WO2023155333A1 - 一种基于压电效应制备高性能锂离子硅基负极材料的方法及其应用 - Google Patents

一种基于压电效应制备高性能锂离子硅基负极材料的方法及其应用 Download PDF

Info

Publication number
WO2023155333A1
WO2023155333A1 PCT/CN2022/096530 CN2022096530W WO2023155333A1 WO 2023155333 A1 WO2023155333 A1 WO 2023155333A1 CN 2022096530 W CN2022096530 W CN 2022096530W WO 2023155333 A1 WO2023155333 A1 WO 2023155333A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
sio
electrode material
water
based negative
Prior art date
Application number
PCT/CN2022/096530
Other languages
English (en)
French (fr)
Inventor
任玉荣
陈金媛
赵宏顺
李建斌
Original Assignee
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州大学 filed Critical 常州大学
Publication of WO2023155333A1 publication Critical patent/WO2023155333A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a silicon-based negative electrode material, in particular to a high-performance lithium-ion silicon-based negative electrode material and a preparation method thereof, belonging to the technical field of lithium-ion batteries.
  • Graphite is currently the most widely used commercial lithium-ion battery anode material, but its theoretical specific capacity is only 372mAh g -1 , and its charge-discharge potential is low (0.01-0.25V vs. Li/Li + ). Li dendrites are easily formed.
  • the silicon anode material has an ultra-high theoretical specific capacity (4200mA h g -1 ), silicon is abundant in the earth's crustal elements, and has the characteristics of low cost and environmental friendliness. Therefore, silicon is considered to be the next generation of lithium with great potential. Ion battery anode material.
  • silicon-based materials also have defects: (1) silicon-based materials are semiconductors, and their conductivity is not good; After delithiation, the material is pulverized and loses electrical contact with the conductive agent and current collector, which eventually leads to a rapid decline in reversible capacity.
  • SiO X materials Similar to silicon materials, SiO X materials have reversible lithium storage capacity, and are generally amorphous silicon-oxygen binary compounds, and their oxygen content x is usually between 0 and 2, that is, 0 ⁇ x ⁇ 2. With the increase of oxygen content, the specific capacity of SiO X decreases, but the cycle stability improves.
  • SiO X undergo some irreversible reactions during the first lithium intercalation, and the reaction generates inert components (a series of lithium silicates and Li 2 O), which can be used as buffer substances to relieve the active material during the lithium intercalation process.
  • SiO X is amorphous, which is beneficial to alleviate the problems of material cracking and pulverization caused by uneven stress in the lithium ion extraction/intercalation process, which improves the cycle performance, but the volume expansion problem is always Unavoidable, there is a big gap from commercial use.
  • the object of the present invention is to provide a method for preparing a lithium-ion silicon-based negative electrode material with excellent performance.
  • the present invention provides a method for preparing a high-performance silicon-based negative electrode material based on the piezoelectric effect, the method comprising the following steps:
  • the method for preparing high-performance silicon-based negative electrode materials based on the piezoelectric effect of the present invention can use the mechanical stress generated by the alloying reaction to induce a local electric field through the piezoelectric material, realize the conversion of mechanical energy into electrical energy, and at the same time alleviate the volume caused by the alloying reaction Swelling speeds up the migration speed of lithium ions, thereby improving the electrochemical performance of silicon-based materials.
  • the method for preparing a high-performance lithium-ion silicon-based negative electrode material based on the piezoelectric effect comprises the following steps:
  • TEOS, glucose, water, and co-solvent ethanol are in a mass ratio of 1-10:0.5-2:1:5-20.
  • ethanol is a co-solvent to promote the miscibility of TEOS and water.
  • TEOS is hydrolyzed and polycondensed by adding 0.1-2mol/L dilute hydrochloric acid and 0.1-2mol/L ammonia water, and the precursor is prepared by the acid-base two-step sol-gel method.
  • step (2) Grinding the gel prepared in step (1), and performing carbon reduction by high-temperature heat treatment to obtain SiO X -C.
  • the carbon reduction atmosphere in step (2) is argon, and the gas flow rate is kept at 100-150 mL/min.
  • the carbon reduction temperature is 800-1000°C, and the holding time is 0.5-2h.
  • step (3) the molar ratio of Pb(CH 3 COOH) 2 ⁇ 3H 2 O, ZrOCl 2 ⁇ 8H 2 O and TiO 2 is 1-3:1-2:1, Pb(CH 3 COOH) 2 ⁇ The volume of moles of 3H 2 O and water is (2-3)mol: (30-50)mL.
  • PZT PbZr 0.52 Ti 0.48 O 3
  • KOH is used as a mineralizer to promote crystallization, preferably 3mol L - 1 KOH solution.
  • the mixing ratio of the KOH solution to the water used to prepare the precursor solution is 20-40:30-50.
  • the content of the piezoelectric material PZT accounts for 5%-50% (preferably 5%-30%) of the total mass of the two. It is preferably ball milled under an argon atmosphere, and the product is collected by sieving after ball milling.
  • SiO X -C/PZT particles Coating SiO X -C/PZT particles on copper foil to make the negative electrode of lithium ion battery.
  • SiO X -C/PZT particles, conductive agent (acetylene black) and binder (sodium alginate) were dispersed in water solvent according to the mass ratio of 8:1:1, and then evenly coated on copper foil, after drying A circular electrode sheet with a diameter of 12 mm was made.
  • the present invention also provides a silicon-based negative electrode material, which is prepared by the method for preparing a high-performance silicon-based negative electrode material based on the piezoelectric effect of the present invention.
  • the present invention further provides a lithium-ion battery, which uses the above-mentioned silicon-based negative electrode material of the present invention as a working electrode.
  • the electrochemical performance test of the SiO X -C/PZT negative electrode adopts a lithium ion battery system composed of two electrodes.
  • SiO X -C/PZT is used as the working electrode, and the high-purity lithium sheet is used as the counter electrode and reference electrode at the same time.
  • the electrolyte is 1M LiPF 6 dissolved in ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) (1:1:1vol) and 10wt% fluoroethylene carbonate (FEC ).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • FEC fluoroethylene carbonate
  • the invention prepares a high-performance lithium-ion silicon-based negative electrode material based on the piezoelectric effect, and can synthesize SiO X -C/PZT.
  • SiO X -C uses TEOS as the raw material, the device is simple, and it can be prepared by the acid-base two-step sol-gel method at 80°C.
  • the preparation method is simple and easy to operate, and the energy consumption is relatively low, and it is carried out in a closed container, pollution Small.
  • SiOx -C/PZT prepared by the method of the present invention, when being used for the negative electrode material of lithium ion battery, at first, the introduction of oxygen makes SiOx some irreversible reactions take place when intercalating lithium for the first time to generate inert components (a series of Lithium silicate and Li 2 O) can be used as a buffer substance to alleviate the expansion effect of the active material during the lithium-deintercalation process.
  • inert components a series of Lithium silicate and Li 2 O
  • carbon coating is beneficial to alleviate the problems of material cracking and pulverization caused by uneven stress in the lithium ion extraction/intercalation process, which improves the cycle performance.
  • the piezoelectric material PZT is introduced, and the stress generated by SiO X during the alloying process is transmitted to the piezoelectric material.
  • the piezoelectric material PZT responds to the piezoelectric effect, generates a local electric field, and accelerates the transmission of lithium ions. It is applied to lithium-ion batteries with cycle stability. Better performance, better rate performance, smaller internal resistance and so on.
  • FIG. 1 is a TEM image of the silicon-based negative electrode material prepared in Comparative Example 1.
  • Fig. 2 is a TEM image of SiOx -C/PZT-10% high-performance SiOx -C lithium-ion silicon-based negative electrode material based on piezoelectric effect obtained in Example 2.
  • FIG. 3 is an SEM image of the silicon-based negative electrode material SiOx -C prepared in Comparative Example 1.
  • FIG. 4 is a SEM image of SiO X -C/PZT-10% high-performance lithium-ion silicon-based negative electrode material based on the piezoelectric effect obtained in Example 2.
  • Fig. 5 is a cycle efficiency graph of SiO x -C and SiO x -C/PZT prepared in Comparative Examples 1-4 and Examples 1-3.
