WO2022062914A1 - 天线单元和通讯设备 - Google Patents

天线单元和通讯设备 Download PDF

Info

Publication number
WO2022062914A1
WO2022062914A1 PCT/CN2021/117539 CN2021117539W WO2022062914A1 WO 2022062914 A1 WO2022062914 A1 WO 2022062914A1 CN 2021117539 W CN2021117539 W CN 2021117539W WO 2022062914 A1 WO2022062914 A1 WO 2022062914A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
unit
antenna
antenna unit
coupling structure
Prior art date
Application number
PCT/CN2021/117539
Other languages
English (en)
French (fr)
Inventor
吴鹏飞
侯猛
王汉阳
李建铭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/246,801 priority Critical patent/US20230369769A1/en
Priority to EP21871286.7A priority patent/EP4213300A4/en
Publication of WO2022062914A1 publication Critical patent/WO2022062914A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the embodiments of the present application relate to the field of antenna technologies, and in particular, to an antenna unit and a communication device.
  • terminal equipment including mobile phones can radiate electromagnetic waves by using the metal frame as a part of the antenna.
  • the frame size of the terminal equipment is small and limited by the shape and size of the frame, the angle of the antenna cannot be adjusted, and electromagnetic waves can only be radiated in one direction. , and its direction map is relatively fixed.
  • the user will hold the mobile phone in different postures, for example: in the horizontal screen state, the user holds the horizontal frame, in the vertical screen state, the user holds the vertical frame, different holding postures
  • the user's fingers hold the frame at different positions, which is easy to block the metal frame and affect the radiation performance of the metal frame.
  • the embodiments of the present application provide an antenna unit and a communication device, which solve the problem that the frame antenna has a single radiation direction, and it is difficult to meet the user's requirements for holding the horizontal screen and holding the vertical screen at the same time.
  • an antenna unit comprising: a first radiator, the first radiator including an opposite first end and a second end, the second end of the first radiator or the middle of the first radiator The position is grounded; a second radiator, the second radiator includes an opposite third end and a fourth end, the fourth end is disposed away from the first end relative to the third end, and the second radiator of the second radiator is The end or the middle position of the second radiator is grounded; the feeding unit is used to connect the first radiator and the second radiator at the first end of the first radiator and the third end of the second radiator.
  • a second radiator feeding a tuning unit for selectively connecting the feeding unit with the first end of the first radiator to feed the first radiator, and selecting The third end of the feeding unit and the second radiator is connected to feed the second radiator; wherein, the tuning unit only connects the feeding unit and the first radiator When turned on, and when the tuning unit only connects the feeding unit and the second radiator, the main radiation direction of the antenna unit is different, wherein the main radiation direction of the antenna unit is the The direction with the largest directivity coefficient on the antenna element pattern. Radiators designed at different angles have different main radiation directions.
  • the different angles may be a certain angle between the radiators, and the different structures may be A coupling structure is set at both ends or in the middle of the radiator, under the action of the coupling structure, the main radiation direction of the radiator is changed), and the feeding unit and at least one radiator are connected through the tuning unit to achieve the same frequency band Pattern overlays in multiple directions. Therefore, the main radiation direction of the antenna unit can be flexibly adjusted according to the different holding positions of the user in different usage scenarios, so as to reduce the influence of the user's holding on the antenna radiation performance.
  • the included angle between the extension direction of the first radiator at the first end and the extension direction of the second radiator at the third end is the first angle, so The first angle is in the range of 60°-120°. Preferably, the first angle is 90°.
  • the main radiation direction of the antenna unit is the first direction.
  • the main radiation direction of the antenna unit is the second direction, the first direction and the second direction
  • the included angle is the second angle. Therefore, when the angles between the radiators are different, the main radiation directions of the different radiators are different.
  • the antenna unit further includes: a feeding coupling structure and a grounding coupling structure; wherein, the feeding coupling structure is provided on the feeding unit and the first radiator. Between the first end and the third end of the second radiator, the feed coupling structure is coupled and connected to the first radiator and the second radiator, and the feed unit is connected to the the feed coupling structure is electrically connected; and a ground coupling structure, the ground coupling structure is arranged between the second end of the first radiator or the middle position of the first radiator and the ground plate, and is arranged at the between the fourth end of the second radiator or the middle position of the second radiator and the ground plate, the ground coupling structure is coupled and connected to the first radiator and the second radiator, and The grounding coupling structure is electrically connected to the grounding plate; the tuning unit and the feeding module feeding unit are connected to the feeding module and provide the first power through the feeding coupling structure and the grounding coupling structure.
  • the main radiation directions of the antenna unit are the first and third directions
  • the feed module feed unit and the tuning unit are connected to the feed unit through the feed coupling structure and the ground coupling structure.
  • the main radiation direction of the antenna unit is the second four directions
  • the included angle between the third first direction and the second four directions is the second three angles
  • the second third angle is greater than the first second angle.
  • the main radiation direction of the antenna unit can be flexibly adjusted to reduce the influence of the user's holding on the antenna radiation performance.
  • the coupled feeding method is adopted, and it is convenient to set the antenna away from the ground plate. Therefore, by setting the ground coupling structure, the main radiation direction of the antenna unit can be changed, and the deflection angle of the main radiation direction of the antenna unit during the rotation process can be further increased.
  • the tuning unit is disposed between the feed unit and the feed between the coupling structures, the feeding unit is electrically connected to the feeding coupling structure through the tuning unit. Therefore, switching between different radiation modes can be realized by controlling the on-off of the feeding unit.
  • the feed coupling structure is one, each of the first radiator and the second radiator is coupled to a side of the feed coupling structure, and the tuning unit is arranged on the feed coupling structure and the grounding plate, the feeding coupling structure is electrically connected to the grounding plate through the tuning unit. Therefore, multiple radiators share one feeding coupling structure, which saves space and is beneficial to the miniaturization of the size of the antenna.
  • the antenna unit further includes: a third radiator, the third radiator includes an opposite fifth end and a sixth end, and the sixth end is opposite to the fifth end and away from the The first end is provided, and the sixth end of the third radiator or the middle position of the third radiator is coupled and connected to the ground plate; the feeding unit is coupled and connected to the fifth end of the third radiator, and the feeding unit is coupled to the fifth end of the third radiator.
  • the unit is used for feeding the third radiator; the tuning unit is used for selectively connecting the feeding unit and the third radiator to feed the third radiator.
  • the included angle between the first radiator or the second radiator and the third radiator is a fourth angle, and the fourth angle is between 60° and 120°. within the range.
  • the tuning unit connects the third radiator and the feeding unit; or the tuning unit connects one of the first radiator and the second radiator or Two radiators are connected to the feeding unit; or the tuning unit connects the third radiator, and one or two radiators of the first radiator and the second radiator, At the same time, it is connected to the feeding unit. Thereby, the adjustment range of the main radiation direction of the antenna is improved.
  • the tuning unit includes: at least one switch, the switch is provided in the feeding unit, and the first radiator, the second radiator, and the third radiator between the radiators, the switch is used to selectively connect the feed unit with at least one radiator among the first radiator, the second radiator, and the third radiator; or, The switch is arranged between the first radiator, the second radiator, the third radiator, and the ground plate, and the switch is used to selectively connect the ground plate to the ground plate. At least one of the first radiator, the second radiator, and the third radiator is connected. Therefore, the switch is used as the tuning unit, the structure is simple, and the switching is convenient.
  • the tuning unit includes: at least one adjustable capacitor, the adjustable capacitor is connected in series between the feeding unit and the feeding coupling structure, or is connected in series between the grounding coupling structure and the grounding plate
  • the capacitance value of the adjustable capacitor is a preset threshold
  • the resonant frequency is at the first frequency band; wherein, the first frequency band is the working frequency band of the antenna unit; when the capacitance value of the adjustable capacitor is less than the preset threshold At the threshold, the resonant frequency is outside the first frequency band. Therefore, the adjustable capacitor is used as the tuning unit, and the control method is more flexible.
  • the third end of the second radiator is connected to a connection point on the first radiator, wherein the connection point of the first radiator is located on the first radiator. between the end and the second end. Therefore, the switching of the differential mode and the common mode of the radiator can be realized by adjusting the on-off of each tuning unit, the main radiation direction of the antenna unit can be flexibly adjusted, and the influence of the user's holding on the antenna radiation performance can be reduced.
  • the antenna unit is a patch antenna
  • the antenna unit includes a first side portion and a second side portion that intersect, and the first side portion of the antenna unit serves as the a first radiator, the second side part of the antenna unit is used as the second radiator, and the ends where the first side part and the second side part intersect are respectively coupled to the feeding unit connected, and the other ends of the first side portion and the second side portion are respectively coupled and connected to the grounding plate. Therefore, the antenna unit adopts a patch antenna, which saves the space occupied by the antenna unit.
  • the antenna unit further includes: the antenna unit further includes: at least one capacitive element, the capacitive element is disposed on the feeding unit, and the first radiator, the between the second radiator and the third radiator, the feeding unit passes through the capacitive element and the first radiator, the second radiator, and the third radiator at least one coupling connection. Therefore, the high frequency signal outside the working frequency band can be filtered out by the capacitive element.
  • a communication device which includes a radio frequency module and the above-mentioned antenna unit, where the radio frequency module is electrically connected to the antenna. Therefore, the communication device adopts the above-mentioned antenna unit, which can flexibly adjust the main radiation direction of the antenna unit, and reduce the influence of the user's holding on the radiation performance of the antenna.
  • the communication device includes: a back case, and at least one radiator of the antenna unit is disposed on the back case.
  • the space on the housing is larger, and multiple radiators with different angles can be set to achieve pattern coverage in multiple directions of the same frequency band.
  • the housing is made of glass or ceramic material.
  • the communication device further includes: a middle frame, the middle frame includes: a carrier board and a frame around the carrier board, and at least one radiator of the antenna unit is arranged on the frame . Therefore, the structure of the existing frame antenna can be improved, and the flexibility of the antenna unit design can be improved.
  • a printed circuit board is provided on the carrier board, the feed unit, the ground plate, and the tuning unit are provided on the PCB, and the feed coupling structure It is electrically connected to the feeding unit, and the ground coupling structure is electrically connected to the ground plate.
  • FIG. 1a is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1b is a schematic diagram of a disassembled structure of a communication device provided by an embodiment of the present application
  • FIG. 2a is a schematic diagram of a rotation process of an antenna unit according to an embodiment of the application.
  • Fig. 2b is the radiation direction simulation diagram of each antenna unit in Fig. 2a;
  • FIG. 2c is a schematic diagram of a rotation process of another antenna unit according to an embodiment of the present application.
  • Fig. 2d is a simulation diagram of the radiation direction of each antenna unit in Fig. 2c;
  • FIG. 3a is a schematic structural diagram of an antenna unit according to an embodiment of the present application.
  • FIG. 3b is a schematic structural diagram of another antenna unit provided by an embodiment of the present application.
  • Fig. 4 is the radiation direction simulation diagram of the antenna unit in Fig. 3b;
  • Fig. 5 is the S11 parameter distribution diagram of the antenna unit in Fig. 3b;
  • FIG. 6 is a schematic diagram of the radiation efficiency of the antenna unit in FIG. 3b;
  • FIG. 7 is a schematic diagram of the main radiation direction of the antenna unit in FIG. 3b;
  • FIG. 8a is a schematic structural diagram of another antenna unit provided by an embodiment of the present application.
  • Fig. 8b is a schematic diagram of the main radiation direction of the antenna unit in Fig. 8a;
  • FIG. 9a is a schematic structural diagram of another antenna unit provided by an embodiment of the present application.
  • Fig. 9b is a schematic diagram of the main radiation direction of the antenna unit in Fig. 9a;
  • FIG. 10 is a schematic structural diagram of another antenna unit provided by an embodiment of the present application.
  • Fig. 11 is the radiation direction simulation diagram of the antenna unit in Fig. 10;
  • Fig. 12 is the S11 parameter distribution diagram of the antenna unit in Fig. 10;
  • FIG. 13 is a schematic diagram of the radiation efficiency of the antenna unit in FIG. 10;
  • FIG. 14 is a schematic diagram of the current and electric field distribution of the antenna unit in FIG. 10 under the first radiation mode
  • FIG. 15 is a schematic diagram of the current and electric field distribution of the antenna unit in FIG. 10 in the second radiation mode
  • FIG. 16 is a schematic structural diagram of another antenna unit provided by an embodiment of the present application.
  • Fig. 17 is the radiation direction simulation diagram of the antenna unit in Fig. 16;
  • Fig. 18 is the S11 parameter distribution diagram of the antenna unit in Fig. 16;
  • FIG. 19 is a schematic diagram of the radiation efficiency of the antenna unit in FIG. 16;
  • FIG. 20 is a schematic structural diagram of another antenna unit provided by an embodiment of the present application.
  • Fig. 21 is the radiation direction simulation diagram of the antenna unit in Fig. 20;
  • Fig. 22 is the S11 parameter distribution diagram of the antenna unit in Fig. 20;
  • FIG. 23 is a schematic diagram of the radiation efficiency of the antenna unit in FIG. 20;
  • FIG. 24 is a schematic structural diagram of another antenna unit provided by an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of another antenna unit provided by an embodiment of the application.
  • FIG. 26 is a schematic structural diagram of another antenna unit provided by an embodiment of the present application.
  • Fig. 27 is the radiation direction simulation diagram of the antenna unit in Fig. 26;
  • Fig. 28 is the S11 parameter distribution diagram of the antenna unit in Fig. 26;
  • FIG. 29 is a schematic diagram of the radiation efficiency of the antenna unit in FIG. 26;
  • FIG. 30a is a schematic structural diagram of another antenna unit provided by an embodiment of the present application.
  • Fig. 30b is a schematic diagram of the main radiation direction of the antenna unit in Fig. 30a;
  • Fig. 31 is the radiation direction simulation diagram of the antenna unit in Fig. 30a;
  • Fig. 32 is the S11 parameter distribution diagram of the antenna unit in Fig. 30a;
  • Figure 33 is a schematic diagram of the radiation efficiency of the antenna unit in Figure 30a;
  • FIG. 34 is a schematic structural diagram of another antenna unit provided by an embodiment of the present application.
  • FIG. 35 is a schematic structural diagram of another antenna unit provided by an embodiment of the present application.
  • Fig. 36 is the radiation direction simulation diagram of the antenna unit in Fig. 35;
  • Fig. 37 is the S11 parameter distribution diagram of the antenna unit in Fig. 35;
  • FIG. 38 is a schematic diagram of the radiation efficiency of the antenna unit in FIG. 35;
  • FIG. 39 is a schematic structural diagram of another antenna unit provided by an embodiment of the application.
  • FIG. 40 is a frame diagram of a communication device provided by an embodiment of the present application.
  • orientation terms such as “upper” and “lower” are defined relative to the orientation in which the components in the drawings are schematically placed. It should be understood that these directional terms are relative concepts, and they are used for relative In the description and clarification of the drawings, it may change correspondingly according to the change of the orientation in which the components are placed in the drawings.
  • connection It can be understood as the physical contact and electrical conduction of components, and it can also be understood as the form of connection between different components in the circuit structure through a physical circuit such as PCB copper foil or wire that can transmit electrical signals. Among them, “connection” refers to the connection of mechanical structure and physical structure.
  • Coupling connection refers to the phenomenon that there is close cooperation and mutual influence between the input and output of two or more circuit elements or electrical networks, and energy is transmitted from one side to the other through interaction.
  • the signal/energy transmission is carried out by making two or more components conduct or communicate through the above “electrical connection” or “coupling connection”, which can be referred to as connecting.
  • Antenna Pattern also known as Radiation Pattern. It refers to the graph of the relative field strength (normalized modulus value) of the antenna radiation field changing with the direction at a certain distance from the antenna. It is usually represented by two mutually perpendicular plane patterns in the maximum radiation direction of the antenna.
  • Antenna patterns usually have multiple radiating beams.
  • the radiation beam with the highest radiation intensity is called the main lobe, and the remaining radiation beams are called side lobes or side lobes.
  • the side lobes In the side lobes, the side lobes in the opposite direction to the main lobe are also called back lobes.
  • Antenna directivity coefficient the ratio of the power density of a certain point in the far area of the antenna in the maximum radiation direction to the power density of a non-directional antenna with the same radiation power at the same point, expressed as D.
  • Antenna return loss It can be understood as the ratio of the signal power reflected back to the antenna port through the antenna circuit to the transmit power of the antenna port. The smaller the reflected signal, the greater the signal radiated to the space through the antenna, and the greater the radiation efficiency of the antenna. The larger the reflected signal, the smaller the signal radiated to the space through the antenna, and the smaller the radiation efficiency of the antenna.
  • the antenna return loss can be represented by the S11 parameter, which is usually a negative number.
  • S11 the smaller the return loss of the antenna and the greater the radiation efficiency of the antenna; the larger the parameter S11, the greater the return loss of the antenna and the smaller the radiation efficiency of the antenna.
  • Antenna system efficiency refers to the ratio of the power radiated by the antenna to the space (that is, the power that effectively converts the electromagnetic wave part) to the input power of the antenna.
  • Antenna radiation efficiency refers to the ratio of the power radiated by the antenna to the space (that is, the power that effectively converts the electromagnetic wave part) to the active power input to the antenna.
  • the active power input to the antenna the input power of the antenna-antenna loss; the antenna loss mainly includes metal ohmic loss and/or dielectric loss.
  • FIG. 1a is a schematic structural diagram of a communication device 01 provided by an embodiment of the present application.
  • the communication device 01 provided in this embodiment of the present application includes, but is not limited to, electronic products with wireless communication functions, such as a mobile phone, a tablet computer, a computer, or a wearable device.
  • the communication device 01 includes an antenna unit 02 , a device body 03 and a radio frequency module 04 .
  • the radio frequency module 04 is electrically connected to the antenna unit 02 for sending and receiving electromagnetic signals to the antenna unit 02 through the feeding point.
  • the antenna unit 02 radiates electromagnetic waves according to the received electromagnetic signals or sends electromagnetic signals to the radio frequency module 04 according to the received electromagnetic waves, so as to realize the sending and receiving of wireless signals.
  • the radio frequency module (Radio Frequency module, AF module) 04 is a circuit that can transmit and/or receive radio frequency signals, such as a transceiver (transmitter and/or receiver, T/R).
  • the specific form of the above-mentioned communication device 01 is not particularly limited in this embodiment of the present application.
  • the following embodiments are all exemplified by taking the communication device as a mobile phone as an example.
  • the communication device 01 includes a display screen 2 , a middle frame 3 , a casing (or referred to as a battery cover or a rear casing) 4 and a cover plate 5 .
  • the display screen 2 has a display surface a1 for viewing the display screen and a back surface a2 opposite to the above-mentioned display surface a1 .
  • the display screen 2 is an organic light emitting diode (organic light emitting diode, OLED) display screen. Since each light-emitting sub-pixel in the OLED display screen is provided with an electroluminescent layer, the OLED display screen can realize self-luminescence after receiving the working voltage.
  • OLED organic light emitting diode
  • the above-mentioned display screen 2 may be a liquid crystal display (liquid crystal display, LCD).
  • the above-mentioned communication device 01 may further include a backlight unit (backlight unit, BLU) for providing a light source to the liquid crystal display screen.
  • BLU backlight unit
  • the cover plate 5 is located on the side of the display screen 2 away from the middle frame 3 , and the cover plate 5 may be, for example, a cover glass (CG) or a transparent ceramic material, and the cover glass may have certain toughness.
  • CG cover glass
  • the cover glass may have certain toughness.
  • the back shell 4 can be made of the same material as the cover plate 5 .
  • the middle frame 3 is located between the display screen 2 and the back shell 4, the middle frame 3 includes: a carrier board 31 and a frame 32 around the carrier board 31, and the surface of the middle frame 3 away from the display screen 2 is used to install batteries, printed circuit boards ( Internal components such as printed circuit board, PCB), camera (camera), and antenna.
  • PCB printed circuit board
  • camera camera
  • antenna antenna
  • a part of the frame 32 can be used as a part of the antenna.
  • the angle of the antenna disposed on the frame 32 cannot be adjusted , its radiation pattern is fixed, and it is difficult to meet the needs of various application scenarios at the same time, such as the application scenarios of horizontal screen holding and vertical screen holding.
  • the antenna unit includes at least one radiating unit 30 and a feeding unit 10 .
  • the radiation unit 30 is arranged on the back case 4. Due to the large size of the back case 4, the position and angle of the radiation unit 30 can be adjusted, so that the main radiation direction of the antenna unit is changed. The angle of the radiator needs to be adjusted to meet the user's requirements for holding it horizontally or vertically.
  • the main radiation direction of the antenna unit is the direction with the largest directivity coefficient on the pattern of the antenna unit.
  • the feeding unit 10 and the grounding plate are usually arranged on the carrier plate 31 of the middle frame 3 of the main body of the device, and the radiating element 30 arranged on the back shell 4 cannot be directly electrically connected to the feeding unit 10 and the grounding plate.
  • the unit further includes a feed coupling structure 3001 and a ground coupling structure 3002.
  • the feed coupling structure 3001 and the ground coupling structure 3002 can be made of the same material as the radiating element 30.
  • the feed coupling structure 3001 can be made of the same material as the feed unit 10. Electrically connected and coupled to the radiation unit 30 , the ground coupling structure 3002 may be electrically connected to the ground plate and coupled to the radiation unit 30 .
  • the feeding unit 10 can couple and feed the radiating unit 30 through the feeding coupling structure, and the radiating unit 30 can be electrically connected to the ground plate through the grounding coupling structure.
  • the radiation unit 30 includes opposite first ends and second ends, the first end of the radiation unit 30 is provided with a feeding coupling structure 3001, and the feeding unit 10 is used for passing the
  • the feed coupling structure 3001 couples and feeds the radiating element 30 .
  • D in Fig. 2b is the directivity coefficient of the direction indicated by the arrow, wherein the directivity coefficient of the direction indicated by the arrow is the largest.
  • the main radiation direction of the radiator is deflected from bottom to top, and the deflection angle is about 50° to 60°.
  • the main radiation direction may be the direction in which the directivity coefficient is the largest.
  • the directivity coefficient is the smallest.
  • the resonant frequency of the antenna unit does not change during the rotation process, and the main radiation directions of the antenna units with the same resonant frequency at different angles can be obtained by simulation.
  • the simulation result of the pattern of the antenna unit is obtained by simulation in a real environment. Due to the influence of the external environment, the resonant frequencies of the antenna units at different angles in Figure 2d are different, and there is a certain error. The simulation results are only for refer to.
  • the second end of the radiation unit 30 is further provided with a ground coupling structure 3002, and the ground coupling structure 3002 is grounded and coupled with the radiation unit 30,
  • the radiation unit 30 is electrically connected to the ground plate through the ground coupling structure 3002 .
  • D in Fig. 2d is the directivity coefficient of the direction indicated by the arrow, wherein the directivity coefficient of the direction indicated by the arrow is the largest.
  • the main radiation direction of the radiator is deflected from bottom to top, and the deflection angle is greater than 90°.
  • the second end of the radiation unit 30 is coupled to the ground, and the directivity coefficient decreases as a whole.
  • the rotation angle of the radiation unit 30 is larger.
  • the radiating elements 30 with different angles resonate, the main radiation directions are different. Therefore, the main radiation directions of the antenna elements can be changed by adjusting the angles of the radiating elements 30 .
  • the radiating element 30 is coupled to the ground, when the angle of the radiator is changed, the change of the main radiation direction is greater. Therefore, the structure of the radiating element 30 can also be adjusted so that the radiating element is coupled to the ground to change the main radiation direction of the antenna element. .
  • the main radiation direction of the antenna unit can be changed by adjusting the angle of the radiator.
  • the position of the assembled antenna unit is usually fixed.
  • the embodiment of the present application provides an improved antenna unit.
  • FIG. 3a is a schematic structural diagram of an antenna unit provided by an embodiment of the present application.
  • the antenna unit 02 includes a feeding unit 10, a ground plate (not shown in the figure), and a tuning unit 20. , and at least 2 radiators.
  • the first radiator 301 includes opposite first and second ends
  • the second radiator 302 includes opposite A third end and a fourth end, the fourth end is disposed away from the first end relative to the third end.
  • the feeding unit 10 is used for feeding the first radiator 301 and the second radiator 302 at the first end of the first radiator 301 and the third end of the second radiator 302 .
  • the second end of the first radiator 301 or the middle position of the first radiator 301 is connected to the ground plate, and the fourth end of the second radiator 302 or the middle position of the second radiator 302 is connected to the ground plate Floor is on.
  • the middle position of the radiator is located between two ends of the radiator, for example, the distance from the middle position to the two ends of the radiator is the same.
  • the tuning unit 20 is used to selectively connect the feeding unit 10 with the first end of the first radiator 301 to feed the first radiator 301, and selectively connect the feeding unit 10 is connected to the third end of the second radiator 302 to feed the second radiator 302 .
  • the tuning unit 20 when the tuning unit 20 only connects the feeding unit 10 with the first radiator 301, the tuning unit 20 only connects the feeding unit 10 with the second radiator 302 When connected, the main radiation directions of the antenna units are different.
  • the main radiation direction of the antenna unit is the direction with the largest directivity coefficient on the pattern of the antenna unit.
  • the main radiation directions of different radiators are different.
  • a plurality of different (different angles and/or different structures) radiators are arranged, and the feeding unit and the feed unit are connected through the tuning unit.
  • Different radiators can achieve pattern coverage in multiple directions of the same frequency band. Therefore, the main radiation direction of the antenna unit can be flexibly selected according to different holding positions of the user in different usage scenarios, so as to reduce the influence of the user's holding on the radiation performance of the antenna.
  • the working mode of the radiator when the ground plate is close to the second end of the first radiator or the fourth end of the second radiator, the working mode of the radiator is the differential mode mode, and when the ground plate is close to the middle position of the radiator, the working mode of the radiator is The mode is common mode.
  • differential mode and common mode the main radiation direction of the radiator is different. By switching the differential mode and common mode of the radiator, the main radiation direction of the antenna unit can be flexibly adjusted to reduce user grip. influence on the radiation performance of the antenna.
  • the angles of the first radiator 301 and the second radiator 302 are different, and the extension direction of the first radiator 301 at the first end and the second radiator 302 at the third
  • the included angle between the extending directions of the ends is the first angle.
  • the first angle is for example in the range of 60°-120°. As shown in Fig. 3a, the first angle is 90°.
  • the feeding unit 10 is used for electrical connection with the first radiator 301 or the second radiator 302 . It should be noted that, the electrical connection in this embodiment is that the feeding unit 10 and the first radiator 301 or the second radiator 302 are in physical contact and are electrically connected.
  • the main radiation direction of the antenna unit is the first direction
  • the tuning unit 20 turns on the feeding unit 10 and the second At the third end of the radiator 302
  • the main radiation direction of the antenna unit is the second direction
  • the included angle between the first direction and the second direction is the second angle.
  • the angles between the first radiator 301 and the second radiator 302 are different, so that the main radiation directions of the first radiator 301 and the second radiator 302 are different.
  • the antenna unit further includes: a first feed coupling structure 3011 and a first ground coupling structure 3012 coupled with the first radiator 301, and a second radiator coupled with The body 302 is coupled with a second feed coupling structure 3021 and a second ground coupling structure 3022.
  • a first feed coupling structure 3011 is provided between the first end of the first radiator 301 and the feed unit 10, and a first ground coupling is provided between the second end of the first radiator 301 and the ground plate Structure 3012, the feeding unit 10 is electrically connected to the first feeding coupling structure 3011, and the feeding unit 10 is used to couple and feed the first radiator 301 through the first feeding coupling structure 3011 Electrically, the first ground coupling structure 3012 is electrically connected to the ground plate, and the first radiator 301 is grounded through the first ground coupling structure 3012 .
  • a second feed coupling structure 3021 is provided between the third end of the second radiator 302 and the feeding unit 10
  • a second feed coupling structure 3021 is provided between the fourth end of the second radiator 302 and the ground plate.
  • Two ground coupling structures 3022, the feeding unit 10 is electrically connected to the second feeding coupling structure 3021, and the feeding unit 10 is used to connect the second radiator to the second radiator through the second feeding coupling structure 3021 302 is coupled to feed
  • the second ground coupling structure 3022 is electrically connected to the ground plate
  • the second radiator 302 is grounded through the second ground coupling structure 3022 .
  • the main radiation direction of the antenna unit is the third direction
  • the feeding unit 10 feeds the first radiator 301 through the second feeding unit 10.
  • the main radiation direction of the antenna unit is the fourth direction
  • the included angle between the third direction and the fourth direction is the third angle, so The third angle is greater than the second angle.
  • the antenna it is convenient to set the antenna at a position away from the ground plate by adopting the coupled feeding method. Also, by providing the ground coupling structure and the feed coupling structure, the angle between the main radiation direction in the radiation pattern of the first radiator 301 and the main radiation direction in the radiation pattern of the second radiator 302 can be increased.
  • This embodiment of the present application does not limit the number of feed coupling structures.
  • the first feed coupling structure 3011 is coupled to the first radiator 301
  • the second feed coupling structure 3021 is coupled to the second radiator 302
  • the tuning unit 20 is provided between the feed unit 10 and the feed coupling structure In between, the feeding unit is electrically connected to the feeding coupling structure through the tuning unit 20 . Therefore, switching between different radiation modes can be realized by controlling the on-off of the feeding unit.
  • the first radiator 301 and the second radiator 302 share a distributed feed coupling structure 300 .
  • Each radiator in the first radiator 301 and the second radiator 302 is coupled to a side of the distributed feed coupling structure 300 , and the tuning unit 20 is disposed between the ground coupling structure 300 and the ground plate Therebetween, the ground coupling structure is electrically connected to the ground plate through the tuning unit. Therefore, multiple radiators share one feeding coupling structure, which saves space and is beneficial to the miniaturization of the size of the antenna.
  • the tuning unit 20 includes, for example, at least one switch 201, and the switch 201 is set on the feeder. Between the electric unit 10 and the first radiator 301 and the second radiator 302, the switch is used to selectively connect the feeding unit 10 to the first radiator 301 and the second radiator 302. At least one of the radiators 302 is connected.
  • the switch 201 is disposed between the first radiator 301 , the second radiator 302 and the ground plate, and the switch 201 is used to selectively connect the ground plate to the first radiator At least one of the radiator 301 and the second radiator 302 is connected.
  • the switch 201 is used to control the conduction state between the feeding unit 10 and the first radiator 301 , and between the feeding unit 10 and the second radiator 302 .
  • the switch 201 is a PIN diode. In other embodiments, the switch 201 can also be a MEMS switch or a photoelectric switch.
  • the switch 201 includes, for example, an opposite first end and a second end, the first end of the switch 201 is connected to the feeding unit 10 , and the second end of the switch 201 is used for connecting with the first radiator 301 is connected, or is connected with the second radiator 302 .
  • the second end of the switch 201 When the second end of the switch 201 is connected to the first feeding coupling structure 3011 , it is equivalent to that the feeding unit 10 and the first radiator 301 are connected, and the feeding unit 10 and the first radiator 301 are connected. The second radiator 302 is disconnected, and the antenna unit operates in the first radiation mode.
  • the switch is used as the tuning unit, the structure is simple, and the switching is convenient.
  • the switch is arranged between the radiator and the ground plate, the first end of the switch is connected to the ground plate, and the second end of the switch is used for connecting with the ground plate. one of the radiators is connected.
  • the first radiator 301 and the second radiator 302 share a distributed feed coupling structure 300.
  • the feeding unit couples and feeds two or more radiators through one of the distributed feeding coupling structures 300, and the first radiator 301 and the second radiator 302 are respectively connected to the One side of the distributed feed coupling structure 300 is parallel.
  • multiple radiators share one distributed feed coupling structure 300 , which saves space and facilitates miniaturization of the size of the antenna.
  • the tuning unit 20 includes, for example: at least one adjustable capacitor, the adjustable capacitor is connected in series between the feeding unit and the radiator, or between the radiator and the ground plate in series between.
  • the resonant frequency is in the first frequency band, the feed unit and the radiator are connected, and the antenna unit operates in a first radiation mode.
  • the first frequency band is the working frequency band of the antenna unit, and in some embodiments of the present application, the first frequency band is the N78 (3.3GHz-3.7GHz) frequency band.
  • the resonant frequency is outside the first frequency band, the feed unit is disconnected from the radiator, and the antenna unit operates in the second radiation mode.
  • the first radiator 301 is connected in series with the first adjustable capacitor 2011
  • the second radiator 302 is connected in series with the second adjustable capacitor 2002 .
  • the feeder unit 10 and the first feeder coupling structure 3011 and the feeder unit 10 and the second feeder coupling structure 3021 are connected in series with the The adjustable capacitance is used to adjust the resonant frequency.
  • an adjustable capacitor may be provided between the ground plate and the coupling structure, and the adjustable capacitor is used to adjust the resonance frequency of the first adjustable capacitor 2001 .
  • a first adjustable capacitor 2001 is connected in series between the first ground coupling structure 3012 and the ground plate
  • a second adjustable capacitor 2002 is connected in series between the second ground coupling structure 3022 and the ground plate.
  • the capacitance values of the first adjustable capacitor 2001 and the second adjustable capacitor 2002 can be adjusted, and the capacitance values of the first adjustable capacitor 2001 and the second adjustable capacitor 2002 can be adjusted to adjust the resonance frequency.
  • the resonant frequency of the first adjustable capacitor 2001 is within the first frequency band, and the first adjustable capacitor 2001 has a resonant frequency.
  • An adjustable capacitor 2001 resonates and is in a low resistance state.
  • the first adjustable capacitor is similar to a conductor, and the feeding unit 10 and the first radiator 301 are in conduction.
  • the second adjustable capacitor 2002 When the electromagnetic wave whose frequency is in the first frequency band is transmitted to the second adjustable capacitor 2002, since the resonant frequency of the second adjustable capacitor 2002 is outside the first frequency band, the second adjustable capacitor 2002 will not resonate and In a high resistance state, the second adjustable capacitor 2002 is similar to an insulator, and the feeding unit 10 and the second radiator 302 are disconnected.
  • the antenna unit works in the first radiation mode.
  • the resonant frequency of the first adjustable capacitor 2001 is at the first adjustable capacitor 2001. Outside the frequency band, the first adjustable capacitor 2001 does not resonate and is in a high resistance state. At this time, the first adjustable capacitor 2001 is similar to an insulator, and the feeding unit 10 and the first radiator 301 are disconnected.
  • the resonant frequency of the second adjustable capacitor 2002 is located in the first frequency band, the second adjustable capacitor 2002 resonates and is in a low resistance state.
  • the second adjustable capacitor 2002 is similar to a conductor, and the feeding unit 10 Conducted with the second radiator 302 .
  • the antenna unit works in the second radiation mode.
  • the adjustable capacitor is used as the tuning unit, and the control method is more flexible.
  • a capacitive element is also provided between the feeding unit 10 and the tuning unit 20 .
  • a capacitive element is further provided between the feeding unit and the distributed feeding coupling structure 300 .
  • the capacitive element can be used to filter out high frequency signals outside the working frequency band.
  • FIG. 4 is a simulation diagram of a radiation direction of an antenna unit provided by an embodiment of the application
  • FIG. 5 is a distribution diagram of S11 parameters of an antenna unit provided by an embodiment of the application
  • FIG. 6 is a schematic diagram of antenna radiation efficiency of an antenna unit according to an embodiment of the present application.
  • the capacitance value of the capacitive element C is 0.6pF.
  • the capacitance value of the first adjustable capacitor 2001 is, for example, 1.2pF, and the capacitance value of the second adjustable capacitor is 0.3pF.
  • the capacitance value of the first adjustable capacitor 2001 is, for example, 0.3pF, and the capacitance value of the second adjustable capacitor is 1.2pF.
  • the simulation diagrams of the radiation directions of the antenna unit when working in the first radiation mode are shown in (a), (b), and (c) of FIG. 4 .
  • the antenna unit operating in the first radiation mode resonates in the N78 (3.3GHz-3.7GHz) frequency band
  • the main radiation direction is the first direction.
  • the S11 parameter distribution diagram of the antenna unit working in the first radiation mode is shown as curve a in FIG. 5 .
  • curve a in FIG. 5 the S11 parameter of the antenna unit operating in the first radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is high.
  • Curve 1 in FIG. 6 For the antenna radiation efficiency of the antenna unit operating in the first radiation mode, reference may be made to Curve 1 in FIG. 6 . As shown by curve 1 in FIG. 6 , when the antenna unit operating in the first radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the simulation diagrams of the radiation directions of the antenna unit working in the first radiation mode are shown in (d), (e), and (f) in FIG. 4 .
  • the antenna unit operating in the second radiation mode resonates in the N78 (3.3GHz-3.7GHz) frequency band
  • the main radiation direction is the second direction.
  • the S11 parameter distribution diagram of the antenna unit working in the second radiation mode is shown as curve b in FIG. 5 .
  • curve b in FIG. 5 the S11 parameter of the antenna unit operating in the second radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is high.
  • the antenna radiation efficiency of the antenna unit operating in the second radiation mode may refer to Curve 2 in FIG. 6 . As shown by curve 2 in FIG. 6 , when the antenna unit operating in the second radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the antenna system efficiency of the antenna unit operating in the first radiation mode may refer to the curve 1-1 in FIG. 6 .
  • the antenna system efficiency of the antenna unit operating in the second radiation mode reference may be made to curve 2-1 in FIG. 6 .
  • the main radiation direction of the radiator in the first radiation mode is the first direction
  • the main radiation direction of the radiator in the second radiation mode is the second direction
  • the first radiation mode is, for example, a landscape mode
  • the second radiation mode is, for example, a portrait mode
  • the user In the portrait screen mode, the user holds the vertical frame of the mobile phone, and in the landscape screen mode, the user holds the horizontal frame of the mobile phone.
  • the first direction is, for example, a direction parallel to the X axis
  • the second direction is, for example, a direction parallel to the Y axis.
  • the user holds the horizontal frame of the mobile phone, and the main radiation direction of the antenna unit 02 is the first direction, so as to prevent the user's holding from affecting the radiation performance of the antenna.
  • the user In the vertical screen mode, the user holds the vertical frame of the mobile phone, and the main radiation direction of the antenna unit 02 is the second direction, so as to prevent the user's holding from affecting the radiation performance of the antenna.
  • This embodiment of the present application does not limit the angle between the first radiator 301 and the second radiator 302.
  • the angle between the first radiator 301 and the second radiator 302 may be 60°-120°. In some embodiments of the present application, the included angle between the first radiator 301 and the second radiator 302 is 90°.
  • the angle between the holding positions of the user is 90°, and the maximum radiation angle between the first radiator 301 and the second radiator 302 is close to 90°, so that the first The included angle between the main radiation directions of the radiator 301 and the second radiator 302 is close to 90°, which can better reduce the influence of the user holding the mobile phone on the radiation performance.
  • the tuning unit 20 by disposing the tuning unit 20 on the radiator of the antenna, the radiation direction of the antenna can be changed, and the radiation performance of the antenna can be prevented from being affected by the user's holding.
  • the antenna unit 02 may also be rotated as a whole by a predetermined angle
  • FIG. 8b is a schematic diagram of the main radiation direction of the antenna unit in FIG. 8a .
  • FIG. 8b when the antenna unit 02 is rotated by a predetermined angle, its main radiation direction is rotated by a predetermined angle accordingly.
  • the antenna unit 02 includes: a first radiator 301 , a second radiator 302 , a third radiator 303 , a feeding unit 10 and a tuning unit 20 .
  • the specific structures of the first radiator 301 , the second radiator 302 , and the feeding unit 10 may refer to the above-mentioned embodiments, which will not be repeated here.
  • the third radiator 303 includes opposite fifth and sixth ends, and the sixth end of the third radiator 303 is disposed away from the first end of the first radiator 301 relative to the fifth end.
  • a third feed coupling structure 3031 is provided between the fifth end of the third radiator 303 and the feeding unit 10, and a third ground coupling is provided between the sixth section of the third radiator 303 and the ground plate Structure 3032, the feeding unit 10 is electrically connected to the third feeding coupling structure 3031, and the feeding unit 10 is used to couple and feed the third radiator 303 through the third feeding coupling structure 3031 Electrically, the third ground coupling structure 3032 is grounded, and the second radiator 302 is grounded through the third ground coupling structure 3032 .
  • the directivity of the third radiator 303 can be enhanced.
  • the included angle between the first radiator 301 or the second radiator 302 and the third radiator 303 is a fourth angle, and the fourth angle is in the range of 60°-120°.
  • the tuning unit 20 turns on the third radiator 303 and the feeding unit 10, or the tuning unit 20 connects one or both of the first radiator 301 and the second radiator 302, connected to the feeding unit 20; or the tuning unit 20 connects the third radiator 303, and one or two radiators of the first radiator 301 and the second radiator 302, At the same time, it is connected to the feeding unit 20.
  • the tuning unit 20 may use a switch 201, for example, the switch 201 includes a first end and a second end opposite to each other, and the first end of the switch 201 is connected to the feeding unit 10, so The second end of the switch 201 is used for connecting with the first radiator 301 , the second radiator 302 or the third radiator 303 .
  • the second end of the switch 201 When the second end of the switch 201 is connected to the first feeding coupling structure 3011 , it is equivalent to that the feeding unit 10 and the first radiator 301 are connected, and the feeding unit 10 and the first radiator 301 are connected. The second radiator 302 and the third radiator 303 are disconnected, and the antenna unit works in the first radiation mode.
  • the second end of the switch 201 is connected to the third feeding coupling structure 3031, it is equivalent to that the feeding unit 10 and the third radiator 303 are connected, and the feeding unit 10 and the third radiator 303 are connected.
  • the first radiator 301 and the second radiator 302 are disconnected, and the antenna unit works in the third radiation mode.
  • the tuning unit 20 includes: at least one adjustable capacitor, the adjustable capacitor is connected in series between the feeding unit and the feeding coupling structure, or is connected in series with the between the ground coupling structure and the ground plate.
  • the capacitance value of the adjustable capacitor is a preset threshold
  • its resonant frequency is located in the first frequency band; wherein, the first frequency band is the working frequency band of the antenna unit.
  • This embodiment of the present application does not limit the included angle of the first radiator 301 , the second radiator 302 , and the third radiator 303 .
  • the included angle of the first radiator 301 , the second radiator 302 and the third radiator 303 may be 120°.
  • the included angle between the first radiator 301 , the second radiator 302 , and the third radiator 303 is 90°.
  • FIG. 9b is a schematic diagram of the main radiation direction of the antenna unit in FIG. 9a. As shown in FIG. 9b, when the antenna unit 02 includes three radiators, the selectable main radiation directions of the antenna unit 02 are three.
  • the maximum radiation angle between the first radiator 301 and the second radiator 302 is close to 90°, so that in the first radiation mode, in the second radiation mode and in the third radiation mode, between the main radiation directions of the radiators
  • the included angle is close to 90°, which can better avoid the influence of the user holding the mobile phone on the radiation performance.
  • the radiator further includes, for example, a fourth radiator, and the fourth radiator can be the same as the first radiator 301 , the second radiator 302 and the
  • the third radiator 303 has the same structure, and the included angle between the first radiator 301 , the second radiator 302 , the third radiator 303 and the fourth radiator may be 90°.
  • the antenna unit 02 is a patch antenna, and the antenna unit 02 includes: a metal plate 32 , the metal plate 32 has the intersecting first side L1 and the second side L2 , the feeding unit 10 and the tuning unit 20 .
  • the position where the first side L1 and the second side L2 intersect is provided with a distributed feed coupling structure 300 , and the end of the first side L1 is provided with a first ground coupling structure 3012 .
  • the unit 10 is electrically connected to the distributed feeding coupling structure 300 , and the feeding unit 10 is configured to couple and feed the first side L1 and the second side L2 through the distributed feeding coupling structure 300 , so that the first side and the second side act as radiators to emit electromagnetic waves.
  • the main radiation directions of the first side and the second side are different.
  • the first ground coupling structure 3012 is grounded, and the first side L1 is coupled to ground through the first ground coupling structure 3012 .
  • the second end of the second side L2 is provided with a second ground coupling structure 3022 , the second ground coupling structure 3022 is grounded, and the second side L2 is coupled through the second ground coupling structure 3022 ground.
  • the embodiment of the present application does not limit the specific structure of the power feeding unit 10 .
  • the power feeding unit 10 includes a capacitive element C. As shown in FIG. The feed unit 10 is electrically connected to the first feed coupling structure 3011 and the first ground coupling structure 3012 through the capacitive element C.
  • a first adjustable capacitor 2001 is connected in series between the first ground coupling structure 3012 and the ground plate, and a second adjustable capacitor 2002 is connected in series between the second ground coupling structure 3022 and the ground plate.
  • the capacitance values of the first adjustable capacitor 2001 and the second adjustable capacitor 2002 are adjustable. When the capacitance values of the first adjustable capacitor 2001 and the second adjustable capacitor 2002 change, the The resonant frequencies of the first adjustable capacitor 2001 and the second adjustable capacitor 2002 change accordingly.
  • the resonant frequency of the first adjustable capacitor 2001 is within the first frequency band,
  • the first adjustable capacitor 2001 resonates and is in a low resistance state.
  • the first adjustable capacitor 2001 is similar to a conductor, and the feeding unit 10 and the first radiator 301 are in conduction.
  • the second adjustable capacitor 2002 When the electromagnetic wave whose frequency is in the second frequency band is transmitted to the second adjustable capacitor 2002, since the resonant frequency of the second adjustable capacitor 2002 is outside the first frequency band, the second adjustable capacitor 2002 will not resonate and In a high resistance state, the second adjustable capacitor 2002 is similar to an insulator, and the feeding unit 10 and the second radiator 302 are disconnected.
  • the antenna unit works in the first radiation mode.
  • the resonant frequency of the first adjustable capacitor 2001 is at the first adjustable capacitor 2001. Outside the frequency band, the first adjustable capacitor 2001 does not resonate and is in a high resistance state. At this time, the first adjustable capacitor 2001 is similar to an insulator, and the feeding unit 10 and the first radiator 301 are disconnected.
  • the resonant frequency of the second adjustable capacitor 2002 is located in the first frequency band, the second adjustable capacitor 2002 resonates and is in a low resistance state.
  • the second adjustable capacitor 2002 is similar to a conductor, and the feeding unit 10 Conducted with the second radiator 302 .
  • the antenna unit works in the second radiation mode.
  • FIG. 11 is a simulation diagram of a radiation direction of another antenna unit provided by an embodiment of the present application
  • FIG. 12 is a S11 parameter distribution diagram of another antenna unit provided by an embodiment of the present application
  • FIG. 13 is a schematic diagram of antenna radiation efficiency of an antenna unit according to an embodiment of the present application.
  • the metal plate 32 is, for example, a square shape, and the dimensions of the first side L1 and the second side L2 are both 16 mm.
  • the capacitance value of the capacitive element C is 0.6pF.
  • the capacitance value of the first adjustable capacitor 2001 is, for example, 1.2pF, and the capacitance value of the second adjustable capacitor is 0.3pF.
  • the capacitance value of the first adjustable capacitor 2001 is, for example, 0.3pF, and the capacitance value of the second adjustable capacitor is 1.2pF.
  • the simulation diagrams of the radiation directions of the antenna unit when it operates in the first radiation mode are shown in (a), (b), and (c) in FIG. 11 .
  • the antenna unit operating in the first radiation mode resonates in the N78 (3.3GHz-3.7GHz) frequency band
  • the main radiation direction is the first direction.
  • the S11 parameter distribution diagram of the antenna unit working in the first radiation mode is shown as curve a in FIG. 12 .
  • curve a in FIG. 12 the S11 parameter of the antenna unit operating in the first radiation mode when resonance occurs is smaller, the return loss of the antenna is smaller, and the radiation efficiency of the antenna is larger.
  • Curve 1 in FIG. 13 For the antenna radiation efficiency of the antenna unit operating in the first radiation mode, reference may be made to Curve 1 in FIG. 13 . As shown by curve 1 in FIG. 13 , when the antenna unit operating in the first radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the simulation diagrams of the radiation directions of the antenna unit when it operates in the first radiation mode are shown in (d), (e), and (f) in FIG. 11 .
  • the antenna unit operating in the second radiation mode resonates in the N78 (3.3GHz-3.7GHz) frequency band
  • the main radiation direction is the second direction.
  • the S11 parameter distribution diagram of the antenna unit working in the second radiation mode is shown as curve b in FIG. 12 .
  • curve b in FIG. 12 the S11 parameter of the antenna unit operating in the second radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is large.
  • Curve 2 in FIG. 13 For the antenna radiation efficiency of the antenna unit operating in the second radiation mode, reference may be made to Curve 2 in FIG. 13 . As shown by curve 2 in FIG. 6 , when the antenna unit operating in the second radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the main radiation direction of the radiator in the first radiation mode is the first direction
  • the main radiation direction of the radiator in the second radiation mode is the second direction
  • the first radiation mode is, for example, a landscape mode
  • the second radiation mode is, for example, a portrait mode
  • FIG. 14 are schematic diagrams of the current distribution of the above-mentioned patch antenna in the first radiation mode, wherein, in the first radiation mode, the current mainly flows on the longitudinal side
  • (c) in FIG. 14 ) and (d) are schematic diagrams of the electric field distribution of the above-mentioned patch antenna in the first radiation mode, wherein, in the first radiation mode, the electric field intensity on the horizontal side is relatively large.
  • FIG. 15 are schematic diagrams of the current distribution of the above-mentioned patch antenna in the second radiation mode, wherein, in the second radiation mode, the current mainly flows on the horizontal side
  • FIG. 14 are schematic diagrams of the electric field distribution of the above-mentioned patch antenna in the second radiation mode, wherein, in the first radiation mode, the electric field intensity on the longitudinal side is relatively large.
  • the antenna unit 02 includes: a frame radiator 31 arranged on the middle frame 3 , and a first radiator 301 arranged on the back shell 4 .
  • the structures of the frame radiator 31 and the first radiator 301 are different.
  • the frame radiator 31 is arranged on the horizontal or vertical side of the mobile phone, and its shape and position are fixed.
  • the first radiator 301 is arranged on the casing of the mobile phone, and the shape and position of the first radiator 301 can be adjusted as required.
  • the two ends of the first radiator 301 are provided with a coupling structure.
  • the main radiation direction of a radiator 301 is different from the main radiation direction of the frame radiator 31 .
  • the frame radiator 31 and the first radiator 301 are connected through distributed feeding.
  • This embodiment of the present application does not limit the angle of the first radiator 301 .
  • the frame radiator 31 and the first radiator 301 are, for example, rectangular structures, wherein the long side of the frame radiator 31 is parallel to the y-axis, and the short side of the frame radiator 31 is parallel to the y-axis.
  • the sides are parallel to the x-axis.
  • the long side of the first radiator 301 is parallel to the y-axis, and the short side of the first radiator 301 is parallel to the x-axis.
  • the extension directions of the frame radiator 31 and the first radiator in the XOY plane are parallel.
  • the first end of the first radiator is provided with a first feed coupling structure 3011, the first feed coupling structure 3011 is coupled with the first radiator 301, and the feed unit 10 passes through the first available
  • the adjusting capacitor 2001 is connected to the first feeding coupling structure 3011 , and the feeding unit 10 is configured to couple and feed the first radiator 301 through the first feeding coupling structure 3011 .
  • the feeding unit 10 is electrically connected to the frame radiator 31 through the first capacitive element C1.
  • the frame radiator 31 is always in a conducting state and operates in the first frequency band.
  • the capacitance value of the first adjustable capacitor 2001 is adjustable.
  • the capacitance value of the first adjustable capacitor 2001 is smaller than the preset threshold, the resonant frequency of the first adjustable capacitor 2001 is outside the first frequency band, and the first adjustable capacitor 2001 has a resonant frequency outside the first frequency band. 2001 does not resonate and is in a high resistance state.
  • the first adjustable capacitor 2001 is similar to an insulator, and the feeding unit 10 and the first radiator 301 are disconnected.
  • the resonant frequency of the first adjustable capacitor 2001 is within the first frequency band, and the feeding unit 10 and the first radiator 301 are electrically connected , the frame radiator 31 and the first radiator 301 work together in the first frequency band.
  • the antenna unit operates in the fourth radiation mode.
  • FIG. 17 is a simulation diagram of a radiation direction of another antenna unit provided by an embodiment of the application
  • FIG. 18 is a S11 parameter distribution diagram of another antenna unit provided by an embodiment of the application
  • FIG. 19 is a schematic diagram of antenna radiation efficiency of an antenna unit according to an embodiment of the present application.
  • the capacitance value of C1 is 0.2pF.
  • the capacitance value of the first adjustable capacitor 2001 is, for example, 0.2pF.
  • the capacitance value of the first adjustable capacitor 2001 is, for example, 0.5pF.
  • the first frequency band is, for example, the N78 frequency band.
  • the simulation diagrams of the radiation direction of the antenna unit when it operates in the third radiation mode are shown in (a), (b), and (c) of FIG. 17 .
  • the main radiation direction is the first direction.
  • the S11 parameter distribution diagram of the antenna unit working in the third radiation mode is shown as curve a in FIG. 18 .
  • curve a in FIG. 18 the S11 parameter of the antenna unit operating in the third radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is large.
  • Curve 1 in FIG. 19 For the antenna radiation efficiency of the antenna unit operating in the third radiation mode, reference may be made to Curve 1 in FIG. 19 . As shown by curve 1 in FIG. 19 , when the antenna unit operating in the third radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the simulation diagrams of the radiation directions of the antenna unit when it operates in the third radiation mode are shown in (d), (e), and (f) in FIG. 17 .
  • the antenna unit operating in the fourth radiation mode resonates in the N78 (3.3GHz-3.7GHz) frequency band
  • the main radiation direction is the second direction.
  • the S11 parameter distribution diagram of the antenna unit operating in the fourth radiation mode is shown in curve b in FIG. 18 .
  • curve b in FIG. 18 the S11 parameter of the antenna unit operating in the fourth radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is large.
  • Curve 2 in FIG. 19 For the antenna radiation efficiency of the antenna unit operating in the fourth radiation mode, reference may be made to Curve 2 in FIG. 19 . As shown by the curve 2 in Fig. 6, when the antenna unit operating in the fourth radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the antenna system efficiency of the antenna unit operating in the third radiation mode may refer to the curve 1-1 in FIG. 19 .
  • the antenna system efficiency of the antenna unit operating in the fourth radiation mode reference may be made to curve 2-1 in FIG. 19 .
  • the main radiation direction of the radiator in the third radiation mode is the first direction
  • the main radiation direction of the radiator in the fourth radiation mode is the second direction
  • the second direction is different from the first direction. than, more towards the top.
  • the metal frame radiator and the first radiator disposed on the casing are distributedly fed, and an adjustable capacitor is arranged between the first radiator and the feeding unit, The main radiation direction of the metal frame antenna can be changed, thereby reducing the influence of the user's holding on the radiation performance of the antenna.
  • the first end of the first radiation 301 is provided with a first feed coupling structure 3011
  • the second end of the first radiation 301 is provided with a first ground coupling structure 3012
  • the first ground coupling structure 3012 is coupled with the first radiator 301
  • a first adjustable capacitor 2001 is provided between the first ground coupling structure 3012 and the ground plate
  • the first radiator 301 is used for coupling to ground through the first ground coupling structure 3012 .
  • the feeding unit 10 is electrically connected to the frame radiator 31 through a first capacitive element C1, and is electrically connected to the first feeding coupling structure 3011 through a second capacitive element C2.
  • the frame radiator 31 is always in a conducting state and operates in the first frequency band.
  • the capacitance value of the first adjustable capacitor 2001 is adjustable.
  • the capacitance value of the first adjustable capacitor 2001 is smaller than the preset threshold, the resonant frequency of the first adjustable capacitor 2001 is outside the first frequency band, and the first adjustable capacitor 2001 has a resonant frequency outside the first frequency band. 2001 does not resonate and is in a high resistance state.
  • the first adjustable capacitor 2001 is similar to an insulator, and the feeding unit 10 and the first radiator 301 are disconnected.
  • the resonant frequency of the first adjustable capacitor 2001 is within the first frequency band, and the feeding unit 10 and the first radiator 301 are electrically connected , the frame radiator 31 and the first radiator 301 work together in the first frequency band.
  • the antenna unit operates in the fourth radiation mode.
  • FIG. 21 is a simulation diagram of a radiation direction of another antenna unit provided by an embodiment of the present application
  • FIG. 22 is a S11 parameter distribution diagram of another antenna unit provided by an embodiment of the present application
  • FIG. 23 is a schematic diagram of antenna radiation efficiency of an antenna unit according to an embodiment of the present application.
  • the capacitance value of C1 is 0.2pF
  • the capacitance value of C2 is 0.2pF.
  • the capacitance value of the first adjustable capacitor 2001 is, for example, 0.3pF.
  • the capacitance value of the first adjustable capacitor 2001 is, for example, 0.8pF.
  • the first frequency band is, for example, the N78 frequency band.
  • the simulation diagrams of the radiation direction of the antenna unit when it works in the third radiation mode are shown in (a), (b), and (c) in FIG. 21 .
  • the main radiation direction is the first direction.
  • the S11 parameter distribution diagram of the antenna unit working in the third radiation mode is shown as curve a in FIG. 22 .
  • curve a in FIG. 22 the S11 parameter of the antenna unit operating in the third radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is large.
  • the antenna radiation efficiency of the antenna unit operating in the third radiation mode may refer to Curve 1 in Fig. 23 . As shown by curve 1 in FIG. 23 , when the antenna unit operating in the third radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the simulation diagrams of the radiation directions of the antenna unit working in the third radiation mode are shown in (d), (e), and (f) in FIG. 21 .
  • the antenna unit operating in the fourth radiation mode resonates in the N78 (3.3GHz-3.7GHz) frequency band
  • the main radiation direction is the second direction.
  • the S11 parameter distribution diagram of the antenna unit in the fourth radiation mode is shown as curve b in FIG. 22 .
  • curve b in FIG. 22 the S11 parameter of the antenna unit operating in the fourth radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is large.
  • Curve 2 in FIG. 23 For the antenna radiation efficiency of the antenna unit operating in the fourth radiation mode, reference may be made to Curve 2 in FIG. 23 . As shown by the curve 2 in FIG. 6 , when the antenna unit operating in the fourth radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the antenna system efficiency of the antenna unit operating in the third radiation mode may refer to curve 1-1 in FIG. 23 .
  • the antenna system efficiency of the antenna unit operating in the fourth radiation mode reference may be made to curve 2-1 in FIG. 23 .
  • the main radiation direction of the radiator in the third radiation mode is the first direction
  • the main radiation direction of the radiator in the fourth radiation mode is the second direction
  • the second direction is different from the first direction.
  • the deflection angle between the second direction and the first direction is larger in the embodiment of the present application.
  • the metal frame radiator and the first radiator disposed on the casing are distributed and fed, and the adjustable capacitance is arranged between the first radiator and the ground plate, so that the By changing the main radiation direction of the metal frame antenna, the influence of the user's holding on the radiation performance of the antenna can be reduced.
  • the first ground coupling structure 3012 at the end of the first radiator, the deflection angle of the main radiation direction of the antenna unit is increased.
  • the feeding unit 10 can be directly connected to the first feeding coupling structure 3011 , and there is no need to connect the feeding unit 10 and the first feeding A capacitive element is arranged between the electrical coupling structures 3011 , and the feeding capacitor can be directly replaced by the first feeding coupling structure 3011 .
  • the first end of the first radiation 301 is provided with a first feed coupling structure 3011
  • the first ground coupling structure 3012 is provided in the middle of the first radiator 301 .
  • the first ground coupling structure 3012 is coupled with the first radiator 301 , a first adjustable capacitor 2001 is provided between the first ground coupling structure 3012 and the ground plate, and the first radiator 301 For coupling to ground through the first ground coupling structure 3012 .
  • the feeding unit 10 is electrically connected to the frame radiator 31 and the first feeding coupling structure 3011 through a first capacitive element and a second capacitive element, respectively.
  • the frame radiator 31 is always in a conducting state and operates in the first frequency band.
  • the capacitance value of the first adjustable capacitor 2001 is adjustable.
  • the capacitance value of the first adjustable capacitor 2001 is smaller than the preset threshold, the resonant frequency of the first adjustable capacitor 2001 is outside the first frequency band, and the first adjustable capacitor 2001 has a resonant frequency outside the first frequency band. 2001 does not resonate and is in a high resistance state.
  • the first adjustable capacitor 2001 is similar to an insulator, and the feeding unit 10 and the first radiator 301 are disconnected.
  • the resonant frequency of the first adjustable capacitor 2001 is within the first frequency band, and the feeding unit 10 and the first radiator 301 are electrically connected , the frame radiator 31 and the first radiator 301 work together in the first frequency band.
  • the antenna unit operates in the fourth radiation mode.
  • the first ground coupling structure 3012 is disposed at the second end of the first radiator 301 , and during operation, the current of the first radiator 301 is separated from the second end of the first radiator 301 One end flows to the second end of the first radiator 301 , and the working mode of the first radiator 301 is a differential mode (DM) mode.
  • DM differential mode
  • the working mode of the first radiator 301 is a common mode (common mode, CM) mode.
  • a coupling structure may be provided at the middle and position of the first radiator 301 and at the second end, respectively, and an adjustable capacitance may be set between the coupling structure and the ground plate, and by adjusting each adjustable capacitance
  • the capacitance value of the first radiator 301 makes the middle position of the first radiator 301 coupled to ground or the second end of the first radiator is coupled to ground.
  • the working mode of the first radiator 301 is: In a common mode (common mode, CM) mode, when the second end of the first radiator is coupled to ground, the working mode of the first radiator 301 is a differential mode (differential mode, DM) mode.
  • CM common mode
  • DM differential mode
  • the working mode of the radiator is the differential mode mode
  • the working mode of the radiator is the common mode mode
  • the main radiation direction of the radiator is different.
  • the antenna unit 02 includes: a frame radiator 31 arranged on the middle frame 3 , and a first radiator 301 arranged on the back shell 4 .
  • the frame radiator 31 and the first radiator 301 are, for example, rectangular structures, wherein, different from the above embodiments, the long side of the frame radiator 31 is parallel to the y-axis, and the short side of the frame radiator 31 is parallel to the x-axis.
  • the long side of the first radiator 301 is parallel to the x-axis, and the short side of the first radiator 301 is parallel to the y-axis.
  • the extension directions of the frame radiator 31 and the first radiator in the XOY plane are perpendicular to each other.
  • the feeding unit 10 is electrically connected to the frame radiator 31 through a first capacitive element C1, and is electrically connected to the first feeding coupling structure 3011 through a second capacitive element C2.
  • the first end of the first radiator is provided with a first feed coupling structure 3011, and the second end of the first radiator is provided with a first ground coupling structure 3012.
  • the first feed coupling structure 3011 is coupled to the first end of the first radiator 301 , and the feed unit 10 is configured to couple the first radiator 301 to the first radiator 301 through the first feed coupling structure 3011 Coupling feed.
  • the first ground coupling structure 3012 is coupled to the second end of the first radiator 301 , and the first radiator 301 is used for coupling to ground through the first ground coupling structure 3012 .
  • the first ground coupling structure 3012 is connected to the ground plate through the first adjustable capacitor 2001 .
  • the frame radiator 31 is always in a conducting state and operates in the first frequency band.
  • the capacitance value of the first adjustable capacitor 2001 is adjustable.
  • the capacitance value of the first adjustable capacitor 2001 is smaller than the preset threshold, the resonant frequency of the first adjustable capacitor 2001 is outside the first frequency band, and the first adjustable capacitor 2001 has a resonant frequency outside the first frequency band. 2001 does not resonate and is in a high resistance state.
  • the first adjustable capacitor 2001 is similar to an insulator, and the feeding unit 10 and the first radiator 301 are disconnected.
  • the resonant frequency of the first adjustable capacitor 2001 is within the first frequency band, and the feeding unit 10 and the first radiator 301 are electrically connected , the frame radiator 31 and the first radiator 301 work together in the first frequency band.
  • the antenna unit operates in the fourth radiation mode.
  • FIG. 27 is a simulation diagram of a radiation direction of another antenna unit provided by an embodiment of the present application
  • FIG. 28 is a S11 parameter distribution diagram of another antenna unit provided by an embodiment of the present application
  • FIG. 29 is a schematic diagram of antenna radiation efficiency of an antenna unit according to an embodiment of the present application.
  • the capacitance value of C1 is 0.3pF
  • the capacitance value of C2 is 0.2pF.
  • the capacitance value of the first adjustable capacitor 2001 is, for example, 0.3pF.
  • the capacitance value of the first adjustable capacitor 2001 is, for example, 0.5pF.
  • the first frequency band is, for example, the N78 frequency band.
  • the simulation diagrams of the radiation direction of the antenna unit when it works in the third radiation mode are shown in (a), (b), and (c) in FIG. 27 .
  • the main radiation direction is the first direction.
  • the S11 parameter distribution diagram of the antenna unit working in the third radiation mode is shown as curve a in FIG. 28 .
  • curve a in FIG. 28 the S11 parameter of the antenna unit operating in the third radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is large.
  • Curve 1 in FIG. 29 As shown by curve 1 in FIG. 29 , when the antenna unit operating in the third radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the simulation diagrams of the radiation directions of the antenna unit working in the third radiation mode are shown in (d), (e), and (f) in FIG. 27 .
  • the antenna unit operating in the fourth radiation mode resonates in the N78 (3.3GHz-3.7GHz) frequency band
  • the main radiation direction is the second direction.
  • the S11 parameter distribution diagram of the antenna unit operating in the fourth radiation mode is shown as curve b in FIG. 28 .
  • curve b in FIG. 28 the S11 parameter of the antenna unit operating in the fourth radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is large.
  • Curve 2 in FIG. 29 For the antenna radiation efficiency of the antenna unit operating in the fourth radiation mode, reference may be made to Curve 2 in FIG. 29 . As shown by the curve 2 in FIG. 6 , when the antenna unit operating in the fourth radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the antenna system efficiency of the antenna unit operating in the third radiation mode may refer to curve 1-1 in FIG. 29 .
  • the antenna system efficiency of the antenna unit operating in the fourth radiation mode can be referred to curve 2-1 in FIG. 29 .
  • the main radiation direction of the radiator in the third radiation mode is the first direction
  • the main radiation direction of the radiator in the fourth radiation mode is the second direction
  • the second direction is different from the first direction. more to the left than.
  • the metal frame radiator and the first radiator disposed on the casing are distributedly fed, and an adjustable capacitor is arranged between the first radiator and the feeding unit, The main radiation direction of the metal frame antenna can be changed, thereby reducing the influence of the user's holding on the radiation performance of the antenna.
  • the antenna unit 02 includes: a frame radiator 31 arranged on the middle frame 3 , and a first radiator 301 and a second radiator arranged on the back shell 4 Radiator 302 .
  • the first radiator 301 and the second radiator 302 intersect, and the included angle between the first radiator 301 and the second radiator 302 is 90°.
  • the frame radiator 31 and the first radiator 301 and the second radiator 302 all adopt a rectangular structure.
  • the long side of the frame radiator 31 is parallel to the y-axis, and the short side of the frame radiator 31 is parallel to the x-axis.
  • the long side of the first radiator 301 is parallel to the y-axis, and the short side of the first radiator 301 is parallel to the x-axis.
  • the long side of the second radiator 302 is parallel to the x-axis, and the short side of the second radiator 302 is parallel to the y-axis.
  • the extension directions of the frame radiator 31 and the first radiator 301 in the XOY plane are perpendicular, and the extension directions of the frame radiator 31 and the second radiator 302 in the XOY plane are parallel.
  • the first radiator 301 and the second radiator 302 share a distributed feed coupling structure 300 .
  • the feeding unit couples and feeds two or more radiators through one of the distributed feeding coupling structures 300, and the first radiator 301 and the second radiator 302 are respectively connected to the One side of the distributed feed coupling structure 300 is parallel.
  • the feeding unit 10 is electrically connected to the frame radiator 31 through the first capacitive element C1, and is electrically connected to the distributed feed coupling structure 300 through the second capacitive element C2.
  • the second end of the first radiator 301 is provided with a first ground coupling structure 3012, the first ground coupling structure 3012 is coupled with the first radiator 301, and the first radiator 301 passes through the first ground coupling structure 3012.
  • the ground coupling structure 3012 is coupled to ground.
  • the fourth end of the second radiator 302 is provided with a second ground coupling structure 3022, the second ground coupling structure 3022 is coupled with the first radiator 301, and the second radiator 302 passes through the The second ground coupling structure 3022 is coupled to ground.
  • a first adjustable capacitor 2001 is connected in series between the first ground coupling structure 3012 and the ground plate
  • a second adjustable capacitor 2002 is connected in series between the second ground coupling structure 3022 and the ground plate. Capacitance values of the first adjustable capacitor 2001 and the second adjustable capacitor 2002 are adjustable, and the first adjustable capacitor 2001 and the second adjustable capacitor 2002 are used to adjust the resonance frequency.
  • the frame radiator 31 is always in a conducting state and operates in the first frequency band.
  • the capacitance values of the first adjustable capacitor 2001 and the second adjustable capacitor 2002 are adjustable.
  • the resonant frequency of the first adjustable capacitor 2001 is outside the first frequency band, and the first adjustable capacitor 2001 and the second adjustable capacitor 2001
  • the tunable capacitor 2002 does not resonate and is in a high resistance state.
  • the first tunable capacitor 2001 and the second tunable capacitor are similar to insulators.
  • the feeding unit 10 and the first radiator 301 and the second The radiator 302 is turned off.
  • the resonant frequency of the first adjustable capacitor 2001 is within the first frequency band,
  • the first adjustable capacitor 2001 resonates and is in a low resistance state.
  • the first adjustable capacitor 2001 is similar to a conductor, and the feeding unit 10 and the first radiator 301 are in conduction.
  • the second adjustable capacitor 2002 When the electromagnetic wave whose frequency is in the first frequency band is transmitted to the second adjustable capacitor 2002, since the resonant frequency of the second adjustable capacitor 2002 is outside the first frequency band, the second adjustable capacitor 2002 will not resonate and In a high resistance state, the second adjustable capacitor 2002 is similar to an insulator, and the feeding unit 10 and the second radiator 302 are disconnected.
  • the frame radiator 31 and the first radiator 301 work in the first frequency band, and the antenna unit 02 works in the fourth radiation mode.
  • the resonant frequency of the first adjustable capacitor 2001 is at the first adjustable capacitor 2001. Outside the frequency band, the first adjustable capacitor 2001 does not resonate and is in a high resistance state. At this time, the first adjustable capacitor 2001 is similar to an insulator, and the feeding unit 10 and the first radiator 301 are disconnected.
  • the resonant frequency of the second adjustable capacitor 2002 is located in the first frequency band, the second adjustable capacitor 2002 resonates and is in a low resistance state. At this time, the second adjustable capacitor 2002 is similar to a conductor, and the feeding unit 10 and the The second radiator 302 is turned on.
  • the frame radiator 31 and the second radiator 302 work in the first frequency band, and the antenna unit 02 works in the fifth radiation mode.
  • the above-mentioned antenna units 02 may be arranged on the left and right sides and the top of the communication device 01 .
  • FIG. 31 is a simulation diagram of a radiation direction of another antenna unit provided by an embodiment of the present application
  • FIG. 32 is a S11 parameter distribution diagram of another antenna unit provided by an embodiment of the present application
  • FIG. 33 is a schematic diagram of antenna radiation efficiency of an antenna unit according to an embodiment of the present application.
  • the capacitance value of C1 is 0.3pF
  • the capacitance value of C2 is 0.2pF.
  • the capacitance value of the first adjustable capacitor 2001 is 0.3pF
  • the capacitance value of the second adjustable capacitor is 0.3pF
  • the capacitance value of the first adjustable capacitor 2001 is 1.2pF
  • the capacitance value of the second adjustable capacitor is 0.3pF.
  • the capacitance value of the first adjustable capacitor 2001 is 0.3pF
  • the capacitance value of the second adjustable capacitor is 1.2pF.
  • the first frequency band is, for example, the N78 frequency band.
  • the simulation diagrams of the radiation direction of the antenna unit when it operates in the third radiation mode are shown in (a), (b), and (c) in FIG. 31 .
  • the main radiation direction is the first direction.
  • the S11 parameter distribution diagram of the antenna unit operating in the third radiation mode is shown as curve a in FIG. 32 .
  • curve a in Figure 32 the S11 parameter of the antenna unit operating in the third radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is large.
  • Curve 1 in FIG. 33 As shown by curve 1 in FIG. 33 , when the antenna unit operating in the third radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the simulation diagrams of the radiation directions of the antenna unit working in the fourth radiation mode are shown in (d), (e), and (f) in FIG. 31 .
  • the main radiation direction is the second direction.
  • the S11 parameter distribution diagram of the antenna unit operating in the fourth radiation mode is shown as curve b in FIG. 32 .
  • curve b in FIG. 32 the S11 parameter of the antenna unit operating in the fourth radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is large.
  • Curve 2 in FIG. 33 As shown by the curve 2 in FIG. 6 , when the antenna unit operating in the fourth radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the simulation diagrams of the radiation direction of the antenna unit when it operates in the fifth radiation mode are shown in (g), (h), and (i) in FIG. 31 .
  • the main radiation direction is the third direction.
  • the S11 parameter distribution diagram of the antenna unit operating in the fifth radiation mode is shown as curve a in FIG. 32 .
  • curve a in FIG. 32 the S11 parameter of the antenna unit operating in the fifth radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is high.
  • curve 3 in FIG. 33 For the antenna radiation efficiency of the antenna unit operating in the fifth radiation mode, reference may be made to curve 3 in FIG. 33 .
  • curve 1 in FIG. 33 when the antenna unit operating in the fifth radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the antenna system efficiency of the antenna unit operating in the third radiation mode may refer to curve 1-1 in FIG. 33 .
  • the antenna system efficiency of the antenna unit operating in the fourth radiation mode reference may be made to curve 2-1 in FIG. 33 .
  • the antenna system efficiency of the antenna unit operating in the fifth radiation mode reference may be made to curve 2-1 in FIG. 33 .
  • the main radiation direction of the radiator in the third radiation mode is the first direction
  • the main radiation direction of the radiator in the fourth radiation mode is the second direction
  • the radiator in the fifth radiation mode The main radiation direction in the mode is the third direction
  • the first direction points to the lower left
  • the second direction points to the left
  • the third direction points to the upper left.
  • the metal frame radiator and the first radiator and the second radiator arranged on the casing are distributed to feed, and by setting the adjustable capacitor, the radiator of the metal frame antenna can be changed.
  • the main radiation direction can reduce the influence of the user's holding on the radiation performance of the antenna.
  • the antenna unit 02 includes: a frame radiator 31 arranged on the middle frame 3 , and a first radiator 301 and a second radiator arranged on the back shell 4 302.
  • the first radiator 301 and the second radiator 302 intersect, and the included angle between the first radiator 301 and the second radiator 302 is 90°.
  • the first end of the first radiator 301 is provided with a first feed coupling structure 3011 .
  • the feeding unit 10 couples and feeds the first radiator 301 through the first feeding coupling structure 3011 .
  • the third end of the second radiator 302 is connected to the connection point of the first radiator 301 , wherein the connection point of the first radiator 301 is located between the first end of the first radiator 301 and the first radiator 301 . between the two ends.
  • the connection point of the first radiator 301 is located in the middle of the first end and the second end of the first radiator 301 .
  • the second end of the first radiator 301 is provided with a first ground coupling structure 3012, the first ground coupling structure 3012 is coupled with the first radiator 301, and the first radiator 301 passes through the first ground coupling structure 3012.
  • the ground coupling structure 3012 is coupled to ground.
  • the fourth end of the second radiator 302 is provided with a second ground coupling structure 3022, the second ground coupling structure 3022 is coupled with the first radiator 301, and the second radiator 302 passes through the The second ground coupling structure 3022 is coupled to ground.
  • a first adjustable capacitor 2001 is connected in series between the first ground coupling structure 3012 and the ground plate
  • a second adjustable capacitor 2002 is connected in series between the second ground coupling structure 3022 and the ground plate. Capacitance values of the first adjustable capacitor 2001 and the second adjustable capacitor 2002 are adjustable, and the first adjustable capacitor 2001 and the second adjustable capacitor 2002 are used to adjust the resonance frequency.
  • the working mode of the first radiator 301 is a differential mode (DM) mode.
  • the current of the first radiator 301 flows from the first end of the first radiator 301 and the second end of the first radiator 301 to the second end of the first radiator 301 respectively.
  • Two radiators, the working mode of the first radiator 301 and the second radiator is a common mode (common mode, CM) mode.
  • the switching between the common mode operation mode and the differential mode operation mode can be realized, so that the main radiation direction of the antenna unit can be flexibly adjusted, Reduce the influence of the user's holding on the radiation performance of the antenna.
  • the antenna unit 02 includes: a frame radiator 31 arranged on the middle frame 3 , and a metal plate 32 arranged on the back shell 4 , the metal Plate 32 includes intersecting first side L1 and second side L2.
  • the included angle between the first side L1 and the second side L2 is 90°.
  • extension directions of the frame radiator 31 and the first side L1 in the XOY plane are perpendicular, and the extension directions of the frame radiator 31 and the second side L2 in the XOY plane are parallel.
  • the first side L1 and the second side L2 share a distributed feed coupling structure 300 .
  • the feeding unit is coupled to feed two or more radiators through one of the distributed feeding coupling structures 300, and the first side L1 and the second side L2 are respectively connected to the One side of the distributed feed coupling structure 300 is parallel.
  • the feeding unit 10 is electrically connected to the frame radiator 31 through the first capacitive element C1, and is electrically connected to the distributed feed coupling structure 300 through the second capacitive element C2.
  • the second end of the first side L1 is provided with a first ground coupling structure 3012, the first ground coupling structure 3012 is coupled with the first side L1, and the first side L1 passes through the first side L1.
  • the ground coupling structure 3012 is coupled to ground.
  • the second end of the second side L2 is provided with a second ground coupling structure 3022, the second ground coupling structure 3022 is coupled with the first side L1, and the second side L2 passes through the The second ground coupling structure 3022 is coupled to ground.
  • a first adjustable capacitor 2001 is connected in series between the first ground coupling structure 3012 and the ground plate
  • a second adjustable capacitor 2002 is connected in series between the second ground coupling structure 3022 and the ground plate. Capacitance values of the first adjustable capacitor 2001 and the second adjustable capacitor 2002 are adjustable, and the first adjustable capacitor 2001 and the second adjustable capacitor 2002 are used to adjust the resonance frequency.
  • the frame radiator 31 is always in a conducting state and operates in the first frequency band.
  • the capacitance values of the first adjustable capacitor 2001 and the second adjustable capacitor 2002 are adjustable.
  • the resonant frequency of the first adjustable capacitor 2001 is outside the first frequency band, and the first adjustable capacitor 2001 and the second adjustable capacitor 2001
  • the tunable capacitor 2002 does not resonate and is in a high resistance state.
  • the first tunable capacitor 2001 and the second tunable capacitor are similar to insulators.
  • the feeding unit 10 and the first side L1 and the second Side L2 is disconnected.
  • the resonant frequency of the first adjustable capacitor 2001 is within the first frequency band,
  • the first adjustable capacitor 2001 resonates and is in a low resistance state.
  • the first adjustable capacitor 2001 is similar to a conductor, and the feeding unit 10 is connected to the first side L1.
  • the second adjustable capacitor 2002 When the electromagnetic wave whose frequency is in the first frequency band is transmitted to the second adjustable capacitor 2002, since the resonant frequency of the second adjustable capacitor 2002 is outside the first frequency band, the second adjustable capacitor 2002 will not resonate and In a high resistance state, the second adjustable capacitor 2002 is similar to an insulator, and the feeding unit 10 is disconnected from the second side L2.
  • the frame radiator 31 and the first side L1 work in the first frequency band, and the antenna unit 02 works in the fourth radiation mode.
  • the resonant frequency of the first adjustable capacitor 2001 is at the first adjustable capacitor 2001. Outside the frequency band, the first adjustable capacitor 2001 does not resonate and is in a high resistance state. At this time, the first adjustable capacitor 2001 is similar to an insulator, and the feeding unit 10 is disconnected from the first side L1.
  • the resonant frequency of the second adjustable capacitor 2002 is located in the first frequency band, the second adjustable capacitor 2002 resonates and is in a low resistance state. At this time, the second adjustable capacitor 2002 is similar to a conductor, and the feeding unit 10 and the The second side L2 is turned on.
  • the frame radiator 31 and the second side L2 work in the first frequency band, and the antenna unit 02 works in the fifth radiation mode.
  • FIG. 36 is a radiation direction simulation diagram of another antenna unit provided by an embodiment of the present application
  • FIG. 37 is a S11 parameter distribution diagram of another antenna unit provided by an embodiment of the present application
  • FIG. 38 is a schematic diagram of antenna radiation efficiency of an antenna unit according to an embodiment of the present application.
  • the capacitance value of C1 is 0.2pF
  • the capacitance value of C2 is 0.2pF.
  • the capacitance value of the first adjustable capacitor 2001 is 0.3pF
  • the capacitance value of the second adjustable capacitor is 0.3pF
  • the capacitance value of the first adjustable capacitor 2001 is 1.2pF
  • the capacitance value of the second adjustable capacitor is 0.3pF.
  • the capacitance value of the first adjustable capacitor 2001 is 0.3pF
  • the capacitance value of the second adjustable capacitor is 1.2pF.
  • the first frequency band is, for example, the N78 frequency band.
  • the simulation diagrams of the radiation direction of the antenna unit when it operates in the third radiation mode are shown in (a), (b), and (c) of FIG. 36 .
  • the main radiation direction is the first direction.
  • the S11 parameter distribution diagram of the antenna unit working in the third radiation mode is shown as curve a in FIG. 37 .
  • curve a in Figure 37 the S11 parameter of the antenna unit operating in the third radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is large.
  • Curve 1 in FIG. 38 As shown by curve 1 in FIG. 38 , when the antenna unit operating in the third radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the simulation diagrams of the radiation directions of the antenna unit working in the fourth radiation mode are shown in (d), (e), and (f) in FIG. 36 .
  • the main radiation direction is the second direction.
  • the S11 parameter distribution diagram of the antenna unit operating in the fourth radiation mode is shown as curve b in FIG. 37 .
  • curve b in FIG. 37 the S11 parameter of the antenna unit operating in the fourth radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is large.
  • the antenna radiation efficiency of the antenna unit operating in the fourth radiation mode may refer to Curve 2 in Fig. 38 . As shown by the curve 2 in FIG. 6 , when the antenna unit operating in the fourth radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the simulation diagrams of the radiation direction of the antenna unit when it operates in the fifth radiation mode are shown in (g), (h), and (i) in FIG. 36 .
  • the main radiation direction is the third direction.
  • the S11 parameter distribution diagram of the antenna unit operating in the fifth radiation mode is shown in curve a in FIG. 37 .
  • curve a in Figure 37 the S11 parameter of the antenna unit operating in the fifth radiation mode when resonance occurs is small, the return loss of the antenna is small, and the radiation efficiency of the antenna is large.
  • Curve 3 in FIG. 38 For the antenna radiation efficiency of the antenna unit operating in the fifth radiation mode, reference may be made to Curve 3 in FIG. 38 .
  • curve 1 in FIG. 38 when the antenna unit operating in the fifth radiation mode resonates, the radiation efficiency of the antenna is relatively high.
  • the antenna system efficiency of the antenna unit operating in the third radiation mode may refer to curve 1-1 in FIG. 38 .
  • the antenna system efficiency of the antenna unit operating in the fourth radiation mode can be referred to curve 2-1 in FIG. 38 .
  • the antenna system efficiency of the antenna unit operating in the fifth radiation mode can be referred to curve 2-1 in FIG. 38 .
  • the main radiation direction of the radiator in the third radiation mode is the first direction
  • the main radiation direction of the radiator in the fourth radiation mode is the second direction
  • the radiator in the fifth radiation mode The main radiation direction in the mode is the third direction
  • the first direction points to the lower left
  • the second direction points to the left
  • the third direction points to the upper left.
  • the metal frame radiator and the first radiator and the second radiator arranged on the casing are distributed to feed, and by setting the adjustable capacitor, the radiator of the metal frame antenna can be changed.
  • the main radiation direction can reduce the influence of the user's holding on the radiation performance of the antenna.
  • the antenna unit 02 in the above-mentioned embodiment may also be rotated as a whole by a preset angle.
  • the antenna unit 02 When the antenna unit 02 is rotated by a predetermined angle, its main radiation direction is rotated by a predetermined angle accordingly, so as to realize the change of the main radiation direction, which can further reduce the influence of holding on the radiation performance of the antenna.
  • the antenna unit provided in the embodiment of the present application is not limited to the combination of the frame radiator 31 provided on the middle frame 3 and the metal radiator provided on the back shell 4, but may also be provided at the position of the middle frame , and use the laser direct structuring technology (Laser-Direct-structuring) to form the antenna on the support grounding structure.
  • Laser-Direct-structuring Laser-Direct-structuring
  • it can also be a combination of the bracket antenna and the frame radiator 31 provided on the middle frame 3 , or a combination of the bracket antenna and the metal radiator arranged on the back shell 4 .
  • the communication device 01 may further include a communication module 010 and a control unit 020 .
  • the communication module 010 includes: the antenna unit 02 in the above embodiment, a mobile communication module, a wireless communication module, a modulation and demodulation processor, a baseband processor, and the like.
  • Antennas can be used to transmit and receive electromagnetic wave signals.
  • Each antenna in a smart appliance can be used to cover a single or multiple communication frequency bands.
  • the mobile communication module can provide the second-generation mobile communication technical specifications (2-Generation wireless telephone technology, 2G), the third-generation mobile communication technology (3rd-Generation, 3G), and the fourth-generation mobile communication technology applied to smart appliances. (4th generation mobile communication technology, 4G), fifth generation mobile communication technology (5th generation wireless systems, 5G) and other wireless communication solutions.
  • the mobile communication module may include at least one filter, switch, power amplifier, low noise amplifier (LNA), and the like.
  • the mobile communication module can receive electromagnetic waves from the antenna, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module can also amplify the signal modulated by the modem processor, and convert the amplified signal into electromagnetic waves through the antenna and then radiate it out.
  • at least part of the functional modules of the mobile communication module may be provided in the processor 001 .
  • at least part of the functional modules of the mobile communication module may be provided in the same device as at least part of the modules of the processor 001 .
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the application processor outputs sound signals through audio devices (not limited to speakers, microphones, etc.), or displays images or videos through the display screen 009 .
  • the modem processor may be a stand-alone device.
  • the modulation and demodulation processor may be independent of the processor 001, and may be provided in the same device as the mobile communication module or other functional modules.
  • the wireless communication module can provide applications in smart appliances including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), Bluetooth (bluetooth, BT), global navigation satellite systems ( global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • Bluetooth blue, BT
  • global navigation satellite systems global navigation satellite system, GNSS
  • frequency modulation frequency modulation, FM
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module may integrate at least one communication processing module 014 .
  • the wireless communication module receives the electromagnetic wave via the antenna, performs frequency modulation and filtering processing on the electromagnetic wave signal, and sends the processed signal to the processor 001 .
  • the wireless communication module can also receive the signal to be sent from the processor 001, perform frequency modulation on it, amplify it,
  • one antenna of the smart appliance is coupled with the mobile communication module, and the other antenna is coupled with the wireless communication module, so that the smart appliance can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), wideband code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC, FM, and/or IR technology, etc.
  • the GNSS may include a global positioning system (GPS), a global navigation satellite system (GLONASS), a Beidou navigation satellite system (BDS), a quasi-zenith satellite system (quasi- zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the control unit 020 can be used to control the on-off of the feeding unit and the radiator of the antenna unit 02 in the communication module 010.
  • the tuning unit is connected to different radiators, the main radiation directions of the antenna units are different, wherein the antenna unit The main radiation direction of is the direction with the largest directivity coefficient on the pattern of the antenna unit.
  • connection state of one or more switch units of the antenna unit is controlled so that the main radiation direction of the antenna unit is staggered from the user's holding position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请实施例公开了一种天线单元和通讯设备,该天线单元包括:第一辐射体,包括相对的第一端和第二端,第二端或该第一辐射体的中间位置接地;第二辐射体,该第二辐射体包括相对的第三端和第四端,该第四端相对于该第三端,远离该第一端设置,该第二端或该第二辐射体的中间位置接地;馈电单元,该馈电单元用于在该第一辐射体的第一端、第二辐射体的第三端,为该第一辐射体和该第二辐射体馈电;调谐单元,该调谐单元用于选择性将馈电单元与第一辐射体的第一端或第二辐射体的第三端接通以为第一辐射体或第二辐射体馈电;其中,调谐单元仅将馈电单元与第一辐射体接通时,与调谐单元仅将馈电单元与第二辐射体接通时,天线单元的主辐射方向不同。

Description

天线单元和通讯设备
本申请要求于2020年09月28日提交国家知识产权局、申请号为202011044876.8、申请名称为“天线单元和通讯设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及天线技术领域,尤其涉及一种天线单元和通讯设备。
背景技术
目前,包括手机在内的终端设备,可以将金属边框作为天线的一部分辐射电磁波,然而终端设备的边框尺寸较小,受到边框形状和尺寸的限制,无法调整天线角度,只能向一个方向辐射电磁波,其方向图比较固定。
然而,在不同的使用场景中,用户会以不同的姿态握持手机,例如:在横屏状态下,用户握持横边框、在竖屏状态下,用户握持竖边框,不同的握持姿态下,用户的手指对边框的握持位置不同,容易对金属边框产生遮挡,影响金属边框的辐射性能。
由于上述边框天线辐射方向单一,难以同时满足横屏握持和竖屏握持的需求。
发明内容
本申请实施例提供一种天线单元和通讯设备,解决了边框天线辐射方向单一,难以同时满足用户横屏握持和竖屏握持的需求的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种天线单元,包括:第一辐射体,该第一辐射体包括相对的第一端和第二端,该第一辐射体的第二端或该第一辐射体的中间位置接地;第二辐射体,该第二辐射体包括相对的第三端和第四端,该第四端相对于该第三端,远离该第一端设置,该第二辐射体的第二端或该第二辐射体的中间位置接地;馈电单元,该馈电单元用于在该第一辐射体的第一端、第二辐射体的第三端,为该第一辐射体和该第二辐射体馈电;调谐单元,该调谐单元用于选择性将所述馈电单元与所述第一辐射体的所述第一端接通以为所述第一辐射体馈电,以及选择性将所述馈电单元与第二辐射体的所述第三端接通以为所述第二辐射体馈电;其中,所述调谐单元仅将所述馈电单元与所述第一辐射体接通时,与所述调谐单元仅将所述馈电单元与所述第二辐射体接通时,所述天线单元的主辐射方向不同,其中,所述天线单元的主辐射方向为所述天线单元方向图上方向性系数最大的方向。不同角度设计的辐射体主辐射方向不同,本申请实施例通过设置多个不同的辐射体(角度不同和/或结构不同,角度不同可以是辐射体之间的呈一定夹角,结构不同可以是在辐射体的两端或中间位置设置耦合结构,在该耦合结构的作用下,使得辐射体的主辐射方向发生改变),并通过调谐单元接通馈电单元和至少一个辐射体,实现同一频段多个方向的方向图覆盖。因此可以根据不同使用场景下用户的不同握持位置,灵活调整天线单元的主辐射方向,减小用户握持对天线 辐射性能的影响。
一种可选的实现方式中,所述第一辐射体在所述第一端的延伸方向和所述第二辐射体在所述第三端的延伸方向之间的夹角为第一角度,所述第一角度在60°-120°的范围内。优选的,所述第一角度为90°。
一种可选的实现方式中,当所述调谐单元接通所述馈电单元和所述第一辐射体的所述第一端时,所述天线单元的主辐射方向为第一方向,当所述调谐单元接通所述馈电单元和所述第二辐射体的所述第三端时,所述天线单元的主辐射方向为第二方向,所述第一方向和所述第二方向的夹角为第二角度。由此,各辐射体之间的角度不同,则不同的辐射体的主辐射方向不同。
一种可选的实现方式中,所述天线单元还包括:馈电耦合结构和接地耦合结构;其中,所述馈电耦合结构设置在所述馈电单元和所述第一辐射体的所述第一端、所述第二辐射体的所述第三端之间,所述馈电耦合结构与所述第一辐射体和所述第二辐射体耦合连接,且所述馈电单元与所述馈电耦合结构电连接;以及接地耦合结构,所述接地耦合结构设置在所述第一辐射体的第二端或所述第一辐射体的中间位置和接地板之间,以及设置在所述第二辐射体的第四端或所述第二辐射体的中间位置与所述接地板之间,所述接地耦合结构与所述第一辐射体和所述第二辐射体耦合连接,且所述接地耦合结构与所述接地板电连接;所述调谐单元所述馈电模块馈电单元通过所述馈电耦合结构和所述接地耦合结构接通所述馈电模块和为所述第一辐射体馈电时,所述天线单元的主辐射方向为第一三方向,所述馈电模块馈电单元所述调谐单元通过所述馈电耦合结构和所述接地耦合结构接通所述馈电模块和为所述第二辐射体馈电时,所述天线单元的主辐射方向为第二四方向,所述第三一方向和所述第二四方向的夹角为第二三角度,所述第二三角度大于所述第一二角度。其中,当接地耦合结构靠近辐射体的第二端时,辐射体的工作模式为差模模式,当接地耦合结构靠近辐射体的中间位置时,辐射体的工作模式为共模模式,差模模式和共模模式下,辐射体的主辐射方向不同,通过切换辐射体的差模模式和共模模式,可以灵活调整天线单元的主辐射方向,减小用户握持对天线辐射性能的影响。此外,采用耦合的馈电方式,方便将天线设置在远离接地板的位置。由此,通过设置接地耦合结构,可以改变该天线单元的主辐射方向,进一步增大天线单元在旋转过程中主辐射方向的偏转角度。
该馈电耦合结构为多个,每个该馈电耦合结构与所述第一辐射体和所述第二辐射体中的一个辐射体耦合,该调谐单元设置在该馈电单元和该馈电耦合结构之间,该馈电单元通过该调谐单元与该馈电耦合结构电连接。由此,可以通过控制馈电单元的通断,实现不同辐射模式的切换。
该馈电耦合结构为1个,所述第一辐射体和所述第二辐射体中的每个辐射体与该馈电耦合结构的一条侧边耦合,该调谐单元设置在该馈电耦合结构与接地板之间,该馈电耦合结构通过该调谐单元与该接地板电连接。由此,多个辐射体共用一个馈电耦合结构,更节省空间,有利于天线尺寸的小型化。
一种可选的实现方式中,所述天线单元还包括:第三辐射体,该第三辐射体包括相对的第五端和第六端,该第六端相对于该第五端,远离该第一端设置,该第三辐射体的第六端或该第三辐射体的中间位置与该接地板耦合连接;该馈电单元与该第三辐 射体的第五端耦合连接,该馈电单元用于为该第三辐射体馈电;所述调谐单元用于选择性地将所述馈电单元和所述第三辐射体接通,以为所述第三辐射体馈电。由此,通过设置第三辐射体,可以进一步增大主辐射方向的调整范围。
一种可选的实现方式中,所述第一辐射体或第二辐射体,与所述第三辐射体之间的夹角为第四角度,所述第四角度在60°-120°的范围内。
一种可选的实现方式中,所述调谐单元将所述第三辐射体和所述馈电单元接通;或者所述调谐单元将所述第一辐射体、第二辐射体中的一个或两个辐射体,和所述馈电单元接通;或者所述调谐单元将所述第三辐射体,以及所述第一辐射体和所述第二辐射体中的一个或两个辐射体,同时和所述馈电单元接通。由此,提高了天线主辐射方向的调整范围。
一种可选的实现方式中,该调谐单元包括:至少一个开关,所述开关设置在所述馈电单元,和所述第一辐射体、所述第二辐射体、以及所述第三辐射体之间,所述开关用于选择性的将所述馈电单元与所述第一辐射体、所述第二辐射体、以及所述第三辐射体中的至少一个辐射体连接;或,所述开关设置在所述第一辐射体、所述第二辐射体、以及所述第三辐射体,和所述接地板之间,所述开关用于选择性的将所述接地板与所述第一辐射体、所述第二辐射体、以及所述第三辐射体中的至少一个辐射体连接。由此,采用开关作为调谐单元,结构简单,便于切换。
一种可选的实现方式中,该调谐单元包括:至少一个可调电容,该可调电容串联在该馈电单元和该馈电耦合结构之间,或串联在该接地耦合结构和该接地板之间;当该可调电容的电容值为预设阈值时,谐振频率位于该第一频段;其中,该第一频段为该天线单元的工作频段;当该可调电容的电容值小于预设阈值时,谐振频率位于该第一频段外。由此,采用可调电容作为调谐单元,控制方式更加灵活。
一种可选的实现方式中,所述第二辐射体的第三端连接于所述第一辐射体上的连接点,其中,所述第一辐射体的所述连接点位于所述第一端和所述第二端之间。由此,可以通过调整各调谐单元的通断,实现辐射体的差模模式和共模模式的切换,可以灵活调整天线单元的主辐射方向,减小用户握持对天线辐射性能的影响。
一种可选的实现方式中,所述天线单元为贴片天线,所述天线单元包括相交的第一侧边部分和第二侧边部分,所述天线单元的第一侧边部分作为所述第一辐射体,所述天线单元的第二侧边部分作为所述第二辐射体,且所述第一侧边部分和所述第二侧边部分相交的一端分别与所述馈电单元耦合连接,所述第一侧边部分和所述第二侧边部分的另一端分别与所述接地板耦合连接。由此,天线单元采用贴片天线,更节省天线单元占用空间。
一种可选的实现方式中,该天线单元还包括:所述天线单元还包括:至少一个容性件,所述容性件设置在所述馈电单元,和所述第一辐射体、所述第二辐射体、以及所述第三辐射体之间,所述馈电单元通过所述容性件与所述第一辐射体、所述第二辐射体、以及所述第三辐射体中的至少一个耦合连接。由此,可以通过该容性件滤除掉工作频段外的高频信号。
本申请的第二方面,提供一种通讯设备,包括射频模块以及如上所述的天线单元,该射频模块和该天线电连接。由此,该通讯设备采用上述天线单元,可以灵活调整天 线单元的主辐射方向,减小用户握持对天线辐射性能的影响。
一种可选的实现方式中,该通讯设备包括:背壳,该天线单元的至少一个辐射体设置在该背壳上。由此,壳体上的空间更大,可以设置多个角度不同的辐射体,实现同一频段多个方向的方向图覆盖。
一种可选的实现方式中,该壳体采用玻璃或陶瓷材质。
一种可选的实现方式中,所述通讯设备还包括:中框,所述中框包括:承载板和绕承载板一周的边框,所述天线单元的至少一个辐射体设置在所述边框上。由此,可以对现有的边框天线的结构进行改进,提高天线单元设计的灵活性。
一种可选的实现方式中,所述承载板上设有印制电路板PCB,所述馈电单元、所述接地板、所述调谐单元设置在所述PCB上,所述馈电耦合结构和所述馈电单元电连接,所述接地耦合结构和所述接地板电连接。
附图说明
图1a为本申请实施例提供的通讯设备的结构示意图;
图1b为本申请实施例提供的通讯设备的拆解结构示意图;
图2a为本申请实施例提供的一种天线单元的旋转过程示意图;
图2b为图2a中各天线单元的辐射方向仿真图;
图2c为本申请实施例提供的另一种天线单元的旋转过程示意图;
图2d为图2c中各天线单元的辐射方向仿真图;
图3a为本申请实施例提供的一种天线单元的结构示意图;
图3b为本申请实施例提供的另一种天线单元的结构示意图;
图4为图3b中天线单元的辐射方向仿真图;
图5为图3b中天线单元的S11参数分布图;
图6为图3b中天线单元的辐射效率示意图;
图7为图3b中天线单元的主辐射方向示意图;
图8a为本申请实施例提供的另一种天线单元的结构示意图;
图8b为图8a中天线单元的主辐射方向示意图;
图9a为本申请实施例提供的另一种天线单元的结构示意图;
图9b为图9a中天线单元的主辐射方向示意图;
图10为本申请实施例提供的另一种天线单元的结构示意图;
图11为图10中天线单元的辐射方向仿真图;
图12为图10中天线单元的S11参数分布图;
图13为图10中天线单元的辐射效率示意图;
图14为图10中天线单元在第一辐射模式下的电流和电场分布情况示意图;
图15为图10中天线单元在第二辐射模式下的电流和电场分布情况示意图;
图16为本申请实施例提供的另一种天线单元的结构示意图;
图17为图16中天线单元的辐射方向仿真图;
图18为图16中天线单元的S11参数分布图;
图19为图16中天线单元的辐射效率示意图;
图20为本申请实施例提供的另一种天线单元的结构示意图;
图21为图20中天线单元的辐射方向仿真图;
图22为图20中天线单元的S11参数分布图;
图23为图20中天线单元的辐射效率示意图;
图24为本申请实施例提供的另一种天线单元的结构示意图;
图25为本申请实施例提供的另一种天线单元的结构示意图;
图26为本申请实施例提供的另一种天线单元的结构示意图;
图27为图26中天线单元的辐射方向仿真图;
图28为图26中天线单元的S11参数分布图;
图29为图26中天线单元的辐射效率示意图;
图30a为本申请实施例提供的另一种天线单元的结构示意图;
图30b为图30a中天线单元的主辐射方向示意图;
图31为图30a中天线单元的辐射方向仿真图;
图32为图30a中天线单元的S11参数分布图;
图33为图30a中天线单元的辐射效率示意图;
图34为本申请实施例提供的另一种天线单元的结构示意图;
图35为本申请实施例提供的另一种天线单元的结构示意图;
图36为图35中天线单元的辐射方向仿真图;
图37为图35中天线单元的S11参数分布图;
图38为图35中天线单元的辐射效率示意图;
图39为本申请实施例提供的另一种天线单元的结构示意图;
图40为本申请实施例提供的通讯设备的框架图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请中,“上”、“下”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
以下,对本申请实施例可能出现的术语进行解释。
电连接:可理解为元器件物理接触并电导通,也可理解为线路构造中不同元器件之间通过PCB铜箔或导线等可传输电信号的实体线路进行连接的形式。其中,“连接”则是指的机械构造,物理构造的连接。
耦合连接:指两个或两个以上的电路元件或电网络的输入与输出之间存在紧密配合与相互影响,并通过相互作用从一侧向另一侧传输能量的现象。
接通:通过以上“电连接”或“耦合连接”的方式使得两个或两个以上的元器件之间导通或连通来进行信号/能量传输,都可称为接通。
天线方向图:也称辐射方向图。是指在离天线一定距离处,天线辐射场的相对场强(归一化模值)随方向变化的图形,通常采用通过天线最大辐射方向上的两个相互垂直的平面方向图来表示。
天线方向图通常都有多个辐射波束。其中辐射强度最大的辐射波束称为主瓣,其余的辐射波束称为副瓣或旁瓣。在副瓣中,与主瓣相反方向上的副瓣也叫后瓣。
天线方向性系数:天线在最大辐射方向上远区某点的功率密度与辐射功率相同的无方向性天线在同一点的功率密度之比,表示为D。
天线回波损耗:可以理解为经过天线电路反射回天线端口的信号功率与天线端口发射功率的比值。反射回来的信号越小,说明通过天线向空间辐射出去的信号越大,天线的辐射效率越大。反射回来的信号越大,说明通过天线向空间辐射出去的信号越小,天线的辐射效率越小。
天线回波损耗可以用S11参数来表示,S11参数通常为负数。S11参数越小,表示天线回波损耗越小,天线的辐射效率越大;S11参数越大,表示天线回波损耗越大,天线的辐射效率越小。
天线系统效率:指天线向空间辐射出去的功率(即有效地转换电磁波部分的功率)和天线的输入功率之比。
天线辐射效率:指天线向空间辐射出去的功率(即有效地转换电磁波部分的功率)和输入到天线的有功功率之比。其中,输入到天线的有功功率=天线的输入功率-天线损耗;天线损耗主要包括金属的欧姆损耗和/或介质损耗。
首先请参见图1a,图1a是本申请实施例提供的一种通讯设备01的结构示意图。
本申请实施例提供的通讯设备01包括且不限于手机、平板电脑、电脑或可穿戴设备等具有无线通讯功能的电子产品。通讯设备01包括天线单元02、设备主体03和射频模块04。
天线单元02和射频模块04均装配于设备主体03上。射频模块04与天线单元02电连接,用以通过馈电点向天线单元02收发电磁信号。天线单元02根据接收的电磁信号辐射电磁波或根据接收的电磁波向射频模块04发送电磁信号,从而实现无线信号的收发。其中,射频模块(Radio Frequency module,AF module)04为收发器(transmitter and/or receiver,T/R)等可以发射和/或接收射频信号的电路。
本申请实施例对上述通讯设备01的具体形式不做特殊限制。以下实施例为了方便说明,均是以通讯设备为手机为例进行的举例说明。
如图1b所示,通讯设备01包括显示屏2、中框3、壳体(或者称为电池盖、后壳)4以及盖板5。
显示屏2具有能够看到显示画面的显示面a1和与上述显示面a1相对设置的背面a2,显示屏2的背面a2靠近中框3,盖板5设置在显示屏2的显示面a1。
在本申请的一种可能的实施例中,显示屏2为有机发光二极管(organic lightemitting diode,OLED)显示屏。由于OLED显示屏中每个发光子像素内设置有电致发光层,所以可以使得OLED显示屏在接收到工作电压后,实现自发光。
在本申请的另一些实施例中,上述显示屏2可以是液晶显示屏(liquid crystal display,LCD)。在此情况下,上述通讯设备01还可以包括用于向该液晶显示屏提供 光源的背光模组(back light unit,BLU)。
盖板5位于显示屏2远离中框3的一侧,盖板5例如可以是盖板玻璃(cover glass,CG)或透明陶瓷材质,该盖板玻璃可以具有一定的韧性。
背壳4可以采用和盖板5相同的材质。
中框3位于显示屏2和背壳4之间,中框3包括:承载板31和绕承载板31一周的边框32,中框3远离显示屏2的表面用于安装电池、印刷电路板(printed circuit board,PCB)、摄像头(camera)、天线等内部元件。背壳4与中框3盖合后,上述内部元件位于背壳4与中框3之间。
在一些实施例中,当中框3的边框32为金属材料时,可以将上述边框32的一部分作为天线的一部分,然而,受到边框32形状和尺寸的限制,设置在边框32上的天线无法调整角度,其辐射方向图固定,难以同时满足多种应用场景下的需求,例如横屏握持和竖屏握持的应用场景。
在一些实施例中,如图2a、图2c所示,该天线单元包括至少一个辐射单元30和馈电单元10。辐射单元30例如设置在背壳4上,由于背壳4的尺寸较大,可以调整辐射单元30的位置和角度,使得天线单元的主辐射方向发生变化,从而在不同的使用场景下,可以根据需要调整辐射体的角度,满足用户横屏握持或竖屏握持的需求。
其中,所述天线单元的主辐射方向为所述天线单元方向图上方向性系数最大的方向。
馈电单元10和接地板通常设置在设备主体的中框3的承载板31上,设置在背壳4上的辐射单元30无法直接与馈电单元10和接地板电连接,为此,该天线单元例如还包括馈电耦合结构3001和接地耦合结构3002,所述馈电耦合结构3001和接地耦合结构3002可以采用和辐射单元30相同的材质,所述馈电耦合结构3001可以和馈电单元10电连接,并与所述辐射单元30耦合,所述接地耦合结构3002可以和接地板电连接,并与所述辐射单元30耦合。
工作时,馈电单元10可以通过馈电耦合结构对辐射单元30耦合馈电,辐射单元30可以通过接地耦合结构与接地板电连接。
结合图2a、图2b,该辐射单元30包括相对的第一端和第二端,所述辐射单元30的第一端设置有馈电耦合结构3001,所述馈电单元10用于通过所述馈电耦合结构3001对所述辐射单元30耦合馈电。
如图2a中的(a)到(e)所示旋转辐射单元30时,其方向图如图2b中的(a)到(e)所示,可以随之旋转。天线单元在不同角度下的辐射方向仿真图如图2b所示。
其中,图2b中的D为箭头所指的方向的方向性系数,其中,箭头所指的方向的方向性系数最大。如图2b所示,从(a)到(e),辐射体的主辐射方向从下往上发生偏转,偏转角度约为50°~60°。该主辐射方向可以是方向性系数最大的方向。
辐射单元30在竖直放置的状态下,方向性系数最小。
由此,不同角度的天线单元在发生谐振时,主辐射方向不同。
需要说明的是,在理想环境中,该天线单元在旋转过程中的谐振频率不变,仿真可以得到谐振频率相同的天线单元在不同角度下的主辐射方向。而本申请中,该天线单元的方向图的仿真结果在真实的环境中仿真得到,受外部环境影响,使得图2d中各 角度的天线单元的谐振频率不同,存在一定误差,其仿真结果仅供参考。
如图2c、图2d所示,在图2a的基础上,该辐射单元30的第二端还设有接地耦合结构3002,所述接地耦合结构3002接地,并与所述辐射单元30相耦合,所述辐射单元30通过所述接地耦合结构3002与接地板电连接。
如图2c中的(a)到(e)所示旋转辐射单元30时,其方向图如图2d中的(a)到(e)所示,可以随之旋转。天线单元在不同角度下的辐射方向仿真图如图2d所示。
其中,图2d中的D为箭头所指的方向的方向性系数,其中,箭头所指的方向的方向性系数最大。如图2d所示,从(a)到(e),辐射体的主辐射方向从下往上发生偏转,偏转角度大于90°。
该实施例中,辐射单元30的第二端耦合接地,方向性系数整体下降,旋转辐射单元30时,其方向图的旋转角度更大。
由此,不同角度的辐射单元30在发生谐振时,主辐射方向不同,因此,可以通过调整辐射单元30的角度改变天线单元的主辐射方向。并且,将辐射单元30耦合接地,改变辐射体的角度时,主辐射方向的变化更大,因此,还可以通过调整辐射单元30的结构,使得辐射单元耦合接地,以改变天线单元的主辐射方向。
上述实施例中,可以通过调整辐射体的角度改变天线单元的主辐射方向,然而,组装好的天线单元位置通常是固定的,为此,本申请实施例提供一种改进的天线单元。
接着请参考图3a,图3a为本申请实施例提供的天线单元的结构示意图,如图3a所示,该天线单元02包括馈电单元10、接地板(图中未示出)、调谐单元20,以及至少2个辐射体。
如图3a所示,辐射体为2个:第一辐射体301、第二辐射体302,该第一辐射体301包括相对的第一端和第二端,该第二辐射体302包括相对的第三端和第四端,该第四端相对于该第三端,远离该第一端设置。
该馈电单元10用于在该第一辐射体301的第一端、第二辐射体302的第三端,为该第一辐射体301和该第二辐射体302馈电。
该第一辐射体301的第二端或该第一辐射体301的中间位置与该接地板接通,该第二辐射体302的第四端或该第二辐射体302的中间位置与该接地板接通。
需要说明的是,辐射体的中间位置位于辐射体两端之间,例如,该中间位置到辐射体的两端之间的距离相等。
调谐单元20用于选择性将所述馈电单元10与所述第一辐射体301的所述第一端接通以为所述第一辐射体301馈电,以及选择性将所述馈电单元10与第二辐射体302的所述第三端接通以为所述第二辐射体302馈电。
其中,所述调谐单元20仅将所述馈电单元10与所述第一辐射体301接通时,与所述调谐单元20仅将所述馈电单元10与所述第二辐射体302接通时,所述天线单元的主辐射方向不同。
其中,所述天线单元的主辐射方向为所述天线单元方向图上方向性系数最大的方向。
本申请实施例提供的天线单元,不同辐射体的主辐射方向不同,本申请实施例通过设置多个不同(角度不同和/或结构不同)的辐射体,并通过调谐单元接通馈电单元 和不同的辐射体,实现同一频段多个方向的方向图覆盖。因此可以根据不同使用场景下用户的不同握持位置,灵活选择天线单元的主辐射方向,减小用户握持对天线辐射性能的影响。
其中,当接地板靠近第一辐射体的第二端或第二辐射体的第四端时,辐射体的工作模式为差模模式,当接地板靠近辐射体的中间位置时,辐射体的工作模式为共模模式,差模模式和共模模式下,辐射体的主辐射方向不同,通过切换辐射体的差模模式和共模模式,可以灵活调整天线单元的主辐射方向,减小用户握持对天线辐射性能的影响。
在本申请一些实施例中,第一辐射体301、第二辐射体302的角度不同,第一辐射体301在所述第一端的延伸方向和所述第二辐射体302在所述第三端的延伸方向之间的夹角为第一角度。所述第一角度例如在60°-120°的范围内。如图3a所示,所述第一角度为90°。
在本申请的一些实施例中,馈电单元10用于和所述第一辐射体301或所述第二辐射体302电连接。需要说明的是,本实施例中的电连接为馈电单元10和所述第一辐射体301或所述第二辐射体302物理接触并电导通。
当调谐单元20接通馈电单元10和第一辐射体301的所述第一端时,所述天线单元的主辐射方向为第一方向,当调谐单元20接通馈电单元10和第二辐射体302的所述第三端时,天线单元的主辐射方向为第二方向,所述第一方向和所述第二方向的夹角为第二角度。
由此,所述第一辐射体301和所述第二辐射体302之间的角度不同,使得所述第一辐射体301和所述第二辐射体302的主辐射方向不同。
在本申请另一些实施例中,如图3a所示,所述天线单元还包括:与第一辐射体301耦合的第一馈电耦合结构3011和第一接地耦合结构3012,以及与第二辐射体302耦合的第二馈电耦合结构3021和第二接地耦合结构3022。
所述第一辐射体301的第一端和馈电单元10之间设有第一馈电耦合结构3011,所述第一辐射体301的第二端和接地板之间设有第一接地耦合结构3012,所述馈电单元10与所述第一馈电耦合结构3011电连接,所述馈电单元10用于通过所述第一馈电耦合结构3011对所述第一辐射体301耦合馈电,所述第一接地耦合结构3012与接地板电连接,所述第一辐射体301通过所述第一接地耦合结构3012接地。
相应的,所述第二辐射体302的第三端和馈电单元10之间设有第二馈电耦合结构3021,所述第二辐射体302的第四端和接地板之间设有第二接地耦合结构3022,所述馈电单元10与所述第二馈电耦合结构3021电连接,所述馈电单元10用于通过所述第二馈电耦合结构3021对所述第二辐射体302耦合馈电,所述第二接地耦合结构3022与接地板电连接,所述第二辐射体302通过所述第二接地耦合结构3022接地。
所述馈电单元10通过第一馈电耦合结构3011为所述第一辐射体301馈电时,所述天线单元的主辐射方向为第三方向,所述馈电单元10通过所述第二馈电耦合结构3021为所述第二辐射体302馈电时,所述天线单元的主辐射方向为第四方向,所述第三方向和所述第四方向的夹角为第三角度,所述第三角度大于所述第二角度。
由此,采用耦合的馈电方式,方便将天线设置在远离接地板的位置。并且,通过 设置接地耦合结构和馈电耦合结构,可以增大第一辐射体301的辐射方向图中的主辐射方向和第二辐射体302的辐射方向图中的主辐射方向之间的角度。
本申请实施例对馈电耦合结构的数量不做限制,在本申请一些实施例中,如图3a所示,该馈电耦合结构为多个:第一馈电耦合结构3011和第二馈电耦合结构3021。
第一馈电耦合结构3011所述第一辐射体301耦合,第二馈电耦合结构3021和所述第二辐射体302耦合,该调谐单元20设置在该馈电单元10和该馈电耦合结构之间,该馈电单元通过该调谐单元20与该馈电耦合结构电连接。由此,可以通过控制馈电单元的通断,实现不同辐射模式的切换。
在本申请另一些实施例中,如图3b所示,所述第一辐射体301和所述第二辐射体302共用一个分布式馈电耦合结构300。所述第一辐射体301和所述第二辐射体302中的每个辐射体与该分布式馈电耦合结构300的一条侧边耦合,该调谐单元20设置在该接地耦合结构300与接地板之间,该接地耦合结构通过该调谐单元与该接地板电连接。由此,多个辐射体共用一个馈电耦合结构,更节省空间,有利于天线尺寸的小型化。
本申请实施例对所述调谐单元20的具体形式不做限制,在本申请的一些实施例中,如图3a所示,调谐单元20例如包括:至少一个开关201,开关201设置在所述馈电单元10和所述第一辐射体301、所述第二辐射体302之间,所述开关用于选择性的将所述馈电单元10与所述第一辐射体301、所述第二辐射体302中的至少一个辐射体连接。
或,所述开关201设置在所述第一辐射体301、所述第二辐射体302和所述接地板之间,所述开关201用于选择性的将所述接地板与所述第一辐射体301、所述第二辐射体302中的至少一个辐射体连接。
所述开关201用于控制所述馈电单元10和所述第一辐射体301,以及所述馈电单元10和所述第二辐射体302之间的导通状态。
一种实施方式中,开关201为PIN型二极管。在其他实施方式中,所述开关201也可以为MEMS开关或光电开关。
所述开关201例如包括相对的第一端和第二端,所述开关201的第一端与所述馈电单元10连接,所述开关201的第二端用于和所述第一辐射体301连接,或和所述第二辐射体302连接。
当所述开关201的第二端和所述第一馈电耦合结构3011连接时,相当于所述馈电单元10和所述第一辐射体301接通,所述馈电单元10和所述第二辐射体302断开,所述天线单元工作于第一辐射模式。
当所述开关201的第二端和所述第二馈电耦合结构3021连接时,相当于所述馈电单元10和所述第二辐射体302接通,所述馈电单元10和所述第一辐射体301断开,所述天线单元工作于所述第二辐射模式。
由此,采用开关作为调谐单元,结构简单,便于切换。
在本申请另一些实施例中,该开关设置在所述辐射体和所述接地板之间,所述开关的第一端与所述接地板连接,所述开关的第二端用于和其中一个所述辐射体连接。
在本申请的另一些实施例中,如图3b所示,所述第一辐射体301和所述第二辐射 体302共用一个分布式馈电耦合结构300。所述馈电单元通过1个所述分布式馈电耦合结构300为2个或2个以上辐射体耦合馈电,所述第一辐射体301和所述第二辐射体302则分别与所述分布式馈电耦合结构300的一条侧边平行。
由此,多个辐射体共用一个分布式馈电耦合结构300,更节省空间,有利于天线尺寸的小型化。
基于此,所述调谐单元20例如包括:至少一个可调电容,所述可调电容串联在所述馈电单元和所述辐射体之间,或串联在所述辐射体和所述接地板之间。
当所述可调电容的电容值为预设阈值时,谐振频率位于所述第一频段,所述馈电单元和所述辐射体接通,所述天线单元工作于第一辐射模式。
需要说明的是,所述第一频段为所述天线单元的工作频段,在本申请一些实施例中,第一频段为N78(3.3GHz~3.7GHz)频段。
当所述可调电容的电容值小于预设阈值时,谐振频率位于所述第一频段外,所述馈电单元和所述辐射体断开,所述天线单元工作于第二辐射模式。
如图3b所示,所述第一辐射体301与第一可调电容2011串联,所述第二辐射体302与第二可调电容2002电容串联。
在本申请的一些实施例中,所述馈电单元10和所述第一馈电耦合结构3011,以及所述馈电单元10和所述第二馈电耦合结构3021之间串联有所述可调电容,所述可调电容用于调节谐振频率。
其中,在本申请另一些实施例中,可以在所述接地板与所述耦合结构之间设置可调电容,所述可调电容用于调节所述第一可调电容2001的谐振频率。
如图3b所示,所述第一接地耦合结构3012与接地板之间串联有第一可调电容2001、所述第二接地耦合结构3022与接地板之间串联有第二可调电容2002。所述第一可调电容2001和所述第二可调电容2002的电容值可调,所述第一可调电容2001和所述第二可调电容2002的电容值可调用于调节谐振频率。
工作时,第一可调电容2001的电容值位于预设阈值、且所述第二可调电容2002的电容值小于预设阈值时,第一可调电容2001谐振频率位于第一频段内,第一可调电容2001发生谐振而呈低阻状态,此时第一可调电容近似于导体,所述馈电单元10与所述第一辐射体301导通。
当频率位于所述第一频段的电磁波传递至第二可调电容2002上时,由于第二可调电容2002的谐振频率位于所述第一频段外,第二可调电容2002不会发生谐振而呈高阻状态,此时第二可调电容2002近似于绝缘体,所述馈电单元10和所述第二辐射体302断开。
此时,所述天线单元工作于第一辐射模式。
相应的,当第一可调电容2001的电容值小于预设阈值、且所述第二可调电容2002的电容值为预设阈值时,第一可调电容2001的谐振频率位于所述第一频段外,第一可调电容2001不会发生谐振而呈高阻状态,此时第一可调电容2001近似于绝缘体,所述馈电单元10和所述第一辐射体301断开。
此时,第二可调电容2002的谐振频率位于第一频段内,第二可调电容2002发生谐振而呈低阻状态,此时第二可调电容2002近似于导体,所述馈电单元10与所述第 二辐射体302导通。
此时,所述天线单元工作于第二辐射模式。
由此,采用可调电容作为调谐单元,控制方式更加灵活。
此外,如图3a所示,馈电单元10和调谐单元20之间还设有容性件。如图3b所示,馈电单元和分布式馈电耦合结构300之间还设有容性件。其中,该容性件可以用于滤除掉工作频段外的高频信号。
图4为本申请实施例提供的一种天线单元的辐射方向仿真图;图5为本申请实施例提供的一种天线单元的S11参数分布图。图6为本申请实施例提供的一种天线单元的天线辐射效率示意图。
其中,容性件C的电容值为0.6pF。
当天线单元工作于第一辐射模式时,第一可调电容2001的电容值例如为1.2pF,第二可调电容的电容值为0.3pF。
当天线单元工作于第二辐射模式时,第一可调电容2001的电容值例如为0.3pF,第二可调电容的电容值为1.2pF。
天线单元在工作在第一辐射模式时的辐射方向仿真图如图4中的(a)、(b)、(c)所示。参见图4中的(a)、(b)、(c),工作在第一辐射模式的天线单元在N78(3.3GHz~3.7GHz)频段发生谐振时,主辐射方向为第一方向。
天线单元在工作在第一辐射模式时的S11参数分布图如图5中的曲线a所示。如图5中的曲线a所示,工作在第一辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作在第一辐射模式的天线单元的天线辐射效率可以参考图6中的曲线1。如图6中的曲线1所示,工作在第一辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
其中,天线单元在工作在第一辐射模式时的辐射方向仿真图如图4中的(d)、(e)、(f)所示。参见图4中的(d)、(e)、(f),工作在第二辐射模式的天线单元在N78(3.3GHz~3.7GHz)频段发生谐振时,主辐射方向为第二方向。
天线单元在工作在第二辐射模式时的S11参数分布图如图5中的曲线b所示。如图5中的曲线b所示,工作在第二辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作在第二辐射模式的天线单元的天线辐射效率可以参考图6中的曲线2。如图6中的曲线2所示,工作在第二辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
另外,工作在第一辐射模式的天线单元的天线系统效率可以参考图6中的曲线1-1。工作在第二辐射模式的天线单元的天线系统效率可以参考图6中的曲线2-1。
由此,所述辐射体在第一辐射模式下的主辐射方向为第一方向,所述辐射体在第二辐射模式下的主辐射方向为第二方向。
其中,第一辐射模式如为横屏模式,所述第二辐射模式例如为竖屏模式。
在竖屏模式下,用户握持手机的竖边框,在横屏模式下,用户握持手机的横边框。
如图7所示,以手机的横边框作为X轴,以手机的竖边框为Y轴,第一方向例如为平行于X轴的方向,第二方向例如为平行于Y轴的方向。
因此,在横屏模式下,用户握持手机的横边框,天线单元02的主辐射方向为第一 方向,避免用户握持影响天线的辐射性能。
在竖屏模式下,用户握持手机的竖边框,天线单元02的主辐射方向为第二方向,避免用户握持影响天线的辐射性能。
本申请实施例对所述第一辐射体301和所述第二辐射体302的夹角不做限制,第一辐射体301和第二辐射体302的夹角越大,第一辐射体301和第二辐射体302的辐射方向图中的主辐射方向的角度越大。
第一辐射体301和第二辐射体302的夹角可以是60°-120°。在本申请一些实施例中,第一辐射体301和第二辐射体302的夹角为90°。
其中,手机的横屏模式和竖屏模式下,用户的握持位置之间的夹角为90°,第一辐射体301和第二辐射体302的最大辐射夹角接近90°,使得第一辐射体301和第二辐射体302的主辐射方向之间的夹角接近90°,可以更好的减小用户握持手机对辐射性能的影响。
本申请实施例提供的天线单元,通过在天线的辐射体上设置调谐单元20,可以改变天线的辐射方向,避免用户握持影响天线的辐射性能。
在本申请的另一些实施例中,如图8a所示,还可以将天线单元02整体旋转预设角度,图8b为图8a中天线单元的主辐射方向示意图。如图8b所示,当天线单元02旋转预设角度时,其主辐射方向随之旋转预设角度。
在本申请的另一些实施例中,如图9a所示,天线单元02包括:第一辐射体301、第二辐射体302、第三辐射体303、馈电单元10和调谐单元20。
第一辐射体301、第二辐射体302、馈电单元10的具体结构可参考上述实施例,在此不再赘述。
所述第三辐射体303包括相对的第五端和第六端,第三辐射体303的所述第六端相对于所述第五端,远离所述第一辐射体301第一端设置。
所述第三辐射体303的第五端和馈电单元10之间设有第三馈电耦合结构3031,所述第三辐射体303的第六段和接地板之间设有第三接地耦合结构3032,所述馈电单元10与所述第三馈电耦合结构3031电连接,所述馈电单元10用于通过所述第三馈电耦合结构3031对所述第三辐射体303耦合馈电,所述第三接地耦合结构3032接地,所述第二辐射体302通过所述第三接地耦合结构3032接地。
其中,通过设置所述第三接地耦合结构3032,可以增强所述第三辐射体303的方向性。
第一辐射体301或第二辐射体302,与第三辐射体303之间的夹角为第四角度,所述第四角度在60°-120°的范围内。
调谐单元20将所述第三辐射体303和所述馈电单元10接通,或者所述调谐单元20将所述第一辐射体301、第二辐射体302中的一个或两个辐射体,和所述馈电单元20接通;或者所述调谐单元20将所述第三辐射体303,以及所述第一辐射体301和所述第二辐射体302中的一个或两个辐射体,同时和所述馈电单元20接通。
在本申请一些实施例中,调谐单元20可以采用开关201,所述开关201例如包括相对的第一端和第二端,所述开关201的第一端与所述馈电单元10连接,所述开关201的第二端用于和所述第一辐射体301、所述第二辐射体302或所述第三辐射体303 连接。
当所述开关201的第二端和所述第一馈电耦合结构3011连接时,相当于所述馈电单元10和所述第一辐射体301接通,所述馈电单元10和所述第二辐射体302、所述第三辐射体303断开,所述天线单元工作于第一辐射模式。
当所述开关201的第二端和所述第二馈电耦合结构3021连接时,相当于所述馈电单元10和所述第二辐射体302接通,所述馈电单元10和所述第一辐射体301、所述第三辐射体303断开,所述天线单元工作于第二辐射模式。
当所述开关201的第二端和所述第三馈电耦合结构3031连接时,相当于所述馈电单元10和所述第三辐射体303接通,所述馈电单元10和所述第一辐射体301、所述第二辐射体302断开,所述天线单元工作于第三辐射模式。
在本申请的另一些实施例中,所述调谐单元20包括:至少一个可调电容,所述可调电容串联在所述馈电单元和所述馈电耦合结构之间,或串联在所述接地耦合结构和所述接地板之间。
当所述可调电容的电容值为预设阈值时,其谐振频率位于所述第一频段;其中,所述第一频段为所述天线单元的工作频段。
当所述可调电容的电容值小于预设阈值时,其谐振频率位于所述第一频段外。
本申请实施例对所述第一辐射体301、所述第二辐射体302和所述第三辐射体303的夹角不做限制。
所述第一辐射体301、所述第二辐射体302和所述第三辐射体303的夹角可以是120°。
在本申请一些实施例中,如图9a所示,所述第一辐射体301、所述第二辐射体302和所述第三辐射体303的夹角为90°。
图9b为图9a中天线单元的主辐射方向示意图。如图9b所示,当天线单元02包括三个辐射体时,天线单元02可选择的主辐射方向为3个。
由此,第一辐射体301和第二辐射体302的最大辐射夹角接近90°,使得第一辐射模式下,第二辐射模式下和第三辐射模式下,辐射体的主辐射方向之间的夹角接近90°,可以更好的避免用户握持手机对辐射性能的影响。
在本申请其他的实施例中,所述辐射体例如还包括:第四辐射体,所述第四辐射体可以采用和上述所述第一辐射体301、所述第二辐射体302以及所述第三辐射体303相同的结构,所述第一辐射体301、所述第二辐射体302、所述第三辐射体303和所述第四辐射体的夹角可以是90°。
上述实施例中,辐射体为多个,在本申请的另一些实施例中,如图10所示,所述天线单元02为贴片天线(patch antenna),所述天线单元02包括:金属板32,金属板32具有相交的第一侧边L1和第二侧边L2,馈电单元10和调谐单元20。
其中,所述第一侧边L1和第二侧边L2相交的位置设有分布式馈电耦合结构300,所述第一侧边L1的末端设有第一接地耦合结构3012,所述馈电单元10与所述分布式馈电耦合结构300电连接,所述馈电单元10用于通过所述分布式馈电耦合结构300对所述第一侧边L1和第二侧边L2耦合馈电,使得第一侧边和第二侧边作为辐射体发射电磁波。其中,第一侧边和第二侧边的主辐射方向不同。所述第一接地耦合结构3012 接地,所述第一侧边L1通过所述第一接地耦合结构3012耦合接地。
相应的,所述第二侧边L2的第二端设有第二接地耦合结构3022,所述第二接地耦合结构3022接地,所述第二侧边L2通过所述第二接地耦合结构3022耦合接地。
如图10所示,本申请实施例对所述馈电单元10的具体结构不做限制,在本申请一些实施例中,所述馈电单元10包括:容性件C。所述馈电单元10通过所述容性件C与所述第一馈电耦合结构3011和所述第一接地耦合结构3012电连接。
所述第一接地耦合结构3012与接地板之间串联有第一可调电容2001、所述第二接地耦合结构3022与接地板之间串联有第二可调电容2002。所述第一可调电容2001和所述第二可调电容2002的电容值可调,当所述第一可调电容2001和所述第二可调电容2002的电容值发生变化时,所述第一可调电容2001和所述第二可调电容2002的谐振频率随之变化。
工作时,第一可调电容2001的电容值大于预设阈值、且所述第二可调电容2002的电容值小于预设阈值时,第一可调电容2001的谐振频率位于第一频段内,第一可调电容2001发生谐振而呈低阻状态,此时第一可调电容2001近似于导体,所述馈电单元10与所述第一辐射体301导通。
当频率位于所述第二频段的电磁波传递至第二可调电容2002上时,由于第二可调电容2002的谐振频率位于所述第一频段外,第二可调电容2002不会发生谐振而呈高阻状态,此时第二可调电容2002近似于绝缘体,所述馈电单元10和所述第二辐射体302断开。
此时,所述天线单元工作于第一辐射模式。
相应的,当第一可调电容2001的电容值小于预设阈值、且所述第二可调电容2002的电容值大于预设阈值时,第一可调电容2001的谐振频率位于所述第一频段外,第一可调电容2001不会发生谐振而呈高阻状态,此时第一可调电容2001近似于绝缘体,所述馈电单元10和所述第一辐射体301断开。
此时,第二可调电容2002的谐振频率位于第一频段内,第二可调电容2002发生谐振而呈低阻状态,此时第二可调电容2002近似于导体,所述馈电单元10与所述第二辐射体302导通。
此时,所述天线单元工作于第二辐射模式。
图11为本申请实施例提供的另一种天线单元的辐射方向仿真图;图12为本申请实施例提供的另一种天线单元的S11参数分布图。图13为本申请实施例提供的一种天线单元的天线辐射效率示意图。
金属板32例如为正方形,第一侧边L1和第二侧边L2尺寸均为16mm。
其中,容性件C的电容值为0.6pF。
当天线单元工作于第一辐射模式时,第一可调电容2001的电容值例如为1.2pF,第二可调电容的电容值为0.3pF。
当天线单元工作于第二辐射模式时,第一可调电容2001的电容值例如为0.3pF,第二可调电容的电容值为1.2pF。
天线单元在工作在第一辐射模式时的辐射方向仿真图如图11中的(a)、(b)、(c)所示。参见图11中的(a)、(b)、(c),工作在第一辐射模式的天线单元在 N78(3.3GHz~3.7GHz)频段发生谐振时,主辐射方向为第一方向。
天线单元在工作在第一辐射模式时的S11参数分布图如图12中的曲线a所示。如图12中的曲线a所示,工作在第一辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作在第一辐射模式的天线单元的天线辐射效率可以参考图13中的曲线1。如图13中的曲线1所示,工作在第一辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
其中,天线单元在工作在第一辐射模式时的辐射方向仿真图如图11中的(d)、(e)、(f)所示。参见图11中的(d)、(e)、(f),工作在第二辐射模式的天线单元在N78(3.3GHz~3.7GHz)频段发生谐振时,主辐射方向为第二方向。
天线单元在工作在第二辐射模式时的S11参数分布图如图12中的曲线b所示。如图12中的曲线b所示,工作在第二辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作在第二辐射模式的天线单元的天线辐射效率可以参考图13中的曲线2。如图6中的曲线2所示,工作在第二辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
另外,工作在第一辐射模式的天线单元的天线系统效率可以参考图13中的曲线1-1。工作在第二辐射模式的天线单元的天线系统效率可以参考图13中的曲线2-1。
由此,所述辐射体在第一辐射模式下的主辐射方向为第一方向,所述辐射体在第二辐射模式下的主辐射方向为第二方向。
其中,第一辐射模式如为横屏模式,所述第二辐射模式例如为竖屏模式。
图14中的(a)、(b)为上述patch天线在第一辐射模式下的电流分布情况示意图,其中,在第一辐射模式下,电流主要在纵边上流动,图14中的(c)、(d)为上述patch天线在第一辐射模式下的电场分布情况示意图,其中,在第一辐射模式下,横边上的电场强度较大。
图15中的(a)、(b)为上述patch天线在第二辐射模式下的电流分布情况示意图,其中,在第二辐射模式下,电流主要在横边上流动,图14中的(c)、(d)为上述patch天线在第二辐射模式下的电场分布情况示意图,其中,在第一辐射模式下,纵边上的电场强度较大。
在本申请另一些实施例中,如图16所示,所述天线单元02包括:设置在中框3上的边框辐射体31,以及设置在背壳4上的第一辐射体301。其中,边框辐射体31和第一辐射体301的结构不同。
其中,所述边框辐射体31设置在手机的横边或纵边上,其形状、位置固定,一端和馈电单元10电连接,另一端与接地板电连接。所述第一辐射体301设置在手机的壳体上,可以根据需要调整第一辐射体301的形状、位置,第一辐射体301两端设置有耦合结构,在该耦合结构的作用下,第一辐射体301的主辐射方向与边框辐射体31的主辐射方向不同。
在本申请一些实施例中,边框辐射体31和第一辐射体301通过分布式馈电连接。
本申请实施例对该第一辐射体301的角度不做限制。
在本申请的一些实施例中,如图16所示,边框辐射体31和第一辐射体301例如采用矩形结构,其中,边框辐射体31的长边平行于y轴,边框辐射体31的短边平行 于x轴。第一辐射体301的长边平行于y轴,第一辐射体301的短边平行于x轴。
边框辐射体31和第一辐射体在XOY平面内的延伸方向平行。
其中,第一辐射体的第一端设有第一馈电耦合结构3011,所述第一馈电耦合结构3011与所述第一辐射体301相耦合,所述馈电单元10通过第一可调电容2001与第一馈电耦合结构3011连接,所述馈电单元10用于通过所述第一馈电耦合结构3011对所述第一辐射体301耦合馈电。
所述馈电单元10通过第一容性件C1与所述边框辐射体31电连接。
工作时,边框辐射体31一直处于导通状态,且工作于第一频段。
第一可调电容2001的电容值可调,当第一可调电容2001的电容值小于预设阈值时,第一可调电容2001的谐振频率位于所述第一频段外,第一可调电容2001不会发生谐振而呈高阻状态,此时第一可调电容2001近似于绝缘体,所述馈电单元10和所述第一辐射体301断开。
此时,只有边框辐射体31工作于第一频段,所述天线单元工作于第三辐射模式。
相应的,当第一可调电容2001的电容值大于预设阈值时,第一可调电容2001的谐振频率位于第一频段内,所述馈电单元10与所述第一辐射体301导通,所述边框辐射体31和所述第一辐射体301共同工作于第一频段。
此时,所述天线单元工作第四辐射模式。
图17为本申请实施例提供的另一种天线单元的辐射方向仿真图;图18为本申请实施例提供的另一种天线单元的S11参数分布图。图19为本申请实施例提供的一种天线单元的天线辐射效率示意图。
其中,C1的电容值为0.2pF。
当天线单元工作于第三辐射模式时,第一可调电容2001的电容值例如0.2pF。
当天线单元工作于第四辐射模式时,第一可调电容2001的电容值例如为0.5pF。
第一频段例如为N78频段。
天线单元在工作在第三辐射模式时的辐射方向仿真图如图17中的(a)、(b)、(c)所示。参见图17中的(a)、(b)、(c),工作在第三辐射模式的天线单元在第一频段发生谐振时,主辐射方向为第一方向。
天线单元在工作在第三辐射模式时的S11参数分布图如图18中的曲线a所示。如图18中的曲线a所示,工作在第三辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作在第三辐射模式的天线单元的天线辐射效率可以参考图19中的曲线1。如图19中的曲线1所示,工作在第三辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
其中,天线单元在工作在第三辐射模式时的辐射方向仿真图如图17中的(d)、(e)、(f)所示。参见图17中的(d)、(e)、(f),工作在第四辐射模式的天线单元在N78(3.3GHz~3.7GHz)频段发生谐振时,主辐射方向为第二方向。
天线单元在工作第四辐射模式时的S11参数分布图如图18中的曲线b所示。如图18中的曲线b所示,工作第四辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作第四辐射模式的天线单元的天线辐射效率可以参考图19中的曲线2。如图6中的曲线2所示,工作第四辐射模式的 天线单元在发生谐振时,天线的辐射效率较大。
另外,工作在第三辐射模式的天线单元的天线系统效率可以参考图19中的曲线1-1。工作第四辐射模式的天线单元的天线系统效率可以参考图19中的曲线2-1。
基于上述附图,所述辐射体在第三辐射模式下的主辐射方向为第一方向,所述辐射体第四辐射模式下的主辐射方向为第二方向,第二方向与第一方向相比,更偏向上方。
由此,本申请实施例提供的天线单元,将金属边框辐射体与设置在壳体上的第一辐射体分布式馈电,通过在第一辐射体和馈电单元之间设置可调电容,可以改变金属边框天线的主辐射方向,进而可以减小用户握持对天线辐射性能的影响。
在本申请另一种实施例中,如图20所示,第一辐射301的第一端设有第一馈电耦合结构3011,第一辐射301的第二端设有第一接地耦合结构3012,所述第一接地耦合结构3012与所述第一辐射体301相耦合,所述第一接地耦合结构3012与所述接地板之间设有第一可调电容2001,所述第一辐射体301用于通过所述第一接地耦合结构3012耦合接地。
所述馈电单元10通过第一容性件C1与所述边框辐射体31电连接,并通过第二容性件C2和所述第一馈电耦合结构3011电连接。
工作时,边框辐射体31一直处于导通状态,且工作于第一频段。
第一可调电容2001的电容值可调,当第一可调电容2001的电容值小于预设阈值时,第一可调电容2001的谐振频率位于所述第一频段外,第一可调电容2001不会发生谐振而呈高阻状态,此时第一可调电容2001近似于绝缘体,所述馈电单元10和所述第一辐射体301断开。
此时,只有边框辐射体31工作于第一频段,所述天线单元工作于第三辐射模式。
相应的,当第一可调电容2001的电容值大于预设阈值时,第一可调电容2001的谐振频率位于第一频段内,所述馈电单元10与所述第一辐射体301导通,所述边框辐射体31和所述第一辐射体301共同工作于第一频段。
此时,所述天线单元工作第四辐射模式。
图21为本申请实施例提供的另一种天线单元的辐射方向仿真图;图22为本申请实施例提供的另一种天线单元的S11参数分布图。图23为本申请实施例提供的一种天线单元的天线辐射效率示意图。
其中,C1的电容值为0.2pF,C2的电容值为0.2pF。
当天线单元工作于第三辐射模式时,第一可调电容2001的电容值例如0.3pF。
当天线单元工作于第四辐射模式时,第一可调电容2001的电容值例如为0.8pF。
第一频段例如为N78频段。
天线单元在工作在第三辐射模式时的辐射方向仿真图如图21中的(a)、(b)、(c)所示。参见图21中的(a)、(b)、(c),工作在第三辐射模式的天线单元在第一频段发生谐振时,主辐射方向为第一方向。
天线单元在工作在第三辐射模式时的S11参数分布图如图22中的曲线a所示。如图22中的曲线a所示,工作在第三辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作在第三辐射模式的天线单元 的天线辐射效率可以参考图23中的曲线1。如图23中的曲线1所示,工作在第三辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
其中,天线单元在工作在第三辐射模式时的辐射方向仿真图如图21中的(d)、(e)、(f)所示。参见图21中的(d)、(e)、(f),工作在第四辐射模式的天线单元在N78(3.3GHz~3.7GHz)频段发生谐振时,主辐射方向为第二方向。
天线单元在工作第四辐射模式时的S11参数分布图如图22中的曲线b所示。如图22中的曲线b所示,工作第四辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作第四辐射模式的天线单元的天线辐射效率可以参考图23中的曲线2。如图6中的曲线2所示,工作第四辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
另外,工作在第三辐射模式的天线单元的天线系统效率可以参考图23中的曲线1-1。工作第四辐射模式的天线单元的天线系统效率可以参考图23中的曲线2-1。
基于上述附图,所述辐射体在第三辐射模式下的主辐射方向为第一方向,所述辐射体第四辐射模式下的主辐射方向为第二方向,第二方向与第一方向相比,更偏向上方,且本申请实施例与上述实施例相比,第二方向与第一方向之间的偏转角度更大。
由此,本申请实施例提供的天线单元,将金属边框辐射体与设置在壳体上的第一辐射体分布式馈电,通过在第一辐射体和接地板之间设置可调电容,可以改变金属边框天线的主辐射方向,进而可以减小用户握持对天线辐射性能的影响。此外,通过在第一辐射体的末端设置第一接地耦合结构3012,增大了天线单元的主辐射方向的偏转角度。
在本申请另一些实施例中,如图24所示,与上述实施例相比,所述馈电单元10可以直接与第一馈电耦合结构3011连接,无需在馈电单元10和第一馈电耦合结构3011之间设置容性件,馈电电容可以直接用第一馈电耦合结构3011代替。
在本申请的另一些实施例中,如图25所示,第一辐射301的第一端设有第一馈电耦合结构3011,第一接地耦合结构3012设置在第一辐射体301的中间位置。
所述第一接地耦合结构3012与所述第一辐射体301相耦合,所述第一接地耦合结构3012与所述接地板之间设有第一可调电容2001,所述第一辐射体301用于通过所述第一接地耦合结构3012耦合接地。
所述馈电单元10分别通过第一容性件和第二容性件与所述边框辐射体31和所述第一馈电耦合结构3011电连接。
工作时,边框辐射体31一直处于导通状态,且工作于第一频段。
第一可调电容2001的电容值可调,当第一可调电容2001的电容值小于预设阈值时,第一可调电容2001的谐振频率位于所述第一频段外,第一可调电容2001不会发生谐振而呈高阻状态,此时第一可调电容2001近似于绝缘体,所述馈电单元10和所述第一辐射体301断开。
此时,只有边框辐射体31工作于第一频段,所述天线单元工作于第三辐射模式。
相应的,当第一可调电容2001的电容值大于预设阈值时,第一可调电容2001的谐振频率位于第一频段内,所述馈电单元10与所述第一辐射体301导通,所述边框辐射体31和所述第一辐射体301共同工作于第一频段。
此时,所述天线单元工作第四辐射模式。
其中,需要说明的是,在上述实施例中,第一接地耦合结构3012设置在第一辐射体301的第二端,工作时,第一辐射体301的电流分别从第一辐射体301的第一端流向第一辐射体301的第二端,第一辐射体301的工作模式为差模(differertial mode,DM)模式。
由于第一接地耦合结构3012设置在第一辐射体301的中间位置,工作时,第一辐射体301的电流分别从第一辐射体301的第一端和第一辐射体301的第二端流向中间位置,第一辐射体301工作模式为共模(common mode,CM)模式。
在本申请另一些实施例中,可以分别在第一辐射体301的中间和位置和第二端设置耦合结构,并在耦合结构和接地板之间设置可调电容,并通过调整各可调电容的电容值,使得第一辐射体301的中间位置耦合接地或使得第一辐射体的第二端耦合接地,当第一辐射体301的中间位置耦合接地时,第一辐射体301的工作模式为共模(common mode,CM)模式,当第一辐射体的第二端耦合接地时,第一辐射体301的工作模式为差模(differertial mode,DM)模式。通过调整两个可调电容的电容值,即可实现共模工作模式和差模工作模式的切换,使得天线的主辐射方向发生改变。
由此,由此,当接地耦合结构靠近辐射体的第二端时,辐射体的工作模式为差模模式,当接地耦合结构靠近辐射体的中间位置时,辐射体的工作模式为共模模式,差模模式和共模模式下,辐射体的主辐射方向不同,通过切换辐射体的差模模式和共模模式,可以灵活调整天线单元的主辐射方向,减小用户握持对天线辐射性能的影响。
在本申请的另一些实施例中,如图26所示,所述天线单元02包括:设置在中框3上的边框辐射体31,以及设置在背壳4上的第一辐射体301。
边框辐射体31和第一辐射体301例如采用矩形结构,其中,与上述实施例不同的是,边框辐射体31的长边平行于y轴,边框辐射体31的短边平行于x轴。第一辐射体301的长边平行于x轴,第一辐射体301的短边平行于y轴。
边框辐射体31和第一辐射体在XOY平面内的延伸方向垂直。
所述馈电单元10通过第一容性件C1与所述边框辐射体31电连接,并通过第二容性件C2和所述第一馈电耦合结构3011电连接。
其中,第一辐射体的第一端设有第一馈电耦合结构3011,第一辐射体的第二端设有第一接地耦合结构3012。
所述第一馈电耦合结构3011与所述第一辐射体301的第一端相耦合,所述馈电单元10用于通过所述第一馈电耦合结构3011对所述第一辐射体301耦合馈电。
所述第一接地耦合结构3012与所述第一辐射体301的第二端相耦合,所述第一辐射体301用于通过所述第一接地耦合结构3012耦合接地。
所述第一接地耦合结构3012通过第一可调电容2001与接地板连接。
工作时,边框辐射体31一直处于导通状态,且工作于第一频段。
第一可调电容2001的电容值可调,当第一可调电容2001的电容值小于预设阈值时,第一可调电容2001的谐振频率位于所述第一频段外,第一可调电容2001不会发生谐振而呈高阻状态,此时第一可调电容2001近似于绝缘体,所述馈电单元10和所述第一辐射体301断开。
此时,只有边框辐射体31工作于第一频段,所述天线单元工作于第三辐射模式。
相应的,当第一可调电容2001的电容值大于预设阈值时,第一可调电容2001的谐振频率位于第一频段内,所述馈电单元10与所述第一辐射体301导通,所述边框辐射体31和所述第一辐射体301共同工作于第一频段。
此时,所述天线单元工作第四辐射模式。
图27为本申请实施例提供的另一种天线单元的辐射方向仿真图;图28为本申请实施例提供的另一种天线单元的S11参数分布图。图29为本申请实施例提供的一种天线单元的天线辐射效率示意图。
其中,C1的电容值为0.3pF,C2的电容值为0.2pF。
当天线单元工作于第三辐射模式时,第一可调电容2001的电容值例如0.3pF。
当天线单元工作于第四辐射模式时,第一可调电容2001的电容值例如为0.5pF。
第一频段例如为N78频段。
天线单元在工作在第三辐射模式时的辐射方向仿真图如图27中的(a)、(b)、(c)所示。参见图27中的(a)、(b)、(c),工作在第三辐射模式的天线单元在第一频段发生谐振时,主辐射方向为第一方向。
天线单元在工作在第三辐射模式时的S11参数分布图如图28中的曲线a所示。如图28中的曲线a所示,工作在第三辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作在第三辐射模式的天线单元的天线辐射效率可以参考图29中的曲线1。如图29中的曲线1所示,工作在第三辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
其中,天线单元在工作在第三辐射模式时的辐射方向仿真图如图27中的(d)、(e)、(f)所示。参见图27中的(d)、(e)、(f),工作在第四辐射模式的天线单元在N78(3.3GHz~3.7GHz)频段发生谐振时,主辐射方向为第二方向。
天线单元在工作第四辐射模式时的S11参数分布图如图28中的曲线b所示。如图28中的曲线b所示,工作第四辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作第四辐射模式的天线单元的天线辐射效率可以参考图29中的曲线2。如图6中的曲线2所示,工作第四辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
另外,工作在第三辐射模式的天线单元的天线系统效率可以参考图29中的曲线1-1。工作第四辐射模式的天线单元的天线系统效率可以参考图29中的曲线2-1。
基于上述附图,所述辐射体在第三辐射模式下的主辐射方向为第一方向,所述辐射体第四辐射模式下的主辐射方向为第二方向,第二方向与第一方向相比,更偏向左侧。
由此,本申请实施例提供的天线单元,将金属边框辐射体与设置在壳体上的第一辐射体分布式馈电,通过在第一辐射体和馈电单元之间设置可调电容,可以改变金属边框天线的主辐射方向,进而可以减小用户握持对天线辐射性能的影响。
在本申请另一些实施例中,如图30a所示,所述天线单元02包括:设置在中框3上的边框辐射体31,以及设置在背壳4上的第一辐射体301和第二辐射体302。
其中,第一辐射体301和第二辐射体302相交,第一辐射体301和第二辐射体302 的夹角为90°。
边框辐射体31和第一辐射体301、第二辐射体302均采用矩形结构。
其中,边框辐射体31的长边平行于y轴,边框辐射体31的短边平行于x轴。第一辐射体301的长边平行于y轴,第一辐射体301的短边平行于x轴。第二辐射体302的长边平行于x轴,第二辐射体302的短边平行于y轴。
边框辐射体31和第一辐射体301在XOY平面内的延伸方向垂直,边框辐射体31和第二辐射体302在XOY平面内的延伸方向平行。
所述第一辐射体301和所述第二辐射体302共用一个分布式馈电耦合结构300。所述馈电单元通过1个所述分布式馈电耦合结构300为2个或2个以上辐射体耦合馈电,所述第一辐射体301和所述第二辐射体302则分别与所述分布式馈电耦合结构300的一条侧边平行。
所述馈电单元10通过第一容性件C1与所述边框辐射体31电连接,并通过第二容性件C2和分布式馈电耦合结构300电连接。
所述第一辐射体301的第二端设有第一接地耦合结构3012,所述第一接地耦合结构3012与所述第一辐射体301耦合,所述第一辐射体301通过所述第一接地耦合结构3012耦合接地。
相应的,所述第二辐射体302的第四端设有第二接地耦合结构3022,所述第二接地耦合结构3022与所述第一辐射体301耦合,所述第二辐射体302通过所述第二接地耦合结构3022耦合接地。
此外,所述第一接地耦合结构3012与接地板之间串联有第一可调电容2001、所述第二接地耦合结构3022与接地板之间串联有第二可调电容2002。所述第一可调电容2001和所述第二可调电容2002的电容值可调,所述第一可调电容2001和所述第二可调电容2002用于调节谐振频率。
工作时,边框辐射体31一直处于导通状态,且工作于第一频段。
第一可调电容2001和第二可调电容2002的电容值可调。
当第一可调电容2001和第二可调电容的电容值均小于预设阈值时,第一可调电容2001的谐振频率位于所述第一频段外,第一可调电容2001和第二可调电容2002不会发生谐振而呈高阻状态,此时第一可调电容2001和第二可调电容近似于绝缘体,所述馈电单元10和所述第一辐射体301、所述第二辐射体302断开。
此时,只有边框辐射体31工作于第一频段,所述天线单元工作于第三辐射模式。
相应的,当第一可调电容2001的电容值位于预设阈值、且所述第二可调电容2002的电容值小于预设阈值时,第一可调电容2001谐振频率位于第一频段内,第一可调电容2001发生谐振而呈低阻状态,此时第一可调电容2001近似于导体,所述馈电单元10与所述第一辐射体301导通。
当频率位于所述第一频段的电磁波传递至第二可调电容2002上时,由于第二可调电容2002的谐振频率位于所述第一频段外,第二可调电容2002不会发生谐振而呈高阻状态,此时第二可调电容2002近似于绝缘体,所述馈电单元10和所述第二辐射体302断开。
此时,边框辐射体31和第一辐射体301工作于第一频段,所述天线单元02工作 于第四辐射模式。
相应的,当第一可调电容2001的电容值小于预设阈值、且所述第二可调电容2002的电容值为预设阈值时,第一可调电容2001的谐振频率位于所述第一频段外,第一可调电容2001不会发生谐振而呈高阻状态,此时第一可调电容2001近似于绝缘体,所述馈电单元10和所述第一辐射体301断开。
第二可调电容2002的谐振频率位于第一频段内,第二可调电容2002发生谐振而呈低阻状态,此时第二可调电容2002近似于导体,所述馈电单元10与所述第二辐射体302导通。
此时,边框辐射体31和第二辐射体302工作于第一频段,所述天线单元02工作于第五辐射模式。
如图30b所示,可以在通讯设备01的左右两侧及顶部设置上述天线单元02。
图31为本申请实施例提供的另一种天线单元的辐射方向仿真图;图32为本申请实施例提供的另一种天线单元的S11参数分布图。图33为本申请实施例提供的一种天线单元的天线辐射效率示意图。
其中,C1的电容值为0.3pF,C2的电容值为0.2pF。
当天线单元工作于第三辐射模式时,第一可调电容2001的电容值为0.3pF,第二可调电容的电容值为0.3pF。
当天线单元工作于第四辐射模式时,第一可调电容2001的电容值为1.2pF,第二可调电容的电容值为0.3pF。
当天线单元工作于第四辐射模式时,第一可调电容2001的电容值为0.3pF,第二可调电容的电容值为1.2pF。
第一频段例如为N78频段。
天线单元在工作在第三辐射模式时的辐射方向仿真图如图31中的(a)、(b)、(c)所示。参见图31中的(a)、(b)、(c),工作在第三辐射模式的天线单元在第一频段发生谐振时,主辐射方向为第一方向。
天线单元在工作在第三辐射模式时的S11参数分布图如图32中的曲线a所示。如图32中的曲线a所示,工作在第三辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作在第三辐射模式的天线单元的天线辐射效率可以参考图33中的曲线1。如图33中的曲线1所示,工作在第三辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
其中,天线单元在工作在第四辐射模式时的辐射方向仿真图如图31中的(d)、(e)、(f)所示。参见图31中的(d)、(e)、(f),工作在第四辐射模式的天线单元在N78(3.3GHz~3.7GHz)频段发生谐振时,主辐射方向为第二方向。
天线单元在工作第四辐射模式时的S11参数分布图如图32中的曲线b所示。如图32中的曲线b所示,工作第四辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作第四辐射模式的天线单元的天线辐射效率可以参考图33中的曲线2。如图6中的曲线2所示,工作第四辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
天线单元在工作在第五辐射模式时的辐射方向仿真图如图31中的(g)、(h)、 (i)所示。参见图31中的(g)、(h)、(i),工作在第五辐射模式的天线单元在第一频段发生谐振时,主辐射方向为第三方向。
天线单元在工作在第五辐射模式时的S11参数分布图如图32中的曲线a所示。如图32中的曲线a所示,工作在第五辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作在第五辐射模式的天线单元的天线辐射效率可以参考图33中的曲线3。如图33中的曲线1所示,工作在第五辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
另外,工作在第三辐射模式的天线单元的天线系统效率可以参考图33中的曲线1-1。工作在第四辐射模式的天线单元的天线系统效率可以参考图33中的曲线2-1。工作在第五辐射模式的天线单元的天线系统效率可以参考图33中的曲线2-1。
基于上述附图,所述辐射体在第三辐射模式下的主辐射方向为第一方向,所述辐射体第四辐射模式下的主辐射方向为第二方向,所述辐射体在第五辐射模式下的主辐射方向为第三方向,第一方向指向左下方,第二方向指向左侧,第三方向指向左上方。
由此,本申请实施例提供的天线单元,将金属边框辐射体与设置在壳体上的第一辐射体、第二辐射体分布式馈电,通过设置可调电容,可以改变金属边框天线的主辐射方向,进而可以减小用户握持对天线辐射性能的影响。
在本申请一些示例中,如图34所示,所述天线单元02包括:设置在中框3上的边框辐射体31,以及设置在背壳4上的第一辐射体301和第二辐射体302。
其中,第一辐射体301和第二辐射体302相交,第一辐射体301和第二辐射体302的夹角为90°。
所述第一辐射体301的第一端设有第一馈电耦合结构3011。所述馈电单元10通过第一馈电耦合结构3011为所述第一辐射体301耦合馈电。
与上述实施例不同的是,第二辐射体302的第三端与第一辐射体301的连接点连接,其中,第一辐射体301的连接点位于第一辐射体301的第一端和第二端之间。本示例中,第一辐射体301的连接点位于第一辐射体301的第一端和第二端的中间位置。
所述第一辐射体301的第二端设有第一接地耦合结构3012,所述第一接地耦合结构3012与所述第一辐射体301耦合,所述第一辐射体301通过所述第一接地耦合结构3012耦合接地。
相应的,所述第二辐射体302的第四端设有第二接地耦合结构3022,所述第二接地耦合结构3022与所述第一辐射体301耦合,所述第二辐射体302通过所述第二接地耦合结构3022耦合接地。
此外,所述第一接地耦合结构3012与接地板之间串联有第一可调电容2001、所述第二接地耦合结构3022与接地板之间串联有第二可调电容2002。所述第一可调电容2001和所述第二可调电容2002的电容值可调,所述第一可调电容2001和所述第二可调电容2002用于调节谐振频率。
工作时,当第一可调电容2001接通,第二可调电容2002断开时,第一辐射体301的电流分别从第一辐射体301的第一端流向第一辐射体301的第二端,第一辐射体301的工作模式为差模(differertial mode,DM)模式。
当第一可调电容2001断开,第二可调电容2002接通时,第一辐射体301的电流 分别从第一辐射体301的第一端和第一辐射体301的第二端流向第二辐射体,第一辐射体301和第二辐射体的工作模式为共模(common mode,CM)模式。
由此,通过调整第一可调电容2001和所述第二可调电容2002的电容值,即可实现共模工作模式和差模工作模式的切换,从而可以灵活调整天线单元的主辐射方向,减小用户握持对天线辐射性能的影响。
在本申请的另一些实施例中,如图35所示,所述天线单元02包括:设置在中框3上的边框辐射体31,以及设置在背壳4上的金属板32,所述金属板32包括相交的第一侧边L1和第二侧边L2。
其中,第一侧边L1和第二侧边L2的夹角为90°。
边框辐射体31和第一侧边L1在XOY平面内的延伸方向垂直,边框辐射体31和第二侧边L2在XOY平面内的延伸方向平行。
所述第一侧边L1和所述第二侧边L2共用一个分布式馈电耦合结构300。所述馈电单元通过1个所述分布式馈电耦合结构300为2个或2个以上辐射体耦合馈电,所述第一侧边L1和所述第二侧边L2则分别与所述分布式馈电耦合结构300的一条侧边平行。
所述馈电单元10通过第一容性件C1与所述边框辐射体31电连接,并通过第二容性件C2和分布式馈电耦合结构300电连接。
所述第一侧边L1的第二端设有第一接地耦合结构3012,所述第一接地耦合结构3012与所述第一侧边L1耦合,所述第一侧边L1通过所述第一接地耦合结构3012耦合接地。
相应的,所述第二侧边L2的第二端设有第二接地耦合结构3022,所述第二接地耦合结构3022与所述第一侧边L1耦合,所述第二侧边L2通过所述第二接地耦合结构3022耦合接地。
此外,所述第一接地耦合结构3012与接地板之间串联有第一可调电容2001、所述第二接地耦合结构3022与接地板之间串联有第二可调电容2002。所述第一可调电容2001和所述第二可调电容2002的电容值可调,所述第一可调电容2001和所述第二可调电容2002用于调节谐振频率。
工作时,边框辐射体31一直处于导通状态,且工作于第一频段。
第一可调电容2001和第二可调电容2002的电容值可调。
当第一可调电容2001和第二可调电容的电容值均小于预设阈值时,第一可调电容2001的谐振频率位于所述第一频段外,第一可调电容2001和第二可调电容2002不会发生谐振而呈高阻状态,此时第一可调电容2001和第二可调电容近似于绝缘体,所述馈电单元10和所述第一侧边L1、所述第二侧边L2断开。
此时,只有边框辐射体31工作于第一频段,所述天线单元工作于第三辐射模式。
相应的,当第一可调电容2001的电容值位于预设阈值、且所述第二可调电容2002的电容值小于预设阈值时,第一可调电容2001谐振频率位于第一频段内,第一可调电容2001发生谐振而呈低阻状态,此时第一可调电容2001近似于导体,所述馈电单元10与所述第一侧边L1导通。
当频率位于所述第一频段的电磁波传递至第二可调电容2002上时,由于第二可调 电容2002的谐振频率位于所述第一频段外,第二可调电容2002不会发生谐振而呈高阻状态,此时第二可调电容2002近似于绝缘体,所述馈电单元10和所述第二侧边L2断开。
此时,边框辐射体31和第一侧边L1工作于第一频段,所述天线单元02工作于第四辐射模式。
相应的,当第一可调电容2001的电容值小于预设阈值、且所述第二可调电容2002的电容值为预设阈值时,第一可调电容2001的谐振频率位于所述第一频段外,第一可调电容2001不会发生谐振而呈高阻状态,此时第一可调电容2001近似于绝缘体,所述馈电单元10和所述第一侧边L1断开。
第二可调电容2002的谐振频率位于第一频段内,第二可调电容2002发生谐振而呈低阻状态,此时第二可调电容2002近似于导体,所述馈电单元10与所述第二侧边L2导通。
此时,边框辐射体31和第二侧边L2工作于第一频段,所述天线单元02工作于第五辐射模式。
图36为本申请实施例提供的另一种天线单元的辐射方向仿真图;图37为本申请实施例提供的另一种天线单元的S11参数分布图。图38为本申请实施例提供的一种天线单元的天线辐射效率示意图。
其中,C1的电容值为0.2pF,C2的电容值为0.2pF。
当天线单元工作于第三辐射模式时,第一可调电容2001的电容值为0.3pF,第二可调电容的电容值为0.3pF。
当天线单元工作于第四辐射模式时,第一可调电容2001的电容值为1.2pF,第二可调电容的电容值为0.3pF。
当天线单元工作于第四辐射模式时,第一可调电容2001的电容值为0.3pF,第二可调电容的电容值为1.2pF。
第一频段例如为N78频段。
天线单元在工作在第三辐射模式时的辐射方向仿真图如图36中的(a)、(b)、(c)所示。参见图36中的(a)、(b)、(c),工作在第三辐射模式的天线单元在第一频段发生谐振时,主辐射方向为第一方向。
天线单元在工作在第三辐射模式时的S11参数分布图如图37中的曲线a所示。如图37中的曲线a所示,工作在第三辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作在第三辐射模式的天线单元的天线辐射效率可以参考图38中的曲线1。如图38中的曲线1所示,工作在第三辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
其中,天线单元在工作在第四辐射模式时的辐射方向仿真图如图36中的(d)、(e)、(f)所示。参见图36中的(d)、(e)、(f),工作在第四辐射模式的天线单元在N78(3.3GHz~3.7GHz)频段发生谐振时,主辐射方向为第二方向。
天线单元在工作第四辐射模式时的S11参数分布图如图37中的曲线b所示。如图37中的曲线b所示,工作第四辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作第四辐射模式的天线单元的天 线辐射效率可以参考图38中的曲线2。如图6中的曲线2所示,工作第四辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
天线单元在工作在第五辐射模式时的辐射方向仿真图如图36中的(g)、(h)、(i)所示。参见图36中的(g)、(h)、(i),工作在第五辐射模式的天线单元在第一频段发生谐振时,主辐射方向为第三方向。
天线单元在工作在第五辐射模式时的S11参数分布图如图37中的曲线a所示。如图37中的曲线a所示,工作在第五辐射模式的天线单元在发生谐振时的S11参数较小,天线回波损耗较小,则天线的辐射效率较大。其中,工作在第五辐射模式的天线单元的天线辐射效率可以参考图38中的曲线3。如图38中的曲线1所示,工作在第五辐射模式的天线单元在发生谐振时,天线的辐射效率较大。
另外,工作在第三辐射模式的天线单元的天线系统效率可以参考图38中的曲线1-1。工作在第四辐射模式的天线单元的天线系统效率可以参考图38中的曲线2-1。工作在第五辐射模式的天线单元的天线系统效率可以参考图38中的曲线2-1。
基于上述附图,所述辐射体在第三辐射模式下的主辐射方向为第一方向,所述辐射体第四辐射模式下的主辐射方向为第二方向,所述辐射体在第五辐射模式下的主辐射方向为第三方向,第一方向指向左下方,第二方向指向左侧,第三方向指向左上方。
由此,本申请实施例提供的天线单元,将金属边框辐射体与设置在壳体上的第一辐射体、第二辐射体分布式馈电,通过设置可调电容,可以改变金属边框天线的主辐射方向,进而可以减小用户握持对天线辐射性能的影响。
在本申请另一些实施例中,如图39所示,还可以将上述实施例中的天线单元02整体旋转预设角度。
当天线单元02旋转预设角度时,其主辐射方向随之旋转预设角度,实现主辐射方向的改变,可以进一步减小握持对天线辐射性能的影响。
需要说明的是,本申请实施例提供的天线单元,不限于上述设置在中框3上的边框辐射体31和设置在背壳4上的金属辐射体的结合,也可以是设置在中框位置,并采用激光直接成型技术(Laser-Direct-structuring)成型在支架接地结构上的天线。当然,也可以是支架天线与设置在中框3上的边框辐射体31的结合,还可以是支架天线和设置在背壳4上的金属辐射体的结合。
如图40所示,该通讯设备01还可以包括通讯模块010和控制单元020。
示例性的,通讯模块010包括:上述实施例中的天线单元02,移动通信模块,无线通信模块、调制解调处理器以及基带处理器等。
天线可以用于发射和接收电磁波信号。智能电器中的每个天线可用于覆盖单个或多个通信频带。
移动通信模块可以提供应用在智能电器上的包括第二代手机通信技术规格(2-Generation wireless telephone technology,2G)、第三代移动通信技术(3rd-Generation,3G)、第四代移动通信技术(4th generation mobile communication technology,4G)、第五代移动通信技术(5th generation wireless systems,5G)等无线通信的解决方案。移动通信模块可以包括至少一个滤波器,开关,功率放大器和低噪声放大器(low noise amplifier,LNA)等。移动通信模块可以由天线接收电磁波,并对接收的电磁波进行滤 波,放大等处理,传送至调制解调处理器进行解调。移动通信模块还可以对经调制解调处理器调制后的信号放大,并将该放大的信号经天线转为电磁波后辐射出去。在一些实施例中,移动通信模块的至少部分功能模块可以被设置于处理器001中。在一些实施例中,移动通信模块的至少部分功能模块可以与处理器001的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器,麦克风等)输出声音信号,或通过显示屏009显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器001,与移动通信模块或其他功能模块设置在同一个器件中。
无线通信模块可以提供应用在智能电器上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块可以集成至少一个通信处理模块014。无线通信模块经由天线接收电磁波,对电磁波信号进行调频以及滤波处理,将处理后的信号发送到处理器001。无线通信模块还可以从处理器001接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。
在一些实施例中,智能电器的一个天线和移动通信模块耦合,另一个天线和无线通信模块耦合,使得智能电器可以通过无线通信技术与网络以及其他设备通信。该无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。该GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
控制单元020可以用于控制通讯模块010中天线单元02的馈电单元和辐射体的通断,调谐单元和不同辐射体连接时,所述天线单元的主辐射方向不同,其中,所述天线单元的主辐射方向为所述天线单元方向图上方向性系数最大的方向。
例如,在用户竖屏或横屏使用电子设备时,控制天线单元的一个或多个开关单元的连接状态,使得天线单元的主辐射方向与用户手持位置错开。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种天线单元,其特征在于,包括:
    第一辐射体,所述第一辐射体包括相对的第一端和第二端,所述第一辐射体的第二端或所述第一辐射体的中间位置接地;
    第二辐射体,所述第二辐射体包括相对的第三端和第四端,所述第二辐射体的所述第四端相对于所述第三端,远离所述第一辐射体的所述第一端设置,所述第二辐射体的第四端或所述第二辐射体的中间位置接地;
    馈电单元,所述馈电单元用于在所述第一辐射体的所述第一端,和所述第二辐射体的所述第三端,为所述第一辐射体和所述第二辐射体馈电;
    调谐单元,所述调谐单元用于选择性将所述馈电单元与所述第一辐射体的所述第一端接通以为所述第一辐射体馈电,以及选择性将所述馈电单元与第二辐射体的所述第三端接通以为所述第二辐射体馈电;
    其中,所述调谐单元仅将所述馈电单元与所述第一辐射体接通时,与所述调谐单元仅将所述馈电单元与所述第二辐射体接通时,所述天线单元的主辐射方向不同,其中,所述天线单元的主辐射方向为所述天线单元方向图上方向性系数最大的方向。
  2. 根据权利要求1所述的天线单元,其特征在于,所述第一辐射体在所述第一端的延伸方向和所述第二辐射体在所述第三端的延伸方向之间的夹角为第一角度,所述第一角度在60°-120°的范围内。
  3. 根据权利要求2所述的天线单元,其特征在于,所述第一角度为90°。
  4. 根据权利要求2或3所述的天线单元,其特征在于,当所述调谐单元接通所述馈电单元和所述第一辐射体的所述第一端时,所述天线单元的主辐射方向为第一方向,当所述调谐单元接通所述馈电单元和所述第二辐射体的所述第三端时,所述天线单元的主辐射方向为第二方向,所述第一方向和所述第二方向的夹角为第二角度。
  5. 据权利要求4所述的天线单元,其特征在于,所述天线单元还包括:
    馈电耦合结构,所述馈电耦合结构设置在所述馈电单元和所述第一辐射体的所述第一端、所述第二辐射体的所述第三端之间,所述馈电耦合结构与所述第一辐射体和所述第二辐射体耦合连接,且所述馈电单元与所述馈电耦合结构电连接;以及
    接地耦合结构,所述接地耦合结构设置在所述第一辐射体的第二端或所述第一辐射体的中间位置和接地板之间,以及设置在所述第二辐射体的第四端或所述第二辐射体的中间位置与所述接地板之间,所述接地耦合结构与所述第一辐射体和所述第二辐射体耦合连接,且所述接地耦合结构与所述接地板电连接;
    所述馈电单元通过所述馈电耦合结构为所述第一辐射体馈电时,所述天线单元的主辐射方向为第三方向,所述馈电单元通过所述馈电耦合结构为所述第二辐射体馈电时,所述天线单元的主辐射方向为第四方向,所述第三方向和所述第四方向的夹角为第三角度,所述第三角度大于所述第二角度。
  6. 根据权利要求5所述的天线单元,其特征在于,所述馈电耦合结构为多个,每个所述馈电耦合结构与所述第一辐射体和所述第二辐射体中的一个辐射体耦合,所述调谐单元设置在所述馈电单元和所述馈电耦合结构之间,所述馈电单元通过所述调谐单元与所述馈电耦合结构电连接。
  7. 根据权利要求5所述的天线单元,其特征在于,所述馈电耦合结构为1个,所述第一辐射体和所述第二辐射体中的每个辐射体与所述馈电耦合结构的一条侧边耦合,所述调谐单元设置在所述接地耦合结构与接地板之间,所述接地耦合结构通过所述调谐单元与所述接地板电连接。
  8. 根据权利要求1-7任一项所述的天线单元,其特征在于,所述天线单元还包括:
    第三辐射体,所述第三辐射体包括相对的第五端和第六端,所述第三辐射体的所述第六端相对于所述第五端,远离所述第一辐射体的第一端设置,且所述第三辐射体的第六端或所述第三辐射体的中间位置接地;
    所述馈电单元用于在所述第三辐射体的第五端,为所述第三辐射体馈电;
    所述调谐单元用于选择性地将所述馈电单元和所述第三辐射体接通,以为所述第三辐射体馈电。
  9. 根据权利要求8所述的天线单元,其特征在于,所述第一辐射体或所述第二辐射体,与所述第三辐射体之间的夹角为第四角度,所述第四角度在60°-120°的范围内。
  10. 根据权利要求8或9所述的天线单元,其特征在于,所述调谐单元将所述第三辐射体和所述馈电单元接通;或者所述调谐单元将所述第一辐射体、第二辐射体中的一个或两个辐射体,和所述馈电单元接通;或者所述调谐单元将所述第三辐射体,以及所述第一辐射体和所述第二辐射体中的一个或两个辐射体,同时和所述馈电单元接通。
  11. 根据权利要求8-10任一项所述的天线单元,其特征在于,所述调谐单元包括:至少一个开关,所述开关设置在所述馈电单元,和所述第一辐射体、所述第二辐射体、以及所述第三辐射体之间,所述开关用于选择性的将所述馈电单元与所述第一辐射体、所述第二辐射体、以及所述第三辐射体中的至少一个辐射体连接;
    或,所述开关设置在所述第一辐射体、所述第二辐射体、以及所述第三辐射体,和所述接地板之间,所述开关用于选择性的将所述接地板与所述第一辐射体、所述第二辐射体、以及所述第三辐射体中的至少一个辐射体连接。
  12. 根据权利要求1-10任一项所述的天线单元,其特征在于,所述调谐单元包括:至少一个可调电容,所述可调电容串联在所述馈电单元和所述馈电耦合结构之间,或串联在所述接地耦合结构和所述接地板之间;
    当所述可调电容的电容值为预设阈值时,其谐振频率位于第一频段;其中,所述第一频段为所述天线单元的工作频段;
    当所述可调电容的电容值小于预设阈值时,其谐振频率位于所述第一频段外。
  13. 根据权利要求1-12任一项所述的天线单元,其特征在于,所述第二辐射体的第三端连接于所述第一辐射体上的连接点,其中,所述第一辐射体的所述连接点位于所述第一端和所述第二端之间。
  14. 根据权利要求1-12任一项所述的天线单元,其特征在于,所述天线单元为贴片天线,所述天线单元包括相交的第一侧边部分和第二侧边部分,所述天线单元的第一侧边部分作为所述第一辐射体,所述天线单元的第二侧边部分作为所述第二辐射体,且所述第一侧边部分和所述第二侧边部分相交的一端分别与所述馈电单元耦合连接, 所述第一侧边部分和所述第二侧边部分的另一端分别与所述接地板耦合连接。
  15. 根据权利要求8-11任一项所述天线单元,其特征在于,所述天线单元还包括:至少一个容性件,所述容性件设置在所述馈电单元,和所述第一辐射体、所述第二辐射体、以及所述第三辐射体之间,所述馈电单元通过所述容性件与所述第一辐射体、所述第二辐射体、以及所述第三辐射体中的至少一个耦合连接。
  16. 一种通讯设备,其特征在于,包括射频模块以及如权利要求1-15任一项所述的天线单元,所述射频模块和所述天线电连接。
  17. 根据权利要求16所述的通讯设备,其特征在于,所述通讯设备包括:背壳,所述天线单元的至少一个辐射体设置在所述背壳。
  18. 根据权利要求17所述的通讯设备,其特征在于,所述背壳采用玻璃或陶瓷材质。
  19. 根据权利要求16-18任一项所述的通讯设备,其特征在于,所述通讯设备还包括:中框,所述中框包括:承载板和绕承载板一周的边框,所述天线单元的至少一个辐射体设置在所述边框上。
  20. 根据权利要求19所述的通讯设备,其特征在于,所述承载板上设有印制电路板PCB,所述馈电单元、所述接地板、所述调谐单元设置在所述PCB上,所述馈电耦合结构和所述馈电单元电连接,所述接地耦合结构和所述接地板电连接。
PCT/CN2021/117539 2020-09-28 2021-09-09 天线单元和通讯设备 WO2022062914A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/246,801 US20230369769A1 (en) 2020-09-28 2021-09-09 Antenna unit and communication device
EP21871286.7A EP4213300A4 (en) 2020-09-28 2021-09-09 ANTENNA UNIT AND COMMUNICATION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011044876.8A CN114284695B (zh) 2020-09-28 2020-09-28 天线单元和通讯设备
CN202011044876.8 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022062914A1 true WO2022062914A1 (zh) 2022-03-31

Family

ID=80844931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117539 WO2022062914A1 (zh) 2020-09-28 2021-09-09 天线单元和通讯设备

Country Status (4)

Country Link
US (1) US20230369769A1 (zh)
EP (1) EP4213300A4 (zh)
CN (1) CN114284695B (zh)
WO (1) WO2022062914A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230825A (zh) * 2016-03-23 2017-10-03 联发科技股份有限公司 可切换辐射方向的天线与无线通信装置
CN107293838A (zh) * 2016-03-31 2017-10-24 宏碁股份有限公司 具有窄接地面净空区的天线元件的通信装置
US20180090822A1 (en) * 2016-05-23 2018-03-29 Acer Incorporated Communication device with metal-frame half-loop antenna element
US20180183137A1 (en) * 2016-12-27 2018-06-28 Htc Corporation Mobile device and manufacturing method thereof
CN112018494A (zh) * 2019-05-31 2020-12-01 华为技术有限公司 一种天线及移动终端

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379296A (en) * 1980-10-20 1983-04-05 The United States Of America As Represented By The Secretary Of The Army Selectable-mode microstrip antenna and selectable-mode microstrip antenna arrays
JP2000068729A (ja) * 1998-08-21 2000-03-03 Matsushita Electric Ind Co Ltd 指向性制御アンテナ装置とこの指向性制御アンテナ装置を用いる無線装置及び無線通信システム
ATE385052T1 (de) * 2003-03-18 2008-02-15 Sony Ericsson Mobile Comm Ab Kompakte diversity-antenne
CN101931856B (zh) * 2009-06-25 2014-02-19 鸿富锦精密工业(深圳)有限公司 信号传输装置
EP2534731A1 (en) * 2010-02-11 2012-12-19 DockOn AG Compound loop antenna
EP2769439A1 (en) * 2011-10-23 2014-08-27 Option NV Wireless antenna system
TWI511378B (zh) * 2012-04-03 2015-12-01 Ind Tech Res Inst 多頻多天線系統及其通訊裝置
TWI536660B (zh) * 2014-04-23 2016-06-01 財團法人工業技術研究院 通訊裝置及其多天線系統設計之方法
KR102473191B1 (ko) * 2016-03-10 2022-12-02 삼성전자주식회사 안테나를 포함하는 전자 장치
CN107437661B (zh) * 2017-04-21 2021-07-09 瑞声科技(新加坡)有限公司 天线及移动终端
CN107181045B (zh) * 2017-06-19 2024-02-20 上海传英信息技术有限公司 一种移动终端的天线及具有该天线的移动终端
CN108258405B (zh) * 2018-01-10 2020-07-31 南京航空航天大学 一种方向图可重构滤波天线
CN110739534B (zh) * 2018-07-19 2021-08-06 华硕电脑股份有限公司 天线装置及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230825A (zh) * 2016-03-23 2017-10-03 联发科技股份有限公司 可切换辐射方向的天线与无线通信装置
CN107293838A (zh) * 2016-03-31 2017-10-24 宏碁股份有限公司 具有窄接地面净空区的天线元件的通信装置
US20180090822A1 (en) * 2016-05-23 2018-03-29 Acer Incorporated Communication device with metal-frame half-loop antenna element
US20180183137A1 (en) * 2016-12-27 2018-06-28 Htc Corporation Mobile device and manufacturing method thereof
CN112018494A (zh) * 2019-05-31 2020-12-01 华为技术有限公司 一种天线及移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4213300A4

Also Published As

Publication number Publication date
CN114284695A (zh) 2022-04-05
EP4213300A4 (en) 2024-02-21
CN114284695B (zh) 2023-07-07
EP4213300A1 (en) 2023-07-19
US20230369769A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
CN108270082B (zh) 天线组件及电子设备
EP3716403B1 (en) Antenna module and electronic device
CN103199331B (zh) 具有可切换电感器的低频带调谐的天线
US20230344152A1 (en) Antenna assembly and electronic device
CN108282214B (zh) 天线组件、电子设备及天线切换方法
US8970436B2 (en) Surface mount device multi-frequency antenna module
CN103904417A (zh) 移动装置
CN108417996A (zh) 天线组件及移动终端
CN111864362A (zh) 天线模组及电子设备
CN101447604B (zh) 基于变容匹配电路的数字电视广播移动终端内置天线
CN1922762A (zh) 天线模块
WO2023124646A1 (zh) 天线组件及电子设备
KR101870760B1 (ko) 다중 대역 안테나 장치 및 이를 구비하는 전자기기
CN117378091A (zh) 天线模块以及包括该天线模块的电子装置
CN103138043B (zh) 天线模组及其移动终端
CN205509020U (zh) 通信终端
US11855334B2 (en) Antenna module and electronic device using the same
WO2022062914A1 (zh) 天线单元和通讯设备
CN114389005B (zh) 一种电子设备
CN112993515B (zh) 穿戴式电子设备
JP2014003608A (ja) アンテナモジュール及びこのアンテナモジュールを備えた無線通信装置
CN113067147A (zh) 天线组件及电子设备
CN115411492A (zh) 天线组件和电子设备
CN108199140B (zh) 遥控器
CN114696069B (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021871286

Country of ref document: EP

Effective date: 20230410

NENP Non-entry into the national phase

Ref country code: DE