WO2023155292A1 - 集成天线的显示屏、显示装置和电子设备 - Google Patents

集成天线的显示屏、显示装置和电子设备 Download PDF

Info

Publication number
WO2023155292A1
WO2023155292A1 PCT/CN2022/088199 CN2022088199W WO2023155292A1 WO 2023155292 A1 WO2023155292 A1 WO 2023155292A1 CN 2022088199 W CN2022088199 W CN 2022088199W WO 2023155292 A1 WO2023155292 A1 WO 2023155292A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter
wave antenna
millimeter wave
antenna
display screen
Prior art date
Application number
PCT/CN2022/088199
Other languages
English (en)
French (fr)
Inventor
黄奂衢
崔霜
武杰
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Priority to EP22741146.9A priority Critical patent/EP4254669B1/en
Publication of WO2023155292A1 publication Critical patent/WO2023155292A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display screen with integrated antenna, a display device and electronic equipment.
  • the screen-to-body ratio of display devices in electronic devices with wireless communication functions tends to be higher and higher, and the types and quantities of antennas in electronic devices are also increasing. more.
  • 5G wireless mobile communications the 5 th generation mobile communications
  • the spectrum of wireless communications covers millimeter-wave (mm-wave) bands and non-millimeter-wave (non-mm-wave) bands
  • 4G (non-millimeter wave) spectrum is still in use. Therefore, electronic devices with 5G millimeter wave functions, such as mobile phones, are often equipped with antennas with working frequency bands that can cover millimeter wave bands and non-millimeter wave bands (such as 5G or 4G).
  • the second type of antenna is often equipped with antennas with working frequency bands that can cover millimeter wave bands and non-millimeter wave bands.
  • Embodiments of the present disclosure provide a display screen with an integrated antenna, a display device, and an electronic device, so that the antenna is integrated into the display screen of the display device in the electronic device, and the working frequency band of the antenna can cover the millimeter wave band and the non-millimeter wave band at the same time. band.
  • the present application discloses a display screen with an integrated antenna, which can effectively reduce the size of the antenna (that is, smaller than the sum of the above-mentioned two types of antennas on the screen when the antennas are separately installed), and reduce its influence on the visual optical effect and touch effect of the display screen. In addition to increasing the function and value of the display screen, it also ensures the user's visual and tactile experience.
  • a display screen with integrated antenna includes a millimeter wave antenna.
  • the millimeter wave antenna includes a plurality of millimeter wave antenna elements.
  • at least two millimeter-wave antenna units are connected to each other to form a connection structure, and the connection structure at least multiplexes to form the first part of the non-millimeter-wave antenna.
  • connection structure after connecting at least two millimeter-wave antenna units to each other is at least multiplexed to form the first part of the non-millimeter-wave antenna, that is, the connection structure has the function of an equivalent non-millimeter-wave antenna, which can make the millimeter-wave antenna Or a part thereof can also function as an equivalent non-millimeter wave antenna.
  • the connection structure has the function of an equivalent non-millimeter-wave antenna, which can make the millimeter-wave antenna Or a part thereof can also function as an equivalent non-millimeter wave antenna.
  • the non-millimeter wave antenna further includes at least one first connecting wire.
  • at least two millimeter-wave antenna units are connected to each other through at least one first connection line, and the first connection line is used to block transmission of millimeter-wave energy between any two millimeter-wave antenna units.
  • the line width of the first connection line is smaller than or equal to the line width of the first wire or the second wire.
  • the line width of the first connecting line refers to the orthographic projection of the first connecting line in a plane parallel to the display panel, and the dimension perpendicular to the extending direction of the first connecting line. In this way, the line width of the first connecting line is the same as that of the first wire or the second wire, which can ensure the maturity, simplicity and low cost of the antenna manufacturing process.
  • At least two millimeter-wave antenna units in the connection structure are connected to each other through a plurality of first connection lines, and the sum of the line widths of the plurality of first connection lines is a first size, and the millimeter-wave antenna unit and the plurality of first connection lines
  • the side length corresponding to the connection of the first connecting line is the second size, and the first size is less than or equal to a quarter of the second size.
  • the first connection line with a smaller line width can better filter and block the energy in the millimeter wave band, but less filter and block the energy in the non-millimeter wave band.
  • connection structure two millimeter-wave antenna units are connected by the first connecting line that has a better filtering and blocking function for the millimeter-wave band, which can ensure the antenna performance of the millimeter-wave antenna units in their respective operating frequency bands.
  • the first connection line between the two millimeter wave antenna units will not filter and block the energy in the non-millimeter wave band, so the connection structure after connecting multiple millimeter wave antenna units is multiplexed as a non-millimeter wave antenna or
  • the first part of the non-millimeter wave antenna does not affect the antenna performance of the non-millimeter wave antenna.
  • the second part of the non-millimeter wave antenna includes a head section, a tail section and a middle section connected between the head section and the tail section, and the head section is configured to be connected to a non-millimeter wave radio frequency integrated circuit.
  • the first section and the tail section of the second part of the non-millimeter-wave antenna are respectively located on both sides of the millimeter-wave antenna, and the tail section is connected to the millimeter-wave antenna unit closest to the tail section in the connection structure.
  • the second part of the non-millimeter wave antenna can be connected in series with the series structure of multiple millimeter wave antenna units in the connection structure, and within a limited space range, it is ensured that the non-millimeter wave antenna using this structure can have a longer length and Larger area to reasonably control the operating frequency and bandwidth of the non-millimeter wave antenna.
  • each millimeter-wave antenna unit in the connection structure is arranged separately, and is respectively connected to the second part through a second connection line.
  • the second connecting wire is used to block the transmission of millimeter wave energy between the millimeter wave antenna unit and the second part of the non-millimeter wave antenna.
  • the non-millimeter wave antenna may have a plurality of different resonant paths to have a plurality of different operating frequency bands, thereby realizing the non-millimeter wave antenna multi-band communication.
  • the non-millimeter-wave antenna includes a connected first part and a second part, and the first part of the non-millimeter-wave antenna is composed of multiplexed millimeter-wave antenna elements, so the non-millimeter-wave antenna can be reduced except for the first part.
  • Dimensions of components other than the wave antenna element such as the length of the second part of the non-millimeter wave antenna. That is, at the same operating frequency, the more millimeter-wave antenna units that constitute the first part are multiplexed in the non-millimeter-wave antenna, the shorter the lengths of other components of the non-millimeter-wave antenna except the first part can be. Therefore, it is beneficial to reduce the cutting length of the conductive mesh used to form the second part of the non-millimeter wave antenna in the conductive mesh layer, so as to further ensure the visual optical effect and touch effect of the display device.
  • the antenna further includes a ground.
  • the ground part is located on a side of the second part of the non-millimeter wave antenna away from the millimeter wave antenna, and is connected to the second part of the non-millimeter wave antenna.
  • the ground part is located on a side of the millimeter-wave antenna away from the second part of the non-millimeter-wave antenna, and is connected to any millimeter-wave antenna unit in the connection structure through a second connecting line.
  • the ground part is located between the millimeter-wave antenna and the second part of the non-millimeter-wave antenna, and is connected to any millimeter-wave antenna unit in the connection structure through a second connecting line.
  • the non-millimeter wave antennas include at least two.
  • the ground portion is located between two adjacent non-millimeter wave antennas.
  • the relative positional relationship and connection relationship between the grounding part and the non-millimeter wave antenna and the millimeter wave antenna can be used to reasonably control the working frequency and bandwidth of the non-millimeter wave antenna.
  • the non-millimeter wave antenna and the ground part are connected in series, so that the non-millimeter wave antenna has a longer length, thereby covering a lower operating frequency of the antenna.
  • the first portion of the non-millimeter wave antenna further includes an extension.
  • the extension part is located on a side of the millimeter wave antenna away from the second part of the non-millimeter wave antenna, or the extension part is located between the second part of the non-millimeter wave antenna and the millimeter wave antenna.
  • one end of the extension part is connected to any millimeter-wave antenna unit in the connection structure, and the other end of the extension part is suspended.
  • the extension part is formed by at least one first connecting wire suspended at one end.
  • the length of the first part of the non-millimeter wave antenna can be adjusted by setting the length of the extension part, thereby controlling the working frequency of the first part of the non-millimeter wave antenna.
  • the antennas include at least two non-millimeter wave antennas.
  • the structure of the second part is different in different non-millimeter wave antennas. If so, different millimeter-wave antenna units in the same millimeter-wave antenna can be reused to form the first part of two or more non-millimeter-wave antennas.
  • the second part of the non-millimeter wave antenna can be controlled to have different operating frequencies and bandwidths. That is, there may be at least two different types of non-millimeter wave antennas in the antenna at the same time.
  • the antennas include at least two non-millimeter wave antennas.
  • the antenna further includes: an isolation part located between any two adjacent non-millimeter wave antennas. In this way, adjacent non-millimeter-wave antennas can be effectively isolated by the isolation part, so as to avoid mutual selection interference between adjacent non-millimeter-wave antennas. Therefore, it is ensured that each non-millimeter wave antenna has better antenna performance.
  • a display device includes: the display screen with integrated antenna as described in some embodiments above.
  • the display device further includes a flexible circuit board, and a millimeter-wave radio frequency integrated circuit and a connecting seat disposed on the flexible circuit board.
  • the millimeter-wave radio frequency integrated circuit is respectively connected to the millimeter-wave antenna unit and the connecting seat through the flexible circuit board; the connecting seat is connected to the non-millimeter-wave antenna unit through the flexible circuit board, and is configured to be connected to the non-millimeter-wave radio frequency integrated circuit.
  • the millimeter wave antenna unit may be connected to the millimeter wave radio frequency integrated circuit through a flexible circuit board.
  • the millimeter-wave radio frequency integrated circuit can be connected to the connection base through the flexible circuit board, and then connected to the printed circuit board of the display device through the connection base.
  • Non-millimeter wave radio frequency integrated circuits may be provided on printed circuit boards.
  • the non-millimeter wave antenna can be connected to the connection base through the flexible circuit board, and then connected to the non-millimeter wave radio frequency integrated circuit through the connection base.
  • the display device further includes a flexible circuit board and a millimeter wave radio frequency integrated circuit and a non-millimeter wave radio frequency integrated circuit respectively arranged on the flexible circuit board; wherein, the millimeter wave radio frequency integrated circuit is connected to the millimeter wave antenna unit through the flexible circuit board ;
  • the non-millimeter wave radio frequency integrated circuit is connected to the non-millimeter wave antenna through the flexible circuit board.
  • both the millimeter wave radio frequency integrated circuit and the non-millimeter wave radio frequency integrated circuit may be integrated on the flexible circuit board.
  • the millimeter wave antenna unit can be connected to the millimeter wave radio frequency integrated circuit through the flexible circuit board.
  • Non-millimeter wave antennas can be connected to non-millimeter wave radio frequency integrated circuits through flexible circuit boards.
  • Both the millimeter-wave antenna and the non-millimeter-wave antenna in the antenna can have their own independent communication links, and the millimeter-wave antenna and the non-millimeter-wave antenna can work simultaneously without affecting each other.
  • the millimeter-wave antenna and the non-millimeter-wave antenna can share the same flexible circuit board, so as to reduce the total number of flexible circuit boards in the display device and reduce the assembly complexity of the display device, thereby helping to improve the production efficiency of the display device And reduce the production cost of the display device.
  • an electronic device is provided.
  • the electronic equipment includes the display device described in some of the above embodiments.
  • the electronic device further includes a non-millimeter wave tuning device for tuning the non-millimeter wave antenna.
  • the non-millimeter wave tuning device is arranged on the flexible circuit board.
  • the electronic device further includes a printed circuit board connected to the flexible circuit board; the non-millimeter wave tuning device is arranged on the printed circuit board.
  • the non-millimeter wave antenna can be tuned by using the non-millimeter wave tuning device, so as to reconstruct the antenna performance of the non-millimeter wave antenna.
  • FIG. 1 is a schematic structural diagram of an electronic device in an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another electronic device in an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of another electronic device in an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of an antenna in an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another antenna in an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another antenna in an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another antenna in an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another antenna in an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a display device in an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 25 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 26 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 27 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 28 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • FIG. 29 is a schematic structural diagram of another display device in an embodiment of the present disclosure.
  • FIG. 30 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • FIG. 31 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • Fig. 32 is a schematic structural diagram of a display screen in an embodiment of the present disclosure.
  • FIG. 33 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • Fig. 34 is a schematic cross-sectional view of an FPC along B-B' in the display device shown in Fig. 33;
  • FIG. 35 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • FIG. 36 is a schematic structural diagram of another display device according to an embodiment of the present disclosure.
  • FIG. 37 is a schematic structural diagram of another electronic device according to an embodiment of the present disclosure.
  • connection may be means of connection for signal transmission.
  • Connected and “connected” should be interpreted in a broad sense, such as direct electrical connection, or indirect connection through an intermediary, such as coupling.
  • each layer and each region in the illustration is enlarged to clearly illustrate the relative position between each layer and the distribution of each region.
  • a part of a layer, film, region, panel, etc. is “on” or “on” another part, the expression includes not only being “directly” on the other part, but also intervening other layers.
  • the screen-to-body ratio of display devices in electronic equipment tends to be higher and higher, and the types and quantities of antennas in electronic equipment are also increasing.
  • the spectrum of wireless communication covers the millimeter wave band and non-millimeter wave band; and in the 5G era, the spectrum of 4G (non-millimeter wave) still continues. Therefore, electronic devices with 5G millimeter wave functions, such as mobile phones, are often equipped with antennas with working frequency bands that can cover millimeter wave bands and non-millimeter wave bands (such as 5G or 4G).
  • the second type of antenna is often equipped with antennas with working frequency bands that can cover millimeter wave bands and non-millimeter wave bands.
  • the antennas integrated in the display device 10 of the mobile phone include at least two types, for example, a first type antenna 01 and a second type antenna 02, wherein , the working frequency band of the first type antenna 01 can cover the millimeter wave band, and the working frequency band of the second type antenna 02 can cover the non-millimeter wave band (such as: 5G or 4G).
  • the first type antenna 01 and the second type antenna 02 may be integrated into the display screen 100 of the display device 10 .
  • the first type of antenna (that is, millimeter wave antenna) 01 is, for example, a 5G millimeter wave antenna;
  • the second type of antenna (that is, non-millimeter wave antenna) 02 includes, for example, WiFi/BT antenna 021, LTE (Long Term Evolution) antenna 022, NFC (Near Field Communication) antenna 023, or at least one of 5G non-millimeter wave antenna 024.
  • the first-type antenna 01 and the second-type antenna 02 are integrated in the display screen 100 , and may also be placed outside the display screen 100 .
  • the first type antenna 01 (5G millimeter wave antenna), WiFi/BT antenna 021, LTE antenna 022, NFC antenna 023 and 5G non-millimeter wave antenna 024 can be independently integrated into the display device 10 in the display screen 100 .
  • a conductive grid layer 101 can be provided in the display screen 100, and then the antenna is prepared by cutting the conductive grid in the conductive grid layer 101, that is The grid serving as an antenna is disconnected (ie, not directly electrically connected) from the grid that is not an antenna. In this way, when there are many types and quantities of antennas, it is often necessary to cut a plurality of conductive grids in different regions to form corresponding antennas. And because the conductive grid layer 101 includes a part located in the display area of the display screen 100 , it also includes a part located in the non-display area.
  • the grid pattern in the conductive grid layer 101 will have a large difference or there will be more touch blind areas. , so it is easy to cause deterioration of visual optical effect and touch effect of the display screen 100 in the display device 10 .
  • Some embodiments of the present disclosure provide an antenna 2 that can be integrated into the display screen 100 or placed outside the display screen, so that the working frequency band of the antenna 2 can cover both the millimeter wave band and the non-millimeter wave band, and effectively ensure that the display screen 100 Visual optical effects and touch effects.
  • the display screen 100 includes a conductive grid layer 101 , and the antenna 2 is formed by at least a part of the pattern of the conductive grid layer 101 .
  • the antenna 2 includes a millimeter wave antenna 21 .
  • the millimeter wave antenna 21 includes a plurality of millimeter wave antenna units 211 .
  • at least two millimeter-wave antenna units 211 are connected to each other (ie, electrically connected or coupled) to form a connection structure, and the connection structure at least multiplexes to form the first part of the non-millimeter-wave antenna 22 .
  • connection means electrical connection or coupling.