  • the present invention prepares the method for high-performance lithium-ion silicon base anode material based on piezoelectric effect, comprises the following steps:
  • SiOx -C/PZT which is used to assemble button cells
  • the mass ratio of 1:1 was dispersed in water solvent, and then evenly coated on copper foil, and dried at 105°C for 10 hours to make a circular electrode sheet with a diameter of 12mm.
  • High-purity lithium flakes are used as both counter and reference electrodes.
  • the electrolyte is 1M LiPF 6 dissolved in ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) (1:1:1vol) and 10wt% fluoroethylene carbonate (FEC ).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • FEC fluoroethylene carbonate
  • This embodiment provides a preparation method for preparing a high-performance lithium-ion silicon-based negative electrode material based on the piezoelectric effect, comprising the following steps:
  • step (3) Weigh 1.9g of SiOx -C obtained in step (1) and 0.1g of the PZT piezoelectric material obtained in step (2), and use a ball mill for 12h under an argon atmosphere, with a ball-to-material ratio of 20:1, Afterwards, the product SiO X -C/PZT-5% was collected by sieving.
  • the SiO X -C/PZT-5% electrode was used as the working electrode, the metal lithium sheet was used as the counter electrode, and a 2032 button cell was assembled in a glove box (LABstar) filled with ultra-high-purity argon.
  • Celgard 2500 was used as a separator, 1M LiPF 6 was dissolved in ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) (1:1:1vol) and 10wt%
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • FEC fluoroethylene carbonate
  • Li-ion battery charge and discharge experiments were carried out on the Xinwei battery test system.
  • the charge-discharge test results shown in Figure 5 show that the material can still maintain a capacity of 468mAh g -1 after 200 cycles at a current density of 400mA g -1 .
  • This embodiment provides a preparation method for preparing a high-performance lithium-ion silicon-based negative electrode material based on the piezoelectric effect, which includes the following steps:
  • the SiO X -C/PZT-10% electrode was used as the working electrode, the metal lithium sheet was used as the counter electrode, and a 2032 button cell was assembled in a glove box (LABstar) filled with ultra-high-purity argon.
  • Celgard 2500 was used as a separator, 1M LiPF 6 was dissolved in ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) (1:1:1vol) and 10wt%
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • FEC fluoroethylene carbonate
  • Li-ion battery charge and discharge experiments were carried out on the Xinwei battery test system.
  • the charge and discharge test results shown in Figure 5 show that the material can still maintain a capacity of 570mAh g -1 after 200 cycles at a current density of 400mA g -1 .
  • Figure 2 is the TEM image of Example 2. From the figure, obvious lattice fringes can be seen. The lattice spacing is 0.283nm and 0.29nm respectively, corresponding to (110) and (101) crystal planes, indicating that SiO was successfully synthesized.
  • Figure 4 is the SEM picture of Example 2, from which it can be seen that SiO x -C and PZT are mixed uniformly, which all indicate that SiO x -C/PZT was successfully synthesized in this example.
  • This embodiment provides a preparation method for preparing a high-performance lithium-ion silicon-based negative electrode material based on the piezoelectric effect, which includes the following steps:
  • step (3) Weigh 1.7g of SiOx -C obtained in step (1) and 0.3g of the PZT piezoelectric material obtained in step (2), and use a ball mill for 12h under an argon atmosphere, with a ball-to-material ratio of 20:1, Afterwards, the product SiO X -C/PZT-15% was collected by sieving.
  • the SiO X -C/PZT-15% electrode was used as the working electrode, the metal lithium sheet was used as the counter electrode, and a 2032 button cell was assembled in a glove box (LABstar) filled with ultra-high-purity argon.
  • Celgard 2500 was used as a separator, 1M LiPF 6 was dissolved in ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) (1:1:1vol) and 10wt%
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • FEC fluoroethylene carbonate
  • Li-ion battery charge and discharge experiments were carried out on the Xinwei battery test system. As shown in the charge and discharge test results shown in Figure 5, the material can still maintain a capacity of 460mAh g -1 after 200 cycles at a current density of 400mA g -1 .
  • This comparative example provides a kind of preparation method of lithium-ion silicon-based negative electrode material, and it comprises the following steps:
  • the SiO X -C electrode was used as the working electrode, and the metal lithium sheet was used as the counter electrode, and a 2032 button cell was assembled in a glove box (LABstar) filled with ultra-high-purity argon.
  • Celgard 2500 was used as a separator, 1M LiPF 6 was dissolved in ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) (1:1:1vol) and 10wt%
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • FEC fluoroethylene carbonate
  • Li-ion battery charge and discharge experiments were carried out on the Xinwei battery test system.
  • Fig. 1 is the TEM picture of comparative example 1, can see from the figure that the prepared SiOx -C has a carbon layer of about 15-20nm
  • Fig. 3 is the SEM picture of comparative example 1
  • SiOx -C is an irregular shape particles, these illustrate the successful preparation of SiOx -C composites.
  • This comparative example provides a preparation method of a lithium-ion silicon-based negative electrode material, which is basically the same as Comparative Example 2, the difference being:
  • the electrode of this comparative example was used as the working electrode, and the metal lithium sheet was used as the counter electrode, and assembled into a 2032-type button battery in a glove box (LABstar) filled with ultra-high-purity argon.
  • Celgard 2500 was used as a separator, 1M LiPF 6 was dissolved in ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) (1:1:1vol) and 10wt%
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • FEC fluoroethylene carbonate
  • Li-ion battery charge and discharge experiments were carried out on the Xinwei battery test system. The test results show that the material maintains a capacity of 436mAh g -1 after 200 cycles at a current density of 400mA g -1 .
  • This comparative example provides a kind of preparation method of lithium-ion silicon-based negative electrode material, comprises the following steps:
  • the SiO X -C/PZT-50% electrode was used as the working electrode, the metal lithium sheet was used as the counter electrode, and a 2032 button cell was assembled in a glove box (LABstar) filled with ultra-high-purity argon.
  • Celgard 2500 was used as a separator, 1M LiPF 6 was dissolved in ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) (1:1:1vol) and 10wt%
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • FEC fluoroethylene carbonate
  • Li-ion battery charge and discharge experiments were carried out on the Xinwei battery test system.
  • This comparative example provides a kind of preparation method of lithium-ion silicon-based negative electrode material, comprises the following steps:
  • step (3) Weigh 1.8g of SiO X -C obtained in step (1) and 0.2g of the PZT piezoelectric material obtained in step (2), and use a ball mill for 12h under an argon atmosphere, with a ball-to-material ratio of 20:1, Afterwards, the product SiO X -C/PZT-10% (800° C.) was collected by sieving.
  • the SiO X -C/PZT-10% (800°C) electrode was used as the working electrode, the metal lithium sheet was used as the counter electrode, and a 2032 button cell was assembled in a glove box (LABstar) filled with ultra-high-purity argon.
  • Celgard 2500 was used as a separator, 1M LiPF 6 was dissolved in ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) (1:1:1vol) and 10wt%
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • FEC fluoroethylene carbonate
  • Li-ion battery charge and discharge experiments were carried out on the Xinwei battery test system.
  • the charge-discharge test results shown in Figure 5 show that the material can still maintain a capacity of 494mAh g -1 after 200 cycles at a current density of 400mA g -1 .
  • SiO X -C mainly provides high capacity, and when PZT is stressed, it can generate a local electric field, thereby accelerating lithium ion transport and improving electrochemical performance, but
  • the PZT content should not be too much, otherwise the capacity of the composite material will be reduced, so a balance point between the two should be found. It is found through research that when the piezoelectric material PZT accounts for 10% of the total mass of both the PZT and the silicon-based material, the performance of the composite material is excellent.

