WO2023284785A1 - 电池包加热方法、电机控制器、电动汽车及系统 - Google Patents

电池包加热方法、电机控制器、电动汽车及系统 Download PDF

Info

Publication number
WO2023284785A1
WO2023284785A1 PCT/CN2022/105466 CN2022105466W WO2023284785A1 WO 2023284785 A1 WO2023284785 A1 WO 2023284785A1 CN 2022105466 W CN2022105466 W CN 2022105466W WO 2023284785 A1 WO2023284785 A1 WO 2023284785A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase winding
phase
winding
battery pack
Prior art date
Application number
PCT/CN2022/105466
Other languages
English (en)
French (fr)
Inventor
毋超强
蔺梦轩
石超杰
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2023284785A1 publication Critical patent/WO2023284785A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/64Controlling or determining the temperature of the winding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the electrical field, and in particular to a battery pack heating method, a motor controller, an electric vehicle and a system.
  • the existing methods for heating the battery pack include using the existing components of the electric vehicle for heating.
  • the motor can be used to heat the battery pack.
  • the neutral point of the motor can be drawn out and connected to the energy storage inductor through a switch.
  • the stator winding heats up, and the heat of the stator winding is transferred to the battery pack through the cooling liquid, thereby heating the battery and improving battery performance.
  • the present application provides a battery pack heating method, a motor controller, an electric vehicle and a system, which can improve the efficiency of heating the battery pack.
  • a motor controller including: a controller and an inverter circuit, wherein the inverter circuit is used to convert the DC power input by the battery pack into AC power, and transmit the AC power to the motor, so
  • the motor is a symmetrical six-phase motor; the controller is used to: when the motor is stationary and the battery pack needs to be heated, control the inverter circuit to input current to the motor so that the following three The currents of each pair of stator windings in the stator windings are equal in magnitude and in the same direction: A1 phase winding, A2 phase winding; B1 phase winding, B2 phase winding; C1 phase winding, C2 phase winding.
  • the motor controller controls the currents passing through each of the three pairs of stator windings in the six-phase motor to be equal in magnitude and in the same direction, so that each of the three pairs of stator windings
  • the magnetomotive forces are equal in magnitude and opposite in direction. Therefore, the magnetomotive forces cancel each other and no torque is generated, but a large amount of copper loss and iron loss can be generated, thereby generating heat.
  • the above-mentioned heat generated by the motor can be used to heat the battery coolant, thereby conducting heat to the battery pack to increase the temperature of the battery pack. This solution does not need to add additional devices, and can improve the heating efficiency of the battery pack.
  • the current passing through the three pairs of stator windings conforms to the following formula:
  • I A1 , I B1 , I C1 , I A2 , I B2 , and I C2 represent the currents passing through the A1-phase winding, B1-phase winding, C1-phase winding, A2-phase winding, B2-phase winding, and C2-phase winding respectively, and I represents The magnitude of the current passing through each winding, ⁇ represents the electrical angular frequency of I, and t represents time.
  • a motor controller including: a controller and an inverter circuit, wherein the inverter circuit is used to convert the DC power input by the battery pack into AC power, and transmit the AC power to the motor, so that
  • the motor is a symmetrical six-phase motor, and the stator windings in the motor include the following windings: A1 phase winding, B1 phase winding, C1 phase winding, A2 phase winding, B2 phase winding, C2 phase winding;
  • the controller is used for: When the motor is running and the battery pack needs to be heated, the inverter circuit is controlled to inject a d-axis harmonic current into the stator winding in the motor, and the d-axis harmonic current is along the d-axis injected current.
  • the motor controller can inject d-axis harmonic current into the stator windings in the six-phase motor while injecting the current for generating electromagnetic torque into the six-phase motor, additional injection
  • the d-axis harmonic current does not generate electromagnetic torque, but it can increase the copper loss and iron loss in the motor, thereby increasing the heating power and generating heat.
  • the above-mentioned heat generated by the motor can be used to heat the battery coolant, thereby conducting heat to the battery pack to increase the temperature of the battery pack, thereby increasing the efficiency of heating the battery pack.
  • the current injected into the stator winding conforms to the following formula:
  • I A1 , I B1 , I C1 , I A2 , I B2 , and I C2 represent the currents passing through the A1-phase winding, B1-phase winding, C1-phase winding, A2-phase winding, B2-phase winding, and C2-phase winding, respectively.
  • I 1 represents the amplitude of the current component used to provide electromagnetic torque
  • ⁇ 1 represents the electrical angular frequency of the current component used to provide electromagnetic torque
  • t represents time
  • I d represents the amplitude of the injected d-axis harmonic current
  • ⁇ 2 represents the electrical angular frequency of the d-axis harmonic current.
  • a motor controller including: a controller and an inverter circuit, wherein the inverter circuit is used to convert the DC power input by the battery pack into AC power, and transmit the AC power to the motor, so
  • the motor is a symmetrical six-phase motor, and the stator windings in the motor include the following windings: A1 phase winding, B1 phase winding, C1 phase winding, A2 phase winding, B2 phase winding, C2 phase winding; the controller is used for: When the motor is running and the battery pack needs to be heated, the inverter circuit is controlled to inject a zero-sequence harmonic current into the stator winding of the motor, and the zero-sequence harmonic current in each phase of the stator winding same phase.
  • the motor controller injects the current for generating electromagnetic torque into the six-phase motor, and at the same time injects zero-sequence harmonic current into the stator winding in the six-phase motor, zero Sequence harmonic current does not generate electromagnetic torque because there is no phase difference, but it can increase the copper loss and iron loss in the motor, thereby increasing the heating power and generating heat.
  • the above-mentioned heat generated by the motor can be used to heat the battery coolant, thereby conducting heat to the battery pack to increase the temperature of the battery pack, thereby increasing the efficiency of heating the battery pack.
  • the current passing through the stator winding complies with the following formula:
  • I A1 , I B1 , I C1 , I A2 , I B2 , and I C2 represent the currents passing through the A1-phase winding, B1-phase winding, C1-phase winding, A2-phase winding, B2-phase winding, and C2-phase winding, respectively.
  • I 1 represents the magnitude of the current component used to provide electromagnetic torque
  • ⁇ 1 represents the electrical angular frequency of the current component used to provide electromagnetic torque
  • t represents time
  • I 0 represents the magnitude of the injected zero-sequence harmonic current
  • ⁇ 3 represents the electrical angular frequency of the zero-sequence harmonic current.
  • the controller is further configured to: when the temperature of the battery pack is lower than the first In the case of the preset temperature, it is determined that the battery pack needs to be heated.
  • a method for heating a battery pack is provided, the method is applied to a motor controller, and the motor controller includes a controller and an inverter circuit, wherein the inverter circuit is used for direct current input from the battery pack Converting to alternating current, and transmitting the alternating current to a motor, the motor is a symmetrical six-phase motor; the method is executed by the controller, and the method includes: when the motor is stationary and the battery pack needs to be heated , controlling the inverter circuit to input current to the motor, so that the currents passing through each pair of stator windings in the following three pairs of stator windings in the motor are equal in magnitude and in the same direction: A1 phase winding, A2 phase winding; B1 Phase winding, B2 phase winding; C1 phase winding, C2 phase winding.
  • the current passing through the three pairs of stator windings conforms to the following formula:
  • I A1 , I B1 , I C1 , I A2 , I B2 , and I C2 represent the currents passing through the A1-phase winding, B1-phase winding, C1-phase winding, A2-phase winding, B2-phase winding, and C2-phase winding respectively, and I represents The magnitude of the current passing through each winding, ⁇ represents the electrical angular frequency of I, and t represents time.
  • a method for heating a battery pack is provided, the method is applied to a motor controller, and the motor controller includes a controller and an inverter circuit, wherein the inverter circuit is used for direct current input from the battery pack Convert to alternating current, and transmit the alternating current to the motor, the motor is a symmetrical six-phase motor, the stator winding in the motor includes the following windings: A1 phase winding, B1 phase winding, C1 phase winding, A2 phase winding, B2 phase winding phase winding, C2 phase winding; the method is executed by the controller, and the method includes: when the motor is running and the battery pack needs to be heated, controlling the inverter circuit to supply the stator winding in the motor A d-axis harmonic current is injected into the motor, and the d-axis harmonic current is a current injected along the d-axis in the motor.
  • the current passing through the stator winding complies with the following formula:
  • I A1 , I B1 , I C1 , I A2 , I B2 , and I C2 represent the currents passing through the A1-phase winding, B1-phase winding, C1-phase winding, A2-phase winding, B2-phase winding, and C2-phase winding, respectively.
  • I 1 represents the amplitude of the current component used to provide electromagnetic torque
  • ⁇ 1 represents the electrical angular frequency of the current component used to provide electromagnetic torque
  • t represents time
  • I d represents the amplitude of the injected d-axis harmonic current
  • ⁇ 2 represents the electrical angular frequency of the d-axis harmonic current.
  • a sixth aspect provides a method for heating a battery pack, the method is applied to a motor controller, and the motor controller includes a controller and an inverter circuit, wherein the inverter circuit is used for direct current input from the battery pack Convert to alternating current, and transmit the alternating current to the motor, the motor is a symmetrical six-phase motor, the stator winding in the motor includes the following windings: A1 phase winding, B1 phase winding, C1 phase winding, A2 phase winding, B2 phase winding phase winding, C2 phase winding; the method is executed by the controller, and the method includes: when the motor is running and the battery pack needs to be heated, controlling the inverter circuit to supply the stator winding in the motor The zero-sequence harmonic current is injected into the phase, and the phases of the zero-sequence harmonic current in the stator windings of each phase are the same.
  • the current passing through the stator winding complies with the following formula:
  • I A1 , I B1 , I C1 , I A2 , I B2 , and I C2 represent the currents passing through the A1-phase winding, B1-phase winding, C1-phase winding, A2-phase winding, B2-phase winding, and C2-phase winding, respectively.
  • I 1 represents the magnitude of the current component used to provide electromagnetic torque
  • ⁇ 1 represents the electrical angular frequency of the current component used to provide electromagnetic torque
  • t represents time
  • I 0 represents the magnitude of the injected zero-sequence harmonic current
  • ⁇ 3 represents the electrical angular frequency of the zero-sequence harmonic current.
  • the fifth aspect or the sixth aspect in some possible implementation manners of the fourth aspect, the fifth aspect or the sixth aspect, it further includes: when the temperature of the battery pack is lower than the first preset temperature In the case of , it is determined that the battery pack needs to be heated.
  • an electric vehicle in a seventh aspect, includes the first aspect, the second aspect, and the third aspect, or any possible implementation of the first aspect, the second aspect, and the third aspect the motor controller.
  • the eighth aspect provides a battery heating system, the system includes a battery pack, a motor and the first aspect, the second aspect, the third aspect, or any one of the first aspect, the second aspect and the third aspect Motor controllers described in Possible Implementations.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic circuit diagram of a battery pack heating system 200 according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for heating a battery pack according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of the magnetomotive force generated in the normal operation mode of the six-phase motor according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the magnetomotive force generated when the six-phase motor works in a static heating mode according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for heating a battery pack according to another embodiment of the present application.
  • Fig. 7 is a schematic diagram of the d-axis harmonic current of the motor in the first running heating mode according to an embodiment of the present application.
  • FIG. 8 is a method for heating a battery pack according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of the zero-sequence harmonic current of the motor in the second operating mode according to an embodiment of the present application.
  • Electric machinery It can generally refer to all machines that use the principle of electromagnetic induction to convert electrical energy into mechanical energy and mechanical energy into kinetic energy.