  • connection structures are multiplexed to form at least the first part of the non-millimeter wave antenna 22, including: the connection structures are multiplexed to form the first part 221 of the non-millimeter wave antenna 22, or the connection structures are multiplexed to form the non-millimeter wave antenna 22, etc.
  • the antenna 2 includes a millimeter wave antenna 21 .
  • the millimeter wave antenna 21 includes a plurality of millimeter wave antenna units 211 . Wherein, at least two millimeter wave antenna units 211 are connected to each other to form a connection structure, and the connection structure is multiplexed to form the non-millimeter wave antenna 22 .
  • connection structure in which at least two millimeter wave antenna units 211 are connected to each other may have the function of an equivalent non-millimeter wave antenna, so as to serve as the non-millimeter wave antenna 22 . That is, the millimeter wave antenna or part thereof can also have the function of an equivalent non-millimeter wave antenna.
  • the connecting structure can be connected and led out through a non-millimeter-wave feeding part (for example, a non-millimeter-wave signal line Ln 1 ), so that the connecting structure can be connected to a non-millimeter-wave feeding part through a non-millimeter-wave feeding part.
  • the millimeter wave radio frequency integrated circuit 500 is connected to realize the function of the non-millimeter wave antenna 22 .
  • the non-millimeter wave antenna 22 includes a first connecting wire 2210 .
  • at least two millimeter wave antenna units 211 are connected to each other through at least one first connection line. For example, in the example shown in FIG.
  • any two adjacent millimeter-wave antenna units 211 are connected through a first connection line 2210 , and any millimeter-wave antenna unit 211 can also be connected to the first connection line 2210
  • the non-millimeter wave radio frequency integrated circuit 500 is connected so that the first connection line 2210 directly serves as the non-millimeter wave feeding part of the non-millimeter wave antenna 22 .
  • the antenna 2 includes a millimeter wave antenna 21 and a non-millimeter wave antenna 22 .
  • the millimeter wave antenna 21 includes a plurality of millimeter wave antenna units 211 .
  • the non-millimeter wave antenna 22 includes a first part 221 and a second part 222 . Wherein, at least two millimeter wave antenna units 211 are connected to each other to form a connection structure, and the connection structure is multiplexed to form the first part 221 of the non-millimeter wave antenna 22 .
  • the first part 221 of the non-millimeter wave antenna 22 includes a connection structure formed by connecting at least two millimeter wave antenna units 211 to each other, and the millimeter wave antenna units 211 in the connection structure can be multiplexed as the first part of the non-millimeter wave antenna 22
  • the radiation part 221 that is, the connection structure can equivalently realize the radiation function of the first part 221 of the non-millimeter wave antenna 22 .
  • millimeter-wave antenna units 211 in the connection structures in some of the above embodiments may be connected in sequence, or connected according to preset rules.
  • the non-millimeter wave antenna 22 can be used as a WiFi/BT antenna 021, an LTE antenna 022, an NFC antenna 023, a 5G non-millimeter wave antenna 024, or a GPS antenna, etc.
  • the millimeter-wave antenna unit 211 includes a single-polarized millimeter-wave antenna unit or a dual-polarized millimeter-wave antenna unit.
  • millimeter-wave signals compared with non-millimeter-wave signals, millimeter-wave signals have wider bandwidth, higher channel capacity, and finer imaging granularity, enabling faster data transmission and more detailed imaging. Image resolution to meet users' needs for high information rate and clear images.
  • signals in the millimeter wave band have greater propagation loss than those in the non-millimeter wave band; therefore, in the embodiment of the present disclosure, multiple millimeter wave antenna units 211 are arranged adjacently or in an array to form the millimeter wave antenna 21, The antenna gain can be increased to compensate for the large path loss, and the effect of beam scanning can be achieved to cover a wider space to reduce wireless communication blind spots and achieve better user wireless experience.
  • connection among the multiple millimeter wave antenna units 211 in the aforementioned connection structure may be connected in series or in parallel.
  • the connection between any two adjacent millimeter-wave antenna units 211 in the connection structure can be realized by using a conductive structure with a function of blocking energy in the millimeter-wave band, such as a conductive connection wire. In this way, each millimeter-wave antenna unit 211 in the connection structure can work in its respective millimeter-wave operating frequency band without being adversely affected by the connection between adjacent millimeter-wave antenna units 211 .
  • the conductive structure used for the connection between any two adjacent millimeter-wave antenna units 211 in the connection structure can better transmit energy in the non-millimeter wave band, so as to ensure that the non-millimeter wave antenna 22 or The first part 221 of the non-millimeter wave antenna 22 has better non-millimeter wave antenna effect.
  • the antenna 2 integrated in the display screen 100 can be obtained by cutting at least part of the conductive grid of the conductive grid layer 101 in the display screen 100 .
  • the millimeter wave antenna unit 211 includes: a conductive grid formed by crossing a plurality of first wires extending along a first direction and a plurality of second wires extending along a second direction. It should be understood that “intersection” may refer to a cross relationship on projection, for example, the first wire and the second wire may be located on different planes.
  • the millimeter-wave antenna unit 211 includes: a conductive grid composed of a plurality of first wires L1 and a plurality of second wires L2 interleavedly connected.
  • the first wire L1 extends along the first direction
  • the second wire L2 extends along the second direction.
  • the first direction intersects the second direction.
  • the first direction and the second direction are perpendicular to each other.
  • the first direction is a vertical direction, such as the X direction; the second direction is a horizontal direction, such as the Y direction. But it doesn't stop there.
  • the first direction may be set at a first angle with the vertical direction, and the first angle is, for example, 30°, 45° or 60°.
  • the second direction may be set at a second included angle with the horizontal direction, and the second included angle is, for example, the same as the first included angle.
  • the conductive grid layer 101 in the display screen 100 can be connected by a plurality of parallel lines of the first conductive lines L1 (including the first conductive lines L1) and a plurality of parallel lines of the second conductive lines L2 (including the second conductive lines L2). constitute.
  • the millimeter-wave antenna unit 211 can be directly obtained by cutting the corresponding conductive mesh in the conductive mesh layer 101 .
  • multiplexing constitutes the connection between multiple millimeter wave antenna units 211 in the connection structure of the non-millimeter wave antenna 22 or the first part 221 of the non-millimeter wave antenna 22, and the connection between the first part 221 of the non-millimeter wave antenna 22
  • the connection with the second part 222 can have many different implementations.
  • the electrical connection between the multiple millimeter wave antenna units 211 in the foregoing connection structure may be a series connection.
  • the non-millimeter wave antenna 22 further includes a first connection line 2210 .
  • a first connection line 2210 In the connection structure that multiplexes the non-millimeter wave antenna 22 or the first part 221 of the non-millimeter wave antenna 22, at least two millimeter wave antenna units 211 are connected to each other through at least one first connection line 2210, for example, any adjacent two The millimeter-wave antenna units 211 are connected to each other through at least one first connection line 2210 (direct electrical connection), and the first connection line 2210 is used to block the transmission between any two adjacent millimeter-wave antenna units 211. millimeter wave energy.
  • the connection relationship in this application may be electrical connection or coupling.
  • the number, line length and line width of the first connecting lines 2210 can be selected and set according to actual needs. Embodiments of the present disclosure do not limit this.
  • the line length of the first connecting line 2210 refers to the dimension in the extending direction of the first connecting line 2210 .
  • the line width of the first connecting line 2210 refers to a dimension perpendicular to the extending direction of the first connecting line 2210 .
  • the first connecting lines 2210 may be formed by using parallel lines of the first conducting wires L1 and/or parallel lines of the second conducting wires L2 in the conductive grid layer 101 .
  • the first connection line 2210 is configured as a straight line, and the first connection line 2210 may be formed by parallel lines of the first conducting wire L1 or parallel lines of the second conducting wire L2 in the conductive grid layer 101 .
  • the first connection line 2210 is configured as a broken line, and the first connection line 2210 may be formed by parallel lines of the first conductive wire L1 and connected parallel lines of the second conductive wire L2 in the conductive grid layer 101 .
  • the line width of the first connection line 2210 can be the same as the line width of the first wire L1 or the second wire L2 , thereby ensuring the maturity, simplicity and low cost of the manufacturing process of the antenna 2 .
  • the shape of the first connecting line 2210 is not limited to the above-mentioned straight line or broken line, and may also be in other shapes, for example, the first connecting line 2210 is configured as an arc.
  • the line width of the first connecting line 2210 is not limited to be the same as the line width of the first conducting line L1 or the second conducting line L2, for example, the line width of the first connecting line 2210 may also be smaller than that of the first conducting line L1 or the second conducting line L2 line width. Embodiments of the present disclosure do not limit this.
  • the skin depth of the millimeter wave band is significantly thinner than that of the aforementioned non-millimeter wave band. depth, so for the same connection line (when the thickness of the connection line is greater than the skin depth of the millimeter wave), the resistance and inductance values of the millimeter wave band are generally higher than those of the non-millimeter wave band.
  • the impedance of the first connecting line 2210 with a smaller line width to the millimeter wave band is obviously higher than its impedance to the 5G non-millimeter wave band and the non-millimeter wave band of the previous generation of 5G.
  • the first connection line 2210 with a smaller line width can better filter and block the energy of the millimeter wave band, but less filter and block the energy of the 5G non-millimeter wave band and the non-millimeter wave band of the previous generation of 5G.
  • the first connection line 2210 with a better filtering and blocking function in the millimeter wave band can ensure the antenna performance of the adjacent millimeter wave antenna units 211 in their respective operating frequency bands, so as to reduce the performance of the antenna due to the connection between the two. the extent of the impact.
  • the first connection line 2210 between two adjacent millimeter wave antenna units 211 will not filter and block the energy in the non-millimeter wave band, so the connection structure after connecting multiple millimeter wave antenna units 211 is multiplexed as The non-millimeter wave antenna 22 or the first part 221 of the non-millimeter wave antenna 22 will not affect the antenna performance of the non-millimeter wave antenna 22 .
  • connection structure after connecting at least two millimeter-wave antenna units 211 is multiplexed to form the non-millimeter-wave antenna 22 or the first part 221 of the non-millimeter-wave antenna 22, so that the millimeter-wave antenna 21 or its part can also be It has the function of the non-millimeter wave antenna 22 .
  • the antenna 2 in the embodiment of the present disclosure adopts the above structure, which can effectively reduce the size of the antenna 2, that is, it is smaller than the sum of the sizes of the various on-screen antennas in the aforementioned embodiments, and reduces the impact of the antenna 2 on the display screen.
  • 100 influences the visual optical effect and the touch effect, so as to increase the function and value of the display screen 100 while ensuring the user's visual and tactile experience.
  • any two adjacent millimeter-wave antenna units 211 can pass through a
  • the first connection lines 2210 are connected, or connected by a plurality of first connection lines 2210 in parallel.
  • the first connection lines 2210 between two adjacent millimeter wave antenna units 211 can effectively block the energy of the millimeter wave without blocking non-millimeter wave energy. wave energy.
  • the outline of the millimeter wave antenna unit 211 is a rectangle or a polygon with sides.
  • at least two millimeter wave antenna units 211 are connected to each other through a plurality of first connection lines 2210, for example, As shown in FIG.
  • any two adjacent millimeter-wave antenna units 211 are directly connected through a plurality of first connection lines, and the sum of the line widths of the plurality of first connection lines 2210 is the first size, and the millimeter-wave
  • the side length W of the antenna unit 211 correspondingly connected to the plurality of first connection lines 2210 is the second size, and the first size is less than or equal to a quarter of the second size.
  • the outline of the millimeter wave antenna unit 211 may be configured as a polygon or other shapes, which is not limited in this embodiment of the present disclosure.
  • the sum of the line widths of the multiple first connecting lines 2210 is the first size
  • the size of the millimeter wave antenna unit 211 in the line width direction of the first connecting lines 2210 is the second size
  • the first size Less than or equal to a quarter of the second dimension.
  • any adjacent two millimeter-wave antenna units 211 are connected by, for example, three first connection lines 2210 .
  • the line width of each first connecting line 2210 is D, then
  • the non-millimeter wave antenna 22 includes a first part 221 , a second part 222 and a second connecting wire 2220 .
  • the second connection line 2220 is used to connect the first part 221 and the second part 222 .
  • the second connection wire 2220 can be used to block the transmission of millimeter wave energy between the millimeter wave antenna unit 211 and the second part 222 of the non-millimeter wave antenna 22 .
  • the number, line length and line width of the second connection lines 2220 can be selected and set according to actual needs. Embodiments of the present disclosure do not limit this.
  • the second connection line 2220 is selectively set with reference to the structure of the first connection line 2210 .
  • the second part 222 of the non-millimeter wave antenna 22 may be arranged adjacent to the millimeter wave antenna 21 , but it is not limited thereto.
  • the second part 222 of the non-millimeter-wave antenna 22 may also be configured to be disposed around the millimeter-wave antenna 21 .
  • any two adjacent millimeter wave antenna units 211 are connected by at least one first connection line 2210 .
  • the second part 222 of the non-millimeter-wave antenna 22 is connected to any millimeter-wave antenna unit 211 in the aforementioned connection structure through the second connection wire 2220 .
  • connection between the second part 222 and the first part 221 can be a series connection or a parallel connection.
  • connection relationship can reasonably control the working frequency and bandwidth of the non-millimeter wave antenna.
  • the second part 222 of the non-millimeter wave antenna 22 is configured to surround the millimeter wave antenna 21 .
  • each millimeter-wave antenna unit 211 is separately arranged and connected to the second part 222 of the non-millimeter-wave antenna 22 through the second connection line 2220 .
  • the second part 222 of the non-millimeter wave antenna 22 and the millimeter wave antenna units 211 in the first part 221 are connected in parallel, so that the non-millimeter wave antenna 22 has multiple different resonant paths to have multiple different working modes. frequency bands, so as to realize the multi-band communication of the non-millimeter wave antenna 22.
  • the non-millimeter-wave antenna 22 includes a connected first part 221 and a second part 222, and the first part 221 of the non-millimeter-wave antenna 22 It is formed by multiplexing the millimeter-wave antenna unit 211, so the size of other components in the non-millimeter-wave antenna 22 except the millimeter-wave antenna unit 211 in the first part 221 can be reduced, for example, the second part of the non-millimeter-wave antenna 22 can be reduced 222 in length.
  • the lengths of other components in the non-millimeter-wave antenna 22 except the first part 221 can be relatively long. shorter. Therefore, it is beneficial to reduce the cutting length of the conductive mesh used to form the second part 222 of the non-millimeter wave antenna 22 in the conductive mesh layer 101 , so as to further ensure the visual optical effect and touch effect of the display screen 100 .
  • the millimeter wave antenna unit 211 may be a single-polarized millimeter wave antenna unit. In other examples, referring to FIG. 7 and FIG. 8 , the millimeter wave antenna unit 211 may be a dual-polarized millimeter wave antenna unit. And, optionally, referring to FIGS. 4 to 8 , according to the different conductive grid patterns in the conductive grid layer 101, the contour shape of the millimeter wave antenna unit 211 can be a rectangle, a rhombus, or an X shape, etc., and a non-millimeter wave antenna The contour shape of the second part 222 of 22 can adopt a strip shape or an L shape, etc., but is not limited thereto. The embodiment of the present disclosure does not limit the contour shape of the millimeter wave antenna unit 211 and the contour shape of the second part 222 of the non-millimeter wave antenna 22 , which can be selected and set according to actual needs.
  • the millimeter-wave antenna unit 211 includes a radiation body (that is, the rectangular part shown in FIGS. 4-6 or the diamond-shaped part or figure shown in FIG. 8) and the millimeter-wave feed-in part (that is, the strip-shaped part configured to connect the millimeter-wave radio frequency integrated circuit 300 shown in FIGS. 4 to 8 ).
  • the millimeter-wave antenna unit 211 both sides of the connection between the millimeter-wave feed-in part and the corresponding radiation body are recessed into the radiation body of the millimeter-wave antenna unit 211. For example, as shown in FIGS.
  • the rectangular radiation body and the strip-shaped There is a notch on the connected side of the feed-in portion, and the notch is arranged on both sides of the bar-shaped feed-in portion adjacent to the bar-shaped feed-in portion. In this way, better impedance matching of the antenna 2 can be achieved, and the antenna performance of the antenna 2 can be improved.
  • the non-millimeter wave antenna 22 also includes a non-millimeter wave feed-in part (that is, a part configured to connect to a non-millimeter wave radio frequency integrated circuit 500, such as a non-millimeter wave wave signal line Ln 1 ).
  • the non-millimeter wave feeding part is, for example, a feeding wire with the same structure as the first connecting wire 2210 .
  • the non-millimeter wave feed-in part includes, for example, a partial grid pattern in the conductive grid layer 101 and a feed-in wire connected to the partial grid pattern, wherein the feed-in wire may have the same structure as the first connection wire 2210 And connected to the corresponding millimeter wave antenna unit 211 , the grid pattern is configured for connecting to the non-millimeter wave radio frequency integrated circuit 500 .
  • the non-millimeter wave antenna 22 further includes a second part 222 connected to the first part 221 .
  • the second part 222 and the first part 221 of the non-millimeter wave antenna 22 can share the same non-millimeter-wave feed-in part, for example, share the non-millimeter-wave feed-in part of the second part 222 (that is, there is no need to set another non-millimeter wave feed-in part in the first part 221 ). wave feed).
  • the non-millimeter-wave feeding part of the second part 222 includes, for example, part of the grid pattern in the conductive grid layer 101 .
  • the non-millimeter-wave feeding part of the second part 222 can be connected to any millimeter-wave antenna unit 211 in the first part 221 through the second connection line 2220 .
  • each millimeter-wave antenna unit 211 of the millimeter-wave antenna 21 can be respectively connected to the millimeter-wave radio frequency integrated circuit 300 through its millimeter-wave feed-in part, so as to respond to the millimeter wave transmitted by the millimeter-wave radio frequency integrated circuit 300 Wave radio frequency signal to realize millimeter wave antenna function.
  • the non-millimeter wave antenna 22 can be connected with the non-millimeter wave radio frequency integrated circuit 500 through its non-millimeter wave feeding part, so as to realize the non-millimeter wave antenna function in response to the non-millimeter wave radio frequency signal transmitted by the non-millimeter wave radio frequency integrated circuit 500 .
  • the millimeter wave radio frequency integrated circuit 300 and the non-millimeter wave radio frequency integrated circuit 500 can be electrically bonded (bonding) on the FPC (Flexible Printed Circuit, flexible circuit board) 200 respectively, so as to be integrated with the integrated circuit through the FPC 200
  • the antenna 2 in the display screen 100 corresponds to electrical binding.
  • the millimeter wave radio frequency integrated circuit 300 can be electrically bound to the FPC 200
  • the non-millimeter wave radio frequency integrated circuit 500 can be electrically bound to the PCB (Printed Circuit Board, printed circuit board) 20, and the FPC 200 is connected to the display respectively.
  • the antenna 2 and the PCB 20 in the screen 100 are electrically bonded. This ensures that the millimeter-wave antenna 21 and the non-millimeter-wave antenna 22 in the antenna 2 can have independent communication links, and the millimeter-wave antenna 21 and the non-millimeter-wave antenna 22 can work simultaneously without affecting each other.
  • the specific structure of the antenna 2 is described in detail, especially the specific structure of the non-millimeter wave antenna 22 . It can be understood that the structure of the non-millimeter wave antenna 22 can be realized in many different ways according to the different operating frequency and bandwidth (ie, the width of the operating frequency band) of the non-millimeter wave antenna 22 .
  • the multiple millimeter wave antenna units 211 forming the first part 221 of the non-millimeter wave antenna 22 are connected in series.
  • the second part 222 of the non-millimeter wave antenna 22 is located on one side of the millimeter wave antenna 21, and the second part 222 of the non-millimeter wave antenna 22 forms a non-millimeter wave by multiplexing.
  • the first part 221 of the antenna 22 is connected to the millimeter-wave antenna unit 211 closest to the second part 222 .
  • the second part 222 of the non-millimeter wave antenna 22 and the millimeter wave antenna unit 211 multiplexed to form the first part 221 of the non-millimeter wave antenna 22 are sequentially connected in series to form the non-millimeter wave antenna 22 together.
  • the second part 222 of the non-millimeter wave antenna 22 may be formed of a conductive grid with a rectangular or L-shaped outline.
  • the second part 222 of the non-millimeter wave antenna 22 is connected to the millimeter wave antenna unit 211 that multiplexes the first part 221 of the non-millimeter wave antenna 22 and is closest to the second part 222 through the second connection line 2220 .
  • the second connection wire 2220 may be connected to the end (eg, the first section or the tail section) of the second part 222 of the non-millimeter wave antenna 22 , as shown in FIG. 9 .
  • the second connection wire 2220 may be connected to the middle section of the second part 222 of the non-millimeter wave antenna 22 , as shown in FIG. 10 , for example.
  • the first section of the second part 222 is the non-millimeter wave feeding part of the second part 222 .
  • the second part 222 of the non-millimeter wave antenna 22 is located on one side of the millimeter wave antenna 21 .
  • the antenna 2 also includes a ground portion 23 .
  • the ground part 23 can be connected with the ground wire or the ground plane in the FPC 200.
  • the grounding portion 23 can be specifically implemented in the following manners.
  • the ground part 23 is located on the side of the second part 222 of the non-millimeter wave antenna 22 away from the millimeter wave antenna 21 and connected to the second part 222 .
  • the ground part 23 may be connected to the second part 222 of the non-millimeter wave antenna 22 through at least one second connecting wire 2220 , as shown in FIG. 11 , for example.
  • the grounding part 23 may be directly connected to the second part 222 of the non-millimeter wave antenna 22 (that is, the grounding part 23 may be integrated with the second part 222 of the non-millimeter wave antenna 22), as shown in FIG. 12 shown in .
  • the grounding portion 23 may be formed of a rectangular or L-shaped conductive grid.
  • the ground part 23 may be connected to the end (for example, the first section or the tail section) or the middle section of the second part 222 of the non-millimeter wave antenna 22 .
  • the ground portion 23 and the second portion 222 of the non-millimeter wave antenna 22 may have the same contour shape.
  • the ground portion 23 is located on the side of the millimeter wave antenna 21 away from the second portion 222 of the non-millimeter wave antenna 22 (for example, in FIG.
  • the second part 222 of the non-millimeter wave antenna 22 is respectively located on both sides of the first part 221 of the non-millimeter wave antenna 22), and through at least one second connection line 2220 and the plurality of millimeter wave antenna units that constitute the first part 221 of the non-millimeter wave antenna 22 are multiplexed Any millimeter wave antenna unit 211 in 211 is connected.
  • the ground part 23 is connected to the millimeter wave antenna unit 211 that multiplexes the first part 221 of the non-millimeter wave antenna 22 and is closest to the ground part 23 through a second connection line 2220 .
  • the second part 222 , the first part 221 and the ground part 23 of the non-millimeter wave antenna 22 are serially connected in series, and the ground part 23 can be used to make the non-millimeter wave antenna 22 have a longer length, thereby covering a lower antenna operating frequency.
  • the grounding part 23 is located between the millimeter wave antenna 21 and the second part 222 of the non-millimeter wave antenna 22, and is connected to the first part 221 of the non-millimeter wave antenna 22 through the second connection line 2210. Any millimeter-wave antenna unit 211 among them is connected; for example, it is connected to the millimeter-wave antenna unit 211 closest to the ground portion 23 in the first part 221 of the non-millimeter-wave antenna 22 .
  • the second part 222 of the non-millimeter wave antenna 22 is configured to surround the corresponding millimeter wave antenna 21, and is multiplexed with the first part 221 of the non-millimeter wave antenna 22 through at least one second connection line 2220. Any millimeter-wave antenna unit 211 among the millimeter-wave antenna units 211 is connected.
  • the outline of the second part 222 of the non-millimeter wave antenna 22 may also adopt a shape other than rectangle or L shape.
  • the second part 222 of the non-millimeter wave antenna 22 half surrounds the corresponding millimeter wave antenna 21 .
  • the semi-surrounding means that the second part 222 of the non-millimeter wave antenna 22 has opposite parts on at least two sides of the millimeter wave antenna 21 .
  • the second part 222 of the non-millimeter wave antenna 22 surrounds at least three sides of the corresponding millimeter wave antenna 21 .
  • the second part 222 of the non-millimeter wave antenna 22 includes a head section 2221 , a tail section 2222 and a middle section 2223 connected between the head section 2221 and the tail section 2222 .
  • the first section 2221 is configured to be connected to the non-millimeter wave radio frequency integrated circuit 500 , for example, to connect to the non-millimeter wave transmission line Ln 2 in the FPC 200 .
  • the tail section 2222 is connected to the millimeter wave antenna unit 211 that multiplexes to form the first part 221 of the non-millimeter wave antenna 22 and is closest to the tail section 2222 through the second connection line 2220 .
  • the second part 222 of the non-millimeter wave antenna 22 can be connected in series with the first part 221 of the multiplexed non-millimeter wave antenna 22, and within a limited space, it is ensured that the non-millimeter wave antenna 22 using this structure can have a longer
  • the length and larger area of the non-millimeter wave antenna 22 can be reasonably controlled in terms of operating frequency and bandwidth.
  • the first section 2221 and the tail section 2222 of the second part 222 of the non-millimeter wave antenna 22 are respectively located on opposite sides of the millimeter wave antenna 21 .
  • the ground part 23 is located between the first section 2221 of the second part 222 of the non-millimeter wave antenna 22 and the millimeter wave antenna 21, and is multiplexed with the first part 221 of the non-millimeter wave antenna 22 through at least one second connection line 2220.
  • any millimeter-wave antenna unit 211 among the millimeter-wave antenna units 211 is connected, for example, through a second connection line 2220 to multiplex the millimeter-wave antenna unit 211 that constitutes the first part 221 of the non-millimeter-wave antenna 22 and is closest to the grounding portion 23. connected.
  • the length and area of the non-millimeter-wave antenna 22 can be further controlled by setting the grounding portion 23 to have different lengths and areas within a limited space, so as to adjust the operating frequency and bandwidth of the non-millimeter-wave antenna 22 .
  • At least two non-millimeter wave antennas 22 are included, and the ground part 23 is located between two adjacent non-millimeter wave antennas 22 .
  • the ground part 23 can serve as the isolation part 24 between corresponding two adjacent non-millimeter wave antennas 22 , so as to effectively avoid mutual selection interference between adjacent non-millimeter wave antennas 22 . Therefore, it is ensured that each non-millimeter wave antenna 22 has better antenna performance.
  • the first part 221 of the non-millimeter wave antenna 22 further includes an extension part 2211 .
  • One end of the extension part 2211 is connected to any millimeter wave antenna unit 211 among the plurality of millimeter wave antenna units 211 multiplexed to form the first part 221 of the non-millimeter wave antenna 22 , and the other end of the extension part 2211 is suspended.
  • extension part 2211 can be specifically implemented in the following manners.
  • the second part 222 of the non-millimeter wave antenna 22 is located on one side of the millimeter wave antenna 21 .
  • the extension part 2211 is located on the side of the millimeter-wave antenna 21 away from the second part 22 of the non-millimeter-wave antenna 22, and is multiplexed with any one of the plurality of millimeter-wave antenna units 211 constituting the first part 221 of the non-millimeter-wave antenna 22.
  • the wave antenna unit 211 is connected.
  • the extension part 2211 is directly connected to the millimeter wave antenna unit 211 that multiplexes the first part 221 of the non-millimeter wave antenna 22 and is closest to the extension part 2211 . In the example shown in FIG.
  • one end of the extension 2211 is connected to the millimeter-wave antenna unit 211 on the side of the first part 221 of the non-millimeter-wave antenna 22 farthest from the second part 222 of the non-millimeter-wave antenna 22 .
  • the second part 222 of the non-millimeter-wave antenna 22 is configured to surround the corresponding millimeter-wave antenna 21, and through at least one second connection line 2220 to form a non-millimeter-wave antenna. Any millimeter wave antenna unit 211 among the plurality of millimeter wave antenna units 211 of the first part 221 of the millimeter wave antenna 22 is connected.
  • the second part 222 of the non-millimeter wave antenna 22 includes a head section 2221 , a tail section 2222 and a middle section 2223 connected between the head section 2221 and the tail section 2222 .
  • the first section 2221 is configured to be connected to the non-millimeter wave radio frequency integrated circuit 500 , for example, to connect to the non-millimeter wave transmission line Ln 2 in the FPC 200 .
  • the tail section 2222 is connected to the millimeter wave antenna unit 211 that multiplexes to form the first part 221 of the non-millimeter wave antenna 22 and is closest to the tail section 2222 .
  • the second part 222 of the non-millimeter wave antenna 22 can be connected in series with the first part 221 of the multiplexed non-millimeter wave antenna 22, and within a limited space, it is ensured that the non-millimeter wave antenna 22 using this structure can have a longer
  • the length and larger area of the non-millimeter wave antenna 22 can be reasonably controlled in terms of operating frequency and bandwidth.
  • the first section 2221 and the tail section 2222 of the second part 222 of the non-millimeter wave antenna 22 are located on both sides of the millimeter wave antenna 21 respectively.
  • the extension part 2211 is located between the first section 2221 of the second part 222 of the non-millimeter wave antenna 22 and the millimeter wave antenna 21, and is multiplexed with the plurality of millimeter wave antenna units 211 constituting the first part 221 of the non-millimeter wave antenna 22. Any millimeter wave antenna unit 211 is connected.
  • the extension part 2211 is directly connected to the millimeter wave antenna unit 211 that multiplexes the first part 221 of the non-millimeter wave antenna 22 and is closest to the extension part 2211 .
  • the extension part 2211 may be formed by at least one first connecting wire 2210 suspended at one end.
  • the working frequency of the first part 221 of the non-millimeter wave antenna 22 can be controlled by setting the extension part 2211 to have different lengths so that the first part 221 of the non-millimeter wave antenna 22 has different lengths.
  • the extension part 2211 is also helpful to optimize the impedance and improve the performance of the antenna.
  • the second part 222 of the non-millimeter wave antenna 22 is also Settings other than some of the embodiments described above are possible.
  • the second part 222 of the non-millimeter wave antenna 22 includes a head section 2221 , a tail section 2222 and a middle section 2223 connected between the head section 2221 and the tail section 2222 .
  • the first section 2221 is connected to any millimeter wave antenna unit 211 among the plurality of millimeter wave antenna units 211 that are multiplexed to form the first part 221 of the non-millimeter wave antenna 22, and is configured to connect with the non-millimeter wave radio frequency integrated circuit 500 connection, for example, with the non-millimeter wave transmission line Ln 2 in the FPC 200.
  • the tail section 2222 is located on the side of the first section 2221 away from the millimeter wave antenna 21 .
  • the millimeter wave antenna 21 is located on the right side of the second part 222 of the non-millimeter wave antenna 22, and the second part 222 of the non-millimeter wave antenna 22 extends to the left.
  • the second part 222 of the non-millimeter wave antenna 22 is connected in parallel with the first part 221, which can increase the resonant path of the non-millimeter wave antenna 22 to enhance the antenna performance of the non-millimeter wave antenna 22, such as enabling the non-millimeter wave antenna 22 to Cover more working frequency bands.
  • the non-millimeter wave antenna 22 further includes a second part 222 and a plurality of second connecting wires 2210 .
  • the millimeter-wave antenna unit 211 is a single-polarized millimeter-wave antenna unit.
  • the millimeter-wave antenna unit 211 is a dual-polarized millimeter-wave antenna unit.
  • the second part 222 of the non-mm-wave antenna 22 is configured to surround the corresponding mm-wave antenna 21 .
  • any adjacent two millimeter-wave antenna units 211 are connected by at least one first connection line 2210, the first The connecting wire 2210 is used to block transmission of millimeter wave energy between any two adjacent millimeter wave antenna units 211 .
  • the second part 222 of the non-millimeter wave antenna 22 includes a first section 2221 configured to be connected to the non-millimeter wave radio frequency integrated circuit 500;
  • the millimeter wave antenna unit 211 can be connected to the first section 2221 through at least one second connection line 2220 (for example, a second connection line 2220), and the second connection line 2220 is used to block the millimeter wave antenna unit 211 from the non-millimeter wave antenna 22 Millimeter wave energy is transmitted between the second part 222 .
  • the first part 221 and the second part 222 of the non-millimeter wave antenna 22 have the same extension direction, for example, taking the part where the first part 221 and the second part 222 are connected as the base point, both of them extend from left to right to form a parallel connection. connect.
  • the non-millimeter wave antenna 22 may have different resonant paths to have different working frequency bands, so as to realize multi-band communication of the non-millimeter wave antenna 22 .
  • the antenna 2 includes at least two non-millimeter wave antennas 22 .
  • the structures of the second parts 22 in different non-millimeter wave antennas 22 may be the same or different.
  • different millimeter-wave antenna units 211 in the same millimeter-wave antenna 21 can be reused to form two or more non-millimeter-wave antennas 22 or form the first part 221 of two or more non-millimeter-wave antennas 22 .
  • the number of non-millimeter wave antennas 22 is two, and the two non-millimeter wave antennas 22 are arranged in a mirror image.
  • the structure of the second portion 222 in different non-millimeter wave antennas 22 may be different.
  • the non-millimeter wave antenna 22 can be controlled to have different operating frequencies and bandwidths. That is, the antenna 2 may have at least two different types of non-millimeter wave antennas 22 at the same time.
  • the outline shape of the millimeter-wave antenna unit 211 may be a rectangle, a rhombus, or an X shape.
  • the first part 221 of the non-millimeter-wave antenna 22 that controls its multiplexing configuration can also have different working frequency bands.
  • the larger the area of the millimeter-wave antenna unit 211 the lower the operating frequency band or the wider the bandwidth of the first part 221 of the non-millimeter-wave antenna 22 formed by its multiplexing.
  • At least one non-millimeter wave antenna 22 is also connected to the ground part 23 .
  • the ground part 23 can be connected with the ground wire or the ground plane in the FPC 200.
  • the antenna 2 includes at least two non-millimeter wave antennas 22 .
  • the antenna 2 further includes an isolation part 24 located between any two adjacent non-millimeter wave antennas 22 .
  • the isolation part 24 can be used to effectively isolate adjacent non-millimeter wave antennas 22, so as to reduce the degree of mutual coupling between adjacent non-millimeter wave antennas 22 and the degree of being affected by electronic noise, thereby ensuring that each non-millimeter wave antenna 22 Both have better antenna performance and better wireless communication quality.
  • the isolation part 24 is configured to be connected to the ground area in the display device 10 .
  • the isolation part 24 may be connected to a ground line or a ground plane in the FPC 200.
  • the isolation part 24 is respectively connected to two adjacent non-millimeter wave antennas 22 .
  • the antenna 2 further includes a third connecting wire 2230 .
  • the isolation part 24 is connected to the nearest millimeter-wave antenna unit 211 among adjacent non-millimeter-wave antennas 22 through at least one third connection line 2230 .
  • the millimeter-wave antenna unit 211 is a dual-polarized millimeter-wave antenna unit.
  • the millimeter-wave antenna unit 211 is a single-polarized millimeter-wave antenna unit.
  • the number, length and width of the third connection lines 2230 can be selected and set according to actual needs. Embodiments of the present disclosure do not limit this.
  • the third connection line 2230 is selectively set with reference to the structure of the first connection line 2210 .
  • the isolation part 24 may be formed of a conductive grid with a rectangular contour.
  • multiple millimeter wave antenna units 211 forming the first part 221 of the non-millimeter wave antenna 22 may also be connected in parallel.
  • the non-millimeter wave antenna 22 further includes a second part 222 and a plurality of second connecting wires 2220 .
  • Each millimeter-wave antenna unit 211 of the plurality of millimeter-wave antenna units 211 that constitute the first part 221 of the non-millimeter-wave antenna 22 is connected to the second part 222 of the non-millimeter-wave antenna 22 through at least one second connection line 2220, respectively, For example, it is connected to the second part 222 of the non-millimeter wave antenna 22 through a second connection line 2220 .
  • the non-millimeter wave antenna 22 can have multiple different resonant paths, so as to have multiple different working frequency bands, so as to realize multi-band communication of the non-millimeter wave antenna 22 .
  • the second part 222 of the non-millimeter wave antenna 22 is configured to surround the corresponding millimeter wave antenna 21 .
  • the millimeter-wave antenna unit 211 is a single-polarized millimeter-wave antenna unit.
  • the millimeter-wave antenna unit 211 is a dual-polarized millimeter-wave antenna unit. Dual polarization can enhance the sending and receiving capability of wireless communication signals (for example, it can achieve multiple input and multiple output, that is, realize MIMO operation; or reduce the interruption of wireless communication. Line rate and wireless communication dead zone) to improve wireless communication quality and user wireless experience.
  • the non-millimeter wave antenna 22 on the basis of multiplexing the millimeter wave antenna unit 211 to form the first part 221 of the non-millimeter wave antenna 22, by setting the second part 222 of the non-millimeter wave antenna 22, the non-millimeter wave antenna 22
  • the outline shape and planar area of the components of the antenna 2 such as the extension part 2211 and the ground part 23 in the first part 221 of the first part 221 can reasonably control the operating frequency and bandwidth of the non-millimeter wave antenna 22 .
  • the working frequency band of the non-millimeter wave antenna 22 can be made to cover a low frequency band, an intermediate frequency band, or a high frequency band, etc., and the bandwidth of the non-millimeter wave antenna 22 can be made wider. In this way, it is ensured that the non-millimeter wave antenna 22 has antenna performance that can meet usage requirements, so as to improve product competitiveness and user wireless experience.
  • the embodiment of the present disclosure also provides a display device 10 .
  • the display device 10 includes: the display screen 100 integrated with the antenna 2 as described in some embodiments above.
  • the structure of the antenna 2 is as described in some previous embodiments.
  • the display screen 100 includes a display panel 110 , and the antenna 2 may be integrated in or on the display panel 110 .
  • the display screen 100 includes a conductive grid layer 101 disposed on the display side of the display panel 110 .
  • the display side of the display panel 110 refers to the light emitting side of the display panel 110 , that is, the side of the display panel 110 for displaying images.
  • the display panel 110 may be a flexible display panel, such as an OLED (Organic Light-Emitting Diode, organic light-emitting diode) display panel, a QLED (Quantum Dot Light Emitting Diodes, quantum dot light-emitting diode) display panel, or an LED (Light-Emitting Diode) display panel.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • QLED Quantum Dot Light Emitting Diodes, quantum dot light-emitting diode
  • LED Light-Emitting Diode
  • Emitting Diode, light-emitting diode) display panel etc.
  • the display panel 110 may also be a liquid crystal display panel or the like.
  • the conductive grid layer 101 may be formed by patterning conductive materials.
  • the conductive grid layer 101 is, for example, a metal grid layer or a transparent conductive material grid layer.
  • the metal mesh layer can be formed by metals with good electrical properties, such as copper, silver, gold, nickel or titanium or their alloys.
  • Transparent conductive material grid layer can be formed by transparent conductive materials with high visible light transmittance and strong conductivity, such as indium tin oxide (ITO), zinc oxide (ZnO), cadmium tin oxide (CTO), indium oxide (InO) , indium (In) doped zinc oxide (ZnO), aluminum (Al) doped zinc oxide (ZnO), or gallium (Ga) doped zinc oxide (ZnO), etc.
  • the thickness of the conductive grid layer 101 can be selected and set according to actual requirements.
  • the thickness of the conductive grid layer 101 may range from 100 nm to 1 ⁇ m, such as 100 nm, 200 nm, 500 nm, 800 nm or 1 ⁇ m.
  • the conductive grid layer 101 is disposed on the display side of the display panel 110.
  • the conductive grid layer 101 may be directly disposed on the surface of the display panel 110; or, disposed in the display screen 100 on the display side Other structures on the display side of the panel 110.
  • the display screen 100 further includes a cover plate 120 disposed on the display side of the display panel 110 , and the conductive grid layer 101 is disposed on one side surface of the cover plate 120 .
  • the conductive grid layer 101 is disposed on the surface of the cover plate 120 close to the display panel 110 .
  • the conductive grid layer 101 is disposed on the surface of the cover plate 120 away from the display panel 110 .
  • the conductive mesh layer 101 can be prepared and formed on the display side of the display panel 110 , or can be attached to the display side of the display panel 110 after being independently prepared.
  • the embodiment of the present disclosure does not limit the preparation process of the conductive grid layer 101 .
  • the specific position of the conductive grid layer 101 in the display screen 100 can be selected and set according to actual needs, as long as the orthographic projection of the conductive grid layer 101 on the display panel 110 at least fully covers the display area of the display panel 110 .
  • the orthographic projection of the antenna 2 on the display panel 110 formed by at least part of the patterns in the conductive mesh layer 101 will be located in the display area AA.
  • the antenna 2 in the display screen 100 can be less susceptible to being blocked during use (such as: holding it by hand or placing it on a metal table), and the performance of the antenna 2 will be significantly deteriorated and affect the wireless experience of the user, that is, the communication of the antenna 2 can be ensured. performance.
  • the display screen 100 is a touch screen, and the display screen 100 includes a touch layer 102 .
  • the touch layer 102 is used for performing a touch operation, for example, may be formed by interlaced connection of touch electrodes and metal bridge lines.
  • the embodiment of the present disclosure does not limit the specific structure of the touch layer 102 .
  • the touch layer 102 can be disposed on the display side surface of the display panel 110 , or can be integrated in the display panel 110 .
  • the conductive grid layer 101 is disposed on the display side of the display panel 110 , and the touch layer 102 is integrated in the display panel 110 .
  • the touch layer 102 is integrated in the display panel 110 .
  • the conductive grid layer 101 is disposed on the display side of the display panel 110, and the conductive grid layer 101 can be configured as the touch layer 102;
  • the control layer 102 is disposed on the display side of the display panel 110 , and the conductive grid layer 101 and the touch layer 102 are the same layer.
  • the conductive mesh layer 101 is disposed on the side of the touch layer 102 away from the display panel 110 and is insulated from the touch layer 102, or the conductive mesh layer 101 is disposed between the touch layer 102 and the display panel 110 and is insulated from the touch layer 102.
  • the control layers 102 are insulated from each other.
  • the conductive grid layer 101 is disposed on the side of the touch layer 102 away from the display panel 110 , ie above the touch layer 102 .
  • An insulating layer 1011 is disposed between the conductive grid layer 101 and the touch layer 102 to ensure that the electrical properties of the conductive grid layer 101 and the touch layer 102 do not affect each other.
  • the conductive mesh layer 101 is configured as the touch layer 102 .
  • the antenna 2 may be formed by a part of the pattern in the touch control layer 102 located in the touch blind area. That is to say, at least part of the pattern in the touch control layer 102 located in the touch blind area can be cut and used as the antenna 2 .
  • the touch blind area refers to an area without a touch function. In this way, it is also beneficial to reduce the number of conductive grid cutting areas in the touch layer 102 and the difference between grid patterns in different areas, so as to ensure the visual optical effect and touch effect of the touch screen.
  • the display screen 100 includes a conductive grid layer 101 , and the conductive grid layer 101 is integrated in the display panel 110 .
  • the display panel 110 is usually provided with at least one conductive layer, such as a metal conductive layer or a transparent conductive layer, such as an array metal layer, a wiring layer, an electrode layer (cathode, anode), etc.
  • the conductive layer is, for example, a transparent, solid conductive sheet structure.
  • the antenna 2 can be formed by using a partial pattern (for example, a grid pattern) of any conductive layer in the display panel 110 , so as to realize the integration of the antenna 2 in the display panel 110 .
  • the structure of the display device 10 will be described in detail below by taking the antenna 2 disposed on the display side of the display panel 110 as an example.
  • the display device 10 further includes a FPC (Flexible Printed Circuit, flexible circuit board) 200 .
  • the FPC 200 can be electrically bound to the display panel 110, so as to realize the connection of the signal line in the display panel 110 and the external (such as in the electronic device 1) PCB (Printed Circuit Board, printed circuit board) 20.
  • the PCB 20 can be installed in the housing of the electronic device 1.
  • the FPC 200 can also be electrically bound to the antenna 2, so as to realize the connection between the antenna 2 and the mm-wave radio frequency integrated circuit (mm-wave RFIC) 300 and the non-mm-wave radio frequency integrated circuit 500.
  • mm-wave RFIC mm-wave radio frequency integrated circuit
  • an antenna 2 is integrated in the display screen 100 of the display device 10 , and the antenna 2 includes a millimeter wave antenna 21 and a non-millimeter wave antenna 22 .
  • the display device 10 further includes: a millimeter wave radio frequency integrated circuit 300 for connecting to each millimeter wave antenna unit 211 in the millimeter wave antenna 21, and a non-millimeter wave radio frequency integrated circuit 300 for connecting to a non-millimeter wave antenna 22 500.
  • Both the millimeter wave radio frequency integrated circuit 300 and the non-millimeter wave radio frequency integrated circuit 500 can be electrically bound to the FPC 200, or one of them can be electrically bound to the FPC 200, and the other can be electrically bound to the external PCB 20 wait.
  • the display device 10 further includes a millimeter-wave radio frequency integrated circuit 300 and a connection socket 400 respectively bound on the FPC 200.
  • the millimeter wave radio frequency integrated circuit 300 can be correspondingly connected with the millimeter wave antenna unit 211 through the circuit in the FPC 200.
  • the connection base 400 can be correspondingly connected to the non-millimeter wave antenna 22 through the circuit in the FPC 200.
  • the connecting seat 400 can also be directly connected to the millimeter wave radio frequency integrated circuit 300 through the through hole in the FPC 200, or connected to the millimeter wave radio frequency integrated circuit 300 through the circuit in the FPC 200.
  • the connecting seat 400 is used to connect the external PCB 20, and can be used as a connection hub between the FPC 200 and the PCB 20.
  • the connection base 400 can be used to realize the connection between the millimeter wave radio frequency integrated circuit 300 and the PCB 20.
  • the non-millimeter-wave radio frequency integrated circuit 500 can be arranged in the PCB 20, and the connecting seat 400 can also be used to realize the connection between the non-millimeter wave antenna 22 and the non-millimeter wave radio frequency integrated circuit 500.
  • the antenna 2 is located in the display area AA of the display screen 100 , but it is not limited thereto.
  • the antenna 2 can also be disposed on the peripheral area of the display screen 100 .
  • each millimeter wave antenna unit 211 in the millimeter wave antenna 21 can be led out to the peripheral area through its millimeter wave feed-in part (for example, the millimeter wave signal line Lm 1 ), and be electrically bound to the FPC 200 .
  • the non-millimeter-wave antenna 22 can be led out to the peripheral area through its non-millimeter-wave feed-in portion (for example, the non-millimeter-wave signal line Ln 1 ), and be electrically bound to the FPC 200 .
  • the peripheral area refers to the area of the display screen 10 located at the periphery of the display area AA.
  • the millimeter-wave signal line Lm 1 and the non-millimeter-wave signal line Ln 1 can be a single wire or a grid line (that is, constituted by a partial grid pattern of the conductive grid layer 101 ).
  • FIG. 34 is a schematic cross-sectional view of an FPC in the display device shown in FIG. 33 along the BB' direction.
  • the FPC 200 is respectively provided with a millimeter wave transmission line Lm 2 correspondingly connected to the millimeter wave signal line Lm 1 , and a non-millimeter wave transmission line Ln 2 correspondingly connected to the non-millimeter wave signal line Ln 1 .
  • the antenna 2 is composed of partial patterns of the conductive grid layer 101 .
  • the thickness of the conductive grid layer 101 may be the same as or different from that of the millimeter wave transmission line Lm 2 and the non-millimeter wave transmission line Ln 2 in the FPC 200 .
  • the line widths of the parallel lines of the first wire L1 (including the first wire L1) and the parallel lines of the second wire L2 (including the second wire L2) in the conductive grid layer 101 can be compared with the millimeter wave transmission line Lm2 and the FPC 200 in the FPC 200.
  • the line widths of the non-millimeter wave transmission lines Ln 2 are the same or different.
  • the millimeter wave radio frequency integrated circuit 300 can be bonded to the FPC 200 in a COF (Chip On Film) manner, or connected to the corresponding millimeter wave transmission line Lm 2 in the FPC 200 through the conductor 600 .
  • the connection base 400 can be connected to the corresponding non-millimeter wave transmission line Ln 2 in the FPC 200 through the conductor 600 , and can be electrically connected to the outgoing circuit connected to the millimeter wave radio frequency integrated circuit 300 in the FPC 200 through the conductor 600 .
  • the conductor 600 is, for example, a solder ball or a pad.
  • the millimeter wave antenna 21 may be connected to the millimeter wave radio frequency integrated circuit 300 through the FPC 200 .
  • the millimeter wave radio frequency integrated circuit 300 can be connected to the connection base 400 through the FPC 200 , and then connected to the PCB 20 through the connection base 400 .
  • the non-millimeter-wave antenna 22 can be connected to the connection base 400 through the FPC 200 , and then connected to the non-millimeter-wave radio frequency integrated circuit 500 through the connection base 400 .
  • the display device 10 further includes a millimeter wave radio frequency integrated circuit 300 and a non-millimeter wave radio frequency integrated circuit 500 respectively disposed on the FPC 200.
  • the millimeter wave radio frequency integrated circuit 300 is correspondingly connected with the millimeter wave antenna unit 211 through the circuit in the FPC 200.
  • the non-millimeter wave radio frequency integrated circuit 500 is correspondingly connected to the non-millimeter wave antenna 22 through the circuit in the FPC 200.
  • the display device 10 further includes a connection base 400 bound to the FPC 200, the connection base 400 is used to connect the external PCB 20, and can be used as a connection hub between the FPC 200 and the PCB 20. In this way, the connection socket 400 can also be used to realize the connection between the millimeter wave radio frequency integrated circuit 300 and the non-millimeter wave radio frequency integrated circuit 500 and the PCB 20.
  • the millimeter-wave radio frequency integrated circuit 300 can be bound to the FPC 200 in the form of COF (chip-on-film), or connected to the corresponding millimeter-wave transmission line Lm 2 in the FPC 200 through the conductor 600 .
  • the non-millimeter wave radio frequency integrated circuit 500 can be bonded to the FPC 200 in the form of COF (chip-on-film), or connected to the corresponding non-millimeter wave transmission line Ln 2 in the FPC 200 through the conductor 600 .
  • the connection base 400 can be connected to the outgoing circuit connected to the millimeter wave radio frequency integrated circuit 300 and the outgoing circuit connected to the non-millimeter wave radio frequency integrated circuit 500 in the FPC 200 through the conductor 600 .
  • the conductor 600 is, for example, a solder ball or a pad.
  • the millimeter wave antenna 21 can be connected to the millimeter wave radio frequency integrated circuit 300 through the FPC 200
  • the non-millimeter wave antenna 22 can be connected to the non-millimeter wave radio frequency integrated circuit 500 through the FPC 200
  • the millimeter wave radio frequency integrated circuit 300 and the non-millimeter wave radio frequency integrated circuit 500 can be respectively connected to the connection socket 400 through the FPC 200 , and then connected to the PCB 20 through the connection socket 400 .
  • the millimeter-wave antenna 21 and the non-millimeter-wave antenna 22 in the antenna 2 can have their own independent communication links, and the millimeter-wave antenna 21 and the non-millimeter-wave antenna 22 can work simultaneously without affecting each other.
  • the devices in the millimeter wave radio frequency integrated circuit 300 can filter and block energy in the non-millimeter wave band. Therefore, the non-millimeter wave antenna 22 or the non-millimeter wave The connection of the first part 221 of the wave antenna 22 does not affect the performance of the non-millimeter wave antenna 22 and the performance of the millimeter wave radio frequency integrated circuit 300 .
  • each millimeter-wave antenna unit 211 in the millimeter-wave antenna 21 can also extend to the peripheral area of the display screen 100, so as to directly communicate with the FPC 200. electrical binding.
  • the second part 222 of the non-millimeter wave antenna 22 can also extend to the peripheral area of the display screen 100 to be directly electrically bound with the FPC 200 . Embodiments of the present disclosure do not limit this.
  • the FPC 200 can also be replaced by other carriers capable of carrying the millimeter wave transmission line Lm 2 and the non-millimeter wave transmission line Ln 2 .
  • the millimeter-wave antenna 21 and the non-millimeter-wave antenna 22 can share the same FPC 200, so as to reduce the total number of FPCs in the display device 10 and reduce the assembly complexity of the display device 10, thereby improving the performance of the display device 10.
  • the production efficiency is improved and the production cost of the display device 10 is reduced.
  • Embodiments of the present disclosure also provide an electronic device 1 , including the display device 10 in some of the above embodiments.
  • an electronic device 1 including the display device 10 in some of the above embodiments.
  • the display device 10 For the structure of the display device 10 , reference may be made to the related records in some of the aforementioned embodiments, which will not be described in detail here.
  • the electronic device 1 further includes a PCB 20 connected to the display device 10 .
  • functional devices such as an intermediate frequency device and a baseband platform may also be provided in the PCB 20 to meet the use requirements of the antenna 2 .
  • the electronic device 1 further includes a non-millimeter wave tuning device 30 for tuning the non-millimeter wave antenna 22 .
  • the non-millimeter wave tuning device 30 is disposed on the FPC 200 of the display device 10, so as to be connected to the non-millimeter wave antenna 22 through the FPC 200.
  • the non-millimeter-wave tuning device 30 is disposed on the PCB 20.
  • the connecting seat 400 electrically bound to the FPC 200 is electrically bound to the PCB 20 .
  • the non-millimeter wave tuning device 30 can be connected to the non-millimeter wave antenna 22 through the FPC 200.
  • non-millimeter-wave tuning device 30 may be formed by an electrically tunable device, for example, a variable capacitor, a variable inductance, or a switch device.
  • the non-millimeter wave tuning device 30 can be connected (including series or parallel) with the non-millimeter wave antenna 22, so that the non-millimeter wave antenna 22 Tuning is performed to reconstruct the antenna performance of the non-millimeter wave antenna 22 .
  • the beneficial effects achieved by the electronic device 1 and the display device 10 are the same as the beneficial effects achieved by the display screen 100 with integrated antenna 2 provided in some embodiments above, and will not be repeated here.
  • the above-mentioned electronic device 1 provided by some embodiments of the present disclosure can be applied to the field of display, whether it is moving (for example, video) or fixed (for example, still image), and no matter whether it is an image of text or picture, any device with wireless communication installation. More specifically, it is contemplated that the described embodiments may be implemented in a variety of wireless communication display devices.
  • the above-mentioned electronic equipment 1 includes but is not limited to mobile phones, wireless devices, personal data assistants (Portable Android Device, abbreviated as PAD), handheld or portable computers, GPS (Global Positioning System, Global Positioning System) receiver/navigator, camera, MP4 (full name MPEG-4 Part 14) video player, video camera, TV monitor, flat panel display, computer monitor, aesthetic structure (e.g. for a display showing an image of a piece of jewelry) and other devices with wireless communication and display performance.
  • GPS Global Positioning System, Global Positioning System
  • MP4 full name MPEG-4 Part 14

