WO2019137343A1 - 导流散热型干体温度校验仪 - Google Patents

导流散热型干体温度校验仪 Download PDF

Info

Publication number
WO2019137343A1
WO2019137343A1 PCT/CN2019/070730 CN2019070730W WO2019137343A1 WO 2019137343 A1 WO2019137343 A1 WO 2019137343A1 CN 2019070730 W CN2019070730 W CN 2019070730W WO 2019137343 A1 WO2019137343 A1 WO 2019137343A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace body
flow guiding
fan
temperature calibrator
generating device
Prior art date
Application number
PCT/CN2019/070730
Other languages
English (en)
French (fr)
Inventor
高洪军
季伟
李学灿
王刚
张春莹
林建军
Original Assignee
北京康斯特仪表科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810018505.9A external-priority patent/CN110017914B/zh
Priority claimed from CN201820032127.5U external-priority patent/CN207675335U/zh
Application filed by 北京康斯特仪表科技股份有限公司 filed Critical 北京康斯特仪表科技股份有限公司
Priority to US16/961,014 priority Critical patent/US11740139B2/en
Priority to EP19738531.3A priority patent/EP3739314A4/en
Publication of WO2019137343A1 publication Critical patent/WO2019137343A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/002Calibrated temperature sources, temperature standards therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20209Thermal management, e.g. fan control

