WO2023155338A1 - 可3d/4d打印的双网络零反式类脂肪乳液凝胶及制备 - Google Patents

可3d/4d打印的双网络零反式类脂肪乳液凝胶及制备 Download PDF

Info

Publication number
WO2023155338A1
WO2023155338A1 PCT/CN2022/097606 CN2022097606W WO2023155338A1 WO 2023155338 A1 WO2023155338 A1 WO 2023155338A1 CN 2022097606 W CN2022097606 W CN 2022097606W WO 2023155338 A1 WO2023155338 A1 WO 2023155338A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
printing
fatty acid
emulsion gel
printable
Prior art date
Application number
PCT/CN2022/097606
Other languages
English (en)
French (fr)
Inventor
孟宗
蒋秦波
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2023155338A1 publication Critical patent/WO2023155338A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • A23D9/013Other fatty acid esters, e.g. phosphatides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
    • A23D9/04Working-up
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G1/00Cocoa; Cocoa products, e.g. chocolate; Substitutes therefor
    • A23G1/0003Processes of manufacture not relating to composition or compounding ingredients
    • A23G1/005Moulding, shaping, cutting, or dispensing chocolate
    • A23G1/0053Processes of shaping not covered elsewhere
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G1/00Cocoa; Cocoa products, e.g. chocolate; Substitutes therefor
    • A23G1/30Cocoa products, e.g. chocolate; Substitutes therefor
    • A23G1/32Cocoa products, e.g. chocolate; Substitutes therefor characterised by the composition containing organic or inorganic compounds
    • A23G1/36Cocoa products, e.g. chocolate; Substitutes therefor characterised by the composition containing organic or inorganic compounds characterised by the fats used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the invention relates to a 3D/4D printable double-network zero-trans fat-like emulsion gel and its preparation, belonging to the technical field of healthy fats and food processing.
  • the 3D printing methods in the food field include fused deposition method, laser sintering method, and ink direct writing method.
  • the ink direct writing method is widely used in the 3D printing of edible materials due to its convenience and mild conditions.
  • the ink direct writing method requires the printed material to have certain rheological characteristics, so that the material can be smoothly discharged and formed during the printing process, so in food 3D printing, the materials that can be used for the ink direct writing method are often relatively low.
  • Soft vegetable puree, gel-like substances which leads to the low strength of its printing target and greatly restricts the creativity of food 3D printing.
  • the emulsion can exhibit gel-like properties when its internal phase is high, which makes it suitable for direct ink writing for 3D printing, but the interior of the emulsion often does not have a rigid structure, so the emulsion is used to print out The structural strength of the object is not high.
  • Many oil-in-water emulsions with a high internal phase do not meet consumers' needs for a low-fat healthy diet because their oil content is too high.
  • a water-in-oil emulsion with a medium-high internal phase for 3D printing can realize ink direct writing method for 3D printing under the condition of low oil phase, and add zero-trans low saturated fatty acid oil to the oil phase and water phase respectively
  • Soluble network builders and healthy water-soluble network builders can greatly improve the physical strength of the printed target, thereby overcoming the defects that the printed body is too soft, cannot be molded, and the printing model is limited.
  • This 3D/4D printable dual-network zero-trans fat-like emulsion gel can satisfy consumers' pursuit of healthy food, and at the same time achieve more difficult and challenging printing goals, bringing consumers better consumption Experience, so that the customized needs of consumers can be better realized through 3D printing.
  • the structure of the emulsion obtained by 3D printing is not high, and the oil content of the oil-in-water emulsion is high.
  • the present invention provides a medium-high internal phase water-in-oil fat emulsion gel that can be 3D/4D printed, curable, does not contain trans fat, has low saturated fat content, and has the characteristics of plastic fat.
  • the present invention uses hydrophilic colloids, oil-soluble small molecular substances, vegetable oils, and emulsifier nanoparticles as raw materials, and uses the hydrophilic colloids as the network builder of the water phase to prepare the hydrophilic colloids into an aqueous solution, and uses the oil-soluble small molecular substances or Vegetable oil is used as the network builder of the oil phase.
  • the particle emulsifier is emulsified to prepare double network zero-trans low saturated fatty acid emulsion gel.
  • the obtained double-network zero-trans low-saturated fatty acid emulsion gel is 3D/4D printed, and under controlled temperature conditions, the printed object is cured to improve the structural strength of the printed object.
  • the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel of the present invention greatly reduces the oil content in the system, and the oil phase used is healthy edible oil of zero-trans low-saturated fatty acid, which can be used for convenience Fast ink direct writing method for 3D/4D printing, its curing effect can print more complex targets in the food field, give full play to the creativity of food producers and consumers, and provide more materials for food 3D/4D printing Space.
  • the first object of the present invention is to provide a method for preparing a 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel, comprising the following steps:
  • step (3) Mix the aqueous solution of step (1) and the oil solution or mixed grease of step (2) at a volume ratio of 1:1-9:1, and homogeneously emulsify to obtain the 3D/4D printable double Network zero trans low saturated fatty acid emulsion gel.
  • the hydrophilic colloid described in step (1) is hydroxypropyl methylcellulose, methylcellulose, hydroxyethylcellulose, xanthan gum, guar gum, carrageenan , flaxseed gum, pectin, gum arabic, locust bean gum, konjac gum, agar, gellan gum, gelatin, whey protein, pea protein, soy protein, mung bean protein, broad bean protein, peanut protein, chickpea protein, One or more of rice protein, oat protein, and potato protein.
  • the emulsifier nanoparticles described in step (1) are one or more of phytosterol particles, shellac particles, sucrose ester particles, monoglyceride particles, and diglyceride particles .
  • the particle size of the emulsifier nanoparticles described in step (1) is 100-3000 nm.
  • the mass concentration of the hydrophilic colloid in the aqueous solution in step (1) is 0.1-20%.
  • the hot water in step (1) is water at a temperature of 40-90°C.
  • the dissolving in step (1) is stirring and dissolving, specifically stirring and dissolving at 100-2000 rpm for 0.5-10 min.
  • the vegetable oil described in step (2) includes soybean oil, rapeseed oil, peanut oil, sunflower oil, tea seed oil, sesame oil, corn oil, wheat germ oil, olive oil, firewood Sesame Oil, Canola Oil, Palm Oil, Palm Olein, Palm Kernel Oil, coconut Oil, Palm Stearin, Cocoa Butter, Shea Butter Fractional Stearin, Salsa, Mango Kernel Oil, Miracle Butter, One or more of coconut oil stearin; the vegetable oil for preparing the mixed oil needs to contain palm oil, palm kernel oil, coconut oil, palm stearin, cocoa butter, shea butter fractionation stearin, salicin, At least one of mango kernel oil, mistletoe butter, and coconut oil stearin, and the mass ratio in the mixed oil is greater than 25%.
  • the oil-soluble small molecule described in step (2) is monoglyceride, diglyceride, mono-diglyceride fatty acid ester, polyglycerol fatty acid ester, sodium stearoyl lactylate, sucrose fat Ester, Glyceryl Lactic Fatty Acid, Glyceryl Citrate Fatty Acid, Propylene Glycol Fatty Acid, Diacetyl Tartrate Monoglyceride, Diacetyl Tartrate Diglyceride, Acetylated Monoglyceride Fatty Acid, Acetylated Diglyceride Fatty Acid, Fatty Acid One or more of alcohol, vegetable wax (carnauba wax, candelilla wax, rice bran wax, sugarcane wax, laurel wax), animal wax (insect wax, beeswax, spermaceti, wool wax), and in oil solution The mass concentration in is 0.5-15%.
  • the heating in step (2) is stirring at 40-150° C. for 0.5-10 min.
  • the mixing in step (3) is heating to 40-90° C. and stirring and mixing for 0.5-10 min.
  • the homogeneous emulsification described in step (3) is emulsified at 5000-20000rpm for 10-600s.
  • the second object of the present invention is the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel prepared by the method of the present invention.
  • the third object of the present invention is the application of the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel of the present invention in the food field.
  • the application includes preparing 3D/4D printed food and molecular gastronomy.
  • said use comprises use in the preparation of chocolate.
  • the fourth object of the present invention is to provide a method for customizing chocolate through 3D/4D printing, which is to use the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel of the present invention through 3D printing method to get;