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

本公开涉及一种集成天线的显示屏、显示装置及电子设备。天线集成于显示屏中,天线包括毫米波天线。毫米波天线包括多个毫米波天线单元。其中,至少两个毫米波天线单元相互连接形成连接结构,该连接结构至少复用构成非毫米波天线的第一部分。

Description

集成天线的显示屏、显示装置和电子设备
相关申请的交叉引用
本申请要求于2022年02月15日提交中国专利局、申请号为2022101351349、发明名称为“集成天线的显示屏、显示装置和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中
技术领域
本公开涉及显示技术领域,特别是涉及一种集成天线的显示屏、显示装置及电子设备。
背景技术
随着显示技术及通信技术的发展,具备无线通信功能的电子设备中显示装置的屏占比(screen-to-body ratio)往往越来越高,而电子设备中天线的种类及数量也越来越多。例如,在5G无线移动通信(the 5 th generation mobile communications)时代,无线通信的频谱即覆盖了毫米波(millimeter-wave,mm-wave)波段与非毫米波(non-mm-wave)波段;且在5G时代,4G(非毫米波)的频谱依然延续使用。故具有5G毫米波功能的电子设备,例如手机,其内除了设置有工作频段可覆盖毫米波段的第一类天线外,往往亦设置有工作频段可覆盖非毫米波段(如:5G或4G)的第二类天线。
然而,电子设备中显示装置的屏占比越高,则越易限制天线可摆放的位置,且天线往往在使用时(如:手握或置放于金属桌上)更容易受遮挡,而造成天线性能的显著劣化,影响用户的无线体验。有鉴于此,考虑在电子设备的显示装置中集成天线,例如采用屏上天线(Antenna-on-Display,简称AoD)的设计方式,便成为一种电子设备中天线设计的可能发展趋势。
发明内容
本公开的实施例提供一种集成天线的显示屏、显示装置和电子设备,以将天线集成于电子设备中显示装置的显示屏中,且使该天线的工作频段可同时覆盖毫米波段和非毫米波段。本申请公开了一种集成天线的显示屏,可以有效地减小天线尺寸(即小于前述两类屏上天线分立设置时的尺寸总和),并减低其对显示屏视觉光学效果与触控效果的影响,以在增加显示屏的功用与价值外,同时保障用户的视觉与触觉体验。
根据本申请的一个方面,提供一种集成天线的显示屏。该集成在显示屏中的天线包括毫米波天线。毫米波天线包括多个毫米波天线单元。其中,至少两个毫米波天线单元相互连接形成连接结构,该连接结构至少复用构成非毫米波天线的第一部分。
本申请中,将至少两个毫米波天线单元相互连接后的连接结构,至少复用构成非毫米波天线的第一部分,即该连接结构具有等效非毫米波天线的功能,可使毫米波天线或其部分还能够具有等效非毫米波天线的功能。如此,有利于减少导电网格层中用于切割形成天线的区域数量以及导电网格层中不同切割区域切割图案之间的差异,以确保显示屏的视觉光学效果与触控效果。
在一些实施例中,非毫米波天线还包括至少一条第一连接线。前述连接结构中至少两个毫米波天线单元通过至少一条第一连接线相互连接,此第一连接线用于阻隔前述任意两个毫米波天线单元之间传输毫米波能量。
可选地,第一连接线的线宽小于或等于第一导线或第二导线的线宽。第一连接线的线宽是指第一连接线在平行于显示面板的平面内的正投影,在垂直于第一连接线延伸方向上的尺寸。如此,第一连接线的线宽与第一导线或第二导线的线宽相同,可以确保天线制备工艺的成熟性、简易性与低成本。
可选地,连接结构中至少两个毫米波天线单元通过多条第一连接线相互连接,且该多条第一连接线的线宽之和为第一尺寸,毫米波天线单元与该多条第一连接线对应连接的侧边边长为第二尺寸,第一尺寸小于或等于第二尺寸的四分之一。本申请中,具有较小线宽的第一连接线能够对毫米波段的能量进行较好的滤波阻隔,但对非毫米波段的能量滤波阻隔较少。因此,在连接结构中,两个毫米波天线单元之间采用对毫米波段有较好滤波阻隔功能的第一连接线进行连接,则可确保毫米波天线单元在其各自工作频段内的天线性能,以减低因二者间的连接使天线性能受影响的程度。并且,该两个毫米波天线单元之间的第一连接线比较不会对非毫米波段的能量进行滤波阻隔,故将多个毫米波天线单元 相连后的连接结构复用为非毫米波天线或非毫米波天线的第一部分,并不会影响非毫米波天线的天线性能。示例地,非毫米波天线的第二部分包括首段、尾段和连接于首段和尾段之间的中段,该首段被配置为用于与非毫米波射频集成电路连接。
可选地,非毫米波天线的第二部分的首段和尾段分别位于毫米波天线的两侧,且该尾段与连接结构中距离该尾段最近的毫米波天线单元相连。这样非毫米波天线的第二部分可与连接结构中的多个毫米波天线单元的串联结构串联,并在有限的空间范围内,确保采用该结构的非毫米波天线可以具有较长的长度及较大的面积,以合理控制非毫米波天线的工作频率和带宽。
在另一种可能的实施方式中,连接结构中的各毫米波天线单元分立设置,并分别通过第二连接线与第二部分相连。第二连接线用于阻隔毫米波天线单元与非毫米波天线的第二部分之间传输毫米波能量。
本申请中,在复用连接结构构成非毫米波天线的第一部分的基础上,通过设置非毫米波天线的第二部分以及其第二部分与第一部分之间的相对位置关系和连接关系,可以合理控制非毫米波天线的工作频率及带宽。并且,在非毫米波天线的第二部分与第一部分呈并联连接的一些示例中,非毫米波天线可以具有多个不同的谐振路径,以具有多个不同的工作频段,从而实现非毫米波天线的多频段通信。
本申请中,非毫米波天线包括相连的第一部分和第二部分,并且非毫米波天线的第一部分是复用毫米波天线单元构成的,故可减小非毫米波天线中除了第一部分中毫米波天线单元以外其他组成部分的尺寸,例如非毫米波天线的第二部分的长度。亦即,在相同工作频率下,非毫米波天线中复用构成第一部分的毫米波天线单元越多,则非毫米波天线中除了第一部分以外其他组成部分的长度就可以相对越短。从而有利于减少导电网格层中用于形成非毫米波天线的第二部分的导电网格的切割长度,以进一步确保显示装置的视觉光学效果与触控效果。
在一些实施例中,天线还包括接地部。
可选地,接地部位于非毫米波天线的第二部分远离毫米波天线的一侧,并与非毫米波天线的第二部分相连。
可选地,接地部位于毫米波天线远离非毫米波天线的第二部分的一侧,并通过第二连接线与连接结构中的任一毫米波天线单元相连。
可选地,接地部位于毫米波天线与非毫米波天线的第二部分之间,并通过第二连接线与连接结构中的任一毫米波天线单元相连。
可选地,非毫米波天线包括至少两个。接地部位于相邻的两个非毫米波天线之间。
本申请中,通过在天线的不同位置设置接地部,可以利用接地部与非毫米波天线、毫米波天线之间的相对位置关系和连接关系,合理控制非毫米波天线的工作频率及带宽。例如,非毫米波天线和接地部串联连接,可以使非毫米波天线具有较长的长度,从而可覆盖较低的天线工作频率。
在一些实施例中,非毫米波天线的第一部分还包括延伸部。延伸部位于毫米波天线远离非毫米波天线的第二部分的一侧,或者,延伸部位于非毫米波天线的第二部分与毫米波天线之间。
可选地,延伸部的一端与连接结构中任一毫米波天线单元相连,延伸部的另一端悬置。
可选地,延伸部由一端悬置的至少一条第一连接线构成。
本申请中,通过在非毫米波天线的第一部分内设置延伸部,可以通过设置延伸部的长度,调整非毫米波天线的第一部分的长度,从而控制非毫米波天线的第一部分的工作频率。
在一些实施例中,天线包括至少两个非毫米波天线。不同非毫米波天线中第二部分的结构不同。若此,便可复用同一毫米波天线中的不同毫米波天线单元,形成两个及以上非毫米波天线的第一部分。并且,通过设置非毫米波天线的第二部分具有不同的轮廓形状及延伸长度,可以控制非毫米波天线的第二部分具有不同的工作频率及带宽。亦即,天线中可以同时具有至少两种不同类型的非毫米波天线。
在一些实施例中,天线包括至少两个非毫米波天线。天线还包括:位于任相邻两个非毫米波天线之间的隔离部。如此,可以利用隔离部有效隔离相邻的非毫米波天线,以避免相邻的非毫米波天线之间发生互选干扰的情况。从而确保各非毫米波天线有较好的天线性能。
根据本申请的另一方面,提供一种显示装置。显示装置包括:如上一些实施例所述的集成天线的 显示屏。
可选地,显示装置还包括柔性电路板以及设置于柔性电路板上的毫米波射频集成电路和连接座。其中,毫米波射频集成电路通过柔性电路板与毫米波天线单元及连接座分别相连;连接座通过柔性电路板与非毫米波天线单元相连,且被配置为与非毫米波射频集成电路连接。本申请中,毫米波天线单元可以通过柔性电路板与毫米波射频集成电路连接。毫米波射频集成电路可以通过柔性电路板与连接座连接,进而通过连接座与显示装置的印刷电路板连接。非毫米波射频集成电路可以设置于印刷电路板上。非毫米波天线可以通过柔性电路板与连接座连接,进而通过连接座与非毫米波射频集成电路连接。
可选地,显示装置还包括柔性电路板以及分别设置于柔性电路板上的毫米波射频集成电路和非毫米波射频集成电路;其中,毫米波射频集成电路通过柔性电路板与毫米波天线单元相连;非毫米波射频集成电路通过柔性电路板与非毫米波天线相连。本申请中,毫米波射频集成电路和非毫米波射频集成电路可以均集成于柔性电路板上。如此,毫米波天线单元可以通过柔性电路板与毫米波射频集成电路连接。非毫米波天线可以通过柔性电路板与非毫米波射频集成电路连接。
天线中的毫米波天线和非毫米波天线均可以具有各自独立的通讯链路,毫米波天线和非毫米波天线可以同时工作且较互不影响。并且,本申请中,毫米波天线和非毫米波天线可以共用同一柔性电路板,以减少显示装置中柔性电路板的总数量及降低显示装置的组装复杂度,从而有利于提高显示装置的生产效率并降低显示装置的生产成本。
根据本申请的又一方面,提供一种电子设备。电子设备包括上述一些实施例中所述的显示装置。
可选的,电子设备还包括用于调谐非毫米波天线的非毫米波调谐器件。其中,非毫米波调谐器件设置于柔性电路板上。或者,电子设备还包括与柔性电路板连接的印刷电路板;非毫米波调谐器件设置于印刷电路板上。如此,可以利用非毫米波调谐器件对非毫米波天线进行调谐,以重构非毫米波天线的天线性能。本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本公开的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本公开一实施例中一种电子设备的结构示意图;
图2为本公开一实施例中另一种电子设备的结构示意图;
图3为本公开一实施例中又一种电子设备的结构示意图;
图4为本公开一实施例中一种天线的结构示意图;
图5为本公开一实施例中又一种天线的结构示意图;
图6为本公开一实施例中又一种天线的结构示意图;
图7为本公开一实施例中又一种天线的结构示意图;
图8为本公开一实施例中又一种天线的结构示意图;
图9为本公开一实施例中一种显示装置的结构示意图;
图10为本公开一实施例中另一种显示装置的结构示意图;
图11为本公开一实施例中又一种显示装置的结构示意图;
图12为本公开一实施例中又一种显示装置的结构示意图;
图13为本公开一实施例中又一种显示装置的结构示意图;
图14为本公开一实施例中又一种显示装置的结构示意图;
图15为本公开一实施例中又一种显示装置的结构示意图;
图16为本公开一实施例中又一种显示装置的结构示意图;
图17为本公开一实施例中又一种显示装置的结构示意图;
图18为本公开一实施例中又一种显示装置的结构示意图;
图19为本公开一实施例中又一种显示装置的结构示意图;
图20为本公开一实施例中又一种显示装置的结构示意图;
图21为本公开一实施例中又一种显示装置的结构示意图;
图22为本公开一实施例中又一种显示装置的结构示意图;
图23为本公开一实施例中又一种显示装置的结构示意图;
图24为本公开一实施例中又一种显示装置的结构示意图;
图25为本公开一实施例中又一种显示装置的结构示意图;
图26为本公开一实施例中又一种显示装置的结构示意图;
图27为本公开一实施例中又一种显示装置的结构示意图;
图28为本公开一实施例中又一种显示装置的结构示意图;
图29为本公开一实施例中又一种显示装置的结构示意图;
图30为本公开一实施例中又一种显示装置的结构示意图;
图31为本公开一实施例中又一种显示装置的结构示意图;
图32为本公开一实施例中一种显示屏的结构示意图;
图33为本公开一实施例中又一种显示装置的结构示意图;
图34为图33所示的显示装置中一种FPC沿B-B’向的剖面示意图;
图35为本公开一实施例中又一种显示装置的结构示意图;
图36为本公开一实施例中又一种显示装置的结构示意图;
图37为本公开一实施例中又一种电子设备的结构示意图。
具体实施方式
为了便于理解本公开,下面将参照相关附图对本公开进行更全面的描述。附图中给出了本公开的较佳的实施例。但是,本公开可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本公开的公开内容的理解更加透彻全面。
本文所使用的术语“相连”“连接”可以是实现信号传输的连接的方式。“相连”“连接”应做广义理解,例如为直接的电性连接,或者通过中间媒介间接的连接,例如耦合的方式。
为了清楚地表示附图中的多个层和区域,放大了图示中各层的厚度及各区域,以对各层之间的相对位置和各区域的分布进行清楚示意。当表述为层、薄膜、区域、板等的部分位于其他部分“上方”或“上”时,该表述不仅包括“直接”在其他部分上方的情况,还包括其中间存在有其他层的情况。
随着显示技术及通信技术的发展,电子设备中显示装置的屏占比往往越来越高,而电子设备中天线的种类及数量也越来越多。例如,在5G无线移动通信时代,无线通信的频谱即覆盖了毫米波段与非毫米波段;且在5G时代,4G(非毫米波)的频谱依然延续。故具有5G毫米波功能的电子设备,例如手机,其内除了设置有工作频段可覆盖毫米波段的第一类天线外,往往亦设置有工作频段可覆盖非毫米波段(如:5G或4G)的第二类天线。电子设备中显示装置的屏占比越高,则越易限制天线可摆放的位置,且天线往往在使用时(如:手握或置放于金属桌)更容易受遮挡,而造成天线性能显著劣化,影响了用户无线体验。有鉴于此,考虑在电子设备的显示装置中集成天线,例如采用屏上天线(Antenna-on-Display,简称AoD)的设计方式,便成为一种电子设备中天线设计的可能发展趋势。
在一些实施例中,请参阅图1,以电子设备1是手机为例,集成于手机的显示装置10中的天线包括至少两类,例如包括第一类天线01和第二类天线02,其中,第一类天线01的工作频段可覆盖毫米波段,第二类天线02的工作频段可覆盖非毫米波段(如:5G或4G)。其中,第一类天线01和第二类天线02可以集成于显示装置10的显示屏100中。第一类天线(即毫米波天线)01例如为5G毫米波天线;第二类天线(即非毫米波天线)02例如包括WiFi/BT天线021、LTE(Long Term Evolution)天线022、NFC(Near Field Communication)天线023,或5G非毫米波天线024中的至少一种。本实施方式中,所述第一类天线01、第二类天线02集成于显示屏100内,也可外置于显示屏100外。
示例的,如图1中所示,第一类天线01(5G毫米波天线)、WiFi/BT天线021、LTE天线022、NFC天线023和5G非毫米波天线024可以分别独立地集成于显示装置10的显示屏100中。
在显示装置10的显示屏100中集成天线时,作为一种实施方式,可以在显示屏100中设置导电网格层101,然后通过切割导电网格层101中导电网格的方式制备天线,即作为天线的网格与非天线的网格是断开(即非直接电性连接)的。如此,在天线种类及数量较多的情况下,往往需要切割多个不同区域的导电网格,以形成对应的天线。且由于导电网格层101包括位于显示屏100的显示区内的部分,还包括位于非显示区的部分。因此,若导电网格的切割区域数量过多,或者在切割多个不同区域的导电网格之后,导电网格层101中的网格图案便存在较大差异或存在较多处的触控盲区,故容易造成显示装置10中显示屏100视觉光学效果与触控效果的劣化。
本公开一些实施例提供了一种可以集成于显示屏100也可外置与显示屏外的天线2,能够使天线2的工作频段可以同时覆盖毫米波段和非毫米波段,并有效确保显示屏100的视觉光学效果及触控效果。
请参阅图2和图3,显示屏100包括导电网格层101,天线2由导电网格层101的至少部分图案构成。天线2包括毫米波天线21。毫米波天线21包括多个毫米波天线单元211。其中,至少两个毫米波天线单元211相互连接(即为电性连接或耦合)形成连接结构,该连接结构至少复用构成非毫米波天线22的第一部分。在本申请中,连接关系意味着电性连接或耦合。
此处,连接结构至少复用构成非毫米波天线22的第一部分,包括:连接结构复用构成非毫米波天线22的第一部分221,或者连接结构复用构成非毫米波天线22等。
在一些实施例中,请参阅图2,天线2包括毫米波天线21。毫米波天线21包括多个毫米波天线单元211。其中,至少两个毫米波天线单元211相互连接形成连接结构,该连接结构复用构成非毫米波天线22。
此处,将至少两个毫米波天线单元211相互连接后的连接结构,可以具有等效非毫米波天线的功能,以作为非毫米波天线22。即,可使毫米波天线或其部分还能够具有等效非毫米波天线的功能。并且,前述连接结构作为非毫米波天线22使用时,该连接结构可以通过非毫米波馈入部(例如非毫米波信号线Ln 1)连接引出,以使该连接结构通过非毫米波馈入部与非毫米波射频集成电路500相连接,从而实现非毫米波天线22的功能。可选地,请继续参阅图2,非毫米波天线22包括第一连接线2210。在复用为非毫米波天线22的连接结构中,至少两个毫米波天线单元211通过至少一条第一连接线相互连接。例如,在图2所示的示例中,任意相邻的两个毫米波天线单元211之间通过第一连接线2210相连,并且,任一毫米波天线单元211还可以通过第一连接线2210与非毫米波射频集成电路500相连,以使该第一连接线2210直接作为非毫米波天线22的非毫米波馈入部。
在另一些实施例中,请参阅图3,天线2包括毫米波天线21和非毫米波天线22。毫米波天线21包括多个毫米波天线单元211。非毫米波天线22包括第一部分221和第二部分222。其中,至少两个毫米波天线单元211相互连接形成连接结构,该连接结构复用构成非毫米波天线22的第一部分221。
此处,非毫米波天线22的第一部分221包括至少两个毫米波天线单元211相互连接形成的连接结构,该连接结构中的毫米波天线单元211能够复用为非毫米波天线22的第一部分221的辐射部,即该连接结构能够等效实现非毫米波天线22的第一部分221的辐射功能。
可以理解,上述一些实施例中的连接结构中的各毫米波天线单元211可以依次连接,或者按照预设的规则进行连接。
此外,可选地,非毫米波天线22可以作为WiFi/BT天线021、LTE天线022、NFC天线023、5G非毫米波天线024,或GPS天线等。
可选地,毫米波天线单元211包括单极化毫米波天线单元或双极化毫米波天线单元。
需要说明的是,相较于非毫米波段的信号,毫米波段的信号具有更宽的带宽、更高的信道容量,及更细腻的成像颗粒度,从而能进行更快速的传输数据及更细致的影像分辨,以满足用户对高信息速率与清晰影像的需求。然而,毫米波段的信号相较于非毫米波段有更大的传播损耗;因此,本公开实施例中,多个毫米波天线单元211相邻布设或采用阵列的方式布设以构成毫米波天线21,可以提高天线增益而补偿较大的路径损耗,并可达到波束扫描的效果而覆盖较广的空间以减少无线通信盲区,而达到较佳的用户无线体验。
此外,前述连接结构中的多个毫米波天线单元211之间的连接可以为串联连接或并联连接。并且, 该连接结构中任意相邻两个毫米波天线单元211之间的连接可以采用具有毫米波段能量阻隔功能的导电结构实现,导电结构例如为具有导电能力的连接线。如此,该连接结构中的每个毫米波天线单元211可以在其各自的毫米波工作频段工作,而不会因相邻毫米波天线单元211之间的连接而受到不良影响。并且,该连接结构中任意相邻两个毫米波天线单元211之间连接所采用的导电结构可以较良好地传输非毫米波段的能量,以确保该连接结构复用构成的非毫米波天线22或非毫米波天线22的第一部分221具有较好的非毫米波天线效果。
需要说明的是,集成于显示屏100中的天线2可以通过切割显示屏100中导电网格层101的至少部分导电网格获得。示例性地,毫米波天线单元211包括:由多条沿第一方向延伸的第一导线和多条沿第二方向延伸的第二导线交叉形成的导电网格。应当理解,“交叉”可以指投影上的交叉关系,例如第一导线和第二导线可以位于不同平面。
可选地,请参阅图4~图8,毫米波天线单元211包括:由多条第一导线L1和多条第二导线L2交错连接构成的导电网格。其中,第一导线L1沿第一方向延伸,第二导线L2沿第二方向延伸。第一方向和第二方向相交,例如一些实施方式,第一方向和第二方向彼此垂直。
可选地,如图4、图5和图6中所示,第一方向为竖直方向,例如为X方向;第二方向为水平方向,例如为Y方向。但并不仅限于此。例如,请参阅图7和图8,第一方向可以与竖直方向呈第一夹角设置,第一夹角例如为30°、45°或60°。例如第二方向可以与水平方向呈第二夹角设置,第二夹角例如与第一夹角相同。
相应的,显示屏100中的导电网格层101可以由多条第一导线L1的平行线(包括第一导线L1)和多条第二导线L2的平行线(包括第二导线L2)交错连接构成。如此,毫米波天线单元211可以通过切割导电网格层101中的对应导电网格直接获得。
上述一些实施例中,复用构成非毫米波天线22或非毫米波天线22中第一部分221的连接结构中多个毫米波天线单元211之间的连接,以及非毫米波天线22中第一部分221和第二部分222之间的连接,分别可以有多种不同的实施方式。
在一种可能的实施方式中,前述连接结构中的多个毫米波天线单元211之间的电连接可以为串联连接。
可选地,请继续参阅图4~图8,非毫米波天线22还包括第一连接线2210。在复用构成非毫米波天线22或非毫米波天线22的第一部分221的连接结构中,至少两个毫米波天线单元211通过至少一条第一连接线2210相互连接,例如,任意相邻的两个毫米波天线单元211之间通过至少一条第一连接线2210相互连接(直接的电性连接),此第一连接线2210用于阻隔前述任意相邻的两个毫米波天线单元211之间传输毫米波能量。本申请中的连接关系可以为电性连接或耦合。
此处,第一连接线2210的数量、线长和线宽,均可以根据实际需求选择设置。本公开实施例对此不做限定。第一连接线2210的线长是指在第一连接线2210延伸方向上的尺寸。第一连接线2210的线宽是指在垂直于第一连接线2210延伸方向上的尺寸。
此外,可选地,第一连接线2210可以采用导电网格层101中第一导线L1的平行线和/或第二导线L2的平行线构成。例如,第一连接线2210被构造为呈直线,第一连接线2210可以采用导电网格层101中第一导线L1的平行线或第二导线L2的平行线构成。例如,第一连接线2210被构造为呈折线,第一连接线2210可以采用导电网格层101中第一导线L1的平行线及相连的第二导线L2的平行线构成。如此,第一连接线2210的线宽可以与第一导线L1或第二导线L2的线宽相同,从而确保天线2制备工艺的成熟性、简易性与低成本。
需要说明,第一连接线2210被构造为的形状并不仅限于前述的直线或折线,还可以为其他形状,例如第一连接线2210被构造为呈弧线等。并且,第一连接线2210的线宽也并不仅限于与第一导线L1或第二导线L2的线宽相同,例如第一连接线2210的线宽还可以小于第一导线L1或第二导线L2的线宽。本公开实施例对此不做限定。
由于毫米波段的频率明显高于5G非毫米波段及5G之前世代(如:4G等)非毫米波段的频率,故毫米波段的趋肤深度(skin depth)则明显薄于前述非毫米波段的趋肤深度,故对于同一连接线(在 该连接线的厚度大于毫米波的趋肤深度的情况下),通常毫米波段的电阻值与电感值皆会高于非毫米波段的电阻值与电感值。并且在第一连接线2210具备相同线长(且其厚度大于毫米波的趋肤深度)的情况下,第一连接线2210的线宽越小,第一连接线2210的电感值(inductance)也会越高。因此,具有较小线宽的第一连接线2210对毫米波段的阻抗(impedance)明显高于其对5G非毫米波段及5G前世代非毫米波段的阻抗。亦即,具有较小线宽的第一连接线2210能对毫米波段的能量进行较好的滤波阻隔,但对5G非毫米波段及5G前世代非毫米波段的能量滤波阻隔则较少。如此,本公开实施例中,在复用构成非毫米波天线22或非毫米波天线22的第一部分221的至少两个毫米波天线单元211中,相邻两个毫米波天线单元211之间采用对毫米波段有较好滤波阻隔功能的第一连接线2210进行连接,则可确保相邻毫米波天线单元211在其各自工作频段内的天线性能,以减低因二者间的连接使天线性能受影响的程度。并且,该相邻两个毫米波天线单元211之间的第一连接线2210比较不会对非毫米波段的能量进行滤波阻隔,故将多个毫米波天线单元211相连后的连接结构复用为非毫米波天线22或非毫米波天线22的第一部分221,并不会影响非毫米波天线22的天线性能。
本公开实施例中,将至少两个毫米波天线单元211连接后的连接结构复用构成非毫米波天线22或非毫米波天线22的第一部分221,可以使得毫米波天线21或其部分还能够具备非毫米波天线22的功能。如此,有利于减少导电网格层101中导电网格切割区域的数量以及不同区域网格图案之间的差异,以确保显示屏100的视觉光学效果及触控效果。
并且,本公开实施例中的天线2采用如上结构,可以有效地减小天线2尺寸,即,小于前述一些实施例中各类屏上天线分立设置时的尺寸总和,并减低天线2对显示屏100视觉光学效果与触控效果的影响,以在增加显示屏100的功用与价值外,同时保障用户的视觉与触觉体验。
需要补充的是,在复用构成非毫米波天线22或非毫米波天线22的第一部分221的多个毫米波天线单元211中,任意相邻的两个毫米波天线单元211之间可以通过一条第一连接线2210相连,也可以通过并列的多条第一连接线2210相连,相邻两个毫米波天线单元211之间的第一连接线2210能有效阻隔毫米波的能量而不阻隔非毫米波的能量。
示例的,请参阅图6,毫米波天线单元211的轮廓为具有侧边的矩形或多边形。在复用构成非毫米波天线22或非毫米波天线22的第一部分221的多个毫米波天线单元211中,至少两个毫米波天线单元211通过多条第一连接线2210相互连接,例如,如图6所示,任意相邻的两个毫米波天线单元211之间通过多条第一连接线直接相连,且该多条第一连接线2210的线宽之和为第一尺寸,毫米波天线单元211与该多条第一连接线2210对应连接的侧边边长W为第二尺寸,则第一尺寸小于或等于第二尺寸的四分之一。
此处,毫米波天线单元211的轮廓可以被构造为呈多边形或其他形状,本公开实施例对此不作限定。在这种情况下,假定多条第一连接线2210的线宽之和为第一尺寸,毫米波天线单元211在第一连接线2210的线宽方向上的尺寸为第二尺寸,第一尺寸小于或等于第二尺寸的四分之一。具体的,如图6所示,在复用构成非毫米波天线22或非毫米波天线22的第一部分221的多个毫米波天线单元211中,任意相邻的两个毫米波天线单元211之间例如通过三条第一连接线2210相连。其中,每条第一连接线2210的线宽为D,则
Figure PCTCN2022088199-appb-000001
值得一提的是,在一些实施例中,请参阅图5~图8,非毫米波天线22包括第一部分221、第二部分222以及第二连接线2220。其中,第二连接线2220用于连接第一部分221和第二部分222。第二连接线2220可以用于阻隔毫米波天线单元211与非毫米波天线22的第二部分222之间传输毫米波能量。
此处,第二连接线2220的数量、线长和线宽,均可以根据实际需求选择设置。本公开实施例对此不做限定。可选地,第二连接线2220参照第一连接线2210的结构选择设置。
此外,在一种可能的实施方式中,非毫米波天线22的第二部分222可以与毫米波天线21相邻设置,但并不仅限于此。例如,非毫米波天线22的第二部分222还可以被构造为围绕毫米波天线21设置。
在此基础上,在复用构成非毫米波天线22的第一部分221的连接结构中,任意相邻的两个毫米波天线单元211之间通过至少一条第一连接线2210相连。非毫米波天线22的第二部分222通过第二连接线2220与前述连接结构中的任一毫米波天线单元211相连。
此处,按照非毫米波天线22的第二部分222结构及其延伸方向的不同,第二部分222与第一部分221之间的连接可以呈串联连接或并联连接。
本申请中,在复用连接结构构成非毫米波天线的第一部分的基础上,通过设置非毫米波天线22的第二部分222以及其第二部分222与第一部分221之间的相对位置关系和连接关系,可以合理控制非毫米波天线的工作频率及带宽。
在另一种可能的实施方式中,非毫米波天线22的第二部分222被构造为围绕毫米波天线21。在复用构成非毫米波天线22的第一部分221的连接结构中,各毫米波天线单元211分立设置,并分别通过第二连接线2220与非毫米波天线22的第二部分222相连。如此,非毫米波天线22的第二部分222与其第一部分221中的各毫米波天线单元211呈并联连接,可以使得非毫米波天线22具有多个不同的谐振路径,以具有多个不同的工作频段,从而实现非毫米波天线22的多频段通信。
此外,与将毫米波天线与非毫米波天线分立设置相比,本公开实施例中,非毫米波天线22包括相连的第一部分221和第二部分222,并且非毫米波天线22的第一部分221是复用毫米波天线单元211构成的,故可以减小非毫米波天线22中除了第一部分221中毫米波天线单元211以外其他组成部分的尺寸,例如减小非毫米波天线22的第二部分222的长度。亦即,在相同工作频率下,非毫米波天线22中复用构成第一部分221的毫米波天线单元211越多,则非毫米波天线22中除了第一部分221以外其他组成部分的长度就可以相对越短。从而有利于减少导电网格层101中用于形成非毫米波天线22的第二部分222的导电网格的切割长度,以进一步确保显示屏100的视觉光学效果及触控效果。
此外,在一些示例中,请参阅图4~图6,毫米波天线单元211可以为单极化毫米波天线单元。在另一些示例中,请参阅图7和图8,毫米波天线单元211可以为双极化毫米波天线单元。并且,可选地,请参阅图4~图8,按照导电网格层101中导电网格图案的不同,毫米波天线单元211的轮廓形状可以为矩形、菱形或X形等,非毫米波天线22的第二部分222的轮廓形状可以采用条形或L形等,但并不仅限于此。本公开实施例对毫米波天线单元211的轮廓形状及非毫米波天线22的第二部分222的轮廓形状不做限定,其均可以根据实际需求选择设置。
需要补充的是,请参阅图4~图8,在一些示例中,毫米波天线单元211包括辐射主体(即图4~图6中所示的矩形部分或图7中所示的菱形部分或图8中所示的X形部分)及毫米波馈入部(即图4~图8中所示的被配置为用于连接毫米波射频集成电路300的条状部分)。毫米波天线单元211中毫米波馈入部与对应辐射主体连接处的两侧凹入毫米波天线单元211的辐射主体设置,例如,如图4~图7所示,矩形的辐射主体与条状的馈入部相连接的侧边具有凹口,且凹口紧邻条状的馈入部设置在条状的馈入部的两侧。如此,有助于实现天线2更佳的阻抗匹配,而提升天线2的天线性能。
此外,请参阅图2和图4,在一些示例中,至少两个毫米波天线单元211相互连接形成连接结构,且该连接结构复用构成非毫米波天线22。如此,非毫米波天线22还包括与复用构成其的任一毫米波天线单元211连接的非毫米波馈入部(即被配置为用于连接非毫米波射频集成电路500的部分,例如非毫米波信号线Ln 1)。该非毫米波馈入部例如为与第一连接线2210采用相同结构的馈入导线。或者,该非毫米波馈入部例如包括导电网格层101中的部分网格图案以及与该部分网格图案相连的馈入导线,其中,该馈入导线可以与第一连接线2210采用相同结构并与对应的毫米波天线单元211连接,该网格图案被配置为用于连接非毫米波射频集成电路500。
请参阅图5~图8,在另一些示例中,至少两个毫米波天线单元211相互连接形成的连接结构,且该连接结构复用构成非毫米波天线22的第一部分221。并且,非毫米波天线22还包括与第一部分221相连接的第二部分222。如此,非毫米波天线22的第二部分222和第一部分221可以共用同一非毫米波馈入部,例如共用第二部分222的非毫米波馈入部(即第一部分221内无需再设置另一非毫米波馈入部)。第二部分222的非毫米波馈入部例如包括导电网格层101中的部分网格图案。第二部分222的非毫米波馈入部可以通过第二连接线2220与第一部分221中任一毫米波天线单元211连接。
由上,本公开实施例中,毫米波天线21的各毫米波天线单元211可以通过其毫米波馈入部分别与毫米波射频集成电路300相连接,以响应于毫米波射频集成电路300传输的毫米波射频信号实现毫米波天线功能。非毫米波天线22可以通过其非毫米波馈入部与非毫米波射频集成电路500相连接,以响应于非毫米波射频集成电路500传输的非毫米波射频信号实现非毫米波天线功能。
基于此,可以理解,毫米波射频集成电路300和非毫米波射频集成电路500可以分别电性绑定(bonding)于FPC(Flexible Printed Circuit,柔性电路板)200上,以通过FPC 200与集成于显示屏100中的天线2对应电性绑定。或者,毫米波射频集成电路300可以电性绑定于FPC 200上,非毫米波射频集成电路500可以电性绑定于PCB(Printed Circuit Board,印刷电路板)20上,且FPC 200分别与显示屏100中的天线2及PCB 20对应电性绑定。从而确保天线2中的毫米波天线21和非毫米波天线22均可以具有各自独立的通讯链路,且毫米波天线21和非毫米波天线22可以同时工作且较互不影响。
为进一步理解本申请,下述一些实施例中,对天线2的具体结构进行了详细说明,尤其是非毫米波天线22的具体结构。可以理解,按照非毫米波天线22的工作频率及带宽(即工作频段宽度)的不同,非毫米波天线22的结构可以有多种不同的实现方式。
在一种可能的实施方式中,复用构成非毫米波天线22的第一部分221的多个毫米波天线单元211之间呈串联连接。
在一些实施例中,请参阅图9~图13,非毫米波天线22的第二部分222位于毫米波天线21的一侧,非毫米波天线22的第二部分222与复用构成非毫米波天线22的第一部分221且距离该第二部分222最近的毫米波天线单元211相连。如此,非毫米波天线22的第二部分222与复用构成非毫米波天线22的第一部分221的毫米波天线单元211依次串联,可以共同构成非毫米波天线22。
示例的,非毫米波天线22的第二部分222可以采用轮廓形状为矩形或L型的导电网格构成。非毫米波天线22的第二部分222通过第二连接线2220与复用构成非毫米波天线22的第一部分221且距离该第二部分222最近的毫米波天线单元211相连。其中,作为一种实施方式,第二连接线2220可以与非毫米波天线22的第二部分222的端部(例如首段或尾段)相连,例如图9中所示。作为另一种实施方式,第二连接线2220可以与非毫米波天线22的第二部分222的中段相连,例如图10中所示。此处及以下的描述中,第二部分222的首段即为第二部分222的非毫米波馈入部。
在前述一些实施例的基础上,可选地,请参阅图11~图13,非毫米波天线22的第二部分222位于毫米波天线21的一侧。天线2还包括接地部23。接地部23可以与FPC 200中的接地线或接地面相连。接地部23具体可以采用如下一些方式实施。
在一些示例中,接地部23位于非毫米波天线22的第二部分222远离毫米波天线21的一侧并与该第二部分222相连。其中,作为一种实施方式,接地部23可以通过至少一条第二连接线2220与非毫米波天线22的第二部分222相连,例如图11中所示。作为另一种实施方式,接地部23可以与非毫米波天线22的第二部分222直接连接,(即接地部23可以与非毫米波天线22的第二部分222为一体结构),例如图12中所示。
此外,可选地,接地部23可以采用轮廓形状为矩形或L型的导电网格构成。接地部23可以与非毫米波天线22的第二部分222的端部(例如首段或尾段)或中段相连。并且,在一种实施方式,接地部23与非毫米波天线22的第二部分222可以具有相同的轮廓形状。
在另一些示例中,请参阅图13,接地部23位于毫米波天线21远离非毫米波天线22的第二部分222的一侧(例如,在图13中,接地部23与非毫米波天线22的第二部分222分别位于非毫米波天线22的第一部分221的两侧),并通过至少一条第二连接线2220与复用构成非毫米波天线22的第一部分221的多个毫米波天线单元211中的任一毫米波天线单元211相连。例如,接地部23通过一条第二连接线2220与复用构成非毫米波天线22的第一部分221且距离接地部23最近的毫米波天线单元211相连。如此,非毫米波天线22的第二部分222、第一部分221和接地部23依次串联,可以利用接地部23使得非毫米波天线22具有较长的长度,从而覆盖较低的天线工作频率。
在又一些示例中,请参阅图14,接地部23位于毫米波天线21与非毫米波天线22的第二部分222 之间,并通过第二连接线2210与非毫米波天线22的第一部分221中的任一毫米波天线单元211相连;例如与非毫米波天线22的第一部分221中距离接地部23最近的毫米波天线单元211相连。
可选地,非毫米波天线22的第二部分222被构造为围绕于对应的毫米波天线21,且通过至少一条第二连接线2220与复用构成非毫米波天线22的第一部分221的多个毫米波天线单元211中的任一毫米波天线单元211相连。非毫米波天线22的第二部分222的轮廓还可以采用矩形或L型以外的形状。
示例的,非毫米波天线22的第二部分222半包围对应的毫米波天线21。此处,半包围是指:非毫米波天线22的第二部分222在毫米波天线21的至少两侧上均有相对设置的部分。示例性地,如图14所示,非毫米波天线22的第二部分222围绕于对应的毫米波天线21的至少三侧。例如,非毫米波天线22的第二部分222包括首段2221、尾段2222和连接于首段2221和尾段2222之间的中段2223。其中,首段2221被配置为用于与非毫米波射频集成电路500连接,例如与FPC 200中的非毫米波传输线Ln 2连接。尾段2222通过第二连接线2220与复用构成非毫米波天线22的第一部分221且距离尾段2222最近的毫米波天线单元211相连。这样非毫米波天线22的第二部分222可以与复用构成非毫米波天线22的第一部分221串联连接,并在有限的空间范围内,确保采用该结构的非毫米波天线22可以具有较长的长度及较大的面积,以合理控制非毫米波天线22的工作频率和带宽。
在此基础上,请继续参阅图14,非毫米波天线22的第二部分222的首段2221和尾段2222分别位于毫米波天线21相对的两侧。接地部23位于非毫米波天线22的第二部分222的首段2221和毫米波天线21之间,并通过至少一条第二连接线2220与复用构成非毫米波天线22的第一部分221的多个毫米波天线单元211中的任一毫米波天线单元211相连,例如通过一条第二连接线2220与复用构成非毫米波天线22的第一部分221且距离接地部23最近的毫米波天线单元211相连。如此,可以在有限的空间范围内,通过设置接地部23具有不同的长度及面积,进一步控制非毫米波天线22的长度及面积,以调节非毫米波天线22的工作频率及带宽。
在又一些示例中,请参阅图3,包括至少两个非毫米波天线22,接地部23位于相邻的两个非毫米波天线22之间。如此,接地部23可以作为对应相邻两个非毫米波天线22之间的隔离部24,以有效避免相邻的非毫米波天线22之间发生互选干扰的情况。从而确保各非毫米波天线22均有较好的天线性能。
在前述一些实施例的基础上,可选地,请参阅图15,非毫米波天线22的第一部分221还包括延伸部2211。延伸部2211的一端与复用构成非毫米波天线22的第一部分221的多个毫米波天线单元211中的任一毫米波天线单元211相连,延伸部2211的另一端悬置。
上述延伸部2211具体可以采用如下一些方式实施。
在一些示例中,请继续参阅图15,非毫米波天线22的第二部分222位于毫米波天线21的一侧。延伸部2211位于毫米波天线21远离非毫米波天线22的第二部分22的一侧,并与复用构成非毫米波天线22的第一部分221的多个毫米波天线单元211中的任一毫米波天线单元211相连。例如,延伸部2211与复用构成非毫米波天线22的第一部分221且距离延伸部2211最近的毫米波天线单元211直接相连。在图15所示的示例中,延伸部2211的一端与非毫米波天线22的第一部分221最远离非毫米波天线22的第二部分222一侧的毫米波天线单元211相连。
在又一些示例中,请参阅图16和图17,非毫米波天线22的第二部分222被构造为围绕于对应的毫米波天线21,且通过至少一条第二连接线2220与复用构成非毫米波天线22的第一部分221的多个毫米波天线单元211中的任一毫米波天线单元211相连。
可选地,如图16中所示,非毫米波天线22的第二部分222包括首段2221、尾段2222和连接于首段2221和尾段2222之间的中段2223。其中,首段2221被配置为用于与非毫米波射频集成电路500连接,例如与FPC 200中的非毫米波传输线Ln 2连接。尾段2222与复用构成非毫米波天线22的第一部分221且距离尾段2222最近的毫米波天线单元211相连。这样非毫米波天线22的第二部分222可以与复用构成非毫米波天线22的第一部分221串联连接,并在有限的空间范围内,确保采用该结构的非毫米波天线22可以具有较长的长度及较大的面积,以合理控制非毫米波天线22的工作频率和带宽。
在此基础上,请参阅图17,非毫米波天线22的第二部分222的首段2221和尾段2222分别位于毫 米波天线21的两侧。延伸部2211位于非毫米波天线22的第二部分222的首段2221和毫米波天线21之间,并与复用构成非毫米波天线22的第一部分221的多个毫米波天线单元211中的任一毫米波天线单元211相连。例如,延伸部2211与复用构成非毫米波天线22的第一部分221且距离延伸部2211最近的毫米波天线单元211直接相连。
可选地,上述延伸部2211可以采用一端悬置的至少一条第一连接线2210构成。如此,可以通过设置延伸部2211具有不同的长度,以使非毫米波天线22的第一部分221具有不同的长度,从而控制非毫米波天线22的第一部分221的工作频率。例如,非毫米波天线22的第一部分221的长度越长,其可覆盖的工作频率越低。此外,延伸部2211亦有助阻抗的优化,而提升天线性能。
需要补充的是,在多个毫米波天线单元211之间呈串联连接,以复用构成非毫米波天线22的第一部分221的一些实施例中,非毫米波天线22中的第二部分222还可以具有上述一些实施例以外的设置。
