WO2022267880A1 - 一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用 - Google Patents

一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用 Download PDF

Info

Publication number
WO2022267880A1
WO2022267880A1 PCT/CN2022/097373 CN2022097373W WO2022267880A1 WO 2022267880 A1 WO2022267880 A1 WO 2022267880A1 CN 2022097373 W CN2022097373 W CN 2022097373W WO 2022267880 A1 WO2022267880 A1 WO 2022267880A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
emulsion
water
gel
fat substitute
Prior art date
Application number
PCT/CN2022/097373
Other languages
English (en)
French (fr)
Inventor
孟宗
蒋秦波
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to US17/989,846 priority Critical patent/US20230082923A1/en
Publication of WO2022267880A1 publication Critical patent/WO2022267880A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/005Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
    • A23D7/0053Compositions other than spreads
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/01Other fatty acid esters, e.g. phosphatides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/02Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by the production or working-up
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/02Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by the production or working-up
    • A23D7/04Working-up
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/035Organic compounds containing oxygen as heteroatom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/035Organic compounds containing oxygen as heteroatom
    • A23L29/04Fatty acids or derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/244Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin from corms, tubers or roots, e.g. glucomannan
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/262Cellulose; Derivatives thereof, e.g. ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/275Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of animal origin, e.g. chitin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/275Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of animal origin, e.g. chitin
    • A23L29/281Proteins, e.g. gelatin or collagen
    • A23L29/284Gelatin; Collagen
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L35/00Food or foodstuffs not provided for in groups A23L5/00 – A23L33/00; Preparation or treatment thereof
    • A23L35/10Emulsified foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/01Other fatty acid esters, e.g. phosphatides
    • A23D7/011Compositions other than spreads
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the invention relates to a method and application for preparing an emulsion-gel fat substitute with adjustable phase transition, and belongs to the field of oil and food processing.
  • Emulsion-gel with adjustable phase change is an emulsion-gel system whose phase-change property can be adjusted. It has physical properties similar to traditional plastic fats (hydrogenated fats, saturated fats, etc.) that are soft solids at room temperature and will melt after heating. Emulsion gels are prepared by combining emulsification and gelation.
  • emulsion gels not only contain the structural characteristics of emulsions (emulsion droplets and continuous phase) but also have the characteristics of gels (gel network structure in the oil-water phase). Combining the excellent properties of emulsions and gels, it is an ideal fat substitute.
  • gelation technology is an effective method to reduce trans fatty acids and saturated fatty acids in food.
  • Combining emulsification technology to preserve both oil and water phases at the same time makes the system more conducive to the replacement of traditional plastic fats.
  • small molecule gelling agents waxes, glycerides, etc.
  • the oil-soluble macromolecular gelling factor can be used to reduce the amount of the oil-soluble small-molecule gelling agent.
  • excessive oil intake will aggravate the occurrence of obesity and other diseases.
  • hydrogel is a good soft solid with properties similar to plastic fat, which can not only replace part of oil-containing substances
  • Emulsion gel not only provides the physical properties similar to solid fat, but also combines the characteristics of oil gel and hydrogel through emulsification technology, which reduces the consumption of oil and improves the health and safety of food. Not only that, it has a corresponding Emulsion gels with variable properties can exhibit different physical properties in different states (oil-in-water or water-in-oil), which is beneficial to adjust their physical properties as needed to meet application requirements.
  • the present invention uses oil-soluble polysaccharides, oil-soluble small molecule gels, water-soluble macromolecular gels, and vegetable oils as raw materials, through oil-soluble polysaccharides and small molecule gels and water-soluble macromolecules.
  • the gel agent is respectively dissolved in the heated oil phase and water phase, the oil solution and the water solution are mixed and emulsified to obtain an emulsion, and then the emulsion is gelled by stirring and cooling to prepare an emulsion gel type fat substitute.
  • the present invention introduces oil-soluble polysaccharides into the system to reduce the amount of oil-soluble small-molecule gelling agent used, and prepares an emulsion gel-type fat substitute containing zero-trans low saturated fatty acids to replace traditional plastic fats, and by adding The water phase gelled with a water-soluble macromolecular gelling agent to reduce the overall oil content of the emulsion gel, and the prepared emulsion gel fat substitute has adjustable phase change characteristics to be suitable for different application scenarios, It makes the application scene of emulsion gel in food more extensive, and provides a reference for the use of replacing hydrogenated fat and saturated fat in food.
  • the first object of the present invention is to provide a method for preparing an adjustable phase transition emulsion gel type fat substitute, comprising the steps of:
  • step (3) Mixing the oil solution in step (1) and the aqueous solution in step (2) for emulsification to obtain an emulsion; then gelling to obtain an emulsion gel type fat substitute;
  • step (3) when the mass ratio of oil solution and aqueous solution in step (3) is 2:8 ⁇ 4:6, what obtain is oil-in-water type emulsion gel type fat substitute; When step (3) ) in the mass ratio of the oil solution to the aqueous solution is 5:5 to 8:2, and what is obtained is a water-in-oil type emulsion gel type fat substitute.
  • the oil-soluble polysaccharide in step (1) is one or both of ethyl cellulose and chitin.
  • the oil-soluble small molecule gelling agent described in step (1) is monoglyceride, monoglyceride fatty acid ester, polyglycerol fatty acid ester, sodium stearoyl lactylate, fatty acid sucrose ester one or more of them.
  • the vegetable oil described in step (1) is peanut oil, soybean oil, sunflower oil, rapeseed oil, corn oil, tea seed oil, sesame oil, olive oil, wheat germ oil, palm oil, One or more of hemp oil, coconut oil, palm kernel oil, coconut kernel oil.
  • the water-soluble macromolecular gelling agent described in step (2) is one or more in gelatin, hydroxypropyl methylcellulose, methylcellulose, konjac gum.
  • the mass concentration of the water-soluble macromolecular gelling agent in water in step (2) is 4%-10%.
  • the mass concentration of the oil-soluble polysaccharide in the vegetable oil in step (1) is 5%-10%.
  • the mass concentration of the oil-soluble small molecule gelling agent in the vegetable oil in step (1) is 1%-5%.
  • the emulsification described in step (3) is 65-80° C., 5000-15000 rpm and high-speed shearing for 1-5 minutes.
  • the gel described in step (3) is obtained by stirring the obtained emulsion at 15-30° C. (room temperature) at 100-1000 rpm to obtain a gel.
  • the method for preparing the emulsion-gel fat substitute with adjustable phase transition comprises the following steps:
  • step (3) Mix the oil solution in step (1) and the aqueous solution in step (2) evenly, and emulsify at 65-80°C and 5000-15000rpm at high speed for 1-5min to obtain an emulsion; then at 15-30°C The gel is stirred at a speed of 100-1000 rpm to obtain an emulsion gel type fat substitute.
  • the second object of the present invention is the oil-in-water emulsion gel fat substitute and the water-in-oil emulsion gel fat substitute prepared by the method of the present invention.
  • the third object of the present invention is the application of the oil-in-water emulsion-gel fat substitute and the water-in-oil emulsion-gel fat substitute in the food field.
  • the applications include decorating, 3D printing, embedding active substances, and customizing food.
  • the application is to use the oil-in-water emulsion gel type fat substitute for decoration, the preparation method in the oil-in-water emulsion gel type fat substitute
  • the mass ratio of medium oil solution and aqueous solution is 4:6.
  • the application is applying the water-in-oil emulsion gel fat substitute to 3D printing, specifically using the water-in-oil emulsion gel fat substitute as an edible solid
  • the material is used for 3D printing; in the preparation method of the water-in-oil type emulsion gel type fat substitute, the mass ratio of the oil solution and the water solution is 6:4-8:2.
  • the application in embedding active substances is specifically to use the oil-in-water emulsion gel fat substitute or the water-in-oil emulsion gel fat substitute as the carrier package Embedded in controlled-release water-soluble active substances and fat-soluble active substances.
