轴电流为0。
在一种可选的实施方式中,所述第一电机为SPM电机;
所述第二增热电流在dq旋转坐标系中对应的综合矢量电流为第二矢量电流;所述节能电流在dq旋转坐标系中对应的综合矢量电流为节能矢量电流;
所述第二矢量电流的直轴电流等于所述节能矢量电流的直轴电流,所述第二矢量电流的幅值等于所述第一电机支持的最大幅值。
在一种可选的实施方式中,所述第一电机为IPM电机;
所述第二增热电流在dq旋转坐标系中对应的综合矢量电流为第二矢量电流;所述节能电流在dq旋转坐标系中对应的综合矢量电流为节能矢量电流;
所述节能矢量电流为能够产生目标转矩的幅值最小的矢量电流;
所述第二矢量电流为能够产生目标转矩且幅值大于节能矢量电流的矢量电流,
其中,所述第二矢量电流的幅值小于或者等于所示第一电机支持的最大幅值。
在一种可选的实施方式中,所述第一增热电流在dq旋转坐标系中对应的综合矢量电流为第一矢量电流;所述第一矢量电流满足以下控制目标:
所述第一矢量电流与d轴之间夹角为0,并且,所述零转矩矢量电流的通流方式为:交流方式;
其中,所述交流方式表示所述预热矢量电流的幅值随时间改变。
在一种可选的实施方式中,在dq旋转坐标系中,所述第二增热电流在dq旋转坐标系中对应的综合矢量电流为第二矢量电流;所述第二矢量电流满足以下任一控制目标:
所述第二矢量电流的通流方式为直流方式,并且,所述第二矢量电流与d轴之间的夹角随时间变化;或者,
所述第二矢量电流的通流方式为交流方式;
其中,所述直流方式表示所述第二矢量电流的幅值不随时间改变,所述交流方式表示所述第二矢量电流的幅值随时间改变。
在一种可选的实施方式中,所述零转矩电流在dq旋转坐标系中对应的综合矢量电流为零转矩矢量电流;所述零转矩矢量电流满足以下控制目标:
所述零转矩矢量电流与d轴之间夹角为0,并且,所述零转矩矢量电流的通流方式为:交流方式;
其中,所述交流方式表示所述预热矢量电流的幅值随时间改变。
在一种可能的实现方式中,发热电流在dq坐标系中对应的综合矢量电流可以满足以下任一种控制目标:
通流方式为直流方式,且,发热电流对应的综合矢量电流与d轴之间的夹角随时间变化;或者,
通流方式为不带直流偏置的交流方式;
通流方式为带直流偏置的交流方式。
在一种可选的实施方式中,所述第一电机包括与输油管路连通的电机腔体;所述电机腔体用于容置所述第一电机的定子和转子;所述第一电机的定子和转子之间的气隙与所述输油管路连通;
在所述油泵电机工作时,所述电机腔体内填充有油,所述转子与所述电机腔体内的油接触。
在一种可选的实施方式中,获取模块用于在通过注入模块向第一电机注入发热电流之前,获取第二电机的启动指示;其中,所述第二电机为油冷电机;所述第一电机用于驱动冷却油经输油管路流向所述第二电机;
处理模块还用于在所述获取第二电机的启动指示之后,通过注入模块启动所述第二电机;以及,通过注入模块控制所述第二电机运行于低损耗模式;
其中,所述第二电机运行于低损耗模式时的运行工况的损耗发热功率小于冷态散热功率阈值;所述冷态散热功率阈值根据冷态转速阈值确定,所述冷态转速阈值为在所述油温达到所述冷态温度阈值时所述第一电机能够达到的转速,所述冷态转速阈值 小于或者等于所述预设温度阈值。
在一种可选的实施方式中,所述处理模块还用于在所述第一电机的转速大于或者等于高流速转速阈值时,通过注入模块控制所述第二电机运行于高损耗模式;
其中,所述第二电机运行于高损耗模式时的运行工况的损耗发热功率大于高速态散热功率阈值;所述高速态散热功率阈值根据高速态转速阈值确定,所述高速态转速阈值为所述油温达到所述高速态温度阈值时所述第一电机能够达到的转速。
在一种可选的实施方式中,获取模块还用于在获取第二电机的启动控制指示之前,获取所述集热装置的启动指示;
所述第二电机为电动汽车中驱动车轮转动的驱动电机;所述电动汽车还包括:集热装置;所述集热装置为电池或者座舱加热装置;所述集热装置通过换热器与所述输油管路形成换热连接;所述换热器位于所述冷却油从所述第二电机流向所述第一电机的所述输油管路上。
本申请实施例的其他技术方案细节和技术效果可参看本申请其他实施例中的相关说明。
图13为本申请实施例中的控制装置的结构示意图二。
如图13所示,本申请实施例还提供一种控制装置1300。其中,包括:处理器1310、接口1320。在一种可选的实施方式中,控制装置1300还可以包括存储器、总线1360。
在一种可选的实施方式中,处理器可以用于实现前述实施例中处理模块的功能,接口可以用于实现前述实施例中获取模块和注入模块的功能。
在一种可能的实现方式中,该装置可以是控制器,也可以是控制器内的芯片。
当该装置是控制器时,处理模块可以是处理器,收发模块可以是收发器;若还包括存储模块,存储模块可以是存储器。
当该装置是控制器内的芯片时,处理模块可以是处理器,收发模块可以是输入/输出接口、管脚或电路等;若还包括存储模块,该存储模块可以是该芯片内的存储模块(例如,寄存器、缓存等),也可以是该芯片外部的存储模块(例如,只读存储器、随机存取存储器等)。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(Central Processing Unit,简称CPU),微处理器,特定应用集成电路(application-specific integrated circuit,简称ASIC),或一个或多个用于控制上述各方面空间复用方法的程序执行的集成电路。
在一示例中,控制器可以为电动汽车的控制中心。
又一方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述第前述实施例中任意可能的实现方式中的方法。
又一方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述前述实施例中任意可能的实现方式中的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实 现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。

Claims (23)

  1. 一种加热控制方法,其特征在于,所述方法包括:
    在满足冷态条件时,向第一电机注入发热电流;
    其中,所述第一电机为油泵中的油泵电机;所述发热电流满足以下控制目标:在所述第一电机处于未启动状态时,所述发热电流为零转矩电流,所述零转矩电流能够产生的转矩为零;和/或,在所述第一电机处于启动状态时,所述发热电流为增热电流,所述增热电流的发热功率大于节能电流的发热功率,其中,所述节能电流为在油温大于预设温度阈值时,能够使得第一电机达到目标运行工况的电流。
  2. 根据权利要求1所述的方法,其特征在于,所述冷态条件包括:
    所述第一电机的邻近区域的温度低于所述预设温度阈值;或者,
    基于所述节能电流工作的第一电机的转速小于预设转速阈值,其中,所述预设转速阈值为所述目标运行工况中的目标转速。
  3. 根据权利要求1或2所述的方法,其特征在于,所述冷态条件包括:
    所述第一电机的运行工况为低损耗工况,其中,所述低损耗工况的损耗发热功率小于期望损耗发热功率阈值;或者,
    所述第一电机的运行工况对应的损耗发热功率小于所述期望损耗发热功率阈值;
    其中,所述期望损耗发热功率用于使得所述第一电机在预设时间内将所述油温提升至所述预设温度阈值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    在不满足所述冷态条件时,向所述第一电机注入所述节能电流。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述节能电流为用于使得所述第一电机达到所述目标运行工况且满足幅值较小条件的电流,或者,所述节能电流为用于使得所述第一电机达到所述目标运行工况且满足整机机械能转化能效条件的电流。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述增热电流为第一增热电流或者第二增热电流;
    其中,所述第一增热电流的总功率等于所述节能电流的总功率,并且,所述第一增热电流的发热功率占所述第一增热电流的总功率的比例大于所述节能电流的发热功率占所述节能电流的总功率的比例;
    所述第二增热电流的发热功率占所述第二增热电流的总功率的比例等于所述第二增热电流的发热功率占所述第二增热电流的总功率的比例,并且,所述第二增热电流的总功率大于所述节能电流的总功率。
  7. 根据权利要求1-6任一所述的方法,其特征在于,所述增热电流为第一增热电流或者第二增热电流;
    所述第一增热电流在dq旋转坐标系中对应的综合矢量电流的幅值等于所述节能电流对应的综合矢量电流的幅值,并且,所述第二增热电流能够产生的转矩小于所述节能电流能够产生的转矩;
    所述第一增热电流能够产生的转矩等于所述节能电流能够产生的转矩,并且,所 述第一增热电流在dq旋转坐标系中对应的综合矢量电流的幅值大于所述节能电流对应的综合矢量电流的幅值。
  8. 根据权利要求6或7所述的方法,其特征在于,所述在满足冷态条件时,向第一电机注入发热电流,包括:
    在所述第一电机处于堵转态时,向所述第一电机注入所述第一增热电流;
    其中,所述第一电机处于堵转态时所述第一电机处于启动状态且所述第一电机基于所述节能电流能够达到的转速小于或者等于冷态转速阈值;所述冷态转速阈值为0或者所述第一电机在油温等于冷态温度阈值时能够达到的转速;所述冷态温度阈值小于或者等于所述预设温度阈值。
  9. 根据权利要求8所述的方法,其特征在于,所述在满足冷态条件时,向第一电机注入发热电流,包括:
    在所述第一电机处于低速态时,向所述第一电机注入所述第二增热电流;
    其中,所述第一电机处于低速态时所述第一电机处于启动状态且所述第一电机基于所述节能电流能够达到的转速小于高速态转速阈值;所述高速态转速阈值为所述第一电机在油温大于或者等于高速态温度阈值时能够达到的转速,所述高速态温度阈值大于所述冷态温度阈值。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一电机为SPM电机或者IPM电机;
    所述第一增热电流在dq旋转坐标系中对应的综合矢量电流的直轴电流不为0且交轴电流为0。
  11. 根据权利要求8-10任一所述的方法,其特征在于,所述第一电机为SPM电机;
    所述第二增热电流在dq旋转坐标系中对应的综合矢量电流为第二矢量电流;所述节能电流在dq旋转坐标系中对应的综合矢量电流为节能矢量电流;
    所述第二矢量电流的直轴电流等于所述节能矢量电流的直轴电流,所述第二矢量电流的幅值等于所述第一电机支持的最大幅值。
  12. 根据权利要求8-10任一所述的方法,其特征在于,所述第一电机为IPM电机;
    所述第二增热电流在dq旋转坐标系中对应的综合矢量电流为第二矢量电流;所述节能电流在dq旋转坐标系中对应的综合矢量电流为节能矢量电流;
    所述节能矢量电流为能够产生目标转矩的幅值最小的矢量电流;
    所述第二矢量电流为能够产生目标转矩且幅值大于节能矢量电流的矢量电流,
    其中,所述第二矢量电流的幅值小于或者等于所示第一电机支持的最大幅值。
  13. 根据权利要求8-10任一所述的方法,其特征在于,所述第一增热电流在dq旋转坐标系中对应的综合矢量电流为第一矢量电流;所述第一矢量电流满足以下控制目标:
    所述第一矢量电流与d轴之间夹角为0,并且,所述零转矩矢量电流的通流方式为:交流方式;
    其中,所述交流方式表示所述第一矢量电流的幅值随时间改变。
  14. 根据权利要求8-9,11-12任一所述的方法,其特征在于,在dq旋转坐标系中,所述第二增热电流在dq旋转坐标系中对应的综合矢量电流为第二矢量电流;所述第 二矢量电流满足以下任一控制目标:
    所述第二矢量电流的通流方式为直流方式,并且,所述第二矢量电流与d轴之间的夹角随时间变化;或者,
    所述第二矢量电流的通流方式为交流方式;
    其中,所述直流方式表示所述第二矢量电流的幅值不随时间改变,所述交流方式表示所述第二矢量电流的幅值随时间改变。
  15. 根据权利要求1-14任一所述的方法,其特征在于,所述零转矩电流在dq旋转坐标系中对应的综合矢量电流为零转矩矢量电流;所述零转矩矢量电流满足以下控制目标:
    所述零转矩矢量电流与d轴之间夹角为0,并且,所述零转矩矢量电流的通流方式为:交流方式;
    其中,所述交流方式表示所述零转矩矢量电流的幅值随时间改变。
  16. 根据权利要求1-15任一所述的方法,其特征在于,所述第一电机包括与输油管路连通的电机腔体;所述电机腔体用于容置所述第一电机的定子和转子;所述第一电机的定子和转子之间的气隙与所述输油管路连通;
    在所述油泵电机工作时,所述电机腔体内填充有油,所述转子与所述电机腔体内的油接触。
  17. 根据权利要求1-16任一所述的方法,其特征在于,在向第一电机注入发热电流之前,包括:
    获取第二电机的启动指示;其中,所述第二电机为油冷电机;所述第一电机用于驱动冷却油经输油管路流向所述第二电机;
    在所述获取第二电机的启动指示之后,所述方法还包括:
    启动所述第二电机;
    控制所述第二电机运行于低损耗模式;
    其中,所述第二电机运行于低损耗模式时的运行工况的损耗发热功率小于冷态散热功率阈值;所述冷态散热功率阈值根据冷态转速阈值确定,所述冷态转速阈值为在所述油温达到所述冷态温度阈值时所述第一电机能够达到的转速,所述冷态转速阈值小于或者等于所述预设温度阈值。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    在所述第一电机的转速大于或者等于高流速转速阈值时,控制所述第二电机运行于高损耗模式;
    其中,所述第二电机运行于高损耗模式时的运行工况的损耗发热功率大于高速态散热功率阈值;所述高速态散热功率阈值根据高速态转速阈值确定,所述高速态转速阈值为所述油温达到所述高速态温度阈值时所述第一电机能够达到的转速。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第二电机为电动汽车中驱动车轮转动的驱动电机;所述电动汽车还包括:集热装置;所述集热装置为电池或者座舱加热装置;所述集热装置通过换热器与所述输油管路形成换热连接;所述换热器位于所述冷却油从所述第二电机流向所述第一电机的所述输油管路上;
    在所述获取第二电机的启动控制指示之前,所述方法还包括:
    获取所述集热装置的启动指示。
  20. 一种控制装置,其特征在于,包括:存储器和处理器;
    其中,所述存储器用于存储指令,所述处理器用于执行指令以实现权利要求1-19任一所述的方法。
  21. 一种油泵,其特征在于,包括:第一电机和控制装置,其中,所述控制装置用于执行权利要求1-19任一所述的方法。
  22. 一种热交换系统,其特征在于,包括:第一电机,控制装置,第二电机.输油管路.换热器和集热装置;
    其中,所述第二电机为油冷电机;所述第一电机为油泵中的油泵电机,所述油泵用于通过所述输油管路向所述第二电机提供冷却油;
    所述换热器位于所述冷却油从所述第二电机流向所述第一电机的输油管路上;所述集热装置通过所述换热器与所述输油管路形成换热连接;
    所述控制装置用于执行权利要求1-19任一所述的方法。
  23. 根据权利要求22所述的系统,其特征在于,所述集热装置为:电池;或者,座舱加热装置。
PCT/CN2021/103273 2021-06-29 2021-06-29 加热控制方法、装置、油泵电机和热交换系统 WO2023272527A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180002903.1A CN113939994B (zh) 2021-06-29 加热控制方法、装置、油泵电机和热交换系统
EP21947483.0A EP4340210A1 (en) 2021-06-29 2021-06-29 Heating control method and apparatus, oil pump motor, and heat exchange system
PCT/CN2021/103273 WO2023272527A1 (zh) 2021-06-29 2021-06-29 加热控制方法、装置、油泵电机和热交换系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103273 WO2023272527A1 (zh) 2021-06-29 2021-06-29 加热控制方法、装置、油泵电机和热交换系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/398,910 Continuation US20240133398A1 (en) 2023-12-28 Heating control method and apparatus, oil pump motor, and heat exchange system

Publications (1)

Publication Number Publication Date
WO2023272527A1 true WO2023272527A1 (zh) 2023-01-05

Family

ID=79289384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103273 WO2023272527A1 (zh) 2021-06-29 2021-06-29 加热控制方法、装置、油泵电机和热交换系统

Country Status (2)

Country Link
EP (1) EP4340210A1 (zh)
WO (1) WO2023272527A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339101A (ja) * 2002-05-20 2003-11-28 Toyota Motor Corp オイル加熱装置
US20110095717A1 (en) * 2009-10-26 2011-04-28 Honda Motor Co., Ltd. Method of and apparatus for controlling oil temperature increase for electric vehicle and electric vehicle
CN107276316A (zh) * 2016-04-07 2017-10-20 株式会社电装 用于控制电机的装置
CN110985390A (zh) * 2019-12-02 2020-04-10 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机、控制方法及空调

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339101A (ja) * 2002-05-20 2003-11-28 Toyota Motor Corp オイル加熱装置
US20110095717A1 (en) * 2009-10-26 2011-04-28 Honda Motor Co., Ltd. Method of and apparatus for controlling oil temperature increase for electric vehicle and electric vehicle
CN107276316A (zh) * 2016-04-07 2017-10-20 株式会社电装 用于控制电机的装置
CN110985390A (zh) * 2019-12-02 2020-04-10 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机、控制方法及空调

Also Published As

Publication number Publication date
CN113939994A (zh) 2022-01-14
EP4340210A1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
JP7232913B2 (ja) 車両及びその動力電池加熱装置及び加熱方法
CN111347938A (zh) 一种车辆及其动力电池加热装置与方法
CN111347939B (zh) 车辆及其动力电池温度控制装置
CN111355000B (zh) 一种车辆及其动力电池加热装置与方法
CN111347928B (zh) 车辆及其动力电池温度控制装置
Yu et al. Cooling system of outer rotor SPMSM for a two-seater all-electric aircraft based on heat pipe technology
WO2022204944A1 (zh) 一种电驱动系统、动力总成、加热方法及电动车辆
WO2023284785A1 (zh) 电池包加热方法、电机控制器、电动汽车及系统
Wang et al. Oil injection cooling design for the IPMSM applied in electric vehicles
WO2022082788A1 (zh) 电机、电机控制器、热交换系统和控制方法
CN103746631A (zh) 一种异步电机的节能控制方法
WO2022109808A1 (zh) 一种电机控制器、热交换系统及电流注入方法
CN105429547B (zh) 基于虚拟相构造的单相无刷直流电机矢量控制方法
WO2023272527A1 (zh) 加热控制方法、装置、油泵电机和热交换系统
CN112721739B (zh) 一种驱动电机主动加热电池包的方法和新能源汽车
US20240001776A1 (en) Motor control unit, power train, control method, and electric vehicle
Zhang et al. Research on multi-objective optimization of automotive electronic water pump motor considering the factor of gap viscous loss
CN113939994B (zh) 加热控制方法、装置、油泵电机和热交换系统
US20240133398A1 (en) Heating control method and apparatus, oil pump motor, and heat exchange system
CN217361665U (zh) 一种用于燃料电池的空气进气装置
CN115837866A (zh) 一种新能源汽车电池自加热系统的控制方法
CN115416495A (zh) 一种用于驱动电机的控制器及其相关设备
CN205792178U (zh) 一种磁可控永磁调速装置
Tan et al. The advances on the study of heating and cooling issues for in-wheel-motor-driven systems
CN103916055A (zh) 基于减速箱的超导直流感应加热电机启动装置及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021947483

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021947483

Country of ref document: EP

Effective date: 20231214

NENP Non-entry into the national phase

Ref country code: DE