Abstract

本发明提供了一种基于压电效应制备高性能锂离子硅基负极材料的方法及其应用。该方法包括:向葡萄糖中加入水、硅酸四乙酯、乙醇,加入稀盐酸和氨水溶液,搅拌形成凝胶;将凝胶研磨,进行碳还原,得到SiO X-C;将Pb(CH 3COOH) 2·3H 2O、ZrOCl 2·8H 2O、TiO 2与水混合搅拌均匀,超声,得前驱体溶液;将KOH溶液添加到前驱体溶液中,搅拌均匀并超声,160℃-200℃水热4-6h,冷却至室温,以水和无水乙醇离心并干燥,研磨得到PbZr 0.52Ti 0.48O 3;将SiO X-C和PbZr 0.52Ti 0.48O 3混合,球磨12h,得到SiO X-C/PZT;将SiO X-C/PZT、导电剂和粘结剂分散在水中,均匀涂覆在铜箔上,干燥后制成电极片。含有由上述制备方法制备得到的硅基负极材料的锂离子电池,具有优异的循环稳定性和倍率性能。

Description

一种基于压电效应制备高性能锂离子硅基负极材料的方法及其应用 技术领域
本发明涉及一种硅基负极材料,尤其涉及一种高性能锂离子硅基负极材料及其制备方法,属于锂离子电池技术领域。
背景技术
石墨是目前应用最为广泛的商业锂离子电池负极材料,但其理论比容量仅为372mAh g -1,且充放电电位较低(0.01-0.25V vs.Li/Li +),在嵌锂过程中容易形成锂枝晶。与之相比,硅负极材料具有超高理论比容量(4200mA h g -1),硅在地壳元素中储量丰富,具有成本低、环境友好等特点,因此硅被认为是极具潜力的下一代锂离子电池负极材料。
但是硅基材料也有缺陷:(1)硅基材料属于半导体,其导电性不好;(2)硅基材料在脱嵌锂的过程中体积膨胀很大,高达300%,在多次嵌锂/脱锂后,导致材料粉化,并与导电剂和集流体失去电接触,最终导致可逆容量急速衰减。SiO X材料与硅材料相似,具有可逆的储锂能力,一般为无定形的硅氧二元化合物,它的含氧数量x通常在0到2之间,即0<x≤2。随着氧含量的增加,SiO X比容量有所降低,但是循环稳定性提升。氧的引入使得SiO X在首次嵌锂时发生了一些不可逆的反应,反应生成了惰性组分(一系列锂硅酸盐和Li 2O),可以作为缓冲物质缓解活性材料在脱嵌锂过程中的体积膨胀效应,另外,SiO X是无定形的,有利于缓解锂离子脱出/嵌入过程的应力不均匀时产生的材料开裂、粉化等问题,使得循环性能有所改善,但体积膨胀问题始终无法避免,距商业使用有较大的差距。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种具有优异性能的锂离子硅基负极材料的制备方法。
为了实现上述技术目的,本发明提供了一种基于压电效应制备高性能硅基负极材料的方法,该方法包括以下步骤:
向葡萄糖中加入水、硅酸四乙酯、乙醇,70-90℃冷凝回流,并加入稀盐酸和氨水溶液,搅拌形成凝胶;
将凝胶研磨,进行碳还原,得到SiO X-C;
将Pb(CH 3COOH) 2·3H 2O、ZrOCl 2·8H 2O、TiO 2与水混合搅拌均匀,并超声1-3h,获得均匀的前驱体溶液;
将KOH溶液添加到前驱体溶液中,搅拌均匀并超声1-3h,160℃-200℃水热4-6h,冷却至室温,以水和无水乙醇离心并干燥,研磨得到PbZr0 .52Ti 0.48O 3;将SiO X-C和PbZr0 .52Ti 0.48O 3混合,球磨12h,得到SiO X-C/PZT;
将SiO X-C/PZT、导电剂和粘结剂按照8:1:1的质量比分散在水溶剂里,随后均匀涂覆在铜箔上,干燥后得到硅基负极材料。
本发明的基于压电效应制备高性能硅基负极材料的方法,通过压电材料可以利用合金化反应产生的机械应力诱导产生局域电场,实现机械能转化为电能,同时缓解合金化反应引起的体积膨胀,加快锂离子的迁移速度,从而提高硅基材料的电化学性能。
在本发明的一具体实施方式中,该基于压电效应制备高性能锂离子硅基负极材料的方法,包括以下步骤:
(1)称取葡萄糖于三口烧瓶中,加入水,称取硅酸四乙酯(TEOS)、乙醇于其中,70-90℃冷凝回流,并加入稀盐酸和氨水溶液,搅拌至其形成凝胶。
其中,步骤(1)中,TEOS、葡萄糖、水、共溶剂乙醇按质量比1-10:0.5-2: 1:5-20。
其中,乙醇为共溶剂,促进TEOS和水的互溶性。TEOS水解缩聚加入0.1-2mol/L稀盐酸和0.1-2mol/L氨水,通过酸碱两步溶胶凝胶法制备出前驱体。
(2)将步骤(1)制得的凝胶研磨,高温热处理进行碳还原,得到SiO X-C。
其中,步骤(2)的碳还原气氛为氩气,气体流通速率保持在100-150mL/min。碳还原温度为800-1000℃,保温时间为0.5-2h。
(3)称量Pb(CH 3COOH) 2·3H 2O、ZrOCl 2·8H 2O、TiO 2,倒入盛有30mL水的烧杯中并搅拌均匀,并超声1-3h,获得均匀的前驱体溶液。
其中,步骤(3)中,Pb(CH 3COOH) 2·3H 2O、ZrOCl 2·8H 2O和TiO 2的摩尔比为1-3:1-2:1,Pb(CH 3COOH) 2·3H 2O的摩尔与水的体积为(2-3)mol:(30-50)mL。
(4)配置KOH溶液,添加到步骤(3)的溶液中,搅拌均匀并超声1h,将上述溶液转移至反应釜中,160℃-200℃水热4-6h。待冷却至室温,分别用去离子水和无水乙醇离心三次并干燥,研磨得到PbZr 0.52Ti 0.48O 3(以下简称为PZT)。