  • the emulsion gel type fat substitute of the present invention is a kind of soft colloid material that has gel characteristics, presents semi-solid properties, and has emulsion properties, and can be used in food production to replace fats made from trans fats, highly saturated
  • the traditional plastic fat composed of fat can also be used as a carrier for embedding and controlled release of functional active substances in pharmaceuticals, cosmetics and other industries.
  • the emulsion gel type fat substitute of the present invention adopts oil-soluble polysaccharide and oil-soluble small molecule gelling agent as the gelling factor of oil phase, adopts water-soluble macromolecular gelling agent as the gelling factor of water phase, prepares To form an emulsion gel with adjustable phase change, the oil-water phase ratio of the emulsion gel can be changed according to the application scenario to adjust the type of emulsion gel, so as to meet specific application requirements.
  • the method of the emulsion gel type fat substitute of the present invention has a wider range of applications and more flexible application methods, and is also faster and more convenient than the production of traditional plastic fats.
  • the emulsion gel type fat substitute of the present invention has adopted oil-soluble polysaccharide, oil-soluble small-molecule gel, water-soluble macromolecular gel, compared to using oil-soluble small-molecule gel alone Oleogel, under the effect of oil-soluble polysaccharide and water-soluble macromolecular gelling agent, the consumption of oil-soluble small molecule gelling agent obviously reduces, and the consumption of vegetable oil obviously reduces (vegetable oil amount can be reduced to 10% of system, That is, 90% of the oil phase is replaced by the water phase), and by changing the ratio of the oil and water phases, the phase change of the emulsion gel type fat substitute can be controlled to adjust the physical properties of the emulsion gel type fat substitute.
  • the emulsion gel type fat substitute is the oil-in-water type, and when the mass percentage of the oil solution is higher than 44%, the emulsion gel type fat substitute is the water-in-oil type. Customize emulsion gel fat substitutes that meet performance requirements for different application scenarios.
  • the emulsion gel type fat substitute of the present invention is produced quickly, and the process is simple, and the physical properties exhibited under different types conform to various application scenarios, and the oil-in-water emulsion gel type fat substitute can be used for decoration application , a water-in-oil emulsion-gel type fat substitute can be used for 3D printing applications.
  • the emulsion gel type fat substitute of the present invention uses polysaccharides derived from animals and plants as materials, greatly reduces the amount of lipophilic small molecule gelling agent, and has the environmental protection concept of green and sustainable food.
  • the emulsion-gel fat substitute of the present invention exhibits good viscoelasticity, has obvious thixotropy, and can quickly recover more than 70% of the modulus after being deformed, and has good plasticity.
  • the emulsion-gel fat substitute of the present invention has better embedding and sustained-release effects on both water-soluble and fat-soluble functional active components, which greatly delays the release rate of the functional components.
  • the emulsion-gel fat substitute of the present invention contains low-content saturated fatty acids and does not contain trans-fatty acids. It can be used to replace traditional plastic fats in meat products and to prepare customized foods. It is green, healthy, Strong customization and rich functionality.
  • the oil-soluble polysaccharide builds a network structure in the oil solution, and the water-soluble macromolecules build a network structure in the water-soluble; oil-soluble small molecules act as interface stabilizers at the oil-water interface, so that the oil-water two-phase mixture is evenly formed to further form a double network Structure; It is completely different from the network structure constructed by small molecules and lecithin at the oil-water interface disclosed in some current literature.
  • Fig. 1 is the elastic modulus (G') and viscous modulus (G ") of two kinds of emulsion gel type fat substitutes in embodiment 1, 2, the quality of emulsion gel type fat substitute in oil solution and aqueous solution respectively
  • the ratios are 4:6 and 6:4; where A is under strain sweep; B is under frequency sweep; C is under temperature sweep; D is under time sweep.
  • Fig. 2 is the schematic diagram that the emulsion gel type fat substitute in embodiment 1, 2, 3 undergoes the phase change phenomenon under different ratio of oil solution and aqueous solution; Wherein, A is embodiment 1; B is embodiment 2; C is implementation Example 3.
  • Fig. 3 is the laser confocal micrograph of two kinds of emulsion gel type fat substitutes in embodiment 1, 2, wherein oil, glyceryl monostearate are stained respectively and have carried out overlay processing, emulsion gel type fat substitute
  • Fig. 4 is the infrared spectrogram of ethyl cellulose powder, gelatin powder, glyceryl monostearate powder, emulsion gel type fat substitute in embodiment 1,2; Wherein A is ethyl cellulose powder, gelatin powder, Glyceryl monostearate powder; B is the emulsion gel type fat substitute in embodiment 1,2.
  • Fig. 5 is the hardness of emulsion gel type fat substitute, glyceryl monostearate ethyl cellulose oil gel and gelatin hydrogel prepared in the ratio of different oil solution and aqueous solution in embodiment 4.
  • Fig. 6 is the confocal micrograph, physical map and oil leakage rate of the products prepared in Comparative Examples 1 to 4; wherein A is the confocal micrograph of Comparative Example 1; B is the confocal micrograph of Comparative Example 2 Figure; C is the physical map of comparative example 3; D is the oil leakage rate of comparative example 4.
  • Fig. 7 is the exterior view of the mounted flower prepared by the emulsion gel type fat substitute (oil-in-water type) in Example 5.
  • Fig. 8 is an effect diagram of 3D printing of the emulsion gel type fat substitute (water-in-oil type) in Example 6.
  • Fig. 9 is the test result of embodiment 7,8 and comparative example 7,8;
  • A is the release rate of vitamin C in gelatin (10%) hydrogel;
  • B is the release rate of vitamin C in emulsion gel type fat substitute Release rate;
  • C is the release rate of vitamin E in glyceryl monostearate ethyl cellulose oil gel (2% glyceryl monostearate and 10% ethyl cellulose);
  • D is the release rate of vitamin E in emulsion gel release rate in fat substitutes.
  • the rheological properties of emulsion gel fat substitutes tested by DHR-3 rotational rheometer, the elastic modulus G' and the viscous modulus G" are tested with a 40mm diameter steel plate at 25°C Amplitude, frequency, temperature and time scanning, the strain range in the amplitude scanning is 0.01-100%, the frequency range in the frequency scanning is 0.1-10Hz, the temperature range in the temperature scanning is 25-70 °C, and the strain in the time scanning is It changes repeatedly between 100% and 0.01%, and the holding time of each stage is 30s.
  • a method for preparing an emulsion gel type fat substitute with adjustable phase transition comprising the steps of:
  • step (3) Mix the oil solution of step (1) and the aqueous solution of step (2) according to the mass ratio of 4:6, and use a high-speed homogenizer to emulsify the mixed solution for 2 minutes at a rate of 10000rpm to obtain an emulsion; The emulsion was placed at room temperature and stirred at a low speed of 400 rpm until the system gelled to obtain an oil-in-water emulsion gel type fat substitute.
  • Adjusting the mass ratio of oil solution and aqueous solution in embodiment 1 step (3) is 44:56, and other is consistent with embodiment 1, obtains semi-double continuous emulsion gel type (contains oil-in-water emulsion and water-in-oil emulsion simultaneously ) fat substitute.
  • the emulsion gel type fat substitute that embodiment 1 ⁇ 3 obtains is carried out performance test, and test result is as follows:
  • Fig. 1 is the rheological data of two kinds of emulsion gel type fat substitutes of embodiment 1 and 2.
  • the elastic modulus of two kinds of emulsion-gel type fat substitutes is basically the same, but the emulsion-gel type fat substitute (water-in-oil) of oil solution/water solution is 6:4
  • the viscous modulus of the type) is slightly lower, indicating that the fluidity of the water-in-oil emulsion-gel fat substitute is slightly better, and the elastic modulus and viscous modulus of the two emulsion-gel fat substitutes are basically the same under the frequency sweep.
  • the elastic modulus is much larger than the viscous modulus, both of them behave as viscoelastic semi-solid; in the temperature scan, the elastic modulus and viscous modulus of the two emulsion-gel fat substitutes both occurred in the process of temperature rise. loss, and the modulus decreases rapidly at 45°C, and at 70°C the elastic modulus of the two drops to be basically the same as the viscous modulus, which means that the viscoelasticity of the two emulsion gel-type fat substitutes disappears and the fluidity changes.
  • the rheological properties of the two types of emulsion-gel fat substitutes are less different, and they are mainly semi-solid with viscoelasticity, which is conducive to their use. Plastic fats in alternative foods.