  • the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel obtained by the present invention is added to the 3D printing needle tube to ensure that the system in the needle tube is uniform and not dispersed;
  • Adjust the temperature in the printing chamber select the 3D printing nozzle to fill, and adjust the X, Y, and Z axes of the 3D printer to return to zero through the program setting;
  • the equipment adopts the method of extrusion for food 3D printing, forming a customized model with certain self-supporting properties.
  • the 3D printing needle tube has a capacity of 50 mL, and the needle tube made of PVC plastic or aluminum can be used according to the temperature used.
  • the adjustment of the internal temperature of the printing chamber, the set temperature is in the range of 0-60°C, more preferably 35-45°C.
  • the data modeling software used is Rhinoceros version 5.0, wherein the exported 3D model is obj format, the slicing software used is Cura15.02.1 version, and the file format after slicing is gcode format.
  • the specific parameters of printing are as follows: the thickness of the printing layer is 0.5-1.2mm, the thickness of the wall is 0.4-1.2mm, the filling density is 10-60%, and the thickness of the bottom layer and the top layer is 0.5-1.2mm , the printing speed is 40-120mm/s, the printing temperature is 0-60°C, the initial layer thickness is 0.5-1.2mm, the initial layer line width is 10-80%, the bottom cut is 0mm, and the moving speed is 20-200mm/s , the bottom layer speed is 20-120mm/s, the filling speed is 20-120mm/s, the bottom and top layer speed is 20-100mm/s, the shell speed is 20-120mm/s, and the inner wall speed is 10-80mm/s.
  • a fifth object of the present invention is the customized chocolate prepared by the method of the present invention.
  • the sixth object of the present invention is to provide a biological porous material, after the described biological porous material is 3D printed by the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel of the present invention, Freeze-dried to obtain.
  • the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel of the present invention refers to a kind of viscoelastic soft solid that can be used for ink direct writing in 3D printing before curing, and has an emulsion structure Stabilized by hydrophobic Pickering particles, it belongs to high internal phase emulsion, has similar physical properties to plastic fat, can partially or completely replace traditional fat in food production, and can also serve as an intermediate template substance in the preparation of biological porous materials .
  • the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel of the present invention uses hydrophilic colloid as the network builder of the water phase, and dissolves water-soluble substances in water to prepare an aqueous solution, oil Soluble small molecules or vegetable oils are used as network builders of the oil phase. Oil-soluble small molecules or single or multiple vegetable oils are prepared into a liquid oil phase, and nanoparticles are added as emulsifiers to the mixed oil-water two-phase and then emulsified.
  • the dual-network zero-trans low-saturated fatty acid emulsion gel, after 3D printing, can control the temperature conditions to make the structure solidify so as to improve the printing target structure strength.
  • the solidification of the structure is accomplished by the formation of a strong crystalline network in the oil phase by small oil-soluble molecules or vegetable oils under controlled temperature.
  • the double-network zero-trans low-saturated fatty acid emulsion gel has the viscoelastic properties of plastic fat when it is not cured, and has good thixotropy and plasticity.
  • the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel not only has good printability, but also The crystal network can greatly improve the structural strength of the printing target, greatly increasing the customizability of 3D printing, thus greatly exerting the advantages of 3D printing in the field of food customization.
  • the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel of the present invention is a soft solid with semi-solid properties, which can exhibit the characteristics of plastic-like traditional fats, and can be directly absorbed by ink.
  • the 3D printing method can produce crystal network in the oil phase and solidify the printed object under the condition of temperature control, and can carry out more complex food 3D printing to meet the customized needs of consumers.
  • the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel of the present invention is mainly constructed of low-content zero-trans low-saturated oils and healthy water-soluble biopolymers, which can improve The health and safety of 3D printed food can meet the requirements of consumers for green and healthy products.
  • the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel of the present invention can be used as a template for preparing biological porous materials, which can remove the internal water phase by drying, leaving a rigid structure
  • the porous dry foam material can play an important role in cosmetics and medicine.
  • the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel of the present invention has a certain responsiveness to temperature, and will melt to a certain extent as the temperature increases. Design corresponding food 4D printing.
  • the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel of the present invention does not contain trans fatty acids and contains low-content saturated fatty acids, which can be used in foods such as chocolate, ice cream, and non-dairy cream Partially or completely replace the traditional plastic fat, which has the characteristics of health and safety.
  • Fig. 1 is that soybean oil and palm stearin are mixed at a mass ratio of 1:1 in Example 1 to obtain a physical picture and a microscope image of a double-network zero-trans low-saturated fatty acid emulsion gel that can be printed in 3D/4D; Among them (A) laser confocal microscope image; (B) optical microscope image; (C) schematic diagram of emulsion microstructure; (D) scanning electron microscope image; (E) is a partially enlarged image of (C).
  • Fig. 2 is the rheological strain test result (a), the time test result (b) and the temperature test result (c) of the dual-network zero-trans low-saturated fatty acid emulsion gel prepared in Example 1. ).
  • Figure 3 shows the 3D/4D printable double-network zero-trans low-saturated fatty acid fat prepared by mixing phytosterol nanoparticles, ⁇ -carrageenan, soybean oil and palm stearin in a 1:1 mass ratio in Example 1
  • the Fourier transform infrared spectrum data of the drying sample of emulsion gel Wherein (a) is phytosterol nanoparticle, ⁇ -carrageenan; (b) is soybean oil and palm stearin mass ratio in embodiment 1; 1: 1 Lotion Gel.
  • Figure 4 is a polarizing microscope microscopic picture of the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel prepared in Example 1, where a, b, c, d, and e represent palm oil in the oil phase
  • the mass concentration of stearin is 0, 25, 50, 75, 100%.
  • Fig. 5 is the hardness test result of the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel prepared in Example 1 after solidification.
  • Fig. 6 is the physical figure of the product prepared by comparative example 1 (a) and comparative example 2 (b, c, d); Wherein, (a) is comparative example 1; (b) is the dosage of phytosterol nanoparticles in comparative example 2 It is 0.5g; (c) is that the dosage of phytosterol nanoparticles in Comparative Example 2 is 1g; (c) is that the dosage of phytosterol nanoparticles in Comparative Example 2 is 1.5g.
  • Figure 7 is the extrusion test result of the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel prepared in Example 2 for food 3D printing; where a-e is the mass concentration of palm stearin is 0 , 25, 50, 75, 100%.
  • Fig. 8 is a physical picture of the small tower model printed by the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel prepared in Example 2.
  • Figure 9 is the printed Hilbert curve of the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel prepared in Example 3 and its hardness test using a 500g weight (a) , and dry it to prepare bioporous material and cryo-scanning electron microscope picture (b).
  • Fig. 10 shows the mold-made chocolate and its microstructure (a) prepared in Example 4, and the display of the 4D printing effect of the model obtained by 3D printing (b).
  • Figure 11 shows the flowers printed by the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel prepared in Example 5.
  • Figure 12 is the rheological frequency test results of the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel prepared in Example 6.
  • FIG. 13 is a 3D printing effect diagram of a complex structure of the product prepared in Comparative Example 5.
  • the hardness of the cured 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel is measured by a texture analyzer.
  • the measurement method is a single extrusion, and the strain degree is 30%.
  • the microstructure of the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel is observed by polarizing microscope, laser confocal microscope, scanning electron microscope, and cryo-scanning electron microscope with a magnification of 100-10000 times ,
  • the test temperature is 25°C or -80°C.
  • the rheological properties of the double-network zero-trans low-saturated fatty acid emulsion gel that can be printed in 3D/4D are measured by a rotational rheometer.
  • Time scanning the condition of strain scanning is 0.01-100%, temperature and frequency are 45°C and 1Hz respectively, the condition of temperature scanning is 20-50°C, strain and frequency are respectively 0.01% and 1Hz, time scanning is divided into three sections, The scanning time of each segment is 60s, the strain of the first and third stages is 0.01%, the strain of the second segment is 100%, the temperature and frequency are 45°C and 1Hz respectively.
  • the test condition of the frequency sweep is 0.01% strain, temperature is 45°C, frequency is increased from 0.01 Hz to 10 Hz.
  • the Fourier transform infrared spectrum of the double-network zero-trans low-saturated fatty acid emulsion gel that can be printed by 3D/4D is measured by a Fourier transform infrared spectrometer. Scan within a wavenumber of -600cm -1 .
  • a method for preparing a 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel comprising the steps of:
  • step (3) Mix the aqueous solution of step (1) and the mixed oil of (2) at a volume ratio of 3:1, stir at 400rpm for 10min at 70°C to fully mix, and then perform homogeneous emulsification at a rate of 16000rpm for 4min , to obtain a double-network zero-trans low-saturated fatty acid emulsion gel that can be printed in 3D/4D.
  • Figure 1 is the physical picture and microstructure picture of the 3D/4D printable double network zero-trans low saturated fatty acid emulsion gel prepared by mixing soybean oil and palm stearin at a mass ratio of 1:1, from It can be seen from Figure 1 that the double-network zero-trans low-saturated fatty acid emulsion gel presents semi-solid characteristics, and the emulsion droplets are stabilized by phytosterol nanoparticles, and the emulsion droplets are piled together to form a gel network.
  • the ⁇ -carrageenan present in the water phase of the water phase is used as a water phase structure enhancer to stabilize the water in the emulsion droplets.
  • Figure 2 is the rheological test results of the emulsion gel. It can be seen from Figure 2 that the G' of the sample in the linear viscoelastic region is greater than G", and when the shear strain becomes larger, G" will surpass G', which means that the emulsion gel has thixotropy; in the time sweep test Among them, the emulsion gel can still recover the modulus to a large extent after strong shear failure; in the temperature scan, it can be found that the modulus of the emulsion gel increases rapidly with the decrease of temperature, which is the same as that of water during the cooling process. It has a lot to do with the mixed grease (structural enhancer) in the oil phase and the oil phase.
  • Figure 3 shows the Fourier transform infrared spectra of phytosterol nanoparticles, ⁇ -carrageenan and dry emulsion gel (made from soybean oil and palm stearin at a mass ratio of 1:1). It can be seen from Figure 3 that the hydroxyl absorption peak near 3400 cm -1 in the dry emulsion gel has a red shift to a certain extent compared with the corresponding absorption peaks of phytosterol nanoparticles and ⁇ -carrageenan, which means that the emulsion gel
  • the ⁇ -carrageenan in the aqueous phase strengthens the structure of the aqueous phase through hydrogen bonding, while the phytosterol particles perform hydrogen bonding interactions at the emulsion droplet interface.
  • Figure 4 is a polarizing microscope image of the emulsion gel. It can be seen from Figure 4 that the visible light point in the figure is the palm stearin in the emulsion gel, indicating that the oil phase in the emulsion gel is strengthened by the crystalline network formed by palm stearin.
  • Table 1 and Figure 5 are the hardness data of the cured emulsion gel. It can be seen from Table 1 that as the concentration of palm stearin increases, the hardness of the cured emulsion gel increases exponentially.
  • trans fat and saturated fat contained in the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel of Example 1 was tested by gas chromatography.
  • the heating program: 0-3min was 130°C, and Raise the temperature to 200°C at a rate of 5°C/min, then raise the temperature to 220°C at a rate of 2°C/min and keep for 3 minutes, the split ratio is 20, and the flow rate of the chromatographic column is 1.8mL/min.
  • the contents of trans fat and saturated fat in the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel are shown in Table 2.
  • the 3D/4D printable double-network zero-trans low-saturated fatty acid emulsion gel does not contain trans fatty acids, and the saturated fatty acid content is far lower than 48.15% of commercially available butter. %, to meet the requirements of consumers for a healthy diet.
  • step (3) Adjust the aqueous solution of step (1) in step (3) in embodiment 1 and the volume ratio of the mixed fat of (2) to be 1:3, other and embodiment 1 (soybean oil and palm stearin mass ratio are 1:1) Stay consistent and get the product.
  • the product has strong fluidity, does not have good molding ability, cannot become a plastic semi-solid, and cannot be used for 3D printing.
  • Adjusting the dosage of phytosterol nanoparticles in Example 1 is 0.5, 1, 1.5g, the quality of corresponding water is 99.2, 98.7, 98.2g, other and Example 1 (soybean oil and palm stearin mass ratio are 1:1) Stay consistent and get the product.
  • the product that obtains is shown in b, c, d in Fig. 6, because the concentration of the particle of phytosterol is too low, the fluidity of the formed product is strong, can't form viscoelastic body with plasticity, so the phytosterol particle of lower concentration is prepared
  • the emulsion products do not have the rheological properties for 3D printing.
  • Phytosterol nanoparticles are adjusted to nano octenyl succinic anhydride modified quinoa starch granules (900nm) in Example 1, and others are consistent with Example 1 (mass ratio of soybean oil and palm stearin is 1:1), and the product is obtained .
  • the obtained product is an oil-in-water emulsion, and the oil phase is used as the internal phase, and the crystalline network in the oil phase cannot solidify the emulsion system, and a solidified product cannot be obtained.
  • Example 1 The phytosterol nanoparticles in Example 1 were adjusted to be nanoparticulated whey protein (1000nm), and the others were consistent with Example 1 (mass ratio of soybean oil to palm stearin was 1:1) to obtain the product.
  • the obtained product is an oil-in-water emulsion, and the oil phase is used as the internal phase, and the crystalline network in the oil phase cannot solidify the emulsion system, and a solidified product cannot be obtained.
  • the application of the double-network zero-trans low-saturated fatty acid emulsion gel obtained in Example 1 in food 3D printing comprises the following steps:
  • Example 1 The double-network zero-trans low-saturated fatty acid fat emulsion gel obtained in Example 1 is maintained at a temperature of 40° C., transferred to the storage tank of the food 3D printer, and the temperature of the storage tank is set to 45°C;
  • Figure 7 is the extrusion test of the emulsion gel by the 3D printer. It can be seen from Figure 7 that the amount of palm stearin added has no effect on the 3D printing extrusion of the emulsion gel, and all samples have good extrudability sex.
  • Fig. 8 is the small tower model that adopts this emulsion gel product to carry out 3D printing, as can be seen from Fig. 8: in the emulsion gel containing palm stearin, when the concentration of palm stearin in the oil phase is 25%, The model can be printed completely, but it will collapse once the model is tilted.
  • Adjust embodiment 1 step (2) to be:
  • Steps (1) and (3) are consistent with Example 1 to obtain a double-network zero-trans low-saturated fatty acid emulsion gel that can be printed in 3D/4D;
  • the printing test of the flower model is carried out by the printer.
  • Example 2 Others are consistent with Example 1 to obtain the fat-like emulsion gel.
  • a method for emulsion gel type fat substitute comprising the steps of:
  • step (3) Mix the oil solution of step (1) and the aqueous solution of step (2) according to the mass ratio of 5:5, and use a high-speed homogenizer to emulsify the mixed solution for 2 minutes at a rate of 10000rpm to obtain an emulsion; The emulsion was placed at room temperature and stirred at a low speed of 400 rpm until the system gelled to obtain an emulsion gel type fat substitute.
  • the printing performance of the emulsion-gel fat substitute is weak, and it cannot complete the 3D printing of complex models, and cannot be used for 4D printing at all.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Colloid Chemistry (AREA)
  • Confectionery (AREA)

Abstract

可3D/4D打印的双网络零反式类脂肪乳液凝胶及其制备方法,包括如下步骤:(1)将亲水胶体加入含有乳化剂纳米颗粒的热水中,溶解,得到水溶液;其中,纳米颗粒在水溶液中的质量浓度为0.5-15%;(2)将油溶性小分子溶解于加热后的植物油脂中,混合均匀,得到油溶液;或,将多种植物油脂混合加热,得到混合油脂;(3)将步骤(1)的水溶液和步骤(2)的油溶液或混合油脂以1:1-9:1的体积比进行混合,均质乳化,得到所述的乳液凝胶。

Description

可3D/4D打印的双网络零反式类脂肪乳液凝胶及制备 技术领域
本发明涉及可3D/4D打印的双网络零反式类脂肪乳液凝胶及制备,属于健康油脂与食品加工技术领域。
背景技术
食品领域内的3D打印方式有熔融沉积法、激光烧结法、墨水直写法,其中墨水直写法以方便、条件温和等优势被广泛应用在可食用材料的3D打印中。但由于墨水直写法需要打印的物料具有一定的流变特性,使物料能够在打印的过程中流畅地出料以及成型,因此在食品3D打印中,能够用于墨水直写法打印的材料往往为较软的蔬菜泥、凝胶类物质,这就导致了其打印目标的强度较低而极大地束缚了食品3D打印的创造力。
乳液在其内相较高时可呈现出类凝胶的特性,这种特性使其能够很好地适配墨水直写法而用于3D打印,但乳液内部往往没有刚性结构,因此采用乳液打印出的物体的结构强度不高。许多高内相的水包油乳液则因为其含油量太高,不满足消费者对低脂健康饮食的需求。因此,采用中高内相的油包水乳液用于3D打印能够在油相较低的条件下实现墨水直写法进行3D打印,并且在油相和水相中分别加入零反式低饱和脂肪酸的油溶性网络构建剂和健康的水溶性网络构建剂能够极大地提高打印目标的物理强度,从而克服打印体太软、无法成型、打印模型局限性大等缺陷。这种可3D/4D打印的双网络零反式类脂肪乳液凝胶能够满足消费者对健康食品追求,同时实现难度更高、更具有挑战性的打印目标,为消费者带来更好的消费体验,令消费者的定制化需求通过3D打印更好地实现。
发明内容
[技术问题]
目前乳液采用3D打印得到的物质结构度不高,且水包油乳液的含油量高。
[技术方案]
为了解决上述问题,本发明提供了一种可3D/4D打印、可固化、不含反式脂肪、低饱和脂肪含量、具有塑性脂肪特征的中高内相油包水类脂肪乳液凝胶。本发明以亲水胶体、油溶性小分子物质、植物油脂、乳化剂纳米颗粒为原料,通过亲水胶体作为水相的网络构建剂,将亲水胶体制备成水溶液,通过油溶性小分子物质或植物油脂作为油相的网络构建剂,将油溶性小分子溶于油中制备油溶液或采用某种或多种植物油脂制备成液态的混合油脂,将水溶液和液态的油相混合,并添加纳米颗粒乳化剂进行乳化制备得到双网络零反式低饱和脂肪酸 类脂肪乳液凝胶。将得到的双网络零反式低饱和脂肪酸类脂肪乳液凝胶进行3D/4D打印,并在控制温度的条件下,使打印出的物体发生固化作用,提高打印目标的结构强度。本发明的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶大大降低了体系中的油含量,并且所用油相为零反式低饱和脂肪酸的健康食用油脂,可用于方便快捷的墨水直写法进行3D/4D打印,其固化作用可以在食品领域中打印更复杂的目标,充分发挥食品生产者和消费者的创造力,为食品3D/4D打印的物料选择提供了更多的空间。
本发明的第一个目的是提供一种制备可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的方法,包括如下步骤:
(1)将亲水胶体加入含有乳化剂纳米颗粒的热水中,溶解,得到水溶液;其中,纳米颗粒在水溶液中的质量浓度为0.5-15%;
(2)油溶液或混合油脂的制备
将油溶性小分子溶解于加热后的植物油脂中,混合均匀,得到油溶液;
将多种植物油脂混合加热,得到混合油脂;
(3)将步骤(1)的水溶液和步骤(2)的油溶液或混合油脂以1:1-9:1的体积比进行混合,均质乳化,得到所述的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶。
在本发明的一种实施方式中,步骤(1)所述的亲水胶体为羟丙基甲基纤维素、甲基纤维素、羟乙基纤维素、黄原胶、瓜尔胶、卡拉胶、亚麻籽胶、果胶、阿拉伯胶、刺槐豆胶、魔芋胶、琼脂、结冷胶、明胶、乳清蛋白、豌豆蛋白、大豆蛋白、绿豆蛋白、蚕豆蛋白、花生蛋白、鹰嘴豆蛋白、米蛋白、燕麦蛋白、土豆蛋白中的一种或几种。
在本发明的一种实施方式中,步骤(1)所述的乳化剂纳米颗粒为植物甾醇颗粒、虫胶颗粒、蔗糖酯颗粒、单甘油酯颗粒、甘油二酯颗粒中的一种或几种。
在本发明的一种实施方式中,步骤(1)所述的乳化剂纳米颗粒的粒径为100-3000nm。
在本发明的一种实施方式中,步骤(1)所述的亲水胶体在水溶液中的质量浓度为0.1-20%。
在本发明的一种实施方式中,步骤(1)所述的热水是温度为40-90℃的水。
在本发明的一种实施方式中,步骤(1)所述的溶解是搅拌溶解,具体是100-2000rpm搅拌溶解0.5-10min。
在本发明的一种实施方式中,步骤(2)所述的植物油脂包括大豆油、菜籽油、花生油、葵花籽油、茶籽油、芝麻油、玉米油、小麦胚芽油、橄榄油、火麻油、低芥酸菜籽油、棕榈油、棕榈液油、棕榈仁油、椰子油、棕榈硬脂、可可脂、乳木果油分提硬脂、婆罗树脂、芒 果仁油、雾冰草脂、椰子油硬脂中的一种或多种;所述制备混合油脂的植物油脂需含有棕榈油、棕榈仁油、椰子油、棕榈硬脂、可可脂、乳木果油分提硬脂、婆罗树脂、芒果仁油、雾冰草脂、椰子油硬脂中的至少一种,且在混合油脂中的质量比例大于25%。
在本发明的一种实施方式中,步骤(2)所述的油溶性小分子为单甘油酯、甘油二酯、单双甘油脂肪酸酯、聚甘油脂肪酸酯、硬脂酰乳酸钠、蔗糖脂肪酸酯、乳酸脂肪酸甘油酯、柠檬酸脂肪酸甘油酯、丙二醇脂肪酸酯、双乙酰酒石酸单甘油酯、双乙酰酒石酸双甘油酯、乙酰化单甘油脂肪酸酯、乙酰化双甘油脂肪酸酯、脂肪醇、植物蜡(巴西棕榈蜡、小烛树蜡、米糠蜡、甘蔗蜡、月桂蜡)、动物蜡(虫蜡、蜂蜡、鲸蜡、羊毛蜡)中的一种或几种,且在油溶液中的质量浓度为0.5-15%。
在本发明的一种实施方式中,步骤(2)所述的加热是在40-150℃下搅拌0.5-10min。
在本发明的一种实施方式中,步骤(3)所述的混合是加热到40-90℃下搅拌混合0.5-10min。
在本发明的一种实施方式中,步骤(3)所述的均质乳化是在5000-20000rpm乳化10-600s。
本发明的第二个目的是本发明所述的方法制备得到的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶。
本发明的第三个目的是本发明所述的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶在食品领域的应用。
在本发明的一种实施方式中,所述的应用包括用于制备3D/4D打印食品、分子美食。
在本发明的一种实施方式中,所述的应用包括用于制备巧克力。
本发明的第四个目的是提供一种通过3D/4D打印定制巧克力的方法,是采用本发明所述的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶通过3D打印方法得到;
其中,所述的方法包括如下步骤:
将本发明得到的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶添加至3D打印针管,保证针管中体系均一不分散;
调节打印腔室中的温度,并选择3D打印枪头填装,通过程序设定调整3D打印机X、Y、Z轴全部归零;
利用数字模型软件设计出3D模型,经切片软件生成相对应若干层三维切片,得到切片模型,将每层切片使用编程G代码计算出路径最终输入到打印设备;
根据材料以及选用针头直径不同,设定3D打印过程中的各类参数,具体如:打印层厚、 壁厚、填充密度、底层和顶层厚度、打印速率等;
设备根据导入的切片模型,采用挤出式的方法进行食品3D打印,形成具有一定自支撑性质的定制化模型。
在本发明的一种实施方式中,所述的3D打印针管容量为50mL,且根据使用的温度不同可以采用PVC塑料或是铝制针管。
在本发明的一种实施方式中,所述的调节打印腔室的内部温度,设定温度在0-60℃范围内,进一步优选为35-45℃。
在本发明的一种实施方式中,使用的数据建模软件为Rhinoceros 5.0版本,其中导出3D模型为obj格式,使用的切片软件为Cura15.02.1版本,切片后文件格式为gcode格式。
在本发明的一种实施方式中,打印的具体参数如下:打印层厚为0.5-1.2mm,壁厚为0.4-1.2mm,填充密度为10-60%,底层和顶层厚度为0.5-1.2mm,打印速率为40-120mm/s,打印温度为0-60℃,初始层厚为0.5-1.2mm,初始层线宽为10-80%,底层切除为0mm,移动速率为20-200mm/s,底层速率为20-120mm/s,填充速率为20-120mm/s,底层和顶层速率为20-100mm/s,外壳速率为20-120mm/s,内壁速率为10-80mm/s。
本发明的第五个目的是本发明所述的方法制备得到的定制巧克力。
本发明的第六个目的是提供一种生物多孔材料,所述的生物多孔材料由本发明所述的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶进行3D打印之后,冷冻干燥得到。
[有益效果]
(1)本发明的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶是指一种在进行固化前具有可用于3D打印中墨水直写法的粘弹性软固体,乳液结构通过疏水性皮克林颗粒稳定,属于高内相乳液,与塑性脂肪具有类似的物理特性,能够在食品生产中部分或全部替代传统脂肪的应用,也可在制备生物多孔材料中充当中间模板物质。
(2)本发明的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶是以亲水胶体作为水相的网络构建剂,将水溶性物质溶解在水中制备成水溶液,油溶性小分子或植物油脂作为油相的网络构建剂,将油溶性小分子或单一或多种植物油脂制备成液态的油相,将纳米颗粒作为乳化剂加入混合的油水两相后进行乳化制备得到的双网络零反式低饱和脂肪酸类脂肪乳液凝胶,在进行3D打印后可控制温度条件使其结构进行固化从而达到提高打印目标结构强度的作用。结构的固化通过油溶性小分子或植物油脂在控制温度下在油相中形成坚固的晶体网络完成。这种双网络零反式低饱和脂肪酸类脂肪乳液凝胶在未固化时具有类塑性脂肪的粘弹特性,具有良好的触变性和塑型性。与传统的高内相水包油乳液在3D打印的应用 相比,该可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶不仅具有良好的打印性,而且油相中的晶体网络能够极大地提高打印目标的结构强度,使3D打印的可定制性极大地增加,从而极大地在食品定制化领域发挥3D打印的优势。
(3)本发明的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶是一种具有半固体性质的软固体,能够表现出类塑性传统脂肪的特点,能够通过墨水直写法进行3D打印,并能够在控制温度的条件下使油相中产生晶体网络并使打印物体进行固化,能够进行更复杂的食品3D打印,满足消费者的定制化需求。
(4)本发明的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶主要由低含量的零反式低饱和油脂和健康的水溶性生物聚合物构建而成,能够提高3D打印食品的健康、安全性,满足广大消费者对产品绿色健康的要求。
(5)本发明的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶可以作为一种制备生物多孔材料的模板,能够通过干燥去除内部的水相,留下具有刚性结构的多孔干泡沫物质,能够在化妆品、医药中发挥重要作用。
(6)本发明的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶对温度具有一定的响应性,会随着温度的升高而发生一定程度的融化,可以据此设计相应的食品4D打印。
(7)本发明的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶不含反式脂肪酸,含有低含量的饱和脂肪酸,能够在巧克力、冰淇淋、植脂奶油等食品中部分或全部代替传统塑性脂肪,具有健康安全的特性。
附图说明
图1为实施例1中大豆油和棕榈硬脂以1:1质量比进行混合后制备得到可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的实物图、显微镜图片;其中(A)激光共聚焦显微镜图片;(B)光学显微镜图片;(C)乳液微观结构示意图;(D)扫描电子显微镜图片;(E)为(C)的局部放大图片。
图2为实施例1中制备得到可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的流变应变测试结果(a)、时间测试结果(b)和温度测试结果(c)。
图3为植物甾醇纳米颗粒、κ-卡拉胶和实施例1中大豆油和棕榈硬脂以1:1质量比进行混合后制备得到可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的干燥样品的傅里叶变换红外光谱数据;其中(a)为植物甾醇纳米颗粒、κ-卡拉胶;(b)为实施例1中大豆油和棕榈硬脂质量比为;1:1的乳液凝胶。
图4为实施例1中制备得到可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的偏光显微镜微观图片,其中,a、b、c、d、e代表油相中棕榈硬脂的质量浓度为0、25、50、75、100%。
图5为实施例1中制备得到可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶固化后的硬度测试结果。
图6为对比例1(a)和对比例2(b、c、d)制备的产物的实物图;其中,(a)为对比例1;(b)为对比例2中植物甾醇纳米颗粒用量为0.5g;(c)为对比例2中植物甾醇纳米颗粒用量为1g;(c)为对比例2中植物甾醇纳米颗粒用量为1.5g。
图7为实施例2中制备得到可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶用于食品3D打印的挤出测试结果;其中a-e为棕榈硬脂的质量浓度为0、25、50、75、100%。
图8为实施例2中制备得到可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶打印出的小塔模型的实物图。
图9为实施例3中制备得到可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶打印出的希尔伯特曲线以及采用500g砝码对其进行的硬度检测(a),并对其进行干燥制备得到生物多孔材料及冷冻扫描电子显微镜图片(b)。
图10为实施例4中制备得到模具制造的巧克力及其微观结构(a),以及通过3D打印得到的模型进行4D打印效果的展示(b)。
图11为实施例5中制备得到的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶打印出的花朵。
图12为实施例6中制备得到可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的流变频率测试结果。
图13为对比例5中制备得到的产物进行复杂结构的3D打印效果图。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解实施例是为了更好地解释本发明,不用于限制本发明。实施例中提及的份数为质量份数。
测试方法:
1、固化后的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的硬度通过质构仪测定,测定方式为单次挤压,应变程度为30%。
2、可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的微观结构通过偏光显微镜、激光共聚焦显微镜、扫描电子显微镜、冷冻扫描电子显微镜观察,放大倍数为100-10000 倍,测试温度为25℃或-80℃。
3、可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的流变特性通过旋转流变仪测得,夹具选择为直径40mm的铝平板,分别进行应变扫描、温度扫描和时间扫描,应变扫描的条件为0.01-100%,温度、频率分别为45℃、1Hz,温度扫描的条件为20-50℃,应变、频率分别为0.01%、1Hz,时间扫描分为三段,每一段的扫描时间为60s,第一阶段和第三阶段的应变为0.01%,第二段的应变为100%,温度、频率分别为45℃、1Hz。频率扫描的测试条件为0.01%应变,温度为45℃,频率从0.01Hz增加至10Hz。
4、可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的傅里叶变换红外光谱采用傅里叶变换红外光谱仪进行测定,原材料和乳液通过冷冻干燥后,对其在4000-600cm -1的波数内进行扫描。
实施例1
一种制备可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的方法,包括如下步骤:
(1)称取0.3gκ-卡拉胶溶于含4g植物甾醇纳米颗粒(规格为粒径1000nm)的95.7g75℃的水中,400rpm搅拌10min使κ-卡拉胶溶解,得到水溶液;
(2)取大豆油和棕榈硬脂(PKST)以1:0、3:1、1:1、1:3、0:1质量比(棕榈硬脂的质量浓度为0、25、50、75、100%),在加热至70℃的条件下进行混合,400rpm搅拌10min使其充分混合,得到混合油脂;
(3)将步骤(1)的水溶液和(2)的混合油脂以3:1的体积比,在70℃的条件下400rpm搅拌10min使其充分混合,之后在16000rpm的速率下进行均质乳化4min,得到可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶。
将得到的类脂肪乳液凝胶进行测试,测试结果如下:
图1为取大豆油和棕榈硬脂以1:1质量比进行混合后制备得到的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的实物图和微观结构图,从图1可以看出:双网络零反式低饱和脂肪酸类脂肪乳液凝胶呈现出半固体的特性,乳液滴由植物甾醇纳米颗粒稳定,乳液滴堆积在一起形成了凝胶网络,乳液凝胶中的水相内存在的κ-卡拉胶作为水相结构增强剂用于稳定乳液滴内的水分。
图2为乳液凝胶的流变测试结果。从图2可以看出:在线性粘弹区样品的G'大于G”,并在剪切应变变大时G”会反超G',这意味着该乳液凝胶具有触变性;在时间扫描测试中,乳液凝胶在强剪切破坏后依然能够很大程度上恢复模量;在温度扫描中,可以发现随着温度的降 低,该乳液凝胶的模量快速上升,这与降温过程中水相和油相中的混合油脂(结构增强剂)发挥作用有很大关系。
图3所示为植物甾醇纳米颗粒、κ-卡拉胶和干燥乳液凝胶(大豆油和棕榈硬脂以1:1质量比制得)的傅里叶变换红外图谱。从图3可以看出:在干燥乳液凝胶中3400cm -1附近的羟基吸收峰相比植物甾醇纳米颗粒和κ-卡拉胶对应的吸收峰都有一定程度的红移,这意味着乳液凝胶中水相内的κ-卡拉胶通过氢键使水相的结构强化,而植物甾醇颗粒则在乳液滴界面上进行氢键相互作用。
图4为乳液凝胶的偏光显微镜图。从图4可以看出:图中的可见光点为乳液凝胶中的棕榈硬脂,说明乳液凝胶中的油相被棕榈硬脂所形成的结晶网络所强化。
表1和图5为固化后的乳液凝胶的硬度数据。从表1可以看出:随着棕榈硬脂的浓度提高,固化后的乳液凝胶的硬度呈指数态升高。
表1固化后类脂肪乳液凝胶的硬度
大豆油和棕榈硬脂的质量比 硬度(g)
1:0 42.57
3:1 453.67
1:1 2211.57
1:3 6293
0:1 12717
采用气相色谱仪测试实施例1的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶所含反式脂肪和饱和脂肪的含量,升温程序:0-3min为130℃,再以5℃/min的速率升温到200℃,再以2℃/min升温至220℃保持3min,分流比为20,色谱柱流量为1.8mL/min。可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的反式脂肪和饱和脂肪的含量如表2所示。
表2可3D/4D打印的双网络零反式类脂肪乳液凝胶中反式脂肪酸和饱和脂肪酸的含量(质量百分比)
棕榈硬脂在油相中比例(wt%) 反式脂肪酸(%) 饱和脂肪酸(%)
0 0 4.33
25 0 6.38
50 0 11.55
75 0 15.14
100 0 18.78
市售黄油 0.20 48.15
从表2可以看出:相比市售黄油,可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶不含反式脂肪酸,饱和脂肪酸含量远远低于市售黄油的48.15%,满足消费者健康饮食 的要求。
对比例1
调整实施例1中步骤(3)中步骤(1)的水溶液和(2)的混合油脂的体积比为1:3,其他和实施例1(大豆油和棕榈硬脂质量比为1:1)保持一致,得到产物。
通过测试发现:如图6中a所示,产物具有很强的流动性,不具备良好的成型能力,不能够成为塑性半固体,无法用于3D打印。
对比例2
调整实施例1中植物甾醇纳米颗粒用量为0.5、1、1.5g,对应的水的质量为99.2、98.7、98.2g,其他和实施例1(大豆油和棕榈硬脂质量比为1:1)保持一致,得到产物。
得到的产物如图6中b、c、d所示,由于植物甾醇的颗粒的浓度过低,形成的产物流动性强,无法形成具有塑性的粘弹体,因此较低浓度的植物甾醇颗粒制备的乳液产物不具备用于3D打印的流变特性。
对比例3
调整实施例1中植物甾醇纳米颗粒为纳米辛烯基琥珀酸酐改性藜麦淀粉颗粒(900nm),其他和实施例1(大豆油和棕榈硬脂质量比为1:1)保持一致,得到产物。
得到的产物为水包油型乳液,且油相作为内相,油相中的结晶网络无法对乳液体系进行固化,无法得到固化的产品。
对比例4
调整实施例1中植物甾醇纳米颗粒为纳米微粒化的乳清蛋白(1000nm),其他和实施例1(大豆油和棕榈硬脂质量比为1:1)保持一致,得到产物。
得到的产物为水包油型乳液,且油相作为内相,油相中的结晶网络无法对乳液体系进行固化,无法得到固化的产品。
实施例2
实施例1得到的双网络零反式低饱和脂肪酸类脂肪乳液凝胶在食品3D打印中的应用,包括如下步骤:
(1)将实施例1得到的双网络零反式低饱和脂肪酸类脂肪乳液凝胶并维持40℃的温度,将其转移至食品3D打印机的储料罐中,将储料罐的温度设置为45℃;
(2)将可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶添加至3D打印针管,保证针管中体系均一不分散;调节打印腔室中的温度为45℃,并选择PVC塑料3D打印枪头填装,通过程序设定调整3D打印机X、Y、Z轴全部归零;选用0.85mm直径针头,设定 3D打印过程中的各类参数,具体为:打印层厚(0.85mm)、壁厚(0.85mm)、填充密度(50%)、底层和顶层厚度(0.85mm)、打印速率(40mm/s);
(3)通过打印机进行小塔模型的打印测试。
图7为3D打印机对该乳液凝胶的挤出测试,从图7可以看出:棕榈硬脂的添加量对乳液凝胶的3D打印挤出没有影响,所有样品都有很好的可挤出性。
图8为采用该乳液凝胶产品进行3D打印的小塔模型,从图8可以看出:在含有棕榈硬脂的乳液凝胶中,当棕榈硬脂在油相中的浓度为25%时,模型能够被完整地打印出,但一旦倾斜模型则会发生倒塌,当棕榈硬脂在油相中的浓度大于50%时,模型在倾斜下基本不会发生崩塌,说明棕榈硬脂对体系的固化作用非常明显,有利于复杂模型的打印;当棕榈硬脂在油相中的浓度为0时,产物虽然具有良好的可打印挤出性,其被打印后不具备较好的结构强度,导致打印过程中模型的坍塌。
实施例3作为模板制备刚性生物多孔材料方面的应用
取实施例1中制备得到的含有棕榈硬脂的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶,采用食品3D打印机按照实施例2的方法进行打印,打印的对象为希尔伯特曲线。待打印出的物体在室温下冷却固化后,采用砝码对其硬度进行测试,测试结果如图9:
从图9可以看出:当棕榈硬脂在油相中的含量达到100%时,该打印物体能够支撑起一个500g的砝码,说明固化后的打印物体具有很强的刚性(图9中a);当棕榈硬脂在油相中的含量达到0时,产物不能够支撑起500g的砝码;
将打印后的物体放入-80℃冰箱中速冻1h后采用冷冻干燥机对其进行24h的冻干,得到去除水的刚性生物多孔材料;对含有棕榈硬脂的打印物体而言,冻干后起外观不发生改变。生物多孔材料的冷冻扫描电镜显微图如图9中b所示,随着棕榈硬脂的浓度的提高,生物多孔材料内部的孔状结构保留程度逐渐提高;当棕榈硬脂在油相中的含量达到0时,产物干燥后打印物体的外观崩塌,起内部的孔状结构也消失,这是因为该乳液凝胶中的油相不存在网络构建剂(棕榈硬脂),无法起到固化的作用。
实施例4
取实施例1中由100%棕榈硬脂作为油相制备得到的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶,将该乳液凝胶替代30%的可可脂制备成巧克力,具体如下:
称取60份乳液凝胶、15份可可粉、25份糖粉,在加热至65℃后充分混合,并采用模具制造巧克力,形貌如图10中a,从图中可以看出:乳液凝胶在部分替代可可脂的前提下能够制备外观没有明显缺陷的巧克力,并且显著降低了巧克力中的油脂含量;
称取75份乳液凝胶、10份可可粉、15份糖粉,在加热至65℃后充分混合,将混合后的巧克力浆装入40℃的食品3D打印机储料罐中放置1h,采用食品3D打印机对其进行打印,打印对象为两个分开的物体。打印完毕后,将打印出的物体放置在室温中稳定半小时,然后将物体放置正在50℃的加热板上,以实现食品4D打印的效果,实物如图10中b。
实施例5
调整实施例1步骤(2)为:
将米糠蜡加入大豆油中,在80℃的条件下400rpm搅拌10min得到油溶液;其中米糠蜡在油溶液中的质量分数为15%;
步骤(1)和(3)和实施例1保持一致,得到可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶;
之后进行3D打印,具体如下:
将得到的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶维持在70℃,并将其转移至食品3D打印机的储料罐中,将储料罐的温度设置为70℃;
将可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶添加至3D打印针管,保证针管中体系均一不分散;调节打印腔室中的温度为70℃,并选择PVC塑料3D打印枪头填装,通过程序设定调整3D打印机X、Y、Z轴全部归零;选用0.85mm直径针头,设定3D打印过程中的各类参数,具体为:打印层厚(0.85mm)、壁厚(0.85mm)、填充密度(50%)、底层和顶层厚度(0.85mm)、打印速率(40mm/s);
通过打印机进行花朵模型的打印测试。
3D打印并固化的花朵如图11,可见,油溶性小分子米糠蜡溶于大豆油后同样具有固化体系、强化3D打印目标的作用。
实施例6
调整实施例1中(1)为:
称取0.3gκ-卡拉胶溶于含1g羧基化虫胶纳米颗粒(规格为粒径100nm)的98.7g 75℃的水中,400rpm搅拌10min使κ-卡拉胶溶解,得到水溶液;
其他与实施例1保持一致,得到类脂肪乳液凝胶。
将得到的类脂肪乳液凝胶进行流变测试,测试结果如图12所示:
从图12可以看出:在小幅震荡频率流变测试中,得到的类脂肪乳液凝胶均呈现出半固态的粘弹特性(G'>G”),因此使用虫胶纳米颗粒制备的类脂肪乳液凝胶也具备3D/4D打印能力,具有高度的可塑性和打印性。
对比例5
一种乳液凝胶型脂肪替代物的方法,包括如下步骤:
(1)称取10份乙基纤维素和2份单硬脂酸甘油酯溶解于88份150℃的大豆油中,并搅拌10分钟后放置于70℃的水浴中,得到油溶液;
(2)取10份明胶溶解于90份70℃的热水中,并搅拌10分钟,得到水溶液;
(3)将步骤(1)的油溶液和步骤(2)的水溶液按照质量比5:5混合均匀,以10000rpm的速率使用高速均质机对混合溶液进行乳化2min,得到乳液;再将得到的乳液置于室温下低速400rpm搅拌直至体系胶凝,得到乳液凝胶型脂肪替代物。
之后按照实施例2的方法进行3D打印,结果如图13;
从图13可以看出:对比例5制备得到的乳液凝胶型脂肪替代物由于结构强度较低,内部无法产生刚性的网络结构,因此3D打印物体的结构强度弱,打印过程中容易坍塌,无法完成复杂模型的打印,并且无法用于4D打印。
当步骤(1)的油溶液和步骤(2)的水溶液按照质量比为2:8、4:6、6:4、8:2的时候,其打印的性能还不如质量比为5:5。可见,乳液凝胶型脂肪替代物打印性能弱,无法完成复杂模型的3D打印,根本无法用于4D打印。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (22)

  1. 一种制备可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶的方法,其特征在于,包括如下步骤:
    (1)将亲水胶体加入含有乳化剂纳米颗粒的热水中,溶解,得到水溶液;其中,纳米颗粒在水溶液中的质量浓度为0.5-15%;
    (2)油溶液或混合油脂的制备
    将油溶性小分子溶解于加热后的植物油脂中,混合均匀,得到油溶液;
    将多种植物油脂混合加热,得到混合油脂;
    (3)将步骤(1)的水溶液和步骤(2)的油溶液或混合油脂以1:1-9:1的体积比进行混合,均质乳化,得到所述的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶。
  2. 根据权利要求1所述的方法,其特征在于,步骤(2)所述的植物油脂包括大豆油、菜籽油、花生油、葵花籽油、茶籽油、芝麻油、玉米油、小麦胚芽油、橄榄油、火麻油、低芥酸菜籽油、棕榈油、棕榈液油、棕榈仁油、椰子油、棕榈硬脂、可可脂、乳木果油分提硬脂、婆罗树脂、芒果仁油、雾冰草脂、椰子油硬脂中的一种或多种;所述制备混合油脂的植物油脂需含有棕榈油、棕榈仁油、椰子油、棕榈硬脂、可可脂、乳木果油分提硬脂、婆罗树脂、芒果仁油、雾冰草脂、椰子油硬脂中的至少一种,且在混合油脂中的质量比例大于25%。
  3. 根据权利要求1所述的方法,其特征在于,步骤(1)所述的乳化剂纳米颗粒为植物甾醇颗粒、虫胶颗粒、蔗糖酯颗粒、单甘油酯颗粒、甘油二酯颗粒中的一种或几种。
  4. 根据权利要求1所述的方法,其特征在于,步骤(2)所述的油溶性小分子为单甘油酯、甘油二酯、单双甘油脂肪酸酯、聚甘油脂肪酸酯、硬脂酰乳酸钠、蔗糖脂肪酸酯、乳酸脂肪酸甘油酯、柠檬酸脂肪酸甘油酯、丙二醇脂肪酸酯、双乙酰酒石酸单甘油酯、双乙酰酒石酸双甘油酯、乙酰化单甘油脂肪酸酯、乙酰化双甘油脂肪酸酯、脂肪醇、植物蜡、动物蜡中的一种或几种,且在油溶液中的质量浓度为0.5-15%。
  5. 根据权利要求1所述的方法,其特征在于,步骤(1)所述的亲水胶体为羟丙基甲基纤维素、甲基纤维素、羟乙基纤维素、黄原胶、瓜尔胶、卡拉胶、亚麻籽胶、果胶、阿拉伯胶、刺槐豆胶、魔芋胶、琼脂、结冷胶、明胶、乳清蛋白、豌豆蛋白、大豆蛋白、绿豆蛋白、蚕豆蛋白、花生蛋白、鹰嘴豆蛋白、米蛋白、燕麦蛋白、土豆蛋白中的一种或几种。
  6. 根据权利要求1所述的方法,其特征在于,步骤(1)所述的乳化剂纳米颗粒的粒径为100-3000nm。
  7. 根据权利要求1所述的方法,其特征在于,步骤(1)所述的亲水胶体在水溶液中的 质量浓度为0.1-20%。
  8. 根据权利要求1所述的方法,其特征在于,步骤(1)所述的溶解是搅拌溶解,具体是100-2000rpm搅拌溶解0.5-10min。
  9. 根据权利要求1所述的方法,其特征在于,步骤(1)所述的热水是温度为40-90℃的水。
  10. 根据权利要求1所述的方法,其特征在于,步骤(2)所述的加热是在40-150℃下搅拌0.5-10min。
  11. 根据权利要求1所述的方法,其特征在于,步骤(3)所述的混合是加热到40-90℃下搅拌混合0.5-10min。
  12. 根据权利要求1所述的方法,其特征在于,步骤(3)所述的均质乳化是在5000-20000rpm乳化10-600s。
  13. 权利要求1-12任一项所述的方法制备得到的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶。
  14. 权利要求13所述的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶在食品领域的应用。
  15. 根据权利要求14所述的应用,其特征在于,所述的应用是用于制备3D/4D打印食品、分子美食。
  16. 根据权利要求14所述的应用,其特征在于,所述的应用包括用于制备巧克力。
  17. 一种通过3D/4D打印定制巧克力的方法,其特征在于,所述的方法是采用权利要求13所述的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶通过3D打印方法得到。
  18. 根据权利要求17所述的应用,其特征在于,所述的方法包括如下步骤:
    将可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶添加至3D打印针管,保证针管中体系均一不分散;
    调节打印腔室中的温度,并选择3D打印枪头填装,通过程序设定调整3D打印机X、Y、Z轴全部归零;
    利用数字模型软件设计出3D模型,经切片软件生成相对应若干层三维切片,得到切片模型,将每层切片使用编程G代码计算出路径最终输入到打印设备;
    根据材料以及选用针头直径不同,设定3D打印过程中的各类参数,具体如:打印层厚、壁厚、填充密度、底层和顶层厚度、打印速率等;
    设备根据导入的切片模型,采用挤出式的方法进行食品3D打印,形成具有一定自支撑 性质的定制化模型。
  19. 根据权利要求18所述的应用,其特征在于,所述的调节打印腔室的内部温度,设定温度在0-60℃范围内。
  20. 根据权利要求18所述的应用,其特征在于,打印的具体参数如下:打印层厚为0.5-1.2mm,壁厚为0.4-1.2mm,填充密度为10-60%,底层和顶层厚度为0.5-1.2mm,打印速率为40-120mm/s,打印温度为0-60℃,初始层厚为0.5-1.2mm,初始层线宽为10-80%,底层切除为0mm,移动速率为20-200mm/s,底层速率为20-120mm/s,填充速率为20-120mm/s,底层和顶层速率为20-100mm/s,外壳速率为20-120mm/s,内壁速率为10-80mm/s。
  21. 权利要求17-20任一项所述的方法制备得到的定制巧克力。
  22. 一种生物多孔材料,其特征在于,所述的生物多孔材料由权利要求13所述的可3D/4D打印的双网络零反式低饱和脂肪酸类脂肪乳液凝胶进行3D打印之后,冷冻干燥得到。
PCT/CN2022/097606 2022-02-16 2022-06-08 可3d/4d打印的双网络零反式类脂肪乳液凝胶及制备 WO2023155338A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210151279.8 2022-02-16
CN202210151279.8A CN114468062B (zh) 2022-02-16 2022-02-16 可3d/4d打印的双网络零反式类脂肪乳液凝胶及制备