  • Motors include generators, motors, and the like.
  • generators are used to convert mechanical energy into electrical energy
  • electric motors are used to convert electrical energy into mechanical energy.
  • the motor can function as both a generator and a motor.
  • electric motors in electric vehicles can be used to convert electrical energy from a power source into mechanical energy, which drives wheels and other working devices through transmissions.
  • the drive system of most electric vehicles adopts energy feedback technology, that is, when the vehicle brakes, the kinetic energy lost by the wheels is fed back to the battery. In this case, the motor is generating electricity and feeding it to the battery.
  • AC motor refers to a device that can convert alternating current and mechanical energy into each other.
  • An AC motor mainly includes a stator and a rotor.
  • the stator consists of stator windings, which can be used to generate a rotating magnetic field.
  • the aforementioned alternating current may be single-phase alternating current, three-phase alternating current, six-phase alternating current and the like.
  • Three-phase motor The stator winding of a three-phase motor is three coils separated by 120° from each other, connected in delta or star. When the three-phase current is applied, a magnetic field is generated in each coil, and these three magnetic fields are synthesized to obtain a rotating magnetic field.
  • the three phases are usually expressed as A phase, B phase, and C phase respectively.
  • Phase belt angle refers to the electrical angle of the number of stator slots continuously occupied by the same group of windings under each pair of poles in the motor.
  • the phase belt angle in a three-phase motor is usually 60°.
  • the electrical angle of one pole is 180°
  • the electrical angle of a pair of poles is 360°.
  • Six-phase motor The stator winding of a six-phase motor includes two three-phase windings, that is, a total of six phase windings.
  • Six-phase motors include symmetrical six-phase motors and asymmetrical six-phase motors.
  • the six-phase motor involved in this application is a symmetrical six-phase motor.
  • the phase belt angle of the symmetrical six-phase motor is the same as that of the traditional three-phase motor, which is 60°. Therefore, the spatial distribution of the magnetic potential of the symmetrical six-phase motor is exactly the same as that of the traditional three-phase motor, but the amplitude is doubled.
  • the stator windings in the symmetrical six-phase motor respectively include two sets of windings, and each set of windings includes windings of three phases.
  • the first group of windings includes A1-phase, B1-phase, and C1-phase windings.
  • the second group of windings includes A2-phase, B2-phase and C2-phase windings.
  • the phase difference between the first set of windings and the second set of windings is 180°.
  • the phase difference between the A1 phase winding and the A2 phase winding is 180°.
  • Permanent magnet motor or permanent magnet synchronous motor, refers to a motor that uses permanent magnets to provide excitation.
  • Asynchronous motor refers to the motor whose rotor winding current is generated by induction, also known as induction motor.
  • Electric excitation motor or called electric excitation synchronous motor, refers to the motor that uses the rotor winding to provide excitation.
  • the stator includes stator core, stator winding and frame.
  • the stator winding is embedded in the electronic iron core, which generates an induced electromotive force when the current passes through, and realizes the exchange of electric energy.
  • the role of the frame is to fix and support the stator core.
  • the main function of the stator is to generate a rotating magnetic field.
  • Rotor Refers to the rotating part of the motor.
  • the structure of the rotor is also different.
  • the motor is a permanent magnet motor
  • the rotor includes a rotor iron core, and a magnetic core composed of permanent magnets is inserted into the rotor iron core.
  • the motor is an asynchronous motor or an electric excitation motor
  • the rotor includes a rotor winding and a rotor core, and the rotor core serves as a part of the magnetic circuit in the motor.
  • the role of the rotor is to induce electromotive force when passing current, thereby generating electromagnetic torque.
  • the role of the rotor is to be cut by the magnetic field lines in the rotating magnetic field to generate current.
  • Copper loss When the current flows through the windings in the motor, it will generate heat and loss due to the resistance of the windings. Because the winding is mostly made of copper material, it is called “copper loss” or “copper loss”, which is a kind of active loss. For example, current flowing through the stator windings can cause copper losses. Or for motors that include windings in the rotor, copper loss will also be generated when the rotor winding flows through the current. For example, the rotor of an electrically excited motor has windings, the rotor squirrel cage of an asynchronous motor can also be regarded as a rotor winding, and the rotor of a permanent magnet motor has no windings.
  • Iron loss refers to the loss of the iron core and end iron parts in the motor, for example, both the stator and the rotor include the iron core. Also known as “iron loss”, it mainly includes “hysteresis loss” and “eddy current loss”. Iron loss is usually generated using alternating current.
  • Park's transformation It is a common coordinate transformation method for analyzing the operation of a motor.
  • the Parker transformation projects the A, B, and C three-phase currents of the stator onto the direct axis (d axis), the quadrature axis (q axis) and the zero axis (0 axis) perpendicular to the dq plane as the rotor rotates, so as to realize the
  • the diagonalization of the stator inductance matrix simplifies the analysis complexity of the motor in running state. In a mathematical sense, it is to transform the quantity related to the operation of the motor from the ABC coordinate to the dq coordinate system.
  • d-axis harmonic current refers to the current injected in the motor along the d-axis direction. It should be understood that if the current is injected only along the d-axis and not along the q-axis, then no stable torque will be produced in the rotor, only heat will be generated. If current is injected along the d-axis and q-axis at the same time, a stable torque will be generated in the rotor, and heat will also be generated.
  • the torque of a permanent magnet motor is divided into permanent magnet torque and reluctance torque. The permanent magnet torque is proportional to the q-axis current, and the reluctance torque is proportional to the product of the d and q-axis currents.
  • Positive sequence The AC power system usually includes three phases A, B, and C. According to the order of A, B, and C phases, the positive sequence, negative sequence and zero sequence components in the power system can be determined. Among them, positive sequence means that phase A leads phase B by 120°, phase B leads phase C by 120°, and phase C leads phase A by 120°.
  • Phase A is 120° behind phase B
  • phase B is 120° behind phase C
  • phase C is 120° behind phase A.
  • Magnetomotive force also known as magnetomotive force and magnetic force, refers to the force of magnetic flux generated by current flowing through a conductor. It is a quantity used to measure the magnetic field or electromagnetic field, similar to the electromotive force or voltage in the electric field. Magnetomotive force is a measure of the force with which an energized coil can excite magnetic flux.
  • the basic unit of magnetomotive force is ampere turn (AT).
  • Battery coolant In electric vehicles, during the process of energy storage and discharge, the battery will release a lot of heat due to chemical effects such as electrolysis. Therefore, it is necessary to install circulating pipes with coolant around the battery to release these heat.
  • the composition of the battery coolant includes ethylene glycol.
  • Battery management system refers to the control system used to protect the safety of the power battery, which can intelligently manage and maintain the battery unit.
  • BMS can be used to monitor the usage status of the battery, prevent the battery from overcharging and discharging, detect the temperature of the battery, and so on.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • an electric vehicle 100 includes a motor 110 , a battery pack 120 , a motor controller 130 , a mechanical transmission device 140 , wheels 150 and the like.
  • the battery pack 120 is used to transmit electric energy to the motor 110 .
  • a motor controller 130 may be disposed between the battery pack 120 and the motor 110 .
  • the battery pack 120 can input DC power to the motor controller 130 , and the motor controller 130 converts the DC power into AC power and transmits the AC power to the motor 110 .
  • the motor 110 can be used to receive alternating current and use electromagnetic induction to generate induced electromotive force.
  • the rotor is used to convert electrical energy into mechanical energy, and the mechanical energy is used to drive the mechanical transmission device 140 to transmit the kinetic energy to the wheels 150 to make the electric vehicle run.
  • the electric vehicle 100 in FIG. 1 only shows the internal structure related to the solution of the present application, and the remaining contents are simplified.
  • the embodiment of the present application may also be applied to other application scenarios that are modified or deformed on the basis of FIG. 1 .
  • the electric vehicle 100 may also include modules such as a complete machine control system, a communication system, and an auxiliary system.
  • the above motor 110 may be a six-phase motor.
  • the six-phase motor may include a permanent magnet motor, an asynchronous motor, an electric excitation motor, and the like.
  • the aforementioned battery pack 120 may be a power battery.
  • the battery pack may include lithium-ion batteries.
  • lithium-ion batteries For example, lithium iron phosphate batteries, ternary lithium-ion batteries, etc.
  • a method and system for heating the battery pack using a six-phase motor are proposed.
  • the above method includes a method of heating the battery pack when the motor is stationary, and a method of heating the battery pack when the motor is running, which can make the windings of each phase Even heating, prolong the life of the winding.
  • the structure is simple, and the cost of the battery pack heating device can be saved.
  • FIG. 2 is a schematic circuit diagram of a battery pack heating system 200 according to an embodiment of the present application. As shown in FIG. 2 , the system 200 may be composed of some modules in the electric vehicle 100 .
  • the system 200 includes a motor 110 , a battery pack 120 and a motor controller 130 .
  • the motor 110 is a six-phase motor. As shown in FIG. 2 , the motor 110 includes two three-phase windings. The two three-phase windings receive the alternating current and use electromagnetic induction to generate induced electromotive force, and the rotor (not shown in the figure) uses the induced electromotive force to generate electromagnetic torque to convert electrical energy into mechanical energy.
  • the above two three-phase windings can be represented as A1, B1, C1 windings and A2, B2, C2 windings respectively. It should be understood that the above two three-phase windings belong to the stator windings.
  • the motor controller 130 includes a controller 132 and an inverter circuit 134 .
  • the input end of the inverter circuit 134 is the input end of the motor controller
  • the output end of the inverter circuit 134 is the output end of the motor controller.
  • the inverter circuit 134 can be used to convert the DC power provided by the battery pack 120 into AC power and provide it to the motor 110 .
  • the controller 132 is used to control the inverter circuit 134 .
  • the controller 132 can control the magnitude, frequency and phase of the current input to the motor 110 by controlling the inverter circuit 134 .
  • the controller 132 may include an application specific integrated circuit (application specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD), and a digital signal processor (digital processor, DSP).
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • DSP digital signal processor
  • the aforementioned PLD may include a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a generic array logic (generic array logic, GAL), and the like.
  • the above-mentioned inverter circuit 134 may include a power switching device, and the embodiment of the present application does not limit the type of the power switching device, for example, an insulated gate bipolar transistor (insulated gate bipolar transistor, IGBT), a metal oxide semiconductor Field effect transistor (metal oxide semiconductor field effect transistor, MOSFET), silicon carbide field effect transistor (silicon carbide metal oxide semiconductor, SiC MOSFET), etc.
  • a power switching device for example, an insulated gate bipolar transistor (insulated gate bipolar transistor, IGBT), a metal oxide semiconductor Field effect transistor (metal oxide semiconductor field effect transistor, MOSFET), silicon carbide field effect transistor (silicon carbide metal oxide semiconductor, SiC MOSFET), etc.
  • the controller 132 may send a control signal to each power switching device in the inverter circuit 134 to control its working state.
  • the control signal is a pulse width modulation (pulse width modulation, PWM) signal.
  • FIG. 3 is a schematic flowchart of a method for heating a battery pack according to an embodiment of the present application. This method can be applied in the electric vehicle 100 .
  • this solution may be executed by the motor controller 130 in FIG. 2 , or may also be understood as being executed by the controller 132 . It should be understood that the embodiment of the present application may also be executed by other types of controllers, which is not limited in the embodiment of the present application.
  • the battery pack is used to supply power to the motor, and the motor is a symmetrical six-phase motor.
  • the stator winding in the motor includes two three-phase windings, and the two three-phase windings, wherein, the first three-phase winding includes A1-phase, B1-phase, and C1-phase windings.