  • Fig. 2 is the schematic diagram that the emulsion gel type fat substitute in embodiment 1, 2, 3 undergoes the phase change phenomenon under different ratio of oil solution and aqueous solution, wherein, A is embodiment 1; B is embodiment 2; C is implementation Example 3.
  • Fig. 3 is the laser confocal micrograph of two kinds of emulsion gel type fat substitutes of embodiment 1, 2.
  • the emulsion gel type fat substitute was an oil-in-water type, so the oil was dispersed in the system as a dispersed phase, and when the mass ratio of the oil solution and the aqueous solution was 6:4,
  • the emulsion gel type fat substitute is a water-in-oil type, so the oil is a continuous phase surrounding the dispersion system, and glycerol monostearate is fat-soluble, so its distribution is basically consistent with that of the oil; when the oil solution and When the mass ratio of the aqueous solution is 44:56, the oil-in-water emulsion and the water-in-oil emulsion are contained at the same time.
  • Fig. 4 is the infrared spectrograms of ethyl cellulose powder, gelatin powder, glyceryl monostearate powder, and the infrared spectrograms of two emulsion gel type fat substitutes in Examples 1 and 2.
  • the emulsion gel type fat substitute presented an oil-in-water type, and at this moment, the external phase was a gelatin hydrogel, so in the infrared spectrum of this emulsion gel type fat substitute Among them, due to the presence of a large amount of gelatin, there is only one characteristic peak in the wavenumber range of 3200-3500cm -1 , which corresponds to the NH stretching vibration absorption peak of gelatin powder at 3330cm -1 .
  • the NH stretching vibration absorption peak of gelatin covers up the ethyl cellulose and The hydroxyl stretching vibration absorption peak of glyceryl monostearate, and when the mass ratio of oil solution and aqueous solution is 6:4, emulsion gel type fat substitute presents water-in-oil type, and this moment external phase is oil gel, therefore
  • three peaks appeared in the wavenumber range of 3200-3500cm -1 which were the hydroxyl stretching vibration absorption peak in ethyl cellulose at 3480cm -1 , and the absorption peak at 3330cm -1
  • the obtained emulsion gel type fat substitute is subjected to a performance test, and the test results are as follows:
  • Fig. 5 is the emulsion gel type fat substitute prepared by the ratio of different oil solutions and aqueous solutions, and the hardness of oleogel containing 10% ethyl cellulose and 2% glyceryl monostearate, water containing 10% gelatin The hardness of the gel.
  • the hardness of the emulsion-gel type fat substitute presents a gradual decline trend, although the oil solution: water solution is 4:6 and 6:4 emulsion-gel type
  • the rheological properties of the fat substitutes are very close, but their hardness is significantly different.
  • the hardness of the emulsion gel type fat substitute is significantly greater than that of the emulsion when the mass fraction of the oil solution is 60%.
  • Gel-type fat substitute this is because the continuous phase changes, the hardness of the oil gel in the external phase is obviously less than that of the hydrogel, so when the phase transition occurs, the hardness of the water-in-oil emulsion gel-type fat substitute Significant decline.
  • Table 1 shows the contents of trans fatty acids and saturated fatty acids in emulsion gel fat substitutes. It can be seen from Table 1 that compared with commercially available margarine, the emulsion-gel fat substitute does not contain trans fatty acids, and the saturated fatty acid content is far lower than 45.34% of commercially available margarine, which meets the requirements of consumers for a healthy diet.
  • Table 1 Contents of trans fatty acids and saturated fatty acids in emulsion gel fat substitutes.
  • Oil solution Aqueous solution trans fat(%) saturated fatty acid(%) 2:8 0 3.45 4:6 0 7.30 5:5 0 8.62 6:4 0 9.15 8:2 0 13.79 commercial margarine 0.19 45.34
  • the obtained product was placed obliquely in a transparent bottle, and it was found that the product had very strong fluidity, as shown in C in Figure 6, and could not form a gel.
  • Example 1 The addition of glyceryl monostearate in Example 1 was omitted, and the others were consistent with Example 1 to obtain the product.
  • the product obtained was centrifuged at 10000rpm for 10 minutes to carry out centrifugal deoiling, and the oil leakage rate of the product was shown as D in Figure 6.
  • the oil leakage rate is high.
  • Example 1 Adjust the ethyl cellulose in step (1) in Example 1 to be polyglycerol fatty acid ester, and the others are consistent with Example 1 to obtain the product.
  • the product is subjected to a performance test, and the test results are as follows:
  • the obtained product has an elastic modulus of 85Pa and a viscous modulus of 120Pa, that is, the viscous modulus is greater than the elastic modulus, has certain fluidity, does not possess semi-solid properties, and cannot be used to replace solid fat.
  • Adjust the amount of ethyl cellulose in step (1) in Example 1 to be 0, 2, and 4 parts, and increase 10, 8, and 6 parts of soybean oil simultaneously, and the others are consistent with Example 1 to obtain the product.
  • the obtained product has a viscosity modulus greater than or close to the elastic modulus, and the modulus is small, has fluidity, does not possess obvious semi-solid characteristics, and cannot be used to replace solid fat.
  • a method for an emulsion gel type fat substitute for decoration comprising the steps of:
  • step (3) Mix the oil solution of step (1) and the aqueous solution of step (2) according to the mass ratio of 2:8, 4:6, 5:5, 6:4, 8:2, and use a high-speed homogenizer at a rate of 10000rpm A quality machine emulsified the mixed solution for 2 minutes to obtain an emulsion; then placed the obtained emulsion at room temperature and stirred at a low speed of 400 rpm until the system gelled to obtain an emulsion gel type fat substitute.
  • a method for an emulsion gel type fat substitute for 3D printing comprising the steps of:
  • step (3) Mix the oil solution of step (1) and the aqueous solution of step (2) according to the mass ratio of 2:8, 4:6, 5:5, 6:4, 8:2, and use a high-speed homogenizer at a rate of 10000rpm A quality machine emulsified the mixed solution for 2 minutes to obtain an emulsion; then placed the obtained emulsion at room temperature and stirred at a low speed of 400 rpm until the system gelled to obtain an emulsion gel type fat substitute.
  • a method for an emulsion gel type fat substitute for controlled release of functional active components comprising the steps of:
  • step (3) Mix the oil solution of step (1) and the aqueous solution of step (2) according to the mass ratio of 4:6, 5:5, and 6:4, and emulsify the mixed solution for 2 minutes at a rate of 10000rpm using a high-speed homogenizer , to obtain an emulsion; then place the obtained emulsion at room temperature and stir at a low speed of 400 rpm until the system gels to obtain a water-in-oil emulsion gel type fat substitute.
  • Example 7 Each 5 g of the emulsion gel type fat substitute embedding vitamin C in Example 7 and the hydrogel in Comparative Example 7 were added to 100 mL of phosphate buffer and placed in a shaker to vibrate at a rate of 400 rpm. After several minutes, a small amount of buffer solution was taken out, and the absorbance intensity was measured at 285 nm using a UV spectrophotometer to calculate the content of released vitamin C.
  • a method for an emulsion gel type fat substitute for controlled release of functional active components comprising the steps of:
  • step (3) Mix the oil solution of step (1) and the aqueous solution of step (2) according to the mass ratio of 1:9, 2:8, and 3:7, and emulsify the mixed solution for 2 minutes at a rate of 10000rpm using a high-speed homogenizer , to obtain an emulsion; then place the obtained emulsion at room temperature and stir at a low speed of 400 rpm until the system gels, and obtain an oil-in-water emulsion gel type fat substitute embedding vitamin E.
  • Each 5 g of the emulsion gel fat substitute embedded with vitamin E in Example 8 and the oil gel in Comparative Example 8 were added to 100 mL of phosphate buffer and placed in a shaker to vibrate at a rate of 400 rpm. A small amount of sample was taken out in a few minutes and added to 50 mL of isopropanol, and the absorbance intensity was measured at 297.9 nm using a UV spectrophotometer to calculate the content of released vitamin E.
  • the release rates of vitamin C and vitamin E are shown in Figure 9.
  • the emulsion-gel fat substitute has a significant slow-release effect on vitamin C, and it takes 350 minutes to completely release vitamin C, while vitamin C embedded in gelatin hydrogel alone is The release is complete after 60 minutes.
  • the oil gel is used to embed vitamin E alone, the vitamin E is basically released completely after 15 minutes.
  • the time required for the complete release of vitamin E is longer than 45 minutes, indicating that The controlled-release effect of emulsion-gel fat substitutes on water-soluble vitamin C and fat-soluble vitamin E is significantly better than that of hydrogel or oil gel embedding slow-release effects alone, so emulsion-gel fat substitutes
  • the slow-release effect of embedding is conducive to better absorption of functional nutritional components in vivo or in vitro.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Nutrition Science (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Colloid Chemistry (AREA)
  • Edible Oils And Fats (AREA)