Definitions

  • the invention belongs to the field of temperature calibration, in particular to a dry body temperature calibrator, and particularly relates to a dry body temperature calibrator with a diversion heat dissipation function.
  • the dry body temperature calibrator is used to calibrate thermometers or thermal switches, and is widely used in industrial sites, metrology sites and laboratories in various industries, and has a relatively broad market.
  • the existing portable dry body temperature calibrator is usually provided with a furnace body and a portable housing, the furnace body includes: a heat equalizing block (core), a thermostatic block with heating or/and a refrigerating device, an insulation layer and cooling fan.
  • the central cavity of the soaking block is used to accommodate the device under test such as the thermometer or the thermal switch; the thermostatic block and the insulating layer are spaced apart to form a heat dissipating passage C1, and the airflow generated by the cooling fan placed at the bottom end of the furnace body is dissipated from the heat dissipating
  • the bottom of the channel flows to the top to achieve cooling and cooling of the interior of the furnace.
  • the temperature of the gas flowing out from the heat dissipation passage C1 is also high, which in turn causes the temperature of the handle of the device under test near the furnace mouth to be too high, which further causes damage to the sensor inside the handle of the device under test.
  • a diversion heat dissipation dry body temperature calibrator includes:
  • At least one airflow generating device is located in the outer casing (6) and located at the periphery of the furnace body (1), and the airflow generated by the airflow generating device is blown toward the handle (91) of the device under test inserted into the furnace body (1) .
  • the airflow generating device is single, disposed on one side of the furnace body, or the airflow generating device is plural, distributed in the periphery of the furnace body. .
  • the airflow generating device includes at least one of a flow guiding fan (21), an air pump, and a blower.
  • the airflow generating device is mounted on a mounting bracket or a mounting plate on one side of the furnace body, and the mounting bracket or mounting plate is fixed to the housing of the dry body temperature calibrator On the base (5).
  • the dry body temperature calibrator further includes a control board bracket (22) for mounting the control board (2), and the airflow generating device is mounted on the mounting board ( 2) Or on the mounting bracket, the mounting plate is mechanically fixed to the top end of the control board bracket (22), and the bottom end of the control board bracket (22) is fixed to the housing base (5).
  • the above-mentioned diversion heat dissipation dry body temperature calibrator further comprises a cooling fan (16) located in the outer casing (6) and located below the furnace body (1);
  • the airflow generating device includes:
  • One or more gas passages C2 disposed outside the furnace body (1) and communicating with a cooling fan (16) or other gas source;
  • a flow guiding fan (21), an air pump or a blower is disposed inside the gas passage C2.
  • the gas passage C2 is a rectangular parallelepiped cylinder, a cylinder or a wind guide tube located on one side of the furnace body (1).
  • the gas passage C2 is a rectangular parallelepiped cylinder surrounded by a control board bracket (22) and a control board (2), wherein the control board bracket (22) is a rectangular groove structure, and is controlled.
  • the plate (2) partially covers the side opening of the rectangular groove structure, the fan mounting plate is arranged at the air outlet of the rectangular parallelepiped tube, the guiding fan (21) is mechanically fixed under the fan mounting plate, and the fan mounting plate has a guiding fan ( 21) The opening corresponding to the position.
  • a furnace body base (11) is disposed below the furnace body (1), and a cooling fan (16) is disposed in a lower cavity of the furnace body base (11). At least one vent hole is formed in the side wall of the body base (11) adjacent to the gas passage to form the gas passage C3 such that the air flow generated by the cooling fan (13) flows to the air inlet below the gas passage C2.
  • the airflow generating device is only a gas passage C2 disposed on one side of the furnace body and communicating with a cooling fan or an external air source.
  • the flow direction generated by the flow guiding fan (21), the air pump or the air blower is vertically upward or inclined toward the side of the furnace body.
  • the present invention forms an airflow generating device by a combination of one or more of the gas passage C2, the flow guiding fan, the air pump, and the air blower, and the airflow generated by the airflow generating device can be guided and act on the device under test.
  • the handle is used to cool the handle, thereby avoiding the failure of the internal sensor of the handle due to high temperature, and also facilitating the heat dissipation of the internal electronic components of the instrument itself, prolonging the service life of the temperature calibrator.
  • 1A is an exploded view of the components of the flow guiding heat dissipation dry body temperature calibrator (low temperature furnace) of the present invention
  • 1B is an exploded view of the components of the flow guiding heat dissipation dry body temperature calibrator (high temperature furnace) of the present invention
  • FIG. 2 is a schematic structural view of a furnace body in the present invention
  • FIG. 3 is a schematic view showing a gas passage device and a combined fan in the air flow generating device of the present invention
  • FIG. 4 is a schematic cross-sectional view of a flow guiding heat dissipation dry body temperature calibrator of the present invention
  • Figure 5 is a perspective view of the airflow generating device of the present invention with the flow guiding fan mounted on the control board bracket.
  • Cooling fan 16 furnace body base 11, thermostatic block 13, insulation layer 14, furnace mouth 15;
  • Control board 2 flow guiding fan 21, control board bracket 22, mounting board 23;
  • the present invention provides a dry body temperature calibrator having a flow guiding heat dissipation function.
  • an instrument housing 6 and a furnace body 1 disposed in the housing 6 are also included, and may further include A control panel 2 in the outer casing 6 parallel to the furnace body 1; the outer casing 6 is provided with a socket 61 opposite to the furnace opening 15 of the furnace body 1, and the insertion hole 61 is for inserting the device under test 9.
  • the furnace body 1 includes a soaking block, a thermostat block 13, and a heat insulating layer 14 disposed on the periphery of the thermostat block 13.
  • a furnace body base 11 is provided below the furnace body 1, and the thermostatic block 13 and the heat insulating layer 14 are placed on the furnace body base 11.
  • a cooling fan 16 is mounted in the lower cavity of the furnace base 11.
  • the thermostat block 13 surrounds the heat equalizing block (core), and the upper end of the soaking block has an opening for accommodating the device under test 9, that is, a furnace mouth 15, and the thermostat block 13 further includes a heat source in thermal contact with the soaking block; the heat insulating layer 14 surrounds The thermostatic block 13 is disposed, and the heat insulating layer 14 and the thermostatic block 13 are spaced apart to form a heat dissipation channel C1 inside the furnace body.
  • the cooling fan 16 at the bottom of the furnace body 1 is operated to make the furnace core
  • the generated heat is discharged from the vent hole above the furnace body 1 through the heat dissipation passage C1 (the air flow inside the furnace body is shown by a thin arrow in Fig. 3).
  • an airflow generating device for guiding the heat dissipation of the instrument and generating a directional airflow is disposed between the peripheral heat insulating layer 14 of the furnace body 1 and the outer casing 6.
  • the airflow generating device is located inside the outer casing 6 and outside the furnace body 1.
  • the number of airflow generating devices is not limited, and may be arranged according to actual needs, and the position of the airflow generating device should be set such that the airflow generated by the airflow generating device can act on the handle 91 of the device under test 9 to cool the handle 91 and the sensor located in the handle 91. . It can be understood that a single airflow generating device can be disposed on one side of the furnace body 1, or a plurality of airflow generating devices are disposed on the periphery of the furnace body 1, and further, a plurality of airflow generating devices can be disposed at equal intervals; When the furnace body 1 is a rectangular parallelepiped, the airflow generating means may be disposed adjacent to one or more sides of the furnace body 1.