Publications (1)

Publication Number Publication Date
WO2023155338A1 true WO2023155338A1 (zh) 2023-08-24

Family

ID=81481570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097606 WO2023155338A1 (zh) 2022-02-16 2022-06-08 可3d/4d打印的双网络零反式类脂肪乳液凝胶及制备

Country Status (2)

Country Link
CN (1) CN114468062B (zh)
WO (1) WO2023155338A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114468062B (zh) * 2022-02-16 2023-08-25 江南大学 可3d/4d打印的双网络零反式类脂肪乳液凝胶及制备
CN115152879B (zh) * 2022-06-30 2023-05-30 暨南大学 一种3d打印巧克力及其制备方法和应用
CN115428934B (zh) * 2022-07-21 2023-10-03 中国农业科学院农产品加工研究所 一种应用于食品和医药领域的双连续乳液及其制备方法
CN115226783B (zh) * 2022-07-27 2023-08-25 江南大学 一种低饱和脂肪酸酥皮油及其制备和烘焙应用
CN115226785B (zh) * 2022-07-29 2023-07-25 江南大学 一种o/w类脂肪凝胶及其制备方法和3d打印应用
CN115399376B (zh) * 2022-08-08 2023-08-08 江南大学 一种类型可控的双凝胶类脂肪及其制备方法和3d打印应用
CN115363102B (zh) * 2022-08-23 2023-09-12 江南大学 O/w,w/o,双连续型三种相变可调脂肪类似物及制备方法和应用
CN115349555B (zh) * 2022-08-24 2023-10-24 江南大学 一种乳液凝胶类脂肪及其制备方法和应用
CN115413781B (zh) * 2022-09-06 2023-10-03 江南大学 一种高稳定性天然蜡基w/o乳液凝胶及其制备方法和3d打印应用
CN115777796B (zh) * 2022-09-06 2024-04-05 江南大学 一种基于天然蜡制备稳定热响应性油泡沫的方法
CN115644263A (zh) * 2022-09-27 2023-01-31 暨南大学 一种可负载脂溶性和水溶性活性物质的3d打印双凝胶的制备及应用
CN115720938B (zh) * 2022-11-09 2024-04-05 江南大学 一种室温下乳化结构可调的充气型类脂肪及其制备方法和应用
CN116236621A (zh) * 2023-03-17 2023-06-09 福州大学 一种3d打印生物杂化水凝胶及其制备方法和应用
CN116584552B (zh) * 2023-05-19 2024-03-26 江南大学 一种基于葡聚糖自主装交联多维度乳液凝胶的制备及应用
CN116686893B (zh) * 2023-05-31 2024-03-22 江南大学 一种基于天然蜡制备含水巧克力的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161123A (ja) * 2006-12-28 2008-07-17 Miyoshi Oil & Fat Co Ltd 製菓、製パン用流動状水中油型乳化物
CN110946285A (zh) * 2019-11-29 2020-04-03 暨南大学 一种基于植物甾醇稳定的油包水型Pickering乳液的制备方法
CN111820291A (zh) * 2020-07-29 2020-10-27 暨南大学 一种油包水型高内相Pickering乳液及其制备方法与应用
CN112868816A (zh) * 2021-01-26 2021-06-01 暨南大学 一种基于甘油二酯固体脂质纳米粒的油包水乳液凝胶的制备方法
CN113383947A (zh) * 2021-06-21 2021-09-14 江南大学 一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用
CN113995137A (zh) * 2020-07-16 2022-02-01 天津科技大学 一种由燕麦蛋白虫胶稳定的亚麻籽油皮克林乳液的制备方法
CN114468062A (zh) * 2022-02-16 2022-05-13 江南大学 可3d/4d打印的双网络零反式类脂肪乳液凝胶及制备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105994698B (zh) * 2016-05-17 2019-11-05 江南大学 一种以Pickering乳液为模板制备可食用油脂凝胶的方法
CN110478312A (zh) * 2019-08-29 2019-11-22 仙乐健康科技股份有限公司 具有高油脂含量的稳定凝胶组合物及其制备方法和用途
CN111116975B (zh) * 2019-12-30 2021-01-08 浙江大学 一种基于液滴相互吸引的Pickering乳液凝胶及其制备方法
CN111700264B (zh) * 2020-06-30 2023-01-31 江南大学 一种双连续乳液凝胶的制备方法及应用
WO2022025132A1 (ja) * 2020-07-28 2022-02-03 三栄源エフ・エフ・アイ株式会社 乳化物含有ゲル状組成物及び乳化物含有ゲル状組成物を含む食品並びにこれらの製造方法
CN112314767A (zh) * 2020-11-05 2021-02-05 沈阳师范大学 一种糖凝胶3d打印软材料以其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161123A (ja) * 2006-12-28 2008-07-17 Miyoshi Oil & Fat Co Ltd 製菓、製パン用流動状水中油型乳化物
CN110946285A (zh) * 2019-11-29 2020-04-03 暨南大学 一种基于植物甾醇稳定的油包水型Pickering乳液的制备方法
CN113995137A (zh) * 2020-07-16 2022-02-01 天津科技大学 一种由燕麦蛋白虫胶稳定的亚麻籽油皮克林乳液的制备方法
CN111820291A (zh) * 2020-07-29 2020-10-27 暨南大学 一种油包水型高内相Pickering乳液及其制备方法与应用
CN112868816A (zh) * 2021-01-26 2021-06-01 暨南大学 一种基于甘油二酯固体脂质纳米粒的油包水乳液凝胶的制备方法
CN113383947A (zh) * 2021-06-21 2021-09-14 江南大学 一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用
CN114468062A (zh) * 2022-02-16 2022-05-13 江南大学 可3d/4d打印的双网络零反式类脂肪乳液凝胶及制备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANG YANG, GAO CHENGCHENG, ZHANG YAN, TANG XIAOZHIICLES: "A Review of Literature on Pickering Emulsion Gels Stabilized by Polysaccharide-Based Particles", FOOD SCIENCE, BEIJING FOOD SCIENCE RESEARCH INSTITUTE, CN, vol. 43, no. 3, 15 February 2022 (2022-02-15), CN , pages 341 - 351, XP093086049, ISSN: 1002-6630, DOI: 10.7506/spkx1002-6630-20201030-316 *

Also Published As

Publication number Publication date
CN114468062A (zh) 2022-05-13
CN114468062B (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
WO2023155338A1 (zh) 可3d/4d打印的双网络零反式类脂肪乳液凝胶及制备
Tian et al. Effect of hybrid gelator systems of beeswax-carrageenan-xanthan on rheological properties and printability of litchi inks for 3D food printing
WO2022267880A1 (zh) 一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用
Shi et al. Effect of addition of beeswax based oleogel on 3D printing of potato starch-protein system
Li et al. Edible oleogels as solid fat alternatives: Composition and oleogelation mechanism implications
CN114246223B (zh) 一种植物蛋白基w/o/w类脂肪制备及3d打印应用
An et al. Preparation of Pickering emulsion gel stabilized by tea residue protein/xanthan gum particles and its application in 3D printing
Jiang et al. Polysaccharide-stabilized aqueous foams to fabricate highly oil-absorbing cryogels: Application and formation process for preparation of edible oleogels
WO2023040374A1 (zh) 一种植物蛋白基类脂肪及其制备和3d/4d打印的应用
EP2879506B1 (de) Lebensmittelfettsystem oder kosmetikfettsystem oder pharmafettsystem
Co et al. Oleogels: an introduction
SK154994A3 (en) Edible plastic dispersion having a rapid gel-setting starch
Jiang et al. Double scaffold networks regulate edible Pickering emulsion gel for designing thermally actuated 4D printing
Cui et al. A review on food-grade-polymer-based O/W emulsion gels: Stabilization mechanism and 3D printing application
Zhu et al. Creating protein-rich snack foods using binder jet 3D printing
CN115349555B (zh) 一种乳液凝胶类脂肪及其制备方法和应用
CN114208897A (zh) 一种具有烘焙稳定性的果胶基乳液凝胶代脂肪及其制备和应用
CN109287770A (zh) 一种富含多酚的固态状茶油及制备方法
CN114190443A (zh) 一种蛋白凝胶剂制备油凝胶的方法
CN114586874B (zh) 一种诱导形变实现多结构低脂巧克力双通道4d打印的方法
TW201720313A (zh) 填充豆腐用凝固劑
KR102255176B1 (ko) 두부용 응고제 조성물 및 그 조성물을 사용한 두부 제조 방법
Chen et al. Development and characterization of antioxidant-fortified oleogels by encapsulating hydrophilic tea polyphenols
Xu et al. The application of oleogels in food products: Classification, preparation, and characterisation
Zheng et al. Gelation and foaming properties of fatty acid mixtures in sunflower oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926648

Country of ref document: EP

Kind code of ref document: A1