Abstract

本发明公开了一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用,属于油脂和食品加工领域。本发明以油溶性多糖、油溶性小分子凝胶剂、水溶性大分子凝胶剂、植物油为原材料,通过油溶性的多糖和小分子凝胶剂以及水溶性大分子凝胶剂分别溶解于加热后的油相和水相中,将油溶液和水溶液混合乳化得到乳液,再通过搅拌降温将乳液凝胶化制备得到乳液凝胶型脂肪替代物。本发明将油溶性的多糖引入体系以降低油溶性小分子凝胶剂的使用量,制备出含零反式低饱和脂肪酸的乳液凝胶型脂肪替代物以用于替代传统塑性脂肪,并且通过加入以水溶性大分子凝胶剂胶凝的水相以降低乳液凝胶的整体含油量,且适用于不同的应用场景中。

Description

一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用 技术领域
本发明涉及一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用,属于油脂和食品加工领域。
背景技术
乳液凝胶的种类可以根据制备方法、原材料以及成分的不同进行细分,如双连续型乳液凝胶、水包油型乳液凝胶、油包水型乳液凝胶。“相变可调的乳液凝胶”是一种相变性质可以调控的乳液凝胶体系,可以通过改变油相和水相的比例从而完成水包油型和油包水型乳液凝胶的相互转换,具备类似传统塑性脂肪(氢化脂肪、饱和脂肪等)在室温下表现为软固体,加热后会融化的物理性状。乳液凝胶通过乳化与胶凝结合的方法进行制备,因此乳液凝胶不仅含有乳液的结构特征(乳液滴与连续相)还拥有凝胶的特点(油水相中的凝胶网络结构),同时结合了乳液和凝胶的优良特性,是一种理想的脂肪替代物。
目前,凝胶化技术是一种有效降低食品中反式脂肪酸和饱和脂肪酸的方法,结合乳化技术将油水两相同时保存后,使得体系更有利于用于传统塑性脂肪的替代中。在对油相的凝胶化中,小分子凝胶剂(蜡、甘油酯等)是常见的亲油性凝胶因子,能够对油相直接胶凝,然而过多地添加油溶性小分子凝胶剂会引起产品的口感、健康问题,从而限制油凝胶的应用范围,因此可以采用油溶性的大分子凝胶因子来降低油溶性小分子凝胶剂的使用量。除此之外,过量的油摄入会加剧肥胖等疾病的发生,为了进一步降低油的摄入,水凝胶是一种良好的具有类似塑性脂肪性能的软固体,不仅可以代替部分含油物质的使用,制造低脂肪产品,而且可食用的蛋白质基或多糖基的水凝胶剂有利于人体的健康。乳液凝胶既提供了类似固体脂肪的物理性质,又通过乳化的技术将油凝胶和水凝胶的特点结合,降低了油脂的消耗,提高了食品的健康、安全性,不仅如此,具有相变可调性质的乳液凝胶在不同的状态下(水包油或油包水)能够表现出不同的物理性质,有利于根据需要调整其物理性质以满足应用需求。
发明内容
[技术问题]
凝胶化技术中过多地添加油溶性小分子凝胶剂会引起产品的口感、健康问题;而且通过其他技术得到的乳液凝胶型脂肪替代物流动性强、固态特征弱。
[技术方案]
为了解决上述至少一个问题,本发明以油溶性多糖、油溶性小分子凝胶剂、水溶性大分 子凝胶剂、植物油为原材料,通过油溶性的多糖和小分子凝胶剂以及水溶性大分子凝胶剂分别溶解于加热后的油相和水相中,将油溶液和水溶液混合乳化得到乳液,再通过搅拌降温将乳液凝胶化制备得到乳液凝胶型脂肪替代物。本发明将油溶性的多糖引入体系以降低油溶性小分子凝胶剂的使用量,制备出含零反式低饱和脂肪酸的乳液凝胶型脂肪替代物以用于替代传统塑性脂肪,并且通过加入以水溶性大分子凝胶剂胶凝的水相以降低乳液凝胶的整体含油量,且制备得到的乳液凝胶型脂肪替代物具有可调的相变特性以适用于不同的应用场景中,使得乳液凝胶在食品中的应用场景更广泛,为在食品中替代氢化脂肪、饱和脂肪的使用提供参考。
本发明的第一个目的是提供一种制备相变可调的乳液凝胶型脂肪替代物的方法,包括如下步骤:
(1)将油溶性多糖、油溶性小分子凝胶剂溶解在植物油中,得到油溶液;
(2)将水溶性大分子凝胶剂溶解在水中,得到水溶液;
(3)将步骤(1)的油溶液和步骤(2)的水溶液混合均匀进行乳化,得到乳液;之后再凝胶,得到乳液凝胶型脂肪替代物;
其中当步骤(3)中油溶液在乳液中的质量百分比低于44%,但不为0,得到的是水包油型乳液凝胶型脂肪替代物;当步骤(3)中油溶液在乳液中的质量百分比高于44%,但不为100%,得到的是油包水型乳液凝胶型脂肪替代物;当步骤(3)中油溶液在乳液中的质量百分比等于44%,得到的是半双连续型乳液凝胶型(同时含有水包油型乳液和油包水型乳液)脂肪替代物。
在本发明的一种实施方式中,当步骤(3)中油溶液和水溶液的质量比为2:8~4:6,得到的是水包油型乳液凝胶型脂肪替代物;当步骤(3)中油溶液和水溶液的质量比为5:5~8:2,得到的是油包水型乳液凝胶型脂肪替代物。
在本发明的一种实施方式中,步骤(1)所述的油溶性多糖为乙基纤维素、几丁质中的一种或两种。
在本发明的一种实施方式中,步骤(1)所述的油溶性小分子凝胶剂为单甘油酯、单双甘油脂肪酸酯、聚甘油脂肪酸酯、硬脂酰乳酸钠、脂肪酸蔗糖酯中的一种或几种。
在本发明的一种实施方式中,步骤(1)所述植物油为花生油、大豆油、葵花籽油、菜籽油、玉米油、茶籽油、芝麻油、橄榄油、小麦胚芽油、棕榈油、火麻油、椰子油、棕榈仁油、椰子仁油中的一种或几种。
在本发明的一种实施方式中,步骤(2)所述水溶性大分子凝胶剂为明胶、羟丙基甲基纤 维素、甲基纤维素、魔芋胶中的一种或几种。
在本发明的一种实施方式中,步骤(2)中水溶性大分子凝胶剂在水中的质量浓度为4%~10%。
在本发明的一种实施方式中,步骤(1)中油溶性多糖在植物油中的质量浓度为5%~10%。
在本发明的一种实施方式中,步骤(1)中油溶性小分子凝胶剂在植物油中的质量浓度为1%~5%。
在本发明的一种实施方式中,步骤(3)中所述的乳化是65~80℃、5000~15000rpm下高速剪切1~5min。
在本发明的一种实施方式中,步骤(3)中所述的凝胶是将得到的乳液在15~30℃(室温),100~1000rpm下搅拌得到凝胶。
在本发明的一种实施方式中,制备相变可调的乳液凝胶型脂肪替代物的方法,包括如下步骤:
(1)将油溶性多糖、油溶性小分子凝胶剂溶解在130~180℃的植物油中,得到油溶液;
(2)将水溶性大分子凝胶剂溶解在65~80℃的水中,得到水溶液;
(3)将步骤(1)的油溶液和步骤(2)的水溶液混合均匀,在65~80℃、5000~15000rpm下高速剪切1~5min进行乳化,得到乳液;之后在15~30℃下以100~1000rpm的速度进行搅拌凝胶,得到乳液凝胶型脂肪替代物。
本发明的第二个目的是本发明所述的方法制备得到的水包油型乳液凝胶型脂肪替代物和油包水型乳液凝胶型脂肪替代物。
本发明的第三个目的是本发明所述水包油型乳液凝胶型脂肪替代物和油包水型乳液凝胶型脂肪替代物在食品领域的应用。
在本发明的一种实施方式中,所述的应用包括裱花、在3D打印、包埋活性物质、定制食品方面的应用。
在本发明的一种实施方式中,所述的应用是将水包油型乳液凝胶型脂肪替代物用于裱花,所述的水包油型乳液凝胶型脂肪替代物中的制备方法中油溶液和水溶液的质量比为4:6。
在本发明的一种实施方式中,所述的应用是将油包水型乳液凝胶型脂肪替代物应用于3D打印,具体是将油包水型乳液凝胶型脂肪替代物作为可食用固体材料用于3D打印;所述的油包水型乳液凝胶型脂肪替代物制备方法中油溶液和水溶液的质量比为6:4~8:2。
在本发明的一种实施方式中,所述的在包埋活性物质方面的应用具体是将水包油型乳液凝胶型脂肪替代物或油包水型乳液凝胶型脂肪替代物作为载体包埋控释水溶性活性物质和脂 溶性活性物质中。
[有益效果]
(1)本发明的乳液凝胶型脂肪替代物是一种具有凝胶特性、呈现出半固体性质、具备乳液性状的软胶体物质,能在食品生产中用于替代由反式脂肪、高饱和脂肪组成的传统塑性脂肪,同时也能在药品、化妆品等行业中作为载体用于功能性活性物质的包埋控释等。
(2)本发明的乳液凝胶型脂肪替代物采用油溶性多糖和油溶性小分子凝胶剂作为油相的凝胶因子,采用水溶性大分子凝胶剂作为水相的凝胶因子,制备成相变可调的乳液凝胶,可以根据应用场景改变乳液凝胶的油、水相比例以调整乳液凝胶的类型,从而满足特定的应用需求。
(3)本发明所述的乳液凝胶型脂肪替代物的方法与普通油凝胶相比应用范围更广、应用方式更灵活,与传统塑性脂肪的生产相比也更快速、更便捷。
(4)本发明所述的乳液凝胶型脂肪替代物采用了油溶性多糖、油溶性小分子凝胶剂、水溶性大分子凝胶剂,相比单独使用油溶性小分子凝胶剂制作的油凝胶,在油溶性多糖和水溶性大分子凝胶剂的作用下,油溶性小分子凝胶剂的用量明显降低,且植物油的使用量明显减少(植物油量可以减少至体系的10%,即90%的油相由水相替代),且通过改变油、水两相的比例,可以控制乳液凝胶型脂肪替代物发生相变,以调整乳液凝胶型脂肪替代物的物理特性,油溶液的质量百分比低于44%时乳液凝胶型脂肪替代物为水包油型,油溶液的质量百分比高于44%时乳液凝胶型脂肪替代物为油包水型,这些优势有利于根据不同的应用场景而定制符合性能要求的乳液凝胶型脂肪替代物。
(5)本发明的乳液凝胶型脂肪替代物生产快速,工艺简单,在不同的类型下表现的物理性质符合多种应用场景,水包油型乳液凝胶型脂肪替代物可用于裱花应用,油包水型乳液凝胶型脂肪替代物可用于3D打印应用。
(6)本发明的乳液凝胶型脂肪替代物以动植物来源的多糖为材料,极大地降低了亲油性小分子凝胶剂的用量,具备绿色、可持续发展食品的环保理念。
(7)本发明的乳液凝胶型脂肪替代物表现出较好的粘弹性,具有明显的触变性,且受到形变后能够迅速恢复70%以上的模量,具有良好的可塑性。
(8)本发明的乳液凝胶型脂肪替代物对水溶性和脂溶性的功能性活性组分都有较好的包埋缓释作用,极大延缓了功能性组分的释放速率。
(9)本发明的乳液凝胶型脂肪替代物含低含量的饱和脂肪酸,不含反式脂肪酸,可用于替代肉制品中的传统塑性脂肪,以及用于制备定制性食品,具有绿色、健康、定制性强、功 能性丰富的特点。
(10)本发明中油溶性多糖在油溶液中构建网络结构,水溶性大分子在水溶性中构建网络结构;油溶性小分子在油水界面充当界面稳定剂,使油水两相混合均匀进一步形成双网络结构;和目前一些文献公开的通过小分子和卵磷脂在油水界面构建的网络结构是完全不同的。
附图说明
图1为实施例1、2中两种乳液凝胶型脂肪替代物的弹性模量(G')和粘性模量(G”),乳液凝胶型脂肪替代物分别在油溶液与水溶液的质量比为4:6和6:4下制备;其中A是在应变扫描下;B是在频率扫描下;C是在温度扫描下;D是在时间扫描下。
图2为实施例1、2、3中乳液凝胶型脂肪替代物在不同油溶液与水溶液比例下发生相变现象的示意图;其中,A是实施例1;B是实施例2;C是实施例3。
图3为实施例1、2中两种乳液凝胶型脂肪替代物的激光共聚焦显微图,其中油、单硬脂酸甘油酯分别被染色并进行了叠加处理,乳液凝胶型脂肪替代物分别为水包油型(油溶液:水溶液=4:6)和油包水型(油溶液:水溶液=6:4)。
图4为乙基纤维素粉末、明胶粉末、单硬脂酸甘油酯粉末、实施例1、2中乳液凝胶型脂肪替代物的红外光谱图;其中A是乙基纤维素粉末、明胶粉末、单硬脂酸甘油酯粉末;B是实施例1、2中乳液凝胶型脂肪替代物。
图5为实施例4中不同油溶液和水溶液的比例制备得到的乳液凝胶型脂肪替代物、单硬脂酸甘油酯乙基纤维素油凝胶以及明胶水凝胶的硬度。
图6为对比例1~4中制备得到的产物的共聚焦显微图、实物图以及漏油率;其中A是对比例1的共聚焦显微图;B是对比例2的共聚焦显微图;C是对比例3的实物图;D是对比例4的漏油率。
图7为实施例5中乳液凝胶型脂肪替代物(水包油型)制备的裱花外观图。
图8为实施例6中乳液凝胶型脂肪替代物(油包水型)3D打印的效果图。
图9为实施例7、8和对比例7、8的测试结果;其中A是维生素C在明胶(10%)水凝胶的释放速率;B是维生素C在乳液凝胶型脂肪替代物中的释放速率;C是维生素E在单硬脂酸甘油酯乙基纤维素油凝胶(2%单硬脂酸甘油酯与10%乙基纤维素)中的释放速率;D是维生素E在乳液凝胶型脂肪替代物中的释放速率。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解实施例是为了更好地解释本发明,不用于限制本发明。实施例中的份数都是质量份数。
测试方法:
1、乳液凝胶型脂肪替代物的流变性质:通过DHR-3旋转流变仪进行测试,弹性模量G'和粘性模量G”使用40mm直径的钢平板进行检测,在25℃下进行振幅、频率、温度及时间扫描,在振幅扫描中应变范围为0.01~100%,在频率扫描中频率范围为0.1~10Hz,在温度扫描中温度范围为25~70℃,在时间扫描中应变在100%和0.01%之间反复变化且每一阶段保持时间为30s。
2、乳液凝胶型脂肪替代物、单硬脂酸甘油酯乙基纤维素油凝胶、明胶水凝胶的质构:由TAXT质构仪进行测试,通过单次挤压测试使用P/25探头对样品的硬度进行检测,探头的测前、测中、测后速度为5、1、5mm/s,应变程度设置为30%。
3、采用激光共聚焦显微镜(LSM-880)观察乳液凝胶型脂肪替代物的微观结构。
4、通过傅里叶变换红外光谱仪(Nicolet iS-10)测定原料粉末和冻干后乳液凝胶型脂肪替代物的红外光谱数据,采用iTR附件对4000~600cm -1波数内的光谱数据进行采集。
实施例1
一种制备相变可调的乳液凝胶型脂肪替代物的方法,包括如下步骤:
(1)称取10份乙基纤维素和2份单硬脂酸甘油酯溶解于88份150℃的大豆油中,并搅拌10分钟后放置于70℃的水浴中,得到油溶液;
(2)取10份明胶溶解于90份70℃的热水中,并搅拌10分钟,得到水溶液;
(3)将步骤(1)的油溶液和步骤(2)的水溶液按照质量比4:6混合均匀,以10000rpm的速率使用高速均质机对混合溶液进行乳化2min,得到乳液;再将得到的乳液置于室温下低速400rpm搅拌直至体系胶凝,得到水包油型乳液凝胶型脂肪替代物。
实施例2
调整实施例1步骤(3)中油溶液和水溶液的质量比为6:4,其他和实施例1保持一致,得到油包水型乳液凝胶型脂肪替代物。
实施例3
调整实施例1步骤(3)中油溶液和水溶液的质量比为44:56,其他和实施例1保持一致,得到半双连续型乳液凝胶型(同时含有水包油型乳液和油包水型乳液)脂肪替代物。
将实施例1~3得到的乳液凝胶型脂肪替代物进行性能测试,测试结果如下:
图1为实施例1和2两种乳液凝胶型脂肪替代物的流变数据。从图1可以看出:在应变扫描中,两种乳液凝胶型脂肪替代物的弹性模量基本一致,但油溶液/水水溶液为6:4的乳液凝胶型脂肪替代物(油包水型)的粘性模量要略低,说明油包水型乳液凝胶型脂肪替代物流 动性略好,两种乳液凝胶型脂肪替代物在频率扫描下弹性模量和粘性模量基本相同,且弹性模量远大于粘性模量,都表现为粘弹性的半固体;在温度扫描中,两种乳液凝胶型脂肪替代物都在温度升高的过程中发生弹性模量和粘性模量的损失,且在45℃时模量迅速降低,在70℃时两者的弹性模量下降至与粘性模量基本相同,意味着两种乳液凝胶型脂肪替代物的粘弹性消失,流动性变强而成为了液态的混合物;在时间扫描中,两种乳液凝胶型脂肪替代物在受到高应变的剪切时模量会迅速下降,这说明两种乳液凝胶型脂肪替代物都具有明显的触变性,但高应变撤除后,两者的模量都在较大程度上恢复(70%以上),且油溶液:水溶液=4:6的乳液凝胶型脂肪替代物(水包油型)模量恢复程度更大,结构恢复能力更强,两种类型不同的乳液凝胶型脂肪替代物的流变性质差异较小,且主要表现为具有粘弹性的半固体,有利于将其用于替代食品中的塑性脂肪。
图2为实施例1、2、3中乳液凝胶型脂肪替代物在不同油溶液与水溶液比例下发生相变现象的示意图,其中,A是实施例1;B是实施例2;C是实施例3。图3为实施例1、2两种乳液凝胶型脂肪替代物的激光共聚焦显微图。当油溶液和水溶液质量比为4:6时,乳液凝胶型脂肪替代物为水包油型,因此油为分散相分散在体系中,而油溶液和水溶液的质量比为6:4时,乳液凝胶型脂肪替代物为油包水型,因此油为连续相包围着分散系,单硬脂酸甘油酯由于是脂溶性的,所以它的分布基本与油的分布一致;当油溶液和水溶液质量比为44:56时,水包油型乳液和油包水型乳液同时含有。
图4为乙基纤维素粉末、明胶粉末、单硬脂酸甘油酯粉末的红外光谱图,以及实施例1和2中两种乳液凝胶型脂肪替代物的红外光谱图。当油溶液和水溶液的质量比为4:6时,乳液凝胶型脂肪替代物呈现水包油型,此时外相为明胶水凝胶,因此在这种乳液凝胶型脂肪替代物的红外光谱中,由于大量的明胶存在导致在波数范围3200~3500cm -1内只有一个特征峰,对应明胶粉末3330cm -1的N-H伸缩振动吸收峰,显然明胶的N-H伸缩振动吸收峰掩盖了乙基纤维素和单硬脂酸甘油酯的羟基伸缩振动吸收峰,而当油溶液和水溶液的质量比为6:4时,乳液凝胶型脂肪替代物呈现油包水型,此时外相为油凝胶,因此在这种乳液凝胶型脂肪替代物的红外光谱中,在波数范围3200~3500cm -1内出现了三个峰,分别是3480cm -1乙基纤维素中的羟基伸缩振动吸收峰,3330cm -1明胶中的N-H伸缩振动吸收峰,以及3241cm -1单硬脂酸甘油酯中的羟基伸缩振动吸收峰,由于单硬脂酸甘油酯在油中形成了氢键,因此其对应的羟基伸缩振动吸收峰在乳液凝胶型脂肪替代物中发生了红移。