  • one embodiment of the airflow generating device is a gas passage C2 that communicates with a source of air.
  • the gas passages are one or more, disposed at the periphery of the furnace body 1.
  • the form of the gas passage C2 is not limited as long as it can function to guide the airflow of the air source to the handle of the device under test 9. It can be understood that the gas source may be the cooling fan 16 at the bottom of the furnace body, or may be a natural air flow or other gas source outside the furnace body.
  • the bottom end of the gas passage C2 has an air inlet that communicates with the air source such that the airflow enters the air flow passage C2.
  • the gas passage C2 is provided at the top end thereof with an air outlet such that the airflow flows through the air outlet to the handle 91 of the device under test 9.
  • the gas passage C2 may be a rectangular parallelepiped cylinder surrounded by four rectangular plates, or may be a cylinder or a long conduit. When there are a plurality of gas passages C2, they can communicate with each other, and each of the air outlets of all the gas passages C2 is directed toward the handle 91 of the device under test 9, and all of the gas passages can also be provided with only one air outlet and facing the device under test 9 The handle 91.
  • the gas passage C2 is a vertical rectangular parallelepiped passage surrounded by the control panel 2 and the control panel bracket 22.
  • the control panel bracket 22 is a rectangular recess surrounded by three rectangular longboards.
  • the groove structure has a side opening partially closed by the control panel 2, and the upper and lower ends are not closed.
  • the gas passage C2 guides the airflow generated by the cooling fan 16 located below the furnace body from below the furnace body to the handle 91 of the device under test 9, and it is understood that the cooling fan 16 is located in the cavity of the furnace body base 11, the furnace body
  • the side wall adjacent to the gas passage C2 of the base 11 is provided with a plurality of vent holes for the airflow generated by the cooling fan 16 to enter the gas passage C2 through the air inlet of the bottom end of the gas passage C2, for example, as shown in FIG.
  • a gas passage C3 is formed between the bottom portion and the furnace base 11 such that the bottom chamber of the furnace body 1 and the gas passage C2 outside the furnace body 1 communicate with each other through the gas passage C3, and the airflow generated by the cooling fan 16 passes through the gas passage.
  • the C3 and gas passage C2 are discharged from the instrument housing 6 and can be guided to the handle 91 of the device under test 9.
  • another embodiment of the airflow generating device is a combination of one or more of a flow guiding fan 21, an air pump, and a blower located on one or more sides of the furnace body.
  • the airflow generating device is a flow guiding fan 21, an air pump or a blower disposed on one side of the furnace body. It can be understood that a plurality of flow guiding fans 21 may be respectively disposed on a plurality of sides of the furnace body to jointly generate an air flow to cool the handle 91 of the device under test 9.
  • the airflow generating device is disposed on a mounting bracket or a mounting plate on one side of the furnace body. The height of the airflow generating device is adjusted by changing the height of the mounting bracket or the position of the mounting plate. Specifically, as shown in FIG. 5 and FIG.
  • the mounting plate 23 is located above the control board bracket 22, and the height of the control board bracket 22 is lower than the height of the furnace body, so that the diversion is mounted on the mounting board 23.
  • the fan 21 is located at one side of the furnace body and slightly below the height of the furnace body to form a space in the outer casing 6 for facilitating the operation of the flow guiding fan 21. Therefore, the airflow generated by the flow guiding fan 21 can act on the handle 91 of the device under test 9. It plays a role in cooling.
  • another embodiment of the airflow generating device is a combination of one or more of the flow guiding fan 21, the air pump, and the blower on one side of the furnace body and the air flow passage C2.
  • a mounting plate may be disposed at the top, middle, or lower portion of the air flow passage C2 to mount the flow guiding fan 21, the air pump, and the blower.
  • the gas passage C2 is a vertical rectangular parallelepiped air passage surrounded by the control panel 2 and the control panel bracket 22.
  • the control panel bracket 22 is surrounded by three rectangular plates.
  • the side opening thereof is partially closed by the control panel 2 to form a gas passage C2
  • the top end opening of the gas passage C2 is closed by the fan mounting plate
  • the flow guiding fan 21 is installed under the fan mounting plate
  • the fan mounting plate and the diversion The corresponding position of the fan 21 is provided with an opening to allow the airflow generated by the flow guiding fan 21 and the gas passage C2 to pass.
  • the bottom end inlet of the gas passage C2 is in communication with the air flow generated by the cooling fan 16.
  • the cooling fan 16 is located in the cavity of the furnace body base 11.
  • the furnace body base 11 and the side wall provided with the vent hole adjacent to the gas passage C2 form a gas passage C3, and the air flow generated by the cooling fan 16 sequentially passes through the gas passage C3 and the gas passage.
  • the air inlet of the C2 and the opening of the fan mounting plate are discharged from the outer casing 6.
  • the air guiding fan 21 may be placed on one side of the furnace body 1 or may be inclined at an angle so that the airflow generated by the air guiding fan 21 flows to the furnace body 1 more easily.
  • the angle of inclination of the flow guiding fan 21 to the side of the furnace body 1 is between 0 and 90 degrees, such that the fan surface of the flow guiding fan 21 faces the furnace body 1 more.
  • the above airflow generating device can replace the flow guiding fan 21 with the air pump and the air blower; and the rotational speed of the flow guiding fan 21, the operating power of the air pump and the air blower can be adjusted according to actual needs to generate different air volumes to realize the device under test 9 Different cooling effects of the handle.
  • the housing base 5 is further disposed under the outer casing 6, and the housing base 5 and the outer casing 6 are vertically matched to form a detachable outer casing structure, thereby facilitating maintenance and replacement of the internal components of the dry body temperature calibrator, and the housing base.
  • a vent is provided below the 5 to allow outside gas or gas to enter the interior of the dry temperature calibrator.
  • the dry body temperature calibrator of the present invention further includes a measuring board module 4 and a system board module 3 disposed inside the outer casing 6, and the measuring board module 4 is used for connecting the measuring line to realize the electrical measuring function of the dry body temperature calibrator.
  • the system board module 3 is used for parameter setting and data display to realize human-computer interaction.
  • the working principle of the guiding heat dissipation dry body temperature calibrator provided by the invention is that the airflow generated by the airflow generating device flows to the periphery thereof, so that part of the airflow flows toward the handle of the device under test, and the temperature of the part of the airflow is normal temperature.
  • the high temperature of the handle of the device under test close to the mouth end of the furnace core (heating block) is lowered, and the hot air flow near the handle of the device under test is blown away from the furnace body by the airflow generated by the airflow generating device, thereby reducing the temperature at the handle of the device under test. .
  • the flow guiding fan 21 and the air flow channel cooperate, and when the rotating speed of the guiding fan is 6000 rpm, the handle temperature of the device under test From 133 degrees to 61 degrees, when the fan speed is 8000 rpm, the handle temperature is further reduced to 48 degrees.
  • the airflow generating device proposed by the present invention is applicable to any existing temperature calibrator, furnace body, etc. which are newly developed or developed in the future, and those skilled in the art according to the present invention combine specific furnace body or temperature calibration.
  • a variety of variations can be made in the form of the assay, and such variations are also within the scope of the present disclosure.