其中,KOH作为矿化剂,促进结晶,优选3mol L -1的KOH溶液。KOH溶液与制备前驱体溶液的水的混合比为20-40:30-50。
(5)将步骤(2)中得到的SiO X-C和步骤(4)得到的PZT压电材料,球磨机球磨12h。
其中,压电材料PZT的含量占两者总质量的5%-50%(优选5%-30%)。优选在氩气气氛下球磨,球磨后过筛收集产品。
(6)将SiO X-C/PZT颗粒涂覆在铜箔上制成锂离子电池的负极。将SiO X-C/PZT颗粒、导电剂(乙炔黑)和粘结剂(海藻酸钠)按照8:1:1的质量比分散在水溶剂里,随后均匀涂覆在铜箔上,干燥后制成直径为12mm的圆形电极片。
本发明还提供了一种硅基负极材料,其是通过本发明的基于压电效应制备高性能硅基负极材料的方法制备得到的。
本发明又提供了一种锂离子电池,该锂离子电池种以本发明上述的硅基负极材料作为工作电极。
本发明中,SiO X-C/PZT负极的电化学性能测试采用由双电极组成的锂离子电池系统。其中,SiO X-C/PZT用作工作电极,高纯锂片同时用作对电极和参比电极。电解液为1M LiPF 6溶解在碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/碳酸甲乙酯(EMC)(1:1:1vol)以及添加了10wt%的氟代碳酸乙烯酯(FEC)。电池组装在充满氢气的手套箱内进行。锂离子电池的充放电实验在新威电池测试系统上进行。
本发明基于压电效应制备高性能锂离子硅基负极材料,可合成得到SiO X-C/PZT。SiO X-C以TEOS为原料,装置简单,在80℃酸碱两步溶胶凝胶法即可制备。通过溶胶凝胶法、煅烧法制备SiO X-C,通过水热法制备PZT,最终通过球磨法合成复合材料,制备方法简单易操作,能耗相对较低,且在密闭的容器中进行,污染小。
利用本发明的方法制备的SiO X-C/PZT,用于锂离子电池负极材料时,首先,氧的引入使得SiO X在首次嵌锂时发生了一些不可逆的反应生成了惰性组分(一系列锂硅酸盐和Li 2O),可以作为缓冲物质缓解活性材料在脱嵌锂过程中的产生的膨胀效应。另外,碳包覆有利于缓解锂离子脱出/嵌入过程的应力不均匀时产生的材料开裂、粉化等问题,使得循环性能有所改善。引入压电材料PZT,SiO X在合金化过程中产生的应力,传递给压电材料,压电材料PZT响应产生压电效应,生成局部电场,加快锂离子传输,应用于锂离子电池具有循环稳定性更好、倍率性能更优异、内阻更小等特点。
附图说明:
图1为对比例1中制得的硅基负极材料的TEM图。
图2为实施例2中制得基于压电效应的高性能SiO X-C锂离子硅基负极材料SiO X-C/PZT-10%的TEM图。
图3为对比例1中制得的硅基负极材料SiO X-C的SEM图。
图4为实施例2中制得基于压电效应的高性能锂离子硅基负极材料SiO X-C/PZT-10%的SEM图。
图5为对比例1-4、实施例1-3中制得的SiO X-C和SiO X-C/PZT的循环效率图。
具体实施方式
本发明基于压电效应制备高性能锂离子硅基负极材料的方法,包括以下步骤:
(1)称取葡萄糖于三口烧瓶中,加入一定量去离子水,称取硅酸四乙酯(TEOS)、乙醇于其中,70-90℃冷凝回流,并加入0.1mol/L稀盐酸和0.1mol/L氨水溶液,搅拌至其形成凝胶。研磨,高温热处理进行碳还原,得到SiO X-C。
(2)用天平按照化学计量比称量一定量Pb(CH 3COOH) 2·3H 2O、ZrOCl 2·8H 2O和TiO 2,将其倒入盛有30mL去离子水的烧杯中并搅拌均匀,并超声1~3h,获得均匀的前驱体溶液。配置一定量3mol L -1KOH溶液,添加到上述的溶液中,搅拌均匀并超声1~3h,将上述溶液转移至反应釜中,160℃-200℃水热4-6h。待冷却至室温,分别用去离子水和无水乙醇离心三次并干燥,研磨得到PZT。
(3)将步骤(1)中得到的SiO X-C和步骤(2)得到的PZT压电材料,按照一定的比例在氩气氛围下使用球磨机球磨12h,球料比为20:1,之后过筛收集产品SiO X-C/PZT。
上述制得SiO X-C/PZT的应用,它用于组装扣式电池,具体为:将SiO X-C/PZT颗粒、导电剂(乙炔黑)和粘结剂(海藻酸钠)按照8:1:1的质量比分散在水溶剂里,随后均匀涂覆在铜箔上,105℃干燥10h后制成直径为12mm的圆形电极片。高纯锂片同时用作对电极和参比电极。电解液为1M LiPF 6溶解在碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/碳酸甲乙酯(EMC)(1:1:1vol)以及添加了10wt%的氟代碳酸乙烯酯(FEC)。电池组装在充满氢气的手套箱内进行。锂离子电池的充放电实验在新威电池测试系统上进行。
实施例1
本实施例提供一种基于压电效应制备高性能锂离子硅基负极材料的制备方法,包括以下步骤:
(1)称取2.5g葡萄糖于三口烧瓶中,加入5mL去离子水,称取8mL硅酸四乙酯(TEOS)、20mL乙醇于其中,70-90℃冷凝回流,并加入0.1mol/L稀盐酸和0.1mol/L氨水溶液,搅拌至其形成凝胶。研磨,Ar 2下950℃煅烧0.5h,进行碳还原,升温速率为5℃/min,得到黑色产品SiO X-C。