  • the second three-phase winding includes A2-phase, B2-phase, and C2-phase windings.
  • the aforementioned static state of the motor may mean that the motor is in a non-running state, or in other words, the motor does not generate electromagnetic torque.
  • determining that the battery needs to be heated includes: determining through detection that the temperature of the battery pack is lower than a first preset temperature.
  • the first preset temperature may be determined according to practice.
  • the first preset temperature may include but not limited to the following: 0°C, -2°C, -5°C, -8°C.
  • determining that the battery needs to be heated includes: receiving indication information, the indication information being used to indicate that the temperature of the battery pack is less than a preset temperature.
  • the above indication information can be obtained from other controllers.
  • the indication information can be received from the BMS.
  • controlling the motor to be in the static heating mode, the controlling the motor to be in the static heating mode includes controlling the current input into the motor, so that the current passing through each pair of stator windings in the following three pairs of stator windings in the motor is equal in magnitude and in the same direction : A1 phase winding, A2 phase winding; B1 phase winding, B2 phase winding; C1 phase winding, C2 phase winding.
  • the above static heating mode may refer to controlling the motor to heat the battery pack in a static state.
  • the same current direction means that the current phases are the same, and the opposite current direction means that the current phases differ by 180°.
  • the controller 132 may receive control signaling sent by other controllers, and the control signaling is used to instruct to start the static heating mode.
  • the control signaling can be acquired through the vehicle control system or BMS.
  • the controller 132 can control the inverter circuit 134 so that the currents input by the inverter circuit 134 to the three pairs of stator windings of the motor 110 are equal in magnitude and in the same direction.
  • six-phase motors suitable for the battery pack heating method in FIG. 3 may include permanent magnet motors, asynchronous motors, and electrically excited motors.
  • the motor controller controls the currents passing through each pair of the three pairs of stator windings in the six-phase motor to be equal in magnitude and in the same direction, so that each of the three pairs of stator windings
  • the magnetomotive forces of the windings are equal in magnitude and opposite in direction. Therefore, the magnetomotive forces cancel each other and no torque is generated, but a large amount of copper loss and iron loss can be generated, thereby generating heat.
  • the above-mentioned heat generated by the motor can be used to heat the battery coolant, thereby conducting heat to the battery pack to increase the temperature of the battery pack. This solution does not need to add additional devices, and can improve the heating efficiency of the battery pack.
  • the currents of B2), (C1, C2) are equal in magnitude and opposite in direction. And the phases of the currents passing through the windings of each phase are sequentially different by 60°.
  • the current flowing through each phase winding is shown in the following formula (1).
  • I A1 , I B1 , I C1 , I A2 , I B2 , and I C2 represent the currents passing through the A1-phase winding, A2-phase winding, B1-phase winding, A2-phase winding, B2-phase winding, and C2-phase winding, respectively.
  • I represents the magnitude of the current passing through each winding.
  • represents the electrical angular frequency, and t represents time.
  • Fig. 4 is a schematic diagram of the magnetomotive force generated in the normal operation mode of the six-phase motor according to an embodiment of the present application. As shown in Figure 4, when the current passing through each pair of windings is the same and the direction is opposite, the direction of the magnetomotive force generated by each pair of windings is the same, so the magnitude of the magnetomotive force generated by each pair of windings is that of a single winding double.
  • the current of each pair of windings in C2) has the same magnitude and the same direction. That is, the current through each pair of windings has the same magnitude and the same phase. For example, the magnitude and phase of the current passing through the A1 phase winding and the A2 phase winding are the same.
  • the current flowing through each phase winding is shown in the following formula (2).
  • I A1 , I B1 , I C1 , I A2 , I B2 , and I C2 represent the currents passing through the A1-phase winding, B1-phase winding, C1-phase winding, A2-phase winding, B2-phase winding, and C2-phase winding, respectively.
  • I represents the magnitude of the current passing through each winding.
  • represents the electrical angular velocity, and t represents time.
  • the method in Figure 3 also includes:
  • the battery pack when it is detected that the temperature of the battery pack is greater than the second preset temperature, it may be determined that the battery pack does not need to be heated.
  • the second preset temperature may be greater than the first preset temperature, so as to avoid frequently starting the motor to heat the battery pack under cold conditions.
  • the controller 132 may control the inverter circuit 134 to stop inputting current for heating to the motor 110, and the motor 110 enters a sleep mode.
  • Fig. 5 is a schematic diagram of the magnetomotive force generated when the six-phase motor works in a static heating mode according to an embodiment of the present application. As shown in Figure 5, when the current of each pair of stator windings has the same magnitude and the same direction, the directions of the magnetomotive forces generated by each pair of stator windings are opposite and the magnitude is the same, so the magnetomotive forces cancel each other out and no torque is generated.
  • the input current of the six-phase motor is alternating current, which can not only cause copper loss in the stator winding, but also iron loss in the stator core and rotor core, so as to ensure sufficient heating power of the motor when it is at rest, thereby rapidly heating the battery pack.
  • FIG. 6 is a schematic flowchart of a method for heating a battery pack according to another embodiment of the present application. This method can be applied in the electric vehicle 100 .
  • this solution may be executed by the motor controller 130 in FIG. 2 , or may also be understood as being executed by the controller 132 . It should be understood that the embodiment of the present application may also be executed by other types of controllers, which is not limited in the embodiment of the present application.
  • the method includes:
  • controlling the motor to be in the first running heating mode, the controlling the motor to be in the first running heating mode includes injecting d-axis harmonic current into the stator winding in the motor.
  • first running heating mode may refer to heating the battery pack by injecting d-axis harmonic current into the stator winding when the motor is in the running state.
  • the controller 132 can control the inverter circuit 134 so that the inverter circuit 134 can inject d-axis harmonic current into the motor 110 while inputting a current for generating electromagnetic torque to the motor 110 .
  • I A1 , I B1 , I C1 , I A2 , I B2 , and I C2 represent the currents passing through the A1-phase winding, B1-phase winding, C1-phase winding, A2-phase winding, B2-phase winding, and C2-phase winding, respectively.
  • I 1 represents the magnitude of the current component for providing electromagnetic torque
  • ⁇ 1 represents the electrical angular frequency of the current component for providing electromagnetic torque
  • t represents time.
  • I d represents the amplitude of the injected d-axis harmonic current
  • ⁇ 2 represents the electrical angular frequency of the d-axis harmonic current.
  • the six-phase motor suitable for the battery pack heating method in FIG. 6 may include a permanent magnet motor and an electric excitation motor.
  • Fig. 7 is a schematic diagram of the d-axis harmonic current of the motor in the first running heating mode according to an embodiment of the present application. As shown in Figure 7, the additional injected d-axis harmonic current does not generate electromagnetic torque, but it can increase the copper loss and iron loss in the motor, thereby increasing the heating power.
  • the motor controller injects the current for generating electromagnetic torque into the six-phase motor while injecting d-axis harmonics into the stator windings in the six-phase motor Current, the additional injected d-axis harmonic current does not generate electromagnetic torque, but it can increase the copper loss and iron loss in the motor, thereby increasing the heating power and generating heat.
  • the above-mentioned heat generated by the motor can be used to heat the battery coolant, thereby conducting heat to the battery pack to increase the temperature of the battery pack, thereby increasing the efficiency of heating the battery pack.
  • the method in Figure 6 also includes:
  • the battery pack when it is detected that the temperature of the battery pack is greater than the second preset temperature, it may be determined that the battery pack does not need to be heated.
  • the second preset temperature may be greater than the first preset temperature, so as to avoid frequently starting the motor to heat the battery pack under cold conditions.
  • the controller 132 can control the inverter circuit 134 to stop injecting the d-axis harmonic current into the motor 110 , and continue to input current for generating electromagnetic torque to the motor 110 , and the motor enters a normal operation mode.
  • FIG. 8 is a method for heating a battery pack according to an embodiment of the present application. This method can be applied in the electric vehicle 100 . Optionally, this solution may be executed by the controller 132 in FIG. 2 . It should be understood that the embodiment of the present application may also be executed by other types of controllers, which is not limited in the embodiment of the present application.
  • the method includes:
  • controlling the motor to be in the second running heating mode, the controlling the motor to be in the second running heating mode includes injecting zero-sequence harmonic current into the stator winding in the motor, and the zero-sequence harmonic current is in the stator winding of each phase in the same phase.
  • the above-mentioned second running heating mode may refer to heating the battery pack by injecting zero-sequence harmonic current into the stator winding when the motor is in the running state.
  • the zero-sequence harmonic current is a harmonic current with the same phase that is injected into each phase winding of the motor in addition to the current component used to generate the electromagnetic torque. Since there is no phase difference in each phase winding, the zero-sequence harmonic current cannot generate electromagnetic torque.
  • the controller 132 may control the inverter circuit 134 so that the inverter circuit 134 injects zero-sequence harmonic current into the motor 110 while inputting a current for generating electromagnetic torque to the motor 110 .
  • I A1 , I B1 , I C1 , I A2 , I B2 , and I C2 represent the currents passing through the A1-phase winding, A2-phase winding, B1-phase winding, A2-phase winding, B2-phase winding, and C2-phase winding, respectively.
  • I 1 represents the magnitude of the current component for providing electromagnetic torque
  • ⁇ 1 represents the electrical angular frequency of the current component for providing electromagnetic torque
  • t represents time.
  • I 0 represents the magnitude of the injected zero-sequence harmonic current
  • ⁇ 3 represents the electrical angular frequency of the zero-sequence harmonic current.
  • six-phase motors suitable for the battery pack heating method in FIG. 8 may include permanent magnet motors, asynchronous motors, and electrically excited motors.
  • Fig. 9 is a schematic diagram of the zero-sequence harmonic current of the motor in the second operating mode according to an embodiment of the present application. As shown in Figure 9, since there is no phase difference in the windings of each phase, the zero-sequence harmonic current does not generate electromagnetic torque, and the current magnitude of the zero-sequence harmonic current in each phase winding is the same, so the zero-sequence harmonic current can be Increase the heating power of the motor, and the heating of each phase winding is even.
  • the method in Figure 8 also includes:
  • the battery pack when it is detected that the temperature of the battery pack is greater than the second preset temperature, it may be determined that the battery pack does not need to be heated.
  • the second preset temperature may be greater than the first preset temperature, so as to avoid frequently starting the motor to heat the battery pack under cold conditions.
  • the motor controller may stop injecting zero-sequence harmonic current into the motor, and continue to input current for generating electromagnetic torque to the motor, and the motor enters a normal operation mode.
  • the motor controller injects the current for generating electromagnetic torque into the six-phase motor, and also injects zero-sequence harmonics into the stator winding of the six-phase motor Current, zero-sequence harmonic current does not generate electromagnetic torque because there is no phase difference, but it can increase the copper loss and iron loss in the motor, thereby increasing the heating power and generating heat.
  • the above-mentioned heat generated by the motor can be used to heat the battery coolant, thereby conducting heat to the battery pack to increase the temperature of the battery pack, thereby increasing the efficiency of heating the battery pack.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电池包的加热方法、电机控制器、电动汽车及系统,能够提高电池包(120)的加热效率。电机控制器(130)包括控制器(132)和逆变电路(134),其中,逆变电路(134)用于将电池包(120)输入的直流电转换为交流电,并将交流电传输至电机(110),电机(110)为对称六相电机;控制器(132)用于:当电机(110)静止且电池包(120)需要加热时,控制逆变电路(134)向电机(110)输入电流,使得通过电机(110)中的以下三对定子绕组中的每对定子绕组的电流大小相等,且方向相同:A1相绕组、A2相绕组;B1相绕组、B2相绕组;C1相绕组、C2相绕组。