Abstract

一种导流散热型干体温度校验仪,属于温度校准领域,温度校验仪包括位于外壳(6)内的炉体(1)和至少一个气流产生装置,气流产生装置设置在炉体(1)的一侧或外围,为气体通道C2、导流风扇(21)、气泵和鼓风机中的一种或几种的组合,气流产生装置产生的气流吹向插入炉体(1)内的被测装置(9)的手柄(91),使得手柄(91)被降温,从而避免了手柄(91)内部传感器因高温引起的失效,同时也利于仪器本身内部电子器件的散热,延长了温度校验仪的使用寿命。

Description

导流散热型干体温度校验仪 技术领域
本发明属于温度校准领域,尤其涉及干体温度校验仪,具体涉及一种具有导流散热功能的干体温度校验仪。
背景技术
干体温度校验仪用于对温度计或热控开关等进行校准,广泛应用于各行各业的工业现场、计量场所和实验室,具有比较广阔的市场。
现有的便携式干体温度校验仪通常设有炉体和方便携带的壳体,炉体包括:均热块(炉芯)、带加热或/和制冷装置的恒温块、隔热层和冷却风扇。均热块中部空腔用以容纳被检温度计或热控开关等被测装置;恒温块和隔热层间隔有一定距离以形成散热通道C1,置于炉体底端的冷却风扇产生的气流从散热通道的底部流动至顶部,从而实现对炉体内部的冷却散热。然而,由于炉体内部的温度较高,因此从散热通道C1流出的气体温度也较高,进而导致炉口附近的被测装置手柄温度过高,进一步导致被测装置手柄内部的传感器损坏。
发明内容
本发明的目的在于针对上述存在的缺陷而提供一种具有导流散热功能的干体温度校验仪。
本发明的技术方案为:
一种导流散热干体温度校验仪,包括:
外壳(6);
炉体(1),位于外壳(6)内;和
至少一个气流产生装置,位于外壳(6)内且位于所述炉体(1)的外围,所述气流产生装置产生的气流吹向插入炉体(1)内的被测装置的手柄(91)。
上述导流散热干体温度校验仪中,所述气流产生装置为单个,设置在所述炉体的一侧,或者,所述气流产生装置为多个,分布设置在所述炉体的外围。
上述导流散热干体温度校验仪中,所述气流产生装置包括导流风扇(21)、气泵和鼓风机中至少一种。
上述导流散热干体温度校验仪中,所述气流产生装置安装在位于炉体一侧的安装架或安装板上,所述安装架或安装板固定至干体温度校验仪的壳体底座(5)上。
上述导流散热干体温度校验仪中,所述干体温度校验仪还包括用于安装控制 板(2)的控制板支架(22),所述气流产生装置安装在所述安装板(2)或安装架上,所述安装板机械固定在控制板支架(22)的顶端,所述控制板支架(22)的底端固定在所述壳体底座(5)上。
上述导流散热干体温度校验仪还包括冷却风扇(16),位于外壳(6)内且位于炉体(1)下方;
所述气流产生装置包括:
一个或多个气体通道C2,设置在炉体(1)外围且与冷却风扇(16)或者其它气源连通;和
导流风扇(21)、气泵或鼓风机,设置在所述气体通道C2内部。
上述导流散热干体温度校验仪中,所述气体通道C2为位于炉体(1)一侧的长方体筒、圆筒或者导风管。
上述导流散热干体温度校验仪中,所述气体通道C2为控制板支架(22)和控制板(2)围成的长方体筒,其中控制板支架(22)为矩形凹槽结构,控制板(2)部分覆盖矩形凹槽结构的侧面开口,长方体筒的出气口处设置有风扇安装板,导流风扇(21)机械固定在风扇安装板的下方,风扇安装板具有与导流风扇(21)位置对应的开口。
上述导流散热干体温度校验仪中,所述炉体(1)的下方设置有炉体底座(11),冷却风扇(16)设置在炉体底座(11)的下部空腔内,炉体底座(11)与气体通道相邻的侧壁上形成有至少一个通气孔以形成气体通道C3使得冷却风扇(13)产生的气流流动至气体通道C2下方的进气口。
上述导流散热干体温度校验仪中,所述气流产生装置仅为设置在炉体一侧且与冷却风扇或者外界气源连通的气体通道C2。
上述导流散热干体温度校验仪中,所述导流风扇(21)、气泵或鼓风机产生的气流方向垂直向上或者向炉体一侧倾斜。
采用以上方案,本发明通过气体通道C2、导流风扇、气泵和鼓风机中的一种或几种的组合形成了气流产生装置,该气流产生装置产生的气流能够被导向并作用于被测装置的手柄而使手柄被降温,从而避免了手柄内部传感器因高温引起的失效,同时也利于仪器本身内部电子器件的散热,延长了温度校验仪的使用寿命。
附图说明
图1A为本发明导流散热干体温度校验仪(低温炉)部件分解图;
图1B为本发明导流散热干体温度校验仪(高温炉)部件分解图;
图2为本发明中炉体的结构示意图;
图3为本发明中气流产生装置为气体通道以及组合风扇的示意图;
图4为本发明导流散热干体温度校验仪剖面示意图;
图5为本发明中气流产生装置为导流风扇装配于控制板支架上的立体图。
其中,附图标记为:
炉体1,系统板模块3,测量板模块4,壳体底座5;
冷却风扇16,炉体底座11,恒温块13,隔热层14,炉口15;
控制板2,导流风扇21,控制板支架22,安装板23;
外壳6,插孔61;被测装置9,手柄91(被测装置)。
具体实施方式
本发明提供一种具有导流散热功能的干体温度校验仪,先参见图1A和图1B,其包括有仪器的外壳6和置于该外壳6内的炉体1,还可以包括装配于外壳6内与炉体1平行的控制板2;外壳6设有插孔61与炉体1的炉口15相对,插孔61用于插入被测装置9。
结合图2和图3所示,炉体1包括均热块、恒温块13、置于恒温块13外围的隔热层14。炉体1的下方设置有炉体底座11,恒温块13和隔热层14置于炉体底座11上。炉体底座11下部空腔内装配有冷却风扇16。恒温块13包围均热块(炉芯),均热块的上端具有容纳被测装置9的开口即炉口15,恒温块13内还包括与均热块热接触的热源;隔热层14围绕所述恒温块13设置,隔热层14和恒温块13之间间隔一定距离以形成炉体内部的散热通道C1,需要给炉体1降温时,炉体1底部的冷却风扇16工作使炉芯产生的热量通过该散热通道C1从炉体1上方排气孔排出(炉体内部气流参见图3细箭头所示)。