(2)用天平按照化学计量比称量一定量Pb(CH 3COOH) 2·3H 2O(5mmol)、ZrOCl 2·8H 2O(2.6mmol)和TiO 2(2.4mmol),将其倒入盛有30mL去离子水的烧杯中并搅拌均匀,并超声1h,获得均匀的前驱体溶液。量取20mL的3mol L -1KOH溶液,添加到上述的溶液中,搅拌均匀并超声1h,将上述溶液转移至反应釜中,160℃水热4-6h。待冷却至室温,分别用去离子水和无水乙醇离心三次并干燥,研磨得到PZT。
(3)称取1.9g步骤(1)中得到的SiO X-C和0.1g步骤(2)得到的PZT压电材料,在氩气氛围下使用球磨机球磨12h,球料比为20:1,之后过筛收集产品SiO X-C/PZT-5%。
将SiO X-C/PZT-5%电极作为工作电极,金属锂片作对电极,在装有超高纯氩气的手套箱(LABstar)中的组装成2032型纽扣电池。在纽扣电池中,使用Celgard 2500作为隔膜,1M LiPF 6溶解在碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/碳酸甲乙酯(EMC)(1:1:1vol)以及添加了10wt%的氟代碳酸乙烯酯(FEC),锂离子电池的充放电实验在新威电池测试系统上进行。如图5充放电测试结果显示,该材料在400mA g -1的电流密度下循环200圈后容量仍能保持在468mAh g -1
实施例2
本实施例提供一种基于压电效应制备高性能锂离子硅基负极材料的制备方法,它包括以下步骤:
(1)称取2.5g葡萄糖于三口烧瓶中,加入5mL去离子水,称取8mL硅酸四乙酯(TEOS)、20mL乙醇于其中,70-90℃冷凝回流,并加入0.1mol/L稀盐酸和0.1mol/L氨水溶液,搅拌至其形成凝胶。研磨,Ar 2下950℃煅烧0.5h,进行碳还原,升温速率为5℃/min,得到黑色产品SiO X-C。
(2)用天平按照化学计量比称量Pb(CH 3COOH) 2·3H 2O(5mmol)、ZrOCl 2·8H 2O(2.6mmol)和TiO 2(2.4mmol),将其倒入盛有30mL去离子水的烧杯中并搅拌均匀,并超声1h,获得均匀的前驱体溶液。量取20mL的3mol L -1KOH溶液,添加到上述的溶液中,搅拌均匀并超声1h,将上述溶液转移至反应釜中,160℃水热4-6h。待冷却至室温,分别用去离子水和无水乙醇离心三次并干燥,研磨得到PZT。
(3)称取1.8g步骤(1)中得到的SiO X-C和0.2g步骤(2)得到的PZT压电材料,在氩气氛围下使用球磨机球磨12h,球料比为20:1,之后过筛收集产品SiO X-C/PZT-10%。
将SiO X-C/PZT-10%电极作为工作电极,金属锂片作对电极,在装有超高纯氩气的手套箱(LABstar)中的组装成2032型纽扣电池。在纽扣电池中,使用Celgard 2500作为隔膜,1M LiPF 6溶解在碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/碳酸甲乙酯(EMC)(1:1:1vol)以及添加了10wt%的氟代碳酸乙烯酯(FEC),锂离子电池的充放电实验在新威电池测试系统上进行。如图5充放电测试结果显示,该材料在400mA g -1的电流密度下循环200圈后容量仍能保持在570mAh g -1
图2为实施例2的TEM图,从图中可以看到明显的晶格条纹,晶格间距分别为0.283nm、0.29nm,分别对应(110)、(101)晶面,说明成功合成了SiO X-C/PZT。图4为实施例2的SEM图,从图中可以看到SiO X-C与PZT混合均匀,这些都说明本实施例成功合成了SiO X-C/PZT。
实施例3
本实施例提供一种基于压电效应制备高性能锂离子硅基负极材料的制备方法,它包括以下步骤:
(1)称取2.5g葡萄糖于三口烧瓶中,加入5mL去离子水,称取8mL硅酸四乙酯(TEOS)、20mL乙醇于其中,70-90℃冷凝回流,并加入0.1mol/L稀盐酸和0.1mol/L氨水溶液,搅拌至其形成凝胶。研磨,Ar 2下950℃煅烧0.5h,进行碳还原,升温速率为5℃/min,得到黑色产品SiO X-C。
(2)用天平按照化学计量比称量一定量Pb(CH 3COOH) 2·3H 2O(5mmol)、ZrOCl 2·8H 2O(2.6mmol)和TiO 2(2.4mmol),将其倒入盛有30mL去离子水的烧杯中并搅拌均匀,并超声1h,获得均匀的前驱体溶液。量取20mL的3mol L -1KOH溶液,添加到上述的溶液中,搅拌均匀并超声1h,将上述溶液转移至反应釜中,160℃水热4-6h。待冷却至室温,分别用去离子水和无水乙醇离心三次并干燥,研磨得到PZT。
(3)称取1.7g步骤(1)中得到的SiO X-C和0.3g步骤(2)得到的PZT压电材料,在氩气氛围下使用球磨机球磨12h,球料比为20:1,之后过筛收集产品SiO X-C/PZT-15%。
将SiO X-C/PZT-15%电极作为工作电极,金属锂片作对电极,在装有超高纯氩气的手套箱(LABstar)中的组装成2032型纽扣电池。在纽扣电池中,使用Celgard 2500作为隔膜,1M LiPF 6溶解在碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/碳酸甲乙酯(EMC)(1:1:1vol)以及添加了10wt%的氟代碳酸乙烯酯(FEC),锂离子电池的充放电实验在新威电池测试系统上进行。如图5充放电测试结果显示,该材料在400mA g -1的电流密度下循环200圈后容量仍能保持在460mAh g -1
对比例1
本对比例提供一种锂离子硅基负极材料的制备方法,它包括以下步骤:
称取2.5g葡萄糖于三口烧瓶中,加入5mL去离子水,称取8mL硅酸四乙酯(TEOS)、20mL乙醇于其中,70-90℃冷凝回流,并加入0.1mol/L稀盐酸和0.1mol/L氨水溶液,搅拌至其形成凝胶。研磨,Ar 2下950℃煅烧0.5h,进行碳还原,升温速率为5℃/min,得到黑色产品SiO X-C。
将SiO X-C电极作为工作电极,金属锂片作对电极,在装有超高纯氩气的手套箱(LABstar)中的组装成2032型纽扣电池。在纽扣电池中,使用Celgard 2500作为隔膜,1M LiPF 6溶解在碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/碳酸甲乙酯(EMC)(1:1:1vol)以及添加了10wt%的氟代碳酸乙烯酯(FEC),锂离子电池的充放电实验在新威电池测试系统上进行。
如图5充放电测试结果显示,该材料在400mA g -1的电流密度下循环200圈后容量保持在384mAh g -1
图1为对比例1的TEM图,从图中可以看到制备的SiO X-C有约15-20nm的碳 层,图3为对比例1的SEM图,SiO X-C为形状不规则的颗粒,这些说明成功地制备了SiO X-C复合材料。
对比例2
本对比例提供一种锂离子硅基负极材料的制备方法,其与对比例2基本相同,区别在于:
(1)称取2.5g葡萄糖于三口烧瓶中,加入5mL去离子水,称取8mL硅酸四乙酯(TEOS)、20mL乙醇于其中,70-90℃冷凝回流,并加入0.1mol/L稀盐酸和0.1mol/L氨水溶液,搅拌至其形成凝胶。研磨,Ar 2下950℃煅烧0.5h,进行碳还原,升温速率为5℃/min,得到黑色产品SiO X-C。
(2)用天平按照化学计量比称量一定量Pb(CH 3COOH) 2·3H 2O(5mmol)、ZrOCl 2·8H 2O(2.6mmol)和TiO 2(2.4mmol),将其倒入盛有30mL去离子水的烧杯中并搅拌均匀,并超声1h,获得均匀的前驱体溶液。
将20mL的3mol L -1KOH溶液添加到所述前驱体溶液中,搅拌均匀并超声1h,160℃水热4-6h,冷却至室温,以水和无水乙醇离心并干燥,研磨。
(3)称取1.4g步骤(1)中得到的SiO X-C和0.6g步骤(2)得到的PZT压电材料,在氩气氛围下使用球磨机球磨12h,球料比为20:1,之后过筛收集产品SiO X-C/PZT-30%
将本对比例的电极作为工作电极,金属锂片作对电极,在装有超高纯氩气的手套箱(LABstar)中的组装成2032型纽扣电池。在纽扣电池中,使用Celgard 2500作为隔膜,1M LiPF 6溶解在碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/碳酸甲乙酯(EMC)(1:1:1vol)以及添加了10wt%的氟代碳酸乙烯酯(FEC),锂离子电池的充放电实验在新威电池测试系统上进行。测试结果显示,该材料在400mA g -1的电流密度下循环200圈后容量保持在436mAh g -1
对比例3
本对比例提供一种锂离子硅基负极材料的制备方法,包括以下步骤:
(1)称取2.5g葡萄糖于三口烧瓶中,加入5mL去离子水,称取8mL硅酸四乙酯(TEOS)、20mL乙醇于其中,70-90℃冷凝回流,并加入0.1mol/L稀盐酸和0.1mol/L氨水溶液,搅拌至其形成凝胶。研磨,Ar 2下950℃煅烧0.5h,进行碳还原,升温速率为5℃/min,得到黑色产品SiO X-C。
(2)用天平按照化学计量比称量Pb(CH 3COOH) 2·3H 2O(5mmol)、ZrOCl 2·8H 2O(2.6mmol)和TiO 2(2.4mmol),将其倒入盛有30mL去离子水的烧杯中并搅拌均匀,并超声1h,获得均匀的前驱体溶液。量取20mL的3mol L -1KOH溶液,添加到上述的溶液中,搅拌均匀并超声1h,将上述溶液转移至反应釜中,160℃水热4-6h。待冷却至室温,分别用去离子水和无水乙醇离心三次并干燥,研磨得到PZT。
(3)称取1g步骤(1)中得到的SiO X-C和1g步骤(2)得到的PZT压电材料,在氩气氛围下使用球磨机球磨12h,球料比为20:1,之后过筛收集产品SiO X-C/PZT-50%。
将SiO X-C/PZT-50%电极作为工作电极,金属锂片作对电极,在装有超高纯氩气的手套箱(LABstar)中的组装成2032型纽扣电池。在纽扣电池中,使用Celgard 2500作为隔膜,1M LiPF 6溶解在碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/碳酸甲乙酯(EMC)(1:1:1vol)以及添加了10wt%的氟代碳酸乙烯酯(FEC),锂离子电池的充放电实验在新威电池测试系统上进行。
如图5充放电测试结果显示,该材料在400mA g -1的电流密度下循环200圈后容量保持在347mAh g -1,此时容量和对比例1相比还低,因此不宜添加过多的压电材料PZT。
对比例4
本对比例提供一种锂离子硅基负极材料的制备方法,包括以下步骤:
(1)称取2.5g葡萄糖于三口烧瓶中,加入5mL去离子水,称取8mL硅酸四乙酯(TEOS)、20mL乙醇于其中,70-90℃冷凝回流,并加入0.1mol/L稀盐酸和0.1mol/L氨水溶液,搅拌至其形成凝胶。研磨,Ar 2下800℃煅烧0.5h,进行碳还原,升温速率为5℃/min,得到黑色产品SiO X-C。
(2)用天平按照化学计量比称量Pb(CH 3COOH) 2·3H 2O(5mmol)、ZrOCl 2·8H 2O(2.6mmol)和TiO 2(2.4mmol),将其倒入盛有30mL去离子水的烧杯中并搅拌均匀,并超声1h,获得均匀的前驱体溶液。量取20mL的3mol L -1KOH溶液,添加到上述的溶液中,搅拌均匀并超声1h,将上述溶液转移至反应釜中,160℃水热4-6h。待冷却至室温,分别用去离子水和无水乙醇离心三次并干燥,研磨得到PZT。
(3)称取1.8g步骤(1)中得到的SiO X-C和0.2g步骤(2)得到的PZT压电材料,在氩气氛围下使用球磨机球磨12h,球料比为20:1,之后过筛收集产品SiO X-C/PZT-10%(800℃)。
将SiO X-C/PZT-10%(800℃)电极作为工作电极,金属锂片作对电极,在装有超高纯氩气的手套箱(LABstar)中的组装成2032型纽扣电池。在纽扣电池中,使用Celgard 2500作为隔膜,1M LiPF 6溶解在碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/碳酸甲乙酯(EMC)(1:1:1vol)以及添加了10wt%的氟代碳酸乙烯酯(FEC),锂离子电池的充放电实验在新威电池测试系统上进行。如图5充放电测试结果显示,该材料在400mA g -1的电流密度下循环200圈后容量仍能保持在494mAh g -1
以上实施例和对比例说明,在SiO X-C/PZT中,SiO X-C主要提供高容量,而 PZT在受到应力时,可以生成局部电场,从而加快锂离子传输、提高电化学性能,但PZT含量也不能过多,否则复合材料的容量也会降低,因此应寻找两者的平衡点。通过研究发现,当压电材料PZT占PZT和硅基材料两者总质量的10%时,复合材料的性能优异。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种基于压电效应制备高性能硅基负极材料的方法,其特征在于,它包括以下步骤:
    向葡萄糖中加入水、硅酸四乙酯、乙醇,70-90℃冷凝回流,加入稀盐酸和氨水溶液,搅拌形成凝胶;
    将所述凝胶研磨,进行碳还原,得到SiO X-C;
    将Pb(CH 3COOH) 2·3H 2O、ZrOCl 2·8H 2O、TiO 2与水混合搅拌均匀,并超声1-3h,获得均匀的前驱体溶液;
    将KOH溶液添加到所述前驱体溶液中,搅拌均匀并超声1-3h,160℃-200℃水热4-6h,冷却至室温,以水和无水乙醇离心并干燥,研磨得到PbZr0 .52Ti 0.48O 3
    将所述SiO X-C和所述PbZr0 .52Ti 0.48O 3混合,球磨12h,得到SiO X-C/PZT;
    将所述SiO X-C/PZT、导电剂和粘结剂按照8:1:1的质量比分散在水中,随后均匀涂覆在铜箔上,干燥后得到硅基负极材料。
  2. 根据权利要求1所述的基于压电效应制备高性能硅基负极材料的方法,其特征在于,所述硅酸四乙酯、葡萄糖、水、乙醇的质量比为1-10:0.5-2:1:5-20;所述稀盐酸的浓度为0.1-2mol/L;所述氨水溶液的浓度为0.1-2mol/L。
  3. 根据权利要求1所述的基于压电效应制备高性能硅基负极材料的方法,其特征在于,Pb(CH 3COOH) 2·3H 2O、ZrOCl 2·8H 2O、TiO 2混合摩尔比为2-3:1-2:1,Pb(CH 3COOH) 2·3H 2O的摩尔量与水的体积为(2-3)mol:(30-50)mL。
  4. 根据权利要求1所述的基于压电效应制备高性能硅基负极材料的方法,其特征在于,KOH溶液与制备前驱体溶液的水的体积比为20-40:30-50。
  5. 根据权利要求1所述的基于压电效应制备高性能硅基负极材料的方法,其特征在于,所述碳还原的气氛为氩气,气体流通速率为100-150mL/min;所述碳还原的温度为800-1000℃,保温时间为0.5-2h。
  6. 根据权利要求1所述的基于压电效应制备高性能硅基负极材料的方法,其特征在于,KOH溶液的浓度为3-6mol L -1
  7. 根据权利要求1所述的基于压电效应制备高性能硅基负极材料的方法,其特征在于,所述SiO X-C和所述PbZr0 .52Ti 0.48O 3混合时,PbZr0 .52Ti 0.48O 3的含量占PbZr0 .52Ti 0.48O 3和SiO X-C两者总质量的5%-50%;在氩气气氛下球磨。
  8. 根据权利要求1所述的基于压电效应制备高性能硅基负极材料的方法,其特征在于,所述导电剂为乙炔黑;所述粘结剂为海藻酸钠。
  9. 一种硅基负极材料,其是通过权利要求1-8任一项所述的基于压电效应制备高性能硅基负极材料的方法制备得到的。
  10. 一种锂离子电池,该锂离子电池以权利要求9所述的硅基负极材料作为工作电极。
PCT/CN2022/096530 2022-02-15 2022-06-01 一种基于压电效应制备高性能锂离子硅基负极材料的方法及其应用 WO2023155333A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210138591.3 2022-02-15
CN202210138591.3A CN114464794A (zh) 2022-02-15 2022-02-15 一种基于压电效应制备高性能锂离子硅基负极材料的方法及其应用