Description

电池包加热方法、电机控制器、电动汽车及系统
本申请要求于2021年07月13日提交中国专利局、申请号为202110790505.2、申请名称为“电池包加热方法、电机控制器、电动汽车及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电气领域,尤其涉及电池包加热方法、电机控制器、电动汽车及系统。
背景技术
电动汽车中通常采用的动力锂离子电池的性能受到温度的影响较大。因此,在气温较低的情况下,电动汽车的续航能力大幅下降。例如,动力锂离子电池在-10℃(摄氏度)的情况下,容量和工作电压会明显降低。在-20℃的情况下,性能将更加恶化,表现为放电容量骤降,仅能保持常温时的容量的百分之三十作用。因此,在低温下对电池包进行加热时保证电动汽车正常运行的重要措施。
现有的给电池包加热的方法包括利用电动汽车已有的元器件进行加热,例如,可以利用电机为电池包加热,具体地,可引出电机中性点,并通过开关与储能电感相连,通过向电机中的三相绕组中注入零序电流,使定子绕组发热,定子绕组的热量通过冷却液传递给电池包,从而加热电池,改善电池性能。
但是,上述方法中需要增加开关和储能电感,降低了系统可靠性,并增加了系统成本。并且该方案仅能在电机静止时加热电池包,应用条件受到了局限。
发明内容
本申请提供一种电池包加热方法、电机控制器、电动汽车及系统,能够提高加热电池包的效率。
第一方面,提供了一种电机控制器,包括:控制器和逆变电路,其中,所述逆变电路用于将电池包输入的直流电转换为交流电,并将所述交流电传输至电机,所述电机为对称六相电机;所述控制器用于:当所述电机静止且所述电池包需要加热时,控制所述逆变电路向所述电机输入电流,使得通过所述电机中的以下三对定子绕组中的每对定子绕组的电流大小相等,且方向相同:A1相绕组、A2相绕组;B1相绕组、B2相绕组;C1相绕组、C2相绕组。
在电机静止且电池包需要加热的情况下,电机控制器控制通过六相电机中的三对定子绕组中的每对绕组的电流大小相等,方向相同,从而使得三对定子绕组中的每对绕组的磁动势大小相等,且方向相反。因此,磁动势相互抵消,不产生转矩,但是可以产生大量的铜耗和铁耗,从而产生热量。电机产生的上述热量可用于加热电池冷却液,从而将热量传导至电池包,以提高电池包的温度。该方案无需增加额外的器件,并且能提高电池包的加热效率。
结合第一方面,在第一方面的某些实现方式中,通过所述三对定子绕组的电流符合以 下公式:
Figure PCTCN2022105466-appb-000001
Figure PCTCN2022105466-appb-000002
其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流,I表示通过各绕组的电流的幅值,ω表示I的电角频率,t表示时间。
第二方面,提供了一种电机控制器,包括:控制器和逆变电路,其中,所述逆变电路用于将电池包输入的直流电转换为交流电,并将所述交流电传输至电机,所述电机为对称六相电机,所述电机中的定子绕组包括以下绕组:A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组;所述控制器用于:当所述电机运行且所述电池包需要加热时,控制所述逆变电路向所述电机中的定子绕组中注入d轴谐波电流,所述d轴谐波电流为沿着所述电机中的d轴注入的电流。
在电机运行且需要加热的情况下,电机控制器可以在向六相电机注入用于产生电磁转矩的电流的同时,还向六相电机中的定子绕组中注入d轴谐波电流,额外注入的d轴谐波电流不产生电磁转矩,但是可以增加电机中的铜耗和铁耗,从而增加了发热功率,并产生热量。电机产生的上述热量可用于加热电池冷却液,从而将热量传导至电池包,以提高电池包的温度,从而提高了加热电池包的效率。
结合第二方面,在第二方面的某些实现方式中,注入所述定子绕组的电流符合以下公式:
Figure PCTCN2022105466-appb-000003
Figure PCTCN2022105466-appb-000004
其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流。I 1表示用于提供电磁转矩的电流分量的幅值,ω 1表示用于提供电磁转矩的电流分量的电角频率,t表示时间,I d表示注入的d轴谐波电流的幅值;ω 2表示d轴谐波电流的电角频率。
第三方面,提供了一种电机控制器,包括:控制器和逆变电路,其中,所述逆变电路用于将电池包输入的直流电转换为交流电,并将所述交流电传输至电机,所述电机为对称六相电机,所述电机中的定子绕组包括以下绕组:A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组;所述控制器用于:在所述电机运行的且所述电池包需要加热时,控制所述逆变电路向所述电机中的定子绕组中注入零序谐波电流,所述零序谐波电流在各相定子绕组中的相位相同。
在电机运行且电池包需要加热的情况下,电机控制器在向六相电机注入用于产生电磁转矩的电流的同时,还向六相电机中的定子绕组中注入零序谐波电流,零序谐波电流由于没有相位差,因此不产生电磁转矩,但是可以增加电机中的铜耗和铁耗,从而增加了发热功率,并产生热量。电机产生的上述热量可用于加热电池冷却液,从而将热量传导至电池包,以提高电池包的温度,从而提高了加热电池包的效率。
结合第三方面,在第三方面的某些实现方式中,通过所述定子绕组的电流符合以下公式:
Figure PCTCN2022105466-appb-000005
Figure PCTCN2022105466-appb-000006
其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流。I 1表示用于提供电磁转矩的电流分量的幅值,ω 1表示用于提供电磁转矩的电流分量的电角频率,t表示时间,I 0表示注入的零序谐波电流的幅值;ω 3表示零序谐波电流的电角频率。
结合第一方面、第二方面或第三方面,在第一方面、第二方面或第三方面的某些实现方式中,所述控制器还用于:在所述电池包的温度小于第一预设温度的情况下,确定所述电池包需要加热。
第四方面,提供了一种电池包加热方法,所述方法应用于电机控制器,所述电机控制器包括控制器和逆变电路,其中,所述逆变电路用于将电池包输入的直流电转换为交流电,并将所述交流电传输至电机,所述电机为对称六相电机;所述方法由所述控制器执行,所述方法包括:当所述电机静止且所述电池包需要加热时,控制所述逆变电路向所述电机输入电流,使得通过所述电机中的以下三对定子绕组中的每对定子绕组的电流大小相等,且方向相同:A1相绕组、A2相绕组;B1相绕组、B2相绕组;C1相绕组、C2相绕组。
结合第四方面,在第四方面的某些实现方式中,通过所述三对定子绕组的电流符合以下公式:
Figure PCTCN2022105466-appb-000007
Figure PCTCN2022105466-appb-000008
其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流,I表示通过各绕组的电流的幅值,ω表示I的电角频率,t表示时间。
第五方面,提供了一种电池包加热方法,所述方法应用于电机控制器,所述电机控制器包括控制器和逆变电路,其中,所述逆变电路用于将电池包输入的直流电转换为交流电,并将所述交流电传输至电机,所述电机为对称六相电机,所述电机中的定子绕组包括以下绕组:A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组;所述方法由所述控制器执行,所述方法包括:当所述电机运行且所述电池包需要加热时,控制所述逆变电路向所述电机中的定子绕组中注入d轴谐波电流,所述d轴谐波电流为沿着所述电机中的d轴注入的电流。
结合第五方面,在第五方面的某些实现方式中,通过所述定子绕组的电流符合以下公式:
Figure PCTCN2022105466-appb-000009
Figure PCTCN2022105466-appb-000010
其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流。I 1表示用于提供电磁转矩的电流分量的幅值,ω 1表示用于提供电磁转矩的电流分量的电角频率,t表示时间,I d表示注入的d轴谐波电流的幅值;ω 2表示d轴谐波电流的电角频率。
第六方面,提供了一种电池包加热方法,所述方法应用于电机控制器,所述电机控制器包括控制器和逆变电路,其中,所述逆变电路用于将电池包输入的直流电转换为交流电,并将所述交流电传输至电机,所述电机为对称六相电机,所述电机中的定子绕组包括以下绕组:A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组;所述方法由所述控制器执行,所述方法包括:在所述电机运行且所述电池包需要加热时,控制所述逆变电路向所述电机中的定子绕组中注入零序谐波电流,所述零序谐波电流在各相定子绕组中的相位相同。
结合第六方面,在某些可能的实现方式中,通过所述定子绕组的电流符合以下公式:
Figure PCTCN2022105466-appb-000011
Figure PCTCN2022105466-appb-000012
其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流。I 1表示用于提供电磁转矩的电流分量的幅值,ω 1表示用于提供电磁转矩的电流分量的电角频率,t表示时间,I 0表示注入的零序谐波电流的幅值;ω 3表示零序谐波电流的电角频率。
结合第四方面、第五方面或第六方面,在第四方面、第五方面或第六方面的某些可能的实现方式中,还包括:在所述电池包的温度小于第一预设温度的情况下,确定所述电池包需要加热。