本发明中,在所述炉体1的外围隔热层14和外壳6之间设置有用于对仪器进行导流散热且能产生定向气流的气流产生装置。所述气流产生装置位于外壳6内且位于炉体1的外部。
气流产生装置的个数不限,可以根据实际需要布置,其设置的位置应当使得气流产生装置产生的气流能够作用于被测装置9的手柄91而使手柄91及位于手柄91内的传感器被降温。可以理解地,单个气流产生装置可以设置在所述炉体1的一侧,或者多个气流产生装置设置在所述炉体1的外围,进一步地,多个气流产生装置可以等间距设置;当炉体1为长方体时,气流产生装置可以邻近炉体1的一个或多个侧面设置。
其一,气流产生装置的一种实施方式为与气源连通的气体通道C2。如图3所示,所述气体通道为一个或多个,设置在炉体1外围。气体通道C2的形式不限,只要能够起到将气源的气流引导至被测装置9的手柄即可。可以理解地,所述气源可以为炉体底部的冷却风扇16,还可以为炉体外部的自然气流或者其它气源。
进一步地,该气体通道C2底端具有进气口,其与气源连通使得气流进入气流通道C2。该气体通道C2的顶端设有出气口使得气流通过该出气口流向被测装置9的手柄91。具体地,气体通道C2可以为四块矩形板围成的长方体筒,也可以是圆筒或者长导管。当气体通道C2为多个时,可以互相连通,且所有气体通道C2的出气口中的每一个均朝向被测装置9的手柄91,所有气体通道也可以仅设一个出气口且朝向被测装置9的手柄91。
在一个实施例中,参见图3所示,气体通道C2是由控制板2和控制板支架22围成的竖直长方体通道,所述控制板支架22为三块矩形长板围成的矩形凹槽结构,其侧面开口被控制板2部分封闭,上、下两端开口未封闭。该气体通道C2将位于炉体下方的冷却风扇16产生的气流从炉体下方引导至被测装置9的手柄91处,可以理解地,冷却风扇16位于炉体底座11的空腔内,炉体底座11与气体通道C2邻近的侧壁上设有多个通气孔以使得冷却风扇16产生的气流经气体通道C2底端的进气口进入气体通道C2,例如,如图3所示,在炉体1底部和炉体底座11之间形成气体通道C3,如此,冷却风扇16所在炉体1底部腔体与炉体1外侧的气体通道C2通过气体通道C3连通,冷却风扇16产生的气流通过气体通道C3和气体通道C2排出仪器外壳6并能被引导至被测装置9的手柄91处。
其二,气流产生装置的另一种实施方式是位于炉体一侧或多侧的导流风扇21、气泵、和鼓风机中的一种或几种的组合。
在一个实施例中,气流产生装置为设置在炉体一侧的导流风扇21、气泵或鼓风机。可以理解地,可以有多个导流风扇21分别设置在炉体的多个侧面,共同产生气流使得被测装置9的手柄91降温。所述气流产生装置设置在位于炉体一侧的安装架或者安装板上。通过改变所述安装架的高度或者安装板的位置,从而调节所述气流产生装置的高度。具体地,结合图5和图1A所示,安装板23位于控制板支架22的上方,且该控制板支架22的高度要低于炉体高度,使得安装在安装板23上的所述导流风扇21位于炉体的一侧且略低于炉体的高度而在外壳6内形成利于导流风扇21工作的空间,因此导流风扇21所产生的气流可以作用于被测装置9的手柄91而起到降温的作用。
其三,气流产生装置的又一种实施方式是位于炉体一侧的导流风扇21、气泵、和鼓风机中的一种或几种与气流通道C2的组合。可以在气流通道C2的顶部、中间或者下部设置有安装板以安装导流风扇21、气泵、和鼓风机。在本实施例中,结合图3和图4所示,气体通道C2是由控制板2和控制板支架22围成的竖直长方体风道,所述控制板支架22为三块矩形板围成矩形凹槽结构,其侧面开口被控制板2部分封闭形成气体通道C2,气体通道C2的顶端开口处被风扇安装板封闭,导流风扇21安装在风扇安装板的下方,风扇安装板与导流风扇21相对应的位置设有开口以允许导流风扇21和气体通道C2产生的气流通过。气体通道C2的底端进气口与冷却风扇16产生的气流连通。冷却风扇16位于炉体底座11的空腔里,炉体底座11和与气体通道C2邻近的设有通气孔的侧壁形成气体通道C3,冷却风扇16产生的气流依次经气体通道C3、气体通道C2的进气口、风扇安装板的开口处排出外壳6。
当所述气流产生装置为导流风扇21时,所述导流风扇21可以平放在炉体1一侧,也可以倾斜一定角度,使得导流风扇21产生的气流更容易地流向炉体1。优选地,所述导流风扇21向炉体1侧面的倾斜角度为0度至90度之间,如此使得导流风扇21的扇面更多地面对所述炉体1。
可以理解,以上气流产生装置可以用气泵和鼓风机替换导流风扇21;还可以根据实际需要调节所述导流风扇21的转速、气泵和鼓风机的工作功率以产生不同的气量实现对被测装置9手柄不同的降温效果。
可以理解地,外壳6的下方还设置有壳体底座5,壳体底座5和外壳6上下配合形成可拆卸的外壳结构,从而便于干体温度校验仪内部元件的维修与更换,壳体底座5的下方设有通风口,以允许外界的气体或气源进入干体温度校验仪内部。本发明的干体温度校验仪还包括设置在外壳6内部的测量板模块4和系统板模块3,所述测量板模块4用于连接测量线以实现干体温度校验仪的电测功能,系统板模块3用于参数设置,数据显示以实现人机交互。
本发明提供的导流散热干体温度校验仪的工作原理为:气流产生装置产生的气流会流向其四周,因此会有部分气流向被测装置手柄方向流动,该部分气流的温度为常温,使得被测装置手柄靠近炉芯(均热块)口端的高温降低,还使得被测装置手柄附近的热气流被气流产生装置产生的气流吹离炉体,从而降低了被测装置手柄处的温度。
实施效果:
将气流产生装置应用于高温干体温度校验仪时,如图1B所示通过导流风扇21和气流通道共同作用,当导流风扇的转速为6000转/分时,被测装置的手柄温度由133度降低至61度,当风扇转速为8000转/分时,手柄温度进一步降低至48度。
在具体实施时,本发明提出的气流产生装置适用于任何一种已有的或未来新开发的各种温度校验仪、炉体等,本领域技术人员依据本发明结合具体炉体或温度校验仪的形式可以做多种变化,这些变化也属于本发明公开的内容。

Claims (14)

  1. 一种导流散热干体温度校验仪,包括:
    外壳(6);
    炉体(1),位于外壳(6)内;和
    至少一个气流产生装置,位于外壳(6)内且位于所述炉体(1)的外围,所述气流产生装置产生的气流吹向插入炉体(1)内的被测装置的手柄(91)。
  2. 根据权利要求1所述导流散热干体温度校验仪,所述气流产生装置为单个,设置在所述炉体的一侧,或者,所述气流产生装置为多个,分布设置在所述炉体的外围。
  3. 根据权利要求1或2所述的导流散热干体温度校验仪,所述气流产生装置包括导流风扇(21)、气泵和鼓风机中至少一种。
  4. 根据权利要求1或2或3所述的导流散热干体温度校验仪,所述气流产生装置安装在位于炉体一侧的安装架或安装板上,所述安装架或安装板固定至干体温度校验仪的壳体底座(5)上。
  5. 根据权利要求4所述的导流散热干体温度校验仪,所述干体温度校验仪还包括用于安装控制板(2)的控制板支架(22),所述气流产生装置安装在所述安装板(2)或安装架上,所述安装板机械固定在控制板支架(22)的顶端,所述控制板支架(22)的底端固定在所述壳体底座(5)上。
  6. 根据权利要求5所述的导流散热干体温度校验仪,还包括冷却风扇(16),位于外壳(6)内且位于炉体(1)下方;
    所述气流产生装置包括:
    一个或多个气体通道C2,设置在炉体(1)外围且与冷却风扇(16)或者其它气源连通;和
    导流风扇(21)、气泵或鼓风机,设置在所述气体通道C2内部。
  7. 根据权利要求1至4任一项所述的导流散热干体温度校验仪,还包括冷却风扇(16),位于外壳(6)内且位于炉体(1)下方;
    所述气流产生装置包括:
    一个或多个气体通道C2,设置在炉体(1)外围且与冷却风扇(16)或者其它气源连通;和
    导流风扇(21)、气泵或鼓风机,设置在所述气体通道C2内部。
  8. 根据权利要求6或7所述的导流散热干体温度校验仪,所述气体通道C2 为位于炉体(1)一侧的长方体筒、圆筒或者导风管。
  9. 根据权利要求7所述的导流散热干体温度校验仪,所述气体通道C2为控制板支架(22)和控制板(2)围成的长方体筒,其中控制板支架(22)为矩形凹槽结构,控制板(2)部分覆盖矩形凹槽结构的侧面开口,长方体筒的出气口处设置有风扇安装板,导流风扇(21)机械固定在风扇安装板的下方,风扇安装板具有与导流风扇(21)位置对应的开口。
  10. 根据权利要求6所述的导流散热干体温度校验仪,所述气体通道C2为所述控制板支架(22)和控制板(2)围成的长方体筒,其中控制板支架(22)为矩形凹槽结构,控制板(2)部分覆盖矩形凹槽结构的侧面开口,长方体筒的出气口处设置有风扇安装板,导流风扇(21)机械固定在风扇安装板的下方,风扇安装板具有与导流风扇(21)位置对应的开口。
  11. 根据权利要求9或10所述的导流散热干体温度校验仪,所述炉体(1)的下方设置有炉体底座(11),冷却风扇(16)设置在炉体底座(11)的下部空腔内,炉体底座(11)与气体通道相邻的侧壁上形成有至少一个通气孔以形成气体通道C3使得冷却风扇(13)产生的气流流动至气体通道C2下方的进气口。
  12. 根据权利要求1或2所述的导流散热干体温度校验仪,所述气流产生装置仅为设置在炉体一侧且与冷却风扇或者外界气源连通的气体通道C2。
  13. 根据权利要求6至11任一项所述的导流散热干体温度校验仪,所述导流风扇(21)、气泵或鼓风机产生的气流方向垂直向上或者向炉体一侧倾斜。
  14. 根据权利要求3所述的导流散热干体温度校验仪,所述导流风扇(21)、气泵或鼓风机产生的气流方向垂直向上或者向炉体一侧倾斜。
PCT/CN2019/070730 2018-01-09 2019-01-08 导流散热型干体温度校验仪 WO2019137343A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/961,014 US11740139B2 (en) 2018-01-09 2019-01-08 Flow guiding and heat dissipating type dry block temperature calibrator
EP19738531.3A EP3739314A4 (en) 2018-01-09 2019-01-08 FLOW GUIDED HEAT DISSIPATING TYPE TEMPERATURE CALIBRATION OVEN

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810018505.9A CN110017914B (zh) 2018-01-09 导流散热干体温度校验仪
CN201820032127.5U CN207675335U (zh) 2018-01-09 2018-01-09 导流散热干体温度校验仪
CN201820032127.5 2018-01-09
CN201810018505.9 2018-01-09

Publications (1)

Publication Number Publication Date
WO2019137343A1 true WO2019137343A1 (zh) 2019-07-18

Family

ID=67219424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070730 WO2019137343A1 (zh) 2018-01-09 2019-01-08 导流散热型干体温度校验仪

Country Status (3)

Country Link
US (1) US11740139B2 (zh)
EP (1) EP3739314A4 (zh)
WO (1) WO2019137343A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210010876A1 (en) * 2018-03-22 2021-01-14 Beijing Const Instruments Technology Inc. Method for calibrating short temperature measuring device using dry body temperature calibrator
US11920988B2 (en) * 2019-10-28 2024-03-05 Beamex Oy Ab Improving, detecting and indicating stability in an industrial temperature dry block calibrator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3739313A4 (en) * 2018-01-09 2022-01-26 Beijing Const Instruments Technology Inc. TEMPERATURE CALIBRATOR FOR LOW TEMPERATURE DRY BLOCK
DE102018114615A1 (de) * 2018-06-19 2019-12-19 SIKA Dr. Siebert & Kühn GmbH & Co. KG Temperaturkalibrator
FI20195921A1 (en) * 2019-10-28 2021-04-29 Beamex Oy Ab TEMPERATURE CALIBRATOR WITH ADVANCED FUNCTIONS
FI129720B (en) * 2019-10-28 2022-07-29 Beamex Oy Ab CALIBRATOR BLOCK SPEED ADJUSTMENT IN TEMPERATURE CALIBRATOR
US20220042861A1 (en) * 2020-08-05 2022-02-10 King Nutronics Corporation Dry well temperature calibrators, cooling systems, and methods
CN113432758B (zh) * 2021-06-21 2022-05-24 合肥智测电子有限公司 一种利用斯特林制冷机的超低温便携式干式炉

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639390A (zh) * 2009-09-07 2010-02-03 上海量值测控仪器科技有限公司 立式新型热电偶检定炉
JP2012145343A (ja) * 2011-01-07 2012-08-02 National Institute Of Advanced Industrial & Technology 温度標準用気体循環式温度可変恒温炉装置
CN204389067U (zh) * 2014-12-26 2015-06-10 上海市计量测试技术研究院 一种浅式微型温度校验炉
CN205449333U (zh) * 2016-03-15 2016-08-10 厦门瑞德利校准检测技术有限公司 一种便携式温度校准仪
CN106017739A (zh) * 2016-07-28 2016-10-12 无锡信大气象传感网科技有限公司 温度传感器校准装置
CN207675335U (zh) * 2018-01-09 2018-07-31 北京康斯特仪表科技股份有限公司 导流散热干体温度校验仪
CN207866392U (zh) * 2018-01-09 2018-09-14 北京康斯特仪表科技股份有限公司 一种低温干体温度校验仪
CN207866391U (zh) * 2018-01-09 2018-09-14 北京康斯特仪表科技股份有限公司 高温干体温度校验仪