示例地,请参阅图18,非毫米波天线22的第二部分222包括首段2221、尾段2222和连接于首段2221和尾段2222之间的中段2223。其中,首段2221与复用构成非毫米波天线22的第一部分221的多个毫米波天线单元211中的任一毫米波天线单元211相连,并被配置为用于与非毫米波射频集成电路500连接,例如与FPC 200中的非毫米波传输线Ln 2连接。尾段2222位于首段2221远离毫米波天线21的一侧。例如,毫米波天线21位于非毫米波天线22的第二部分222的右侧,非毫米波天线22的第二部分222向左侧延伸。如此,非毫米波天线22的第二部分222与其第一部分221呈并联连接,可以增多非毫米波天线22的谐振路径,以增强非毫米波天线22的天线性能,例如使非毫米波天线22能够覆盖更多的工作频段。
示例的,请参阅图19和图20,非毫米波天线22还包括第二部分222以及多条第二连接线2210。图19中,毫米波天线单元211为单极化毫米波天线单元。图20中,毫米波天线单元211为双极化毫米波天线单元。非毫米波天线22的第二部分222被构造为围绕于对应的毫米波天线21。其中,复用构成非毫米波天线22的第一部分221的多个毫米波天线单元211中的任意相邻的两个毫米波天线单元211之间通过至少一条第一连接线2210相连,该第一连接线2210用于阻隔该任意相邻的两个毫米波天线单元211之间传输毫米波能量。并且,非毫米波天线22的第二部分222包括被配置为与非毫米波射频集成电路500连接的首段2221;复用构成非毫米波天线22的第一部分221且距离前述首段2221最近的毫米波天线单元211可以通过至少一条第二连接线2220(例如一条第二连接线2220)与该首段2221相连,该第二连接线2220用于阻隔毫米波天线单元211与非毫米波天线22的第二部分222之间传输毫米波能量。并且,非毫米波天线22的第一部分221和第二部分222具有相同的延伸方向,例如以第一部分221和第二部分222连接的部分为基点,二者均从左向右延伸,以呈并联连接。如此,非毫米波天线22可以具有不同的谐振路径,以具有不同的工作频段,从而实现非毫米波天线22的多频段通信。
在前述一些实施例的基础上,可选地,请参阅图21,天线2包括至少两个非毫米波天线22。基于此,不同非毫米波天线22中的第二部分22的结构可以相同或不同。这样可以复用同一毫米波天线21中的不同毫米波天线单元211,形成两个及以上的非毫米波天线22或形成两个或更多个的非毫米波天线22中的第一部分221。
例如,非毫米波天线22的数量为两个,且两个非毫米波天线22呈镜像设置。
例如,如图21中所示,不同非毫米波天线22中的第二部分222的结构可以不同。例如通过设置非毫米波天线22的第二部分222具有不同的轮廓形状及延伸长度,可以控制非毫米波天线22具有不同的工作频率及带宽。也即,天线2中可以同时具有至少两种不同类型的非毫米波天线22。
此外,请参阅图19~图22,可选地,毫米波天线单元211的轮廓形状可以为矩形、菱形或X形等。如此,通过设置毫米波天线单元211具有不同的轮廓形状,也可以对应控制其复用构成的非毫米波天线22的第一部分221具有不同的工作频段。例如,毫米波天线单元211的面积越大,往往可以使其复用构成的非毫米波天线22的第一部分221的工作频段越低或带宽越宽。
此外,可选地,请参阅图23,在多个非毫米波天线22中,至少一个非毫米波天线22还与接地部23相连接。接地部23可以与FPC 200中的接地线或接地面相连。接地部23的设置可以参见前述一些 实施例中的相关记载,此处不再详述。
值得一提的是,在一些实施例中,请参阅24~图26,天线2包括至少两个非毫米波天线22。天线2还包括位于任相邻两个非毫米波天线22之间的隔离部24。如此,可以利用隔离部24有效隔离相邻的非毫米波天线22,以减少相邻的非毫米波天线22之间相互耦合的程度及受电子噪声影响的程度,从而确保各非毫米波天线22均具有较好的天线性能及达更好的无线通信品质。
可选地,如图24中所示,隔离部24被配置为与显示装置10中的接地区连接。例如,隔离部24可以与FPC 200中的接地线或接地面相连。
可选地,请参阅图25和图26,隔离部24与相邻的两个非毫米波天线22分别相连。例如,天线2还包括第三连接线2230。隔离部24通过至少一条第三连接线2230与相邻非毫米波天线22中距离其最近的毫米波天线单元211相连。图25中,毫米波天线单元211为双极化毫米波天线单元。图26中,毫米波天线单元211为单极化毫米波天线单元。
此处,第三连接线2230的数量、线长和线宽,均可以根据实际需求选择设置。本公开实施例对此不做限定。可选地,第三连接线2230参照第一连接线2210的结构选择设置。
可选地,隔离部24可以采用轮廓形状为矩形的导电网格构成。
需要补充的是,在另一种可能的实施方式中,复用构成非毫米波天线22的第一部分221的多个毫米波天线单元211之间还可以并联连接。
示例的,请参阅图27和图28,非毫米波天线22还包括第二部分222以及多条第二连接线2220。复用构成非毫米波天线22的第一部分221的多个毫米波天线单元211中的各毫米波天线单元211分别通过至少一条第二连接线2220与非毫米波天线22的第二部分222相连,例如通过一条第二连接线2220与非毫米波天线22的第二部分222相连。如此,非毫米波天线22可以具有多个不同的谐振路径,以具有多个不同的工作频段,从而实现非毫米波天线22的多频段通信。示例的,非毫米波天线22的第二部分222被构造为围绕于对应的毫米波天线21。图25中,毫米波天线单元211为单极化毫米波天线单元。图26中,毫米波天线单元211为双极化毫米波天线单元,双极化可增强无线通信信号的收发能力(如可达多输入多输出,即实现MIMO的操作;或减少无线通信的断线率及无线通信盲区),以提升无线通讯品质与用户无线体验。
此外,需要说明的是,在该实施方式中,前述一些实施例中提及的接地部23、延伸部2211和隔离部24的相关设置,也均可匹配适用于该实施方式的天线2中,此处不做赘述。
由上,本公开实施例中,在复用毫米波天线单元211以形成非毫米波天线22的第一部分221的基础上,通过设置非毫米波天线22的第二部分222、非毫米波天线22的第一部分221中的延伸部2211及接地部23等天线2各组成部分的轮廓形状及平面面积,可以合理控制非毫米波天线22的工作频率及带宽。例如,可以使得非毫米波天线22的工作频段覆盖低频频段、中频频段或高频频段等,以及使得非毫米波天线22的带宽较宽。从而确保非毫米波天线22具有可满足使用需求的天线性能,以提升产品竞争力与用户无线体验。
本公开实施例还提供了一种显示装置10。请参阅图29,显示装置10包括:如上一些实施例所述的集成天线2的显示屏100。天线2的结构如前一些实施例中所述。显示屏100包括显示面板110,天线2可以集成于显示面板110中或集成于显示面板110上。
在一些实施例中,如图29中所示,显示屏100包括导电网格层101,导电网格层101设置于显示面板110的显示侧。显示面板110的显示侧是指显示面板110的出光侧,也即显示面板110用于显示图像的一侧。
可选地,显示面板110可以为柔性显示面板,例如为OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板、QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)显示面板或LED(Light-Emitting Diode,发光二极管)显示面板等。但并不仅限于此,例如显示面板110还可以为液晶显示面板等。
可选地,导电网格层101可以采用导电材料图形化形成。导电网格层101例如为金属网格层或透明导电材料网格层。金属网格层可以采用电学性能良好的金属形成,例如铜、银、金、镍或钛等金属 单质或其合金。透明导电材料网格层可以采用可见光透过率较高且导电能力强的透明导电材料形成,例如氧化铟锡(ITO)、氧化锌(ZnO)、氧化镉锡(CTO)、氧化铟(InO)、铟(In)掺杂氧化锌(ZnO)、铝(Al)掺杂氧化锌(ZnO)、或镓(Ga)掺杂氧化锌(ZnO)等。
可选地,导电网格层101的厚度可以根据实际需求选择设置。导电网格层101的厚度范围可以为100nm~1μm,例如为100nm、200nm、500nm、800nm或1μm。
可选地,导电网格层101设置于显示面板110的显示侧,具体到实施方式中可以为:导电网格层101直接设置于显示面板110的表面;或者,设置于显示屏100中位于显示面板110的显示侧的其他结构上。示例地,请参阅图30,显示屏100还包括设置于显示面板110的显示侧的盖板120,导电网格层101设置于盖板120的一侧表面上。例如图30中的(a)图所示,导电网格层101设置于盖板120靠近显示面板110的表面上。或者,还例如图30中的(b)图所示,导电网格层101设置于盖板120远离显示面板110的表面上。
此外,可选地,导电网格层101可以在显示面板110的显示侧制备形成,也可以在独立制备好后再贴合于显示面板110的显示侧。本公开实施例对导电网格层101的制备工艺不做限定。
上述导电网格层101在显示屏100中的具体位置,可以根据实际需求选择设置,以导电网格层101在显示面板110上的正投影至少全覆盖显示面板110的显示区为限。如此,由导电网格层101中的至少部分图案构成的天线2在显示面板110上的正投影会位于显示区AA内。显示屏100中的天线2可较不易受使用时(如:手握或置放于金属桌)的遮挡,而出现天线2性能显著劣化且影响用户无线体验的问题,即能确保天线2的通信性能。
可选地,请参阅图31,显示屏100为触控屏,显示屏100包括触控层102。触控层102用于执行触控操作,例如可以由触控电极及金属桥接线交错连接构成。本公开实施例对触控层102的具体结构不做限定。例如,触控层102可以设置于显示面板110显示侧的表面上,也可以集成于显示面板110中。在一种实施方式中,如图31中的(a)图所示,导电网格层101设置于显示面板110的显示侧,而触控层102集成于显示面板110中。在另一种实施方式中,如图31中的(b)图所示,导电网格层101设置于显示面板110的显示侧,导电网格层101可以被配置为触控层102;即触控层102设置于显示面板110的显示侧,且导电网格层101与触控层102为同一层。在又一种实施方式中,请参阅图31中的(c)图,导电网格层101独立于触控层102,且导电网格层101和触控层102均设置于显示面板110的显示侧。例如,导电网格层101设置于触控层102背离显示面板110的一侧并与触控层102彼此绝缘,或者导电网格层101设置于触控层102和显示面板110之间并与触控层102彼此绝缘。
在一个示例中,请参阅图31中的(c)图,导电网格层101设置于触控层102背离显示面板110的一侧,即触控层102的上方。导电网格层101和触控层102之间设置有绝缘层1011,以确保导电网格层101与触控层102的电性互不影响。
在一个示例中,请参阅图31中的(b)图,导电网格层101被配置为触控层102。天线2可以由触控层102中位于触控盲区的部分图案构成。也即,可以切割触控层102中位于触控盲区的至少部分图案作为天线2使用。此处,触控盲区是指无触控功能的区域。如此,还利于减少触控层102中导电网格切割区域的数量以及不同区域网格图案之间的差异,以确保触控屏的视觉光学效果及触控效果。
在另一些实施例中,如图32中所示,显示屏100包括导电网格层101,导电网格层101集成于显示面板110中。可以理解,显示面板110中通常设置有至少一层导电层,该导电层例如为金属导电层或透明导电层,该导电层例如为阵列金属层、走线层、电极层(阴极、阳极)等。示例性地,该导电层例如为透明、实心的导电性片状结构。天线2可以利用显示面板110中的任一导电层的部分图案(例如网格图案)形成,以实现天线2在显示面板110中的集成。
为了更清楚地说明本公开实施例,以下以天线2设置于显示面板110的显示侧为例,对显示装置10的结构进行详述。
请参阅图33,在一些实施例中,显示装置10还包括FPC(Flexible Printed Circuit,柔性电路板)200。FPC 200可以与显示面板110电性绑定,以实现显示面板110中信号线与外置(如电子设备1中)PCB(Printed Circuit Board,印刷电路板)20的连接。PCB 20可以安装于电子设备1的壳体内。此外, FPC 200还可以与天线2电性绑定,以实现天线2与毫米波射频集成电路(mm-wave RFIC)300及非毫米波射频集成电路500的连接。
可以理解,显示装置10的显示屏100中集成有天线2,天线2包括毫米波天线21和非毫米波天线22。相应的,显示装置10还包括:用于与毫米波天线21中各毫米波天线单元211分别连接的毫米波射频集成电路300,以及用于与非毫米波天线22连接的非毫米波射频集成电路500。毫米波射频集成电路300及非毫米波射频集成电路500均可以电性绑定于FPC 200上,或者择一电性绑定于FPC 200,并择一电性绑定于外置的PCB 20上等。
在一种实施方式中,请继续参阅图33,显示装置10还包括分别绑定于FPC 200上的毫米波射频集成电路300和连接座400。其中,毫米波射频集成电路300可以通过FPC 200中的电路与毫米波天线单元211对应连接。连接座400可以通过FPC 200中的电路与非毫米波天线22对应连接。连接座400还可以通过FPC 200中的通孔与毫米波射频集成电路300直接连接,或者通过FPC 200中的电路与毫米波射频集成电路300相连。
并且,连接座400用于连接外置的PCB 20,可以作为FPC 200与PCB 20之间的连接枢纽。如此,连接座400可以用于实现毫米波射频集成电路300与PCB 20之间的连接。此外,非毫米波射频集成电路500可以设置于PCB 20中,连接座400还可以用于实现非毫米波天线22与非毫米波射频集成电路500之间的连接。
请结合图29、图33和图34理解,在一些示例中,天线2位于显示屏100的显示区AA内,但并不仅限于此。例如,天线2也可以设置于显示屏100的周边区。并且,毫米波天线21中的各毫米波天线单元211可以分别通过其毫米波馈入部(例如毫米波信号线Lm 1)引出至周边区,并与FPC 200电性绑定。非毫米波天线22可以通过其非毫米波馈入部(例如非毫米波信号线Ln 1)引出至周边区,并与FPC 200电性绑定。
此处,周边区是指:显示屏10中位于显示区AA外围的区域。毫米波信号线Lm 1和非毫米波信号线Ln 1可以为单条导线或者为网格线(即由导电网格层101的部分网格图案构成)。
请参阅图33和图34,其中,图34为图33所示的显示装置中一种FPC沿B-B’向的剖面示意图。可选地,FPC 200内分别设置有与毫米波信号线Lm 1对应相连的毫米波传输线Lm 2,以及与非毫米波信号线Ln 1对应相连的非毫米波传输线Ln 2。可以理解,天线2由导电网格层101的部分图案构成。导电网格层101的厚度可以与FPC 200中毫米波传输线Lm 2及非毫米波传输线Ln 2的厚度相同或不同。导电网格层101中第一导线L1的平行线(包括第一导线L1)和第二导线L2的平行线(包括第二导线L2)的线宽,可以与FPC 200中毫米波传输线Lm 2及非毫米波传输线Ln 2的线宽相同或不同。
基于此,毫米波射频集成电路300可以采用COF(Chip On Film,覆晶薄膜)的方式绑定于FPC 200上,或者通过导体600与FPC 200内对应的毫米波传输线Lm 2连接。连接座400可以通过导体600与FPC 200内对应的非毫米波传输线Ln 2连接,以及通过导体600与FPC 200内连接毫米波射频集成电路300的引出电路电性连接。导体600例如为焊球或焊盘等。如此,本公开实施例中,毫米波天线21可以通过FPC 200与毫米波射频集成电路300连接。毫米波射频集成电路300可以通过FPC 200与连接座400连接,进而通过连接座400与PCB20连接。非毫米波天线22可以通过FPC 200与连接座400连接,进而通过连接座400与非毫米波射频集成电路500连接。
在另一种实施方式中,请参阅图35,显示装置10还包括分别设置于FPC 200上的毫米波射频集成电路300和非毫米波射频集成电路500。其中,毫米波射频集成电路300通过FPC 200中的电路与毫米波天线单元211对应连接。非毫米波射频集成电路500通过FPC 200中的电路与非毫米波天线22对应连接。在此基础上,可选地,显示装置10还包括绑定于FPC 200上的连接座400,连接座400用于连接外置的PCB 20,可以作为FPC 200与PCB 20之间的连接枢纽。如此,连接座400还可以用于实现毫米波射频集成电路300、非毫米波射频集成电路500二者与PCB 20之间的连接。
基于此,毫米波射频集成电路300可以采用COF(即覆晶薄膜)的方式绑定于FPC 200上,或者通过导体600与FPC 200内对应的毫米波传输线Lm 2连接。非毫米波射频集成电路500可以采用COF(即覆晶薄膜)的方式绑定于FPC 200上,或者通过导体600与FPC 200内对应的非毫米波传输线Ln 2 连接。连接座400可以通过导体600与FPC 200内连接毫米波射频集成电路300的引出电路以及连接非毫米波射频集成电路500的引出电路分别连接。导体600例如为焊球或焊盘等。如此,本公开实施例中,毫米波天线21可以通过FPC 200与毫米波射频集成电路300连接,非毫米波天线22可以通过FPC 200与非毫米波射频集成电路500连接。毫米波射频集成电路300和非毫米波射频集成电路500可以分别通过FPC 200与连接座400连接,进而通过连接座400与PCB 20连接。
由上,天线2中的毫米波天线21和非毫米波天线22均可以具有各自独立的通讯链路,毫米波天线21和非毫米波天线22可以同时工作且较互不影响。
需要说明的是,毫米波射频集成电路300中的器件可滤波阻挡非毫米波段的能量,故,毫米波射频集成电路300与复用毫米波天线单元211而构成的非毫米波天线22或非毫米波天线22的第一部分221存在连接,也不影响非毫米波天线22的性能及毫米波射频集成电路300的性能。
此外,在天线2位于显示屏100的显示区AA内的示例中,可选地,毫米波天线21中的各毫米波天线单元211还可以延伸至显示屏100的周边区,以与FPC 200直接电性绑定。非毫米波天线22中的第二部分222还可以延伸至显示屏100的周边区,以与FPC 200直接电性绑定。本公开实施例对此不做限定。
可选地,FPC 200也可以替换为其他能够承载毫米波传输线Lm 2及非毫米波传输线Ln 2的载体。
本公开实施例中,毫米波天线21和非毫米波天线22可以共用同一FPC 200,以减少显示装置10中FPC的总数量及降低显示装置10的组装复杂度,从而有利于提高显示装置10的生产效率并降低显示装置10的生产成本。
本公开实施例还提供了一种电子设备1,包括上述一些实施例中的显示装置10。显示装置10的结构可参见前述一些实施例中的相关记载,此处不再详述。
可选地,电子设备1还包括与显示装置10连接的PCB20。此外,可选地,PCB20中还可以设置有中频器件及基带平台等类的功能器件,以满足天线2的使用需求。
需要补充的是,在一些实施例中,请参阅图36和图37,电子设备1还包括非毫米波调谐器件30,以用于调谐非毫米波天线22。
可选地,如图36中所示,非毫米波调谐器件30设置于显示装置10的FPC 200上,以通过FPC 200与非毫米波天线22相连接。
可选地,如图37中所示,非毫米波调谐器件30设置于PCB 20上。FPC 200上电性绑定的连接座400与PCB 20电性绑定。如此,非毫米波调谐器件30可以通过FPC 200与非毫米波天线22相连接。
此外,非毫米波调谐器件30可以采用电性可调器件构成,例如采用可变电容、可变电感或开关器件等器件构成。
由上,结合前述一些实施例中非毫米波天线22通讯链路的相关说明,非毫米波调谐器件30可以与非毫米波天线22实现连接(包括串联或并联),以对非毫米波天线22进行调谐,从而重构非毫米波天线22的天线性能。
本公开实施例中,电子设备1及显示装置10所能实现的有益效果,与上述一些实施例提供的集成天线2的显示屏100所能达到的有益效果相同,在此不做赘述。
本公开一些实施例提供的上述电子设备1可以是应用于显示领域,不论是运动(例如,视频)的还是固定(例如,静止图像)的,且不论是文字还是图画的图像的任何具备无线通信的装置。更明确地说,预期所述实施例可实施在多种无线通信显示装置中。
本公开一些实施例提供的上述电子设备1包括但不限于移动电话、无线装置、个人数据助理(Portable Android Device,缩写为PAD)、手持式或便携式计算机、GPS(Global Positioning System,全球定位系统)接收器/导航器、相机、MP4(全称为MPEG-4 Part 14)视频播放器、摄像机、电视监视器、平板显示器、计算机监视器、美学结构(例如,对于显示一件珠宝的图像的显示器)等具备无线通信及显示性能的设备。
在使用本文中描述的“包括”、“具有”、和“包含”的情况下,除非使用了明确的限定用语,例如“仅”、“由……组成”等,否则还可以添加另一部件。除非相反地提及,否则单数形式的术语可以包括复数形 式,并不能理解为其数量为一个。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

Claims (21)

  1. 一种集成天线的显示屏,其中,所述天线包括毫米波天线;
    所述毫米波天线包括多个毫米波天线单元;
    其中,至少两个所述毫米波天线单元相互连接形成连接结构,所述连接结构至少复用构成非毫米波天线的第一部分。
  2. 根据权利要求1所述的显示屏,其中,所述显示屏还包括导电网格层,所述天线由所述导电网格层的至少部分图案构成;所述毫米波天线单元包括:由多条沿第一方向延伸的第一导线和多条沿第二方向延伸的第二导线交叉形成的导电网格。
  3. 根据权利要求2所述的显示屏,其中,所述第一方向和所述第二方向相交。
  4. 根据权利要求2所述的显示屏,其中,所述导电网格层被配置为所述显示屏的触控层;所述天线由所述触控层中的至少部分图案构成。
  5. 根据权利要求2所述的显示屏,其中,所述非毫米波天线还包括至少一条第一连接线;
    所述连接结构中至少两个所述毫米波天线单元通过至少一条所述第一连接线相互连接。
  6. 根据权利要求5所述的显示屏,其中,所述第一连接线的线宽小于或等于所述第一导线或所述第二导线的线宽。
  7. 根据权利要求5所述的显示屏,其中,所述连接结构中至少两个所述毫米波天线单元通过多条所述第一连接线相互连接,且该多条所述第一连接线的线宽之和为第一尺寸,所述毫米波天线单元与该多条所述第一连接线对应连接的侧边边长为第二尺寸,所述第一尺寸小于或等于所述第二尺寸的四分之一。
  8. 根据权利要求1所述的显示屏,其中,所述非毫米波天线还包括第二部分、第一连接线及第二连接线;其中,所述第二部分与所述毫米波天线相邻;
    所述连接结构中至少两个所述毫米波天线单元通过至少一条所述第一连接线相互连接;所述第二部分通过所述第二连接线与所述连接结构中的任一所述毫米波天线单元相连;
    或者,所述连接结构中的各所述毫米波天线单元分立设置,并分别通过所述第二连接线与所述第二部分相连。
  9. 根据权利要求8所述的显示屏,其中,所述第一连接线用于阻隔所述毫米波天线单元之间传输毫米波能量,所述第二连接线用于阻隔所述毫米波天线单元与所述非毫米波天线的第二部分之间传输毫米波能量。
  10. 根据权利要求8所述的显示屏,其中,所述第二部分位于所述毫米波天线的一侧,或所述第二部分被构造为围绕所述毫米波天线。
  11. 根据权利要求8所述的显示屏,其中,所述天线还包括接地部;
    所述接地部位于所述第二部分远离所述毫米波天线的一侧并与所述第二部分相连;
    或者,所述接地部位于所述毫米波天线远离所述第二部分的一侧,并通过所述第二连接线与所述连接结构中任一所述毫米波天线单元相连;
    或者,所述接地部位于所述毫米波天线与所述第二部分之间,并通过所述第二连接线与所述连接结构中的任一所述毫米波天线单元相连;
    或者,所述非毫米波天线包括至少两个,所述接地部位于相邻的两个所述非毫米波天线之间。
  12. 根据权利要求8所述的显示屏,其中,所述第一部分还包括延伸部;所述延伸部位于所述毫米波天线远离所述第二部分的一侧,或者,所述延伸部位于所述第二部分与所述毫米波天线之间。
  13. 根据权利要求12所述的显示屏,其中,所述延伸部的一端与所述连接结构中任一所述毫米波天线单元相连,所述延伸部的另一端悬置。
  14. 根据权利要求12所述的显示屏,其中,所述延伸部由一端悬置的至少一条所述第一连接线构成。
  15. 根据权利要求8所述的显示屏,其中,所述第二部分包括首段、尾段和连接于所述首段和所述尾段之间的中段;所述首段被配置为用于与非毫米波射频集成电路连接;其中,
    所述首段与所述连接结构中的任一所述毫米波天线单元相连;或者
    所述首段和所述尾段分别位于所述毫米波天线的两侧,所述尾段与所述连接结构中距离该所述尾段最近的所述毫米波天线单元相连。
  16. 根据权利要求8所述的显示屏,其中,所述非毫米波天线包括至少两个;其中,不同所述非毫米波天线中的所述第二部分的结构不同。
  17. 根据权利要求1所述的显示屏,其中,所述非毫米波天线包括至少两个;所述天线还包括:位于任意相邻的两个所述非毫米波天线之间的隔离部。
  18. 根据权利要求18所述的显示屏,其特征在于,所述隔离部与相邻的两个所述非毫米波天线分别相连。
  19. 根据权利要求17所述的显示屏,其中,所述天线还包括第三连接线;所述隔离部通过所述第三连接线与相邻所述非毫米波天线中距离该所述隔离部最近的所述毫米波天线单元相连。
  20. 一种显示装置,其中,包括:如权利要求1~19中任一项所述的集成天线的显示屏;
    所述显示装置还包括柔性电路板以及设置于所述柔性电路板上的毫米波射频集成电路和连接座;其中,所述毫米波射频集成电路通过所述柔性电路板与所述毫米波天线单元及所述连接座相连;所述连接座通过所述柔性电路板与所述非毫米波天线相连,且被配置为与非毫米波射频集成电路连接;或者
    所述显示装置还包括柔性电路板以及分别设置于所述柔性电路板上的毫米波射频集成电路和非毫米波射频集成电路;其中,所述毫米波射频集成电路通过所述柔性电路板与所述毫米波天线单元相连;所述非毫米波射频集成电路通过所述柔性电路板与所述非毫米波天线相连。
  21. 一种电子设备,包括:如权利要求20所述的显示装置;
    所述电子设备还包括用于调谐所述非毫米波天线的非毫米波调谐器件;其中,
    所述非毫米波调谐器件设置于所述柔性电路板上;或者
    所述电子设备还包括与所述柔性电路板连接的印刷电路板,所述非毫米波调谐器件设置于所述印刷电路板上。
PCT/CN2022/088199 2022-02-15 2022-04-21 集成天线的显示屏、显示装置和电子设备 WO2023155292A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22741146.9A EP4254669B1 (en) 2022-02-15 2022-04-21 Display screen into which antenna is integrated, and display apparatus and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210135134.9 2022-02-15
CN202210135134.9A CN114204286B (zh) 2022-02-15 2022-02-15 集成天线的显示屏、显示装置和电子设备

Publications (1)

Publication Number Publication Date
WO2023155292A1 true WO2023155292A1 (zh) 2023-08-24

Family

ID=80659036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088199 WO2023155292A1 (zh) 2022-02-15 2022-04-21 集成天线的显示屏、显示装置和电子设备

Country Status (7)

Country Link
US (1) US11456522B2 (zh)
EP (1) EP4254669B1 (zh)
JP (1) JP7246549B2 (zh)
KR (1) KR102484358B1 (zh)
CN (1) CN114204286B (zh)
TW (1) TWI775718B (zh)
WO (1) WO2023155292A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114204286B (zh) * 2022-02-15 2022-05-13 云谷(固安)科技有限公司 集成天线的显示屏、显示装置和电子设备
CN114530694B (zh) * 2022-04-24 2022-07-05 云谷(固安)科技有限公司 无线通信结构、显示面板和无线通信装置
CN114530693B (zh) * 2022-04-24 2022-08-12 云谷(固安)科技有限公司 无线通信结构、显示面板和无线通信设备
WO2024087018A1 (zh) * 2022-10-25 2024-05-02 京东方科技集团股份有限公司 毫米波天线及其制作方法、电子设备及其驱动方法
WO2024174199A1 (zh) * 2023-02-24 2024-08-29 京东方科技集团股份有限公司 一种毫米波天线、电子设备及其驱动方法
KR20240052983A (ko) 2023-06-13 2024-04-23 윤구(구안) 테크놀로지 컴퍼니 리미티드 디스플레이 패널 어셈블리, 다기능 어셈블리, 송수신 어셈블리 및 무선 통신 장비
CN116632506B (zh) * 2023-06-13 2024-01-19 云谷(固安)科技有限公司 显示面板、无线通信装置及多功能组件
CN116526136B (zh) * 2023-06-13 2024-01-30 云谷(固安)科技有限公司 显示面板组件、多功能组件、收发组件及无线通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180017667A (ko) * 2016-08-10 2018-02-21 삼성전자주식회사 안테나 장치 및 이를 포함하는 전자 장치
CN109728414A (zh) * 2018-12-28 2019-05-07 维沃移动通信有限公司 一种天线结构及终端设备
CN111755813A (zh) * 2019-03-29 2020-10-09 东友精细化工有限公司 一种天线结构
CN111799543A (zh) * 2019-04-02 2020-10-20 东友精细化工有限公司 天线装置及包含其的显示装置
CN114204286A (zh) * 2022-02-15 2022-03-18 云谷(固安)科技有限公司 集成天线的显示屏、显示装置和电子设备

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648934B2 (ja) * 2013-03-12 2015-01-07 大日本印刷株式会社 導電性メッシュ、導電性メッシュシート、タッチパネル装置および画像表示装置
WO2015133842A1 (en) * 2014-03-05 2015-09-11 Samsung Electronics Co., Ltd. Antenna device and electronic device having the antenna device
JP6421077B2 (ja) 2015-05-19 2018-11-07 富士フイルム株式会社 アンテナの製造方法およびタッチセンサ
KR102482836B1 (ko) * 2016-01-07 2022-12-29 삼성전자주식회사 안테나 장치를 구비하는 전자 장치
US10777895B2 (en) 2017-07-14 2020-09-15 Apple Inc. Millimeter wave patch antennas
US11050138B2 (en) * 2018-07-12 2021-06-29 Futurewei Technologies, Inc. Combo sub 6GHz and mmWave antenna system
KR102147439B1 (ko) * 2018-10-17 2020-08-24 동우 화인켐 주식회사 안테나-데코 필름 적층체 및 이를 포함하는 디스플레이 장치
CN111614801A (zh) * 2019-02-25 2020-09-01 Oppo广东移动通信有限公司 显示屏组件和电子设备
CN111725605B (zh) 2019-03-20 2022-03-15 Oppo广东移动通信有限公司 毫米波模组和电子设备
KR102348470B1 (ko) * 2019-04-04 2022-01-06 동우 화인켐 주식회사 안테나 소자 및 이를 포함하는 디스플레이 장치
CN210270841U (zh) * 2019-08-05 2020-04-07 维沃移动通信有限公司 一种显示面板和终端设备
CN110534924B (zh) 2019-08-16 2021-09-10 维沃移动通信有限公司 天线模组和电子设备
KR102258794B1 (ko) * 2019-12-13 2021-05-28 동우 화인켐 주식회사 안테나 소자 및 이를 포함하는 디스플레이 장치
KR102413194B1 (ko) 2020-02-14 2022-06-23 동우 화인켐 주식회사 안테나 삽입 전극 구조체 및 이를 포함하는 화상 표시 장치
KR20210103734A (ko) * 2020-02-14 2021-08-24 동우 화인켐 주식회사 안테나 삽입 전극 구조체 및 이를 포함하는 화상 표시 장치
KR102327554B1 (ko) 2020-02-25 2021-11-16 동우 화인켐 주식회사 안테나 삽입 전극 구조체 및 이를 포함하는 화상 표시 장치
KR20210115418A (ko) * 2020-03-13 2021-09-27 동우 화인켐 주식회사 안테나 장치 및 이를 포함하는 디스플레이 장치
CN111430942B (zh) 2020-04-01 2021-06-29 深圳市睿德通讯科技有限公司 一种毫米波与非毫米波天线整合模块
CN111430443A (zh) 2020-04-29 2020-07-17 武汉华星光电半导体显示技术有限公司 一种有机发光显示器及其制造方法
CN111541032B (zh) * 2020-04-30 2021-08-06 深圳市睿德通讯科技有限公司 一种毫米波与非毫米波天线整合模块系统和电子设备
CN112306299B (zh) 2020-10-30 2024-01-26 维沃移动通信有限公司 集成天线的触控面板和电子设备
CN112599962B (zh) * 2020-12-28 2023-05-26 维沃移动通信有限公司 电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180017667A (ko) * 2016-08-10 2018-02-21 삼성전자주식회사 안테나 장치 및 이를 포함하는 전자 장치
CN109728414A (zh) * 2018-12-28 2019-05-07 维沃移动通信有限公司 一种天线结构及终端设备
CN111755813A (zh) * 2019-03-29 2020-10-09 东友精细化工有限公司 一种天线结构
CN111799543A (zh) * 2019-04-02 2020-10-20 东友精细化工有限公司 天线装置及包含其的显示装置
CN114204286A (zh) * 2022-02-15 2022-03-18 云谷(固安)科技有限公司 集成天线的显示屏、显示装置和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4254669A4 *

Also Published As

Publication number Publication date
CN114204286B (zh) 2022-05-13
TWI775718B (zh) 2022-08-21
JP2022105113A (ja) 2022-07-12
JP7246549B2 (ja) 2023-03-27
US11456522B2 (en) 2022-09-27
KR20220063130A (ko) 2022-05-17
KR102484358B1 (ko) 2023-01-04
TW202234757A (zh) 2022-09-01
EP4254669A4 (en) 2023-11-29
US20220263220A1 (en) 2022-08-18
EP4254669A1 (en) 2023-10-04
EP4254669B1 (en) 2024-06-05
CN114204286A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2023155292A1 (zh) 集成天线的显示屏、显示装置和电子设备
EP3114728B1 (en) Antenna device and electronic device having the antenna device
TWI788256B (zh) 集成天線的顯示屏、顯示裝置和電子設備
JP6737486B2 (ja) アンテナモジュール、mimoアンテナ、および端末
CN113517546B (zh) 一种电子设备
US20230344152A1 (en) Antenna assembly and electronic device
JP2000138512A (ja) 平面アンテナを備えた液晶表示装置
CN112993546B (zh) 电子设备
CN215734330U (zh) 通信装置
KR20210126778A (ko) 투명 안테나를 구비하는 전자 기기
KR20190087187A (ko) 안테나 장치 및 이를 이용한 모바일 디바이스
EP4333204A1 (en) Display apparatus and electronic device
WO2022062914A1 (zh) 天线单元和通讯设备
WO2021238392A1 (zh) 天线装置及电子装置
KR20220111249A (ko) 투명 안테나를 구비하는 전자 기기
TWI844852B (zh) 微型化天線饋入模組及電子裝置
US20240079761A1 (en) Impedance Transitions Between Boards for Antennas
DE102023208493A1 (de) Elektronische vorrichtung mit leitfähigem an eine gedruckte schaltung gelöteten kontakt
CN118137112A (zh) 一种天线组件及电子设备
KR20220078202A (ko) 커플링 부재를 포함하는 마이크로스트립 안테나 및 마이크로스트립 안테나 모듈
CN117855846A (zh) 天线装置和通信设备
CN115863958A (zh) 终端

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022741146

Country of ref document: EP

Effective date: 20220727