第七方面,提供了一种电动汽车,所述电动汽车包括第一方面、第二方面、第三方面,或第一方面、第二方面以及第三方面中的任意一种可能的实现方式中所述的电机控制器。
第八方面,提供了一种电池加热系统,所述系统包括电池包、电机以及第一方面、第二方面、第三方面,或第一方面、第二方面以及第三方面中的任意一种可能的实现方式中所述的电机控制器。
附图说明
图1是本申请一实施例的应用场景的示意图。
图2是本申请一实施例的电池包加热系统200的电路示意图。
图3是本申请一实施例的加热电池包的方法的流程示意图。
图4是本申请一实施例的六相电机正常运行模式时产生的磁动势的示意图。
图5是本申请一实施例的六相电机工作在静止加热模式时产生的磁动势示意图。
图6是本申请又一实施例的加热电池包的方法的流程示意图。
图7是本申请一实施例的电机在第一运行加热模式下的d轴谐波电流的示意图。
图8是本申请一实施例的加热电池包的方法。
图9是本申请一实施例的电机处于第二运行模式下的零序谐波电流的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为了便于理解,首先介绍本申请实施例涉及的若干术语。
电机(electric machinery):可以泛指利用电磁感应原理,能将电能转换为机械能、将机械能转换为动能的一切机器。电机包括发电机、电动机等。例如,发电机用于将机械能转换为电能,电动机用于电能转换为机械能。在实际应用中,电机可兼具发电机和电动机的功能。作为示例,电动汽车中的电机可用于将电源的电能转化为机械能,通过传动装置驱动车轮和其它工作装置。并且,为了延长电动汽车的续航时间,大多数电动汽车的驱 动系统中采用了能量回馈技术,即在汽车制动时,将车轮损耗的动能反馈回电池中。这种情况下,电机处于发电状态,并将发出的电输送至电池中。
交流电机:是指能够使交流电和机械能相互转换的装置。交流电机主要包括定子和转子。以电动机为例,定子包括定子绕组,可用于产生旋转磁场。将转子置于旋转磁场中时,在旋转磁场的作用下,将获得一个转动力矩,从而使得转子转动。上述交流电可以为单相交流电、三相交流电、六相交流电等。
三相电机:三相电机的定子绕组是三个相互隔开120°的线圈,作三角形或星形连接。在通入三相电流时,在每个线圈中产生磁场,这三个磁场合成得到一个旋转磁场。三相通常分别表示为A相、B相、C相。
相带角:是指电机中每对极下同一组绕组所连续占据的定子槽数的电角度。例如,三相电机中的相带角通常采用60°。其中,一极的电角度是180°,一对极的电角度是360°。
六相电机:六相电机的定子绕组包括两个三相绕组,即共六个相绕组。六相电机包括对称六相电机和不对称六相电机两种。本申请涉及的六相电机为对称六相电机。对称六相电机的相带角和传统三相电机一致,为60°。因此对称六相电机的磁势空间分布和传统三相电机的完全相同,只是幅值增加了一倍。对称六相电机中的定子绕组分别包括两组绕组,每组绕组包括三个相的绕组。在本申请实施例中第一组绕组包括A1相、B1相、C1相绕组。第二组绕组包括A2相、B2相、C2相绕组。第一组绕组和第二组绕组之间的相位相差180°。例如,A1相绕组和A2相绕组之间的相位相差180°。
永磁电机:或者称为永磁同步电机,是指采用永磁体提供励磁的电机。
异步电机:是指转子绕组电流是通过感应产生的电机,也称为感应电动机。
电励磁电机:或者称为电励磁同步电机,是指采用转子绕组提供励磁的电机。
定子(stator):是电机中静止不动的部分。定子包括定子铁芯、定子绕组和机座。定子绕组镶嵌在电子铁芯中,在通过电流时产生感应电动势,实现电能量交换。机座的作用为固定和支撑定子铁芯。定子的主要作用是产生旋转磁场。
转子(rotor):是指电机中的旋转部分。根据电机的种类不同,转子的结构也各有不同。例如,若电机为永磁电机,则转子中包括转子铁芯,转子铁芯上还插装有由永磁体构成的磁芯。若电机为异步电机或电励磁电机,则转子中包括转子绕组和转子铁芯,转子铁芯作为电机中的磁路的一部分。
在电动机中,转子作用是在通过电流时感应电动势,从而产生电磁转矩。在发电机中,转子的作用是在旋转磁场中被磁力线切割进而产生电流。
铜耗:电流流过电机中的绕组时,因为绕组电阻的原因会发热而产生损耗。因为绕组大多是由铜材料制成的,故称为“铜耗”或“铜损”,是一种有功损耗。例如,电流流过定子绕组可产生铜耗。或者对于转子中包括绕组的电机,转子绕组流过电流时也会产生铜耗。例如,电励磁电机转子有绕组,异步电机的转子鼠笼也可视为转子绕组,而永磁电机转子无绕组。
铁耗:是指电机中的铁芯和端部铁件的损耗,例如,定子和转子中都包括铁芯。也称为“铁损”,主要包括“磁滞损耗”和“涡流损耗”两种。铁耗通常利用交变电流产生。
派克变换(Park’s transformation):是分析电机运行的一种常用的坐标变换方式。派克变换将定子的A、B、C三相电流投影到随着转子旋转的直轴(d轴)、交轴(q轴)以 及垂直于dq平面的零轴(0轴)上,从而实现对定子电感矩阵的对角化,简化了对电机在运行状态时的分析复杂度。从数学意义上讲,就是将与电机运行有关的量从ABC坐标变换为dq坐标系。
d轴谐波电流:是指在电机中沿着d轴方向注入的电流。应理解,若只沿着d轴注入的电流,而不沿着q轴注入电流,则不会在转子中产生稳定的扭矩,只会产生热量。若同时沿着d轴和q轴注入电流,则在转子中即产生稳定的扭矩,也会产生热量。例如,永磁电机的转矩分为永磁转矩和磁阻转矩,永磁转矩和q轴电流成正比,磁阻转矩和d、q轴电流的乘积成正比。
正序:交流电力系统中通常包括A、B、C三相。根据A、B、C三相的顺序可确定电力系统中的正序、负序和零序分量。其中,正序是指A相领先B相120°,B相领先C相120°,C相领先A相120°。
负序:是指A相落后B相120°,B相落后C相120°,C相落后A相120°。
零序:是指A、B、C三相的相位相同,任一相既不领先,也不落后。
磁动势:也称为磁通势、磁势,指电流流过导体所产生磁通量的势力,是用来度量磁场或电磁场的一种量,类似于电场中的电动势或者电压。磁动势可以用于衡量通电线圈能够激发磁通量的势力。磁动势的基本单位为安培匝数(ampere turn,AT)。
电池冷却液:在电动汽车中,电池在蓄能和放电过程中,由于电解等化学作用,所以会释放大量的热,因此,需要在电池周围设置装有冷却液的循环管道来释放这些热量。电池冷却液的成分包括乙二醇。
电池管理系统(battery management system,BMS):是指用于保护动力电池使用安全的控制系统,可以智能化管理和维护电池单元。例如,BMS可用于监控电池的使用状态、放置电池过度充放电、检测电池的温度等等。
图1是本申请一实施例的应用场景的示意图。如图1所示,电动汽车100中包括电机110、电池包120、电机控制器130、机械传动装置140、车轮150等。
其中,电池包120用于向电机110传输电能。具体地,电池包120与电机110之间可设置电机控制器130。电池包120可以向电机控制器130输入直流电,电机控制器130将直流电转换为交流电,并将交流电输送至电机110。电机110可用于接收交流电,并利用电磁感应,产生感应电动势。转子利用将电能转换为机械能,机械能用于驱动机械传动装置140,以将动能传导至车轮150,使得电动汽车运行。
应理解,图1中的电动汽车100仅示出了与本申请方案相关的内部结构,而简化了其余内容。本申请实施例还可应用于在图1的基础上进行改动或变形的其它应用场景中。例如,电动汽车100中还可包括整机控制系统、通信系统、辅助系统等模块。
可选地,上述电机110可以为六相电机。在一些示例中,根据工作原理不同,六相电机可以包括永磁电机、异步电机以及电励磁电机等。
上述电池包120可以为动力电池。具体地,电池包可包括锂电子蓄电池。例如,磷酸铁锂离子蓄电池、三元锂离子蓄电池等。
本申请实施例中提出了利用六相电机来加热电池包的方法和系统,上述方法包括在电机静止时加热电池包的方法,也包括在电机运行时加热电池包的方法,能够使得各相绕组发热均匀,延长绕组寿命。并且结构简单,能够节约电池包加热装置的成本。
图2是本申请一实施例的电池包加热系统200的电路示意图。如图2所示,该系统200可以由电动汽车100中的部分模块组成。该系统200包括电机110、电池包120以及电机控制器130。
其中,电机110为六相电机。如图2所示,电机110中包括两个三相绕组。两个三相绕组接收该交流电,并利用电磁感应,产生感应电动势,转子(图中未示出)则利用该感应电动势,产生电磁转矩,以将电能转换为机械能。上述两个三相绕组可以分别表示为A1、B1、C1绕组以及A2、B2、C2绕组。应理解,上述两个三相绕组属于定子绕组。
如图3所示,电机控制器130包括控制器132和逆变电路134。其中,逆变电路134的输入端为电机控制器的输入端,逆变电路134的输出端为电机控制器的输出端。逆变电路134可用于将电池包120提供的直流电转换为交流电,并提供给电机110。
控制器132用于控制逆变电路134。例如,控制器132可通过控制逆变电路134控制向电机110输入的电流大小、频率和相位。
可选地,控制器132可以包括专用集成电路(application specific integrated circuit,ASIC)、可编程逻辑器件(programmable logic device,PLD)、数字信号处理器(digital processor,DSP)。上述PLD可以包括复杂可编程逻辑器件(complex programmable logic device,CPLD)、现场可编程逻辑门阵列(field-programmable gate array,FPGA)、通用阵列逻辑(generic array logic,GAL)等。