Publications (1)

Publication Number Publication Date
WO2023155333A1 true WO2023155333A1 (zh) 2023-08-24

Family

ID=81413478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096530 WO2023155333A1 (zh) 2022-02-15 2022-06-01 一种基于压电效应制备高性能锂离子硅基负极材料的方法及其应用

Country Status (2)

Country Link
CN (1) CN114464794A (zh)
WO (1) WO2023155333A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464794A (zh) * 2022-02-15 2022-05-10 常州大学 一种基于压电效应制备高性能锂离子硅基负极材料的方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594689A (zh) * 2013-10-18 2014-02-19 南开大学 锂离子二次电池的氧化硅/碳复合负极材料及其制备方法
JP2016039114A (ja) * 2014-08-11 2016-03-22 トヨタ自動車株式会社 非水電解質二次電池
US9923197B2 (en) * 2014-10-02 2018-03-20 Samsung Electronics Co., Ltd. Composite negative active material and method of preparing the same, negative electrode including composite negative active material, and lithium secondary battery including negative electrode
CN112708228A (zh) * 2020-12-04 2021-04-27 南昌航空大学 一种高储能性能陶瓷/聚合物介电复合材料及其制备方法
CN113003581A (zh) * 2021-02-05 2021-06-22 中化学华陆新材料有限公司 用于锂离子电池的SiOx-C复合负极材料的制备方法
CN114464794A (zh) * 2022-02-15 2022-05-10 常州大学 一种基于压电效应制备高性能锂离子硅基负极材料的方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594689A (zh) * 2013-10-18 2014-02-19 南开大学 锂离子二次电池的氧化硅/碳复合负极材料及其制备方法
JP2016039114A (ja) * 2014-08-11 2016-03-22 トヨタ自動車株式会社 非水電解質二次電池
US9923197B2 (en) * 2014-10-02 2018-03-20 Samsung Electronics Co., Ltd. Composite negative active material and method of preparing the same, negative electrode including composite negative active material, and lithium secondary battery including negative electrode
CN112708228A (zh) * 2020-12-04 2021-04-27 南昌航空大学 一种高储能性能陶瓷/聚合物介电复合材料及其制备方法
CN113003581A (zh) * 2021-02-05 2021-06-22 中化学华陆新材料有限公司 用于锂离子电池的SiOx-C复合负极材料的制备方法
CN114464794A (zh) * 2022-02-15 2022-05-10 常州大学 一种基于压电效应制备高性能锂离子硅基负极材料的方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, JINYUAN ET AL.: "Piezoelectric-driven Self-accelerated Anion Migration for Siox-C/Pbzr0.52Ti0.48O3 with Durable Lithium Storage Performance", CERAMICS INTERNATIONAL, vol. 48, no. 8, 15 April 2022 (2022-04-15), XP086996133, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2021.12.346 *
DENG, YUAN ET AL.: "Hydrothermal synthesis and characterization of nanocrystalline PZT powders", MATERIALS LETTERS, vol. 57, no. 11, 31 March 2003 (2003-03-31), XP004411790, ISSN: 0167-577X, DOI: 10.1016/S0167-577X(02)01050-9 *
DOĞRUSÖZ MEHBARE, DEMİRKAN M. TAHA, DEMİR-ÇAKAN REZAN: "Investigation of PZT-5H and PZT-8 type piezoelectric effect on cycling stability on Si- MWCNT containing anode materials", TURKISH JOURNAL OF CHEMISTRY, vol. 45, no. 5, 19 October 2021 (2021-10-19), pages 1551 - 1558, XP093085642, DOI: 10.3906/kim-2102-62 *

Also Published As

Publication number Publication date
CN114464794A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
CN110289408B (zh) 基于切割硅废料的纳米硅和硅/碳复合材料及制法和应用
CN111342030B (zh) 一种多元复合高首效锂电池负极材料及其制备方法
CN104009210B (zh) 一种多孔硅/碳复合材料、制备方法及用途
CN107579239A (zh) 一种石墨烯/固态电解质复合包覆硅复合负极及其制备方法
CN102324511B (zh) 一种锂离子电池复合负极材料的制备方法
CN106711461A (zh) 一种球形多孔硅碳复合材料及其制备方法与用途
CN111180714B (zh) 一种碳/二氧化钼/硅/碳复合材料、包含其的电池负极及锂离子电池
CN112289993B (zh) 一种碳包覆核壳结构氧化亚硅/硅复合材料及其制备方法
CN101420034A (zh) 碳包覆粒度可控球形磷酸铁锂复合正极材料及其制备方法
CN111146427A (zh) 一种以聚苯胺为碳源制备中空核壳结构纳米硅碳复合材料的方法及应用该材料的二次电池
CN111048764A (zh) 一种硅碳复合材料及其制备方法和应用
CN102983317A (zh) 硅基复合材料及其制备方法、硅碳复合材料、锂离子电池
CN101800304A (zh) 一种异取向球形天然石墨负极材料及其制备方法
CN111342031B (zh) 一种多元梯度复合高首效锂电池负极材料及其制备方法
WO2022002057A1 (zh) 硅氧复合负极材料、负极和锂离子电池及其制备方法
WO2019096012A1 (zh) 一种钛酸锂复合材料及其制备方法、负极片及锂离子电池
WO2023155333A1 (zh) 一种基于压电效应制备高性能锂离子硅基负极材料的方法及其应用
CN108417778A (zh) 一种锂离子电池SnS混合储能负极板及其制备方法
CN113889594A (zh) 一种硼掺杂锆酸镧锂包覆石墨复合材料的制备方法
CN108695509B (zh) 高储能效率复合型锂电池正极及其制备方法和锂电池
CN113690420B (zh) 一种氮硫掺杂硅碳复合材料及其制备方法和应用
CN113772718B (zh) 一种SnS-SnS2@GO异质结构复合材料及其制备方法和应用
EP4064388A1 (en) Negative electrode active material for battery and preparation method therefor
CN107195897B (zh) 一种纳米FeNbO4/石墨烯复合材料及其制备和应用
CN116230933A (zh) 一种针对预锂化负极材料进行表面除碱的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926643

Country of ref document: EP

Kind code of ref document: A1