实施例4
调整实施例1步骤(3)中油溶液和水溶液的质量比为2:8、4:6(实施例1)、5:5、6:4(实 施例2)、8:2,其他和实施例1保持一致,得到乳液凝胶型脂肪替代物。
将得到乳液凝胶型脂肪替代物进行性能测试,测试结果如下:
图5为不同油溶液和水溶液的比例制备得到的乳液凝胶型脂肪替代物,以及含10%乙基纤维素和2%单硬脂酸甘油酯油凝胶的硬度,含10%明胶的水凝胶的硬度。从图5可以看出:随着油溶液质量分数的不断提高,乳液凝胶型脂肪替代物的硬度呈现逐渐下降的趋势,虽然油溶液:水溶液为4:6和6:4的乳液凝胶型脂肪替代物的流变性质十分接近,但他们的硬度却差异显著,当油溶液质量分数为40%时,乳液凝胶型脂肪替代物的硬度明显大于当油溶液质量分数为60%时的乳液凝胶型脂肪替代物,这是由于连续相发生改变,在外相的油凝胶的硬度显然小于水凝胶,所以当相变发生以后,油包水型的乳液凝胶型脂肪替代物的硬度下降显著。
表1为乳液凝胶型脂肪替代物中反式脂肪酸和饱和脂肪酸含量。从表1可以看出:相比市售人造奶油,乳液凝胶型脂肪替代物不含反式脂肪酸,饱和脂肪酸含量远远低于市售人造奶油的45.34%,满足消费者健康饮食的要求。
表1乳液凝胶型脂肪替代物中反式脂肪酸和饱和脂肪酸含量。
油溶液:水溶液 反式脂肪酸(%) 饱和脂肪酸(%)
2:8 0 3.45
4:6 0 7.30
5:5 0 8.62
6:4 0 9.15
8:2 0 13.79
市售人造奶油 0.19 45.34
对比例1
调整实施例1中步骤(2)的明胶为阿拉伯胶,其他和实施例1保持一致,得到产物。
通过测试发现:产物并不具备水包油型乳液结构,如图6中A所示,不能形成水包油型乳液凝胶。
对比例2
调整实施例2中步骤(1)的单硬脂酸甘油酯为蜂蜡,其他和实施例2保持一致,得到产物。
通过测试发现:产物并不具备油包水型乳液结构,如图6中B所示,不能形成油包水型型乳液凝胶。
对比例3
调整实施例1中步骤(2)的明胶的用量为2份,其他和实施例1保持一致,得到产物。
将得到的产物在透明瓶中倾斜放置,发现:产物的流动性极强,如图6中C所示,不能形成凝胶状。
对比例4
省略实施例1中单硬脂酸甘油酯的加入,其他和实施例1保持一致,得到产物。
将得到的产物在10000rpm下离心10分钟进行离心脱油,产物的漏油率如图6中D所示,与实施例1中添加2份单硬脂酸甘油酯制备的乳液凝胶相比,产物漏油率高。
对比例5
调整实施例1中步骤(1)的乙基纤维素为聚甘油脂肪酸酯,其他和实施例1保持一致,得到产物。
将产物进行性能测试,测试结果如下:
得到的产物的弹性模量为85Pa,粘性模量为120Pa,即粘性模量大于弹性模量,具有一定的流动性,不具备半固态性质,不能用于替代固体脂肪。
对比例6
调整实施例1中步骤(1)的乙基纤维素的用量为0、2、4份,同时增加10、8、6份的大豆油,其他和实施例1保持一致,得到产物。
将产物进行性能测试,测试结果如下表2:
表2对比例6的测试结果
乙基纤维素的用量 弹性模量(Pa) 粘性模量(Pa)
0 12 23
2份 127 163
4份 1023 997
从表2可以看出:得到的产物粘性模量大于或接近弹性模量,且模量较小,具有流动性,不具备明显的半固态特征,无法用于替代固体脂肪。
实施例5在裱花方面的应用
一种用于裱花的乳液凝胶型脂肪替代物的方法,包括如下步骤:
(1)称取10份乙基纤维素和2份单硬脂酸甘油酯溶解于88份150℃的大豆油中,并搅拌10分钟后放置于70℃的水浴中,得到油溶液;
(2)取10份明胶溶解于90份70℃的热水中,并搅拌10分钟,得到水溶液;
(3)将步骤(1)的油溶液和步骤(2)的水溶液按照质量比2:8、4:6、5:5、6:4、8:2混合均匀,以10000rpm的速率使用高速均质机对混合溶液进行乳化2min,得到乳液;再将得到的乳液置于室温下低速400rpm搅拌直至体系胶凝,得到乳液凝胶型脂肪替代物。
使用金属裱花头和塑料裱花袋对乳液凝胶型脂肪替代物进行裱花,得到的裱花如图7所示,当油溶液和水溶液的比例为4:6时裱花效果最理想,裱出的花均匀且结构稳定,因此油溶液和水溶液的比例为4:6的水包油型乳液凝胶型脂肪替代物在裱花应用中具有较好的效果,成型性好,可用于替代裱花应用中的传统塑性脂肪。
实施例6在3D打印方面的应用
一种用于3D打印的乳液凝胶型脂肪替代物的方法,包括如下步骤:
(1)称取10份乙基纤维素和2份单硬脂酸甘油酯溶解于88份150℃的大豆油中,并搅拌10分钟后放置于70℃的水浴中,得到油溶液;
(2)取10份明胶溶解于90份70℃的热水中,并搅拌10分钟,得到水溶液;
(3)将步骤(1)的油溶液和步骤(2)的水溶液按照质量比2:8、4:6、5:5、6:4、8:2混合均匀,以10000rpm的速率使用高速均质机对混合溶液进行乳化2min,得到乳液;再将得到的乳液置于室温下低速400rpm搅拌直至体系胶凝,得到乳液凝胶型脂肪替代物。
使用食品3D打印机将乳液凝胶型脂肪替代物进行打印,打印针头的直径为1.55mm,打印的温度和速率分别为25℃和25mm/s,3D打印的效果如图8所示,当油溶液和水溶液为6:4和8:2时打印较理想,打印出的结构细腻光滑,因此油溶液和水溶液的比例为6:4和8:2的油包水型乳液凝胶型脂肪替代物在3D打印应用中具有较好的效果,材料流动性好,塑性能力突出,可用于在食品3D打印中定制各种新型食品。
实施例7在功能性活性组分控制释放方面的应用
一种用于功能性活性组分控制释放的乳液凝胶型脂肪替代物的方法,包括如下步骤:
(1)称取10份乙基纤维素和2份单硬脂酸甘油酯溶解于88份150℃的大豆油中,并搅拌10分钟后放置于70℃的水浴中,得到油溶液;
(2)取10份明胶溶解于89份70℃的热水中,再加入1份维生素C,并搅拌10分钟,得到水溶液;
(3)将步骤(1)的油溶液和步骤(2)的水溶液按照质量比4:6、5:5、6:4混合均匀,以10000rpm的速率使用高速均质机对混合溶液进行乳化2min,得到乳液;再将得到的乳液置于室温下低速400rpm搅拌直至体系胶凝,得到油包水型乳液凝胶型脂肪替代物。
对比例7
取10份的明胶溶解于89份70℃的热水中,将1份维生素C加入至水溶液中均匀搅拌10分钟后冷却至室温得到包埋维生素C的水凝胶。
将实施例7中的包埋维生素C的乳液凝胶型脂肪替代物和对比例7中的水凝胶各5g加 入到100mL的磷酸缓冲液中并放置在摇床内以400rpm的速率振荡,每过数分钟取出少量缓冲液,并使用紫外分光光度计在285nm处测定吸光强度以计算释放维生素C的含量。
实施例8在功能性活性组分控制释放方面的应用
一种用于功能性活性组分控制释放的乳液凝胶型脂肪替代物的方法,包括如下步骤:
(1)称取10份乙基纤维素和2份单硬脂酸甘油酯溶解于87份150℃的大豆油中,再加入1份维生素E,并搅拌10分钟后放置于70℃的水浴中,得到油溶液;
(2)取10份明胶溶解于90份70℃的热水中,搅拌10分钟,得到水溶液;
(3)将步骤(1)的油溶液和步骤(2)的水溶液按照质量比1:9、2:8、3:7混合均匀,以10000rpm的速率使用高速均质机对混合溶液进行乳化2min,得到乳液;再将得到的乳液置于室温下低速400rpm搅拌直至体系胶凝,得到包埋维生素E的水包油型乳液凝胶型脂肪替代物。
对比例8
取10份的乙基纤维素和2份的单硬脂酸甘油酯溶解于87份150℃的大豆油中,并搅拌10分钟后放置于70℃的水浴中,将1份维生素E加入至油溶液中均匀搅拌10分钟后冷却至室温得到包埋维生素E的油凝胶。
将实施例8中包埋维生素E的乳液凝胶型脂肪替代物和对比例8中的油凝胶各5g加入到100mL的磷酸缓冲液中并放置在摇床内以400rpm的速率振荡,每过数分钟取出少量样品加入至50mL的异丙醇中,并使用紫外分光光度计在297.9nm处测定吸光强度以计算释放维生素E的含量。
维生素C和维生素E的释放速率如图9所示,乳液凝胶型脂肪替代物对维生素C的缓释效果显著,完全释放维生素C需要350min,而单独使用明胶水凝胶包埋的维生素C在60分钟后就释放完毕,单独使用油凝胶包埋维生素E时,在15min后维生素E基本释放完全,而在乳液凝胶型脂肪替代物中,维生素E完全释放完毕需要的时间大于45min,说明乳液凝胶型脂肪替代物对水溶性的维生素C和脂溶性的维生素E的控制释放效果明显优于单独使用水凝胶或油凝胶包埋缓释的效果,因此乳液凝胶型脂肪替代物的包埋缓释效果有利于功能性营养组分在体内或体外更好地吸收。

Claims (18)

  1. 一种制备相变可调的乳液凝胶型脂肪替代物的方法,其特征在于,包括如下步骤:
    (1)将油溶性多糖、油溶性小分子凝胶剂溶解在植物油中,得到油溶液;
    (2)将水溶性大分子凝胶剂溶解在水中,得到水溶液;
    (3)将步骤(1)的油溶液和步骤(2)的水溶液混合均匀进行乳化,得到乳液;之后再凝胶,得到乳液凝胶型脂肪替代物;
    其中,当步骤(3)中油溶液在乳液中的质量百分比低于44%,但不为0,得到的是水包油型乳液凝胶型脂肪替代物;当步骤(3)中油溶液在乳液中的质量百分比高于44%,但不为100%,得到的是油包水型乳液凝胶型脂肪替代物;当步骤(3)中油溶液在乳液中的质量百分比等于44%,得到的是半双连续型乳液凝胶型脂肪替代物。
  2. 根据权利要求1所述的方法,其特征在于,步骤(2)所述水溶性大分子凝胶剂为明胶、羟丙基甲基纤维素、甲基纤维素、魔芋胶中的一种或几种。
  3. 根据权利要求1或2所述的方法,其特征在于,步骤(2)中水溶性大分子凝胶剂在水中的质量浓度为4%~10%。
  4. 根据权利要求1或2所述的方法,其特征在于,步骤(1)所述的油溶性多糖为乙基纤维素、几丁质中的一种或两种。
  5. 根据权利要求1或2所述的方法,其特征在于,步骤(1)中油溶性多糖在植物油中的质量浓度为5%~10%。
  6. 根据权利要求1或2所述的方法,其特征在于,步骤(1)所述的油溶性小分子凝胶剂为单甘油酯、单双甘油脂肪酸酯、聚甘油脂肪酸酯、硬脂酰乳酸钠、脂肪酸蔗糖酯中的一种或几种。
  7. 根据权利要求1或2所述的方法,其特征在于,步骤(1)中油溶性小分子凝胶剂在植物油中的质量浓度为1%~5%。
  8. 根据权利要求1或2所述的方法,其特征在于,步骤(3)中所述的乳化是65~80℃、5000~15000rpm下高速剪切1~5min。
  9. 根据权利要求1或2所述的方法,其特征在于,步骤(3)中所述的凝胶是将得到的乳液在15~30℃,100~1000rpm下搅拌得到凝胶。
  10. 根据权利要求1或2所述的方法,其特征在于,制备相变可调的乳液凝胶型脂肪替代物的方法,包括如下步骤:
    (1)将油溶性多糖、油溶性小分子凝胶剂溶解在130~180℃的植物油中,得到油溶液;
    (2)将水溶性大分子凝胶剂溶解在65~80℃的水中,得到水溶液;
    (3)将步骤(1)的油溶液和步骤(2)的水溶液混合均匀,在65~80℃、5000~15000rpm下高速剪切1~5min进行乳化,得到乳液;之后在15~30℃下以100~1000rpm的速度进行搅拌凝胶,得到乳液凝胶型脂肪替代物。
  11. 根据权利要求1或2所述的方法,其特征在于,步骤(1)所述植物油为花生油、大豆油、葵花籽油、菜籽油、玉米油、茶籽油、芝麻油、橄榄油、小麦胚芽油、棕榈油、火麻油、椰子油、棕榈仁油、椰子仁油中的一种或几种。
  12. 权利要求1~11任一项所述的方法制备得到的水包油型乳液凝胶型脂肪替代物和油包水型乳液凝胶型脂肪替代物。
  13. 权利要求12所述的水包油型乳液凝胶型脂肪替代物和油包水型乳液凝胶型脂肪替代物在食品领域的应用。
  14. 根据权利要求13所述的应用,其特征在于,所述的应用是将水包油型乳液凝胶型脂肪替代物用于裱花。
  15. 根据权利要求14所述的应用,其特征在于,所述的水包油型乳液凝胶型脂肪替代物制备方法中油溶液和水溶液的质量比为4:6。
  16. 根据权利要求13所述的应用,其特征在于,所述的应用是将油包水型乳液凝胶型脂肪替代物应用于3D打印,具体是将油包水型乳液凝胶型脂肪替代物作为可食用固体材料用于3D打印。
  17. 根据权利要求16所述的应用,其特征在于,所述的油包水型乳液凝胶型脂肪替代物制备方法中油溶液和水溶液的质量比为6:4~8:2。
  18. 根据权利要求13所述的应用,其特征在于,所述的在包埋活性物质方面的应用具体是将水包油型乳液凝胶型脂肪替代物或油包水型乳液凝胶型脂肪替代物作为载体包埋控释水溶性活性物质和脂溶性活性物质。
PCT/CN2022/097373 2021-06-21 2022-06-07 一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用 WO2022267880A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/989,846 US20230082923A1 (en) 2021-06-21 2022-11-18 Method for preparing emulsion gel-based fat substitute with adjustable phase change and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110687399.5 2021-06-21
CN202110687399.5A CN113383947B (zh) 2021-06-21 2021-06-21 一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/989,846 Continuation US20230082923A1 (en) 2021-06-21 2022-11-18 Method for preparing emulsion gel-based fat substitute with adjustable phase change and use thereof

Publications (1)

Publication Number Publication Date
WO2022267880A1 true WO2022267880A1 (zh) 2022-12-29

Family

ID=77623330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097373 WO2022267880A1 (zh) 2021-06-21 2022-06-07 一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用

Country Status (3)