在一些示例中,上述逆变电路134中可包括功率开关器件,本申请实施例不限定功率开关器件的类型,例如为绝缘栅型双极晶体管(insulated gate bipolar transistor,IGBT)、金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor,MOSFET)、碳化硅场效应管(silicon carbide metal oxide semiconductor,SiC MOSFET)等。
可选地,控制器132可以向逆变电路134中的各功率开关器件发送控制信号以控制其工作状态。在一种可能的实现方式中,该控制信号为脉冲宽度调制(pulse width modulation,PWM)信号。
图3是本申请一实施例的加热电池包的方法的流程示意图。该方法可应用于电动汽车100中。可选地,该方案可以由图2中的电机控制器130执行,或者也可以理解为由控制器132执行。应理解,本申请实施例也可以由其它类型的控制器执行,本申请实施例对此不作限定。
S301,在电机静止的情况下,确定电池包需要加热。
其中,所述电池包用于向所述电机供电,所述电机为对称六相电机。
其中,所述电机中的定子绕组包括两个三相绕组,所述两个三相绕组,其中,第一个三相绕组包括A1相、B1相、C1相绕组。第二个三相绕组包括A2相、B2相、C2相绕组。
其中,上述电机静止可以指电机处于非运行的状态,或者说,电机并不产生电磁转矩。
在一些示例中,确定电池需要加热包括:通过检测确定电池包的温度小于第一预设温度。所述第一预设温度可以根据实践确定,例如,第一预设温度可以包括但不限于以下几项:0℃、-2℃、-5℃、-8℃。
在一些示例中,确定电池需要加热包括:接收指示信息,所述指示信息用于指示电池包的温度小于预设温度。上述指示信息可以从其它控制器获取。例如,可以从BMS接收 该指示信息。
S302,控制电机处于静止加热模式,所述控制电机处于静止加热模式包括控制输入电机中的电流,以使得通过电机中的以下三对定子绕组中的每对定子绕组的电流大小相等,且方向相同:A1相绕组、A2相绕组;B1相绕组、B2相绕组;C1相绕组、C2相绕组。
应理解,上述静止加热模式可以指控制电机在静止状态下对电池包进行加热。
其中,在本申请实施例中,电流的方向相同是指电流的相位相同,电流的方向相反是指电流的相位相差180°。
在一些示例中,控制器132可接收其它控制器发送的控制信令,该控制信令用于指示开启静止加热模式。例如,可以通过整车控制系统或者BMS获取该控制信令。
在具体示例中,控制器132可通过控制逆变电路134,以使得逆变电路134向电机110的三对定子绕组输入的电流大小相等,且方向相同。
可选地,适用于图3的电池包加热方法的六相电机可以包括永磁电机、异步电机以及电励磁电机。
在本申请实施例中,在静止加热模式下,电机控制器控制通过六相电机中的三对定子绕组中的每对绕组的电流大小相等,方向相同,从而使得三对定子绕组中的每对绕组的磁动势大小相等,且方向相反。因此,磁动势相互抵消,不产生转矩,但是可以产生大量的铜耗和铁耗,从而产生热量。电机产生的上述热量可用于加热电池冷却液,从而将热量传导至电池包,以提高电池包的温度。该方案无需增加额外的器件,并且能提高电池包的加热效率。
为了便于理解,接下来将结合公式(1)、(2)、图4和图5,说明电机在静止加热模式下的加热原理。
(a)正常运行模式
应理解,在六相电机工作在正常运行模式下时,通过三对绕组(A1,A2)、(B1,
B2)、(C1,C2)的电流大小相等,方向相反。并且通过各相绕组的电流的相位之间依次相差60°。通过各相绕组的电流如以下公式(1)所示。
Figure PCTCN2022105466-appb-000013
其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、A2相绕组、B1相绕组、A2相绕组、B2相绕组、C2相绕组的电流。I表示通过各绕组的电流的幅值。ω表示电角频率,t表示时间。
图4是本申请一实施例的六相电机正常运行模式时产生的磁动势的示意图。如图4所示,在通过每对绕组的电流大小相同,方向相反的情况下,每对绕组产生的磁动势的方向相同,因此每对绕组产生的磁动势的幅值是单个绕组的两倍。
(b)静止加热模式
当六相电机工作在静止加热模式下时,通过三对绕组(A1,A2)、(B1,B2)、(C1,
C2)中的每对绕组的电流大小相同,方向相同。即通过每对绕组的电流大小相同,相位相同。例如,通过A1相绕组的电流和通过A2相绕组的电流幅值大小相同,相位也相同。通过各相绕组的电流如以下公式(2)所示。
Figure PCTCN2022105466-appb-000014
其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流。I表示通过各绕组的电流的幅值。ω表示电角速度,t表示时间。
可选地,图3的方法还包括:
S303,在电机处于静止加热模式的情况下,确定电池包不需要加热。
具体地,当检测到电池包的温度大于第二预设温度时,可以确定电池包不需要加热。
可选地,第二预设温度可大于第一预设温度,以避免在寒冷条件下频繁地启动电机为电池包加热。
S304,关闭所述静止加热模式。
具体地,控制器132可控制逆变电路134停止向电机110输入用于加热的电流,电机110进入休眠模式。
图5是本申请一实施例的六相电机工作在静止加热模式时产生的磁动势示意图。如图5所示,在每对定子绕组的电流大小相同,方向相同的情况下,每对定子绕组产生的磁动势的方向相反,大小相同,因此磁动势相互抵消,不产生转矩。
另外,由上述公式(2)可知,通过上述三对定子绕组的电流幅值相等,从而可以保证各绕组发热均匀,能够延长绕组寿命。六相电机的输入电流为交流电,不仅可以令定子绕组产生铜耗,也可以令定子铁芯和转子铁芯产生铁耗,以保证电机在静止时发热功率充足,从而快速加热电池包。
图6是本申请又一实施例的加热电池包的方法的流程示意图。该方法可应用于电动汽车100中。可选地,该方案可以由图2中的电机控制器130执行,或者也可以理解为由控制器132执行。应理解,本申请实施例也可以由其它类型的控制器执行,本申请实施例对此不作限定。
如图6所示,该方法包括:
S601,在电机运行的状态下,确定电池包需要加热。
S602,控制电机处于第一运行加热模式,所述控制电机处于第一运行加热模式包括向所述电机中的定子绕组中注入d轴谐波电流。
应理解,上述第一运行加热模式,可以指在电机处于运行状态的情况下,通过向定子绕组注入d轴谐波电流的方式对电池包进行加热。
在具体示例中,控制器132可通过控制逆变电路134,以使得逆变电路134在向电机110输入用于产生电磁转矩的电流的同时,还向电机110注入d轴谐波电流。
在电机处于第一运行加热模式的情况下,通过各相绕组的电流如公式(3)所示。
Figure PCTCN2022105466-appb-000015
其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流。I 1表示用于提供电磁转矩的电流分量的幅值,ω 1表示用于提供电磁转矩的电流分量的电角频率,t表示时间。I d表示注入的d轴谐波电流的幅值;ω 2表示d轴谐波电流的电角频率。
可选地,适用于图6的电池包加热方法的六相电机可以包括永磁电机以及电励磁电机。
图7是本申请一实施例的电机在第一运行加热模式下的d轴谐波电流的示意图。如图7所示,额外注入的d轴谐波电流不产生电磁转矩,但是可以增加电机中的铜耗和铁耗,从而增加了发热功率。
在本申请实施例中,在第一运行加热模式下,电机控制器在向六相电机注入用于产生电磁转矩的电流的同时,还向六相电机中的定子绕组中注入d轴谐波电流,额外注入的d轴谐波电流不产生电磁转矩,但是可以增加电机中的铜耗和铁耗,从而增加了发热功率,并产生热量。电机产生的上述热量可用于加热电池冷却液,从而将热量传导至电池包,以提高电池包的温度,从而提高了加热电池包的效率。
可选地,图6的方法还包括:
S603,在电机处于第一运行加热模式的情况下,确定电池包不需要加热。
具体地,当检测到电池包的温度大于第二预设温度时,可以确定电池包不需要加热。
可选地,第二预设温度可大于第一预设温度,以避免在寒冷条件下频繁地启动电机为电池包加热。
S604,关闭所述第一运行加热模式。
具体地,控制器132可控制逆变电路134停止向电机110注入d轴谐波电流,并继续向电机110输入用于产生电磁转矩的电流,电机进入正常运行模式。
图8是本申请一实施例的加热电池包的方法。该方法可应用于电动汽车100中。可选地,该方案可以由图2中的控制器132执行。应理解,本申请实施例也可以由其它类型的控制器执行,本申请实施例对此不作限定。该方法包括:
S801,在电机运行的状态下,确定电池包需要加热。
S802,控制电机处于第二运行加热模式,所述控制电机处于第二运行加热模式包括向所述电机中的定子绕组中注入零序谐波电流,所述零序谐波电流在各相定子绕组中的相位相同。
应理解,上述第二运行加热模式,可以指在电机处于运行状态的情况下,通过向定子绕组注入零序谐波电流的方式对电池包进行加热。
其中,零序谐波电流是除了用于产生电磁转矩的电流分量之外,还向所述电机中的各相绕组中注入相位相同的谐波电流。由于在各相绕组中不存在相位差,因此零序谐波电流不能产生电磁转矩。
在具体示例中,控制器132可通过控制逆变电路134,以使得逆变电路134在向电机110输入用于产生电磁转矩的电流的同时,还向电机110注入零序谐波电流。
其中,在电机处于第二运行加热模式的情况下,通过各相绕组的电流如公式(4)所示。
Figure PCTCN2022105466-appb-000016
其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、A2相绕组、B1相绕组、A2相绕组、B2相绕组、C2相绕组的电流。I 1表示用于提供电磁转矩的电流分量的幅值,ω 1表示用于提供电磁转矩的电流分量的电角频率,t表示时间。I 0表示注入的零序谐波电流的幅值;ω 3表示零序谐波电流的电角频率。
