WO2023155044A1 - 近场通信系统及其控制方法、电子设备 - Google Patents

近场通信系统及其控制方法、电子设备 Download PDF

Info

Publication number
WO2023155044A1
WO2023155044A1 PCT/CN2022/076354 CN2022076354W WO2023155044A1 WO 2023155044 A1 WO2023155044 A1 WO 2023155044A1 CN 2022076354 W CN2022076354 W CN 2022076354W WO 2023155044 A1 WO2023155044 A1 WO 2023155044A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupled
signal input
signal
terminal
input terminal
Prior art date
Application number
PCT/CN2022/076354
Other languages
English (en)
French (fr)
Inventor
于宝亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/076354 priority Critical patent/WO2023155044A1/zh
Publication of WO2023155044A1 publication Critical patent/WO2023155044A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the present application relates to the technical field of near field communication, and in particular to a near field communication system, a control method thereof, and electronic equipment.
  • Near field communication also known as near-field communication
  • NFC near field communication
  • NFC near-field communication
  • Contactless data transmission and exchange is a near-field communication technology that enables information exchange between two or more devices.
  • a near field communication system for realizing near field communication mainly includes a rectifier (rectifier), a demodulator (demodulator), a power management unit (power management unit, PMU) and other parts.
  • the rectifier is used to convert the radio frequency signal received by the antenna into a direct current signal for use by other modules in the near field communication system such as a demodulator.
  • the demodulator is used to demodulate the received modulated signal into a digital signal.
  • the existing rectifier will cause relatively large distortion of the radio frequency signal, when using the demodulator to modulate the signal output by the rectifier, there is a high requirement for the sensitivity of the demodulator.
  • Embodiments of the present application provide a near field communication system, a control method thereof, and an electronic device, which can reduce radio frequency signal distortion caused by a rectifier in the near field communication system.
  • a near field communication system includes: a rectifier, a demodulator, and a power management unit; the rectifier includes a switch circuit, a control circuit, a first switch element, a first impedance, a capacitor, a first The signal input terminal, the second signal input terminal, the signal output terminal and the ground terminal; the first signal input terminal and the second signal input terminal are used to receive radio frequency signals, and the radio frequency signals received by the first signal input terminal and the second signal input terminal
  • the signal is a pair of differential signals; the switch circuit is coupled with the control circuit, the first signal input terminal, the second signal input terminal and the signal output terminal, and the control circuit connects the first signal input terminal and the signal output terminal by controlling the conduction and disconnection of the switch circuit.
  • the radio frequency signal received by the second signal input terminal is converted into a DC signal, and the DC signal is output from the signal output terminal;
  • the first impedance and the first switching element are coupled in series between the signal output terminal and the ground terminal, forming a first signal path ;
  • the first switch element is used to control the conduction or disconnection of the first signal path; one end of the capacitor is coupled to the signal output end, and the other end is coupled to the ground end;
  • the signal output end of the rectifier is coupled to the power management unit, and the power management unit is connected to the power management unit
  • the power input terminal of the demodulator is coupled for powering the demodulator.
  • VC VE+I ⁇ R
  • I the current flowing through the part of the switch circuit coupled between the first signal input terminal VC and the signal output terminal VE
  • the size of I is mainly determined by the current output by the signal output terminal VE
  • R is the on-resistance of the part of the switch circuit coupled between the first signal input terminal VC and the signal output terminal VE. Since the signal output terminal VE is coupled with the capacitor, and the capacitance of the capacitor is usually large, it can be considered that the voltage of the electrode plate coupled with the signal output terminal VE of the capacitor is basically unchanged, that is, the voltage VE of the signal output terminal VE is almost constant.
  • the rectifier further includes a first switching element and a first impedance
  • the first impedance and the first switching element are coupled in series between the signal output end and the ground end, so the demodulator in the near field communication system performs During demodulation, less energy is required.
  • Controlling the conduction of the first switching element and conduction between the first impedance and the signal output terminal is equivalent to adding an additional load during demodulation. In this way, the current at the signal output terminal increases.
  • the current at the signal output terminal affects the current flowing through the part of the switch circuit coupled between the first signal input terminal VC and the signal output terminal VE, and flows through the switch circuit coupled between the first signal input terminal VC and the signal output terminal VE.
  • the current in the part between them will also increase, so that the voltage difference between the first signal input terminal VC and the signal output terminal VE is increased, thereby reducing the distortion produced by the rectifier to the input radio frequency signal.
  • the first impedance and the first switch element are coupled in series between the signal output terminal and the ground terminal, the first impedance has no or little influence on the impedance of the switch circuit. Based on this, within the power supply capability of the rectifier, the The impedance of the first impedance is reduced to increase the current at the signal output end, thereby effectively improving the distortion of the rectifier to the input radio frequency signal, and thus lowering the requirement for the sensitivity of the demodulator.
  • the switch circuit includes a second switch element, a third switch element, a fourth switch element, and a fifth switch element; the first end of the second switch element is coupled to the first signal input end, and the second The second end of the switch element is coupled to the signal output end; the first end of the third switch element is coupled to the second signal input end, and the second end of the third switch element is coupled to the signal output end; the first end of the fourth switch element coupled with the first signal input end, the second end of the fourth switch element is coupled with the ground end; the first end of the fifth switch element is coupled with the second signal input end, and the second end of the fifth switch element is coupled with the ground end; The control terminal of the second switch element, the control terminal of the third switch element, the control terminal of the fourth switch element and the control terminal of the fifth switch element are all coupled to the control circuit.
  • VC VE+ IM1 ⁇ RM1 ;
  • I M1 is the current flowing through the second switching element, and the size of I M1 is mainly determined by the current output by the signal output terminal VE;
  • R M1 is On-resistance of the second switching element. Since the signal output terminal VE is coupled with the capacitor, and the capacitance of the capacitor is usually large, it can be considered that the voltage of the electrode plate coupled with the signal output terminal VE of the capacitor is basically unchanged, that is, the voltage VE of the signal output terminal VE is almost constant.
  • the rectifier also includes a first switching element and a first impedance
  • the first switching element is controlled to conduct
  • the first The conduction between the impedance and the signal output terminal is equivalent to adding an additional load during demodulation, so that the current at the signal output terminal increases, and the size of I M1 is mainly determined by the current output at the signal output terminal, so it flows through the second The current I M1 of the switch element is increased, so that the voltage difference between the first signal input terminal VC and the signal output terminal VE is increased, thereby reducing the distortion of the rectifier to the input radio frequency signal.
  • the conduction of the first impedance to the second switching element, the third switching element, the fourth switching element, and the fifth switching element Impedance does not affect or has little influence. Based on this, within the power supply capability of the rectifier, reduce the impedance of the first impedance to increase the current at the signal output end, thereby effectively improving the distortion of the input radio frequency signal generated by the rectifier, and for The sensitivity requirement of the demodulator is reduced.
  • control circuit is configured to control the second switch element to be turned on or off according to a comparison result of the voltage at the first signal input terminal and the voltage at the signal output terminal.
  • control circuit is configured to control the fourth switch element to be turned on or off according to a comparison result of the voltage at the first signal input terminal and the voltage at the ground terminal.
  • control circuit is configured to control the third switch element to be turned on or off according to a comparison result of the voltage at the second signal input terminal and the voltage at the signal output terminal.
  • control circuit is configured to control the fifth switch element to be turned on or off according to a comparison result of the voltage at the second signal input terminal and the voltage at the ground terminal.
  • the switch circuit further includes a second impedance and a third impedance; the second impedance is connected in series between the first end of the second switch element and the first signal input end; the third impedance is connected in series with the third Between the first end of the switch element and the second signal input end.
  • the second impedance Since the second impedance is connected in series between the first end of the second switching element and the first signal input end, the second impedance is equivalent to only increasing the equivalent on-resistance of the second switching element, and the equivalent of the fourth switching element The effective on-resistance has no effect.
  • the third impedance is connected in series between the first end of the third switching element and the second signal input end, so the third impedance is equivalent to only increasing the equivalent conduction impedance of the third switching element, and the fifth switching element The equivalent on-resistance has no effect.
  • VC VE+ IM1 ⁇ RM1 ;
  • I M1 is the current flowing through the second switching element, and the size of I M1 is mainly determined by the current output by the signal output terminal VE;
  • R M1 is The conduction impedance of the second switch element, because the second impedance is equivalent to increasing the equivalent conduction impedance of the second switch element, thus increasing the voltage difference between the first signal input terminal VC and the signal output terminal VE, so that Further reduce the distortion produced by the rectifier to the input radio frequency signal.
  • the second switching element includes a first transistor, the first pole of the first transistor is coupled to the first signal input terminal, the second pole of the first transistor is coupled to the signal output terminal, and the The gate is coupled with the control circuit; wherein, one of the first pole and the second pole of the first transistor is a source, and the other is a drain.
  • the third switch element includes a second transistor, the first pole of the second transistor is coupled to the second signal input end, the second pole of the second transistor is coupled to the signal output end, and the second transistor's The gate is coupled with the control circuit; wherein, one of the first pole and the second pole of the second transistor is a source, and the other is a drain.
  • the fourth switch element includes a third transistor, the first pole of the third transistor is coupled to the first signal input terminal, the second pole of the third transistor is coupled to the ground terminal, and the gate of the third transistor The pole is coupled with the control circuit; wherein, one of the first pole and the second pole of the third transistor is a source, and the other is a drain.
  • the fifth switch element includes a fourth transistor, the first pole of the fourth transistor is coupled to the second signal input terminal, the second pole of the fourth transistor is coupled to the ground terminal, and the gate of the fourth transistor The pole is coupled with the control circuit; wherein, one of the first pole and the second pole of the fourth transistor is a source, and the other is a drain.
  • the near field communication system further includes an antenna, and the first signal input end and the second signal input end of the rectifier are both coupled to the antenna; the antenna is used to transmit the received radio frequency signal to the first signal input end and the second signal input terminal.
  • the first signal input end and the second signal input end may be used to receive radio frequency signals received by the antenna.
  • the first impedance is connected in series between the first switch element and the signal output end, or the first switch element is connected in series between the first impedance and the signal output end.
  • a near-field communication system in a second aspect, includes: a rectifier, a demodulator, and a power management unit;
  • the rectifier includes a control circuit, a switch circuit, a second impedance, a third impedance, a capacitor, and a first signal
  • the input terminal, the second signal input terminal, the signal output terminal and the ground terminal, the first signal input terminal and the second signal input terminal are used to receive radio frequency signals, and the radio frequency signals received by the first signal input terminal and the second signal input terminal It is a pair of differential signals;
  • the switch circuit includes a second switch element, a third switch element, a fourth switch element and a fifth switch element; the first end of the second switch element is coupled to the first signal input end through the second impedance, and the second switch element is coupled to the first signal input end through the second impedance.
  • the second end of the second switch element is coupled to the signal output end; the first end of the third switch element is coupled to the second signal input end through the third impedance, and the second end of the third switch element is coupled to the signal output end; the fourth switch The first end of the element is coupled to the first signal input end, the second end of the fourth switching element is coupled to the ground end; the first end of the fifth switching element is coupled to the second signal input end, and the second end of the fifth switching element Coupled with the ground terminal; the control terminal of the second switch element, the control terminal of the third switch element, the control terminal of the fourth switch element and the control terminal of the fifth switch element are all coupled with the control circuit; On and off, convert the RF signal received by the first signal input terminal and the second signal input terminal into a DC signal, and output the DC signal from the signal output terminal; one end of the capacitor is coupled to the signal output end, and the other end is connected to the ground terminal coupling; the signal output terminal of the rectifier is coupled with the power management unit, and the power management unit is coupled with
  • control circuit is configured to control the second switch element to be turned on or off according to a comparison result of the voltage at the first signal input terminal and the voltage at the signal output terminal.
  • control circuit is configured to control the fourth switch element to be turned on or off according to a comparison result of the voltage at the first signal input terminal and the voltage at the ground terminal.
  • control circuit is configured to control the third switch element to be turned on or off according to a comparison result of the voltage at the second signal input terminal and the voltage at the signal output terminal.
  • control circuit is configured to control the fifth switch element to be turned on or off according to a comparison result of the voltage at the second signal input terminal and the voltage at the ground terminal.
  • the rectifier further includes a first switch element and a first impedance; the first impedance and the first switch element are coupled in series between the signal output end and the ground end to form a first signal path; the first switch The element is used to control the on or off of the first signal path.
  • the first impedance is connected in series between the first switch element and the signal output end, or the first switch element is connected in series between the first impedance and the signal output end.
  • a near field communication system in a third aspect, includes: a rectifier, a demodulator, and a power management unit; the rectifier includes a switch circuit, a control circuit, a first switch element, a first impedance, a capacitor, a first A signal input terminal, a signal output terminal and a ground terminal; the first signal input terminal is used for receiving radio frequency signals.
  • the switch circuit is coupled to the control circuit, the first signal input terminal, and the signal output terminal.
  • the control circuit converts the radio frequency signal received by the first signal input terminal into a DC signal by controlling the on and off of the switch circuit, and converts the DC signal to the DC signal.
  • the signal is output from the signal output end; the first impedance and the first switch element are coupled in series between the signal output end and the ground end to form a first signal path; the first switch element is used to control the conduction or disconnection of the first signal path .
  • One end of the capacitor is coupled to the signal output end, and the other end is coupled to the ground end.
  • the signal output end of the rectifier is coupled with the power management unit, and the power management unit is coupled with the power input end of the demodulator for supplying power to the demodulator.
  • the switch circuit includes a second switch element and a fourth switch element.
  • the first end of the second switch element is coupled to the first signal input end, the second end of the second switch element is coupled to the signal output end; the first end of the fourth switch element is coupled to the first signal input end, and the fourth switch element
  • the second end of the second switch element is coupled with the ground end; the control end of the second switch element and the control end of the fourth switch element are coupled with the control circuit; the control circuit can control the second switch element and the fourth switch element to be turned on and off open.
  • control circuit is configured to control the second switch element to be turned on or off according to a comparison result of the voltage at the first signal input terminal and the voltage at the signal output terminal.
  • control circuit is configured to control the fourth switch element to be turned on or off according to a comparison result of the voltage at the first signal input terminal and the voltage at the ground terminal.
  • the switch circuit further includes a second impedance; the second impedance is connected in series between the first end of the second switch element and the first signal input end.
  • a near field communication system includes: a rectifier, a demodulator, and a power management unit; the rectifier includes a control circuit, a switch circuit, a second impedance, a capacitor, a first signal input terminal, a signal The output end and the ground end; the switch circuit includes a second switch element and a fourth switch element; the first end of the second switch element is coupled to the first signal input end through the second impedance, and the second end of the second switch element is connected to the signal output end coupling; the first end of the fourth switch element is coupled to the first signal input end, and the second end of the fourth switch element is coupled to the ground end; the control end of the second switch element and the control end of the fourth switch element are both connected to the Control circuit coupling; the control circuit converts the radio frequency signal received by the first signal input end into a DC signal by controlling the on and off of the switch circuit, and outputs the DC signal from the signal output end; one end of the capacitor is connected to the signal
  • control circuit is configured to control the second switch element to be turned on or off according to a comparison result of the voltage at the first signal input terminal and the voltage at the signal output terminal.
  • control circuit is configured to control the fourth switch element to be turned on or off according to a comparison result of the voltage at the first signal input terminal and the voltage at the ground terminal.
  • the rectifier further includes: a first switch element and a first impedance; the first impedance and the first switch element are coupled in series between the signal output end and the ground end to form a first signal path; the first The switch element is used to control the conduction or disconnection of the first signal path.
  • the near field communication system includes: a rectifier, a demodulator, and a power management unit;
  • the rectifier includes a switch circuit, a control circuit, a first switch element, a first impedance, a capacitor, The first signal input terminal, the second signal input terminal, the signal output terminal and the ground terminal;
  • the switch circuit is coupled with the control circuit, the first signal input terminal, the second signal input terminal and the signal output terminal; the first impedance and the first switch element Coupled in series between the signal output terminal and the ground terminal to form a first signal path; one end of the capacitor is coupled to the signal output terminal, and the other end is coupled to the ground terminal;
  • the signal output terminal of the rectifier is coupled to the power management unit, and the power management unit Coupled with the power input end of the demodulator;
  • the control method includes: first, the rectifier receives the radio frequency signal through the first signal input end and the second signal input end; wherein, the first signal input end and the second signal input
  • the switch circuit includes a second switch element, a third switch element, a fourth switch element, and a fifth switch element; the first end of the second switch element is coupled to the first signal input end, and the second The second end of the switch element is coupled to the signal output end; the first end of the third switch element is coupled to the second signal input end, and the second end of the third switch element is coupled to the signal output end; the first end of the fourth switch element coupled with the first signal input end, the second end of the fourth switch element is coupled with the ground end; the first end of the fifth switch element is coupled with the second signal input end, and the second end of the fifth switch element is coupled with the ground end; The control terminal of the second switch element, the control terminal of the third switch element, the control terminal of the fourth switch element and the control terminal of the fifth switch element are all coupled to the control circuit.
  • control of turning on and off of the switching circuit includes controlling the second switching element to turn on or off according to a comparison result of the voltage at the first signal input terminal and the voltage at the signal output terminal.
  • the above control of turning on and off of the switch circuit includes controlling the fourth switch element to turn on or off according to a comparison result of the voltage at the first signal input terminal and the voltage at the ground terminal.
  • control of turning on and off of the switching circuit includes controlling the third switching element to turn on or off according to a comparison result of the voltage at the second signal input terminal and the voltage at the signal output terminal.
  • control of turning on and off of the switch circuit includes controlling the fifth switch element to turn on or off according to a comparison result of the voltage at the second signal input terminal and the voltage at the ground terminal.
  • the near field communication system includes: a rectifier, a demodulator, and a power management unit; the rectifier includes a control circuit, a switch circuit, a second impedance, a third impedance, a capacitor, and a second impedance.
  • the switch circuit includes a second switch element, a third switch element, a fourth switch element and a fifth switch element; the first end of the second switch element passes through The second impedance is coupled to the first signal input end, the second end of the second switching element is coupled to the signal output end; the first end of the third switching element is coupled to the second signal input end through the third impedance, and the third switching element is coupled to the second signal input end.
  • the second terminal is coupled to the signal output terminal;
  • the first terminal of the fourth switch element is coupled to the first signal input terminal, and the second terminal of the fourth switch element is coupled to the ground terminal;
  • the first terminal of the fifth switch element is coupled to the second signal input terminal.
  • the input end is coupled, the second end of the fifth switch element is coupled to the ground end; the control end of the second switch element, the control end of the third switch element, the control end of the fourth switch element, and the control end of the fifth switch element are all connected to the ground end.
  • the control method includes: first , the rectifier receives the radio frequency signal through the first signal input terminal and the second signal input terminal; wherein, the radio frequency signal received by the first signal input terminal and the second signal input terminal is a pair of differential signals; next, the rectifier controls the switch circuit The conduction and disconnection of the first signal input terminal and the second signal input terminal to convert the radio frequency signal received into a direct current signal, and output the direct current signal from the signal output end; next, the power management unit receives the direct current signal, and power the demodulator.
  • the control circuit Open According to the voltage of the first signal input terminal, the second signal input terminal, the signal output terminal and the ground terminal, the on and off of the second switch element, the third switch element, the fourth switch element and the fifth switch element are controlled by the control circuit Open, so that the AC signal received by the first signal input terminal and the second signal input terminal can be converted into a DC signal, and then the purpose of rectification can be achieved.
  • control of turning on and off of the switching circuit includes controlling the second switching element to turn on or off according to a comparison result of the voltage at the first signal input terminal and the voltage at the signal output terminal.
  • the above control of turning on and off of the switch circuit includes controlling the fourth switch element to turn on or off according to a comparison result of the voltage at the first signal input terminal and the voltage at the ground terminal.
  • control of turning on and off of the switching circuit includes controlling the third switching element to turn on or off according to a comparison result of the voltage at the second signal input terminal and the voltage at the signal output terminal.
  • control of turning on and off of the switch circuit includes controlling the fifth switch element to turn on or off according to a comparison result of the voltage at the second signal input terminal and the voltage at the ground terminal.
  • an electronic device includes a printed circuit board and the above-mentioned near field communication system.
