WO2023155265A1 - 检测装置及极片制造设备 - Google Patents

检测装置及极片制造设备 Download PDF

Info

Publication number
WO2023155265A1
WO2023155265A1 PCT/CN2022/082166 CN2022082166W WO2023155265A1 WO 2023155265 A1 WO2023155265 A1 WO 2023155265A1 CN 2022082166 W CN2022082166 W CN 2022082166W WO 2023155265 A1 WO2023155265 A1 WO 2023155265A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
detection device
protective cover
cooling plate
laser ranging
Prior art date
Application number
PCT/CN2022/082166
Other languages
English (en)
French (fr)
Inventor
晏亮杰
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22888630.5A priority Critical patent/EP4257917A4/en
Priority to US18/199,868 priority patent/US11988498B2/en
Publication of WO2023155265A1 publication Critical patent/WO2023155265A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C21/00Accessories or implements for use in connection with applying liquids or other fluent materials to surfaces, not provided for in groups B05C1/00 - B05C19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/047Accessories, e.g. for positioning, for tool-setting, for measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0011Arrangements for eliminating or compensation of measuring errors due to temperature or weight
    • G01B5/0014Arrangements for eliminating or compensation of measuring errors due to temperature or weight due to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1005Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material already applied to the surface, e.g. coating thickness, weight or pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/40Caliper-like sensors
    • G01B2210/44Caliper-like sensors with detectors on both sides of the object to be measured
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of battery manufacturing, in particular to a detection device and pole piece manufacturing equipment.
  • a detection device in the battery pole piece manufacturing process, is used to detect the thickness of the pole piece, so as to ensure the forming quality of the battery pole piece.
  • the temperature of the detection device will continue to rise. If the temperature is too high, the detection accuracy of the detection device will be reduced, and it may even be damaged and unusable.
  • An object of the embodiments of the present application is to provide a detection device, which can effectively cool down the temperature of the laser ranging sensor, so as to improve the detection accuracy and use safety of the laser ranging sensor.
  • Another object of the embodiments of the present application is to provide a pole piece manufacturing equipment including the above detection device.
  • the embodiment of the present application provides a detection device, including: a laser ranging sensor; a cooling module, including a first protective cover and a cooling plate, and the first protective cover is arranged on the outside of the laser ranging sensor , the first protective cover is provided with an avoidance part for avoiding the laser light path of the laser ranging sensor, the first protective cover has a first opening, the cooling plate covers the first opening, and the cooling plate
  • the inside of the cooling plate is defined with a gas flow channel, and the surface of the cooling plate is provided with an air inlet hole and a first air outlet hole connected to the gas flow channel, and the first air outlet hole is set toward the laser distance measuring sensor.
  • the detection device includes a laser ranging sensor and a cooling module.
  • the cooling module includes a first protective cover and a cooling plate, the first protective cover is arranged on the outside of the laser ranging sensor, and the first protective cover has a first opening, and the cooling plate covers the first opening, so that the laser ranging sensor Located between the first shield and the cooling plate.
  • a gas flow channel is defined inside the cooling plate, and an air inlet hole and a first air outlet hole connected to the gas flow channel are provided on the surface of the cooling plate, and at the same time, the first air outlet hole is set toward the laser distance sensor .
  • the compressed gas when the compressed gas is passed into the air inlet hole, the compressed gas can be blown from the air outlet hole to the laser distance measuring sensor after passing through the gas flow channel, and the compressed gas exchanges heat with the hot air in the environment where the laser distance measuring sensor is located. , so as to achieve the purpose of cooling the laser ranging sensor. Further, it helps to improve the detection accuracy of the laser distance measuring sensor, and prolongs the service life of the laser distance measuring sensor.
  • the cooling plate includes a first surface and a second surface disposed adjacently, the first surface is disposed facing the laser ranging sensor, and the first air outlet is disposed on the first surface On, the air intake holes are arranged on the second surface.
  • the first surface and the second surface of the cooling plate are arranged adjacently, and the first surface faces the laser distance measuring sensor, and the first air outlet and the air inlet are respectively arranged on the first surface and the second surface, That is, the second surface can be any one of the four surfaces adjacent to the first surface, that is, the air inlet hole is arranged on any one of the four surfaces adjacent to the first surface.
  • the number of the gas flow channels is multiple, and the multiple gas flow channels are arranged at intervals inside the cooling plate.
  • the number of gas flow channels is increased, thereby increasing the flow area of compressed air in the cooling plate, which in turn helps to improve the accuracy of laser measurement. Cooling effect of the sensor.
  • each of the gas flow channels has a plurality of first air outlet holes arranged at intervals along the extending direction of the gas flow channel.
  • the amount of compressed air blown to the laser distance measuring sensor at the same time can be increased to effectively improve the distance between the laser distance measuring sensor and the laser distance measuring sensor.
  • the heat exchange efficiency of the hot air around the sensor can further improve the cooling efficiency of the laser ranging sensor.
  • the side of the cooling plate facing the laser distance measuring sensor is provided with a limiting groove, and a part of the laser ranging sensor is embedded in the limiting groove and fixed with the cooling plate connect.
  • the limit groove by setting the limit groove on the side of the cooling plate facing the laser distance measuring sensor, and embedding a part of the laser distance measuring sensor in the limit groove, and fixedly connecting with the cooling plate, the limit groove It has a limiting effect on the laser ranging sensor, prevents the relative movement of the laser ranging sensor relative to the cooling plate, improves the reliability of the assembly of the laser ranging sensor and the cooling plate, and helps to improve the detection accuracy of the laser ranging sensor.
  • the first air outlet holes are provided on both side walls of the limiting groove.
  • the compressed gas can be blown out from the first gap to ensure the smoothness of the gas flow, thereby ensuring that the compressed gas can be continuously blown out from the first air outlet to continuously cool the laser distance sensor.
  • the first air outlet is provided on the two side walls of the limiting groove, like this, when a part of the laser distance measuring sensor is embedded in the limiting groove, the two side walls on both sides of the limiting groove The first air outlet can simultaneously blow air on the side of the laser ranging sensor to further improve the cooling efficiency of the laser ranging sensor.
  • the first protective cover is provided with a second opening, and the second opening is configured for connecting the laser ranging sensor with an external device.
  • the connecting end of the laser emitting end of the laser ranging sensor is connected with external equipment (such as a power supply device or a power supply cable), ensuring that the laser ranging normal use of the sensor.
  • the first protective cover is provided with an air outlet.
  • the first protective cover is provided with an air outlet, so that after the compressed air in the cooling plate exchanges heat with the surrounding hot air of the laser distance measuring sensor, it can be quickly discharged from the first protective cover through the air outlet, To ensure that the compressed gas circulates and cools the laser distance measuring sensor in the first protective cover, thereby helping to further improve the cooling efficiency of the laser distance measuring sensor.
  • the laser emitting end of the laser ranging sensor corresponds to the position of the air outlet, and the laser emitting end of the laser ranging sensor can emit laser light from the air outlet to the outside of the first protective cover, thereby realizing distance measurement of the object to be measured.
  • a second gap for gas flow is provided between the inner wall of the first protective cover and the laser ranging sensor.
  • a second gap is provided between the laser distance measuring sensor and the inner wall of the first protective cover, so that after the compressed gas is blown from the first air outlet to the laser distance measuring sensor, it can be
  • the eddy current effect is formed in the protective cover, so that the various surfaces of the laser distance measuring sensor can be cooled, and the cooling effect of the laser distance measuring sensor can be further improved.
  • each gas flow channel has a plurality of second gas outlet holes arranged at intervals along the extending direction of the gas flow channel.
  • the quantity of the second air outlet is increased, and the amount of gas blown into the second protective cover is increased, thereby helping to improve the cooling effect of the cooling module, and further improving the performance of the laser distance sensor. cooling efficiency.
  • the detection device further includes: a second protective cover, which is arranged on the outside of the laser distance measuring sensor and the cooling module; the side of the cooling plate facing away from the laser distance measuring sensor is arranged There is a second air outlet, the second air outlet communicates with the gas flow channel, and a third gap for gas flow is provided between the inner wall of the second protective cover and the cooling module.
  • the side of the cooling plate facing away from the laser distance measuring sensor is provided with a second air outlet connected to the gas flow channel
  • the detection device also includes a second protective cover arranged outside the laser distance measuring sensor and the cooling module , and a third gap is provided between the inner wall surface of the second protective cover and the cooling module, so that when the compressed air is blown from the second air outlet to the inner wall surface of the second protective cover, a gap can be formed in the second protective cover.
  • the eddy current effect is used to cool the cooling module, thereby further improving the cooling effect of the laser distance sensor.
  • the embodiment of the present application provides a pole piece manufacturing equipment, including: a coating device for coating the surface of the pole piece; the detection device according to any one of the embodiments of the first aspect, The number of the detection devices is two, and the two detection devices are respectively arranged on both sides of the thickness direction of the pole piece, and are used to detect the thickness of the pole piece; the controller, the controller is used to receive the The thickness of the pole piece is detected by the detection device, and according to the comparison result between the thickness of the pole piece and a preset thickness threshold, the coating device is controlled to adjust the thickness of the pole piece.
  • the pole piece manufacturing equipment includes a coating device, a controller, and the detection device as described in any one of the embodiments of the first aspect.
  • the coating device is used for coating the surface of the pole piece.
  • the detection devices are arranged on both sides of the pole piece in the thickness direction to realize the detection of the thickness of the pole piece.
  • a controller (such as an industrial computer) is electrically connected to the detection device and the coating device, and is used to receive the thickness of the pole piece detected by the detection device, and compare the thickness of the pole piece with a preset thickness threshold, and according to the comparison result
  • the coating device is controlled to adjust the thickness of the pole piece, so that the thickness of the pole piece reaches the preset threshold, so as to ensure the consistency of the thickness of the pole piece and improve the performance of the battery.
  • the thickness of the pole piece includes the thickness of the thinned region of the pole piece.
  • the coating amount of the pole piece slurry is less than that of the normal area, which leads to a decrease in the battery capacity of the lithium battery, which leads to the safety of the battery cell. reduced sex.
  • the thinning area of the pole piece is too narrow or there is no thinning area, it will cause the problem of bulging. Therefore, through real-time online measurement and monitoring of the thickness of the thinning area of the pole piece, the battery capacity of the lithium battery can be effectively guaranteed, and the lithium Safety of battery usage.
  • the pole piece manufacturing equipment further includes: a drying device, disposed downstream of the coating device, for drying the pole piece; and a rolling device, disposed in the drying device Downstream of the pole piece is used for rolling; wherein, the detection device is located upstream of the rolling device.
  • the pole piece manufacturing equipment further includes a drying device and a rolling device.
  • the drying device is arranged downstream of the coating device, and is used for drying the pole piece after coating the pole piece by the coating device.
  • the rolling device is arranged downstream of the drying device, and is used for rolling the pole piece after the drying device dries the pole piece.
  • the detection device is installed upstream of the rolling device, that is, the detection device can be installed between the drying device and the rolling device, or it can be installed upstream of the drying device. After coating, the thickness of the pole piece is detected in real time, and adjusted in real time by the coating device, so as to ensure the reliability of the quality of the pole piece.
  • the pole piece manufacturing equipment further includes: a base; a scanning frame set on the base and slidingly connected with the base, and the detection device is set on the scanning frame;
  • the magnetic scale assembly includes a magnetic scale reading head arranged on the base and a magnetic scale reading head arranged on the scanning frame, and the magnetic scale reading head is used for scanning the scanning frame relative to the When the base slides, the equally spaced magnetic waves pre-recorded on the magnetic scale are read to detect the linear displacement of the scanning frame.
  • the pole piece manufacturing equipment further includes a base, a scanning frame and a magnetic scale assembly.
  • the scanning frame is mounted on the base and is slidably connected with the base
  • the detection device is arranged on the scanning frame
  • the scanning frame can drive the detection device to reciprocate to detect the thickness of the pole piece.
  • the magnetic scale assembly includes the magnetic scale on the base and the magnetic scale read head on the scanning frame. When the scanning frame slides back and forth relative to the base to drive the detection device to move, the magnetic scale read head passes through the reading head.
  • Pre-recorded equally spaced magnetic waves on the magnetic scale to detect the linear displacement of the scanning frame, avoid the edge-seeking position deviation caused by the low precision of the mechanical transmission parts in the scanning room of the scanning frame, and improve the laser distance measurement when the scanning frame reciprocates
  • the edge-finding positioning accuracy of forward and reverse scanning of the sensor improves the linear measurement accuracy.
  • the pole piece manufacturing equipment further includes a first verification piece and a second verification piece, the first verification piece and the second verification piece are arranged on the base, and respectively Located on both sides of the pole piece in the width direction, one of the first calibration piece and the second calibration piece is used to compensate the temperature of the pole piece, and the other is used for calibration and compensation after the temperature.
  • the first verification chip and the second verification chip connected with the first verification chip by a half-bridge are arranged on the base, and the first verification chip and the second verification chip are respectively located at poles.
  • one of the first calibration sheet and the second calibration sheet can perform temperature compensation on the pole piece temperature after air calibration and comparison, and the other can calibrate the compensated temperature, thereby avoiding The influence of temperature on pole piece thickness detection is helpful to improve the accuracy of pole piece thickness detection.
  • Fig. 1 is a schematic diagram of an exploded structure of a detection device provided by some embodiments of the present application
  • Fig. 2 is a schematic diagram of the assembly structure of the laser ranging sensor and the cooling plate provided by some embodiments of the present application;
  • Fig. 3 is a schematic diagram of the assembly structure of the detection device provided by the embodiment of the present application.
  • Fig. 4 is a structural schematic diagram of a viewing angle of the detection device provided by the embodiment of the present application.
  • Fig. 5 is a schematic cross-sectional structure diagram of A-A direction in Fig. 4;
  • Fig. 6 is a structural schematic diagram of a viewing angle of the pole piece manufacturing equipment provided by the embodiment of the present application.
  • Fig. 7 is a structural schematic diagram of another perspective of the pole piece manufacturing equipment provided by the embodiment of the present application.
  • Fig. 8 is a flowchart of the work of the first verification slice and the second verification slice in some embodiments of the present application.
  • Base 201 scanning frame 202, rolling device 203, magnetic scale assembly 204, controller 205, first verification sheet 206, second verification sheet 207;
  • Magnetic scale 2041 magnetic scale reading head 2042.
  • the thickness of the pole piece of the electrode assembly in the battery manufacturing process has an important influence on the forming quality of the pole piece of the battery, so it is necessary to detect the thickness of the pole piece of the electrode assembly in real time.
  • the inventor has conducted in-depth research and designed a detection device that uses a cooling module to control the laser ranging sensor. Real-time heat exchange and cooling, thereby effectively improving the detection accuracy of the laser ranging sensor and avoiding damage caused by excessive ambient temperature.
  • the detection device disclosed in the embodiment of the present application can be used, but not limited to, in pole piece manufacturing equipment, steelmaking equipment and other equipment.
  • Figure 1 is a schematic diagram of the exploded structure of the detection device 100 provided by some embodiments of the present application
  • Figure 2 is a schematic diagram of the assembly structure of the laser ranging sensor and the cooling plate provided by some embodiments of the present application
  • Figure 3 Schematic diagram of the assembly structure of the detection device provided by the embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a viewing angle of the detection device provided by the embodiment of the present application
  • FIG. 5 is a schematic cross-sectional structural diagram of A-A in FIG.
  • the detection device 100 provided in the embodiment of the first aspect of the present application includes: a laser distance measuring sensor 11; a cooling module including a first protective cover 13 and a cooling plate 12, and the first protective cover 13 is placed outside the laser distance measuring sensor 11 , the first protective cover 13 is provided with an avoidance portion 135 for avoiding the laser light path of the laser ranging sensor 11, the first protective cover 13 has a first opening 131, the cooling plate 12 covers the first opening 131, and the inside of the cooling plate 12 A gas flow channel 123 is defined, and the surface of the cooling plate 12 is provided with an air inlet hole 121 and a first air outlet hole 122 communicating with the gas flow channel 123, and the first air outlet hole 122 is arranged toward the laser distance measuring sensor 11, for The distance measuring sensor 11 blows air to cool the laser distance measuring sensor 11 .
  • the cooling plate 12 has an air inlet 121, a gas flow channel 123 and an air outlet, wherein the gas flow channel 123 communicates with the air inlet 121 and the air outlet, and by setting the air outlet toward the laser distance measuring sensor 11, it can When compressed air is passed into the air inlet hole 121, the compressed air is blown to the laser distance measuring sensor 11 through the gas flow channel 123 and the air outlet hole, thereby exchanging heat to the laser distance measuring sensor 11, and then realizing the laser distance measuring sensor 11. Cooling effect.
  • the first protective cover 13 can be a heat shield.
  • the compressed air can form an eddy current effect when flowing in the first protective cover 13, so as to cool the various surfaces of the laser ranging sensor 11.
  • it can isolate external heat. Air enters into the first protective cover 13 .
  • An escape portion 135 is disposed on the first protective cover 13 for avoiding the laser light path of the laser ranging sensor 11 .
  • the avoidance portion 135 is formed by setting the material on the first protective cover 13 corresponding to the laser light path of the laser distance measuring sensor 11 as a transparent material, so that the laser light path of the laser distance measuring sensor 11 can be transparent. The transparent material is irradiated onto the DUT.
  • the avoidance part 135 is a through hole formed by hollowing out the position corresponding to the laser light path of the laser distance measuring sensor 11 on the first protective cover 13, so that the laser light path of the laser distance measuring sensor 11 can pass through The through hole illuminates onto the DUT.
  • the cooling plate 12 By covering the first protective cover 13 outside the laser ranging sensor 11, the cooling plate 12 covers the first opening 131 of the first protective cover 13, so that the laser ranging sensor 11 is located between the first protective cover 13 and the cooling plate. Between 12. Specifically, since the gas flow channel 123 is defined inside the cooling plate 12, and the air inlet hole 121 and the first air outlet hole 122 communicated with the gas flow channel 123 are provided on the surface of the cooling plate 12, at the same time, the first outlet hole The air hole 122 is disposed toward the laser distance measuring sensor 11 .
  • the compressed gas when compressed gas is passed into the air inlet 121, the compressed gas can be blown to the laser distance sensor 11 from the air outlet after passing through the gas flow channel 123, and the compressed gas passes through the heat of the environment where the laser distance sensor 11 is located.
  • the air performs heat exchange, thereby achieving the purpose of cooling the laser distance measuring sensor 11 .
  • it is helpful to improve the detection accuracy of the laser distance measuring sensor 11 and increase the service life of the laser distance measuring sensor 11 .
  • the cooling plate 12 includes a first surface and a second surface arranged adjacently, the first surface is arranged toward the laser ranging sensor 11 , and the first air outlet 122 is arranged at On the first surface, air intake holes 121 are disposed on the second surface.
  • the first surface and the second surface of the cooling plate 12 are arranged adjacently, and the first surface faces the laser distance measuring sensor 11, and the first air outlet hole 122 and the air inlet hole 121 are respectively arranged on the first surface and the second surface, that is, the first surface
  • the second surface may be any one of the four surfaces adjacent to the first surface, that is, the air inlet 121 is disposed on any one of the four surfaces adjacent to the first surface.
  • the extension length of the gas flow channel 123 can be appropriately increased, which helps to improve the cooling effect of the compressed air on the cooling plate itself, In turn, it contributes to the cooling effect of the laser ranging sensor.
  • the gas channel 123 is a passage for gas to circulate in the cooling plate 12 .
  • the number of gas flow channels 123 is increased, thereby increasing the flow area of compressed air in the cooling plate 12, which in turn helps to improve the accuracy of the laser distance sensor. 11 cooling effects.
  • the plurality of air inlet holes 121 are arranged at intervals on the second surface and communicate with the plurality of gas flow channels 123 in one-to-one correspondence.
  • each gas flow channel 123 has a plurality of first air outlet holes 122 arranged at intervals along the extending direction of the gas flow channel 123 .
  • the air inlet 121 is disposed on the second surface of the cooling plate 12 , and one end of the gas flow channel 123 communicates with the air inlet 121 , that is, the gas flow channel 123 extends away from the second surface.
  • the amount of compressed air blown to the laser distance measuring sensor 11 at the same time can be increased to effectively improve the connection with the laser distance measuring sensor 11.
  • the heat exchange efficiency of the surrounding hot air can further improve the cooling efficiency of the laser distance measuring sensor 11 .
  • the side of the cooling plate 12 facing the laser ranging sensor 11 is provided with a limiting groove 124, and a part of the laser ranging sensor 11 is embedded in the limiting groove 124, and is connected with the cooling
  • the plates 12 are fixedly connected.
  • the limiting slot 124 is a slot formed by a partial depression on the first surface of the cooling plate 12 , and is used for fixing the laser ranging sensor 11 .
  • the limit groove 124 By setting the limit groove 124 on the side of the cooling plate 12 facing the laser distance measuring sensor 11, a part of the laser distance measuring sensor 11 is embedded in the limit groove 124, and is fixedly connected with the cooling plate 12, and the limit groove 124 starts To limit the position of the laser ranging sensor 11, prevent the relative movement of the laser ranging sensor 11 relative to the cooling plate 12, improve the reliability of the assembly of the laser ranging sensor 11 and the cooling plate 12, and help improve the laser ranging The detection accuracy of the sensor 11.
  • first gap 111 between the laser ranging sensor 11 and the bottom wall of the limiting groove 124 , and both side walls of the limiting groove 124 are provided with first air outlet holes 122 .
  • the first gap 111 is a gap for gas to flow between the first shield and the laser ranging sensor.
  • the first gap 111 By defining the first gap 111 between the side of the laser distance measuring sensor 11 facing the cooling plate 12 and the bottom wall of the limiting groove 124, it can ensure that the compressed gas is blown from the first air outlet hole 122 to the laser distance measuring sensor 11. At the same time, the compressed gas can be blown out from the first gap 111 to ensure smooth flow of the gas, thereby ensuring that the compressed gas can be continuously blown out from the first outlet hole 122 to continuously cool the laser distance sensor 11 .
  • the first air outlet is provided on the two side walls of the limiting groove 124, like this, when a part of the laser ranging sensor 11 is embedded in the limiting groove 124, the two sides of the limiting groove 124 both sides
  • the first air outlet 122 on the first side wall can simultaneously blow the two sides of the laser distance measuring sensor 11, so as to further improve the cooling efficiency of the laser distance measuring sensor 11.
  • the first protective cover 13 is provided with a second opening 132 , and the second opening 132 is configured for connecting the laser ranging sensor 11 with an external device.
  • the second opening 132 is an escape opening, which is used to avoid a part of the structure of the laser distance measuring sensor 11 so that the laser distance measuring sensor 11 can be connected with an external device.
  • connection end of the laser emitting end of the laser ranging sensor 11 can be connected with external equipment (such as a power supply device) to ensure the normal use of the laser ranging sensor 11.
  • FIG. 4 is a schematic structural view of a detection device provided by some embodiments of the present application
  • FIG. 5 is a schematic cross-sectional structural schematic diagram of A-A in FIG. 4.
  • the first protective cover 13 is provided with an air outlet 133 .
  • the air outlet 133 is disposed on a side of the first protective cover 13 away from the second opening 132 , and is used for the gas in the first protective cover 13 to flow out.
  • the first protective cover can be quickly discharged from the air outlet 133 13, to ensure that the compressed gas circulates and cools the laser distance measuring sensor 11 in the first protective cover 13, thereby helping to further improve the cooling efficiency of the laser distance measuring sensor 11.
  • the air outlet 133 and the escape portion 135 are the same part, so that the structure of the first protective cover 13 is simple and easy to manufacture. That is, the laser emitting end of the laser ranging sensor 11 is corresponding to the position of the air outlet 133, and the laser emitting end of the laser ranging sensor 11 can emit laser light from the air outlet 133 to the outside of the first protective cover 13, and then can realize the treatment. Measuring the distance of the measured object. It should be noted that the air outlet 133 and the escape portion 135 may also be different components on the first protective cover 13 , which is not limited in this embodiment of the present application.
  • the compressed gas blown out from the first air outlet hole 122 can also be discharged from the second opening 132 after exchanging heat with the surrounding hot air of the laser distance measuring sensor 11 .
  • a second gap 134 for gas flow is provided between the inner wall of the first protective cover 13 and the laser ranging sensor 11 .
  • the inner surface of the first protective cover 13 is the surface of the first protective cover 13 facing the laser ranging sensor 11 .
  • a first gap 111 is provided between the laser ranging sensor 11 and the bottom wall of the limiting groove 124, and the limit groove 124
  • Both side walls are provided with a first air outlet 122, when the compressed air is blown from the first air outlet 122 on the bottom wall of the limiting groove 124 to the laser ranging sensor 11, the compressed air can pass through the first gap 111 along the The length direction of the limiting groove 124 flows to the opposite sides of the first protective cover 13, and blows out from the air outlet 133 along the inner wall of the first protective cover 13, and at the same time, the compressed air passes through the two side walls of the limiting groove 124
  • the first air outlet hole 122 on the top blows to the two sides of the laser distance measuring sensor 11, and blows out from the air outlet 133 along the inner wall surface of the first protective cover 13, and the airflow of multiple directions is along different directions in the first protective cover 13 Direction flow, thereby forming the e
  • the detection device 100 further includes: a fixing plate (not shown in the figure), fixedly connected with the cooling plate 12 and/or the first protective cover 13, for fixing the cooling plate 12 and/or the first Shield 13.
  • one side of the fixing plate is fixedly connected to the cooling plate 12 and the first protective cover 13 respectively, and the other side is used to be fixedly connected to the scanning frame 202 on the pole piece manufacturing equipment 200 .
  • the detection device 100 also includes: a second protective cover (not shown in the figure), which is located outside the laser distance measuring sensor 11 and the cooling module; the cooling plate 12 is away from the laser distance measuring sensor 11
  • a second protective cover (not shown in the figure)
  • the cooling plate 12 is away from the laser distance measuring sensor 11
  • One side is provided with a second air outlet (not shown in the figure), the second air outlet communicates with the gas flow channel 123, and a third gap for gas flow is provided between the inner wall surface of the second protective cover and the cooling module .
  • the second protective cover is a protective cover arranged outside the laser ranging sensor 11 and the cooling module.
  • a second protective cover is arranged outside the laser distance measuring sensor 11 and the cooling module, and the second protective cover A third gap is provided between the inner wall surface and the cooling module, so that when the compressed air is blown from the second air outlet to the inner wall surface of the second protective cover, a vortex effect can be formed in the second protective cover to cool the cooling module. Cooling is carried out, so that the cooling effect on the laser distance measuring sensor 11 can be further improved.
  • FIG. 6 is a structural schematic view of a pole piece manufacturing equipment provided by some embodiments of the present application.
  • the embodiment of the second aspect of the present application provides a pole piece manufacturing equipment 200, including: a coating device (not shown in the figure), used to coat the surface of the pole piece 300;
  • a coating device (not shown in the figure), used to coat the surface of the pole piece 300;
  • Controller 205, controller 205 It is used to receive the thickness of the pole piece 300 detected by the detection device 100 , and control the coating device to adjust the thickness of the pole piece 300 according to the comparison result between the thickness of the pole piece 300 and the preset thickness threshold.
  • the coating device is used to coat the surface of the pole piece 300 .
  • the coating device is provided with a coating head, and both sides of the coating head are provided with chipping pieces, and the coating head is used for coating the pole piece, and the chipping piece is used for thinning the pole piece thickness.
  • the detection device 100 is arranged on both sides of the pole piece 300 in the thickness direction, so as to detect the thickness of the pole piece 300 .
  • the controller 205 (such as an industrial computer) is electrically connected to the detection device 100 and the coating device, and is used to receive the thickness of the pole piece 300 detected by the detection device 100, and compare the thickness of the pole piece 300 with a preset thickness threshold, And control the coating device to adjust the thickness of the pole piece 300 according to the comparison result. If the thickness of the pole piece 300 detected by the detection device 100 is less than or greater than the preset thickness threshold, the controller 205 controls the coating device to adjust the thickness of the pole piece 300. Coating or thinning, so that the thickness of the pole piece 300 reaches a preset threshold.
  • the detection device 100 is disposed on both sides of the pole piece 300 in the thickness direction.
  • the thickness of the pole piece 300 includes the thickness of the thinned area of the pole piece 300 .
  • the thickness of the thinned area of the pole piece 300 is the thickness of the two side edges in the width direction of the pole piece 300 .
  • the coating amount of the slurry on the pole piece 300 is less than that of the normal area, which leads to a decrease in the battery capacity of the lithium battery, which affects the safety of the battery cell. reduce.
  • the thinning area of the pole piece 300 is too narrow or there is no thinning area, it will cause the problem of bulging. Therefore, by real-time online measurement and monitoring of the thickness of the thinning area of the pole piece 300, the battery capacity of the lithium battery can be effectively guaranteed, and at the same time Ensure the safety of lithium batteries.
  • the pole piece manufacturing equipment 200 further includes: a drying device, disposed downstream of the coating device, for drying the pole piece 300; and a rolling device 203, disposed downstream of the drying device, It is used for rolling the pole piece 300 ; wherein, the detection device 100 is arranged upstream of the rolling device 203 .
  • the drying device is arranged downstream of the coating device, and is used for drying the pole piece 300 after the coating device coats the pole piece 300 .
  • the rolling device 203 is arranged downstream of the drying device, and is used for rolling the pole piece 300 after the drying device dries the pole piece 300 .
  • the detection device 100 is set upstream of the rolling device 203, that is, the detection device 100 can be set between the drying device and the rolling device 203, or it can be set upstream of the drying device , can detect the thickness of the pole piece 300 in real time after coating the pole piece 300 by the coating device, and adjust it in real time through the coating device, so as to ensure the reliability of the quality of the pole piece 300.
  • the pole piece manufacturing equipment 200 also includes: a base 201; on the frame 202; the magnetic scale assembly 204 includes a magnetic scale reading head 2042 arranged on the base 201 and a magnetic scale reading head 2042 arranged on the scanning frame 202, and the magnetic scale reading head 2042 is used to scan the scanning frame 202 Read the equally spaced magnetic waves pre-recorded on the magnetic scale 2041 when sliding relative to the base 201 to detect the linear displacement of the scanning frame 202 .
  • the base 201 is used to fix the scanning frame 202 and the rolling device 203 and other equipment components.
  • the scanning frame 202 is a C-shaped scanning frame 202 .
  • the magnetic scale assembly 204 includes a magnetic scale 2041 disposed on the base 201 and a magnetic scale reading head 2042 disposed on the scanning frame 202.
  • the magnetic scale reading head 2042 detects the linear displacement of the scanning frame 202 by reading the equally spaced magnetic waves pre-recorded on the magnetic scale 2041, so as to avoid the edge-seeking caused by the low precision of the mechanical transmission parts in the scanning room of the scanning frame 202
  • the position deviation improves the edge-finding positioning accuracy of the forward and reverse scanning of the laser ranging sensor 11 when the scanning frame 202 reciprocates, thereby improving the linear measurement accuracy.
  • Figure 7 is a structural schematic diagram of another perspective of the pole piece manufacturing equipment provided by some embodiments of the present application
  • Figure 8 is a schematic diagram of the first inspection sheet and the second inspection sheet in some embodiments of the application work flow chart.
  • the pole piece manufacturing equipment 200 further includes a first verification piece 206 and a second verification piece 207, which are arranged on the base 201 and are respectively located on On both sides of the pole piece 300 in the width direction, one of the first calibration piece 206 and the second calibration piece 207 is used to compensate the temperature of the pole piece 300 , and the other is used to calibrate the compensated temperature.
  • the first check piece 206 and the second check piece 207 are connected by a half-bridge, and the first check piece 206 and the second check piece 207 are respectively located on both sides of the width direction of the pole piece 300.
  • the first check piece 206 and one of the second calibration sheet 207 can perform temperature compensation to the temperature of the pole piece 300, and the other can correct the compensated temperature, thereby avoiding the influence of the ambient temperature on the detection of the thickness of the pole piece 300, and helping to improve the temperature of the pole piece 300. 300 thickness detection accuracy.
  • the first calibration chip 206 uses the first calibration chip 206 to compensate the temperature of the pole piece 300 and the second calibration chip 207 to calibrate the compensated temperature as an example.
  • the first verification sheet 206 and the second verification sheet 207 have a first standard thickness and a second standard thickness.
  • the workflow of the first check sheet 206 and the second check sheet 207 is as follows:
  • S100 Measure a first measurement thickness of the first calibration sheet 206 . Using the detection device 100 to detect the first measured thickness of the first calibration sheet 206;
  • S300 Perform temperature compensation on the detection device 100 . Temperature compensation is performed on the detection device 100 according to the deviation between the first measured thickness and the first standard thickness.
  • the temperature-compensated detection device 100 is used to detect the second measured thickness of the second calibration sheet 207, and the accuracy of the compensated temperature is judged according to the deviation between the second measured thickness and the second standard thickness.
  • the first standard thickness and the second standard thickness may be the same or different, which is not limited in this embodiment of the present application.
  • the first test piece 206 and the second test piece 207 can be made of stainless steel, tungsten steel and other materials that are less affected by the environment, so as to avoid environmental factors such as humidity from affecting the temperature compensation of the detection device 100 .
  • the present application provides a detection device 100 including a laser ranging sensor 11 , a first protective cover 13 , a cooling plate 12 and a second protective cover.
  • the first protective cover 13 covers the outside of the laser ranging sensor 11, the first protective cover 13 has a first opening 131, the cooling plate 12 covers the first opening 131, the inside of the cooling plate 12 defines a gas flow channel 123, and the cooling plate
  • the surface of 12 is provided with the air inlet hole 121 and the first air outlet hole 122 that communicate with the gas flow channel 123, and the first air outlet hole 122 is set toward the laser distance measuring sensor 11, and is used for blowing air to the laser distance measuring sensor 11 to cool the laser light.
  • Range sensor 11 The second protective cover is arranged on the outside of the first protective cover 13 and the cooling plate 12 , and the second air outlet is arranged on the side of the cooling plate 12 away from the laser ranging sensor 11 and communicated with the gas flow channel 123 .
  • the number of air intake holes 121 is multiple, and the multiple air intake holes 121 are arranged at intervals on the second surface; One-to-one correspondence and mutual communication; each gas channel 123 is provided with a plurality of first air outlet holes 122 and a plurality of second air outlet holes in the extending direction.
  • each gas channel 123 is provided with a plurality of first air outlet holes 122 and a plurality of second air outlet holes in the extending direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本申请涉及电池制造技术领域,提供一种检测装置及极片制造设备,其中,检测装置包括:激光测距传感器;冷却模块,包括第一防护罩和冷却板,第一防护罩罩设于激光测距传感器的外部,所述第一防护罩上设置有避让部,用于避让所述激光测距传感器的激光光路,第一防护罩具有第一开口,冷却板覆盖第一开口,冷却板的内部限定有气体流道,冷却板的表面设置有与气体流道相连通的进气孔和第一出气孔,第一出气孔朝向激光测距传感器设置,用于向激光测距传感器吹风,以冷却激光测距传感器。通过本申请的技术方案,可以使得压缩气体能够在经过气体流道后从出气孔吹向激光测距传感器,实现对激光测距传感器的冷却,提高激光测距传感器的检测精度。

Description

检测装置及极片制造设备
相关申请的交叉引用
本申请要求享有于2022年02月17日提交的名称为“检测装置及极片制造设备”的第202220322938.5号中国专利申请的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池制造技术领域,特别是涉及一种检测装置及极片制造设备。
背景技术
相关技术中,在电池的极片制造工艺中,会利用检测器件检测极片的厚度,以保证电池的极片成型质量。但在当检测器件所处工作环境的温度较高,以及采用检测装置持续检测时,检测器件的温度会持续升高,温度过高会导致检测器件的检测精度降低,甚至会导致损坏无法使用。
发明内容
本申请实施例的一个目的在于提供一种检测装置,能够有效对激光测距传感器进行降温,以提高激光测距传感器的检测精度和使用安全。
本申请实施例的另一个目的在于提供一种包括上述检测装置的极片制造设备。
第一方面,本申请实施例提供一种检测装置,包括:激光测距传感器;冷却模块,包括第一防护罩和冷却板,所述第一防护罩罩设于所述激光测距传感器的外部,所述第一防护罩上设置有避让部,用于避让激光测距传感器的激光光路,所述第一防护罩具有第一开口,所述冷却板覆盖所述第一开口,所述冷却板的内部限定有气体流道,所述冷却板的表面设置有与所述气体流道相连通的进气孔和第一出气孔,所述第一出气孔朝向所述激光测距传感器设置,用于向所述激光测距传感器吹风,以冷却所述激光测距传感器。
在上述实施例中,检测装置包括激光测距传感器和冷却模块。其中,冷却模块包括第一防护罩和冷却板,第一防护罩罩设在激光测距传感器的外部,且第一防护罩具有第一开口,冷却板覆盖在第一开口,使得激光测距传感器位于第一防护罩与冷却板之间。具体地,在冷却板的内部限定有气体流道,且在冷却板的表面设置与气体流道相连通的进气孔和第一出气孔,同时,将第一出气孔朝向激光测距传感器设置。这样,当向进气孔内通入压缩气体时,压缩气体能够在经过气体流道后从出气孔吹向激 光测距传感器,压缩气体通过与激光测距传感器所处环境的热空气进行热交换,从而实现对激光测距传感器进行冷却的目的。进而有助于提高激光测距传感器的检测精度,并提高激光测距传感器的使用寿命。
在一些实施例中,所述冷却板包括相邻设置的第一表面和第二表面,所述第一表面朝向所述激光测距传感器设置,所述第一出气孔设置在所述第一表面上,所述进气孔设置在所述第二表面上。
在上述实施例中,冷却板的第一表面和第二表面相邻设置,且第一表面朝向激光测距传感器,第一出气孔和进气孔分别设置在第一表面和第二表面上,即第二表面可以为与第一表面相邻的四个表面中的任意一个,也即进气孔设置在与第一表面相邻的四个表面中的任意一个表面上。
在一些实施例中,所述气体流道的数量为多个,多个所述气体流道间隔设置于所述冷却板的内部。
在上述实施例中,通过在冷却板的内部间隔设置多个气体流道,增加了气体流道的数量,从而可增大压缩空气在冷却板内的流通面积,进而有助于提高对激光测距传感器的冷却效果。
在一些实施例中,每个所述气体流道具有沿所述气体流道的延伸方向间隔设置的多个所述第一出气孔。
在上述实施例中,通过在每个气体流道的延伸方向上间隔设置多个第一出气孔,从而可提高压缩空气在同一时间吹向激光测距传感器的气体量,以有效提高与激光测距传感器周围热空气的热交换效率,进而可进一步提高对激光测距传感器的冷却效率。
在一些实施例中,所述冷却板朝向所述激光测距传感器的一侧设有限位槽,所述激光测距传感器的一部分嵌设于所述限位槽内,并与所述冷却板固定连接。
在上述实施例中,通过在冷却板朝向激光测距传感器的一侧设置限位槽,并将激光测距传感器的一部分嵌设在限位槽内,并与冷却板固定连接,限位槽起到对激光测距传感器的限位作用,防止激光测距传感器相对冷却板发生相对运动,提高了激光测距传感器与冷却板装配的可靠性,并有助于提高激光测距传感器的检测精度。
在一些实施例中,所述激光测距传感器与所述限位槽的底壁之间具有第一间隙,且所述限位槽的两个侧壁均设有所述第一出气孔。
在上述实施例中,通过将激光测距传感器朝向冷却板的一侧与限位槽的底壁之间限定出第一间隙,从而可保证压缩气体从第一出气孔吹向激光测距传感器的同时,压缩气体能够从第一间隙吹出,保证了气体流动的流畅性,进而保证能够压缩气体能够持续从第一出气孔吹出,以持续对激光测距传感器进行冷却。同时,由于在限位槽的两个侧壁上均设置有第一出气孔,这样,当激光测距传感器的一部分嵌设于限位槽内时,限位槽两侧的两个侧壁上的第一出气孔能够同步对激光测距传感器的侧面进行 吹风,以进一步提高对激光测距传感器的冷却效率。
在一些实施例中,所述第一防护罩设有第二开口,所述第二开口被配置为供激光测距传感器与外部设备连接。
在上述实施例中,通过在第一防护罩上设置第二开口,从而能够保证激光测距传感器的激光发射端的连接端与外部设备(如供电装置或供电线缆)实现连接,保证激光测距传感器的正常使用。
在一些实施例中,所述第一防护罩设有出风口。
在上述实施例中,第一防护罩设有出风口,这样,当冷却板内的压缩空气在与激光测距传感器的周围热空气进行热交换后,能够快速从出风口排出第一防护罩,以保证压缩气体在第一防护罩内对激光测距传感器的循环冷却,从而有助于进一步提高对激光测距传感器的冷却效率。同时,激光测距传感器的激光发射端与出风口的位置相对应,激光测距传感器的激光发射端能够从出风口向第一防护罩的外部发出激光,进而能够实现对待测物的距离测量。
在一些实施例中,所述第一防护罩的内壁面与所述激光测距传感器之间设有供气体流动的第二间隙。
在上述实施例中,激光测距传感器与第一防护罩的内壁面之间设有第二间隙,这样,可保证压缩气体从第一出风孔吹向激光测距传感器后,能够在第一防护罩内形成涡流效应,从而可对激光测距传感器的各个表面进行冷却,进而可进一步提高对激光测距传感器的冷却效果。
在一些实施例中,每个气体流道具有沿所述气体流道的延伸方向间隔设置的多个第二出气孔。
在上述实施例中,增加了第二出气孔的数量,提高了吹向第二防护罩内的气体量,从而有助于提高对冷却模块的冷却效果,进而可进一步提高对激光测距传感器的冷却效率。
在一些实施例中,所述检测装置还包括:第二防护罩,罩设于所述激光测距传感器和所述冷却模块的外部;所述冷却板背离所述激光测距传感器的一侧设有第二出气孔,所述第二出气孔与所述气体流道相连通,且所述第二防护罩的内壁面与所述冷却模块之间设有供气体流动的第三间隙。
在上述实施例中,冷却板背离激光测距传感器的一侧设置有与气体流道相连通的第二出气孔,检测装置还包括罩设在激光测距传感器和冷却模块外部的第二防护罩,且第二防护罩的内壁面与冷却模块之间设有第三间隙,这样,当压缩空气从第二出气孔吹向第二防护罩的内壁面上后,能够在第二防护罩内形成涡流效应,以对冷却模块进行冷却,从而可进一步提高对激光测距传感器的冷却效果。
第二方面,本申请实施例提供了一种极片制造设备,包括:涂布装置,用于对 极片的表面进行涂布;如第一方面实施例中任一项所述的检测装置,所述检测装置的数量为两个,两个所述检测装置分别设于所述极片的厚度方向的两侧,用于检测所述极片的厚度;控制器,所述控制器用于接收所述检测装置检测的所述极片的厚度,并根据所述极片的厚度与预设的厚度阈值的比对结果,控制所述涂布装置对所述极片的厚度进行调整。
在上述实施例中,极片制造设备包括涂布装置、控制器和如第一方面实施例中任一项所述的检测装置。其中,涂布装置用于对极片的表面进行涂布。检测装置设置在极片的厚度方向的两侧,以实现对极片的厚度检测。控制器(如工控机)与检测装置和涂布装置电连接,用于接收检测装置检测的极片的厚度,并将极片的厚度与预设的厚度阈值进行比对,以及根据比对结果控制涂布装置对极片的厚度进行调整,以使极片的厚度达到预设阈值,保证极片厚度的一致性,提高电池的性能。
在一些实施例中,所述极片的厚度包括所述极片的削薄区厚度。
在上述实施例中,极片在涂布生产时削薄区域的宽度较大时,极片浆料涂覆量比正常区域涂覆量少而导致锂电池的电池容量减小,导致电芯安全性降低。当极片削薄区域过窄或没有削薄区域时,则会导致鼓边问题,因此通过实时在线测量与监控极片的削薄区厚度,从而可有效保证锂电池的电池容量,同时保证锂电池使用的安全性。
在一些实施例中,所述极片制造设备还包括:烘干装置,设于所述涂布装置的下游,用于烘干所述极片;和辊压装置,设于所述烘干装置的下游,用于辊压所述极片;其中,所述检测装置设于所述辊压装置的上游。
在上述实施例中,极片制造设备还包括烘干装置和辊压装置。其中,烘干装置设置在涂布装置的下游,用于在涂布装置对极片涂布后烘干极片。辊压装置设置在烘干装置的下游,用于在烘干装置烘干极片后对极片进行辊压。由于经辊压装置辊压后极片的厚度为非在线涂布过程中极片的实时厚度,且不能实时调整涂布过程中极片的厚度,而且会因极片厚度检测滞后导致超规格批量报废的风险,因此通过检测装置设置在辊压装置的上游,即检测装置可以设于烘干装置与辊压装置之间,也可以设置在烘干装置的上游,均能够在涂布装置对极片涂布后进行极片厚度进行实时检测,并通过涂布装置实时调整,从而可保证极片质量的可靠性。
在一些实施例中,所述极片制造设备还包括:基座;扫描架,设于所述基座上,并与所述基座滑动连接,所述检测装置设于所述扫描架上;磁栅尺组件,包括设于所述基座上设置有磁栅尺和设于所述扫描架上的磁栅尺读数头,所述磁栅尺读数头用于在所述扫描架相对所述基座滑动时读取预先录制在所述磁栅尺上的等间隔磁波,以检测所述扫描架的线性位移量。
在上述实施例中,极片制造设备还包括基座、扫描架和磁栅尺组件。其中,扫描架设于基座上并与基座滑动连接,检测装置设置在扫描架上,扫描架能够带动检测装置往复运动,以对极片进行厚度检测。磁栅尺组件包括设于基座上的磁栅尺和设于 扫描架上的磁栅尺读头,当扫描架相对基座往复滑动以带动检测装置运动时,磁栅尺读头通过读取预先录制在磁栅尺上的等间隔磁波,以检测扫描架的线性位移量,避免扫描架扫描室因机械传动件本身精度不高引起的寻边位置偏差,提高扫描架往复移动时激光测距传感器正反向扫描的寻边定位精度,从而提高线性测量精度。
在一些实施例中,所述极片制造设备还包括第一校验片和第二检验片,所述第一校验片和所述第二校验片设于所述基座上,并分别位于所述极片的宽度方向的两侧,所述第一校验片和所述第二校验片中的一者用于对所述极片的温度进行补偿,另一者用于校对补偿后的温度。
在上述实施例中,通过在基座上设置第一校验片和与第一校验片采用半桥连接的第二校验片,且第一校验片和第二校验片分别位于极片的宽度方向的两侧,第一校验片和第二校验片中的一者能够通过空气校验对比后对极片温度进行温度补偿,另一者能够校对补偿后的温度,从而避免温度对极片厚度检测的影响,有助于提高极片厚度检测的精确性。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一些实施例提供的检测装置的分解结构示意图;
图2是本申请一些实施例提供的激光测距传感器与冷却板的装配结构示意图;
图3是本申请实施例提供的检测装置的装配结构示意图;
图4为本申请实施例提供的检测装置的一个视角的结构示意图;
图5为图4中A-A向的剖视结构示意图;
图6为本申请实施例提供的极片制造设备的一个视角的结构示意图;
图7为本申请实施例提供的极片制造设备的另一个视角的结构示意图;
图8为本申请一些实施例中第一检验片和第二校验片的工作流程图。
在附图中,附图并未按照实际的比例绘制。
标记说明:检测装置100,极片制造设备200;极片300;
激光测距传感器11,冷却板12,第一防护罩13;
第一间隙111,进气孔121,第一出气孔122,气体流道123,限位槽124;
第一开口131,第二开口132,出风口133,第二间隙134,避让部135;
基座201,扫描架202,辊压装置203,磁栅尺组件204,控制器205,第一校验片206,第二校验片207;
磁栅尺2041,磁栅尺读头2042。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
随着对动力电池的市场的需求量越来越大,对电池的电性能和安全性能也提出了更高的要求,为了提高电池的电性能和安全性能,技术人员从多个方面寻求改善,其中,电池制造过程中的电极组件的极片厚度对电池的极片成型质量有重要的影响,因此需要对电极组件的极片厚度进行实时检测。
电极组件的极片厚度的检测有多种方法,比如千分尺测量法和激光测量法等,其中,千分尺需要手工测量,测量误差较大;激光测量法能够实现对电极组件的极片厚度的自动化检测,且测量精度较高,因此对于电池制造的自动化生产线使用较多。
发明人发现,在采用激光测量法时,由于激光测距传感器内的红外光敏感元件受环境温度影响会发生膨胀或收缩,对应量程会放大或缩小,因此环境温度对激光测距传感器的检测精度影响较大。尤其是当激光测距传感器所处工作环境的温度较高,以及采用激光测距传感器持续检测时,激光传感器内的测量电气元件的温度会持续升高,进而会导致激光测距传感器的检测精度降低,甚至会导致损坏无法使用。
基于此,为了解决激光测距传感器因所在环境温度或持续检测时导致的检测精 度降低、甚至损坏的问题,发明人经过深入研究,设计了一种检测装置,利用冷却模块对激光测距传感器进行实时换热冷却,从而有效提高激光测距传感器的检测精度,并避免因环境温度过高导致其发生损坏。
本申请实施例公开的检测装置可以但不限用于极片制造设备、炼钢设备等设备中。
请参照图1至图5,图1为本申请一些实施例提供的检测装置100的分解结构示意图;图2为本申请一些实施例提供的激光测距传感器与冷却板的装配结构示意图;图3为本申请实施例提供的检测装置的装配结构示意图;图4为本申请实施例提供的检测装置的一个视角的结构示意图;图5为图4中A-A向的剖视结构示意图;。本申请第一方面实施例提供的检测装置100,包括:激光测距传感器11;冷却模块,包括第一防护罩13和冷却板12,第一防护罩13罩设于激光测距传感器11的外部,第一防护罩13上设置有避让部135,用于避让激光测距传感器11的激光光路,第一防护罩13具有第一开口131,冷却板12覆盖第一开口131,冷却板12的内部限定有气体流道123,冷却板12的表面设置有与气体流道123相连通的进气孔121和第一出气孔122,第一出气孔122朝向激光测距传感器11设置,用于向激光测距传感器11吹风,以冷却激光测距传感器11。
激光测距传感器11可用于检测与待测物(如极片300)之间的距离或检测待测物的厚度,其中,在测量待测物的厚度时,可通过将两个激光测距传感器11分别设置在待测物的厚度方向的两侧,在确定两个激光测距传感器11之间的距离L后,又通过测量出两个激光测距传感器11分别距离待测物上表面和下表面的距离A和B,便可得到待测物的厚度。即待测物厚度T=L-A-B。
冷却板12具有进气孔121、气体流道123和出气孔,其中,气体流道123与进气孔121和出气孔相连通,通过将出气孔朝向激光测距传感器11设置,从而可在向进气孔121内通入压缩空气内时,压缩空气通过气体流道123和出气孔吹向激光测距传感器11,从而对激光测距传感器11进行换热,进而实现对激光测距传感器11的降温作用。
第一防护罩13可为隔热罩,一方面可使压缩空气在第一防护罩13内流动时形成涡流效应,以对激光测距传感器11的各个表面进行冷却,另一方面可隔绝外部热空气进入第一防护罩13内。
第一防护罩13上设置有避让部135,用于避让激光测距传感器11的激光光路。在一些实施例中,避让部135是将第一防护罩13上与激光测距传感器11的激光光路对应位置的材质设置为透明材质而形成的,以使激光测距传感器11的激光光路能透过该透明材质照射至待测件上。在另一些实施例中,避让部135是将第一防护罩13上与激光测距传感器11的激光光路对应位置挖空而形成的通孔,以使激光测距传感器11的激光光路能穿过该通孔照射至待测件上。
通过将第一防护罩13罩设在激光测距传感器11的外部,冷却板12覆盖在第一防护罩13的第一开口131处,使得激光测距传感器11位于第一防护罩13与冷却板12之间。具体地,由于在冷却板12的内部限定有气体流道123,且在冷却板12的表 面设置与气体流道123相连通的进气孔121和第一出气孔122,同时,将第一出气孔122朝向激光测距传感器11设置。这样,当向进气孔121内通入压缩气体时,压缩气体能够在经过气体流道123后从出气孔吹向激光测距传感器11,压缩气体通过与激光测距传感器11所处环境的热空气进行热交换,从而实现对激光测距传感器11进行冷却的目的。进而有助于提高激光测距传感器11的检测精度,并提高激光测距传感器11的使用寿命。
请参考图1和图2,根据本申请的一些实施例,冷却板12包括相邻设置的第一表面和第二表面,第一表面朝向激光测距传感器11设置,第一出气孔122设置在第一表面上,进气孔121设置在第二表面上。
冷却板12的第一表面和第二表面相邻设置,且第一表面朝向激光测距传感器11,第一出气孔122和进气孔121分别设置在第一表面和第二表面上,即第二表面可以为与第一表面相邻的四个表面中的任意一个,也即进气孔121设置在与第一表面相邻的四个表面中的任意一个表面上。
通过将第一出气孔122和进气孔121分别设置在第一表面和第二表面上,从而可适当提高气体流道123的延伸长度,有助于提高压缩空气对冷却板自身的冷却效果,进而有助于对激光测距传感器的冷却效果。
根据本申请的一些实施例,气体流道123的数量为多个,多个气体流道123间隔设置于冷却板12的内部。
气体流道123为用于供气体在冷却板12内流通的通道。
通过在冷却板12的内部间隔设置多个气体流道123,增加了气体流道123的数量,从而可增大压缩空气在冷却板12内的流通面积,进而有助于提高对激光测距传感器11的冷却效果。
具体地,进气孔121的数量也为多个,多个进气孔121间隔设置在第二表面上,并与多个气体流道123一一对应连通。
请参考图1,根据本申请的一些实施例,每个气体流道123具有沿气体流道123的延伸方向间隔设置的多个第一出气孔122。
进气孔121设置在冷却板12的第二表面,气体流道123的一端与进气孔121相连通,即气体流道123的延伸方向为向远离第二表面的方向延伸。
通过在每个气体流道123的延伸方向上间隔设置多个第一出气孔122,从而可提高压缩空气在同一时间吹向激光测距传感器11的气体量,以有效提高与激光测距传感器11周围热空气的热交换效率,进而可进一步提高对激光测距传感器11的冷却效率。
请参考图2,根据本申请的一些实施例,冷却板12朝向激光测距传感器11的一侧设有限位槽124,激光测距传感器11的一部分嵌设于限位槽124内,并与冷却板12固定连接。
限位槽124为由冷却板12的第一表面局部凹陷形成的槽,用于固定激光测距传感器11。
通过在冷却板12朝向激光测距传感器11的一侧设置限位槽124,将激光测距 传感器11的一部分嵌设在限位槽124内,并与冷却板12固定连接,限位槽124起到对激光测距传感器11的限位作用,防止激光测距传感器11相对冷却板12发生相对运动,提高了激光测距传感器11与冷却板12装配的可靠性,并有助于提高激光测距传感器11的检测精度。
根据本申请的一些实施例,激光测距传感器11与限位槽124的底壁之间具有第一间隙111,且限位槽124的两个侧壁均设有第一出气孔122。
第一间隙111为用于供气体在第一防护罩与激光测距传感器之间流动的间隙。
通过将激光测距传感器11朝向冷却板12的一侧与限位槽124的底壁之间限定出第一间隙111,从而可保证压缩气体从第一出气孔122吹向激光测距传感器11的同时,压缩气体能够从第一间隙111吹出,保证了气体流动的流畅性,进而保证能够压缩气体能够持续从第一出气孔122吹出,以持续对激光测距传感器11进行冷却。同时,由于在限位槽124的两个侧壁上均设置有第一出气孔,这样,当激光测距传感器11的一部分嵌设于限位槽124内时,限位槽124两侧的两个侧壁上的第一出气孔122能够同步对激光测距传感器11的两个侧面进行吹风,以进一步提高对激光测距传感器11的冷却效率。
请参考图1,根据本申请的一些实施例,第一防护罩13设有第二开口132,第二开口132被配置为供激光测距传感器11与外部设备连接。
第二开口132为避让口,用于避让激光测距传感器11的部分结构,以使激光测距传感器11能够与外部设备连接。
通过在第一防护罩13上设置第二开口132,从而能够保证激光测距传感器11的激光发射端的连接端与外部设备(如供电装置)实现连接,保证激光测距传感器11的正常使用。
请参考4和图5,图4为本申请一些实施例提供的检测装置的一个视角的结构示意图;图5为图4中A-A向的剖视结构示意图。根据本申请的一些实施例,第一防护罩13设有出风口133。
出风口133设置在第一防护罩13远离第二开口132的一侧,用于供第一防护罩13的气体流出。
通过在第一防护罩13上设置出风口133,这样,当冷却板12内的压缩空气在与激光测距传感器11的周围热空气进行热交换后,能够快速从出风口133排出第一防护罩13,以保证压缩气体在第一防护罩13内对激光测距传感器11的循环冷却,从而有助于进一步提高对激光测距传感器11的冷却效率。
在一些实施例中,出风口133与避让部135为同一部件,使得第一防护罩13的结构简单,便于制造。也即,激光测距传感器11的激光发射端与出风口133的位置相对应,激光测距传感器11的激光发射端能够从出风口133向第一防护罩13的外部发出激光,进而能够实现对待测物的距离测量。需要注意的是,出风口133与避让部135也可以是第一防护罩13上的不同部件,本申请实施例对此不做限定。
可以理解的,从第一出气孔122吹出的压缩气体在与激光测距传感器11的周围热空气进行热交换后也能够从第二开口132处排出。
请参考图5,根据本申请的一些实施例,第一防护罩13的内壁面与激光测距传感器11之间设有供气体流动的第二间隙134。
第一防护罩13的内表面为第一防护罩13朝向激光测距传感器11的表面。
通过在激光测距传感器11与第一防护罩13的内壁面之间设置第二间隙134,这样,可保证压缩气体从第一出风孔吹向激光测距传感器11后,能够在第一防护罩13内形成涡流效应,从而可对激光测距传感器11的各个表面进行冷却,进而可进一步提高对激光测距传感器11的冷却效果。具体地,由于冷却板12朝向激光测距传感器11的一侧设有限位槽124,激光测距传感器11与限位槽124的底壁之间设有第一间隙111,且限位槽124的两个侧壁均设有第一出气孔122,当压缩空气从位于限位槽124的底壁上的第一出气孔122吹向激光测距传感器11时,压缩空气能够通过第一间隙111沿限位槽124的长度方向流向第一防护罩13的相对两侧,并沿着第一防护罩13的内壁面从出风口133吹出,同时,压缩空气又通过限位槽124的两个侧壁上的第一出气孔122吹向激光测距传感器11的两个侧面,并沿着第一防护罩13的内壁面从出风口133吹出,多个方向的气流在第一防护罩13内沿不同方向流动,从而在第一防护罩13内形成涡流效应,以大大提高对激光测距传感器11的冷却效果。
根据本申请的一些实施例,检测装置100还包括:固定板(图中未示出),与冷却板12和/或第一防护罩13固定连接,用于固定冷却板12和/或第一防护罩13。
具体地,固定板的一侧分别与冷却板12和第一防护罩13固定连接,另一侧用于与极片制造设备200上的扫描架202固定连接。
根据本申请的一些实施例,检测装置100还包括:第二防护罩(图中未示出),罩设于激光测距传感器11和冷却模块的外部;冷却板12背离激光测距传感器11的一侧设有第二出气孔(图中未示出),第二出气孔与气体流道123相连通,且第二防护罩的内壁面与冷却模块之间设有供气体流动的第三间隙。
第二防护罩为罩设在激光测距传感器11和冷却模块外部的防护罩。
通过在冷却板12背离激光测距传感器11的一侧设置与气体流道123相连通的第二出气孔,在激光测距传感器11和冷却模块外部设置第二防护罩,且第二防护罩的内壁面与冷却模块之间设有第三间隙,这样,当压缩空气从第二出气孔吹向第二防护罩的内壁面上后,能够在第二防护罩内形成涡流效应,以对冷却模块进行冷却,从而可进一步提高对激光测距传感器11的冷却效果。
请参考图6,图6为本申请一些实施例提供的极片制造设备的一个视角的结构示意图。本申请第二方面实施例提供了一种极片制造设备200,包括:涂布装置(图中未示出),用于对极片300的表面进行涂布;如第一方面实施例中任一项的检测装置100,检测装置100的数量为两个,两个检测装置100分别设于极片300的厚度方向的两侧,用于检测极片300的厚度;控制器205,控制器205用于接收检测装置100检测的极片300的厚度,并根据极片300的厚度与预设的厚度阈值的比对结果,控制涂布装置对极片300的厚度进行调整。
涂布装置用于对极片300的表面进行涂布。
具体地,涂布装置上设有涂布头,涂布头的两侧设有削薄片,涂布头用于 对极片进行涂布,削薄片用于对极片厚度进行削薄。
检测装置100设置在极片300的厚度方向的两侧,以实现对极片300的厚度检测。控制器205(如工控机)与检测装置100和涂布装置电连接,用于接收检测装置100检测的极片300的厚度,并将极片300的厚度与预设的厚度阈值进行比对,以及根据比对结果控制涂布装置对极片300的厚度进行调整,如检测装置100检测的极片300的厚度小于或大于预设厚度阈值,则控制器205控制涂布装置对极片300进行涂布或削薄,以使极片300的厚度达到预设阈值。
具体地,检测装置100设置在极片300的厚度方向的两侧。
根据本申请的一些实施例,极片300的厚度包括极片300的削薄区厚度。
极片300的削薄区厚度为极片300宽度方向的两侧边缘的厚度。
锂电池的极片300在涂布生产时削薄区域的宽度较大时,极片300浆料涂覆量比正常区域涂覆量少而导致锂电池的电池容量减小,导致电芯安全性降低。当极片300削薄区域过窄或没有削薄区域时,则会导致鼓边问题,因此通过实时在线测量与监控极片300的削薄区厚度,从而可有效保证锂电池的电池容量,同时保证锂电池使用的安全性。
根据本申请的一些实施例,极片制造设备200还包括:烘干装置,设于涂布装置的下游,用于烘干极片300;和辊压装置203,设于烘干装置的下游,用于辊压极片300;其中,检测装置100设于辊压装置203的上游。
烘干装置设置在涂布装置的下游,用于在涂布装置对极片300涂布后烘干极片300。辊压装置203设置在烘干装置的下游,用于在烘干装置烘干极片300后对极片300进行辊压。
由于经辊压装置203辊压后极片300的厚度为非在线涂布过程中极片300的实时厚度,且不能实时调整涂布过程中极片300的厚度,而且会因极片300厚度检测滞后导致超规格批量报废的风险,因此通过检测装置100设置在辊压装置203的上游,即检测装置100可以设于烘干装置与辊压装置203之间,也可以设置在烘干装置的上游,均能够在涂布装置对极片300涂布后进行极片300厚度进行实时检测,并通过涂布装置实时调整,从而可保证极片300质量的可靠性。
请参考图6,根据本申请的一些实施例,极片制造设备200还包括:基座201;扫描架202,设于基座201上,并与基座201滑动连接,检测装置100设于扫描架202上;磁栅尺组件204,包括设于基座201上设置有磁栅尺2041和设于扫描架202上的磁栅尺读数头2042,磁栅尺读数头2042用于在扫描架202相对基座201滑动时读取预先录制在磁栅尺2041上的等间隔磁波,以检测扫描架202的线性位移量。
基座201用于固定扫描架202和辊压装置203等装置件。示例性的,扫描架202为C型扫描架202。
通过将扫描架202设于基座201上并与基座201滑动连接,检测装置100设置在扫描架202上,扫描架202能够带动检测装置100往复运动,以对极片300进行厚度检测。磁栅尺组件204包括设于基座201上的磁栅尺2041和设于扫描架202上的磁栅尺读头2042,当扫描架202相对基座201往复滑动以带动检测装置100运动时, 磁栅尺读头2042通过读取预先录制在磁栅尺2041上的等间隔磁波,以检测扫描架202的线性位移量,避免扫描架202扫描室因机械传动件本身精度不高引起的寻边位置偏差,提高扫描架202往复移动时激光测距传感器11正反向扫描的寻边定位精度,从而提高线性测量精度。
请参考图7和图8,图7为本申请一些实施例提供的极片制造设备的另一个视角的结构示意图;图8为本申请一些实施例中第一检验片和第二校验片的工作流程图。根据本申请的一些实施例,极片制造设备200还包括第一校验片206和第二检验片,第一校验片206和第二校验片207设于基座201上,并分别位于极片300的宽度方向的两侧,第一校验片206和第二校验片207中的一者用于对极片300的温度进行补偿,另一者用于校对补偿后的温度。
由于环境温度的变化会对检测装置100的测量精度造成影响,一般来说环境温度越高,检测装置100所测量到的待测件的厚度值越大,因此需要对检测装置100进行温度补偿,以提高检测装置100的测量精度。第一校验片206与第二校验片207采用半桥连接,且第一校验片206和第二校验片207分别位于极片300的宽度方向的两侧,第一校验片206和第二校验片207中的一者能够对极片300温度进行温度补偿,另一者能够校对补偿后的温度,从而避免环境温度对极片300厚度检测的影响,有助于提高极片300厚度检测的精确性。
为了便于描述,以下以第一校验片206用于对极片300的温度进行补偿,第二校验片207用于校对补偿后的温度为例进行说明。第一校验片206和第二校验片207具有第一标准厚度和第二标准厚度。如图8所示,第一校验片206和第二校验片207的工作流程如下:
S100:测量第一校验片206的第一测量厚度。利用检测装置100检测出第一校验片206的第一测量厚度;
S200:判断环境温度对测量结果的影响情况。通过将第一测量厚度与第一标准厚度比较后即可得出极片300所处的环境温度对极片300厚度检测结果的影响情况;
S300:对检测装置100进行温度补偿。根据第一测量厚度和第一标准厚度的偏差对检测装置100进行温度补偿。
S400:校验补偿后的温度。利用经过温度补偿后的检测装置100检测出第二校验片207的第二测量厚度,根据第二测量厚度和第二标准厚度的偏差判断补偿后的温度的准确性。
其中第一标准厚度和第二标准厚度可以相同也可以不同,本申请实施例对此不做限定。第一检验片206和第二校验片207可以由不锈钢、钨钢等受环境影响较小的材质制成,以避免湿度等环境因素对检测装置100的温度补偿造成影响。
根据本申请的一些实施例,参见图1至图5,本申请提供了一种检测装置100,包括激光测距传感器11、第一防护罩13、冷却板12和第二防护罩。第一防护罩13罩设于激光测距传感器11的外部,第一防护罩13具有第一开口131,冷却板12覆盖第一开口131,冷却板12的内部限定有气体流道123,冷却板12的表面设置有与气 体流道123相连通的进气孔121和第一出气孔122,第一出气孔122朝向激光测距传感器11设置,用于向激光测距传感器11吹风,以冷却激光测距传感器11。第二防护罩罩设于第一防护罩13和冷却板12的外部,第二出气孔设于冷却板12背离激光测距传感器11的一侧,并与气体流道123相连通。
进一步地,进气孔121的数量为多个,多个进气孔121间隔设置在第二表面上;气体流道123的数量为多个,多个气体流道123与多个进气孔121一一对应且相互连通;每个气体流道123的延伸方向上配置有多个第一出气孔122和多个第二出气孔。通过向进气孔121内通入压缩空气,压缩空气沿着气体流道123从第一出气孔122吹向激光测距传感器11和第一防护罩13的内表面,从而对激光测距传感器11进行降温冷却,以提高激光测距传感器11的检测精度和使用寿命。同时,压缩空气通过第二出气孔向第二防护罩的内表面,从而对冷却板12和第一防护罩13进行冷却,以进一步提高对激光测距传感器11的冷却效果。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种检测装置,包括:
    激光测距传感器;
    冷却模块,包括第一防护罩和冷却板,所述第一防护罩罩设于所述激光测距传感器的外部,所述第一防护罩上设置有避让部,用于避让所述激光测距传感器的激光光路,所述第一防护罩具有第一开口,所述冷却板覆盖所述第一开口,所述冷却板的内部限定有气体流道,所述冷却板的表面设置有与所述气体流道相连通的进气孔和第一出气孔,所述第一出气孔朝向所述激光测距传感器设置,用于向所述激光测距传感器吹风,以冷却所述激光测距传感器。
  2. 根据权利要求1所述的检测装置,其中,所述冷却板包括相邻设置的第一表面和第二表面,所述第一表面朝向所述激光测距传感器设置,所述第一出气孔设置在所述第一表面上,所述进气孔设置在所述第二表面上。
  3. 根据权利要求1或2所述的检测装置,其中,所述气体流道的数量为多个,多个所述气体流道间隔设置于所述冷却板的内部。
  4. 根据权利要求1-3中任一项所述的检测装置,其中,每个所述气体流道具有沿所述气体流道的延伸方向间隔设置的多个所述第一出气孔。
  5. 根据权利要求1-4中任一项所述的检测装置,其中,所述冷却板朝向所述激光测距传感器的一侧设有限位槽,所述激光测距传感器的一部分嵌设于所述限位槽内,并与所述冷却板固定连接。
  6. 根据权利要求5所述的检测装置,其中,所述激光测距传感器与所述限位槽的底壁之间具有第一间隙,且所述限位槽的两个侧壁均设有所述第一出气孔。
  7. 根据权利要求1-6中任一项所述的检测装置,其中,所述第一防护罩设有第二开口,所述第二开口被配置为供所述激光测距传感器与外部设备连接。
  8. 根据权利要求1-7中任一项所述的检测装置,其中,所述第一防护罩设有出风口。
  9. 根据权利要求1-8中任一项所述的检测装置,其中,所述第一防护罩的内壁面与所述激光测距传感器之间设有供气体流动的第二间隙。
  10. 根据权利要求1-9中任一项所述的检测装置,其中,所述检测装置还包括:第二防护罩,罩设于所述激光测距传感器和所述冷却模块的外部;
    所述冷却板背离所述激光测距传感器的一侧设有第二出气孔,所述第二出气孔与所述气体流道相连通,且所述第二防护罩的内壁面与所述冷却模块之间设有供气体流动的第三间隙。
  11. 一种极片制造设备,包括:
    涂布装置,用于对极片的表面进行涂布;
    如权利要求1-10中任一项所述的检测装置,所述检测装置的数量为两个,两个所述检测装置分别设于所述极片的厚度方向的两侧,用于检测所述极片的厚度;
    控制器,所述控制器用于接收所述检测装置检测的所述极片的厚度,并根据所述极片的厚度与预设的厚度阈值的比对结果,控制所述涂布装置对所述极片的厚度进行 调整。
  12. 根据权利要求11所述的检测装置,其中,所述极片的厚度包括所述极片的削薄区厚度。
  13. 根据权利要求11或12所述的检测装置,其中,所述极片制造设备还包括:
    烘干装置,设于所述涂布装置的下游,用于烘干所述极片;和
    辊压装置,设于所述烘干装置的下游,用于辊压所述极片;
    其中,所述检测装置设于所述辊压装置的上游。
  14. 根据权利要求11-13中任一项所述的检测装置,其中,所述极片制造设备还包括:
    基座;
    扫描架,设于所述基座上,并与所述基座滑动连接,所述检测装置设于所述扫描架上;
    磁栅尺组件,包括设于所述基座上设置有磁栅尺和设于所述扫描架上的磁栅尺读数头,所述磁栅尺读数头用于在所述扫描架相对所述基座滑动时读取预先录制在所述磁栅尺上的等间隔磁波,以检测所述扫描架的线性位移量。
  15. 根据权利要求11-14中任一项所述的检测装置,其中,所述极片制造设备还包括:第一校验片和第二检验片,所述第一校验片和所述第二校验片设于所述基座上,并分别位于所述极片的宽度方向的两侧,所述第一校验片和所述第二校验片中的一者用于对所述极片的温度进行补偿,另一者用于校对补偿后的温度。
PCT/CN2022/082166 2022-02-17 2022-03-22 检测装置及极片制造设备 WO2023155265A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22888630.5A EP4257917A4 (en) 2022-02-17 2022-03-22 DETECTION DEVICE AND ELECTRODE SHEET MANUFACTURING DEVICE
US18/199,868 US11988498B2 (en) 2022-02-17 2023-05-19 Detection device and pole piece manufacturing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220322938.5 2022-02-17
CN202220322938.5U CN216385506U (zh) 2022-02-17 2022-02-17 检测装置及极片制造设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/199,868 Continuation US11988498B2 (en) 2022-02-17 2023-05-19 Detection device and pole piece manufacturing equipment

Publications (1)

Publication Number Publication Date
WO2023155265A1 true WO2023155265A1 (zh) 2023-08-24

Family

ID=81238086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082166 WO2023155265A1 (zh) 2022-02-17 2022-03-22 检测装置及极片制造设备

Country Status (4)

Country Link
US (1) US11988498B2 (zh)
EP (1) EP4257917A4 (zh)
CN (1) CN216385506U (zh)
WO (1) WO2023155265A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118274727B (zh) * 2024-04-30 2024-09-06 江苏远航锦锂新能源科技有限公司 一种辊压在线测厚装置及其测厚方法
CN118566268A (zh) * 2024-08-02 2024-08-30 玻尔兹曼(广州)科技有限公司 电池极片涂布生产线用克重检测调控装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105403142A (zh) * 2015-11-25 2016-03-16 华中科技大学 一种基于磁栅尺的便携平整度测量仪
JP2016080629A (ja) * 2014-10-21 2016-05-16 東京瓦斯株式会社 ガス漏洩検知装置
CN110252593A (zh) * 2019-06-17 2019-09-20 深圳市曼恩斯特科技有限公司 涂布机及其涂布方法
CN211375052U (zh) * 2019-12-13 2020-08-28 衡阳镭目科技有限责任公司 一种适用于恶劣环境的激光测距装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2788125Y (zh) * 2005-04-13 2006-06-14 嘉兴学院 一种用于测量光洁面板材厚度的在线监测装置
DE502007001251D1 (de) * 2007-06-14 2009-09-17 Trumpf Laser Marking Systems A Gasgekühltes Lasergerät für hochkompakte Laserstrahlquellen
CN102519372A (zh) * 2011-12-23 2012-06-27 常州工学院 锂电池电极的激光测厚装置及其工作方法
TWI582837B (zh) * 2012-06-11 2017-05-11 應用材料股份有限公司 在脈衝式雷射退火中使用紅外線干涉技術之熔化深度測定
DE102012224251A1 (de) * 2012-12-21 2014-06-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung der Dicke einer mit einem Nassbeschichtungsverfahren auf einem Substrat aufgebrachten Schicht
CN106019295A (zh) * 2016-07-22 2016-10-12 沈阳美迪特信息技术有限公司 一种激光测厚、测距装置及其实时校正方法
US11029713B2 (en) * 2017-11-27 2021-06-08 Liberty Reach Inc. Method and system for expanding the range of working environments in which a 3-D or depth sensor can operate without damaging or degrading the measurement performance of the sensor
WO2019137343A1 (zh) * 2018-01-09 2019-07-18 北京康斯特仪表科技股份有限公司 导流散热型干体温度校验仪
CN208795842U (zh) * 2018-09-30 2019-04-26 广州中国科学院沈阳自动化研究所分所 极片涂层厚度激光在线检测装置
US11231171B2 (en) * 2019-04-26 2022-01-25 Van Straten Enterprises, Inc. Heater and electromagnetic illuminator heater
WO2021026809A1 (zh) * 2019-08-14 2021-02-18 深圳市速腾聚创科技有限公司 闪光激光雷达
CN112955786B (zh) * 2019-09-26 2024-08-16 深圳市速腾聚创科技有限公司 激光雷达及其控制方法和具有激光雷达的设备
CN110518441A (zh) * 2019-10-10 2019-11-29 浙江泰好科技股份有限公司 一种用于激光设备的高效无死角散热装置
EP4086657B1 (en) * 2020-01-03 2024-09-18 Suteng Innovation Technology Co., Ltd. Laser transceiving module, lidar, and autonomous driving device
US11629920B2 (en) * 2020-05-28 2023-04-18 GM Cruise Holdings LLC. Structural mount with integrated cooling for autonomous vehicle sensors
CN114207464B (zh) * 2020-06-29 2023-11-24 深圳市速腾聚创科技有限公司 一种激光接收装置和激光雷达
JP2023065852A (ja) * 2021-10-28 2023-05-15 株式会社ミツトヨ 非接触プローブ及び形状測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080629A (ja) * 2014-10-21 2016-05-16 東京瓦斯株式会社 ガス漏洩検知装置
CN105403142A (zh) * 2015-11-25 2016-03-16 华中科技大学 一种基于磁栅尺的便携平整度测量仪
CN110252593A (zh) * 2019-06-17 2019-09-20 深圳市曼恩斯特科技有限公司 涂布机及其涂布方法
CN211375052U (zh) * 2019-12-13 2020-08-28 衡阳镭目科技有限责任公司 一种适用于恶劣环境的激光测距装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4257917A4 *

Also Published As

Publication number Publication date
CN216385506U (zh) 2022-04-26
US20230288190A1 (en) 2023-09-14
US11988498B2 (en) 2024-05-21
EP4257917A4 (en) 2024-05-29
EP4257917A1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2023155265A1 (zh) 检测装置及极片制造设备
US6032724A (en) Temperature control apparatus for sample susceptor
US11740139B2 (en) Flow guiding and heat dissipating type dry block temperature calibrator
US10109071B2 (en) System for detecting a position of a fume hood sash
WO2014081074A1 (ko) 강판의 스케일 두께 측정장치
US20230278130A1 (en) Welding apparatus and welding device
CN114485450A (zh) 一种pcb板翘曲检测装置、方法和系统
JP2012112918A (ja) ロール変位測定方法、及びそれを用いたロール変位測定装置、並びにフィルム厚測定方法、及びそれを用いたフィルム厚測定装置
JP2023503082A (ja) バッテリーセルのスウェリング検査装置
CN210070985U (zh) 智能温湿度检定箱
CN116736080A (zh) 一种控温测试温箱
CN110017914B (zh) 导流散热干体温度校验仪
CN217277922U (zh) 表面缺陷检测装置及表面缺陷检测设备
CN212239079U (zh) 一种用于铜片铆压的检测设备
TWI690702B (zh) 濕度計測試模組及其測試系統
CN214516057U (zh) 一种硅片检测装置及硅片分选设备
CN210349820U (zh) 一种半导体芯片测试卡控温系统
CN113524424A (zh) 一种板厚自动调节系统
CN216694875U (zh) 一种组装式航空电源的平面度检测装置
CN113074912A (zh) 一种激光器发散角检测装置及方法
CN110556348A (zh) 一种半导体芯片测试卡控温系统及方法
CN219003801U (zh) 自动检测装置和自动化流水线
CN219714256U (zh) 晶圆贴膜用贴膜辊检测装置
CN216227516U (zh) 真空加热装置及真空加热系统
CN216593226U (zh) 一种软包电芯铝塑膜封印边测厚装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022888630

Country of ref document: EP

Effective date: 20230511

NENP Non-entry into the national phase

Ref country code: DE