WO2022109808A1 - 一种电机控制器、热交换系统及电流注入方法 - Google Patents

一种电机控制器、热交换系统及电流注入方法 Download PDF

Info

Publication number
WO2022109808A1
WO2022109808A1 PCT/CN2020/131243 CN2020131243W WO2022109808A1 WO 2022109808 A1 WO2022109808 A1 WO 2022109808A1 CN 2020131243 W CN2020131243 W CN 2020131243W WO 2022109808 A1 WO2022109808 A1 WO 2022109808A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
alternating current
inverter circuit
motor controller
current
Prior art date
Application number
PCT/CN2020/131243
Other languages
English (en)
French (fr)
Inventor
石超杰
吴晓鹏
毋超强
谢小威
刘红兵
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202080019346.XA priority Critical patent/CN114080751A/zh
Priority to PCT/CN2020/131243 priority patent/WO2022109808A1/zh
Priority to JP2023512102A priority patent/JP2023539110A/ja
Priority to EP20962699.3A priority patent/EP4184788A4/en
Publication of WO2022109808A1 publication Critical patent/WO2022109808A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/01Motors with neutral point connected to the power supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/13Different type of waveforms depending on the mode of operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the technical field of new energy vehicles, and in particular, to a motor controller, a heat exchange system and a current injection method.
  • a heating solution for the power battery is: passing current into the motor, using the end windings of the motor to generate heat, and then taking out the heat generated by the heat exchange system for heating the power battery. Since this solution cannot stimulate the iron loss and permanent magnet loss of the motor, the heating power is small and the heating speed of the power battery is slow.
  • Embodiments of the present application provide a motor controller, a heat exchange system, and a current injection method, which are used to improve the efficiency of motor heating.
  • an embodiment of the present application provides a motor controller.
  • the motor controller includes a control device and an inverter circuit.
  • the control device is used to control the inverter circuit to input an alternating current to the motor, wherein the alternating current has a DC bias, and the alternating current is used to heat the motor; the inverter circuit is used to input an alternating current to the motor under the control of the control device.
  • the direct or zero axis of the motor outputs this alternating current.
  • the alternating current may be any one of a sine wave, a square wave, a triangular wave, a sawtooth wave and a trapezoidal wave, or may be other non-DC currents with periodic changes.
  • the motor controller since the quadrature axis of the motor does not pass current, the motor does not generate additional vibration and torque. Since the direct axis or the zero axis is fed with an alternating current with a DC bias, compared with the method of only using the end winding to generate heat in the prior art, since the current fed into the motor contains alternating components, it can effectively The iron loss and permanent magnet loss of the motor are excited, and the heating power of the motor is increased, thereby increasing the heating speed of the power battery.
  • the inverter circuit adopts a three-phase three-wire system, and the inverter circuit is specifically used to: under the control of the control device, output a first alternating current with a DC bias to the direct axis of the motor.
  • the motor since the quadrature axis of the motor does not pass current, the motor will not generate additional vibration and torque. Since the first alternating current with DC bias passed to the straight shaft contains alternating components, it can effectively stimulate the iron loss and permanent magnet loss of the motor, improve the heating power of the motor, and thus improve the heating speed of the power battery. .
  • the inverter circuit adopts a three-phase four-wire system, and the inverter circuit is specifically used to: under the control of the control device, output a second alternating current with a DC bias to the zero axis of the motor, Or a third alternating current with a DC bias is output to the direct axis of the motor.
  • the motor since the quadrature axis of the motor does not pass current, the motor will not generate additional vibration and torque. Since the second alternating current with DC bias passed to the zero axis contains alternating components, it can effectively stimulate the iron loss and permanent magnet loss of the motor, improve the heating power of the motor, and thus improve the heating speed of the power battery. .
  • the amplitude and phase of the three-phase currents are the same, so the three-phase windings in the motor are evenly heated, and the temperature is equivalent, and there will be no single phase.
  • the temperature of the other two-phase windings is lower, so the heating capacity of the winding can be more fully utilized.
  • the inverter circuit is connected to the DC bus, the inverter circuit adopts a two-level topology, and the neutral point of the inverter circuit is connected to the positive pole of the DC bus through the first switch unit and the first inductor; flat topology, the neutral point of the inverter circuit is connected to the negative pole of the DC bus through the second switch unit and the second inductor; or, the inverter circuit adopts a two-level topology, and the neutral point of the inverter circuit is connected through the third switch unit and The third inductor is connected to the positive electrode of the DC bus, and the neutral point of the inverter circuit is connected to the negative electrode of the DC bus through the fourth switch unit and the fourth inductor.
  • a star point loop (neutral loop) can be provided for the current flowing on the neutral wire of the three-wire four-wire system.
  • the inverter circuit adopts an open-winding structure or a multi-level topology, there is no need to additionally connect the star point circuit.
  • the alternating current contains no negative values.
  • the meaning of not having a negative value is that at any time, the alternating current is a positive value.
  • the alternating current has no negative value, and the magnetic field generated by the winding coil is a pulsed magnetic field with only amplitude change and no direction change, and no demagnetization magnetic field is generated, so it can reduce the risk of demagnetization during the heating process of the motor, and reduce the risk of demagnetization. Electromagnetic vibration and noise due to positive and negative changes in the magnetic field in the same direction.
  • the embodiments of the present application provide a heat exchange system, including a motor, a heat exchanger, a liquid pump, a power battery, and the motor controller provided in the first aspect and any possible design thereof; a motor, a heat exchanger It is connected with the liquid pump through the pipeline; the motor controller is used to output alternating current to the direct axis or zero axis of the motor, the alternating current has a DC bias, and the alternating current is used to heat the motor; the liquid pump is used to drive the pipe The heat generated by the motor is exchanged to the power battery through the heat exchanger.
  • the motor is an oil-cooled motor.
  • an embodiment of the present application provides a current injection method, the method includes the following steps: a motor controller determines a parameter of an alternating current output to the motor, wherein the alternating current has a DC bias, and the alternating current Used to heat the motor; the motor controller outputs this alternating current to the direct or zero axis of the motor.
  • the parameters of the alternating current include the waveform, phase, amplitude, frequency, and DC offset value of the alternating current.
  • the motor controller can determine the value of the alternating current according to factors such as the temperature of the motor, the temperature of the power battery, the current limit and temperature limit of the three-phase winding of the motor, etc. parameter.
  • the current injection method provided in the third aspect may be regarded as a method performed by the motor controller provided in the first aspect, and for a specific implementation, reference may be made to the relevant description in the motor controller provided in the first aspect.
  • an embodiment of the present application further provides a powertrain including a motor, a reducer, and the motor controller provided in the first aspect and any possible designs thereof.
  • an embodiment of the present application further provides a vehicle, including a power battery and the powertrain provided in the fourth aspect. .
  • FIG. 1 is a schematic structural diagram of a heat exchange system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a motor according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a motor controller provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an alternating current with a DC bias provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an alternating current containing a small amount of negative values provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an inverter circuit using a three-phase three-wire system provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of a three-phase current output to a motor according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an inverter circuit using a three-phase four-wire system provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another three-phase current output to a motor provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a star point loop according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an inverter circuit provided by an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a three-level topology inverter circuit provided by an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of another heat exchange system provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of a powertrain provided by an embodiment of the application.
  • FIG. 16 is a schematic structural diagram of a vehicle according to an embodiment of the application.
  • the embodiment of the present application can apply the heat exchange system shown in FIG. 1 .
  • the heat exchange system may be a heat exchange system in an electric vehicle.
  • the heat exchange system shown in FIG. 1 includes a power battery 101 , a motor controller 102 , a motor 103 , a heat exchanger 104 and a liquid pump 105 .
  • the power battery 101 is used to output direct current, for example, a battery, a lithium battery, a fuel cell, a super capacitor, and the like.
  • a motor controller may also be called a motor control unit (MCU), which includes a control device and an inverter circuit.
  • the motor 103 may be a permanent magnet synchronous motor, an asynchronous motor, a reluctance motor, an electric excitation motor, or the like.
  • the power battery 101 and the inverter circuit are connected through a DC bus, and the inverter circuit and the motor 103 are connected through a three-phase line.
  • the motor 103, the heat exchanger 104 and the liquid pump 105 are coupled through an oil cooling pipeline, and an insulating cooling liquid flows in the oil cooling pipeline, and the insulating cooling liquid may include mineral insulating oil, synthetic insulating oil, vegetable oil, and the like.
  • the motor controller 102 , the heat exchanger 104 and the power battery 101 are coupled through a water cooling pipeline, the water inlet of the water cooling pipeline is arranged around the motor controller 102 , and the water outlet is arranged around the power battery 101 .
  • the heat exchanger 104 may be disposed around the power battery 101 to facilitate heat exchange with the power battery 101 .
  • the coolant in the water cooling pipeline has no insulation requirements, for example, it can be water, alcohol, or a mixture of different types of antifreeze.
  • the cooling liquid flowing in the water-cooling pipeline is water as an example for description.
  • the motor controller 102 injects current into the motor 103 to heat the motor 103 , and the heat generated by the motor 103 is exchanged to the power battery 101 through the heat exchanger 104 to heat the power battery 101 to improve the power battery 101 . performance.
  • the above process of heating the power battery 101 may be: the control device controls the inverter circuit to inject current into the motor 103, and the motor 103 generates heat; the liquid pump 105 pumps the insulating cooling liquid between the motor 103 and the heat exchanger 104, The heat generated by the heating of the motor 103 is transferred to the heat exchanger 104, and the motor 103 is cooled; the heat generated by the heating of the motor 103 exchanges heat with the water in the water-cooling pipeline at the heat exchanger 104; the water in the water-cooling pipeline transfers the heat It is transmitted to the power battery 102 for heating the power battery 101 .
  • the heat generated by the resistance heating in the motor controller 102 is also transferred to the power battery 101 through the water cooling pipeline to heat the power battery 101 .
  • FIG. 2 a possible schematic structural diagram of the motor 103 may be shown in FIG. 2 .
  • the motor 103 includes a casing, a rotor core, a stator, and a rotating shaft.
  • Windings (not shown in Figure 2) are wound on the stator, that is, coils wound on the stator iron teeth of the motor to provide a path for the current input to the motor, wherein the rotor core extends from both ends of the motor shaft in the axial direction
  • the part is called the end winding.
  • the material of the winding is generally copper; a permanent magnet (not shown in FIG. 2 ) is installed on the rotor core for generating the excitation magnetic field.
  • the insulating cooling liquid can flow in the oil passages of the motor 103, so as to more fully dissipate the heat generated by the motor 103. The heat is taken away, allowing the motor 103 to cool sufficiently.
  • the insulating cooling liquid can enter and exit the motor cavity from the motor housing, and can also enter and exit the motor cavity from both ends of the motor.
  • the insulating cooling liquid flowing inside the motor 103 can also be used for lubrication of motor components including bearings.
  • the motor of an electric vehicle is generally an AC motor, and the power battery is a DC source. Therefore, the DC power output by the power battery is converted into a three-phase AC power of the motor through an inverter circuit.
  • the coordinate axes of the three-phase AC power are U-axis and V-axis respectively. and the W axis.
  • the three phases of alternating current may also be referred to as U-phase, V-phase and W-phase, respectively.
  • the stationary three-phase coordinates are usually transformed into the rotating dq coordinates. This transformation is called the park transformation.
  • the three coordinate axes are called the direct axis, the quadrature axis and the zero axis.
  • the direct axis also known as the D-axis or d-axis, is a time-varying DC coordinate axis obtained from a stationary U/V/W three-phase coordinate axis through Parker transformation.
  • the quadrature axis also known as the Q-axis or the q-axis, is a time-varying AC coordinate axis obtained from a stationary U/V/W three-phase coordinate axis through Parker transformation.
  • the zero axis also known as the 0-axis or 0-axis, is the coordinate axis perpendicular to the dq plane where the straight and intersecting axes lie.
  • the formula for the Park transform can be as follows:
  • is the angle between the d-axis and the U-axis
  • I_d is called the direct-axis current, which is mainly used to adjust the magnetic field
  • I_q is called the quadrature-axis current, which is mainly used to adjust the torque
  • I_0 is called the zero-sequence current
  • I_u, I_v, I_w is the current on the U-axis, V-axis and W-axis respectively, that is, the three-phase current.
  • output current to the direct axis of the motor that is, pass I_d to the motor, and control I_q and I_0 to be 0; output current to the zero axis of the motor, that is, pass I_0 to the motor, and control I_d and I_q is 0.
  • the above matrix is an expression for transforming three-phase currents to I_d, I_q, and I_0. Converting the matrix into an inverse transform can obtain expressions for transforming three-phase currents from I_d, I_q, and I_0, which will not be repeated here.
  • the motor controller when outputting current to the direct axis of the motor, the motor controller needs to convert I_d into three-phase currents I_u, I_v, I_w through the inverse transformation of Parker transform, Connect I_u, I_v, I_w to the motor winding; when outputting current to the zero axis of the motor, the motor controller needs to convert I_0 into three-phase currents I_u, I_v, I_w through the inverse transformation of Parker transform, and connect I_u, I_v, I_w to into the motor windings.
  • Copper loss refers to the loss caused by the current flowing in the copper conductor.
  • the loss of the rotor core refers to the loss generated by the rotor core in the alternating magnetic field, including the eddy current loss caused by the induced eddy current and the hysteresis loss caused by the hysteresis effect.
  • iron loss refers to the loss generated by the rotor core in the alternating magnetic field, including the eddy current loss caused by the induced eddy current and the hysteresis loss caused by the hysteresis effect.
  • the rotating shaft of the rotor and the stator will also generate eddy current loss and hysteresis loss in the alternating magnetic field.
  • the eddy current loss of the permanent magnet refers to the eddy current generated by the permanent magnet in the alternating magnetic field, which in turn causes the corresponding eddy current loss.
  • the motor controller 300 includes a control device 301 and an inverter circuit 302 .
  • the control device 301 is used to control the inverter circuit 302 to input an alternating current to the motor, the alternating current has a DC bias, and the alternating current is used to heat the motor; the inverter circuit 302 is used to control the control device 301 This alternating current is output to the direct or zero axis of the motor.
  • the above-mentioned alternating current with a DC bias is obtained by superimposing a direct current on the basis of the alternating current.
  • the example a of FIG. 4 shows an alternating current without a DC bias that is passed to the direct axis of the motor
  • the example b of FIG. 4 shows the direct axis of the motor with a direct current bias the alternating current.
  • Id_1 is the superimposed DC bias.
  • the alternating current adopts a sine wave as an example for illustration.
  • the alternating current described in the embodiments of the present application may be Any of the trapezoidal waves can also be other non-DC currents with periodic changes.
  • the alternating current of the input direct axis or zero axis may have no negative value or only a small amount of negative value.
  • the meaning of not having a negative value is that at any time, the alternating current is a positive value.
  • the alternating current of the input straight axis has no negative value; for another example, the alternating current shown in FIG. 5 only contains a small amount of negative value.
  • the alternating current has no negative value, and the magnetic field generated by the winding coil is a pulsating magnetic field with only amplitude change and no direction change, and no demagnetization magnetic field is generated. Then, it is not difficult to understand that the alternating current has no negative value or only contains a small amount of negative value, so that the winding coil does not generate a demagnetization magnetic field or only a small demagnetization magnetic field, thereby reducing the risk of demagnetization during the heating process of the motor. , and reduce the electromagnetic vibration and noise caused by the positive and negative changes of the magnetic field in the same direction.
  • the control device 301 controls the alternating current output by the inverter circuit 302 to the direct axis or zero axis of the motor. Since the quadrature axis of the motor does not pass current, the motor will not generate additional vibration and torque. Since the direct axis or the zero axis is fed with an alternating current with a DC bias, compared with the method of only using the end winding to generate heat in the prior art, since the current fed into the motor contains alternating components, it can effectively The iron loss and permanent magnet loss of the motor are excited, and the heating power of the motor is increased, thereby increasing the heating speed of the power battery. In addition, the heat generated by the resistance heating of the motor controller 300 can also be used to heat the power battery. At the same time, since the current on the DC bus is also an AC quantity at this time, its effective value will be significantly larger than the effective value of the current when only direct current is passed, so the battery can be fully heated by using the internal resistance of the battery.
  • the direct axis or the zero axis is fed with a DC bias.
  • the alternating current can make the AC component flowing in the DC bus smaller, so it can reduce the fluctuation of the DC bus and improve the reliability of the system.
  • the inverter circuit 302 may adopt a three-phase three-wire system or a three-phase four-wire system.
  • the manner in which the motor controller 300 injects current into the motor may be different. The two cases are described below.
  • the inverter circuit 302 adopts a three-phase three-wire system, and the inverter circuit 302 is specifically used to: under the control of the control device 301 , output a first alternating current with a DC bias to the direct axis of the motor.
  • FIG. 6 a schematic structural diagram of a three-phase three-wire inverter circuit may be shown in FIG. 6 .
  • the motor controller 300 when outputting current to the direct axis of the motor, the motor controller 300 needs to convert I_d into three-phase currents I_u, I_v, and I_w through the inverse transformation of Parker transform, and pass I_u, I_v, and I_w into the motor windings.
  • the three-phase current output by the motor controller 300 to the motor winding is injected through the three phase wires of the three-phase three-wire inverter circuit.
  • the current is converted into a three-phase current, and the waveform of the three-phase current can be as shown in FIG. 7 .
  • the phases of the three-phase currents are the same or opposite, and the amplitudes of the three-phase currents are not equal.
  • the amplitude and phase of V-phase and W-phase are the same, and the phase of U-phase is opposite to that of V-phase, and the amplitude is also different.
  • the inverter circuit 302 outputs the first alternating current with a DC bias to the straight axis of the motor. Since the quadrature axis of the motor does not pass current, the motor will not generate additional vibration and torque. Since the first alternating current with DC bias passed to the straight shaft contains alternating components, it can effectively stimulate the iron loss and permanent magnet loss of the motor, improve the heating power of the motor, and thus improve the heating speed of the power battery. . In addition, the heat generated by the resistance heating of the motor controller 300 can also be used to heat the power battery.
  • the amplitudes of the three-phase currents are not equal.
  • the amplitudes of the phase and W-phase are small, so the U-phase windings in the motor generate more heat, and the U-phase first reaches the temperature limit. This method has the problem of insufficient utilization of the heating capacity of the windings.
  • the three-phase four-wire inverter circuit has one more power supply neutral line drawn from the neutral point (star point) of the three phases.
  • the inverter circuit 302 adopts a three-phase four-wire system, and the motor controller 300 can output current to the motor in two ways.
  • the inverter circuit 302 adopts a three-phase four-wire system, and the inverter circuit 302 is specifically used to: under the control of the control device 301, output a second alternating current with a DC bias to the zero axis of the motor, that is, output a zero sequence to the motor current.
  • FIG. 8 a schematic structural diagram of a three-phase four-wire inverter circuit may be shown in FIG. 8 .
  • the motor controller needs to convert I_d into three-phase currents I_u, I_v, and I_w through the inverse transformation of Parker transform, and pass I_u, I_v, and I_w into the motor windings.
  • the three-phase current output to the motor windings is fed through the three phase wires of the three-phase four-wire inverter circuit.
  • the waveform of the second alternating current with DC bias output by the inverter circuit 302 to the zero axis of the motor is consistent with the waveform in the example b of FIG.
  • the waveform of the current can be as shown in FIG. 9 . It can be seen from FIG. 9 that when the second alternating current with DC bias is passed to the zero axis of the motor, the amplitude and phase of the three-phase currents are the same.
  • the inverter circuit 302 outputs a second alternating current with a DC bias to the zero axis of the motor. Since the quadrature axis of the motor does not pass current, the motor will not generate additional vibration and torque. Since the second alternating current with DC bias passed to the zero axis contains alternating components, it can effectively stimulate the iron loss and permanent magnet loss of the motor, improve the heating power of the motor, and thus improve the heating speed of the power battery. . In addition, the heat generated by the resistance heating of the motor controller 300 can also be used to heat the power battery.
  • the amplitude and phase of the three-phase currents are the same, so the three-phase windings in the motor are evenly heated, and the temperature is equivalent, and there will be no single phase.
  • the temperature of the other two-phase windings is lower, so the heating capacity of the winding can be more fully utilized.
  • the three-phase four-wire system has one more power supply neutral wire drawn from the neutral point (star point) of the three-phase.
  • a second alternating current with a DC bias is output, with current flowing on the neutral of the power supply.
  • the inverter circuit 302 provides a return path for the current on the neutral of the power supply. If the inverter circuit 302 itself is not configured with such a loop, the star point loop needs to be additionally connected.
  • the inverter circuit 302 is connected to the DC bus, the inverter circuit 302 adopts a two-level topology, and the way to connect the star point loop can be: 1.
  • the neutral point of the inverter circuit 302 passes through the first switch unit and the first inductor Connect to the positive pole of the DC bus, as shown in the example a of Figure 10; 2.
  • the neutral point of the inverter circuit 302 is connected to the negative pole of the DC bus through the second switching unit and the second inductor, as shown in the example b of Figure 10 3.
  • the neutral point of the inverter circuit 302 is connected to the positive pole of the DC bus through the third switch unit and the third inductor, and the neutral point of the inverter circuit 302 is connected to the negative pole of the DC bus through the fourth switch unit and the fourth inductor , wherein the third switch unit and the fourth switch unit are not closed at the same time, as shown in the example of c in FIG. 10 .
  • the topology of the inverter circuit 302 itself can provide a return for the current flowing on the neutral line of the power supply, so there is no need to make an additional star point return.
  • the star point circuit is already included in the inverter circuit 302, and there is no need to additionally connect the star point circuit.
  • an inverter circuit 302 for a dual-phase motor or a six-phase motor may be shown as an example in a of FIG. 11 , and the inverter circuit 302 includes two sets of circuits with inverter function, without additionally connecting the star point loop.
  • the inverter circuit 302 adopts an open-winding structure, and the inverter circuit 302 does not need to additionally connect the star point circuit, as shown in the example b of FIG. 11 .
  • the inverter circuit 302 adopts a multi-level topology, since the multi-level topology itself includes a star point loop, it is not necessary to additionally connect the star point loop.
  • the structure of the inverter circuit 302 using the three-level topology may be as shown in FIG. 12 .
  • the inverter circuit 302 already includes a loop through which the neutral point (star point) flows.
  • the inverter circuit 302 adopts a three-phase four-wire system, and the control device 301 is specifically configured to: control the inverter circuit 302 to output a third alternating current with a DC bias to the direct axis of the motor.
  • the control device 301 can also control the inverter circuit 302 to output a third alternating current with a DC bias to the direct axis of the motor. No current flows.
  • the amplitudes and phases of the three-phase currents are not exactly the same (refer to the example in FIG. 7 ), so there is a problem of insufficient utilization of the heating capacity of the windings.
  • the motor controller 300 provided in the embodiment of the present application to pass current to the motor, since the quadrature axis of the motor does not pass current, the motor will not generate additional vibration and torque. Since the direct axis or the zero axis is fed with an alternating current with a DC bias, compared with the method of only using the end winding to generate heat in the prior art, since the current fed into the motor contains alternating components, it can effectively The iron loss and permanent magnet loss of the motor are excited, and the heating power of the motor is increased, thereby increasing the heating speed of the power battery. In addition, the heat generated by the resistance heating of the motor controller 300 can also be used to heat the power battery.
  • Embodiments of the present application further provide a heat exchange system.
  • the heat exchange system 1300 includes a motor 1301, a heat exchanger 1302, a liquid pump 1303, a power battery 1304 and the aforementioned motor controller 300; the motor 1301, the heat exchanger 1302 and the liquid pump 1303 are communicated through pipelines;
  • the motor controller 300 is used to output an alternating current to the direct axis or zero axis of the motor 1301, the alternating current has a DC bias, and the alternating current is used to heat the motor 1301;
  • the liquid pump 1303 is used to drive the pipeline, so that the heat generated by the heating of the motor 1301 is exchanged to the power battery 1304 through the heat exchanger 1302 .
  • the motor 1301 may be an oil-cooled motor.
  • a possible schematic diagram of the structure of the motor 1301 may be shown in FIG. 2 .
  • the structures of other oil-cooled motors in the prior art are also applicable to the embodiments of the present application.
  • an embodiment of the present application further provides a current injection method.
  • the method includes:
  • the motor controller determines the parameters of the alternating current output to the motor.
  • the alternating current has a DC bias and is used to heat the motor.
  • the parameters of the alternating current include waveform, phase, amplitude, frequency and DC offset value. Since the alternating current with DC bias is output to the motor to heat the motor and then the power battery, the motor controller can be determined according to factors such as the temperature of the motor, the temperature of the power battery, the current limit and temperature limit of the three-phase winding of the motor, etc. Parameters of alternating current.
  • the motor controller outputs the alternating current to the direct axis or zero axis of the motor.
  • the current injection method can be regarded as the method performed by the aforementioned motor controller 300 , and by performing this method, the motor controller 300 can supply current to the motor, thereby heating the motor.
  • the motor controller 300 can supply current to the motor, thereby heating the motor.
  • the embodiments of the present application also provide a powertrain.
  • the powertrain 1500 includes a motor 1501 , a speed reducer 1502 , and the aforementioned motor controller 300 .
  • a vehicle 1600 includes a power battery 1601 and a powertrain 1500 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

一种电机控制器、热交换系统及电流注入方法,用于提高电机加热的效率。电机控制器包括控制装置和逆变电路。其中,控制装置用于控制逆变电路向电机输入交变电流,其中,该交变电流具有直流偏置,该交变电流用于加热电机;逆变电路用于在控制装置的控制下,向电机的直轴或零轴输出该交变电流。

Description

一种电机控制器、热交换系统及电流注入方法 技术领域
本申请涉及新能源汽车(new energy vehicle)技术领域,尤其涉及一种电机控制器、热交换系统及电流注入方法。
背景技术
随着新能源领域的技术发展,新能源汽车的应用越来越普及,例如,电动车/电动汽车(electric vehicle)/混合动力汽车。在低温环境下,电动车/电动汽车的动力电池性能下降,因此需要对动力电池进行加热,以提升动力电池的性能。
现有技术中,一种对动力电池的加热方案是:向电机中通入电流,利用电机的端部绕组发热,再通过热交换系统将发热产生的热量带出,用于加热动力电池。由于该方案无法激发电机的铁耗和永磁体损耗,因而发热功率较小,对动力电池的加热速度较慢。
因此,现有技术提供的方案中存在发热功率小、对动力电池的加热速度慢的问题。
发明内容
本申请实施例提供了一种电机控制器、热交换系统及电流注入方法,用于提高电机加热的效率。
第一方面,本申请实施例提供一种电机控制器。该电机控制器包括控制装置和逆变电路。其中,控制装置用于控制逆变电路向电机输入交变电流,其中,该交变电流具有直流偏置,该交变电流用于加热电机;逆变电路用于在控制装置的控制下,向电机的直轴或零轴输出该交变电流。
其中,该交变电流可以为正弦波、方波、三角波、锯齿波和梯形波中的任一种,也可以是其他存在周期性变化的、非直流的电流。
采用第一方面提供的电机控制器,由于电机的交轴不通入电流,因而电机不会产生额外的振动和转矩。由于向直轴或零轴通入的是具有直流偏置的交变电流,与现有技术中仅利用端部绕组发热的方式相比,由于电机通入的电流中含有交变成分,可以有效激发电机的铁耗和永磁体损耗,提高电机的发热功率,从而提升对动力电池的加热速度。
在一种可能的设计中,逆变电路采用三相三线制,逆变电路具体用于:在控制装置的控制下,向电机的直轴输出具有直流偏置的第一交变电流。
采用上述方案,由于电机的交轴不通入电流,因而电机不会产生额外的振动和转矩。由于向直轴通入的具有直流偏置的第一交变电流中含有交变成分,因而可以有效激发电机的铁耗和永磁体损耗,提高电机的发热功率,从而提升对动力电池的加热速度。
在另一种可能的设计中,逆变电路采用三相四线制,逆变电路具体用于:在控制装置的控制下,向电机的零轴输出具有直流偏置的第二交变电流,或者向电机的直轴输出具有直流偏置的第三交变电流。
采用上述方案,由于电机的交轴不通入电流,因而电机不会产生额外的振动和转矩。由于向零轴通入的具有直流偏置的第二交变电流中含有交变成分,因而可以有效激发电机的铁耗和永磁体损耗,提高电机的发热功率,从而提升对动力电池的加热速度。
此外,向电机的零轴通入具有直流偏置的第二交变电流时,三相电流的幅值和相位均相同,因此电机中的三相绕组均匀发热,温度相当,不会出现一相绕组达到温度限制,另两相绕组温度较低的现象,因而可以更充分地利用绕组的发热能力。
进一步地,逆变电路连接直流母线,逆变电路采用两电平拓扑,逆变电路的中性点通过第一开关单元和第一电感与直流母线的正极连接;或者,逆变电路采用两电平拓扑,逆变电路的中性点通过第二开关单元和第二电感与直流母线的负极连接;或者,逆变电路采用两电平拓扑,逆变电路的中性点通过第三开关单元和第三电感与直流母线的正极连接,逆变电路的中性点通过第四开关单元和第四电感与直流母线的负极连接。
采用上述方案,可以为三线四线制的电源中性线上流过的电流提供(中性线回路)星点回路。
此外,若逆变电路采用开绕组结构或多电平拓扑,则无需额外接通星点回路。
在一种可能的设计中,该交变电流不含负值。
没有负值的含义是:在任一时刻,该交变电流均为正值。交变电流没有负值,绕组线圈产生的磁场则为仅有幅值变化、没有方向变化的脉振磁场,不会产生退磁磁场,因而可以降低电机加热过程中产生的退磁风险,并减小了由于磁场在同一方向上正负变化而带来的电磁振动和噪声。
第二方面,本申请实施例提供一种热交换系统,包括电机、换热器、液泵、动力电池以及第一方面及其任一可能的设计中提供的电机控制器;电机、换热器和液泵通过管路连通;电机控制器用于向电机的直轴或零轴输出交变电流,该交变电流具有直流偏置,该交变电流用于使电机发热;液泵用于驱动管路,使电机发热所产生的热量通过换热器交换至动力电池。
在一种可能的设计中,电机为油冷电机。
第二方面提供的热交换系统中电机控制器的具体功能和结构可以参见第一方面提供的电机控制器中的相关描述。
第三方面,本申请实施例提供一种电流注入方法,该方法包括如下步骤:电机控制器确定向电机输出的交变电流的参数,其中,该交变电流具有直流偏置,该交变电流用于加热电机;电机控制器向电机的直轴或零轴输出该交变电流。
具体地,交变电流的参数包括交变电流的波形、相位、幅值、频率以及直流偏置值等。
由于向电机输出的交变电流是为了加热电机,进而加热动力电池,因此电机控制器可以根据电机的温度、动力电池的温度、电机三相绕组的电流限制和温度限制等因素确定交变电流的参数。
第三方面提供的电流注入方法可以视为第一方面提供的电机控制器所执行的方法,具体实现方式可参见第一方面所提供的电机控制器中的相关描述。
第四方面,本申请实施例还提供一种动力总成,包括电机、减速器以及第一方面及其任一可能的设计中提供的电机控制器。
第五方面,本申请实施例还提供一种车辆,包括动力电池以及第四方面提供的动力总成。。
另外,第二方面~第五方面中任一种可能设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种热交换系统的结构示意图;
图2为本申请实施例提供的一种电机的结构示意图;
图3为本申请实施例提供的一种电机控制器的结构示意图;
图4为本申请实施例提供的一种具有直流偏置的交变电流的示意图;
图5为本申请实施例提供的一种含有少量负值的交变电流的示意图;
图6为本申请实施例提供的一种采用三相三线制的逆变电路的结构示意图;
图7为本申请实施例提供的一种向电机输出的三相电流的示意图;
图8为本申请实施例提供的一种采用三相四线制的逆变电路的结构示意图;
图9为本申请实施例提供的另一种向电机输出的三相电流的示意图;
图10为本申请实施例提供的一种星点回路的结构示意图;
图11为本申请实施例提供的一种逆变电路的结构示意图;
图12为本申请实施例提供的一种三电平拓扑的逆变电路的结构示意图;
图13为本申请实施例提供的另一种热交换系统的结构示意图;
图14为本申请实施例提供的一种电流注入方法的流程示意图;
图15为本申请实施例提供的一种动力总成的结构示意图;
图16为本申请实施例提供的一种车辆的结构示意图。
具体实施方式
下面,首先对本申请实施例的应用场景进行介绍。
本申请实施例可应用图1所示的热交换系统。该热交换系统可以是电动汽车中的热交换系统。
图1所示的热交换系统包括动力电池101、电机控制器102、电机103、换热器104和液泵105。
其中,动力电池101用于输出直流电,例如可以是蓄电池、锂电池、燃料电池、超级电容等。电机控制器也可以称为电机控制单元(motor control unit,MCU),包括控制装置和逆变电路。电机103可以是永磁同步电机、异步电机、磁阻电机或电励磁电机等。
动力电池101与逆变电路通过直流母线连接,逆变电路与电机103通过三相线连接。电机103、换热器104和液泵105通过油冷管路耦合,油冷管路中流动绝缘冷却液,绝缘冷却液可以包括矿物绝缘油、合成绝缘油和植物油等。电机控制器102、换热器104和动力电池101通过水冷管路耦合,水冷管路的入水口设置在电机控制器102周围,出水口设置在动力电池101周围。特别地,换热器104可以设置在动力电池101周围,便于与动力电池101进行热交换。水冷管路中的冷却液没有绝缘要求,例如可以是水,也可以是醇,或者是不同种类的防冻液的混合物。为了描述简便,在本申请实施例中以水冷管路中流动的冷却液为水为例展开描述。
本申请实施例中,电机控制器102向电机103注入电流,从而加热电机103,电机103产生的热量通过换热器104交换至动力电池101,对动力电池101进行加热,以提升动力电池101的性能。
具体地,上述加热动力电池101的过程可以是:控制装置控制逆变电路向电机103注 入电流,电机103发热产生热量;液泵105在电机103和换热器104之间泵送绝缘冷却液,使得电机103发热产生的热量传递至换热器104,电机103得到冷却;电机103发热产生的热量在换热器104处与水冷管路中的水进行换热;水冷管路中的水将热量传递至动力电池102,用于对动力电池101进行加热。
此外,本申请实施例中,电机控制器102工作时,电机控制器102中的电阻发热所产生的热量也会通过水冷管路传递至动力电池101,对动力电池101进行加热。
在图1所示的热交换系统中,电机103的一种可能的结构示意图可以如图2所示。在图2所示的剖面图中,电机103包括壳体、转子铁芯、定子以及转轴。定子上缠绕有绕组(图2中未示出),即缠绕在电机的定子铁齿上的线圈,用于为输入至电机的电流提供通路,其中在电机转轴轴向两端伸出转子铁芯的部分被称为端部绕组。绕组的材料一般为铜;转子铁芯上安装有永磁体(图2中未示出),用于产生励磁磁场。其中,壳体、转轴和转子铁芯内均留有油道,当液泵105驱动油冷管路时,绝缘冷却液可以在电机103的油道中流动,从而更充分地将电机103发热产生的热量带走,使电机103充分冷却。具体地,绝缘冷却液可以从电机壳体进出电机腔体,也可以从电机两端进出电机腔体。
此外,在电机103内部流动的绝缘冷却液还可以用于包括轴承在内的电机部件的润滑。
为了使本申请实施例更便于理解,下面对本申请实施例中涉及的一些基本概念进行解释。
1、U/V/W三相坐标轴
目前,电动汽车的电机一般为交流电机,而动力电池为直流源,因此通过逆变电路将动力电池输出的直流电转换为电机的三相交流电,三相交流电的坐标轴分别为U轴、V轴和W轴。交流电的三相也可以分别称为U相、V相和W相。
2、直轴、交轴、零轴
为了简化电机分析,通常将静止的三相坐标变换为旋转的dq坐标,这种变换即为派克变换(park transformation)。
在dq坐标系下,三个坐标轴分别称为直轴、交轴和零轴。
直轴(direct axis)又称D轴或d-axis,是由静止的U/V/W三相坐标轴经过派克变换得到的时变的直流坐标轴。
交轴(quadrature axis)又称为Q轴或q-axis,是由静止的U/V/W三相坐标轴经过派克变换得到的时变的交流坐标轴。
零轴,又称为0轴或0-axis,是垂直于直轴和交轴所在的dq平面的坐标轴。
具体地,派克变换的公式可以如下所示:
Figure PCTCN2020131243-appb-000001
其中θ为d轴与U轴的夹角;I_d称为直轴电流,主要用于调节磁场;I_q称为交轴电流,主要用于调节转矩;I_0称为零序电流;I_u、I_v、I_w分别为U轴、V轴和W轴上的电流,即三相电流。
在本申请实施例中,向电机的直轴输出电流,即向电机中通入I_d,并控制I_q与I_0 为0;向电机的零轴输出电流,即向电机中通入I_0,并控制I_d与I_q为0。
上述矩阵为三相电流变换至I_d、I_q、I_0的表达式,将该矩阵变换作逆变换则可得到从I_d、I_q、I_0变换至三相电流的表达式,此处不再赘述。
由于三相电流是与电机中的真实绕组所对应的电流,因此,向电机的直轴输出电流时,电机控制器需要通过派克变换的逆变换将I_d转换为三相电流I_u、I_v、I_w,将I_u、I_v、I_w通入电机绕组;向电机的零轴输出电流时,电机控制器需要通过派克变换的逆变换将I_0转换为三相电流I_u、I_v、I_w,将I_u、I_v、I_w通入电机绕组。
3、铜损耗、转子铁芯的损耗、永磁体的涡流损耗
铜损耗,简称铜耗,是指电流在铜导体中流通所产生的损耗。
转子铁芯的损耗,简称铁耗,是指转子铁芯在交变的磁场中所产生的损耗,包括感应产生涡流所引起的涡流损耗和由于磁滞效应所引起的磁滞损耗。同理,转子的转轴以及定子同样会在交变的磁场中产生涡流损耗和磁滞损耗。
永磁体的涡流损耗,简称永磁体损耗,是指永磁体在交变的磁场中产生涡流,进而引起相应的涡流损耗。
下面将结合附图对本申请实施例作进一步地详细描述。
需要说明的是,本申请实施例中,多个是指两个或两个以上。另外,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供一种电机控制器,如图3所示,该电机控制器300包括控制装置301和逆变电路302。其中,控制装置301用于控制逆变电路302向电机输入交变电流,该交变电流具有直流偏置,该交变电流用于加热电机;逆变电路302用于在控制装置301的控制下向电机的直轴或零轴输出该交变电流。
上述具有直流偏置的交变电流,即在交变电流的基础上叠加直流电流后得到。示例性地,图4的a示例示出了向电机的直轴通入的不具有直流偏置的交变电流,图4的b示例示出了向电机的直轴通入的具有直流偏置的交变电流。在b示例中,Id_1即为叠加的直流偏置。
需要说明的是,图4的示例中以交变电流采用正弦波为例进行示意,实际应用中,本申请实施例中所述的交变电流可以是正弦波、方波、三角波、锯齿波和梯形波中的任一种,也可以是其他存在周期性变化的、非直流的电流。
特别地,本申请实施例中,输入直轴或零轴的交变电流可以没有负值或者仅含有少量的负值。没有负值的含义是:在任一时刻,该交变电流均为正值。比如图4的b示例中,输入直轴的交变电流即没有负值;再比如,图5中示出的交变电流仅含有少量负值。
该交变电流没有负值,绕组线圈产生的磁场则为仅有幅值变化、没有方向变化的脉振磁场,不会产生退磁磁场。那么,不难理解,该交变电流没有负值或者仅含有少量的负值,可以使得绕组线圈不产生退磁磁场或仅产生强度很小的退磁磁场,因而可以降低电机加热过程中产生的退磁风险,并减小了由于磁场在同一方向上正负变化而带来的电磁振动和噪声。
控制装置301控制逆变电路302向电机的直轴或零轴输出的交变电流,由于电机的交轴不通入电流,因而电机不会产生额外的振动和转矩。由于向直轴或零轴通入的是具有直 流偏置的交变电流,与现有技术中仅利用端部绕组发热的方式相比,由于电机通入的电流中含有交变成分,可以有效激发电机的铁耗和永磁体损耗,提高电机的发热功率,从而提升对动力电池的加热速度。此外,电机控制器300的电阻发热所产生的热量也可以用于加热动力电池。同时,由于此时直流母线上的电流也是交流量,其有效值将显著大于仅通入直流时的电流有效值,因此可以充分利用电池的内阻对电池进行加热。
此外,与向直轴或零轴通入不具有直流偏置的交变电流的方案相比,在直流母线的电流上限值相同的情况下,向直轴或零轴通入具有直流偏置的交变电流,可以使得直流母线中流过的交流分量较小,因而可以减小直流母线的波动,提高系统的可靠性。
实际应用中,逆变电路302可以采用三相三线制,也可以采用三相四线制。对于三相三线制和三相四线制的系统来说,电机控制器300向电机注入电流的方式可以不同。下面分别对这两种情况进行介绍。
一、三相三线制
逆变电路302采用三相三线制,逆变电路302具体用于:在控制装置301的控制下,向电机的直轴输出具有直流偏置的第一交变电流。
示例性地,三相三线制逆变电路的结构示意图可以如图6所示。如前所述,向电机的直轴输出电流时,电机控制器300需要通过派克变换的逆变换将I_d转换为三相电流I_u、I_v、I_w,将I_u、I_v、I_w通入电机绕组。电机控制器300向电机绕组输出的三相电流即通过三相三线制逆变电路的三个相线注入。
以图4的b示例示出的具有直流偏置的交变电流为例,将该电流转换为三相电流,三相电流的波形可以如图7所示。从图7可以看出,向电机的直轴通入具有直流偏置的第一交变电流时,三相电流之间的相位相同或相反,且三相电流的幅值不相等。其中,V相和W相的幅值与相位相同,U相的相位与V相的相位相反,幅值也不相同。
逆变电路302向电机的直轴输出具有直流偏置的第一交变电流,由于电机的交轴不通入电流,因而电机不会产生额外的振动和转矩。由于向直轴通入的具有直流偏置的第一交变电流中含有交变成分,因而可以有效激发电机的铁耗和永磁体损耗,提高电机的发热功率,从而提升对动力电池的加热速度。此外,电机控制器300的电阻发热所产生的热量也可以用于加热动力电池。
值得注意的是,向电机的直轴通入具有直流偏置的第一交变电流时,三相电流的幅值不相等,比如,在图7的示例中U相的幅值较大,V相和W相的幅值较小,因此电机中U相绕组线圈发热较多,U相最先达到温度限制,此时V相和W相仍处于温度较低的状态,因此这种加热电机的方式存在对绕组的发热能力利用不充分的问题。
二、三相四线制
三相四线制逆变电路比三相三线制逆变电路多出一根从三相的中性点(星点)引出的电源中性线。
逆变电路302采用三相四线制,电机控制器300向电机输出电流可以有两种方式。
方式一
逆变电路302采用三相四线制,逆变电路302具体用于:在控制装置301的控制下,向电机的零轴输出具有直流偏置的第二交变电流,即向电机输出零序电流。
示例性地,三相四线制逆变电路的结构示意图可以如图8所示。如前所述,向电机的零轴输出电流时,电机控制器需要通过派克变换的逆变换将I_d转换为三相电流I_u、I_v、 I_w,将I_u、I_v、I_w通入电机绕组。向电机绕组中输出的三相电流即通过三相四线制逆变电路的三个相线通入。
假设逆变电路302向电机的零轴输出的具有直流偏置的第二交变电流的波形与图4的b示例中的波形一致,那么,将上述波形的电流转换为三相电流,三相电流的波形可以如图9所示。从图9可以看出,向电机的零轴通入具有直流偏置的第二交变电流时,三相电流的幅值和相位均相同。
逆变电路302向电机的零轴输出具有直流偏置的第二交变电流,由于电机的交轴不通入电流,因而电机不会产生额外的振动和转矩。由于向零轴通入的具有直流偏置的第二交变电流中含有交变成分,因而可以有效激发电机的铁耗和永磁体损耗,提高电机的发热功率,从而提升对动力电池的加热速度。此外,电机控制器300的电阻发热所产生的热量也可以用于加热动力电池。
此外,向电机的零轴通入具有直流偏置的第二交变电流时,三相电流的幅值和相位均相同,因此电机中的三相绕组均匀发热,温度相当,不会出现一相绕组达到温度限制,另两相绕组温度较低的现象,因而可以更充分地利用绕组的发热能力。
需要说明的是,三相四线制与三相三线制相比多出一根从三相的中性点(星点)引出的电源中性线,本申请实施例中,向电机的零轴输出具有直流偏置的第二交变电流,电源中性线上会有电流流过。因此,逆变电路302为电源中性线上的电流提供流通的回路。若逆变电路302本身未配置有这样的回路,则需要额外接通星点回路。
具体地,逆变电路302连接直流母线,逆变电路302采用两电平拓扑,接通星点回路的方式可以是:1、逆变电路302的中性点通过第一开关单元和第一电感与直流母线的正极连接,如图10的a示例所示;2、逆变电路302的中性点通过第二开关单元和第二电感与直流母线的负极连接,如图10的b示例所示;3、逆变电路302的中性点通过第三开关单元和第三电感与直流母线的正极连接,逆变电路302的中性点通过第四开关单元和第四电感与直流母线的负极连接,其中,第三开关单元和第四开关单元不同时闭合,如图10的c示例所示。
在某些情况下,逆变电路302本身的拓扑即可为电源中性线上流过的电流提供回路,因而无需额外接通星点回路。
情况一
若逆变电路302中包括两套具有逆变功能的电路,那么,在逆变电路302中已包含星点回路,无需额外接通星点回路。
比如,针对双三相电机或六相电机设置的逆变电路302可以如图11的a示例所示,在该逆变电路302中包括两套具有逆变功能的电路,无需额外接通星点回路。
再比如,逆变电路302采用开绕组结构,逆变电路302无需额外接通星点回路,如图11的b示例所示。
情况二
若逆变电路302采用多电平拓扑,由于多电平拓扑本身就含有星点回路,因此不用额外接通星点回路。
示例性地,采用三电平拓扑的逆变电路302的结构可以如图12所示。从图12可以看出,在该逆变电路302中已包含中性点(星点)流通的回路。
需要说明的是,本申请实施例中仅以图12所示的三电平拓扑为例进行示意,现有技 术中其他三电平拓扑、五电平拓扑或多电平拓扑同样适用于本申请实施例。
方式二
逆变电路302采用三相四线制,控制装置301具体用于:控制逆变电路302向电机的直轴输出具有直流偏置的第三交变电流。
也就是说,若逆变电路302采用三相四线制,控制装置301也可以控制逆变电路302向电机的直轴输出具有直流偏置的第三交变电流,此时电源中性线上没有电流流过。
在方式二中,接通星点回路的方式可以参见方式一中的相关描述,此处不再赘述。
采用方式二与采用方式一相比,三相电流的幅值和相位不完全相同(参照图7中的示例),因而存在前述对绕组的发热能力利用不充分的问题。
综上,采用本申请实施例提供的电机控制器300向电机通入电流,由于电机的交轴不通入电流,因而电机不会产生额外的振动和转矩。由于向直轴或零轴通入的是具有直流偏置的交变电流,与现有技术中仅利用端部绕组发热的方式相比,由于电机通入的电流中含有交变成分,可以有效激发电机的铁耗和永磁体损耗,提高电机的发热功率,从而提升对动力电池的加热速度。此外,电机控制器300的电阻发热所产生的热量也可以用于加热动力电池。
本申请实施例还提供一种热交换系统。如图13所示,该热交换系统1300包括电机1301、换热器1302、液泵1303、动力电池1304以及前述电机控制器300;电机1301、换热器1302和液泵1303通过管路连通;
电机控制器300用于向电机1301的直轴或零轴输出交变电流,该交变电流具有直流偏置,该交变电流用于使电机1301发热;
液泵1303用于驱动管路,使电机1301发热所产生的热量通过换热器1302交换至动力电池1304。
其中,电机1301可以为油冷电机。电机1301的一种可能的结构示意图可以如图2所示。当然,现有技术中的其他油冷电机的结构对本申请实施例同样适用。
需要说明的是,热交换系统1300的具体工作原理和连接方式可以参见图1所示的热交换系统中的相关描述,此处不再赘述。
基于同一发明构思,本申请实施例还提供一种电流注入方法。参见图14,该方法包括:
S1401:电机控制器确定向电机输出的交变电流的参数。
其中,该交变电流具有直流偏置,该交变电流用于加热电机。
具体地,交变电流的参数包括波形、相位、幅值、频率以及直流偏置值。由于向电机输出具有直流偏置的交变电流是为了加热电机,进而加热动力电池,因此电机控制器可以根据电机的温度、动力电池的温度、电机三相绕组的电流限制和温度限制等因素确定交变电流的参数。
S1402:电机控制器向电机的直轴或零轴输出该交变电流。
该电流注入方法可以视为前述电机控制器300所执行的方法,通过执行该方法,电机控制器300可以向电机通入电流,从而加热电机。电机控制器300所执行方法的详细实现过程可以参见图3所示的电机控制器300中的相关描述,此处不再赘述。
基于同一发明构思,本申请实施例还提供一种动力总成。如图15所示,动力总成1500包括电机1501、减速器1502以及前述电机控制器300。
此外,本申请实施例还提供一种车辆。如图16所示,车辆1600包括动力电池1601以及动力总成1500。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种电机控制器,其特征在于,包括控制装置和逆变电路;
    所述控制装置,用于控制所述逆变电路向电机输入交变电流,其中,所述交变电流具有直流偏置,所述交变电流用于加热所述电机;
    所述逆变电路,用于在所述控制装置的控制下,向所述电机的直轴或零轴输出所述交变电流。
  2. 如权利要求1所述的电机控制器,其特征在于,所述逆变电路采用三相三线制,所述逆变电路具体用于:
    在所述控制装置的控制下,向所述电机的直轴输出具有直流偏置的第一交变电流。
  3. 如权利要求1所述的电机控制器,其特征在于,所述逆变电路采用三相四线制,所述逆变电路具体用于:
    在所述控制装置的控制下,向所述电机的零轴输出具有直流偏置的第二交变电流,或者向所述电机的直轴输出具有直流偏置的第三交变电流。
  4. 如权利要求2所述的电机控制器,其特征在于,所述逆变电路连接直流母线,所述逆变电路采用两电平拓扑,所述逆变电路的中性点通过第一开关单元和第一电感与所述直流母线的正极连接;或者
    所述逆变电路采用两电平拓扑,所述逆变电路的中性点通过第二开关单元和第二电感与所述直流母线的负极连接;或者
    所述逆变电路采用两电平拓扑,所述逆变电路的中性点通过第三开关单元和第三电感与所述直流母线的正极连接,所述逆变电路的中性点通过第四开关单元和第四电感与所述直流母线的负极连接。
  5. 如权利要求2所述的电机控制器,其特征在于,所述逆变电路采用开绕组结构或多电平拓扑。
  6. 如权利要求1~5任一项所述的电机控制器,其特征在于,所述交变电流为正弦波、方波、三角波、锯齿波和梯形波中的任一种。
  7. 如权利要求1~6任一项所述的电机控制器,其特征在于,所述交变电流不含负值。
  8. 一种热交换系统,其特征在于,包括电机、换热器、液泵、动力电池,以及如权利要求1~7任一项所述的电机控制器;其中,
    所述电机、所述换热器和所述液泵通过管路连通;
    所述电机控制器用于向所述电机的直轴或零轴输出交变电流,所述交变电流具有直流偏置,所述交变电流用于使所述电机发热;
    所述液泵用于驱动所述管路,使所述电机发热所产生的热量通过所述换热器交换至所 述动力电池。
  9. 如权利要求8所述的热交换系统,其特征在于,所述电机为油冷电机。
  10. 一种电流注入方法,其特征在于,包括:
    电机控制器确定向电机输出的交变电流的参数,其中,所述交变电流具有直流偏置,所述交变电流用于加热所述电机;
    所述电机控制器向所述电机的直轴或零轴输出所述交变电流。
  11. 一种动力总成,其特征在于,包括:电机、减速器以及如权利要求1~7任一项所述的电机控制器。
  12. 一种车辆,其特征在于,包括动力电池以及如权利要求11所述的动力总成。
PCT/CN2020/131243 2020-11-24 2020-11-24 一种电机控制器、热交换系统及电流注入方法 WO2022109808A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080019346.XA CN114080751A (zh) 2020-11-24 2020-11-24 一种电机控制器、热交换系统及电流注入方法
PCT/CN2020/131243 WO2022109808A1 (zh) 2020-11-24 2020-11-24 一种电机控制器、热交换系统及电流注入方法
JP2023512102A JP2023539110A (ja) 2020-11-24 2020-11-24 モータコントローラ、熱交換システム、および電流注入方法
EP20962699.3A EP4184788A4 (en) 2020-11-24 2020-11-24 MOTOR CONTROLLER, HEAT EXCHANGE SYSTEM AND CURRENT INJECTION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/131243 WO2022109808A1 (zh) 2020-11-24 2020-11-24 一种电机控制器、热交换系统及电流注入方法

Publications (1)

Publication Number Publication Date
WO2022109808A1 true WO2022109808A1 (zh) 2022-06-02

Family

ID=80282917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131243 WO2022109808A1 (zh) 2020-11-24 2020-11-24 一种电机控制器、热交换系统及电流注入方法

Country Status (4)

Country Link
EP (1) EP4184788A4 (zh)
JP (1) JP2023539110A (zh)
CN (1) CN114080751A (zh)
WO (1) WO2022109808A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022204631A1 (de) 2022-05-11 2023-11-16 Volkswagen Aktiengesellschaft Wärmebereitstellung bei einem stehenden Elektrofahrzeug

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114604103B (zh) * 2022-03-17 2024-02-02 威睿电动汽车技术(宁波)有限公司 电机的主动加热方法、装置、设备、存储介质及程序产品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090315492A1 (en) * 2008-06-24 2009-12-24 Naoki Oomura Motor control unit and air conditioner having the same
CN104808148A (zh) * 2015-05-07 2015-07-29 哈尔滨工业大学 一种多相多单元永磁电机温升的测试方法
CN209358458U (zh) * 2018-12-11 2019-09-06 上海元城汽车技术有限公司 直流偏置抑制装置、电机控制器及交流电机驱动系统
CN110247607A (zh) * 2019-06-13 2019-09-17 华中科技大学 一种开关磁阻电机开绕组控制系统及控制方法
CN111376672A (zh) * 2018-12-27 2020-07-07 华为技术有限公司 热管理系统、方法及车辆
CN111490714A (zh) * 2020-04-17 2020-08-04 东南大学深圳研究院 一种永磁同步电机的温度检测方法
CN111959252A (zh) * 2020-07-08 2020-11-20 华为技术有限公司 一种动力总成的冷却系统、方法、动力总成及电动汽车

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259752B2 (ja) * 2011-02-04 2013-08-07 株式会社日立製作所 車両走行用モータの制御装置及びそれを搭載した車両
CN103825060B (zh) * 2014-02-28 2016-06-29 清华大学 电池的低温预热与充电方法
JP2016111754A (ja) * 2014-12-03 2016-06-20 トヨタ自動車株式会社 自動車
CN110971173B (zh) * 2018-12-21 2021-01-19 比亚迪股份有限公司 动力电池的充电方法、电机控制电路及车辆
CN109768748A (zh) * 2019-03-29 2019-05-17 广东美的制冷设备有限公司 矢量控制系统、控制方法、装置、空调器与存储介质
CN111865183A (zh) * 2019-04-24 2020-10-30 浙江吉智新能源汽车科技有限公司 一种用于车辆的电机主动发热控制方法和系统及车辆
CN110798117B (zh) * 2019-10-12 2021-08-31 华中科技大学 一种磁场调制开关磁阻电机双电端口驱动系统及控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090315492A1 (en) * 2008-06-24 2009-12-24 Naoki Oomura Motor control unit and air conditioner having the same
CN104808148A (zh) * 2015-05-07 2015-07-29 哈尔滨工业大学 一种多相多单元永磁电机温升的测试方法
CN209358458U (zh) * 2018-12-11 2019-09-06 上海元城汽车技术有限公司 直流偏置抑制装置、电机控制器及交流电机驱动系统
CN111376672A (zh) * 2018-12-27 2020-07-07 华为技术有限公司 热管理系统、方法及车辆
CN110247607A (zh) * 2019-06-13 2019-09-17 华中科技大学 一种开关磁阻电机开绕组控制系统及控制方法
CN111490714A (zh) * 2020-04-17 2020-08-04 东南大学深圳研究院 一种永磁同步电机的温度检测方法
CN111959252A (zh) * 2020-07-08 2020-11-20 华为技术有限公司 一种动力总成的冷却系统、方法、动力总成及电动汽车

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022204631A1 (de) 2022-05-11 2023-11-16 Volkswagen Aktiengesellschaft Wärmebereitstellung bei einem stehenden Elektrofahrzeug

Also Published As

Publication number Publication date
EP4184788A1 (en) 2023-05-24
JP2023539110A (ja) 2023-09-13
CN114080751A (zh) 2022-02-22
EP4184788A4 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
Zhou et al. Multi-objective optimization design of variable-saliency-ratio PM motor considering driving cycles
Xu et al. Design and control of a high-efficiency doubly-fed brushless machine for wind power generator application
Crescimbini et al. High-speed electric drive for exhaust gas energy recovery applications
Xiao et al. An effective charging-torque elimination method for six-phase integrated on-board EV chargers
WO2022109808A1 (zh) 一种电机控制器、热交换系统及电流注入方法
CN104993767B (zh) 考虑谐波耦合的多相电机缺相故障容错运行电流重构方法
WO2023272527A1 (zh) 加热控制方法、装置、油泵电机和热交换系统
CN106026830B (zh) 一种定子无铁心永磁同步电机驱动系统及其控制方法
Gao et al. Improved operation and control of single-phase integrated on-board charger system
Yu et al. Permeance and inductance modeling of a double-stator hybrid-excited flux-switching permanent-magnet machine
Shao et al. Investigation on phase shift between multiple multiphase windings in flux-switching permanent magnet machines
Zhao et al. Comparative study of modular-stator and conventional outer-rotor flux-switching permanent-magnet motors
Chen et al. Mild Hybridization of Turboprop Engine With High-Power-Density Integrated Electric Drives
Hwang et al. Design and analysis of dual stator PMSM With separately controlled dual three-phase winding for eVTOL propulsion
CN107846165B (zh) 双余度永磁同步电动机线圈匝间短路时抑制转矩脉动方法
Li et al. Loss calculation and thermal analysis of ultra-high speed permanent magnet motor
Balasubramanian et al. Performance evaluation of a high-speed permanent magnet synchronous machine with hairpin winding technology
Shao et al. Design of a twelve-phase flux-switching permanent magnet machine for wind power generation
Chen et al. Design of a brushless doubly fed generator with simplified three-phase wound rotor
Liu et al. Analysis on circulating current loss in the formed winding of permanent magnet synchronous motors
CN114514694B (zh) 一种电机控制器、动力总成、控制方法及电动车辆
Liu et al. Precise Control of Flat-Topped Air-Gap Magnetic Field in a Five-Phase Induction Machine Powered by Third-Harmonic-Injected Sinusoidal Supply
Mese et al. Design of dual winding permanent magnet synchronous machines for hybrid electric vehicle accessory drives
Wang et al. Design and analytical inductance calculations of five-phase fault-tolerant permanent-magnet Machine
Chu et al. Pre-compressed Multi-Strand Bar Conductors for High-Power Density Traction Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512102

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020962699

Country of ref document: EP

Effective date: 20230215

NENP Non-entry into the national phase

Ref country code: DE