  • the electronic device has the same technical effect as that of the above-mentioned near-field communication system, and reference may be made to the description of related technical effects of the above-mentioned near-field communication system, which will not be repeated here.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a near field communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a near field communication system provided by another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a near field communication system provided by another embodiment of the present application.
  • FIG. 5a is a schematic structural diagram of a near-field communication system provided by the related art.
  • Fig. 5b is a schematic structural diagram of another near-field communication system provided by the related art.
  • FIG. 6 is a schematic structural diagram of a near field communication system provided by another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a near field communication system provided by another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a near field communication system provided by another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a near field communication system provided by another embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a near field communication system provided by another embodiment of the present application.
  • first, second and the like are used for convenience of description only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • a feature defined as “first”, “second”, etc. may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • Coupled may be a direct electrical connection or an indirect electrical connection through an intermediary.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • Embodiments of the present application provide an electronic device, which can be, for example, a mobile phone, a tablet computer (pad), a personal digital assistant (personal digital assistant, PDA), a TV, a smart wearable product (for example, a smart watch) , smart bracelet), virtual reality (virtual reality, VR) electronic equipment, augmented reality (augmented reality, AR) electronic equipment, charging small household appliances (such as soybean milk machine, sweeping robot), drones, radar, aerospace equipment and different types of user equipment or electronic equipment such as vehicle equipment; the electronic equipment may also be network equipment such as base stations.
  • the embodiment of the present application does not specifically limit the specific form of the electronic device.
  • FIG. 1 is a schematic structural diagram of an electronic device exemplarily provided in an embodiment of the present application.
  • the electronic device 1 includes components such as a wireless communication system 10 , a processor 11 , a power supply 12 , a memory 13 , an input unit 14 , a display device 15 , and an audio circuit 16 .
  • the structure shown in FIG. 1 does not constitute a specific limitation on the electronic device 1 .
  • the electronic device 1 may include more or fewer components than shown in the illustration, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • processor 11 is the control center of this electronic equipment 1, utilizes various interfaces and lines to connect various parts of the whole electronic equipment, by running or executing the software programs and/or modules stored in the memory 13, and calling the software programs and/or modules stored in the memory 13 Perform various functions of electronic equipment and process data, so as to monitor the electronic equipment as a whole.
  • the processor 11 may include one or more processing units; in some examples, the processor 11 may integrate an application processor (application processor, AP) and a modem processor, wherein the application processor mainly handles operations systems, user interfaces, and applications, etc., the modem processor mainly handles near-field communication. It can be understood that the foregoing modem processor may not be integrated into the processor 11 .
  • the above-mentioned wireless communication system 10 can be used for sending and receiving information or receiving and sending signals during a call.
  • the downlink information from the base station it is processed by the processor 11; in addition, the uplink data is sent to the base station.
  • the above wireless communication system 10 includes a near field communication system and a far field communication system.
  • the wireless communication system 10 can communicate with a network and other devices through near field communication or far field communication.
  • Near field communication can use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access (CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), e-mail, short message service (short messaging service, SMS), etc.
  • GSM global system of mobile communication
  • general packet radio service general packet radio service
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • e-mail short message service
  • SMS short message service
  • the above-mentioned power supply 12 may include a battery, for example, and the power supply 12 may supply power to various components.
  • the power supply 12 may be logically connected to the processor 11 through a power management unit, so as to manage charging, discharging, and power consumption management through the power management unit. Function.
  • the above-mentioned memory 13 may be used to store software programs and modules, and the processor 11 executes various functional applications and data processing of the electronic device by running the software programs and modules stored in the memory 13 .
  • the memory 13 mainly includes a program storage area and a data storage area, wherein the program storage area can store an operating system, at least one application program required by a function (such as a sound playback function, an image playback function, etc.); The created data (such as audio data, image data, phone book, etc.) etc.
  • the memory 13 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage devices.
  • the above-mentioned input unit 14 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the electronic device.
  • the input unit 14 may include a touch screen 141 and other input devices 142 .
  • the touch screen 141 also referred to as a touch panel, can collect touch operations of the user on or near the touch screen (for example, the user uses any suitable object or accessory such as a finger or a stylus on the touch screen 141 or near the touch screen 141), and according to The preset programs drive the corresponding connected electronic devices.
  • Other input devices 142 may include, but are not limited to, one or more of physical keyboards, function keys (such as volume control keys, power switch keys, etc.), trackballs, mice, and joysticks.
  • the above-mentioned display device 15 can be used to display information input by the user or provided to the user, as well as various menus of the electronic device.
  • the display device 15 may include a display panel 151, and the display panel 151 may be a liquid crystal display (liquid crystal display, LCD) panel, an organic light emitting diode (organic light emitting diode, OLED) display panel, or a Micro-LED (miniature light emitting diode) display panel.
  • the touch screen 141 can cover the display panel 151.
  • the touch screen 141 When the touch screen 141 detects a touch operation on or near the touch screen 141, it is sent to the processor 11 to determine the type of the touch event, and then the processor 11 displays a touch event on the display panel according to the type of the touch event. Corresponding visual output is provided on 151 .
  • the touch screen 141 and the display panel 151 are used as two independent components to realize the input and output functions of the device, in some embodiments, the touch screen 141 and the display panel 151 can be integrated to realize the input of the device. and output functions.
  • the audio circuit 16, the speaker 161 and the microphone 162 are used to provide an audio interface between the user and the electronic device.
  • the audio circuit 16 can transmit the electrical signal converted from the received audio data to the loudspeaker 161, and the loudspeaker 161 converts it into a sound signal output; After being received, it is converted into audio data, and then the audio data is output to the near field communication system to be sent to another electronic device, or the audio data is output to the memory 13 for further processing.
  • the electronic device shown in FIG. 1 may also include various sensors.
  • a gyro sensor for example, a hygrometer sensor, an infrared sensor, a magnetometer sensor, etc., which will not be repeated here.
  • the electronic device shown in FIG. 1 may also include a wireless fidelity (wireless fidelity, WiFi) module, a Bluetooth module, etc., which will not be repeated here.
  • the above-mentioned electronic device 1 may also include printed circuit boards (printed circuit boards, PCB), and some chips or electronic devices in the electronic device 1 such as processor 11, memory 13, etc. may be arranged on the PCB.
  • PCB printed circuit boards
  • Embodiments of the present application also provide a near field communication (near field communication, NFC) system, which can be used as a kind of wireless communication system 10 and applied to the above-mentioned electronic device 1 .
  • the near field communication system 10A may include a rectifier (rectifier) 100, a demodulator (demodulator) 200, a load modulator (load modulator) 300, a clock data recovery (clock and data recovery, CDR) circuit 400 , power management unit (power management unit, PMU) 500, digital (digital) processing circuit 600, and other modules 700 and other parts, other modules can include radio frequency limiter (radio frequency limiter, RF limiter) module, field monitoring (filed detector) module, security module (secure element, SE), etc.
  • radio frequency limiter radio frequency limiter
  • RF limiter field monitoring
  • SE secure element
  • the near field communication system 10A may further include an antenna (antenna) 800 , a matching network (match) and/or a filter (filter) 900 and other parts.
  • the antenna 800 may be coupled with the rectifier 100, the demodulator 200, the load modulator 300, the clock data recovery circuit 400, etc. through a matching network and/or a filter 900.
  • the rectifier 100, demodulator 200, load modulator 300, clock data recovery circuit 400, power management unit 500, digital processing circuit 600, and other modules 700 such as radio frequency limiting module, field monitoring module, security module etc.
  • the rectifier 100, demodulator 200, load modulator 300, clock data recovery circuit 400, power management unit 500, digital processing circuit 600, and other modules 700 can be integrated on the same radio frequency chip, or can be integrated on different radio frequency chips.
  • 2 is integrated with a rectifier 100, a demodulator 200, a load modulator 300, a clock data recovery circuit 400, a power management unit 500, a digital processing circuit 600, and other modules 700 such as a radio frequency limiting module, a field monitoring module, and a security module.
  • the radio frequency chip can be arranged on the printed circuit board.
  • the radio frequency chip can include a plurality of input and output ports (input output pad, IO pad) 10a, and the antenna 800 can be connected with the input and output ports on the radio frequency chip through a matching network and/or filter 900 10a coupling, the rectifier 100, demodulator 200, load modulator 300, clock data recovery circuit 400, etc. on the radio frequency chip can be coupled with the input and output port 10a, and then receive the signal received by the antenna 800, or transmit a signal to the antenna 800.
  • the radio frequency chip may further include a port 10b coupled to the ground terminal. In some examples, as shown in FIG. 2 , the port 10b coupled to the ground terminal may be coupled to the ground terminal GND through a capacitor C.
  • the rectifier 100 is coupled with the antenna 800, and is used to convert the radio frequency signal received by the antenna 800 into DC energy for use by other modules or other chips inside the chip.
  • the signal output terminal of the rectifier 100 is coupled with the power management unit 500, and the power management unit 500 is coupled with other modules inside the chip or power input terminals of other chips, such as the demodulator 200, the load modulator 300, the clock data recovery circuit 400,
  • the power input terminals of the digital processing circuit 600, the radio frequency limiting module, the field monitoring module, the safety module, etc. or other chips are coupled, and the power management unit 500 is used to supply power to other modules or other chips, such as for the solution in the radio frequency chip.
  • the demodulator 200 is coupled to the antenna 800 and to the digital processing circuit 600 for demodulating the received modulated signal into a digital signal and transmitting the digital signal to the digital processing circuit 600 for further demodulation.
  • the load modulator 300 is coupled with the digital processing circuit 600 and the antenna 800, and the load modulator 300 is used as a transmitting module for load-modulating the digital signal output by the digital processing circuit 600 and outputting it to the antenna 800, and then transmitting the signal through the antenna 800 .
  • the clock data recovery circuit 400 is coupled with the antenna 800 and the digital processing circuit 600, and is used to convert the radio frequency signal received by the antenna 800 into a clock signal of the same frequency, and then transmit the clock signal to the digital processing circuit 600, so that the digital processing circuit 600 work with a clock signal.
  • the digital processing circuit 600 is used for demodulation and radio frequency chip control.
  • the radio frequency limiting module is coupled with the antenna 800, and is used to prevent the signal of the antenna 800 from being too large, exceeding the withstand voltage capability of the chip and breaking down the chip.
  • the field monitoring module is used to monitor whether the antenna 800 has a signal.
  • the rectifier 100 in the near field communication system 10A is exemplarily introduced below through several embodiments.
  • the rectifier 100 includes a switch circuit 101, a control circuit 102, a first switch element S, a first impedance RL, a capacitor CL, a first signal input terminal VC, a second signal input terminal VD, the signal output terminal VE and the ground terminal GND; the first signal input terminal VC and the second signal input terminal VD are used to receive radio frequency signals, and the radio frequency signals received by the first signal input terminal VC and the second signal input terminal VD are A pair of differential signals.
  • both the first signal input terminal VC and the second signal input terminal VD of the rectifier 100 are coupled with the antenna 800, and the antenna 800 can be used to transmit the received
  • the radio frequency signal is transmitted to the first signal input terminal VC and the second signal input terminal VD, so that the first signal input terminal VC and the second signal input terminal VD receive the radio frequency signal.
  • the radio frequency signals received by the first signal input terminal VC and the second signal input terminal VD are AC signals and are a pair of differential signals.
  • FIG. 3 also illustrates the source impedance RS caused by the antenna 800 and the matching network and/or filter 900 .
  • the switch circuit 101 is coupled to the control circuit 102, the first signal input terminal VC, the second signal input terminal VD and the signal output terminal VE.
  • the control circuit 102 controls the on and off of the switch circuit 101 to connect the first signal input terminal
  • the radio frequency signal received by VC and the second signal input terminal VD is converted into a DC signal, and the DC signal is output from the signal output terminal VE;
  • the first impedance RL and the first switching element S are coupled in series to the signal output terminal VE and the ground terminal GND Between them, a first signal path is formed; the first switch element S is used to control the conduction or disconnection of the first signal path.
  • the first impedance RL When the first switch element S is turned on, the first impedance RL is turned on with the signal output terminal VE; when the first switch element S is turned off, the first impedance RL is disconnected from the signal output terminal VE.
  • the first impedance RL may be connected in series between the first switch element S and the signal output terminal VE; or the first switch element S may be connected in series between the first impedance RL and the signal output terminal VE.
  • One end of the capacitor CL is coupled to the signal output terminal VE, and the other end is coupled to the ground terminal GND.
  • the capacitance of the selected capacitor CL should be relatively large. Based on the characteristics of the capacitor CL, it can ensure that the signal output terminal VE can output a stable signal.
  • the signal output terminal VE of the rectifier 100 is coupled to the power management unit 500 , and the power management unit 500 is coupled to the power input terminal of the demodulator 200 for supplying power to the demodulator 200 .
  • the first impedance RL may be elements such as resistors.
  • the switch circuit 101 includes a second switch element 1011 , a third switch element 1012 , a fourth switch element 1013 and a fifth switch element 1014 .
  • the first terminal of the second switching element 1011 is coupled to the first signal input terminal VC, the second terminal of the second switching element 1011 is coupled to the signal output terminal VE; the first terminal of the third switching element 1012 is coupled to the second signal input terminal VD coupling, the second end of the third switching element 1012 is coupled to the signal output end VE; the first end of the fourth switching element 1013 is coupled to the first signal input end VC, and the second end of the fourth switching element 1013 is coupled to the ground end GND
  • the first end of the fifth switching element 1014 is coupled to the second signal input terminal VD, and the second end of the fifth switching element 1014 is coupled to the ground terminal GND; the control end of the second switching element 1011, the control of the third switching element 1012 terminal, the control terminal of the fourth switch element 1013 and the control terminal of the fifth switch element 1014 are all coupled with the control circuit 102; the control circuit 102 can control the second switch element 1011, the third switch element 1012, the fourth switch element 1013 and the The fifth switching element 10
  • the control circuit 102 controls the switching
  • the RF signal received by the first signal input terminal VC and the second signal input terminal VD is converted into a DC signal, which can be realized in the following ways:
  • the control circuit 102 is used to control the switch circuit 101 to be turned on or off according to the voltage of the first signal input terminal VC, the voltage of the signal output terminal VE and the voltage of the ground terminal GND.
  • control circuit 102 is configured to control the second switch element 1011 to be turned on or off according to the comparison result of the voltage of the first signal input terminal VC and the voltage of the signal output terminal VE.
  • control circuit 102 is used to control the second switching element 1011 to turn on when the voltage of the first signal input terminal VC is higher than the voltage of the signal output terminal VE, and provide the voltage of the first signal input terminal VC to the signal output terminal VE.
  • control circuit 102 is configured to control the fourth switching element 1013 to be turned on or off according to a comparison result between the voltage of the first signal input terminal VC and the voltage of the ground terminal GND.
  • control circuit 102 is configured to control the fourth switch element 1013 to turn on when the voltage of the first signal input terminal VC is lower than the voltage of the ground terminal GND, and output the voltage of the ground terminal GND to the first signal input terminal VC.
  • control circuit 102 is also used to control the turn-on or turn-off of the switch circuit 101 according to the voltage of the second signal input terminal VD, the voltage of the signal output terminal VE and the voltage of the ground terminal GND.
  • control circuit 102 is configured to control the third switch element 1012 to be turned on or off according to a comparison result between the voltage of the second signal input terminal VD and the voltage of the signal output terminal VE.
  • control circuit 102 is used to control the third switch element 1012 to turn on when the voltage of the second signal input terminal VD is higher than the voltage of the signal output terminal VE, and output the voltage of the second signal input terminal VD to the signal output terminal VE.
  • control circuit 102 is configured to control the fifth switch element 1014 to be turned on or off according to a comparison result between the voltage of the second signal input terminal VD and the voltage of the ground terminal GND.
  • control circuit 102 is configured to control the fifth switch element 1014 to turn on when the voltage of the second signal input terminal VD is lower than the voltage of the ground terminal GND, and output the voltage of the ground terminal GND to the second signal input terminal of VD.
  • the control circuit 102 controls the second switching element 1011, the third switching element 1012, the fourth The switching element 1013 and the fifth switching element 1014 are turned on and off, so that the AC signal received by the first signal input terminal VC and the second signal input terminal VD can be converted into a DC signal, and then the purpose of rectification can be achieved.
  • the voltage phase of the first signal input terminal VC and the second signal input terminal VD are opposite in phase.
  • the voltage of the second signal input terminal VD is lower than the voltage of the ground terminal GND, that is, the second switching element 1011 and the fifth switching element 1014 are turned on and turned off at the same time ;
  • the voltage of the first signal input terminal VC is lower than the voltage of the ground terminal GND, that is, the third switching element 1012 and the fourth switching element 1013 are simultaneously turned on, disconnected at the same time.
  • control circuit 102 may be implemented by using multiple comparators.
  • the second switch element 1011 includes a first transistor M1, the first pole of the first transistor M1 is coupled to the first signal input terminal VC, and the second pole of the first transistor M1 is coupled to the signal input terminal VC.
  • the output terminal VE is coupled, and the gate of the first transistor M1 is coupled to the control circuit 102; wherein, one of the first pole and the second pole of the first transistor M1 is a source (source, S), and the other is a drain (drain, D).
  • the first pole of the first transistor M1 may be the source, and the second pole may be the drain; or the first pole of the first transistor M1 may be the drain, and the second pole may be the source.
  • the first transistor M1 may be, for example, a metal-oxide-semiconductor field-effect transistor, referred to as a metal-oxide-semiconductor field-effect transistor (MOSFET), and may also be called a MOS transistor.
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • the first transistor M1 is a P-type transistor.
  • the control circuit 102 provides a low level signal to the gate of the first transistor M1, the first transistor M1 is turned on.
  • the second switch element 1011 includes but is not limited to the first transistor M1, and in some examples, the second switch element 1011 may further include one or more other transistors connected in series or in parallel with the first transistor M1.
  • the third switching element 1012 includes a second transistor M2, the first pole of the second transistor M2 is coupled to the second signal input terminal VD, and the second pole of the second transistor M2 is coupled to the signal input terminal VD.
  • the output terminal VE is coupled, and the gate of the second transistor M2 is coupled to the control circuit 102 ; wherein, one of the first pole and the second pole of the second transistor M2 is a source, and the other is a drain.
  • the first pole of the second transistor M2 may be the source, and the second pole may be the drain; or the first pole of the second transistor M2 may be the drain, and the second pole may be the source. .
  • the second transistor M2 may be, for example, a MOS transistor.
  • the second transistor M2 is a P-type transistor.
  • the third switch element 1012 includes but is not limited to the second transistor M2, and in some examples, the third switch element 1012 may further include one or more other transistors connected in series or in parallel with the second transistor M2.
  • the fourth switching element 1013 includes a third transistor M3, the first pole of the third transistor M3 is coupled to the first signal input terminal VC, and the second pole of the third transistor M3 is connected to the ground.
  • the terminal GND is coupled, and the gate of the third transistor M3 is coupled to the control circuit 102; wherein, one of the first pole and the second pole of the third transistor M3 is a source, and the other is a drain.
  • the first pole of the third transistor M3 can be the source, and the second pole can be the drain; or the first pole of the third transistor M3 can be the drain, and the second pole can be the source. .
  • the third transistor M3 may be, for example, a MOS transistor.
  • the third transistor M3 is an N-type transistor.
  • the control circuit 102 provides a high level signal to the gate of the third transistor M3, the third transistor M3 is turned on.
  • the fourth switch element 1013 includes but is not limited to the third transistor M3, and in some examples, the fourth switch element 1013 may further include one or more other transistors connected in series or in parallel with the third transistor M3.
  • the fifth switching element 1014 includes a fourth transistor M4, the first pole of the fourth transistor M4 is coupled to the second signal input terminal VD, and the second pole of the fourth transistor M4 is connected to the ground.
  • the terminal GND is coupled, and the gate of the fourth transistor M4 is coupled to the control circuit 102; wherein, one of the first pole and the second pole of the fourth transistor M4 is a source, and the other is a drain.
  • the first pole of the fourth transistor M4 may be the source, and the second pole may be the drain; or the first pole of the fourth transistor M4 may be the drain, and the second pole may be the source. .
  • the fourth transistor M4 may be, for example, a MOS transistor.
  • the fourth transistor M4 is an N-type transistor.
  • the fifth switch element 1014 includes but is not limited to the fourth transistor M4, and in some examples, the fifth switch element 1014 may further include one or more other transistors connected in series or in parallel with the fourth transistor M4.
  • a rectifier 100 provided in the related art includes a first transistor M1, a second transistor M2, a third transistor M3, a fourth transistor M4, a control circuit 102, a capacitor CL, a first signal input terminal VC, a second signal input terminal VD, a signal output terminal VE and a ground terminal GND.
  • the connection relationship between the first transistor M1, the second transistor M2, the third transistor M3, the fourth transistor M4, the control circuit 102 and the capacitor CL, and the function of the control circuit 102 can be referred to above, and will not be repeated here.
  • the demodulator 200 in the near field communication system 10A performs demodulation, since the security module and the like are not working, the power consumption is relatively low. In this way, I M1 is relatively small, and R M1 is usually relatively small in order to improve efficiency.
  • the voltage VC of the first signal input terminal VC is approximately equal to the voltage VE of the signal output terminal VE; similarly, when the second transistor M2 is turned on, the voltage VD of the second signal input terminal VD is approximately equal to the voltage of the signal output terminal VE VE, it can be seen that the amplitude information of the radio frequency signal is greatly attenuated, so the rectifier 100 will cause distortion of the radio frequency signal. However, if the rectifier 100 causes distortion of the radio frequency signal, when the rectifier 100 is applied to the near field communication system 10A, there will be a higher requirement on the sensitivity of the demodulator 200 .
  • FIG. 5b a rectifier 100, as shown in Figure 5b, based on the rectifier 100 provided in Figure 5a , the second impedance Z2 is added to the first signal input terminal VC, the third impedance Z3 is added to the second signal input terminal VD, the radio frequency signal received by the antenna 800 is input to the first signal input terminal VC after passing through the second impedance Z2, and The radio frequency signal received by the antenna 800 is input to the second signal input terminal VD through the third impedance Z3.
  • the second impedance Z2 is increased at the first signal input terminal VC, it can be equivalent to increasing the on-resistance R M1 of the first transistor M1.
  • R M1 the on-resistance of the first transistor M1.
  • the third impedance Z3 is added at the second signal input terminal VD, it can be equivalent to increasing the on-resistance of the second transistor M2. In this way, the second signal input terminal VD and the signal output terminal VE are increased. difference, thereby reducing distortion.
  • increasing the second impedance Z2 at the first signal input terminal VC, and increasing the third impedance Z3 at the second signal input terminal VD are not only equivalent to increasing the on-resistance R M1 of the first transistor M1, the second transistor M2
  • the on-resistance R M2 of the third transistor M3 is equivalent to equivalently increasing the on-resistance R M3 of the third transistor M3 and the on-resistance R M4 of the fourth transistor M4, while the on-resistance R M1 of the first transistor M1 and the first transistor M1 are The on-resistance R M2 of the second transistor M2 , the on-resistance R M3 of the third transistor M3 and the on-resistance R M4 of the fourth transistor M4 are all equivalently increased, which will reduce the conversion efficiency of the rectifier 100 .
  • the second impedance Z2 and the third impedance Z3 cannot be set too large, so the related art cannot effectively improve the radio frequency signal generated by the rectifier 100 distortion.
  • VC VE+I ⁇ R
  • I is the signal flowing through the switch circuit 101 coupled between the first signal input terminal VC and the signal output terminal VE Part of the current
  • the magnitude of I is mainly determined by the current output from the signal output terminal VE
  • R is the on-resistance of the part of the switch circuit 101 coupled between the first signal input terminal VC and the signal output terminal VE. Since the signal output terminal VE is coupled with the capacitor CL, and the capacitance of the capacitor CL is usually large, it can be considered that the voltage of the electrode plate coupled with the signal output terminal VE of the capacitor CL is basically unchanged, that is, the voltage VE of the signal output terminal VE is almost constant.
  • the rectifier 100 further includes a first switch element S and a first impedance RL, the first impedance RL and the first switch element S are coupled in series between the signal output terminal VE and the ground terminal GND , constituting the first signal path, so when the demodulator 200 in the near field communication system 10A performs demodulation, less energy is required, the first switching element S is controlled to be turned on, and the first impedance RL is connected to the signal output terminal VE. It is equivalent to adding an additional load during demodulation.
  • the current of the signal output terminal VE increases, and the current of the signal output terminal VE affects the current coupled to the first signal input terminal VC and the signal flowing through the switch circuit 101.
  • the current of the part between the output terminals VE and the current flowing through the part of the switch circuit 101 coupled between the first signal input terminal VC and the signal output terminal VE will also increase, thus increasing the first signal input
  • the voltage difference between the terminal VC and the signal output terminal VE can reduce the distortion produced by the rectifier 100 on the input radio frequency signal.
  • the first impedance RL and the first switching element S are coupled in series between the signal output terminal VE and the ground terminal GND, the first impedance RL has no or little influence on the impedance of the switch circuit 101.
  • the rectifier Within the power supply capacity of 100, reduce the impedance of the first impedance RL to increase the current of the signal output terminal VE, so as to effectively improve the distortion produced by the rectifier 100 to the input radio frequency signal, and reduce the sensitivity requirement of the demodulator 200 .
  • the first embodiment can more effectively improve the distortion produced by the rectifier 100 to the input radio frequency signal, which can more effectively reduce the The sensitivity requirement of the tuner 200.
  • the signal output terminal VE is coupled with the capacitor CL, and the capacitance of the capacitor CL is usually large, it can be considered that the voltage of the electrode plate coupled with the signal output terminal VE of the capacitor CL is basically unchanged, that is, the voltage VE of the signal output terminal VE is almost constant. Change.
  • the rectifier 100 also includes a first switch element S and a first impedance RL, the first impedance RL and the first switch element S are coupled in series between the signal output terminal VE and the ground terminal GND, so the When the demodulator 200 in the field communication system 10A performs demodulation, less energy is required, and the first switching element S is controlled to conduct, and the first impedance RL and the signal output terminal VE are conducted, which is equivalent to an increase of In this way, the current of the signal output terminal VE increases, and the size of I M1 is mainly determined by the current output by the signal output terminal VE, so the current flowing through the first transistor M1 increases, thus increasing the The voltage difference between the first signal input terminal VC and the signal output terminal VE can reduce the distortion generated by the rectifier 100 on the input radio frequency signal.
  • the first impedance RL and the first switching element S are coupled in series between the signal output terminal VE and the ground terminal GND, the first impedance RL has an effect on the first transistor M1, the second transistor M2, the third transistor M3, the fourth The on-resistance of the transistor M4 has no or little influence, based on this, within the power supply capability of the rectifier 100, the impedance of the first impedance RL is reduced to increase the current of the signal output terminal VE, thereby effectively improving the rectifier 100 to The input radio frequency signal is distorted, and the requirement for the sensitivity of the demodulator 200 is reduced.
  • the first switching element S is controlled to be disconnected, that is, the first impedance RL is disconnected from the signal output terminal VE, so that the safety When a large power consumption module such as a module is working, the power supply capability of the rectifier 100 is guaranteed.
  • the first embodiment also provides a control method of the near field communication system 10A, the control method includes:
  • the rectifier 100 receives radio frequency signals through the first signal input terminal VC and the second signal input terminal VD; wherein, the radio frequency signals received by the first signal input terminal VC and the second signal input terminal VD are a pair of differential signals.
  • the rectifier 100 converts the radio frequency received by the first signal input terminal VC and the second signal input terminal VD to The signal is converted into a DC signal, and the DC signal is output from the signal output terminal VE.
  • the above-mentioned control of switching on and off of the switch circuit includes: according to the first signal input terminal The voltage of VC, the voltage of the signal output terminal VE and the voltage of the ground terminal GND control whether the switch circuit 101 is turned on or off.
  • the above control of turning on and off of the switching circuit includes: controlling the second switching element 1011 to turn on or off according to the comparison result of the voltage of the first signal input terminal VC and the voltage of the signal output terminal VE.
  • the second switching element 1011 is controlled to be turned on, and the voltage of the first signal input terminal VC is provided to the signal output terminal VE.
  • the above control of turning on and off of the switch circuit includes: controlling the fourth switch element 1013 to turn on or off according to the comparison result of the voltage of the first signal input terminal VC and the voltage of the ground terminal GND. For example, when the voltage of the first signal input terminal VC is lower than the voltage of the ground terminal GND, the fourth switch element 1013 is controlled to be turned on, and the voltage of the ground terminal GND is output to the first signal input terminal VC.
  • the above-mentioned control on and off of the switch circuit includes: according to the second signal input terminal The voltage of VD, the voltage of the signal output terminal VE and the voltage of the ground terminal GND control whether the switch circuit 101 is turned on or off.
  • the above control of turning on and off of the switch circuit includes: controlling the third switch element 1012 to turn on or off according to the comparison result of the voltage of the second signal input terminal VD and the voltage of the signal output terminal VE.
  • the third switching element 1012 is controlled to be turned on, and the voltage of the second signal input terminal VD is output to the signal output terminal VE.
  • the above control of turning on and off of the switch circuit includes: controlling the fifth switch element 1014 to turn on or off according to the comparison result of the voltage of the second signal input terminal VD and the voltage of the ground terminal GND. For example, when the voltage of the second signal input terminal VD is lower than the voltage of the ground terminal GND, the fifth switch element 1014 is controlled to be turned on, and the voltage of the ground terminal GND is output to the second signal input terminal of VD.
  • the power management unit 500 receives the DC signal and supplies power to the demodulator 200 .
  • the demodulator 200 when the demodulator 200 demodulates the signal, the above-mentioned first switch element S is controlled to conduct, so that the first signal path is conducted; when the demodulator 200 finishes demodulating, the first switch is controlled to Element S is turned off, so that the first signal path is broken.
  • control method of the near field communication system 10A has the same beneficial effects as the rectifier 100 provided in the first embodiment above, and reference can be made to the description of the related technical effects of the rectifier 100 provided in the first embodiment above, which will not be repeated here. repeat.
  • the switch circuit 101 includes a second switch element 1011, a third switch element 1012, a fourth switch element 1013, and a fifth switch element 1014
  • the switch circuit 101 further includes a second Impedance Z2 and the third impedance Z3; the second impedance Z2 is connected in series between the first end of the second switch element 1011 and the first signal input end VC; the third impedance Z3 is connected in series between the first end of the third switch element 1012 and the first end VC. Between the two signal input terminals VD.
  • the second impedance Z2 and the third impedance Z3 may be components such as resistors and inductors.
  • the second impedance Z2 and the third impedance Z3 are equivalent to isolation.
  • the second impedance Z2 is connected in series between the first end of the second switching element 1011 and the first signal input end VC, the second impedance Z2 is equivalent to adding only the second switching element 1011 (such as the first transistor M1).
  • the effective on-resistance has no effect on the equivalent on-resistance of the fourth switching element 1013 (for example, the third transistor M3).
  • the third impedance Z3 is connected in series between the first terminal of the third switching element 1012 and the second signal input terminal VD, so the third impedance Z3 is equivalent to only adding the third switching element 1012 (such as the second transistor M2)
  • the equivalent on-resistance of the fifth switching element 1014 (for example, the fourth transistor M4 ) has no effect on the equivalent on-resistance.
  • VC VE+ IM1 ⁇ RM1 ;
  • I M1 is the current flowing through the second switch element 1011, and the magnitude of I M1 is mainly determined by the current output from the signal output terminal VE;
  • R M1 is the conduction impedance of the second switch element 1011, since the second impedance Z2 is equivalent to increasing the equivalent conduction impedance of the second switch element 1011, thus increasing the voltage difference between the first signal input terminal VC and the signal output terminal VE value, so that the distortion generated by the rectifier 100 on the input radio frequency signal can be further reduced.
  • the second impedance Z2 since the second impedance Z2 only increases the equivalent on-resistance of the second switching element 1011 (such as the first transistor M1), the fourth switching element 1013 (such as the first transistor M1)
  • the equivalent on-resistance of the three transistors (M3) has no effect.
  • the efficiency loss of the rectifier 100 provided by the embodiment of the present application will be reduced by 50% compared with the rectifier 100 provided by FIG. 5b. %about. That is to say, in the case of the same conversion efficiency, compared with the rectifier 100 provided in FIG.
  • the rectifier 100 produces less distortion to the input radio frequency signal, which can significantly reduce the distortion produced by the input radio frequency signal, thereby further reducing the requirement on the sensitivity of the demodulator 200 .
  • the rectifier 100 in the near field communication system 10A includes a control circuit 102, a switch circuit 101, a second impedance Z2, a third impedance Z3, a capacitor CL, and a first signal input terminal VC , the second signal input terminal VD, the signal output terminal VE and the ground terminal GND; the first signal input terminal VC and the second signal input terminal VD are used to receive radio frequency signals, and the first signal input terminal VC and the second signal input terminal VD
  • the received radio frequency signal is a pair of differential signals;
  • the switch circuit 101 includes a second switch element 1011, a third switch element 1012, a fourth switch element 1013, and a fifth switch element 1014; the first end of the second switch element 1011 passes through the first
  • the second impedance Z2 is coupled to the first signal input terminal VC, the second terminal of the second switching element 1011 is coupled to the signal output terminal VE; the first terminal of the third switching element 1012 is coupled to the second signal input terminal VD through
  • control circuit 102 converts the radio frequency signal received by the first signal input terminal VC and the second signal input terminal VD into a DC signal by controlling the on and off of the switch circuit 101, which can be realized in the following manner:
  • the control circuit 102 is used to control the switch circuit 101 to be turned on or off according to the voltage of the first signal input terminal VC, the voltage of the signal output terminal VE and the voltage of the ground terminal GND.
  • control circuit 102 is configured to control the second switch element 1011 to be turned on or off according to the comparison result of the voltage of the first signal input terminal VC and the voltage of the signal output terminal VE.
  • control circuit 102 is used to control the second switch element 1011 to turn on when the voltage of the first signal input terminal VC is higher than the voltage of the signal output terminal VE, so as to provide the voltage of the first signal input terminal VC to the signal output terminal VE.
  • control circuit 102 is configured to control the fourth switching element 1013 to be turned on or off according to a comparison result between the voltage of the first signal input terminal VC and the voltage of the ground terminal GND.
  • control circuit 102 is configured to control the fourth switch element 1013 to turn on when the voltage of the first signal input terminal VC is lower than the voltage of the ground terminal GND, and output the voltage of the ground terminal GND to the first signal input terminal VC.
  • control circuit 102 is also used to control the turn-on or turn-off of the switch circuit 101 according to the voltage of the second signal input terminal VD, the voltage of the signal output terminal VE and the voltage of the ground terminal GND.
  • control circuit 102 is configured to control the third switch element 1012 to be turned on or off according to a comparison result between the voltage of the second signal input terminal VD and the voltage of the signal output terminal VE.
  • control circuit 102 is used to control the third switch element 1012 to turn on when the voltage of the second signal input terminal VD is higher than the voltage of the signal output terminal VE, and output the voltage of the second signal input terminal VD to the signal output terminal VE.
  • control circuit 102 is configured to control the fifth switch element 1014 to be turned on or off according to a comparison result between the voltage of the second signal input terminal VD and the voltage of the ground terminal GND.
  • control circuit 102 is configured to control the fifth switch element 1014 to turn on when the voltage of the second signal input terminal VD is lower than the voltage of the ground terminal GND, and output the voltage of the ground terminal GND to the second signal input terminal of VD.
  • the specific structures of the second switch element 1011, the third switch element 1012, the fourth switch element 1013, the fifth switch element 1014, the second impedance Z2, and the third impedance Z3 can refer to the first embodiment above, and are not repeated here. repeat.
  • the rectifier 100 further includes: a first switch element S and a first impedance RL; the first impedance RL and the first switch element S are coupled in series between the signal output terminal VE and the ground terminal GND Between, constitute the first signal path; the first switch element S is used to control the conduction or disconnection of the first signal path.
  • the second embodiment also provides a control method of the near field communication system 10A, the control method includes:
  • the rectifier 100 receives radio frequency signals through the first signal input terminal VC and the second signal input terminal VD; wherein, the radio frequency signals received by the first signal input terminal VC and the second signal input terminal VD are a pair of differential signals.
  • the rectifier 100 converts the radio frequency signal received by the first signal input terminal VC and the second signal input terminal VD into a DC signal by controlling the on and off of the switch circuit 101, and converts the DC signal from the signal output terminal VE output.
  • controlling the on and off of the switch circuit 101 can refer to the first embodiment above, and will not be repeated here.
  • the power management unit 500 receives the DC signal and supplies power to the demodulator 200 .
  • the second switch element 1011, the third switch element 1012, and the fourth switch are controlled by the control circuit 102.
  • the element 1013 and the fifth switch element 1014 are turned on and off, so that the AC signal received by the first signal input terminal VC and the second signal input terminal VD can be converted into a DC signal, and then the purpose of rectification can be achieved.
  • the rectifier 100 of the first embodiment includes a pair of differential signal input terminals, which are respectively the first signal input terminal VC and the second signal input terminal VD, the first signal input terminal VC and the second signal input terminal
  • the second signal input terminal VD is used to receive radio frequency signals, and the radio frequency signal received by the first signal input terminal VC and the radio frequency signal received by the second signal input terminal VD are a pair of differential signals, while the rectifier 100 of the third embodiment has only one signal
  • the input terminal receives a radio frequency signal, that is, the first signal input terminal VC.
  • the rectifier 100 includes a switch circuit 101, a control circuit 102, a first switch element S, a first impedance RL, a capacitor CL, a first signal input terminal VC, a signal output terminal VE and The ground terminal GND; the first signal input terminal VC is used for receiving radio frequency signals.
  • the signal output terminal VE of the rectifier 100 is coupled to the power management unit 500 , and the power management unit 500 is coupled to the power input terminal of the demodulator 200 for powering the demodulator 200 .
  • the switch circuit 101 is coupled to the control circuit 102, the first signal input terminal VC, and the signal output terminal VE, and the control circuit 102 controls the on and off of the switch circuit 101 to transmit the radio frequency signal received by the first signal input terminal VC Convert to a DC signal, and output the DC signal from the signal output terminal VE; the first impedance RL and the first switch element S are coupled in series between the signal output terminal VE and the ground terminal GND to form a first signal path; the first switch The element S is used to control on or off of the first signal path.
  • One end of the capacitor CL is coupled to the signal output terminal VE, and the other end is coupled to the ground terminal GND.
  • the switch circuit 101 includes a second switch element 1011 and a fourth switch element 1013 .
  • the first end of the second switching element 1011 is coupled to the first signal input end VC, the second end of the second switching element 1011 is coupled to the signal output end VE; the first end of the fourth switching element 1013 is coupled to the first signal input end VC coupling, the second terminal of the fourth switching element 1013 is coupled to the ground terminal GND; the control terminal of the second switching element 1011 and the control terminal of the fourth switching element 1013 are both coupled to the control circuit 102 .
  • the control circuit 102 converts the radio frequency signal received by the first signal input terminal VC into A DC signal can be achieved by:
  • the control circuit 102 is used to control the switch circuit 101 to be turned on or off according to the voltage of the first signal input terminal VC, the voltage of the signal output terminal VE and the voltage of the ground terminal GND.
  • control circuit 102 is configured to control the second switching element 1011 to be turned on or off according to the comparison result of the voltage at the first signal input terminal VC and the voltage at the signal output terminal VE.
  • control circuit 102 is used to control the second switch element 1011 to turn on when the voltage of the first signal input terminal VC is higher than the voltage of the signal output terminal VE, so as to provide the voltage of the first signal input terminal VC to the signal output terminal VE.
  • control circuit 102 is configured to control the fourth switching element 1013 to be turned on or off according to a comparison result between the voltage of the first signal input terminal VC and the voltage of the ground terminal GND.
  • control circuit 102 is configured to control the fourth switch element 1013 to turn on when the voltage of the first signal input terminal VC is lower than the voltage of the ground terminal GND, and output the voltage of the ground terminal GND to the first signal input terminal VC.
  • the control circuit 102 controls the conduction and disconnection of the second switch element 1011 and the fourth switch element 1013, so that the The AC signal received by the first signal input terminal VC is converted into a DC signal, so as to achieve the purpose of rectification.
  • control circuit 102 the second switch element 1011 , and the fourth switch element 1013 can refer to the first embodiment above, and will not be repeated here.
  • the advantageous effects corresponding to setting the capacitor CL, the first switch element S, and the first impedance RL can be referred to the first embodiment above, and will not be repeated here.
  • the switch circuit 101 includes a second switch element 1011 and a fourth switch element 1013, in some examples, as shown in FIG. 9, the switch circuit 101 further includes a second impedance Z2; the second impedance Z2 is connected in series with the second switch Between the first end of the element 1011 and the first signal input end VC.
  • the specific structure of the second impedance Z2 and the corresponding beneficial effects of setting the second impedance Z2 can refer to the first embodiment above, and will not be repeated here.
  • the third embodiment also provides a control method of the near field communication system 10A, the control method includes:
  • the rectifier 100 receives a radio frequency signal through the first signal input terminal VC; wherein, the radio frequency signals received by the first signal input terminal VC and the second signal input terminal VD are a pair of differential signals.
  • the rectifier 100 converts the radio frequency signal received by the first signal input terminal VC into a DC signal by controlling the on or off of the first signal path and by controlling the on and off of the switch circuit 101, and Output the DC signal from the signal output terminal VE.
  • the power management unit 500 receives the DC signal and supplies power to the demodulator 200 .
  • the rectifier 100 of the second embodiment includes a pair of differential signal input terminals, which are respectively the first signal input terminal VC and the second signal input terminal VD, the first signal input terminal VC and the second signal input terminal
  • the second signal input terminal VD is used to receive radio frequency signals, and the radio frequency signal received by the first signal input terminal VC and the radio frequency signal received by the second signal input terminal VD are a pair of differential signals, while the rectifier 100 of the fourth embodiment has only one signal
  • the input terminal receives a radio frequency signal, that is, the first signal input terminal VC.
  • the rectifier 100 in the near field communication system 10A includes a control circuit 102, a switch circuit 101, a second impedance Z2, a capacitor CL, a first signal input terminal VC, and a signal output terminal VE and the ground terminal GND;
  • the switch circuit 101 includes a second switch element 1011 and a fourth switch element 1013; the first end of the second switch element 1011 is coupled to the first signal input terminal VC through the second impedance Z2, and the second switch element 1011
  • the second terminal is coupled to the signal output terminal VE;
  • the first terminal of the fourth switching element 1013 is coupled to the first signal input terminal VC, and the second terminal of the fourth switching element 1013 is coupled to the ground terminal GND;
  • the control of the second switching element 1011 terminal and the control terminal of the fourth switch element 1013 are coupled with the control circuit 102;
  • the control circuit 102 converts the radio frequency signal received by the first signal input terminal VC into a DC signal by controlling the on and off of the switch circuit 101, And output
  • the control circuit 102 converts the radio frequency signal received by the first signal input terminal VC into
  • the control circuit 102 converts the radio frequency signal received by the first signal input terminal VC into
  • the specific structures of the second switch element 1011 , the fourth switch element 1013 , the second impedance Z2 , and the corresponding beneficial effects of setting the capacitor CL and the second impedance Z2 can refer to the first embodiment above, and will not be repeated here.
  • the rectifier 100 further includes: a first switch element S and a first impedance RL; the first impedance RL and the first switch element S are coupled in series between the signal output terminal VE and the ground terminal GND Between, constitute the first signal path; the first switch element S is used to control the conduction or disconnection of the first signal path.
  • Embodiment 4 also provides a control method of the near field communication system 10A, the control method includes:
  • the rectifier 100 receives a radio frequency signal through the first signal input terminal VC; wherein, the radio frequency signals received by the first signal input terminal VC and the second signal input terminal VD are a pair of differential signals.
  • the rectifier 100 converts the radio frequency signal received by the first signal input terminal VC into a DC signal by controlling the switch circuit 101 to be turned on and off, and outputs the DC signal from the signal output terminal VE.
  • the power management unit 500 receives the DC signal and supplies power to the demodulator 200 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本申请的实施例提供一种近场通信系统及其控制方法、电子设备,涉及近场通信技术领域,可以降低整流器导致的射频信号失真。近场通信系统包括整流器、解调器、电源管理单元;整流器包括开关电路、控制电路、第一开关元件、第一阻抗、电容、第一信号输入端、第二信号输入端、信号输出端;开关电路与控制电路、第一信号输入端、第二信号输入端及信号输出端耦合,控制电路通过控制开关电路的导通与断开,将第一信号输入端和第二信号输入端接收到的射频信号转换为直流信号;第一阻抗和第一开关元件串联耦合于信号输出端和接地端之间;电容的一端与信号输出端耦合,另一端与接地端耦合;整流器与电源管理单元耦合,电源管理单元与解调器耦合。

Description

近场通信系统及其控制方法、电子设备 技术领域
本申请涉及近场通信技术领域,尤其涉及一种近场通信系统及其控制方法、电子设备。
背景技术
近场通信(near filed communication,NFC),也可以称为近距离近场通信,是一种能够让两个设备或更多的设备之间进行信息交换的近场通信技术,用于设备之间非接触的数据传输和交换。
目前,用于实现近场通信的近场通信系统主要包括整流器(rectifier)、解调器(demodulator)、电源管理单元(power management unit,PMU)等部分。其中,整流器用于将天线接收到的射频信号转换为直流信号,以供近场通信系统内部的其它模块例如解调器使用。解调器用于将接收到的调制信号解调为数字信号。然而,由于现有的整流器会导致射频信号有较大的失真,因而利用解调器对整流器输出的信号进行调制时,对解调器的灵敏度有较高的要求。
发明内容
本申请的实施例提供一种近场通信系统及其控制方法、电子设备,可以降低近场通信系统中整流器导致的射频信号失真。
第一方面,提供一种近场通信系统,该近场通信系统包括:整流器、解调器以及电源管理单元;整流器包括开关电路、控制电路、第一开关元件、第一阻抗、电容、第一信号输入端、第二信号输入端、信号输出端以及接地端;第一信号输入端和第二信号输入端用于接收射频信号,且第一信号输入端和第二信号输入端接收到的射频信号为一对差分信号;开关电路与控制电路、第一信号输入端、第二信号输入端以及信号输出端耦合,控制电路通过控制开关电路的导通与断开,将第一信号输入端和第二信号输入端接收到的射频信号转换为直流信号,并将直流信号从信号输出端输出;第一阻抗和第一开关元件串联耦合于信号输出端和接地端之间,构成第一信号通路;第一开关元件用于控制第一信号通路的导通或断开;电容的一端与信号输出端耦合,另一端与接地端耦合;整流器的信号输出端与电源管理单元耦合,电源管理单元与解调器的电源输入端耦合,用于为解调器供电。
以第一信号输入端为例,整流器在工作时,VC=VE+I×R,其中,I为流过开关电路中耦合在第一信号输入端VC和信号输出端VE之间的部分的电流,I的大小主要由信号输出端VE输出的电流决定,R为开关电路中耦合在第一信号输入端VC和信号输出端VE之间的部分的导通阻抗。由于信号输出端VE与电容耦合,而电容的电容量通常较大,可以认为电容的与信号输出端VE耦合的电极板的电压基本不变,即信号输出端VE的电压VE近乎不变。在本申请中,由于整流器还包括第一开关元件和第一阻抗,第一阻抗和第一开关元件串联耦合于信号输出端和接地端之间,因而在近场通信系统中的解调器进行解调时,需要的能量较少,控制第一开关元件导通,第一阻 抗与信号输出端导通,相当于在解调时增加了额外的负载,这样一来,信号输出端的电流增加,而信号输出端的电流影响流过开关电路中耦合在第一信号输入端VC和信号输出端VE之间的部分的电流,流过开关电路中耦合在第一信号输入端VC和信号输出端VE之间的部分的电流也会增加,这样一来,增大了第一信号输入端VC和信号输出端VE的电压差值,从而可以降低整流器对输入的射频信号产生的失真。此外,由于第一阻抗和第一开关元件串联耦合于信号输出端和接地端之间,因而第一阻抗对开关电路的阻抗不影响或影响较小,基于此,在整流器的供电能力以内,减小第一阻抗的阻抗,以提高信号输出端的电流,从而可以有效地改善整流器对输入的射频信号产生的失真,这样对解调器的灵敏度要求降低。
在一种可能的实施方式中,开关电路包括第二开关元件、第三开关元件、第四开关元件以及第五开关元件;第二开关元件的第一端与第一信号输入端耦合,第二开关元件的第二端与信号输出端耦合;第三开关元件的第一端与第二信号输入端耦合,第三开关元件的第二端与信号输出端耦合;第四开关元件的第一端与第一信号输入端耦合,第四开关元件的第二端与接地端耦合;第五开关元件的第一端与第二信号输入端耦合,第五开关元件的第二端与接地端耦合;第二开关元件的控制端、第三开关元件的控制端、第四开关元件的控制端以及第五开关元件的控制端均与控制电路耦合。
以第一信号输入端VC为例,VC=VE+I M1×R M1;I M1为流过第二开关元件的电流,I M1的大小主要由信号输出端VE输出的电流决定;R M1为第二开关元件的导通阻抗。由于信号输出端VE与电容耦合,而电容的电容量通常较大,可以认为电容的与信号输出端VE耦合的电极板的电压基本不变,即信号输出端VE的电压VE近乎不变。在本申请中,由于整流器还包括第一开关元件和第一阻抗,因而在近场通信系统中的解调器进行解调时,需要的能量较少,控制第一开关元件导通,第一阻抗与信号输出端导通,相当于在解调时增加了额外的负载,这样一来,信号输出端的电流增加,而I M1的大小主要由信号输出端输出的电流决定,因而流过第二开关元件的电流I M1增加,这样一来,增大了第一信号输入端VC和信号输出端VE的电压差值,从而可以降低整流器对输入的射频信号产生的失真。此外,由于第一阻抗和第一开关元件串联耦合于信号输出端和接地端之间,因而第一阻抗对第二开关元件、第三开关元件、第四开关元件、第五开关元件的导通阻抗不影响或影响较小,基于此,在整流器的供电能力以内,减小第一阻抗的阻抗,以提高信号输出端的电流,从而可以有效地改善整流器对输入的射频信号产生的失真,且对解调器的灵敏度要求降低。
在一种可能的实施方式中,控制电路用于根据第一信号输入端的电压和信号输出端的电压的比较结果,控制第二开关元件导通或者断开。
在一种可能的实施方式中,控制电路用于根据第一信号输入端的电压和接地端的电压的比较结果,控制第四开关元件导通或断开。
在一种可能的实施方式中,控制电路用于根据第二信号输入端的电压与信号输出端的电压的比较结果,控制第三开关元件导通或断开。
在一种可能的实施方式中,控制电路用于根据第二信号输入端的电压和接地端的电压的比较结果,控制第五开关元件导通或断开。
在一种可能的实施方式中,开关电路还包括第二阻抗和第三阻抗;第二阻抗串联 在第二开关元件的第一端和第一信号输入端之间;第三阻抗串联在第三开关元件的第一端和第二信号输入端之间。
由于第二阻抗串联在第二开关元件的第一端和第一信号输入端之间,因而第二阻抗相当于只增加了第二开关元件的等效导通阻抗,对第四开关元件的等效导通阻抗没有影响。同样的,第三阻抗串联在第三开关元件的第一端和第二信号输入端之间,因而第三阻抗相当于只增加了第三开关元件的等效导通阻抗,对第五开关元件的等效导通阻抗没有影响。以第一信号输入端VC为例,VC=VE+I M1×R M1;I M1为流过第二开关元件的电流,I M1的大小主要由信号输出端VE输出的电流决定;R M1为第二开关元件的导通阻抗,由于第二阻抗相当于增加了第二开关元件的等效导通阻抗,因而增大了第一信号输入端VC和信号输出端VE的电压差值,从而可以进一步降低整流器对输入的射频信号产生的失真。
在一种可能的实施方式中,第二开关元件包括第一晶体管,第一晶体管的第一极与第一信号输入端耦合,第一晶体管的第二极与信号输出端耦合,第一晶体管的栅极与控制电路耦合;其中,第一晶体管的第一极和第二极中一个为源极,一个为漏极。
在一种可能的实施方式中,第三开关元件包括第二晶体管,第二晶体管的第一极与第二信号输入端耦合,第二晶体管的第二极与信号输出端耦合,第二晶体管的栅极与控制电路耦合;其中,第二晶体管的第一极和第二极中一个为源极,一个为漏极。
在一种可能的实施方式中,第四开关元件包括第三晶体管,第三晶体管的第一极与第一信号输入端耦合,第三晶体管的第二极与接地端耦合,第三晶体管的栅极与控制电路耦合;其中,第三晶体管的第一极和第二极中一个为源极,一个为漏极。
在一种可能的实施方式中,第五开关元件包括第四晶体管,第四晶体管的第一极与第二信号输入端耦合,第四晶体管的第二极与接地端耦合,第四晶体管的栅极与控制电路耦合;其中,第四晶体管的第一极和第二极中一个为源极,一个为漏极。
在一种可能的实施方式中,近场通信系统还包括天线,整流器的第一信号输入端和第二信号输入端均与天线耦合;天线用于将接收到射频信号传输至第一信号输入端和第二信号输入端。第一信号输入端和第二信号输入端可以用于接收天线接收到的射频信号。
在一种可能的实施方式中,第一阻抗串联于第一开关元件和信号输出端之间,或者,第一开关元件串联于第一阻抗和信号输出端之间。
第二方面,提供一种近场通信系统,该近场通信系统包括:整流器、解调器以及电源管理单元;整流器包括控制电路、开关电路、第二阻抗、第三阻抗、电容、第一信号输入端、第二信号输入端、信号输出端以及接地端,第一信号输入端和第二信号输入端用于接收射频信号,且第一信号输入端和第二信号输入端接收到的射频信号为一对差分信号;开关电路包括第二开关元件、第三开关元件、第四开关元件和第五开关元件;第二开关元件的第一端通过第二阻抗耦合至第一信号输入端,第二开关元件的第二端与信号输出端耦合;第三开关元件的第一端通过第三阻抗耦合至第二信号输入端,第三开关元件的第二端与信号输出端耦合;第四开关元件的第一端与第一信号输入端耦合,第四开关元件的第二端与接地端耦合;第五开关元件的第一端与第二信号输入端耦合,第五开关元件的第二端与接地端耦合;第二开关元件的控制端、第三 开关元件的控制端、第四开关元件的控制端以及第五开关元件的控制端均与控制电路耦合;控制电路通过控制开关电路的导通与断开,将第一信号输入端和第二信号输入端接收到的射频信号转换为直流信号,并将直流信号从信号输出端输出;电容的一端与信号输出端耦合,另一端与接地端耦合;整流器的信号输出端与电源管理单元耦合,电源管理单元与解调器的电源输入端耦合,用于为解调器供电。整流器中设置第二阻抗和第三阻抗对应的有益效果可以参考上述第一方面的相关描述,此处不再赘述。
在一种可能的实施方式中,控制电路用于根据第一信号输入端的电压和信号输出端的电压的比较结果,控制第二开关元件导通或者断开。
在一种可能的实施方式中,控制电路用于根据第一信号输入端的电压和接地端的电压的比较结果,控制第四开关元件导通或断开。
在一种可能的实施方式中,控制电路用于根据第二信号输入端的电压与信号输出端的电压的比较结果,控制第三开关元件导通或断开。
在一种可能的实施方式中,控制电路用于根据第二信号输入端的电压和接地端的电压的比较结果,控制第五开关元件导通或断开。
在一种可能的实施方式中,整流器还包括第一开关元件和第一阻抗;第一阻抗和第一开关元件串联耦合于信号输出端和接地端之间,构成第一信号通路;第一开关元件用于控制第一信号通路的导通或断开。整流器中设置第一开关元件和第一阻抗对应的有益效果可以参考上述第一方面的相关描述,此处不再赘述。
在一种可能的实施方式中,第一阻抗串联于第一开关元件和信号输出端之间,或者,第一开关元件串联于第一阻抗和信号输出端之间。
第三方面,提供一种近场通信系统,该近场通信系统包括:整流器、解调器以及电源管理单元;整流器包括开关电路、控制电路、第一开关元件、第一阻抗、电容、第一信号输入端、信号输出端以及接地端;第一信号输入端用于接收射频信号。开关电路与控制电路、第一信号输入端、以及信号输出端耦合,控制电路通过控制开关电路的导通与断开,将第一信号输入端接收到的射频信号转换为直流信号,并将直流信号从信号输出端输出;第一阻抗和第一开关元件串联耦合于信号输出端和接地端之间,构成第一信号通路;第一开关元件用于控制第一信号通路的导通或断开。电容的一端与信号输出端耦合,另一端与接地端耦合。整流器的信号输出端与电源管理单元耦合,电源管理单元与解调器的电源输入端耦合,用于为解调器供电。整流器包括第一开关元件和第一阻抗对应的有益效果可以参考上述第一方面的相关描述,此处不再赘述。
在一种可能的方式中,上述开关电路包括第二开关元件和第四开关元件。第二开关元件的第一端与第一信号输入端耦合,第二开关元件的第二端与信号输出端耦合;第四开关元件的第一端与第一信号输入端耦合,第四开关元件的第二端与接地端耦合;第二开关元件的控制端、以及第四开关元件的控制端均与控制电路耦合;控制电路可以控制第二开关元件、以及第四开关元件的导通与断开。开关电路包括第二开关元件和第四开关元件对应的有益效果可以参考上述第一方面的相关描述,此处不再赘述。
在一种可能的实施方式中,控制电路用于根据第一信号输入端的电压和信号输出端的电压的比较结果,控制第二开关元件导通或者断开。
在一种可能的实施方式中,控制电路用于根据第一信号输入端的电压和接地端的 电压的比较结果,控制第四开关元件导通或断开。
在一种可能的实施方式中,开关电路还包括第二阻抗;第二阻抗串联在第二开关元件的第一端和第一信号输入端之间。开关电路包括第二阻抗对应的有益效果可以参考上述第一方面的相关描述,此处不再赘述。
第四方面,提供一种近场通信系统,该近场通信系统包括:整流器、解调器以及电源管理单元;整流器包括控制电路、开关电路、第二阻抗、电容、第一信号输入端、信号输出端以及接地端;开关电路包括第二开关元件和第四开关元件;第二开关元件的第一端通过第二阻抗耦合至第一信号输入端,第二开关元件的第二端与信号输出端耦合;第四开关元件的第一端与第一信号输入端耦合,第四开关元件的第二端与接地端耦合;第二开关元件的控制端、以及第四开关元件的控制端均与控制电路耦合;控制电路通过控制开关电路的导通与断开,将第一信号输入端接收到的射频信号转换为直流信号,并将直流信号从信号输出端输出;电容的一端与信号输出端耦合,另一端与接地端耦合;整流器的信号输出端与电源管理单元耦合,电源管理单元与解调器的电源输入端耦合,用于为解调器供电。整流器包括第二阻抗对应的有益效果可以参考上述第一方面的相关描述,此处不再赘述。
在一种可能的实施方式中,控制电路用于根据第一信号输入端的电压和信号输出端的电压的比较结果,控制第二开关元件导通或者断开。
在一种可能的实施方式中,控制电路用于根据第一信号输入端的电压和接地端的电压的比较结果,控制第四开关元件导通或断开。
在一种可能的实施方式中,整流器还包括:第一开关元件和第一阻抗;第一阻抗和第一开关元件串联耦合于信号输出端和接地端之间,构成第一信号通路;第一开关元件用于控制第一信号通路的导通或断开。整流器包括第一开关元件和第一阻抗对应的有益效果可以参考上述第一方面的相关描述,此处不再赘述。
第五方面,提供一种近场通信系统的控制方法,近场通信系统包括:整流器、解调器以及电源管理单元;整流器包括开关电路、控制电路、第一开关元件、第一阻抗、电容、第一信号输入端、第二信号输入端、信号输出端以及接地端;开关电路与控制电路、第一信号输入端、第二信号输入端以及信号输出端耦合;第一阻抗和第一开关元件串联耦合于信号输出端和所述接地端之间,构成第一信号通路;电容的一端与信号输出端耦合,另一端与接地端耦合;整流器的信号输出端与电源管理单元耦合,电源管理单元与解调器的电源输入端耦合;该控制方法包括:首先,整流器通过第一信号输入端和第二信号输入端接收射频信号;其中,第一信号输入端和第二信号输入端接收到的射频信号为一对差分信号;接下来,整流器通过控制第一信号通路的导通或断开,并通过控制开关电路的导通与断开,以将第一信号输入端和第二信号输入端接收到的射频信号转换为直流信号,并将直流信号从信号输出端输出;接下来,电源管理单元接收直流信号,并为解调器供电。可以参考上述第一方面的相关描述,此处不再赘述。
在一种可能的实施方式中,开关电路包括第二开关元件、第三开关元件、第四开关元件以及第五开关元件;第二开关元件的第一端与第一信号输入端耦合,第二开关元件的第二端与信号输出端耦合;第三开关元件的第一端与第二信号输入端耦合,第 三开关元件的第二端与信号输出端耦合;第四开关元件的第一端与第一信号输入端耦合,第四开关元件的第二端与接地端耦合;第五开关元件的第一端与第二信号输入端耦合,第五开关元件的第二端与接地端耦合;第二开关元件的控制端、第三开关元件的控制端、第四开关元件的控制端以及第五开关元件的控制端均与控制电路耦合。
在一种可能的实施方式中,上述控制开关电路的导通与断开包括根据第一信号输入端的电压和信号输出端的电压的比较结果,控制第二开关元件导通或者断开。
在一种可能的实施方式中,上述控制开关电路的导通与断开包括根据第一信号输入端的电压和接地端的电压的比较结果,控制第四开关元件导通或断开。
在一种可能的实施方式中,上述控制开关电路的导通与断开包括根据第二信号输入端的电压与信号输出端的电压的比较结果,控制第三开关元件导通或断开。
在一种可能的实施方式中,上述控制开关电路的导通与断开包括根据第二信号输入端的电压和接地端的电压的比较结果,控制第五开关元件导通或断开。
第六方面,提供一种近场通信系统的控制方法,近场通信系统包括:整流器、解调器以及电源管理单元;整流器包括控制电路、开关电路、第二阻抗、第三阻抗、电容、第一信号输入端、第二信号输入端、信号输出端以及接地端;开关电路包括第二开关元件、第三开关元件、第四开关元件和第五开关元件;第二开关元件的第一端通过第二阻抗耦合至第一信号输入端,第二开关元件的第二端与信号输出端耦合;第三开关元件的第一端通过第三阻抗耦合至第二信号输入端,第三开关元件的第二端与信号输出端耦合;第四开关元件的第一端与第一信号输入端耦合,第四开关元件的第二端与接地端耦合;第五开关元件的第一端与第二信号输入端耦合,第五开关元件的第二端与接地端耦合;第二开关元件的控制端、第三开关元件的控制端、第四开关元件的控制端以及第五开关元件的控制端均与控制电路耦合;电容的一端与信号输出端耦合,另一端与接地端耦合;整流器的信号输出端与电源管理单元耦合,电源管理单元与解调器的电源输入端耦合;该控制方法包括:首先,整流器通过第一信号输入端和第二信号输入端接收射频信号;其中,第一信号输入端和第二信号输入端接收到的射频信号为一对差分信号;接下来,整流器通过控制开关电路的导通与断开,以将第一信号输入端和第二信号输入端接收到的射频信号转换为直流信号,并将直流信号从信号输出端输出;接下来,电源管理单元接收直流信号,并为解调器供电。根据第一信号输入端、第二信号输入端、信号输出端、接地端的电压大小,通过控制电路控制第二开关元件、第三开关元件、第四开关元件和第五开关元件的导通和断开,从而可以将第一信号输入端和第二信号输入端接收到的交流信号转换为直流信号,进而可以达到整流的目的。
在一种可能的实施方式中,上述控制开关电路的导通与断开包括根据第一信号输入端的电压和信号输出端的电压的比较结果,控制第二开关元件导通或者断开。
在一种可能的实施方式中,上述控制开关电路的导通与断开包括根据第一信号输入端的电压和接地端的电压的比较结果,控制第四开关元件导通或断开。
在一种可能的实施方式中,上述控制开关电路的导通与断开包括根据第二信号输入端的电压与信号输出端的电压的比较结果,控制第三开关元件导通或断开。
在一种可能的实施方式中,上述控制开关电路的导通与断开包括根据第二信号输 入端的电压和接地端的电压的比较结果,控制第五开关元件导通或断开。
第七方面,提供一种电子设备,该电子设备包括印刷电路板和上述的近场通信系统。该电子设备具有与上述近场通信系统相同的技术效果,可以参考上述近场通信系统的相关技术效果的描述,此处不再赘述。
附图说明
图1为本申请的实施例提供的一种电子设备的结构示意图;
图2为本申请的实施例提供的一种近场通信系统的结构示意图;
图3为本申请的另一实施例提供的一种近场通信系统的结构示意图;
图4为本申请的又一实施例提供的一种近场通信系统的结构示意图;
图5a为相关技术提供的一种近场通信系统的结构示意图;
图5b为相关技术提供的另一种近场通信系统的结构示意图;
图6为本申请的又一实施例提供的一种近场通信系统的结构示意图;
图7为本申请的又一实施例提供的一种近场通信系统的结构示意图;
图8为本申请的又一实施例提供的一种近场通信系统的结构示意图;
图9为本申请的又一实施例提供的一种近场通信系统的结构示意图;
图10为本申请的又一实施例提供的一种近场通信系统的结构示意图。
附图标记:1-电子设备;10-无线通信系统;10A-近场通信系统;11-处理器;12-电源;13-存储器;14-输入单元;15-显示装置;16-音频电路;100-整流器;101-开关电路;102-控制电路;141-触摸屏;142-其他输入设备;151-显示面板;161-扬声器;162-麦克风;200-解调器;300-负载调制器;400-时钟数据恢复电路;500-电源管理单元;600-数字处理电路;700-其它模块;800-天线;900-匹配网络和/或滤波器;1011-第二开关元件;1012-第三开关元件;1013-第四开关元件;1014-第五开关元件。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,术语“第一”、“第二”等仅用于描述方便,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请实施例中,除非另有明确的规定和限定,术语“耦合”可以是直接的电性连接,也可以通过中间媒介间接的电性连接。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或“例如”等词旨在以具体方式呈现相关概念。
本申请的实施例提供一种电子设备,该电子设备例如可以为手机(mobile phone)、平板电脑(pad)、个人数字助理(personal digital assistant,PDA)、电视、智能穿戴产品(例如,智能手表、智能手环)、虚拟现实(virtual reality,VR)电子设备、增 强现实(augmented reality,AR)电子设备、充电家用小型电器(例如豆浆机、扫地机器人)、无人机、雷达、航空航天设备和车载设备等不同类型的用户设备或者电子设备;该电子设备还可以为基站等网络设备。本申请实施例对电子设备的具体形式不作特殊限制。
图1为本申请实施例示例性地提供的一种电子设备的结构示意图。如图1所示,该电子设备1包括无线通信系统10、处理器11、电源12、存储器13、输入单元14、显示装置15、音频电路16等部件。可以理解的是,图1示意的结构并不构成对该电子设备1的具体限定。在本申请另一些实施例中,电子设备1可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
上述处理器11是该电子设备1的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或执行存储在存储器13内的软件程序和/或模块,以及调用存储在存储器13内的数据,执行电子设备的各种功能和处理数据,从而对电子设备进行整体监控。可选的,处理器11可包括一个或多个处理单元;在一些示例中,处理器11可集成应用处理器(application processor,AP)和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理近场通信。可以理解的是,上述调制解调处理器也可以不集成到处理器11中。
上述无线通信系统10可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器11处理;另外,将上行的数据发送给基站。上述无线通信系统10包括近场通信系统和远场通信系统,通常,无线通信系统10可以通过近场通信或远场通信与网络和其他设备通信。近场通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
上述电源12例如可以包括电池,电源12可以给各个部件供电,可选的,电源12可以通过电源管理单元与处理器11逻辑相连,从而通过电源管理单元实现管理充电、放电、以及功耗管理等功能。
上述存储器13可以用于存储软件程序以及模块,处理器11通过运行存储在存储器13中的软件程序以及模块,从而执行电子设备的各种功能应用以及数据处理。存储器13主要包括存储程序区和存储数据区,其中,存储程序区可以存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可以存储根据手机的使用所创建的数据(比如音频数据、图像数据、电话本等)等。此外,存储器13可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
上述输入单元14可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。具体地,输入单元14可包括触摸屏141以及其他输入设备142。触摸屏141,也称为触摸面板,可收集用户在触摸屏上或附近的触摸 操作(比如用户使用手指、触笔等任何适合的物体或附件在触摸屏141上或在触摸屏141附近的操作),并根据预先设定的程式驱动相应的连接电子设备。其他输入设备142可以包括但不限于物理键盘、功能键(比如音量控制按键、电源开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
上述显示装置15可以用于显示由用户输入的信息或提供给用户的信息以及电子设备的各种菜单。显示装置15可以包括显示面板151,显示面板151可以为液晶显示(liquid crystal display,LCD)面板、有机发光二极管(organic light emitting diode,OLED)显示面板、或者Micro-LED(微型发光二极管)显示面板等。此外,触摸屏141可覆盖显示面板151,当触摸屏141检测到在触摸屏141上或附近的触摸操作后,传送给处理器11以确定触摸事件的类型,随后处理器11根据触摸事件的类型在显示面板151上提供相应的视觉输出。虽然在图1中,触摸屏141与显示面板151是作为两个独立的部件来实现装置的输入和输出功能,但是在某些实施例中,可以将触摸屏141与显示面板151集成而实现装置的输入和输出功能。
音频电路16、扬声器161和麦克风162,用于提供用户与电子设备之间的音频接口。音频电路16可将接收到的音频数据转换后的电信号,传输到扬声器161,由扬声器161转换为声音信号输出;另一方面,麦克风162将收集的声音信号转换为电信号,由音频电路16接收后转换为音频数据,再将音频数据输出至近场通信系统以发送给比如另一电子设备,或者将音频数据输出至存储器13以便进一步处理。
可选的,如图1所示的电子设备还可以包括各种传感器。例如陀螺仪传感器、湿度计传感器、红外线传感器、磁力计传感器等,在此不再赘述。可选的,如图1所示的电子设备还可以包括无线保真(wireless fidelity,WiFi)模块、蓝牙模块等,在此不再赘述。
在此基础上,上述电子设备1还可以包括印刷电路板(printed circuit boards,PCB),电子设备1中的一些芯片或电子器件例如处理器11、存储器13等可以设置于PCB上。
本申请的实施例还提供一种近场通信(near field communication,NFC)系统,该近场通信系统可以作为无线通信系统10的一种,应用于上述的电子设备1中。如图2所示,该近场通信系统10A可以包括整流器(rectifier)100、解调器(demodulator)200、负载调制器(load modulator)300、时钟数据恢复(clock and data recovery,CDR)电路400、电源管理单元(power management unit,PMU)500、数字(digital)处理电路600、以及其它模块700等部分,其它模块例如可以包括射频限幅(radio frequency limiter,RF limiter)模块、场监测(filed detector)模块、安全模块(secure element,SE)等。
在此基础上,如图2所示,上述近场通信系统10A还可以包括天线(antenna)800、以及匹配网络(match)和/或滤波器(filter)900等部分。天线800可以通过匹配网络和/或滤波器900与整流器100、解调器200、负载调制器300、时钟数据恢复电路400等耦合。
需要说明的是,整流器100、解调器200、负载调制器300、时钟数据恢复电路400、电源管理单元500、数字处理电路600、以及其它模块700例如射频限幅模块、场监测模块、安全模块等可以集成在同一射频芯片上,也可以集成在不同的射频芯片上。图 2以整流器100、解调器200、负载调制器300、时钟数据恢复电路400、电源管理单元500、数字处理电路600、以及其它模块700例如射频限幅模块、场监测模块、安全模块等集成在同一射频芯片为例进行示意。在近场通信系统10A应用于电子设备1中的情况下,射频芯片可以设置于印刷电路板上。
可以理解的是,如图2所示,射频芯片可以包括多个输入输出端口(input output pad,IO pad)10a,天线800可以通过匹配网络和/或滤波器900与射频芯片上的输入输出端口10a耦合,射频芯片上的整流器100、解调器200、负载调制器300、时钟数据恢复电路400等可以与输入输出端口10a耦合,进而接收天线800接收到的信号,或者向天线800发射信号。此外,射频芯片还可以包括与接地端耦合的端口10b,在一些示例中,如图2所示,与接地端耦合的端口10b可以通过电容C与接地端GND耦合。
在上述近场通信系统10A中,整流器100与天线800耦合,用于将天线800接收到的射频信号转换为直流能量供芯片内部的其他模块或其他芯片使用。整流器100的信号输出端与电源管理单元500耦合,电源管理单元500与芯片内部的其他模块或其他芯片的电源输入端耦合,例如与解调器200、负载调制器300、时钟数据恢复电路400、数字处理电路600、射频限幅模块、场监测模块、安全模块等的电源输入端或其他芯片的电源输入端耦合,通过电源管理单元500为其他模块或其他芯片供电,例如为射频芯片中的解调器200、负载调制器300、时钟数据恢复电路400、数字处理电路600、射频限幅模块、场监测模块、安全模块等供电。
解调器200与天线800耦合,且与数字处理电路600耦合,用于将接收到的调制信号解调为数字信号,并将数字信号传输给数字处理电路600进行进一步解调。
负载调制器300与数字处理电路600、天线800耦合,负载调制器300作为发射模块,用于将数字处理电路600输出的数字信号进行负载调制后输出给天线800,再通过天线800向外发射信号。
时钟数据恢复电路400与天线800、数字处理电路600耦合,用于将天线800接收到的射频信号转换为同频率时钟信号,再将时钟信号传输给数字处理电路600,让数字处理电路600在该时钟信号下工作。
数字处理电路600用于起到解调和射频芯片控制的作用。射频限幅模块与天线800耦合,用于防止天线800信号过大,超过芯片的耐压能力击穿芯片。场监测模块用于监测天线800是否有信号。
以下通过几个实施例对近场通信系统10A中的整流器100进行示例性介绍。
实施例一
在本实施例一中,如图3所示,整流器100包括开关电路101、控制电路102、第一开关元件S、第一阻抗RL、电容CL、第一信号输入端VC、第二信号输入端VD、信号输出端VE以及接地端GND;第一信号输入端VC和第二信号输入端VD用于接收射频信号,且第一信号输入端VC和第二信号输入端VD接收到的射频信号为一对差分信号。
如图3所示,在上述近场通信系统10A包括天线800的情况下,整流器100的第一信号输入端VC和第二信号输入端VD均与天线800耦合,天线800可以用于将接收到射频信号传输至第一信号输入端VC和第二信号输入端VD,以使第一信号输入端 VC和第二信号输入端VD接收射频信号。需要说明的是,第一信号输入端VC和第二信号输入端VD接收的射频信号为交流信号,且为一对差分信号。图3还示意出了由天线800以及匹配网络和/或滤波器900导致的源阻抗RS。
上述开关电路101与控制电路102、第一信号输入端VC、第二信号输入端VD以及信号输出端VE耦合,控制电路102通过控制开关电路101的导通与断开,将第一信号输入端VC和第二信号输入端VD接收到的射频信号转换为直流信号,并将直流信号从信号输出端VE输出;第一阻抗RL和第一开关元件S串联耦合于信号输出端VE和接地端GND之间,构成第一信号通路;第一开关元件S用于控制第一信号通路的导通或断开。当第一开关元件S导通时,第一阻抗RL与信号输出端VE导通;当第一开关元件S断开时,第一阻抗RL与信号输出端VE断开。此处,可以是第一阻抗RL串联于第一开关元件S和信号输出端VE之间;也可以是第一开关元件S串联于第一阻抗RL和信号输出端VE之间。电容CL的一端与信号输出端VE耦合,另一端与接地端GND耦合。
可以理解的是,通常为了确保信号输出端VE能够输出稳定的信号,因而选取的电容CL的电容量应较大,基于电容CL的特性,可以确保信号输出端VE能够输出稳定的信号。
上述整流器100的信号输出端VE与电源管理单元500耦合,电源管理单元500与解调器200的电源输入端耦合,用于为解调器200供电。
需要说明的是,第一阻抗RL例如可以为电阻等元件。
在一些示例中,如图3所示,上述开关电路101包括第二开关元件1011、第三开关元件1012、第四开关元件1013以及第五开关元件1014。
第二开关元件1011的第一端与第一信号输入端VC耦合,第二开关元件1011的第二端与信号输出端VE耦合;第三开关元件1012的第一端与第二信号输入端VD耦合,第三开关元件1012的第二端与信号输出端VE耦合;第四开关元件1013的第一端与第一信号输入端VC耦合,第四开关元件1013的第二端与接地端GND耦合;第五开关元件1014的第一端与第二信号输入端VD耦合,第五开关元件1014的第二端与接地端GND耦合;第二开关元件1011的控制端、第三开关元件1012的控制端、第四开关元件1013的控制端以及第五开关元件1014的控制端均与控制电路102耦合;控制电路102可以控制第二开关元件1011、第三开关元件1012、第四开关元件1013以及第五开关元件1014的导通与断开。
在开关电路101包括第二开关元件1011、第三开关元件1012、第四开关元件1013以及第五开关元件1014的情况下,上述控制电路102通过控制开关电路101的导通与断开,将第一信号输入端VC和第二信号输入端VD接收到的射频信号转换为直流信号,可以通过以下方式实现:
上述控制电路102用于根据第一信号输入端VC的电压与信号输出端VE的电压和接地端GND的电压大小控制开关电路101的导通或者关闭。
在一些示例中,控制电路102用于根据第一信号输入端VC的电压和信号输出端VE的电压的比较结果,控制第二开关元件1011导通或者断开。例如,控制电路102用于在第一信号输入端VC的电压大于信号输出端VE的电压时,控制第二开关元件 1011导通,将第一信号输入端VC的电压提供给信号输出端VE。
在一些示例中,控制电路102用于根据第一信号输入端VC的电压和接地端GND的电压的比较结果,控制第四开关元件1013导通或断开。例如,控制电路102用于在第一信号输入端VC的电压小于接地端GND的电压时,控制第四开关元件1013导通,将接地端GND的电压输出给第一信号输入端VC。
上述控制电路102还用于根据第二信号输入端VD的电压与信号输出端VE的电压和接地端GND的电压大小控制开关电路101的导通或者关闭。
在一些示例中,控制电路102用于根据第二信号输入端VD的电压与信号输出端VE的电压的比较结果,控制第三开关元件1012导通或断开。例如,控制电路102用于在第二信号输入端VD的电压大于信号输出端VE的电压时,控制第三开关元件1012导通,将第二信号输入端VD的电压输出给信号输出端VE。
在一些示例中,控制电路102用于根据第二信号输入端VD的电压和接地端GND的电压的比较结果,控制第五开关元件1014导通或断开。例如,控制电路102用于在第二信号输入端VD的电压小于接地端GND的电压时,控制第五开关元件1014导通,将接地端GND的电压输出给VD第二信号输入端。
基于上述可知,根据第一信号输入端VC、第二信号输入端VD、信号输出端VE、接地端GND的电压大小,通过控制电路102控制第二开关元件1011、第三开关元件1012、第四开关元件1013和第五开关元件1014的导通和断开,从而可以将第一信号输入端VC和第二信号输入端VD接收到的交流信号转换为直流信号,进而可以达到整流的目的。
需要说明的是,由于第一信号输入端VC和第二信号输入端VD用于接收一对差分信号,因而第一信号输入端VC的电压和第二信号输入端VD的电压相位相反,在第一信号输入端VC的电压大于信号输出端VE的电压时,第二信号输入端VD的电压小于接地端GND的电压,即第二开关元件1011和第五开关元件1014同时导通,同时断开;在第二信号输入端VD的电压大于信号输出端VE的电压时,第一信号输入端VC的电压小于接地端GND的电压,即第三开关元件1012和第四开关元件1013同时导通,同时断开。
在一些示例中,上述控制电路102可以采用多个比较器实现。
在一些示例中,如图4所示,上述第二开关元件1011包括第一晶体管M1,第一晶体管M1的第一极与第一信号输入端VC耦合,第一晶体管M1的第二极与信号输出端VE耦合,第一晶体管M1的栅极与控制电路102耦合;其中,第一晶体管M1的第一极和第二极中一个为源极(source,S),一个为漏极(drain,D)。可以理解的是,根据电路工作状态的不同,可以是第一晶体管M1的第一极为源极,第二极为漏极;也可以是第一晶体管M1的第一极为漏极,第二极为源极。
此处,第一晶体管M1例如可以为金属-氧化物-半导体场效应晶体管,简称金氧半场效晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET),也可以称为MOS管。
此外,在本申请实施例中,第一晶体管M1为P型管。当控制电路102向第一晶体管M1的栅极提供低电平信号时,第一晶体管M1导通。
可以理解的是,第二开关元件1011包括但不限于第一晶体管M1,在一些示例中,第二开关元件1011还可以包括与第一晶体管M1串联或并联的其它一个或多个晶体管。
在一些示例中,如图4所示,上述第三开关元件1012包括第二晶体管M2,第二晶体管M2的第一极与第二信号输入端VD耦合,第二晶体管M2的第二极与信号输出端VE耦合,第二晶体管M2的栅极与控制电路102耦合;其中,第二晶体管M2的第一极和第二极中一个为源极,一个为漏极。可以理解的是,根据电路工作状态的不同,可以是第二晶体管M2的第一极为源极,第二极为漏极;也可以是第二晶体管M2的第一极为漏极,第二极为源极。
此处,第二晶体管M2例如可以为MOS管。
此外,在本申请实施例中,第二晶体管M2为P型管。
可以理解的是,第三开关元件1012包括但不限于第二晶体管M2,在一些示例中,第三开关元件1012还可以包括与第二晶体管M2串联或并联的其它一个或多个晶体管。
在一些示例中,如图4所示,上述第四开关元件1013包括第三晶体管M3,第三晶体管M3的第一极与第一信号输入端VC耦合,第三晶体管M3的第二极与接地端GND耦合,第三晶体管M3的栅极与控制电路102耦合;其中,第三晶体管M3的第一极和第二极中一个为源极,一个为漏极。可以理解的是,根据电路工作状态的不同,可以是第三晶体管M3的第一极为源极,第二极为漏极;也可以是第三晶体管M3的第一极为漏极,第二极为源极。
此处,第三晶体管M3例如可以为MOS管。
此外,在本申请实施例中,第三晶体管M3为N型管。当控制电路102向第三晶体管M3的栅极提供高电平信号时,第三晶体管M3导通。
可以理解的是,第四开关元件1013包括但不限于第三晶体管M3,在一些示例中,第四开关元件1013还可以包括与第三晶体管M3串联或并联的其它一个或多个晶体管。
在一些示例中,如图4所示,上述第五开关元件1014包括第四晶体管M4,第四晶体管M4的第一极与第二信号输入端VD耦合,第四晶体管M4的第二极与接地端GND耦合,第四晶体管M4的栅极与控制电路102耦合;其中,第四晶体管M4的第一极和第二极中一个为源极,一个为漏极。可以理解的是,根据电路工作状态的不同,可以是第四晶体管M4的第一极为源极,第二极为漏极;也可以是第四晶体管M4的第一极为漏极,第二极为源极。
此处,第四晶体管M4例如可以为MOS管。
此外,在本申请实施例中,第四晶体管M4为N型管。
可以理解的是,第五开关元件1014包括但不限于第四晶体管M4,在一些示例中,第五开关元件1014还可以包括与第四晶体管M4串联或并联的其它一个或多个晶体管。
相关技术提供的一种整流器100,如图5a所示,该整流器100包括第一晶体管M1、第二晶体管M2、第三晶体管M3、第四晶体管M4、控制电路102、电容CL、第一信号输入端VC、第二信号输入端VD、信号输出端VE以及接地端GND。第一晶体管M1、第二晶体管M2、第三晶体管M3、第四晶体管M4、控制电路102以及电容CL的连接关系、以及控制电路102的作用可以参考上述,此处不再赘述。对于图5a提供的整流器100,当第一晶体管M1导通时,信号输出端VE的电压VE和第一信号 输入端VC的电压VC关系为:VC=VE+I M1×R M1;其中,I M1为流过第一晶体管M1的电流,I M1的大小主要由信号输出端VE输出的电流决定;R M1为第一晶体管M1的导通阻抗。由于信号输出端VE与电容CL耦合,而电容CL的电容量通常较大,可以认为电容CL的与信号输出端VE耦合的电极板的电压基本不变,这样由于电容CL的作用,信号输出端VE的电压VE近乎不变。而在近场通信系统10A中的解调器200进行解调时,由于安全模块等未工作,因而功耗较低,这样一来,I M1较小,为了提高效率通常R M1也较小,这样第一信号输入端VC的电压VC就约等于信号输出端VE的电压VE;同样的,当第二晶体管M2导通时,第二信号输入端VD的电压VD约等于信号输出端VE的电压VE,由此可以看出,射频信号的幅度信息被衰减了很多,因而整流器100会导致射频信号产生失真。而整流器100若导致射频信号产生失真,则在整流器100应用于近场通信系统10A时,对解调器200的灵敏度就会有较高的要求。
为了解决整流器100导致射频信号失真,对解调器200的灵敏度有较高要求的问题,另一相关技术提供了一种整流器100,如图5b所示,在图5a提供的整流器100的基础上,在第一信号输入端VC增加第二阻抗Z2,在第二信号输入端VD增加第三阻抗Z3,天线800接收到的射频信号经过第二阻抗Z2后向第一信号输入端VC输入,且天线800接收的射频信号经过第三阻抗Z3向第二信号输入端VD输入。由于在第一信号输入端VC增加第二阻抗Z2,因而可以等效为增加了第一晶体管M1的导通阻抗R M1,基于公式VC=VE+I M1×R M1可知,增加第二阻抗Z2后可以增加第一信号输入端VC和信号输出端VE的差值,从而可以降低失真。同样的,由于在第二信号输入端VD增加第三阻抗Z3,因而可以等效为增加了第二晶体管M2的导通阻抗,这样一来,增加了第二信号输入端VD和信号输出端VE差值,从而可以降低失真。通过以上分析可知,增加第二阻抗Z2和第三阻抗Z3后,可以显著地降低射频信号的幅度衰减,从而可以改善整流器100导致的射频信号产生的失真的问题。
然而,在第一信号输入端VC增加第二阻抗Z2,在第二信号输入端VD增加第三阻抗Z3不仅相当于等效增大了第一晶体管M1的导通阻抗R M1、第二晶体管M2的导通阻抗R M2,还相当于等效增大了第三晶体管M3的导通阻抗R M3和第四晶体管M4的导通阻抗R M4,而第一晶体管M1的导通阻抗R M1、第二晶体管M2的导通阻抗R M2,第三晶体管M3的导通阻抗R M3和第四晶体管M4的导通阻抗R M4都等效增大,这样会降低整流器100的转换效率。基于此,相关技术在设计整流器100时,为了保证整流器100的转换效率,因而第二阻抗Z2和第三阻抗Z3不能设置的太大,因此相关技术并不能有效地改善整流器100导致的射频信号产生的失真。
以第一信号输入端VC为例,整流器100在工作时,VC=VE+I×R,其中,I为流过开关电路101中耦合在第一信号输入端VC和信号输出端VE之间的部分的电流,I的大小主要由信号输出端VE输出的电流决定,R为开关电路101中耦合在第一信号输入端VC和信号输出端VE之间的部分的导通阻抗。由于信号输出端VE与电容CL耦合,而电容CL的电容量通常较大,可以认为电容CL的与信号输出端VE耦合的电极板的电压基本不变,即信号输出端VE的电压VE近乎不变。在本实施例一中,参考图3,由于整流器100还包括第一开关元件S和第一阻抗RL,第一阻抗RL和第一开关元件S串联耦合于信号输出端VE和接地端GND之间,构成第一信号通路,因而 在近场通信系统10A中的解调器200进行解调时,需要的能量较少,控制第一开关元件S导通,第一阻抗RL与信号输出端VE导通,相当于在解调时增加了额外的负载,这样一来,信号输出端VE的电流增加,而信号输出端VE的电流影响流过开关电路101中耦合在第一信号输入端VC和信号输出端VE之间的部分的电流,流过开关电路101中耦合在第一信号输入端VC和信号输出端VE之间的部分的电流也会增加,这样一来,增大了第一信号输入端VC和信号输出端VE的电压差值,从而可以降低整流器100对输入的射频信号产生的失真。此外,由于第一阻抗RL和第一开关元件S串联耦合于信号输出端VE和接地端GND之间,因而第一阻抗RL对开关电路101的阻抗不影响或影响较小,基于此,在整流器100的供电能力以内,减小第一阻抗RL的阻抗,以提高信号输出端VE的电流,从而可以有效地改善整流器100对输入的射频信号产生的失真,且对解调器200的灵敏度要求降低。相对于图5b提供的相关技术而言,在整流器100的转换效率相同的情况下,本实施例一可以更有效地改善整流器100对输入的射频信号产生的失真,这样能够更有效地降低对解调器200的灵敏度要求。
在开关电路101包括第二开关元件1011、第三开关元件1012、第四开关元件1013以及第五开关元件1014,第二开关元件1011包括第一晶体管M1,第三开关元件1012包括第二晶体管M2,第四开关元件1013包括第三晶体管M3,第五开关元件1014包括第四晶体管M4的情况下,以第一信号输入端VC为例,VC=VE+I M1×R M1;I M1为流过第一晶体管M1的电流,I M1的大小主要由信号输出端VE输出的电流决定;R M1为第一晶体管M1的导通阻抗。由于信号输出端VE与电容CL耦合,而电容CL的电容量通常较大,可以认为电容CL的与信号输出端VE耦合的电极板的电压基本不变,即信号输出端VE的电压VE近乎不变。在本实施例一中,由于整流器100还包括第一开关元件S和第一阻抗RL,第一阻抗RL和第一开关元件S串联耦合于信号输出端VE和接地端GND之间,因而在近场通信系统10A中的解调器200进行解调时,需要的能量较少,控制第一开关元件S导通,第一阻抗RL与信号输出端VE导通,相当于在解调时增加了额外的负载,这样一来,信号输出端VE的电流增加,而I M1的大小主要由信号输出端VE输出的电流决定,因而流过第一晶体管M1的电流增加,这样一来,增大了第一信号输入端VC和信号输出端VE的电压差值,从而可以降低整流器100对输入的射频信号产生的失真。此外,由于第一阻抗RL和第一开关元件S串联耦合于信号输出端VE和接地端GND之间,因而第一阻抗RL对第一晶体管M1、第二晶体管M2、第三晶体管M3、第四晶体管M4的导通阻抗不影响或影响较小,基于此,在整流器100的供电能力以内,减小第一阻抗RL的阻抗,以提高信号输出端VE的电流,从而可以有效地改善整流器100对输入的射频信号产生的失真,且对解调器200的灵敏度要求降低。
需要说明的是,在近场通信系统10A中的解调器200解调结束后,控制第一开关元件S断开,即第一阻抗RL与信号输出端VE断开,这样一来,在安全模块等大功耗模块工作时,保证整流器100的供电能力。
在整流器100为实施例一提供的整流器100的情况下,本实施例一还提供一种近场通信系统10A的控制方法,该控制方法包括:
首先,整流器100通过第一信号输入端VC和第二信号输入端VD接收射频信号; 其中,第一信号输入端VC和第二信号输入端VD接收到的射频信号为一对差分信号。
接下来,整流器100通过控制第一信号通路的导通或断开,并通过控制开关电路101的导通与断开,以将第一信号输入端VC和第二信号输入端VD接收到的射频信号转换为直流信号,并将直流信号从信号输出端VE输出。
在开关电路101包括第二开关元件1011、第三开关元件1012、第四开关元件1013以及第五开关元件1014的情况下,上述控制开关电路的导通与断开包括:根据第一信号输入端VC的电压与信号输出端VE的电压和接地端GND的电压大小控制开关电路101的导通或者关闭。在一些示例中,上述控制开关电路的导通与断开包括:根据第一信号输入端VC的电压和信号输出端VE的电压的比较结果,控制第二开关元件1011导通或者断开。例如,在第一信号输入端VC的电压大于信号输出端VE的电压时,控制第二开关元件1011导通,将第一信号输入端VC的电压提供给信号输出端VE。在一些示例中,上述控制开关电路的导通与断开包括:根据第一信号输入端VC的电压和接地端GND的电压的比较结果,控制第四开关元件1013导通或断开。例如,在第一信号输入端VC的电压小于接地端GND的电压时,控制第四开关元件1013导通,将接地端GND的电压输出给第一信号输入端VC。
在开关电路101包括第二开关元件1011、第三开关元件1012、第四开关元件1013以及第五开关元件1014的情况下,上述控制开关电路的导通与断开包括:根据第二信号输入端VD的电压与信号输出端VE的电压和接地端GND的电压大小控制开关电路101的导通或者关闭。在一些示例中,上述控制开关电路的导通与断开包括:根据第二信号输入端VD的电压与信号输出端VE的电压的比较结果,控制第三开关元件1012导通或断开。例如,在第二信号输入端VD的电压大于信号输出端VE的电压时,控制第三开关元件1012导通,将第二信号输入端VD的电压输出给信号输出端VE。在一些示例中,上述控制开关电路的导通与断开包括:根据第二信号输入端VD的电压和接地端GND的电压的比较结果,控制第五开关元件1014导通或断开。例如,在第二信号输入端VD的电压小于接地端GND的电压时,控制第五开关元件1014导通,将接地端GND的电压输出给VD第二信号输入端。
接下来,电源管理单元500接收直流信号,并为解调器200供电。
需要说明的是,在解调器200对信号进行解调时,控制上述第一开关元件S导通,以使第一信号通路导通;在解调器200解调结束时,控制第一开关元件S断开,以使第一信号通路断开。
可以理解的是,该近场通信系统10A的控制方法具有与上述实施例一提供的整流器100相同的有益效果,可以参考上述实施例一提供的整流器100的相关技术效果的描述,此处不再赘述。
在开关电路101包括第二开关元件1011、第三开关元件1012、第四开关元件1013以及第五开关元件1014的情况下,在一些示例中,如图6所示,开关电路101还包括第二阻抗Z2和第三阻抗Z3;第二阻抗Z2串联在第二开关元件1011的第一端和第一信号输入端VC之间;第三阻抗Z3串联在第三开关元件1012的第一端和第二信号输入端VD之间。
需要说明的是,第二阻抗Z2和第三阻抗Z3例如可以为电阻、电感等元件。
此处,第二阻抗Z2和第三阻抗Z3相当于隔离器(isolation)。
由于第二阻抗Z2串联在第二开关元件1011的第一端和第一信号输入端VC之间,因而第二阻抗Z2相当于只增加了第二开关元件1011(例如第一晶体管M1)的等效导通阻抗,对第四开关元件1013(例如第三晶体管M3)的等效导通阻抗没有影响。同样的,第三阻抗Z3串联在第三开关元件1012的第一端和第二信号输入端VD之间,因而第三阻抗Z3相当于只增加了第三开关元件1012(例如第二晶体管M2)的等效导通阻抗,对第五开关元件1014(例如第四晶体管M4)的等效导通阻抗没有影响。以第一信号输入端VC为例,VC=VE+I M1×R M1;I M1为流过第二开关元件1011的电流,I M1的大小主要由信号输出端VE输出的电流决定;R M1为第二开关元件1011的导通阻抗,由于第二阻抗Z2相当于增加了第二开关元件1011的等效导通阻抗,因而增大了第一信号输入端VC和信号输出端VE的电压差值,从而可以进一步降低整流器100对输入的射频信号产生的失真。相对于相关技术中图5b提供的整流器100而言,由于第二阻抗Z2只增加了第二开关元件1011(例如第一晶体管M1)的等效导通阻抗,对第四开关元件1013(例如第三晶体管M3)的等效导通阻抗没有影响,在整流器100对输入的射频信号产生的失真相同的情况下,本申请实施例提供的整流器100相对于图5b提供的整流器100效率损失会降低50%左右。也就是说,在转换效率相同的情况下,相对于相关技术中图5b提供的整流器100而言,本申请实施例提供的整流器100可以采用更大的第二阻抗Z2和第三阻抗Z3,这样整流器100对输入的射频信号产生的失真更小,能够显著地降低输入的射频信号产生的失真,从而更进一步地降低对解调器200的灵敏度的要求。
实施例二
在本实施例二中,如图7所示,近场通信系统10A中的整流器100包括控制电路102、开关电路101、第二阻抗Z2、第三阻抗Z3、电容CL、第一信号输入端VC、第二信号输入端VD、信号输出端VE以及接地端GND;第一信号输入端VC和第二信号输入端VD用于接收射频信号,且第一信号输入端VC和第二信号输入端VD接收到的射频信号为一对差分信号;开关电路101包括第二开关元件1011、第三开关元件1012、第四开关元件1013、第五开关元件1014;第二开关元件1011的第一端通过第二阻抗Z2耦合至第一信号输入端VC,第二开关元件1011的第二端与信号输出端VE耦合;第三开关元件1012的第一端通过第三阻抗Z3耦合至第二信号输入端VD,第三开关元件1012的第二端与信号输出端VE耦合;第四开关元件1013的第一端与第一信号输入端VC耦合,第四开关元件1013的第二端与接地端GND耦合;第五开关元件1014的第一端与第二信号输入端VD耦合,第五开关元件1014的第二端与接地端GND耦合;第二开关元件1011的控制端、第三开关元件1012的控制端、第四开关元件1013的控制端以及第五开关元件1014的控制端均与控制电路102耦合;控制电路102通过控制开关电路101的导通与断开,将第一信号输入端VC和第二信号输入端VD接收到的射频信号转换为直流信号,并将直流信号从信号输出端VE输出;电容CL的一端与信号输出端VE耦合,另一端与接地端GND耦合;整流器100的信号输出端VE与电源管理单元500耦合,电源管理单元500与解调器200的电源输入 端耦合,用于为解调器200供电。
此处,上述控制电路102通过控制开关电路101的导通与断开,将第一信号输入端VC和第二信号输入端VD接收到的射频信号转换为直流信号,可以通过以下方式实现:
上述控制电路102用于根据第一信号输入端VC的电压与信号输出端VE的电压和接地端GND的电压大小控制开关电路101的导通或者关闭。
在一些示例中,控制电路102用于根据第一信号输入端VC的电压和信号输出端VE的电压的比较结果,控制第二开关元件1011导通或者断开。例如,控制电路102用于在第一信号输入端VC的电压大于信号输出端VE的电压时,控制第二开关元件1011导通,将第一信号输入端VC的电压提供给信号输出端VE。
在一些示例中,控制电路102用于根据第一信号输入端VC的电压和接地端GND的电压的比较结果,控制第四开关元件1013导通或断开。例如,控制电路102用于在第一信号输入端VC的电压小于接地端GND的电压时,控制第四开关元件1013导通,将接地端GND的电压输出给第一信号输入端VC。
上述控制电路102还用于根据第二信号输入端VD的电压与信号输出端VE的电压和接地端GND的电压大小控制开关电路101的导通或者关闭。
在一些示例中,控制电路102用于根据第二信号输入端VD的电压与信号输出端VE的电压的比较结果,控制第三开关元件1012导通或断开。例如,控制电路102用于在第二信号输入端VD的电压大于信号输出端VE的电压时,控制第三开关元件1012导通,将第二信号输入端VD的电压输出给信号输出端VE。
在一些示例中,控制电路102用于根据第二信号输入端VD的电压和接地端GND的电压的比较结果,控制第五开关元件1014导通或断开。例如,控制电路102用于在第二信号输入端VD的电压小于接地端GND的电压时,控制第五开关元件1014导通,将接地端GND的电压输出给VD第二信号输入端。
此处,第二开关元件1011、第三开关元件1012、第四开关元件1013、第五开关元件1014、第二阻抗Z2以及第三阻抗Z3的具体结构可以参考上述实施例一,此处不再赘述。
需要说明的是,整流器100中设置电容CL、第二阻抗Z2以及第三阻抗Z3对应的有益效果可以参考上述实施例一,此处不再赘述。
在一些示例中,如图6所示,上述整流器100还包括:第一开关元件S和第一阻抗RL;第一阻抗RL和第一开关元件S串联耦合于信号输出端VE和接地端GND之间,构成第一信号通路;第一开关元件S用于控制第一信号通路的导通或断开。
此处,第一阻抗RL的具体结构可以参考上述实施例一,此处不再赘述。
需要说明的是,整流器100中设置第一开关元件S和第一阻抗RL对应的有益效果可以参考上述实施例一,此处不再赘述。
本实施例二还提供一种近场通信系统10A的控制方法,该控制方法包括:
首先,整流器100通过第一信号输入端VC和第二信号输入端VD接收射频信号;其中,第一信号输入端VC和第二信号输入端VD接收到的射频信号为一对差分信号。
接下来,整流器100通过控制开关电路101的导通与断开,以将第一信号输入端 VC和第二信号输入端VD接收到的射频信号转换为直流信号,并将直流信号从信号输出端VE输出。
此处,“控制开关电路101的导通与断开”的实现方式可以参考上述实施例一,此处不再赘述。
接下来,电源管理单元500接收直流信号,并为解调器200供电。
基于上述,根据第一信号输入端VC、第二信号输入端VD、信号输出端VE、接地端GND的电压大小,通过控制电路102控制第二开关元件1011、第三开关元件1012、第四开关元件1013和第五开关元件1014的导通和断开,从而可以将第一信号输入端VC和第二信号输入端VD接收到的交流信号转换为直流信号,进而可以达到整流的目的。
实施例三
实施例三与实施例一的区别之处在于,实施例一的整流器100包括一对差分信号输入端,分别是第一信号输入端VC和第二信号输入端VD,第一信号输入端VC和第二信号输入端VD用于接收射频信号,且第一信号输入端VC接收到射频信号和第二信号输入端VD接收到射频信号为一对差分信号,而实施例三的整流器100只有一个信号输入端接收射频信号,即第一信号输入端VC。
在本实施例三中,如图8所示,整流器100包括开关电路101、控制电路102、第一开关元件S、第一阻抗RL、电容CL、第一信号输入端VC、信号输出端VE以及接地端GND;第一信号输入端VC用于接收射频信号。整流器100的信号输出端VE与电源管理单元500的耦合,电源管理单元500与解调器200的电源输入端耦合,用于为解调器200供电。
上述开关电路101与控制电路102、第一信号输入端VC、以及信号输出端VE耦合,控制电路102通过控制开关电路101的导通与断开,将第一信号输入端VC接收到的射频信号转换为直流信号,并将直流信号从信号输出端VE输出;第一阻抗RL和第一开关元件S串联耦合于信号输出端VE和接地端GND耦合之间,构成第一信号通路;第一开关元件S用于控制第一信号通路的导通或断开。电容CL的一端与信号输出端VE耦合,另一端与接地端GND耦合。
在一些示例中,如图8所示,上述开关电路101包括第二开关元件1011和第四开关元件1013。第二开关元件1011的第一端与第一信号输入端VC耦合,第二开关元件1011的第二端与信号输出端VE耦合;第四开关元件1013的第一端与第一信号输入端VC耦合,第四开关元件1013的第二端与接地端GND耦合;第二开关元件1011的控制端、以及第四开关元件1013的控制端均与控制电路102耦合。
在开关电路101包括第二开关元件1011以及第四开关元件1013的情况下,上述控制电路102通过控制开关电路101的导通与断开,将第一信号输入端VC接收到的射频信号转换为直流信号,可以通过以下方式实现:
上述控制电路102用于根据第一信号输入端VC的电压与信号输出端VE的电压和接地端GND的电压大小控制开关电路101的导通或者关闭。
在一些示例中,控制电路102用于根据第一信号输入端VC的电压和信号输出端 VE的电压的比较结果,控制第二开关元件1011导通或者断开。例如,控制电路102用于在第一信号输入端VC的电压大于信号输出端VE的电压时,控制第二开关元件1011导通,将第一信号输入端VC的电压提供给信号输出端VE。
在一些示例中,控制电路102用于根据第一信号输入端VC的电压和接地端GND的电压的比较结果,控制第四开关元件1013导通或断开。例如,控制电路102用于在第一信号输入端VC的电压小于接地端GND的电压时,控制第四开关元件1013导通,将接地端GND的电压输出给第一信号输入端VC。基于上述可知,根据第一信号输入端VC、信号输出端VE、接地端GND的电压大小,通过控制电路102控制第二开关元件1011和第四开关元件1013的导通和断开,从而可以将第一信号输入端VC接收到的交流信号转换为直流信号,进而可以达到整流的目的。
此处,控制电路102、第二开关元件1011、以及第四开关元件1013的结构可以参考上述实施例一,此处不再赘述。
另外,本实施例三中,设置电容CL、第一开关元件S和第一阻抗RL对应的有益效果,可以参考上述实施例一,此处不再赘述。
在开关电路101包括第二开关元件1011和第四开关元件1013的情况下,在一些示例中,如图9所示,开关电路101还包括第二阻抗Z2;第二阻抗Z2串联在第二开关元件1011的第一端和第一信号输入端VC之间。
此处,第二阻抗Z2的具体结构、以及设置第二阻抗Z2对应的有益效果可以参考上述实施例一,此处不再赘述。
本实施例三还提供一种近场通信系统10A的控制方法,该控制方法包括:
首先,整流器100通过第一信号输入端VC接收射频信号;其中,第一信号输入端VC和第二信号输入端VD接收到的射频信号为一对差分信号。
接下来,整流器100通过控制第一信号通路的导通或断开,并通过控制开关电路101的导通与断开,以将第一信号输入端VC接收到的射频信号转换为直流信号,并将直流信号从信号输出端VE输出。
接下来,电源管理单元500接收直流信号,并为解调器200供电。
实施例四
实施例四与实施例二的区别之处在于,实施例二的整流器100包括一对差分信号输入端,分别是第一信号输入端VC和第二信号输入端VD,第一信号输入端VC和第二信号输入端VD用于接收射频信号,且第一信号输入端VC接收到射频信号和第二信号输入端VD接收到射频信号为一对差分信号,而实施例四的整流器100只有一个信号输入端接收射频信号,即第一信号输入端VC。
在本实施例四中,如图10所示,近场通信系统10A中的整流器100包括控制电路102、开关电路101、第二阻抗Z2、电容CL、第一信号输入端VC、信号输出端VE以及接地端GND;开关电路101包括第二开关元件1011和第四开关元件1013;第二开关元件1011的第一端通过第二阻抗Z2耦合至第一信号输入端VC,第二开关元件1011的第二端与信号输出端VE耦合;第四开关元件1013的第一端与第一信号输入端VC耦合,第四开关元件1013的第二端与接地端GND耦合;第二开关元件1011的控 制端、以及第四开关元件1013的控制端均与控制电路102耦合;控制电路102通过控制开关电路101的导通与断开,将第一信号输入端VC接收到的射频信号转换为直流信号,并将直流信号从信号输出端VE输出;电容CL的一端与信号输出端VE耦合,另一端与接地端GND耦合;整流器100的信号输出端VE与电源管理单元500耦合,电源管理单元500与解调器200的电源输入端耦合,用于为解调器200供电。
在开关电路101包括第二开关元件1011以及第四开关元件1013的情况下,上述控制电路102通过控制开关电路101的导通与断开,将第一信号输入端VC接收到的射频信号转换为直流信号的实现方式可以参考上述实施例三,此处不再赘述。
此处,第二开关元件1011、第四开关元件1013、第二阻抗Z2的具体结构、以及设置电容CL、第二阻抗Z2对应的有益效果可以参考上述实施例一,此处不再赘述。
在一些示例中,如图9所示,上述整流器100还包括:第一开关元件S和第一阻抗RL;第一阻抗RL和第一开关元件S串联耦合于信号输出端VE和接地端GND之间,构成第一信号通路;第一开关元件S用于控制第一信号通路的导通或断开。
此处,第一阻抗RL的具体结构可以参考上述实施例一,此处不再赘述。
需要说明的是,整流器100中设置第一开关元件S和第一阻抗RL对应的有益效果可以参考上述实施例一,此处不再赘述。
本实施例四还提供一种近场通信系统10A的控制方法,该控制方法包括:
首先,整流器100通过第一信号输入端VC接收射频信号;其中,第一信号输入端VC和第二信号输入端VD接收到的射频信号为一对差分信号。
接下来,整流器100通过控制开关电路101的导通与断开,以将第一信号输入端VC接收到的射频信号转换为直流信号,并将直流信号从信号输出端VE输出。
接下来,电源管理单元500接收直流信号,并为解调器200供电。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种近场通信系统,其特征在于,包括:整流器、解调器以及电源管理单元;
    所述整流器包括开关电路、控制电路、第一开关元件、第一阻抗、电容、第一信号输入端、第二信号输入端、信号输出端以及接地端;所述第一信号输入端和所述第二信号输入端用于接收射频信号,且所述第一信号输入端和所述第二信号输入端接收到的射频信号为一对差分信号;
    所述开关电路与所述控制电路、所述第一信号输入端、所述第二信号输入端以及所述信号输出端耦合,所述控制电路通过控制所述开关电路的导通与断开,将所述第一信号输入端和所述第二信号输入端接收到的射频信号转换为直流信号,并将所述直流信号从所述信号输出端输出;
    所述第一阻抗和所述第一开关元件串联耦合于所述信号输出端和所述接地端之间,构成第一信号通路;所述第一开关元件用于控制所述第一信号通路的导通或断开;
    所述电容的一端与所述信号输出端耦合,另一端与所述接地端耦合;
    所述整流器的所述信号输出端与所述电源管理单元耦合,所述电源管理单元与所述解调器的电源输入端耦合,用于为所述解调器供电。
  2. 根据权利要求1所述的近场通信系统,其特征在于,所述开关电路包括第二开关元件、第三开关元件、第四开关元件以及第五开关元件;
    所述第二开关元件的第一端与所述第一信号输入端耦合,所述第二开关元件的第二端与所述信号输出端耦合;
    所述第三开关元件的第一端与所述第二信号输入端耦合,所述第三开关元件的第二端与所述信号输出端耦合;
    所述第四开关元件的第一端与所述第一信号输入端耦合,所述第四开关元件的第二端与所述接地端耦合;
    所述第五开关元件的第一端与所述第二信号输入端耦合,所述第五开关元件的第二端与所述接地端耦合;
    所述第二开关元件的控制端、所述第三开关元件的控制端、所述第四开关元件的控制端以及所述第五开关元件的控制端均与所述控制电路耦合。
  3. 根据权利要求2所述的近场通信系统,其特征在于,所述控制电路用于根据所述第一信号输入端的电压和所述信号输出端的电压的比较结果,控制所述第二开关元件导通或者断开。
  4. 根据权利要求2或3所述的近场通信系统,其特征在于,所述控制电路用于根据所述第一信号输入端的电压和所述接地端的电压的比较结果,控制所述第四开关元件导通或断开。
  5. 根据权利要求2-4任一项所述的近场通信系统,其特征在于,所述控制电路用于根据所述第二信号输入端的电压与所述信号输出端的电压的比较结果,控制所述第三开关元件导通或断开。
  6. 根据权利要求2-5任一项所述的近场通信系统,其特征在于,所述控制电路用于根据所述第二信号输入端的电压和所述接地端的电压的比较结果,控制所述第五开关元件导通或断开。
  7. 根据权利要求2-6任一项所述的近场通信系统,其特征在于,所述开关电路还包括第二阻抗和第三阻抗;
    所述第二阻抗串联在所述第二开关元件的第一端和所述第一信号输入端之间;
    所述第三阻抗串联在所述第三开关元件的第一端和所述第二信号输入端之间。
  8. 根据权利要求2-7任一项所述的近场通信系统,其特征在于,所述第二开关元件包括第一晶体管,所述第一晶体管的第一极与所述第一信号输入端耦合,所述第一晶体管的第二极与所述信号输出端耦合,所述第一晶体管的栅极与所述控制电路耦合;
    其中,所述第一晶体管的所述第一极和所述第二极中一个为源极,一个为漏极。
  9. 根据权利要求2-8任一项所述的近场通信系统,其特征在于,所述第三开关元件包括第二晶体管,所述第二晶体管的第一极与所述第二信号输入端耦合,所述第二晶体管的第二极与所述信号输出端耦合,所述第二晶体管的栅极与所述控制电路耦合;
    其中,所述第二晶体管的所述第一极和所述第二极中一个为源极,一个为漏极。
  10. 根据权利要求2-9任一项所述的近场通信系统,其特征在于,所述第四开关元件包括第三晶体管,所述第三晶体管的第一极与所述第一信号输入端耦合,所述第三晶体管的第二极与所述接地端耦合,所述第三晶体管的栅极与所述控制电路耦合;
    其中,所述第三晶体管的所述第一极和所述第二极中一个为源极,一个为漏极。
  11. 根据权利要求2-10任一项所述的近场通信系统,其特征在于,所述第五开关元件包括第四晶体管,所述第四晶体管的第一极与所述第二信号输入端耦合,所述第四晶体管的第二极与所述接地端耦合,所述第四晶体管的栅极与所述控制电路耦合;
    其中,所述第四晶体管的所述第一极和所述第二极中一个为源极,一个为漏极。
  12. 根据权利要求1-11任一项所述的近场通信系统,其特征在于,所述近场通信系统还包括天线,所述整流器的所述第一信号输入端和所述第二信号输入端均与所述天线耦合;所述天线用于将接收到所述射频信号传输至所述第一信号输入端和所述第二信号输入端。
  13. 一种近场通信系统,其特征在于,包括:整流器、解调器以及电源管理单元;
    所述整流器包括控制电路、开关电路、第二阻抗、第三阻抗、电容、第一信号输入端、第二信号输入端、信号输出端以及接地端;所述第一信号输入端和所述第二信号输入端用于接收射频信号,且所述第一信号输入端和所述第二信号输入端接收到的射频信号为一对差分信号;
    所述开关电路包括第二开关元件、第三开关元件、第四开关元件和第五开关元件;所述第二开关元件的第一端通过所述第二阻抗耦合至所述第一信号输入端,所述第二开关元件的第二端与所述信号输出端耦合;所述第三开关元件的第一端通过所述第三阻抗耦合至所述第二信号输入端,所述第三开关元件的第二端与所述信号输出端耦合;所述第四开关元件的第一端与所述第一信号输入端耦合,所述第四开关元件的第二端与所述接地端耦合;所述第五开关元件的第一端与所述第二信号输入端耦合,所述第五开关元件的第二端与所述接地端耦合;
    所述第二开关元件的控制端、所述第三开关元件的控制端、所述第四开关元件的控制端以及所述第五开关元件的控制端均与所述控制电路耦合;所述控制电路通过控制所述开关电路的导通与断开,将所述第一信号输入端和所述第二信号输入端接收到 的射频信号转换为直流信号,并将所述直流信号从所述信号输出端输出;
    所述电容的一端与所述信号输出端耦合,另一端与所述接地端耦合;
    所述整流器的所述信号输出端与所述电源管理单元耦合,所述电源管理单元与所述解调器的电源输入端耦合,用于为所述解调器供电。
  14. 根据权利要求13所述的近场通信系统,其特征在于,所述控制电路用于根据所述第一信号输入端的电压和所述信号输出端的电压的比较结果,控制所述第二开关元件导通或者断开。
  15. 根据权利要求13或14所述的近场通信系统,其特征在于,所述控制电路用于根据所述第一信号输入端的电压和所述接地端的电压的比较结果,控制所述第四开关元件导通或断开。
  16. 根据权利要求13-15任一项所述的近场通信系统,其特征在于,所述控制电路用于根据所述第二信号输入端的电压与所述信号输出端的电压的比较结果,控制所述第三开关元件导通或断开。
  17. 根据权利要求13-16任一项所述的近场通信系统,其特征在于,所述控制电路用于根据所述第二信号输入端的电压和所述接地端的电压的比较结果,控制所述第五开关元件导通或断开。
  18. 根据权利要求13-17任一项所述的近场通信系统,其特征在于,所述整流器还包括第一开关元件和第一阻抗;
    所述第一阻抗和所述第一开关元件串联耦合于所述信号输出端和所述接地端之间,构成第一信号通路;所述第一开关元件用于控制所述第一信号通路的导通或断开。
  19. 一种近场通信系统的控制方法,其特征在于,所述近场通信系统包括:整流器、解调器以及电源管理单元;
    所述整流器包括开关电路、控制电路、第一开关元件、第一阻抗、电容、第一信号输入端、第二信号输入端、信号输出端以及接地端;所述开关电路与所述控制电路、所述第一信号输入端、所述第二信号输入端以及所述信号输出端耦合;所述第一阻抗和所述第一开关元件串联耦合于所述信号输出端和所述接地端之间,构成第一信号通路;所述电容的一端与所述信号输出端耦合,另一端与所述接地端耦合;所述整流器的所述信号输出端与所述电源管理单元耦合,所述电源管理单元与所述解调器的电源输入端耦合;
    所述控制方法包括:
    所述整流器通过所述第一信号输入端和所述第二信号输入端接收射频信号;其中,所述第一信号输入端和所述第二信号输入端接收到的射频信号为一对差分信号;
    所述整流器通过控制所述第一信号通路的导通或断开,并通过控制所述开关电路的导通与断开,以将所述第一信号输入端和所述第二信号输入端接收到的射频信号转换为直流信号,并将所述直流信号从所述信号输出端输出;
    所述电源管理单元接收所述直流信号,并为所述解调器供电。
  20. 一种近场通信系统的控制方法,其特征在于,所述近场通信系统包括:整流器、解调器以及电源管理单元;
    所述整流器包括控制电路、开关电路、第二阻抗、第三阻抗、电容、第一信号输 入端、第二信号输入端、信号输出端以及接地端;所述开关电路包括第二开关元件、第三开关元件、第四开关元件和第五开关元件;所述第二开关元件的第一端通过所述第二阻抗耦合至所述第一信号输入端,所述第二开关元件的第二端与所述信号输出端耦合;所述第三开关元件的第一端通过所述第三阻抗耦合至所述第二信号输入端,所述第三开关元件的第二端与所述信号输出端耦合;所述第四开关元件的第一端与所述第一信号输入端耦合,所述第四开关元件的第二端与所述接地端耦合;所述第五开关元件的第一端与所述第二信号输入端耦合,所述第五开关元件的第二端与所述接地端耦合;所述第二开关元件的控制端、所述第三开关元件的控制端、所述第四开关元件的控制端以及所述第五开关元件的控制端均与所述控制电路耦合;所述电容的一端与所述信号输出端耦合,另一端与所述接地端耦合;所述整流器的所述信号输出端与所述电源管理单元耦合,所述电源管理单元与所述解调器的电源输入端耦合;
    所述控制方法包括:
    所述整流器通过所述第一信号输入端和所述第二信号输入端接收射频信号;其中,所述第一信号输入端和所述第二信号输入端接收到的射频信号为一对差分信号;
    所述整流器通过控制所述开关电路的导通与断开,以将所述第一信号输入端和所述第二信号输入端接收到的射频信号转换为直流信号,并将所述直流信号从所述信号输出端输出;
    所述电源管理单元接收所述直流信号,并为所述解调器供电。
  21. 一种电子设备,其特征在于,包括印刷电路板和如权利要求1-18任一项所述的近场通信系统。
PCT/CN2022/076354 2022-02-15 2022-02-15 近场通信系统及其控制方法、电子设备 WO2023155044A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076354 WO2023155044A1 (zh) 2022-02-15 2022-02-15 近场通信系统及其控制方法、电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076354 WO2023155044A1 (zh) 2022-02-15 2022-02-15 近场通信系统及其控制方法、电子设备

Publications (1)

Publication Number Publication Date
WO2023155044A1 true WO2023155044A1 (zh) 2023-08-24

Family

ID=87577276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076354 WO2023155044A1 (zh) 2022-02-15 2022-02-15 近场通信系统及其控制方法、电子设备

Country Status (1)

Country Link
WO (1) WO2023155044A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618336A (zh) * 2013-12-09 2014-03-05 盐城工学院 整流式高频链并网逆变器的输出数字调制电路及控制系统
CN105226840A (zh) * 2014-05-30 2016-01-06 英飞凌科技奥地利有限公司 用于有效无线功率传输的有源整流器
CN107294409A (zh) * 2017-07-26 2017-10-24 江西联智集成电路有限公司 有源整流器
CN211046793U (zh) * 2019-12-19 2020-07-17 柏壹新能源科技(深圳)有限公司 一种同步整流电路及无线充电装置
US20210384842A1 (en) * 2020-06-05 2021-12-09 Wen-Chung Yeh Rectifier Circuits, Synchronous Rectifier Circuits, and Related Electric Devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618336A (zh) * 2013-12-09 2014-03-05 盐城工学院 整流式高频链并网逆变器的输出数字调制电路及控制系统
CN105226840A (zh) * 2014-05-30 2016-01-06 英飞凌科技奥地利有限公司 用于有效无线功率传输的有源整流器
CN107294409A (zh) * 2017-07-26 2017-10-24 江西联智集成电路有限公司 有源整流器
CN211046793U (zh) * 2019-12-19 2020-07-17 柏壹新能源科技(深圳)有限公司 一种同步整流电路及无线充电装置
US20210384842A1 (en) * 2020-06-05 2021-12-09 Wen-Chung Yeh Rectifier Circuits, Synchronous Rectifier Circuits, and Related Electric Devices

Similar Documents

Publication Publication Date Title
KR102614481B1 (ko) 충전 제어 회로, 단말 장치 및 제어 방법
WO2020020124A1 (zh) 多电池充放电装置及移动终端
WO2016090753A1 (zh) 集成nfc天线的触摸屏、终端及其近场通信方法
US20110059692A1 (en) Communications device using near field
CN102339405B (zh) 数据卡
US11216120B2 (en) Touch panel and driving method thereof, and touch device
WO2020019824A1 (zh) 电子设备
WO2017161587A1 (zh) 一种负载供电电路和终端
WO2021057965A1 (zh) 能力参数确定方法、上行调度方法、终端和网络侧设备
WO2022062541A1 (zh) 射频架构及终端设备
WO2023155044A1 (zh) 近场通信系统及其控制方法、电子设备
CN203734625U (zh) 一种通讯信号补偿器
US8970792B2 (en) Remote controller and remote controller set applied to display device
EP4050754B1 (en) Power supply system, and electronic device
WO2022127438A1 (zh) 射频模组及其控制方法、电子设备
CN213990825U (zh) 一种切换矩阵
WO2021175073A1 (zh) 一种电子设备
CN113296031B (zh) 射频线安装检测装置及终端
US20110275407A1 (en) Mobile phone and control method thereof
WO2023155050A1 (zh) 近场通信系统及其控制方法、电子设备
CN109980724B (zh) 对双屏移动终端充电的方法、装置、移动终端及存储介质
US6377667B1 (en) Telephone line-assist powered apparatus with programmable hold current
CN103684271A (zh) 提高射频功率放大器效率的装置和方法
CN203243322U (zh) 无线接收器及无线输入系统
CN209545584U (zh) 一种显示面板及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926382

Country of ref document: EP

Kind code of ref document: A1