可选地,适用于图8的电池包加热方法的六相电机可以包括永磁电机、异步电机以及电励磁电机。
图9是本申请一实施例的电机处于第二运行模式下的零序谐波电流的示意图。如图9所示,由于在各相绕组中不存在相位差,零序谐波电流不产生电磁转矩,零序谐波电流在各相绕组中的电流大小相同,因此零序谐波电流可增大电机的发热功率,并且各相绕组发热均匀。
可选地,图8的方法还包括:
S803,在电机处于第二运行加热模式的情况下,确定电池包不需要加热。
具体地,当检测到电池包的温度大于第二预设温度时,可以确定电池包不需要加热。
可选地,第二预设温度可大于第一预设温度,以避免在寒冷条件下频繁地启动电机为电池包加热。
S804,关闭所述第二运行加热模式。
具体地,电机控制器可停止向电机注入零序谐波电流,并继续向电机输入用于产生电磁转矩的电流,电机进入正常运行模式。
在电机运行过程中,给A1、B1、C1和A2、B2、C2绕组分别注入方向相反的零序谐波电流,使电机产生额外的热源。
在本申请实施例中,在第二运行加热模式下,电机控制器在向六相电机注入用于产生电磁转矩的电流的同时,还向六相电机中的定子绕组中注入零序谐波电流,零序谐波电流由于没有相位差,因此不产生电磁转矩,但是可以增加电机中的铜耗和铁耗,从而增加了发热功率,并产生热量。电机产生的上述热量可用于加热电池冷却液,从而将热量传导至电池包,以提高电池包的温度,从而提高了加热电池包的效率。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种电机控制器,其特征在于,包括:控制器和逆变电路,其中,所述逆变电路用于将电池包输入的直流电转换为交流电,并将所述交流电传输至电机,所述电机为对称六相电机;
    所述控制器用于:
    当所述电机静止且所述电池包需要加热时,控制所述逆变电路向所述电机输入电流,使得通过所述电机中的以下三对定子绕组中的每对定子绕组的电流大小相等,且方向相同:A1相绕组、A2相绕组;B1相绕组、B2相绕组;C1相绕组、C2相绕组。
  2. 如权利要求1所述的电机控制器,其特征在于,通过所述三对定子绕组的电流符合以下公式:
    Figure PCTCN2022105466-appb-100001
    Figure PCTCN2022105466-appb-100002
    其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流,I表示通过各绕组的电流的幅值,ω表示I的电角频率,t表示时间。
  3. 一种电机控制器,其特征在于,包括:控制器和逆变电路,其中,所述逆变电路用于将电池包输入的直流电转换为交流电,并将所述交流电传输至电机,所述电机为对称六相电机,所述电机中的定子绕组包括以下绕组:A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组;
    所述控制器用于:
    当所述电机运行且所述电池包需要加热时,控制所述逆变电路向所述电机中的定子绕组中注入d轴谐波电流,所述d轴谐波电流为沿着所述电机中的d轴注入的电流。
  4. 如权利要求3所述的电机控制器,其特征在于,通过所述定子绕组的电流符合以下公式:
    Figure PCTCN2022105466-appb-100003
    Figure PCTCN2022105466-appb-100004
    其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流,I 1表示用于提供电磁转矩的电流分量的幅值,ω 1表示用于提供电磁转矩的电流分量的电角频率,t表示时间,I d表示注入的d轴谐波电流的幅值;ω 2表示d轴谐波电流的电角频率。
  5. 一种电机控制器,其特征在于,包括:控制器和逆变电路,其中,所述逆变电路用于将电池包输入的直流电转换为交流电,并将所述交流电传输至电机,所述电机为对称六相电机,所述电机中的定子绕组包括以下绕组:A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组;
    所述控制器用于:
    在所述电机运行的且所述电池包需要加热时,控制所述逆变电路向所述电机中的定子绕组中注入零序谐波电流,所述零序谐波电流在各相定子绕组中的相位相同。
  6. 如权利要求5所述的电机控制器,其特征在于,通过所述定子绕组的电流符合以下公式:
    Figure PCTCN2022105466-appb-100005
    Figure PCTCN2022105466-appb-100006
    其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流,I 1表示用于提供电磁转矩的电流分量的幅值,ω 1表示用于提供电磁转矩的电流分量的电角频率,t表示时间,I 0表示注入的零序谐波电流的幅值;ω 3表示零序谐波电流的电角频率。
  7. 如权利要求1至6中任一项所述的电机控制器,其特征在于,所述控制器还用于在所述电池包的温度小于第一预设温度的情况下,确定所述电池包需要加热。
  8. 一种电池包加热方法,其特征在于,所述方法应用于电机控制器,所述电机控制器包括控制器和逆变电路,其中,所述逆变电路用于将电池包输入的直流电转换为交流电,并将所述交流电传输至电机,所述电机为对称六相电机;
    所述方法由所述控制器执行,所述方法包括:
    当所述电机静止且所述电池包需要加热时,控制所述逆变电路向所述电机输入电流,使得通过所述电机中的以下三对定子绕组中的每对定子绕组的电流大小相等,且方向相同:A1相绕组、A2相绕组;B1相绕组、B2相绕组;C1相绕组、C2相绕组。
  9. 如权利要求8所述的方法,其特征在于,通过所述三对定子绕组的电流符合以下公式:
    Figure PCTCN2022105466-appb-100007
    Figure PCTCN2022105466-appb-100008
    其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流,I表示通过各绕组的电流的幅值,ω表示I的电角频率,t表示时间。
  10. 一种电池包加热方法,其特征在于,所述方法应用于电机控制器,所述电机控制器包括控制器和逆变电路,其中,所述逆变电路用于将电池包输入的直流电转换为交流电,并将所述交流电传输至电机,所述电机为对称六相电机,所述电机中的定子绕组包括以下绕组:A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组;
    所述方法由所述控制器执行,所述方法包括:
    当所述电机运行且所述电池包需要加热时,控制所述逆变电路向所述电机中的定子绕组中注入d轴谐波电流,所述d轴谐波电流为沿着所述电机中的d轴注入的电流。
  11. 如权利要求10所述的方法,其特征在于,通过所述定子绕组的电流符合以下公式:
    Figure PCTCN2022105466-appb-100009
    Figure PCTCN2022105466-appb-100010
    其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流,I 1表示用于提供电磁转矩的电流分量的幅值,ω 1表示用于提供电磁转矩的电流分量的电角频率,t表示时间,I d表示注入的d轴谐波电流的幅值;ω 2表示d轴谐波电流的电角频率。
  12. 一种电池包加热方法,其特征在于,所述方法应用于电机控制器,所述电机控制器包括控制器和逆变电路,其中,所述逆变电路用于将电池包输入的直流电转换为交流电,并将所述交流电传输至电机,所述电机为对称六相电机,所述电机中的定子绕组包括以下 绕组:A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组;
    所述方法由所述控制器执行,所述方法包括:
    在所述电机运行且所述电池包需要加热时,控制所述逆变电路向所述电机中的定子绕组中注入零序谐波电流,所述零序谐波电流在各相定子绕组中的相位相同。
  13. 如权利要求12所述的方法,其特征在于,通过所述定子绕组的电流符合以下公式:
    Figure PCTCN2022105466-appb-100011
    Figure PCTCN2022105466-appb-100012
    其中,I A1、I B1、I C1、I A2、I B2、I C2分别表示通过A1相绕组、B1相绕组、C1相绕组、A2相绕组、B2相绕组、C2相绕组的电流,I 1表示用于提供电磁转矩的电流分量的幅值,ω 1表示提供电磁转矩的电流分量的电角频率,t表示时间,I 0表示注入的零序谐波电流的幅值;ω 3表示零序谐波电流的电角频率。
  14. 如权利要求8至13中任一项所述的方法,其特征在于,所述方法还包括:在所述电池包的温度小于第一预设温度的情况下,确定所述电池包需要加热。
  15. 一种电动汽车,其特征在于,所述电动汽车包括如权利要求1至7中任一项所述的电机控制器。
  16. 一种电池加热系统,其特征在于,所述系统包括电池包、电机以及如权利要求1至7中任一项所述的电机控制器。
PCT/CN2022/105466 2021-07-13 2022-07-13 电池包加热方法、电机控制器、电动汽车及系统 WO2023284785A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110790505.2A CN113691193A (zh) 2021-07-13 2021-07-13 电池包加热方法、电机控制器、电动汽车及系统
CN202110790505.2 2021-07-13

Publications (1)

Publication Number Publication Date
WO2023284785A1 true WO2023284785A1 (zh) 2023-01-19

Family

ID=78577198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105466 WO2023284785A1 (zh) 2021-07-13 2022-07-13 电池包加热方法、电机控制器、电动汽车及系统

Country Status (2)

Country Link
CN (1) CN113691193A (zh)
WO (1) WO2023284785A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116039341A (zh) * 2023-03-28 2023-05-02 浙江零跑科技股份有限公司 一种电机加热方法、计算机设备、可读存储介质及电动车

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113691193A (zh) * 2021-07-13 2021-11-23 华为数字能源技术有限公司 电池包加热方法、电机控制器、电动汽车及系统
CN114523881B (zh) * 2022-03-07 2024-02-27 臻驱科技(上海)有限公司 电动汽车的动力总成电路及动力电池加热方法
CN114604103B (zh) * 2022-03-17 2024-02-02 威睿电动汽车技术(宁波)有限公司 电机的主动加热方法、装置、设备、存储介质及程序产品

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272395A (ja) * 2009-05-22 2010-12-02 Nissan Motor Co Ltd 電動車両のモータ制御装置
US20210061128A1 (en) * 2019-08-30 2021-03-04 Hyundai Motor Company System and method for increasing temperature of battery using motor driving system
CN112550022A (zh) * 2019-09-25 2021-03-26 比亚迪股份有限公司 能量转换装置及车辆
CN112550077A (zh) * 2019-09-25 2021-03-26 比亚迪股份有限公司 能量转换装置及车辆
CN112550079A (zh) * 2019-09-25 2021-03-26 比亚迪股份有限公司 能量转换装置及车辆
CN112977094A (zh) * 2021-04-26 2021-06-18 比亚迪股份有限公司 电驱动系统控制方法、电驱动系统及车辆
CN113022326A (zh) * 2021-03-31 2021-06-25 比亚迪股份有限公司 车辆电驱动系统控制方法、电驱动系统和车辆
CN113691193A (zh) * 2021-07-13 2021-11-23 华为数字能源技术有限公司 电池包加热方法、电机控制器、电动汽车及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272395A (ja) * 2009-05-22 2010-12-02 Nissan Motor Co Ltd 電動車両のモータ制御装置
US20210061128A1 (en) * 2019-08-30 2021-03-04 Hyundai Motor Company System and method for increasing temperature of battery using motor driving system
CN112550022A (zh) * 2019-09-25 2021-03-26 比亚迪股份有限公司 能量转换装置及车辆
CN112550077A (zh) * 2019-09-25 2021-03-26 比亚迪股份有限公司 能量转换装置及车辆
CN112550079A (zh) * 2019-09-25 2021-03-26 比亚迪股份有限公司 能量转换装置及车辆
CN113022326A (zh) * 2021-03-31 2021-06-25 比亚迪股份有限公司 车辆电驱动系统控制方法、电驱动系统和车辆
CN112977094A (zh) * 2021-04-26 2021-06-18 比亚迪股份有限公司 电驱动系统控制方法、电驱动系统及车辆
CN113691193A (zh) * 2021-07-13 2021-11-23 华为数字能源技术有限公司 电池包加热方法、电机控制器、电动汽车及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116039341A (zh) * 2023-03-28 2023-05-02 浙江零跑科技股份有限公司 一种电机加热方法、计算机设备、可读存储介质及电动车
CN116039341B (zh) * 2023-03-28 2023-06-30 浙江零跑科技股份有限公司 一种电机加热方法、计算机设备、可读存储介质及电动车

Also Published As

Publication number Publication date
CN113691193A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2023284785A1 (zh) 电池包加热方法、电机控制器、电动汽车及系统
CN103812411B (zh) 可变磁通电动机驱动器系统
WO2023028817A1 (zh) 加热电池的方法、电池加热系统及用电装置
Bae et al. Self-excited induction generator as an auxiliary brake for heavy vehicles and its analog controller
EP4297269A1 (en) Electric drive system, drivetrain, heating method, and electric vehicle
Abolhassani et al. Fault tolerant permanent magnet motor drives for electric vehicles
Xu et al. Comparison study of singly-fed electric machine with doubly-fed machine for EV/HEV applications
CN113733988A (zh) 电动汽车的动力电池加热方法、装置以及汽车
Yin et al. Short-circuit fault-tolerant control without constraint on the D-axis armature magnetomotive force for five-phase PMSM
Sun et al. Influence of stator slot and rotor pole number combination on field winding induced voltage ripple in hybrid excitation switched flux machine
Yu et al. DC-biased operation of a double-stator hybrid flux switching permanent-magnet machine
Boztas et al. Design of a high-speed PMSM for flywheel systems
Wu et al. Analysis of torque characteristics of parallel hybrid excitation machine drives with sinusoidal and rectangular current excitations
Hussain et al. Design and analysis of a dual rotor multiphase brushless DC motor for its application in electric vehicles
Chen et al. Mild Hybridization of Turboprop Engine With High-Power-Density Integrated Electric Drives
WO2022082788A1 (zh) 电机、电机控制器、热交换系统和控制方法
US20240001776A1 (en) Motor control unit, power train, control method, and electric vehicle
CN103475112A (zh) 开关磁阻发电机
He et al. Novel hybrid excited doubly salient permanent magnet machines with asymmetric stator poles
Hijikata et al. MATRIX motor with individual winding current control capability for variable parameters and iron loss suppression
CN104779846B (zh) 开关磁阻电机调速装置、开关磁阻电机及调速方法
Sough et al. High frequency PMSM and inverter losses analysis-application to flywheel system on real cycle operation
Feng et al. Investigation of permanent magnet flux linkage variation in PMSMs due to temperature rise and magnetic saturation
Chen et al. Electromagnetic performance analysis and fault-tolerant control of new doubly salient flux memory motor drive
Sui et al. A Consequent-Pole Five-Phase Fault-Tolerant Permanent-Magnet Synchronous Machine for Electric Vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE