WO2021026809A1 - 闪光激光雷达 - Google Patents

闪光激光雷达 Download PDF

Info

Publication number
WO2021026809A1
WO2021026809A1 PCT/CN2019/100568 CN2019100568W WO2021026809A1 WO 2021026809 A1 WO2021026809 A1 WO 2021026809A1 CN 2019100568 W CN2019100568 W CN 2019100568W WO 2021026809 A1 WO2021026809 A1 WO 2021026809A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light blocking
receiving module
receiving
transmitting
Prior art date
Application number
PCT/CN2019/100568
Other languages
English (en)
French (fr)
Inventor
侯松山
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to CN201980002317.XA priority Critical patent/CN112740074A/zh
Priority to PCT/CN2019/100568 priority patent/WO2021026809A1/zh
Publication of WO2021026809A1 publication Critical patent/WO2021026809A1/zh
Priority to US17/669,330 priority patent/US20220171028A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements

Definitions

  • This solution relates to the field of radar technology, and more specifically, to a flash laser radar.
  • Lidar is a system that emits laser light to detect the position and speed of the target, and is widely used in the field of laser detection.
  • the laser light emitted by the light source is reflected after reaching the target and received by the receiving module.
  • the detection result is obtained by analyzing the received laser signal.
  • the existing laser radar receiving module cannot receive enough light waves reflected from the target in the near field, which causes the problem of inaccurate detection results in the near field.
  • a flash lidar including:
  • the transmitting module includes at least one light-emitting element, at least one of the light-emitting elements is arranged in an array for emitting laser light to the detection area;
  • the receiving module is used to receive the echo laser light that is returned after being reflected by the object in the detection area; the transmitting module and the receiving module are arranged side by side;
  • a light blocking member for blocking stray light directed to the receiving module
  • the control component is electrically connected with the transmitting module and the receiving module.
  • the transmitting module and the receiving module are arranged opposite to each other in a horizontal direction and arranged at intervals; or, the light emitting element and the receiving module are arranged opposite to and arranged at an interval in a vertical direction.
  • the transmitting module further includes a transmitting board, and the light emitting element is arranged on the transmitting board;
  • the receiving module includes a receiving lens, a receiver, and a receiving board, and the receiver is arranged on the receiving board Above, the receiving lens is arranged on the front side of the receiver.
  • the housing and the front cover are assembled to form a sealed accommodating groove, and the transmitting module, the receiving module and the light blocking member are all arranged in the In the containing tank.
  • the incident end of the receiving lens protrudes from the plane where the surface of the emitting board is located.
  • the light blocking member is a light blocking plate, which is arranged between the transmitting module and the receiving module, the transmitting plate is provided with a first light blocking groove, and the light blocking plate is inserted into the The first light blocking groove protrudes from the surface of the emitting plate.
  • cross section of the light barrier is in-line, L-shaped or T-shaped.
  • the inner surface of the housing is provided with a mounting groove, the end of the light barrier is inserted into the mounting groove, and the mounting groove is located on two opposite side walls of the housing.
  • the light blocking member is a first light blocking ring, which is disposed at the incident end of the receiving lens, and the first light blocking ring is connected to the barrel of the incident end of the receiving lens.
  • the cross section of the first light blocking ring is circular or arc, and the shape of the first light blocking ring is cylindrical or inverted cone.
  • the transmitter board also includes a mounting board extending along the transmitter board to one side of the receiving module, the transmitter board and the mounting board are located on the same plane, and the mounting board is provided with corresponding to the receiving module
  • the relief hole and the transmitting module are respectively located on both sides of the light blocking member.
  • the light blocking member is a second light blocking ring, and the second light blocking ring is arranged around the relief hole.
  • the front cover is a whole light-transmitting sheet, or the front cover is provided with an exit window corresponding to the transmitting module and a receiving window corresponding to the receiving module, the exit window and The receiving windows are all provided with light-transmitting sheets.
  • a second light blocking groove is opened on the inner side of the front cover, and the light blocking member is inserted into the second light blocking groove and protrudes from the surface of the front cover.
  • a flexible member is provided between the front cover and the light blocking member, and two sides of the flexible member abut the front cover and the light blocking member respectively.
  • control component includes a main control circuit board and a data processing circuit board signally connected to the main control circuit board; the receiving board of the receiving module is signally connected to the data processing circuit board, the The receiving board is used to convert the received echo laser into an echo electrical signal and then transfer it to the data processing circuit board.
  • the data processing circuit board is fixedly connected to the main control circuit board, the data processing circuit board is provided with a first connector, and the receiving board is provided with a plug-in connection with the first connector The second connector.
  • the emitting board is arranged in close contact with the inner surface of the housing, and the outer surface of the housing is provided with a plurality of heat dissipation ribs.
  • an anti-reflection layer is plated on the light-transmitting sheet.
  • Flash lidar includes a transmitter module that emits laser light to the detection area, and a receiver module receives echo laser light.
  • the transmitter and receiver modules are arranged side by side; through the transmitter and receiver modules, the detection area is detected without mechanical movement. Components to achieve solid-state laser scanning and detection.
  • the emitting module of the flash lidar uses the light-emitting elements arranged in an array to emit the outgoing laser
  • the outgoing laser has a large spread angle, which causes part of the outgoing laser to be directly directed to the receiving module; in addition, the outgoing laser is flashed by the flash lidar before being emitted outward
  • the internal components reflect or scatter (such as light-transmitting sheets, etc.); this part of the emitted or scattered laser light and the outgoing laser light directly directed to the receiving module are collectively called stray light.
  • the light blocking member blocks the stray light from directly to the receiving module, so that the receiving module will not receive the stray light, and avoid the receiving module from receiving the echo laser before the receiving module is saturated due to the stray light and cannot receive close
  • the echo laser reflected by the target at a distance causes the problem of leading interference; the light blocking member blocks the stray light directed to the receiving component, and the receiving module can quickly respond to the echo laser reflected by the target at a close distance.
  • the receiving module can accurately and effectively detect targets at close distances, and the control component processes and recognizes the targets according to the echo laser received by the receiving module, thereby effectively reducing the blind spots at close distances and ensuring that the flash lidar is close
  • the accuracy and reliability of field detection improve the safety of flash lidar.
  • Figure 1 is a schematic diagram of the structure of a flash lidar provided by an embodiment of the solution
  • Figure 2 is an exploded view of the flash lidar in Figure 1 from a second perspective
  • FIG. 3 is a schematic diagram of the internal structure of the flash lidar in FIG. 1 from a first perspective;
  • FIG. 4 is a schematic diagram of the internal structure of the flash lidar in FIG. 1 from a second perspective;
  • FIG. 5 is a schematic diagram of the structure of the mounting plate when the light blocking member is the second light blocking ring;
  • Figure 6 is a cross-sectional view taken along line A-A in Figure 5;
  • FIG. 7 is a schematic diagram of the structure of the mounting plate when the light blocking member is the first light blocking ring;
  • Figure 8 is a sectional view taken along line B-B in Figure 7;
  • FIG. 9 is a schematic diagram when a second light blocking groove is opened on the front cover.
  • Figure 10 is a schematic diagram when a flexible member is provided between the front cover and the light blocking member
  • Figure 11 is a schematic diagram of the structure in the housing groove of the housing
  • Figure 12 is a schematic diagram of the structure of the flash lidar when the front cover is provided with a receiving window and an exit window;
  • Figure 13 is a cross-sectional view of the flash lidar in Figure 11;
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “multiple” means two or more, unless otherwise clearly defined.
  • the receiving module of the lidar in the prior art cannot receive enough echo laser light reflected from the target in the near field, which causes inaccurate detection results.
  • changing the transmitting modules of different strengths, translucent films of different specifications and light transmittances, and receiving modules of different specifications cannot solve the problem.
  • multiple random combinations of transmitting modules of different intensities, light-transmitting sheets of different specifications and light transmittance, and receiving modules of different specifications cannot solve the problem.
  • the problem is assumed to be that the outgoing laser light emitted by the transmitting module is received by the receiving module inside the lidar (the outgoing laser light emitted by the transmitting module has a certain emission angle, and some of the outgoing laser light is directly directed to the receiving module.
  • the receiving module has limited receiving capacity and limited refresh rate, and the echo laser of the near-field probe has a short time to reach the receiving module, and a large number of transmitting modules are received directly from the receiving module without being detected. In the case of the stray light reflected by the target, the receiving module is in a saturated state at this time.
  • the echo laser of the near-field detection object reaches the receiving module, making the receiving module unable to respond to the near-field in time
  • the echo laser of the detected object causes inaccurate detection results in the near field, resulting in obvious near-field blind areas.
  • the flashing lidar includes: a transmitting module 3, a receiving module 4, a light blocking member 5, and a control component 6.
  • the transmitting module 3 includes at least one light emitting element 31, and the at least one light emitting element 31 is arranged in an array for transmitting The laser is emitted to the detection area; the receiving module 4 is used to receive the echo laser that is reflected by the object in the detection area; the transmitting module 3 and the receiving module 4 are arranged side by side; the light blocking member 5 is used to block the radiation to the receiving module 4 stray light; the control assembly 6 is electrically connected to the transmitting module 3 and the receiving module 4.
  • the flash lidar includes a transmitter module 3 that emits laser light to the detection area, and a receiver module 4 receives the echo laser.
  • the transmitter module 3 and the receiver module 4 are arranged side by side; through the transmitter module 3 and the receiver module 4, the detection area
  • the detection without mechanical moving parts, realizes solid-state laser scanning and detection. Since the transmitting module 3 of the flash lidar uses the light-emitting elements 31 arranged in an array to emit the outgoing laser, the outgoing laser has a large spread angle, which causes part of the outgoing laser to be directly directed to the receiving module 4.
  • the outgoing laser is
  • the internal components of the flash lidar reflect or scatter (such as light-transmitting sheets, etc.); this part of the emitted or scattered laser light and the outgoing laser light directly directed to the receiving module 4 are collectively referred to as stray light.
  • the light blocking member 5 of the flash lidar blocks the stray light from directly hitting the receiving module 4, so that the receiving module 4 will not receive the stray light, and avoid the receiving module 4 before receiving the echo laser, because the receiving module 4
  • the stray light causes the receiving module 4 to saturate and cannot receive the echo laser reflected by the target at a close distance, which leads to the problem of leading interference;
  • the light blocking member 5 blocks the stray light directed to the receiving module, and the receiving module 4 can Respond quickly to the echo laser reflected by the target at close range, so the receiving module 4 can accurately and effectively detect the target at close range.
  • the control component 6 processes and recognizes the target according to the echo laser received by the receiving module 4 Objects, thereby effectively reducing the blind area at close range, ensuring the accuracy and reliability of flash lidar near-field detection, and improving the safety of flash lidar in use.
  • the transmitting module 3 and the receiving module 4 are arranged in a horizontal direction opposite and spaced apart, that is, the light emitting element 31 and the receiving module 4 are located on the side of the flash laser radar. At different positions in the width direction, the light emitted by the light emitting element 31 can be effectively prevented from directly spreading to the receiving module 4. Or, please also refer to FIG. 3, the light emitting element 31 and the receiving module 4 are arranged vertically opposite and spaced apart, that is, the light emitting element 31 and the receiving module 4 are located at different heights of the flash lidar, which can effectively avoid the light emitting element The light emitted by 31 is directly transmitted to the receiving module 4.
  • the transmitting module 3 further includes a transmitting plate 33, and the light emitting element 31 is arranged on the transmitting plate 33; 31 is arranged on the emitting board 33 in the form of an array, and the emitted outgoing laser illuminates a large detection area at one time without using a deflection component to scan, realizing solid-state scanning and detection.
  • the receiving module 4 includes a receiving lens 43, a receiver 42 and a receiving board 41. The receiver 42 is arranged on the receiving board 41, and the receiving lens 43 is arranged on the front side of the receiver 42.
  • the receiving lens 43 may be a passive optical lens group, and the lens group is placed in a cylindrical lens barrel.
  • the echo laser After the echo laser is condensed by the receiving lens 43, it is received by the receiver 42; because the area of the photosensitive surface of the receiver 42 is small, the echo laser is focused and aimed at the receiver 42 to improve the receiving efficiency and effectively improve the detection ability and detection quality .
  • the flash lidar As a specific implementation of the flash lidar provided by this solution, it also includes a housing 1 and a front cover 2.
  • the housing 1 and the front cover 2 are assembled to form a sealed container.
  • the slot 11, the transmitting module 3, the receiving module 4, and the light blocking member 5 are all arranged in the containing slot 11 to provide a good working environment for internal components, block external dust, rain and other interference, and avoid the impact of external ambient light. With the influence of the receiving module 4, the receiving module 4 can quickly respond to the echo laser reflected by a target object at a close distance.
  • the front cover 2 is a whole light-transmitting sheet, or please also refer to FIG. 12, the front cover 2
  • the exit window 21 corresponding to the transmitting module 3 and the receiving window 22 corresponding to the receiving module 4 are opened. Both the exit window 21 and the receiving window 22 are provided with light-transmitting sheets.
  • the light-transmitting window 21 and the receiving window 22 are transparent The light-transmitting characteristics of the sheets can be different.
  • the light-transmitting sheet of the exit window 21 facilitates laser emission, and the light-transmitting sheet at the receiving window 22 facilitates the laser injection and can block the interference of ambient light.
  • the incident end of the receiving lens 43 protrudes from the plane where the surface of the transmitting plate 33 is located. That is, the plane where the light-emitting element 31 is located (transmitting plate 33) is not coplanar with the end surface of the receiving module 4 that receives the echo laser (incident end of the receiving lens 43), which further prevents the outgoing laser light emitted by the light-emitting element 31 from being directly transmitted to the receiving module 4.
  • the stray light received by the receiving module 4 is reduced, and the accuracy of the flash lidar for near-field detection of the object is ensured, thereby effectively reducing the near-field blind zone.
  • the light blocking member 5 is a light blocking plate 51, which is arranged on the transmitting module 3 and the receiving module 4, the emission plate 33 is provided with a first light blocking groove 331, and the light blocking plate 51 is inserted into the first light blocking groove 331 and protrudes from the surface of the emission plate 33.
  • the light blocking plate 51 When the light blocking member 5 is the light blocking plate 51, the light blocking plate 51 is inserted into the first light blocking groove 331 and protrudes from the surface of the emitting plate 33, so that the emitted laser light emitted by the light emitting member 31 does not pass through the light blocking member 5 and The gap between the emitting plates 33 directly propagates to the receiving module 4, which further ensures that the emitted laser light emitted by the light emitting element 31 does not directly propagate to the receiving module 4. This ensures the accuracy of flash lidar for near-field detection, and effectively reduces the near-field blind zone.
  • the cross section of the light blocking plate 51 is in-line, L-shaped or T-shaped.
  • the vertical thickness of the side of the light barrier 51 close to the front cover 2 is greater than the thickness of the main body of the light barrier 51; it can effectively avoid the front cover along the light barrier 51 After the light emitted from the edge of the side 2 is reflected by the front cover 2, it passes through the gap between the light blocking plate 51 and the front cover 2 and is received by the receiving module 4.
  • a mounting groove 13 is formed on the inner surface of the housing 1, and the end of the light barrier 51 is inserted into the mounting groove 13.
  • the mounting groove 13 is located on two opposite side walls of the housing 1.
  • the end of the light blocking plate 51 is inserted into the mounting groove 13, to prevent the emitted laser light emitted by the light emitting element 31 from passing through the gap between the inner wall of the housing 1 and the end of the light blocking plate 51 to be directed toward the receiving module 4, further avoiding light emission
  • the outgoing laser emitted by the component 31 is directly transmitted to the receiving module 4. This ensures the accuracy of flash lidar for near-field detection, and effectively reduces the near-field blind zone.
  • the light blocking member 5 is a first light blocking ring 53, which is arranged at the incident end of the receiving lens 43, and the first light blocking ring 53 Connected to the lens barrel at the incident end of the receiving lens 43, the first light blocking ring 53 can effectively block stray light from reaching the receiving lens 43 of the receiving module 4, and the receiving module 4 can quickly respond to the echo laser reflected by a target at a close distance Therefore, the receiving module 4 can accurately and effectively detect targets at close distances, ensuring the accuracy of the flash lidar for near-field detection of objects, and effectively reducing the near-field blind zone.
  • the cross section of the first light blocking ring 53 is a circle or an arc, which can be arranged around the receiver.
  • the outside of the module 4 prevents stray light from being directed to the receiving module 4, and the shape of the first light blocking ring 53 is cylindrical or inverted cone, which can realize light guiding while blocking light.
  • the flash lidar As a specific implementation of the flash lidar provided by this solution, it also includes a mounting plate 32 extending along the transmitting plate 33 to the side of the receiving module 4, and the transmitting plate 33 Located on the same plane as the mounting plate 32, the mounting plate 32 is provided with a relief hole 321 corresponding to the receiving module 4, and the relief hole 321 and the transmitting module 3 are respectively located on both sides of the light blocking member 5 to realize the light blocking member 5 Block the transmitting module 3 and the receiving module 4 on both sides of the light, which can effectively block the outgoing laser light emitted by the light emitting element 31 of the transmitting module 3 from directly propagating to the receiving module 4. This ensures the accuracy of flash lidar for near-field detection, and effectively reduces the near-field blind zone.
  • the light blocking member 5 is a second light blocking ring 52, and the second light blocking ring 52 is arranged around the relief hole 321 . Since the light blocking member 5 is the second light blocking ring 52 disposed around the relief hole 321, it is realized that the light blocking member 5 blocks the outgoing laser light emitted by the light emitting member 31 of the transmitting module 3 from directly propagating to the receiving module 4. This ensures the accuracy of flash lidar for near-field detection, and effectively reduces the near-field blind zone.
  • a second light blocking groove 23 is opened on the inner side of the front cover 2 and the light blocking member 5 is inserted into the second light blocking
  • the groove 23 protrudes from the surface of the front cover 2.
  • the light blocking member 5 is inserted into the second light blocking groove 23 and protrudes from the surface of the front cover 2, so that the laser light emitted by the light emitting member 31 will not pass through the gap between the light blocking member 5 and the front cover 2 (or The reflection from the front cover 2 to the receiving module 4) directly propagates to the receiving module 4, which further ensures that the outgoing laser light emitted by the light-emitting element 31 does not directly propagate to the receiving module 4. This ensures the accuracy of flash lidar for near-field detection, and effectively reduces the near-field blind zone.
  • a flexible member 7 is provided between the front cover 2 and the light blocking member 5, and both sides of the flexible member 7 are connected to the front The cover 2 and the light blocking member 5 abut against each other.
  • the flexible member 7 can be flexibly deformed to block the gap between the front cover 2 and the light blocking member 5, so that the outgoing laser light emitted by the light emitting member 31 will not pass through the gap between the light blocking member 5 and the front cover 2 and directly receive
  • the propagation of the module 4 further ensures that the outgoing laser light emitted by the light-emitting element 31 does not directly propagate to the receiving module 4. This ensures the accuracy of flash lidar for near-field detection, and effectively reduces the near-field blind zone.
  • the control component 6 includes a main control circuit board 61 and a data processing circuit board 62 signally connected to the main control circuit board 61;
  • the receiving board 41 of the receiving module 4 is in signal connection with the data processing circuit board 62, and the receiving board 41 is used to convert the received echo laser into an echo electrical signal and then transfer it to the data processing circuit board 62.
  • the data processing circuit board 62 is fixedly connected to the main control circuit board 61, and the data processing circuit board 62 is provided with a first connection
  • the receiving board 41 is provided with a second connector for plug-in fitting with the first plug-in connector, which facilitates the quick plug-in fitting of the receiving board 41 and the data processing circuit board 62.
  • the emission plate 33 is arranged in close contact with the inner surface of the housing 1, and the outer surface of the housing 1 is provided with multiple Cooling rib 12.
  • the heat generated when the light-emitting element 31 emits light can be quickly transferred to the housing 1 through the emission plate 33 to dissipate heat.
  • the heat dissipation ribs 12 on the housing 1 increase the heat dissipation area and improve the heat dissipation efficiency.
  • the light-transmitting sheet is plated with an anti-reflection layer to increase the light transmittance of the light-transmitting sheet on the front cover 2 to ensure that enough laser light is emitted to increase Improve the accuracy of flash lidar detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种闪光激光雷达,包括:发射模组(3)、接收模组(4)、挡光件(5),以及控制组件(6);发射模组(3)包括至少一个发光件(31),用于发射出射激光至探测区域;接收模组(4)用于接收被探测区域内物体反射后返回的回波激光;发射模组(3)和接收模组(4)并排设置;挡光件(5)用于阻挡射向接收模组(4)的杂散光。挡光件(5)阻挡发光件(31)发出的光波直接向接收模组(4)传播,使得接收模组(4)不会直接接收到发光件(31)直接发出的光波,因此接收模组(4)具有足够的接收能力去接收到达近场的目标探测物后反射回来的出射激光,保证了闪光激光雷达对于近场探测的准确性。

Description

闪光激光雷达 技术领域
本方案涉及雷达技术领域,更具体地说,是涉及一种闪光激光雷达。
背景技术
激光雷达是以发射出射激光探测目标的位置、速度等特征量的系统,广泛应用于激光探测领域。通过发射特定波长和方向的激光以实现对目标的位置、速度等特征进行探测的系统。
激光雷达的工作时,光源发射激光到达目标物后反射并被接收模组接收,通过对接收到的激光信号进行分析得到探测结果。但现有的激光雷达的接收模组无法接收足够的从近场的目标物反射回来的光波,进而造成近场的探测结果不准确的问题。
技术问题
本方案的目的在于提供一种闪光激光雷达,以解决现有技术中存在的激光雷达对于近场的探测结果不准确的技术问题。
技术解决方案
为实现上述目的,本方案采用的技术方案是:
提供一种闪光激光雷达,包括:
发射模组,包括至少一个发光件,至少一个所述发光件呈阵列形式排列,用于发射出射激光至探测区域;
接收模组,用于接收被探测区域内物体反射后返回的回波激光;所述发射模组和所述接收模组并排设置;
挡光件,用于阻挡射向所述接收模组的杂散光;以及
控制组件,与所述发射模组和所述接收模组电连接。
进一步地,所述发射模组与所述接收模组沿水平方向相对且间隔设置;或者,所述发光件与所述接收模组沿竖直方向相对且间隔设置。
进一步地,所述发射模组还包括发射板,所述发光件设置于所述发射板上;所述接收模组包括接收镜头、接收器和接收板,所述接收器设置于所述接收板上,所述接收镜头设置于所述接收器的前侧。
进一步地,还包括外壳和前盖,所述外壳和所述前盖合装后形成密封的容置槽,所述发射模组、所述接收模组和所述挡光件均设置于所述容置槽内。
进一步地,所述接收镜头的入射端凸出于所述发射板的表面所在的平面。
进一步地,所述挡光件为挡光板,设置于所述发射模组和所述接收模组之间,所述发射板上开设有第一挡光槽,所述挡光板插设于所述第一挡光槽内且凸出于所述发射板的表面。
进一步地,所述挡光板的横截面为一字型、L型或T型。
进一步地,所述外壳的内表面开设有安装槽,所述挡光板的端部插设于所述安装槽内,所述安装槽位于所述外壳相对的两个侧壁上。
进一步地,所述挡光件为第一挡光环,设置于所述接收镜头的入射端,所述第一挡光环与所述接收镜头的入射端的镜筒相连。
进一步地,所述第一挡光环的截面为圆形或圆弧,所述第一挡光环的形状为圆柱形或者为倒锥形。
进一步地,还包括沿所述发射板向所述接收模组一侧延伸的安装板,所述发射板和所述安装板位于同一平面,所述安装板开设有与所述接收模组相对应的让位孔,所述让位孔与所述发射模组分别位于所述挡光件的两侧。
进一步地,所述挡光件为第二挡光环,所述第二挡光环环绕所述让位孔设置。
进一步地,所述前盖为一整块透光片,或者,所述前盖开设有对应于所述发射模组的出射窗口和对应于所述接收模组的接收窗口,所述出射窗口和所述接收窗口均设置有透光片。
进一步地,所述前盖的内侧开设有第二挡光槽,所述挡光件插设于所述第二挡光槽内且凸出于所述前盖的表面。
进一步地,所述前盖与所述挡光件之间设有柔性件,所述柔性件的两侧分别与所述前盖及所述挡光件相抵接。
进一步地,所述控制组件包括主控电路板以及与所述主控电路板信号连接的数据处理电路板;所述接收模组的所述接收板与所述数据处理电路板信号连接,所述接收板用于将接收到的回波激光转化成回波电信号后传递给所述数据处理电路板。
进一步地,所述数据处理电路板与所述主控电路板固定连接,所述数据处理电路板上设有第一接插件,所述接收板上设有与所述第一接插件插接配合的第二接插件。
进一步地,所述发射板与所述外壳的内表面贴合设置,所述外壳的外表面设有多个散热筋。
进一步地,所述透光片上镀设有增透层。
有益效果
闪光激光雷达包括发射模组发射出射激光至探测区域,接收模组接收回波激光,发射模组和接收模组并排设置;通过发射模组和接收模组,对探测区域的探测,没有机械运动部件,实现固态的激光扫描和探测。由于闪光激光雷达的发射模组采用阵列形式排列的发光件发射出射激光,出射激光的扩散角较大,导致部分出射激光直接射向接收模组;另外,出射激光向外出射前被闪光激光雷达内部的器件反射或散射(如透光片等);这部分发射或散射的激光,以及直接射向接收模组的出射激光,统称为杂散光。挡光件阻挡杂散光直接射向接收模组,使得接收模组不会接收到杂散光,避免接收模组在接收到回波激光前,由于接收了杂散光导致接收模组饱和,无法接收近距离处的目标物反射后返回的回波激光,导致前导干扰的问题;挡光件阻挡射向接收组件的杂散光,接收模组能够快速响应近距离处的目标物反射的回波激光,因此接收模组能够准确且有效的探测近距离处的目标物,控制组件根据接收模组接收到的回波激光进行处理识别目标物,进而有效缩小了近距离处的盲区,保证了闪光激光雷达近场探测的准确性和可靠性,提高闪光激光雷达使用时的安全性。
附图说明
为了更清楚地说明本方案实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本方案的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本方案实施例提供的闪光激光雷达的结构示意图;
图2为图1中的闪光激光雷达的第二视角的爆炸图;
图3为图1中的闪光激光雷达的内部结构的第一视角的示意图;
图4为图1中的闪光激光雷达的内部结构的第二视角的示意图;
图5为挡光件为第二挡光环时安装板的结构示意图;
图6为沿图5中A-A线的剖视图;
图7为挡光件为第一挡光环时安装板的结构示意图;
图8为沿图7中B-B线的剖视图;
图9为前盖上开设有第二挡光槽时的示意图;
图10为前盖与挡光件之间设有柔性件时的示意图;
图11为外壳的容置槽内的结构示意图;
图12为前盖上设有接收窗口及出射窗口时闪光激光雷达的结构示意图;
图13为图11中闪光激光雷达的剖面图;
图中:
1、外壳;11、容置槽;12、散热筋;13、安装槽;2、前盖;21、出射窗口;22、接收窗口;23、第二挡光槽;3、发射模组;31、发光件;32、安装板;321、让位孔;33、发射板;331、第一挡光槽;4、接收模组;41、接收板;42、接收器;43、接收镜头;5、挡光件;51、挡光板;52、第二挡光环;53、第一挡光环;6、控制组件;61、主控电路板;62、数据处理电路板;7、柔性件。
本发明的实施方式
为了使本方案所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本方案进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本方案,并不用于限定本方案。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本方案和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本方案的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本方案的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
现有技术中的激光雷达的接收模组无法接收足够的从近场的目标物反射回来的回波激光,进而造成探测结果不准确。通过多次试验,更换不同强度的发射模组,不同规格及透光率的透光片,不同规格的接收模组,均无法解决该问题。同时,设置不同强度的发射模组、不同规格及透光率的透光片及不同规格的接收模组的多种随机组合,也无法解决该问题。在多次试验后,将问题假定为发射模组发出的出射激光在激光雷达内部就被接收模组接收(发射模组发出的出射激光具有一定的发射角,有部分出射激光直接射向接收模组),进而对接收模组产生前导干扰,使得激光雷达发生近场饱和(也即接收模组无法接收足够的近场的探测物反射回来的回波激光)。其原因为:接收模组接收能力有限且刷新频率有限,而近场探测物的回波激光到达接收模组的时间较短,在接收模组接收了大量的发射模组直接发出而未经探测的目标物反射的杂散光的情况下,此时接收模组处于饱和状态,在接收模组刷新之前,近场探测物的回波激光就到达接收模组,使得接收模组无法及时响应近场探测物的回波激光,进而造成对近场的探测结果不准确,产生明显的近场盲区。
请一并参阅图1至图3,对本方案提供的闪光激光雷达进行说明。闪光激光雷达,包括:发射模组3、接收模组4、挡光件5,以及控制组件6;发射模组3包括至少一个发光件31,至少一个发光件31呈阵列形式排列,用于发射出射激光至探测区域;接收模组4用于接收被探测区域内物体反射后返回的回波激光;发射模组3和接收模组4并排设置;挡光件5用于阻挡射向接收模组4的杂散光;控制组件6与发射模组3和接收模组4电连接。
闪光激光雷达包括发射模组3发射出射激光至探测区域,接收模组4接收回波激光,发射模组3和接收模组4并排设置;通过发射模组3和接收模组4,对探测区域的探测,没有机械运动部件,实现固态的激光扫描和探测。由于闪光激光雷达的发射模组3采用阵列形式排列的发光件31发射出射激光,出射激光的扩散角较大,导致部分出射激光直接射向接收模组4;另外,出射激光向外出射前被闪光激光雷达内部的器件反射或散射(如透光片等);这部分发射或散射的激光,以及直接射向接收模组4的出射激光,统称为杂散光。
本方案提供的闪光激光雷达的挡光件5阻挡杂散光直接射向接收模组4,使得接收模组4不会接收到杂散光,避免接收模组4在接收到回波激光前,由于接收了杂散光导致接收模组4饱和,无法接收近距离处的目标物反射后返回的回波激光,导致前导干扰的问题;挡光件5阻挡射向接收组件的杂散光,接收模组4能够快速响应近距离处的目标物反射的回波激光,因此接收模组4能够准确且有效的探测近距离处的目标物,控制组件6根据接收模组4接收到的回波激光进行处理识别目标物,进而有效缩小了近距离处的盲区,保证了闪光激光雷达近场探测的准确性和可靠性,提高闪光激光雷达使用时的安全性。
进一步地,作为本方案提供的闪光激光雷达的一种具体实施方式,发射模组3与接收模组4沿水平方向相对且间隔设置,也即发光件31与接收模组4位于闪光激光雷达的宽度方向的不同位置上,可有效避免发光件31发出的光直接传播至接收模组4。或者,请一并参阅图3,发光件31与接收模组4沿竖直方向相对且间隔设置,也即发光件31与接收模组4位于闪光激光雷达的不同的高度,可有效避免发光件31发出的光直接传播至接收模组4。
进一步地,请一并参阅图3及图11,作为本方案提供的闪光激光雷达的一种具体实施方式,发射模组3还包括发射板33,发光件31设置于发射板33上;发光件31按阵列形式设置于发射板33上,发射的出射激光一次性照亮大范围的探测区域,不需要采用偏转部件扫描,实现固态扫描和探测。接收模组4包括接收镜头43、接收器42和接收板41,接收器42设置于接收板41上,接收镜头43设置于接收器42的前侧。接收镜头43可为无源光学透镜组,透镜组置于柱形镜筒内。回波激光经过接收镜头43会聚后,由接收器42接收;由于接收器42的感光面面积较小,将回波激光会聚后对准接收器42,提高接收效率,有效提高探测能力和探测质量。
进一步地,请一并参阅图2及图13,作为本方案提供的闪光激光雷达的一种具体实施方式,还包括外壳1和前盖2,外壳1和前盖2合装后形成密封的容置槽11,发射模组3、接收模组4和挡光件5均设置于容置槽11内,为内部器件提供良好的工作环境,阻挡外界灰尘、雨水等干扰,同时避免外界环境光线对于接收模组4的影响,接收模组4能够快速响应近距离处的目标物反射的回波激光。
进一步地,请一并参阅图2至图3,作为本方案提供的闪光激光雷达的一种具体实施方式,前盖2为一整块透光片,或者,请一并参阅图12,前盖2开设有对应于发射模组3的出射窗口21和对应于接收模组4的接收窗口22,出射窗口21和接收窗口22均设置有透光片,出射窗口21与接收窗口22处的透光片的透光特性可以不同,出射窗口21的透光片利于激光射出,接收窗口22处的透光片利于激光射入并能够阻挡外界环境光线的干扰。
进一步地,请一并参阅图3、图6及图8,作为本方案提供的闪光激光雷达的一种具体实施方式,接收镜头43的入射端凸出于发射板33的表面所在的平面,也即发光件31所在平面(发射板33)与接收模组4接收回波激光的端面(接收镜头43的入射端)不共面,进一步避免了发光件31发出的出射激光直接传播至接收模组4。减少了被接收模组4接收到的杂散光,保证了闪光激光雷达对于近场探测物探测的准确性,进而有效缩小了近场盲区。
进一步地,请一并参阅图9、图11及图13,作为本方案提供的闪光激光雷达的一种具体实施方式,挡光件5为挡光板51,设置于发射模组3和接收模组4之间,发射板33上开设有第一挡光槽331,挡光板51插设于第一挡光槽331内且凸出于发射板33的表面。挡光件5为挡光板51时,挡光板51插设于第一挡光槽331内且凸出于发射板33的表面,使得发光件31发出的出射激光不会透过挡光件5与发射板33之间的间隙直接向接收模组4传播,进一步确保了发光件31发出的出射激光不会直接传播至接收模组4。保证了闪光激光雷达对于近场探测物探测的准确性,进而有效缩小了近场盲区。
进一步地,作为本方案提供的闪光激光雷达的一种具体实施方式,挡光板51的横截面为一字型、L型或T型。当挡光板51的横截面L型或T型时,挡光板51靠近前盖2的一侧的沿竖直方向的厚度大于挡光板51主体的厚度;可有效避免沿着挡光板51靠近前盖2一侧的边沿出射的光被前盖2反射后,由挡光板51与前盖2之间的间隙透过被接收模组4接收。
进一步地,请一并参阅图11,作为本方案提供的闪光激光雷达的一种具体实施方式,外壳1的内表面开设有安装槽13,挡光板51的端部插设于安装槽13内,安装槽13位于外壳1相对的两个侧壁上。挡光板51的端部插设于安装槽13内,避免了发光件31发出的出射激光经过外壳1的内壁与挡光板51的端部之间的间隙射向接收模组4,进一步避免了发光件31发出的出射激光直接传播至接收模组4。保证了闪光激光雷达对于近场探测物探测的准确性,进而有效缩小了近场盲区。
进一步地,请一并参阅图8,作为本方案提供的闪光激光雷达的一种具体实施方式,挡光件5为第一挡光环53,设置于接收镜头43的入射端,第一挡光环53与接收镜头43的入射端的镜筒相连,第一挡光环53可有效阻挡杂散光射向接收模组4的接收镜头43,接收模组4能够快速响应近距离处的目标物反射的回波激光,因此接收模组4能够准确且有效的探测近距离处的目标物,保证了闪光激光雷达对于近场探测物探测的准确性,进而有效缩小了近场盲区。
进一步地,请一并参阅图7-图8,作为本方案提供的闪光激光雷达的一种具体实施方式,第一挡光环53的截面为圆形或圆弧,其均能实现绕设于接收模组4的外部并阻挡杂散光射向接收模组4,第一挡光环53的形状为圆柱形或者为倒锥形,其在实现挡光的同时还可实现导光的作用。
进一步地,请一并参阅图4-图8,作为本方案提供的闪光激光雷达的一种具体实施方式,还包括沿发射板33向接收模组4一侧延伸的安装板32,发射板33和安装板32位于同一平面,安装板32开设有与接收模组4相对应的让位孔321,让位孔321与发射模组3分别位于挡光件5的两侧,以实现挡光件5对其两侧的发射模组3及接收模组4进行光线阻隔,可有效阻挡发射模组3的发光件31发出的出射激光直接向接收模组4传播。保证了闪光激光雷达对于近场探测物探测的准确性,进而有效缩小了近场盲区。
进一步地,请一并参阅图5和图6,作为本方案提供的闪光激光雷达的一种具体实施方式,挡光件5为第二挡光环52,第二挡光环52环绕让位孔321设置。由于挡光件5为环绕让位孔321设置的第二挡光环52,因此实现了挡光件5阻挡发射模组3的发光件31发出的出射激光直接向接收模组4传播。保证了闪光激光雷达对于近场探测物探测的准确性,进而有效缩小了近场盲区。
进一步地,请一并参阅图9,作为本方案提供的闪光激光雷达的一种具体实施方式,前盖2的内侧开设有第二挡光槽23,挡光件5插设于第二挡光槽23内且凸出于前盖2的表面。挡光件5插设于第二挡光槽23内且凸出于前盖2的表面,使得发光件31发出的出射激光不会透过挡光件5与前盖2之间的间隙(或者经由前盖2反射至接收模组4)直接向接收模组4传播,进一步确保了发光件31发出的出射激光不会直接传播至接收模组4。保证了闪光激光雷达对于近场探测物探测的准确性,进而有效缩小了近场盲区。
进一步地,请一并参阅图10,作为本方案提供的闪光激光雷达的一种具体实施方式,前盖2与挡光件5之间设有柔性件7,柔性件7的两侧分别与前盖2及挡光件5相抵接。柔性件7可发生柔性变形,以阻塞前盖2与挡光件5之间的间隙,使得发光件31发出的出射激光不会透过挡光件5与前盖2之间的间隙直接向接收模组4传播,进一步确保了发光件31发出的出射激光不会直接传播至接收模组4。保证了闪光激光雷达对于近场探测物探测的准确性,进而有效缩小了近场盲区。
进一步地,请一并参阅图3,作为本方案提供的闪光激光雷达的一种具体实施方式,控制组件6包括主控电路板61以及与主控电路板61信号连接的数据处理电路板62;接收模组4的接收板41与数据处理电路板62信号连接,接收板41用于将接收到的回波激光转化成回波电信号后传递给数据处理电路板62。
进一步地,请一并参阅图3,作为本方案提供的闪光激光雷达的一种具体实施方式,数据处理电路板62与主控电路板61固定连接,数据处理电路板62上设有第一接插件,接收板41上设有与第一接插件插接配合的第二接插件,便于接收板41与数据处理电路板62的快速接插配合。
进一步地,请一并参阅图13及图1,作为本方案提供的闪光激光雷达的一种具体实施方式,发射板33与外壳1的内表面贴合设置,外壳1的外表面设有多个散热筋12。发光件31发光时产生的热量,可通过发射板33快速的传递至外壳1向外散热,外壳1上的散热筋12增加散热面积,提高散热效率。
进一步地,作为本方案提供的闪光激光雷达的一种具体实施方式,透光片上镀设有增透层,以提升前盖2上的透光片的透光率,保证出射激光足够多进而提升了闪光激光雷达探测的准确性。
以上所述仅为本方案的较佳实施例而已,并不用以限制本方案,凡在本方案的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本方案的保护范围之内。

Claims (19)

  1. 闪光激光雷达,其特征在于,包括:
    发射模组,包括至少一个发光件,至少一个所述发光件呈阵列形式排列,用于发射出射激光至探测区域;
    接收模组,用于接收被探测区域内物体反射后返回的回波激光;所述发射模组和所述接收模组并排设置;
    挡光件,用于阻挡射向所述接收模组的杂散光;以及
    控制组件,与所述发射模组和所述接收模组电连接。
  2. 根据权利要求1所述的闪光激光雷达,其特征在于,所述发射模组与所述接收模组沿水平方向相对且间隔设置;或者,所述发光件与所述接收模组沿竖直方向相对且间隔设置。
  3. 根据权利要求1所述的闪光激光雷达,其特征在于,所述发射模组还包括发射板,所述发光件设置于所述发射板上;所述接收模组包括接收镜头、接收器和接收板,所述接收器设置于所述接收板上,所述接收镜头设置于所述接收器的前侧。
  4. 根据权利要求3所述的闪光激光雷达,其特征在于,还包括外壳和前盖,所述外壳和所述前盖合装后形成密封的容置槽,所述发射模组、所述接收模组和所述挡光件均设置于所述容置槽内。
  5. 根据权利要求3或4所述的闪光激光雷达,其特征在于,所述接收镜头的入射端凸出于所述发射板的表面所在的平面。
  6. 根据权利要求3或4所述的闪光激光雷达,其特征在于,所述挡光件为挡光板,设置于所述发射模组和所述接收模组之间,所述发射板上开设有第一挡光槽,所述挡光板插设于所述第一挡光槽内且凸出于所述发射板的表面。
  7. 根据权利要求6所述的闪光激光雷达,其特征在于,所述挡光板的横截面为一字型、L型或T型。
  8. 根据权利要求6所述的闪光激光雷达,其特征在于,所述外壳的内表面开设有安装槽,所述挡光板的端部插设于所述安装槽内,所述安装槽位于所述外壳相对的两个侧壁上。
  9. 根据权利要求3或4所述的闪光激光雷达,其特征在于,所述挡光件为第一挡光环,设置于所述接收镜头的入射端,所述第一挡光环与所述接收镜头的入射端的镜筒相连。
  10. 根据权利要求9所述的闪光激光雷达,其特征在于,所述第一挡光环的截面为圆形或圆弧,所述第一挡光环的形状为圆柱形或者为倒锥形。
  11. 根据权利要求3或4所述的闪光激光雷达,其特征在于,还包括沿所述发射板向所述接收模组一侧延伸的安装板,所述发射板和所述安装板位于同一平面,所述安装板开设有与所述接收模组相对应的让位孔,所述让位孔与所述发射模组分别位于所述挡光件的两侧。
  12. 根据权利要求11所述的闪光激光雷达,其特征在于,所述挡光件为第二挡光环,所述第二挡光环环绕所述让位孔设置。
  13. 根据权利要求4所述的闪光激光雷达,其特征在于,所述前盖为一整块透光片,或者,所述前盖开设有对应于所述发射模组的出射窗口和对应于所述接收模组的接收窗口,所述出射窗口和所述接收窗口均设置有透光片。
  14. 根据权利要求4或13所述的闪光激光雷达,其特征在于,所述前盖的内侧开设有第二挡光槽,所述挡光件插设于所述第二挡光槽内且凸出于所述前盖的表面。
  15. 根据权利要求4或13所述的闪光激光雷达,其特征在于,所述前盖与所述挡光件之间设有柔性件,所述柔性件的两侧分别与所述前盖及所述挡光件相抵接。
  16. 根据权利要求3所述的闪光激光雷达,其特征在于,所述控制组件包括主控电路板以及与所述主控电路板信号连接的数据处理电路板;所述接收模组的所述接收板与所述数据处理电路板信号连接,所述接收板用于将接收到的回波激光转化成回波电信号后传递给所述数据处理电路板。
  17. 根据权利要求16所述的闪光激光雷达,其特征在于,所述数据处理电路板与所述主控电路板固定连接,所述数据处理电路板上设有第一接插件,所述接收板上设有与所述第一接插件插接配合的第二接插件。
  18. 根据权利要求4或13所述的闪光激光雷达,其特征在于,所述发射板与所述外壳的内表面贴合设置,所述外壳的外表面设有多个散热筋。
  19. 根据权利要求13所述的闪光激光雷达,其特征在于,所述透光片上镀设有增透层。
PCT/CN2019/100568 2019-08-14 2019-08-14 闪光激光雷达 WO2021026809A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980002317.XA CN112740074A (zh) 2019-08-14 2019-08-14 闪光激光雷达
PCT/CN2019/100568 WO2021026809A1 (zh) 2019-08-14 2019-08-14 闪光激光雷达
US17/669,330 US20220171028A1 (en) 2019-08-14 2022-02-10 Flash lidar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100568 WO2021026809A1 (zh) 2019-08-14 2019-08-14 闪光激光雷达

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/669,330 Continuation US20220171028A1 (en) 2019-08-14 2022-02-10 Flash lidar

Publications (1)

Publication Number Publication Date
WO2021026809A1 true WO2021026809A1 (zh) 2021-02-18

Family

ID=74570804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100568 WO2021026809A1 (zh) 2019-08-14 2019-08-14 闪光激光雷达

Country Status (3)

Country Link
US (1) US20220171028A1 (zh)
CN (1) CN112740074A (zh)
WO (1) WO2021026809A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825922A (zh) * 2021-12-14 2023-03-21 深圳市速腾聚创科技有限公司 光学传感结构及激光雷达

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216385506U (zh) * 2022-02-17 2022-04-26 宁德时代新能源科技股份有限公司 检测装置及极片制造设备
CN116466328A (zh) * 2023-06-19 2023-07-21 深圳市矽赫科技有限公司 一种Flash智能光学雷达装置及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107436441A (zh) * 2016-05-27 2017-12-05 美国亚德诺半导体公司 混合闪光激光雷达系统
CN107462895A (zh) * 2017-09-20 2017-12-12 北醒(北京)光子科技有限公司 一种红外测距装置
CN206757042U (zh) * 2017-05-04 2017-12-15 北醒(北京)光子科技有限公司 一种光学测距装置及光学测距系统
CN207148319U (zh) * 2017-09-20 2018-03-27 北醒(北京)光子科技有限公司 一种红外测距装置
US20180172803A1 (en) * 2016-12-15 2018-06-21 National Chung Shan Institute Of Science And Technology Optical design for modularizing laser radar sensor
CN108226903A (zh) * 2018-03-26 2018-06-29 苏州清研微视电子科技有限公司 一种基于单激光测距装置的四线激光雷达扫描装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3743426B2 (ja) * 2002-02-13 2006-02-08 オムロン株式会社 光学式エンコーダ
CN102005097B (zh) * 2010-09-25 2012-07-04 公安部第三研究所 一种红外激光周界防范方法
JP5688518B2 (ja) * 2011-01-24 2015-03-25 ナノフォトン株式会社 顕微鏡に適用される遮光部材
CN103363418B (zh) * 2013-07-31 2016-01-06 华南理工大学 Led汽车照明用的微透镜阵列型前照灯
JP6257476B2 (ja) * 2014-08-29 2018-01-10 富士フイルム株式会社 レンズフード及び撮像装置
CN108594206B (zh) * 2018-06-29 2020-04-24 上海禾赛光电科技有限公司 光传输模块、激光发射模块、激光雷达系统及车辆
CN208766302U (zh) * 2018-03-12 2019-04-19 深圳越登智能技术有限公司 三维激光雷达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107436441A (zh) * 2016-05-27 2017-12-05 美国亚德诺半导体公司 混合闪光激光雷达系统
US20180172803A1 (en) * 2016-12-15 2018-06-21 National Chung Shan Institute Of Science And Technology Optical design for modularizing laser radar sensor
CN206757042U (zh) * 2017-05-04 2017-12-15 北醒(北京)光子科技有限公司 一种光学测距装置及光学测距系统
CN107462895A (zh) * 2017-09-20 2017-12-12 北醒(北京)光子科技有限公司 一种红外测距装置
CN207148319U (zh) * 2017-09-20 2018-03-27 北醒(北京)光子科技有限公司 一种红外测距装置
CN108226903A (zh) * 2018-03-26 2018-06-29 苏州清研微视电子科技有限公司 一种基于单激光测距装置的四线激光雷达扫描装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825922A (zh) * 2021-12-14 2023-03-21 深圳市速腾聚创科技有限公司 光学传感结构及激光雷达
CN115825922B (zh) * 2021-12-14 2023-08-04 深圳市速腾聚创科技有限公司 光学传感结构及激光雷达

Also Published As

Publication number Publication date
US20220171028A1 (en) 2022-06-02
CN112740074A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2021026809A1 (zh) 闪光激光雷达
WO2020200206A1 (zh) 光扫描装置和激光雷达
CN107978261B (zh) 电子设备
JP4633589B2 (ja) 面照明装置
JP7371117B2 (ja) 指紋認識モジュール、スクリーンアセンブリ及び電子装置
US10911632B2 (en) Image scanning device
US11585974B2 (en) Light guide plate, optical structure and associated electronic device
US20190086601A1 (en) Backlight module and display device
CN107885278B (zh) 显示屏组件及电子设备
ES2755378T3 (es) Barrera óptica multirrayo
CN219162433U (zh) 镜组消光结构及激光雷达
US11271371B2 (en) Light emitting device and light emitting module
TWI685670B (zh) 具有雙發射器的近接感應模組
CN210294045U (zh) 二氧化碳传感装置及光线反射机构
TWI663415B (zh) 具有雙感測器的近接感應模組
CN217879777U (zh) 透镜组件、激光测距装置及移动机器人
CN219456491U (zh) 激光收发模块及激光雷达
CN114008484A (zh) 测距装置
CN111245978B (zh) 移动终端
CN217902028U (zh) 一种光角度可调式飞行时间传感器
WO2021125027A1 (ja) センサ装置及び筐体
CN113740976B (zh) 光学模组及电子设备
CN216246135U (zh) 一种光学投射模组
JP7410782B2 (ja) 電磁波検出装置および検出モジュール
CN218647144U (zh) 一种激光雷达光学系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941470

Country of ref document: EP

Kind code of ref document: A1