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350915A (en) * 1965-05-27 1967-11-07 Procedyne Corp Thermometric calibration apparatus utilizing a fluidized bed of solid particles
JP3352785B2 (ja) * 1993-09-24 2002-12-03 株式会社チノー 温度計校正装置
NO305295B1 (no) * 1997-07-18 1999-05-03 Instrutek Holding As Innretning for kalibrering av temperaturf°lere
US7607309B2 (en) 2006-06-14 2009-10-27 Fluke Corporation Temperature calibration device having reconfigurable heating/cooling modules to provide wide temperature range
US7785000B2 (en) * 2007-09-11 2010-08-31 Fluke Corporation Venting system for drywell calibrators
US7909504B2 (en) * 2007-11-14 2011-03-22 Fluke Corporation Open-loop vertical drywell gradient correction system and method
DK2399107T3 (da) * 2009-02-19 2013-03-11 Ametek Denmark As Temperaturkalibreringsindretning, kalibreringsblok og fremgangsmåde til kalibrering af en temperatursonde
CN103851912B (zh) * 2012-12-05 2017-09-08 弗卢克公司 具有可重新配置的加热器电路的高温炉
NL2011283C2 (en) * 2013-08-08 2015-02-10 Tradinco Instr App N B V Temperature calibration arrangement and calibration oven comprising such an arrangement.
CN106248253A (zh) * 2016-07-28 2016-12-21 无锡信大气象传感网科技有限公司 温度场均匀的温度传感器校准设备
EP3739313A4 (en) * 2018-01-09 2022-01-26 Beijing Const Instruments Technology Inc. TEMPERATURE CALIBRATOR FOR LOW TEMPERATURE DRY BLOCK
EP3739312B1 (en) * 2018-01-09 2023-12-20 Beijing Const Instruments Technology Inc. High temperature dry block temperature calibrator
US11378788B2 (en) * 2018-06-05 2022-07-05 Nittoh Inc. Zoom lens system and imaging apparatus
CN115515396A (zh) * 2022-10-18 2022-12-23 许昌驰诚电气有限公司 一种高精度的家用报警器标定设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639390A (zh) * 2009-09-07 2010-02-03 上海量值测控仪器科技有限公司 立式新型热电偶检定炉
JP2012145343A (ja) * 2011-01-07 2012-08-02 National Institute Of Advanced Industrial & Technology 温度標準用気体循環式温度可変恒温炉装置
CN204389067U (zh) * 2014-12-26 2015-06-10 上海市计量测试技术研究院 一种浅式微型温度校验炉
CN205449333U (zh) * 2016-03-15 2016-08-10 厦门瑞德利校准检测技术有限公司 一种便携式温度校准仪
CN106017739A (zh) * 2016-07-28 2016-10-12 无锡信大气象传感网科技有限公司 温度传感器校准装置
CN207675335U (zh) * 2018-01-09 2018-07-31 北京康斯特仪表科技股份有限公司 导流散热干体温度校验仪
CN207866392U (zh) * 2018-01-09 2018-09-14 北京康斯特仪表科技股份有限公司 一种低温干体温度校验仪
CN207866391U (zh) * 2018-01-09 2018-09-14 北京康斯特仪表科技股份有限公司 高温干体温度校验仪

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210010876A1 (en) * 2018-03-22 2021-01-14 Beijing Const Instruments Technology Inc. Method for calibrating short temperature measuring device using dry body temperature calibrator
US11733108B2 (en) * 2018-03-22 2023-08-22 Beijing Const Instruments Technology Inc. Method for calibrating short temperature measuring device using dry body temperature calibrator
US11920988B2 (en) * 2019-10-28 2024-03-05 Beamex Oy Ab Improving, detecting and indicating stability in an industrial temperature dry block calibrator

Also Published As

Publication number Publication date
US20210063253A1 (en) 2021-03-04
EP3739314A1 (en) 2020-11-18
US11740139B2 (en) 2023-08-29
EP3739314A4 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
WO2019137343A1 (zh) 导流散热型干体温度校验仪
US6252770B1 (en) Electronic apparatus cooling device
US10663180B2 (en) Indoor unit for air-conditioning apparatus
CN102645824B (zh) 壁挂式投影机散热系统
CN109283777B (zh) 投影设备及投影系统
JP2006308368A (ja) 電子機器用テスト・チャンバ及び方法
WO2000039014A1 (fr) Appareil de commande d'ascenseur
CN207675335U (zh) 导流散热干体温度校验仪
CN219225012U (zh) 测试装置
JP2005044857A (ja) 冷却機構
CN110017914B (zh) 导流散热干体温度校验仪
CN107588478B (zh) 一种便于散热的空调器
JPH05243770A (ja) 屋外筺体の構造
CN110017914A (zh) 导流散热干体温度校验仪
JP2012221221A (ja) 空調システム
KR19990037370A (ko) 피냉각 장치용 엔클로져
WO2023236950A1 (zh) 空调室内机
JP2000004090A (ja) 電子機器筐体の熱交換装置
CN117806430B (zh) 一种内存测试服务器系统及其双风道内存测试装置
CN215819258U (zh) 风冷散热装置
CN219209985U (zh) 水平送风高低温湿热试验箱
CN214708413U (zh) 一种空气质量监测系统传感器用散热装置
CN110602863A (zh) 电路板组件和具有其的电子设备
CN215735471U (zh) 一种风冷装置
TWI811119B (zh) 顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019738531

Country of ref document: EP

Effective date: 20200810