Country Link
US (1) US20230082923A1 (zh)
CN (1) CN113383947B (zh)
WO (1) WO2022267880A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113383947B (zh) * 2021-06-21 2022-09-27 江南大学 一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用
CN114246223B (zh) * 2021-12-13 2023-07-25 江南大学 一种植物蛋白基w/o/w类脂肪制备及3d打印应用
CN114027458B (zh) * 2021-11-23 2023-07-07 江南大学 一种以脂质泡包埋肉味香精制备羊肉专用块状脂肪的方法
CN114532413A (zh) * 2022-02-15 2022-05-27 江南大学 一种用于脂肪替代物的3d打印的乳液凝胶及其制备方法
CN114468062B (zh) * 2022-02-16 2023-08-25 江南大学 可3d/4d打印的双网络零反式类脂肪乳液凝胶及制备
CN114557441A (zh) * 2022-03-23 2022-05-31 福建诚壹实业有限公司 乳液微凝胶脂肪替代物的制备及其在低脂肉中的应用
CN114651993B (zh) * 2022-03-29 2022-11-11 江南大学 一种具有广泛pH耐受范围的食品乳液凝胶及其制备方法
CN115363102B (zh) * 2022-08-23 2023-09-12 江南大学 O/w,w/o,双连续型三种相变可调脂肪类似物及制备方法和应用
CN115349556B (zh) * 2022-08-26 2023-10-03 江南大学 一种基于花生油体的植物肉替代脂肪及其制备方法和应用
CN115644263A (zh) * 2022-09-27 2023-01-31 暨南大学 一种可负载脂溶性和水溶性活性物质的3d打印双凝胶的制备及应用
CN115746953B (zh) * 2022-10-25 2024-04-19 江南大学 一种花生油体基多相类脂肪及其制备方法和应用
CN116420867B (zh) * 2023-03-27 2024-03-01 江南大学 一种基于微胶囊填充水凝胶3d打印制备块状脂肪的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048564A (en) * 1995-10-19 2000-04-11 Fmc Corporation Bakery shortening substitute, bakery products containing the same, and preparation method
US6187323B1 (en) * 1998-06-03 2001-02-13 Zentrx, Inc. Stable gel mixture in the form of a mixture of oleogel and aqueous gel, process for its preparation, pharmaceutical and cosmetic compositions comprising it, and use of the pharmaceutical compositions
CN102510725A (zh) * 2009-06-12 2012-06-20 玛尔斯有限公司 油的聚合物凝胶化
CN104582496A (zh) * 2012-06-28 2015-04-29 陶氏环球技术有限责任公司 制备可食用油凝胶的方法
CN106937917A (zh) * 2016-01-05 2017-07-11 河南工业大学 一种基于有机凝胶和水凝胶的双凝胶化妆品的制备
WO2018007399A1 (en) * 2016-07-04 2018-01-11 Universita' Degli Studi Di Udine Method to make fat-substitute and/or fat-imitator compounds
US20180127577A1 (en) * 2015-06-01 2018-05-10 The Trustees Of The University Of Pennsylvania Bijels and methods of making the same
KR20190053763A (ko) * 2017-11-10 2019-05-20 (주)아모레퍼시픽 바이겔 타입의 화장료 조성물
CN113383947A (zh) * 2021-06-21 2021-09-14 江南大学 一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245378A (ja) * 1999-03-02 2000-09-12 Tsukishima Shokuhin Kogyo Kk 油中水型乳化組成物
CN107950684B (zh) * 2017-12-22 2021-03-19 暨南大学 一种富含不饱和脂肪酸的油凝胶及其制备方法与应用
US20200268622A1 (en) * 2019-02-26 2020-08-27 Cornell University Ultra-stable water-in-oil high internal phase emulsions featuring interfacial and biphasic network stabilization
CN111700264B (zh) * 2020-06-30 2023-01-31 江南大学 一种双连续乳液凝胶的制备方法及应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048564A (en) * 1995-10-19 2000-04-11 Fmc Corporation Bakery shortening substitute, bakery products containing the same, and preparation method
US6187323B1 (en) * 1998-06-03 2001-02-13 Zentrx, Inc. Stable gel mixture in the form of a mixture of oleogel and aqueous gel, process for its preparation, pharmaceutical and cosmetic compositions comprising it, and use of the pharmaceutical compositions
CN102510725A (zh) * 2009-06-12 2012-06-20 玛尔斯有限公司 油的聚合物凝胶化
CN104582496A (zh) * 2012-06-28 2015-04-29 陶氏环球技术有限责任公司 制备可食用油凝胶的方法
US20180127577A1 (en) * 2015-06-01 2018-05-10 The Trustees Of The University Of Pennsylvania Bijels and methods of making the same
CN106937917A (zh) * 2016-01-05 2017-07-11 河南工业大学 一种基于有机凝胶和水凝胶的双凝胶化妆品的制备
WO2018007399A1 (en) * 2016-07-04 2018-01-11 Universita' Degli Studi Di Udine Method to make fat-substitute and/or fat-imitator compounds
KR20190053763A (ko) * 2017-11-10 2019-05-20 (주)아모레퍼시픽 바이겔 타입의 화장료 조성물
CN113383947A (zh) * 2021-06-21 2021-09-14 江南大学 一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG QINBO; WANG YUXIN; DU LIYANG; LI SHAOYANG; LIU YUANFA; MENG ZONG: "Catastrophic phase inversion of bigels characterized by fluorescence intensity-based 3D modeling and the formability for decorating and 3D printing", FOOD HYDROCOLLOIDS, ELSEVIER BV, NL, vol. 126, 23 December 2021 (2021-12-23), NL , XP086936161, ISSN: 0268-005X, DOI: 10.1016/j.foodhyd.2021.107461 *
ZHENG HONGXIA, MAO LIKE, CUI MENGNAN, LIU JINFANG, GAO YANXIANG: "Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction", FOOD HYDROCOLLOIDS, ELSEVIER BV, NL, vol. 105, 1 August 2020 (2020-08-01), NL , pages 105855, XP093016166, ISSN: 0268-005X, DOI: 10.1016/j.foodhyd.2020.105855 *

Also Published As

Publication number Publication date
CN113383947A (zh) 2021-09-14
US20230082923A1 (en) 2023-03-16
CN113383947B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2022267880A1 (zh) 一种制备相变可调的乳液凝胶型脂肪替代物的方法及应用
Pan et al. Effect of oleogelation on physical properties and oxidative stability of camellia oil-based oleogels and oleogel emulsions
CN107950684B (zh) 一种富含不饱和脂肪酸的油凝胶及其制备方法与应用
Espert et al. Cellulose ether oleogels obtained by emulsion-templated approach without additional thickeners
Li et al. Roles of gelator type and gelation technology on texture and sensory properties of cookies prepared with oleogels
CN114468062B (zh) 可3d/4d打印的双网络零反式类脂肪乳液凝胶及制备
Liu et al. Wheat gluten based percolating emulsion gels as simple strategy for structuring liquid oil
CN114467997B (zh) 一种复合双网络零反式低饱和脂肪酸油凝胶的制备及应用
An et al. Preparation of Pickering emulsion gel stabilized by tea residue protein/xanthan gum particles and its application in 3D printing
Wang et al. Construction of 3D printable Pickering emulsion gels using complexes of fiber polysaccharide-protein extracted from Haematococcus pluvialis residues and gelatin for fat replacer
Kavimughil et al. Effect of material composition and 3D printing temperature on hot-melt extrusion of ethyl cellulose based medium chain triglyceride oleogel
Nasirpour-Tabrizi et al. Rheological and physicochemical properties of novel low-fat emulgels containing flaxseed oil as a rich source of ω-3 fatty acids
JP2853063B2 (ja) セルロース組成物、その製法及び脂質におけるその使用
CN109287770A (zh) 一种富含多酚的固态状茶油及制备方法
Ghorghi et al. Fabrication of novel hybrid gel based on beeswax oleogel: Application in the compound chocolate formulation
Wijaya et al. Oleogels from emulsion (HIPE) templates stabilized by protein–polysaccharide complexes
Wang et al. Effect of starch type on the physicochemical and emulsifying properties of amorphous starch–whey protein isolate mixtures
Wang et al. Improvement of 3D printing performance of pea protein isolate Pickering emulsion gels by regulating electrostatic interaction between protein and polysaccharide
CN115399376B (zh) 一种类型可控的双凝胶类脂肪及其制备方法和3d打印应用
CN116115534A (zh) 一种温敏性植物纤维基乳液凝胶、油凝胶及其制备方法和应用
CN113083173B (zh) 一种油包水型Pickering乳液凝胶及其制备方法
Fernandes et al. Effect of the use of ethanol and chia mucilage on the obtainment and techno‐functional properties of chia oil nanoemulsions
CN114947107B (zh) 一种改性豌豆蛋白-壳聚糖纳米颗粒的制备及其应用
Guo et al. One-step fabrication of microfluidic W/O/W droplets as fat-reduced high internal phase emulsions: Microstructure, stability and 3D printing performance
Jiang et al. Formulation and characterization of bigels utilizing whey protein and polysaccharides: Potential applications as cream analogues

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE