WO2022127438A1 - 射频模组及其控制方法、电子设备 - Google Patents

射频模组及其控制方法、电子设备 Download PDF

Info

Publication number
WO2022127438A1
WO2022127438A1 PCT/CN2021/129383 CN2021129383W WO2022127438A1 WO 2022127438 A1 WO2022127438 A1 WO 2022127438A1 CN 2021129383 W CN2021129383 W CN 2021129383W WO 2022127438 A1 WO2022127438 A1 WO 2022127438A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power supply
amplifying
power
frequency band
Prior art date
Application number
PCT/CN2021/129383
Other languages
English (en)
French (fr)
Inventor
冯红旗
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022127438A1 publication Critical patent/WO2022127438A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers

Definitions

  • the present disclosure relates to the technical field of electronic devices, and in particular, to a radio frequency module, a control method thereof, and an electronic device.
  • radio frequency module of an electronic device the radio frequency signal is usually amplified by a power amplifier.
  • the number of power amplifiers and power modules in the RF module also increases. More power amplifiers and power modules will increase the cost of electronic equipment, and is not conducive to electronic equipment. Thinning of the device.
  • the purpose of the present disclosure is to provide a radio frequency module, a control method thereof, and an electronic device, so as to solve one or more problems caused by the deficiencies of the related art at least to a certain extent.
  • a radio frequency module includes:
  • a first amplifying module having a first frequency band mode and a second frequency band mode, and the transmit power of the second frequency band mode is greater than the transmit power of the first frequency band mode;
  • a first power supply module for outputting a first power supply signal
  • a second power supply module configured to digitally output a second power supply signal, the voltage of the second power supply signal is greater than the voltage of the second power supply signal
  • a switch module respectively connected to the first amplifying module, the first power supply module and the second power supply module, and the switch module is electrically connected to the first amplifying module when the first amplifying module operates in a first frequency band mode a power supply module and the first amplifying module, the first amplifying module works in response to the first power supply signal, and the switching module is electrically connected to the second power supply when the first amplifying module works in the second frequency band mode module and the second amplifying module, the first amplifying module works in response to the second power supply signal.
  • a method for controlling a radio frequency module includes:
  • the switch module When the working mode of the first amplifying module is the first frequency band mode, the switch module is electrically connected to the first power supply module and the first amplifying module, so as to provide the first power supply signal to the first amplifying module;
  • the switch module When the working mode of the first amplifying module is the second frequency band mode, the switch module is electrically connected to the second power supply module and the first amplifying module, and provides the second power supply signal to the first amplifying module, and the second frequency band
  • the transmission power of the mode is greater than that of the first frequency band mode, and the voltage of the second power supply signal is greater than the voltage of the first power supply signal.
  • an electronic device includes the above-mentioned radio frequency module.
  • FIG. 1 is a schematic diagram of a first radio frequency module provided by an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a second radio frequency module provided by an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a third radio frequency module provided by an exemplary embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a fourth radio frequency module provided by an exemplary embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a fifth radio frequency module provided by an exemplary embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a sixth radio frequency module provided by an exemplary embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a method for controlling a radio frequency module provided by an exemplary embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of an electronic device according to an exemplary embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
  • 5G Mobile Bandwidth Enhancement eMBB
  • 5G NSA non-standalone
  • SA standalone
  • 1T4R under NSA (1 transmission and 4 reception)
  • 2T4R under SA (2 transmission and 4 reception)
  • the downlink rate is required to be higher.
  • the radio frequency module 10 includes: a first amplification module 310, a first power supply module 110, a second power supply module 120, and a switch module 210.
  • An amplifying module 310 has a first frequency band mode and a second frequency band mode, the transmit power of the second frequency band mode is greater than the transmit power of the first frequency band mode; the first power supply module 110 is used for outputting the first power supply signal; the second power supply module 120 uses In order to output the second power supply signal, the voltage of the second power supply signal is greater than the voltage of the first power supply signal; the switch module 210 is respectively connected to the first amplifying module 310, the first power supply module 110 and the second power supply module 120, when the first amplifying module 310 works When in the first frequency band mode, the switch module 210 is electrically connected to the first power supply module 110 and the first amplifying module 310, the first amplifying module 310 works in response to the first power supply signal,
  • the transmit power of the first amplifying module 310 in the second frequency band mode is greater than the transmit power of the first frequency band mode, that is, the voltage requirement of the first amplifying module in the second frequency band mode is greater than the voltage requirement of the first frequency band mode.
  • the first amplifying module 110 has a first frequency band mode and a second frequency band mode.
  • the transmit power of the second frequency band mode is greater than the transmit power of the first frequency band mode, so the voltage of the second frequency band mode is higher than that of the first frequency band mode.
  • the demand is greater than the voltage demand of the first frequency band mode.
  • the first power supply module 110 provides the first power supply signal
  • the second power supply module 120 provides the second power supply signal
  • the voltage of the second power supply signal is greater than the voltage of the first power supply signal
  • the switch module 210 operates in the first amplification module 310 at the first power supply signal.
  • the first power supply module 110 and the first amplifier module 310 are electrically connected, the first amplifier module 310 operates in response to the first power supply signal, and the switch module 210 is electrically connected to the second power source when the first amplifier module 310 operates in the second frequency band mode
  • the module 120 and the second amplifying module 320, the first amplifying module 310 works in response to the second power supply signal, and realizes the matching of power supply signals in different frequency band modes of the first amplifying module.
  • the same amplifying module supports the work of multiple frequency band modes. The cost of electronic equipment is reduced, and the thinning of electronic equipment is facilitated.
  • the first power supply module 110 supplies power to the first amplifying module 310
  • the second power supply module 120 supplies power to the second amplifying module 320.
  • the reduction of low power is realized.
  • the envelope tracking power supply under high power is realized, which is beneficial to reduce the cost of the power supply and further reduce the cost of electronic equipment.
  • the radio frequency module 10 may further include: a control module 410 , the control module 410 is connected to the switch module 210 , and the control module 410 is used to detect the working mode of the first amplifying module 310 , when the first amplifying module 310 works in the first frequency band mode, the control module 410 controls the first switch to electrically connect the first power supply module 110 and the first amplifying module 310, and when the first amplifying module 310 works in the second frequency band mode, The control module 410 controls the first switch to electrically connect the second power module 120 and the first amplifying module 310 .
  • a control module 410 the control module 410 is connected to the switch module 210 , and the control module 410 is used to detect the working mode of the first amplifying module 310 , when the first amplifying module 310 works in the first frequency band mode, the control module 410 controls the first switch to electrically connect the first power supply module 110 and the first amplifying module 310, and when the first amplifying module 310 works in
  • the radio frequency module 10 further includes: a second amplifying module 320 , a third amplifying module 330 and a fourth amplifying module 340 , the second amplifying module 320 is connected to the second power supply module 120 , and the The frequency of the working frequency band is greater than the frequency of the working frequency band of the first amplifying module 310 .
  • the third amplifying module 330 is connected to the first power supply module 110 ; the fourth amplifying module 340 is connected to the second power supply module 120 .
  • the first amplification module 310 may be a low frequency power amplification module (LB PAMID/MMPA)
  • the second amplification module 320 may be a medium and high frequency power amplification module (MHB PAMID/MMPA)
  • the third amplification module 330 may be 4G Multi-mode multi-frequency power amplifier (B1/3/39MMPA)
  • the fourth amplifying module 340 may be a 5G power amplifying module (NR PAMID/PA).
  • radio frequency module 10 Each part of the radio frequency module 10 provided by the embodiment of the present disclosure will be described in detail below:
  • the first power supply module 110 and the second power supply module 120 respectively receive the power supply signal, the first power supply module 110 is used to step down the power supply signal to output the first power supply signal, and the second power supply module 120 is used to perform envelope processing on the power supply signal to output the second power supply signal.
  • the first amplification module 310 may include one or more power amplifiers.
  • the input end of the power amplifier can be connected with the radio frequency generating circuit to receive the radio frequency signal, and the output end of the power amplifier can be connected with the antenna, for example, the output end of the power amplifier can be connected through the radio frequency connection socket Connected to the antenna, the power control end of the power amplifier is connected to the switch module 210 to receive the first power supply signal output by the first power supply module 110 or the second power supply signal output by the second power supply module 120 .
  • the multiple power amplifiers may be connected in series, the input end of the first stage power amplifier is connected to the radio frequency generating circuit to receive radio frequency signals, and the output end of the first stage power amplifier is connected to the first stage power amplifier.
  • the input end of the second stage power amplifier, and so on, the output end of the last stage power amplifier is connected to the antenna.
  • the output end of the power amplifier can be connected to the antenna through a radio frequency connector.
  • the power control terminals of the multiple power amplifiers are connected to the switch module 210.
  • the switch module 210 transmits the first power supply signal to the power control terminals of the multiple power amplifiers; in the second frequency band mode, the switch module 210 sends the first power supply signal to the power control terminals of the multiple power amplifiers. Two power supply signals are transmitted to the power control terminals of the plurality of power amplifiers.
  • the first amplifying module 310 may have a first frequency band mode and a second frequency band mode, both of which are low frequency operation modes.
  • the first amplifying module 310 may operate in a frequency band of 600MHz-900MHz.
  • the second frequency band mode may be the N28 frequency band.
  • the N28 frequency band has low frequency and low antenna efficiency, so the transmit power requirement of the first amplifier module is relatively high.
  • the first frequency band may be one or more of frequency bands such as B5, B8, B71, and B82.
  • the input end of the first amplifying module 310 may be provided with a switching module, and the switching module is used to switch the frequency band of the signal input to the first amplifying module 310 .
  • the maximum voltage that the first power supply module 110 can output is the first preset voltage.
  • the voltage requirement of the power control terminal of the first amplifying module 310 is greater than the first preset voltage. , that is, the voltage provided by the first power supply module 110 cannot meet the requirements of the first amplifying module 310 in the second frequency band mode.
  • the second power supply module 120 can be switched to supply power to the power control terminal of the first amplifying module 310 through the switch module 210 .
  • the first amplifying module 310 includes: a first power amplifier 311 and a second power amplifier 312 .
  • the power control end of the first power amplifier 311 is connected to the switch module 210 ; the input end of the second power amplifier 312 is connected to the switch module 210 .
  • the output terminal of the first power amplifier 311 and the power control terminal of the second power amplifier 312 are connected to the switch module 210 .
  • the first power supply module 110 may include a step-down function power supply chip (buck function power supply chip), and the input end of the first power supply module 110 may be connected to the battery of the electronic device, for example, the input end of the first power supply module 110 directly The battery is connected, or the input end of the first power module 110 can be connected to a power management chip, and the power management chip is connected to the battery.
  • buck function power supply chip step-down function power supply chip
  • the first power module 110 is provided with a step-down circuit, such as a buck circuit or a charge pump step-down circuit.
  • the input end of the buck circuit is connected to the battery or the power management circuit, and the output end of the buck circuit is connected to the switch module 210 .
  • the buck circuit converts the input high voltage signal into a low voltage signal, and the low voltage signal is used to supply power to the power control terminal of the first amplifying module 310 when the first amplifying module 310 is in the first frequency band mode.
  • the first power supply module 110 may also be provided with a direct-connection path, and the direct-connection path is used to directly transmit the power supply signal to the first amplifying module 310 .
  • the input end of the charge pump step-down circuit is connected to the battery or the power management circuit, and the output end of the charge pump step-down circuit is connected to the switch module 210 .
  • the charge pump step-down circuit converts the input high voltage signal into a low voltage signal, and the low voltage signal is used to supply power to the power control terminal of the first amplifying module 310 when the first amplifying module 310 is in the first frequency band mode.
  • the charge pump step-down circuit can double the step-down of the input power signal.
  • the second power module 120 may include an envelope tracking function power chip.
  • the input end of the second power module 120 may be connected to the battery of the electronic device, or the input end of the second power module 120 may be connected to the power management chip of the electronic device, and the power management chip is connected to the battery.
  • the power supply chip with envelope tracking function can provide a power supply signal with a suitable voltage to the power control terminal of the power amplifying module according to the input signal of the power amplifying module.
  • the envelope tracking technology tracks the envelope of the RF signal by adjusting the power supply voltage of the linear power amplifier, so that the power amplifier module stays near the peak of Power Added Efficiency (PAE) for as long as possible, thereby significantly improving the power back-off efficiency of a linear power amplifier in the region.
  • PAE Power Added Efficiency
  • a feasible envelope tracking power supply may include a linear regulator and a switching regulator, the linear regulator includes a multi-threshold comparator, a first digital control circuit and a power tube unit, the switching regulator includes a second digital control circuit, Drive circuit, power switch tube unit and inductor.
  • the first input end of the first digital control circuit is connected to the first output end of the multi-threshold comparator, the first output end is connected to the first input end of the power tube unit, and the second output end is connected to the first input end of the second digital control circuit
  • the first input end of the drive circuit is connected to the first output end of the second digital control circuit, the first output end is connected to the first input end of the power switch tube unit; the first output end of the power switch tube unit is connected to the input end of the inductor.
  • the output of the second power supply module 120 is an envelope tracking signal. Therefore, when the first amplifying module 310 operates in the second frequency band mode (the voltage provided by the first power supply module 110 is insufficient) , a power control signal may be provided to the first amplifying module 310 through the second power supply module 120 .
  • the radio frequency module 10 provided by the embodiment of the present disclosure can be used for ENDC (E-UTRA NR Dual Connectivity, 4G and 5G dual connectivity technology) communication.
  • ENDC E-UTRA NR Dual Connectivity, 4G and 5G dual connectivity technology
  • a 4G module and a 5G module exist in the radio frequency module 10 at the same time.
  • the power consumption of the power amplifier module (third amplifier module 330) during 4G communication is smaller than that of the power amplifier module (fourth amplifier module 340) during 5G communication.
  • the amplifying module 330 is powered, and the fourth amplifying module 340 can be powered through the second power supply module 120 having the envelope tracking function.
  • the transmit power is small, and can be powered by the first power supply module 110 .
  • the transmit power is large, and can be powered by the second power supply module 120 . That is, the first amplifying module 310 uses the two power supply modules required by the radio frequency module 10 to supply power in a mode, and no additional power supply module is required for power supply, which can save the cost of electronic equipment.
  • the first amplifying module 310 may be a low-frequency power amplifying module (LB PAMID/MMPA), and the operating frequency band of the first amplifying module 310 is 600MHz-900MHz.
  • the second amplifying module 320 may be a medium and high frequency power amplifying module (MHB PAMID/MMPA), and the operating frequency band of the second amplifying module 320 is generally greater than 1.7 GHz.
  • the third amplifying module 330 may be a 4G multi-mode and multi-frequency power amplifying module, the operating frequency bands of the third amplifying module 330 may include B1, B3, and B39, etc., and the fourth amplifying module 340 may be a 5G new air interface power amplifying module (NR PAMID/ PA)
  • the first amplifying module 310 may have multiple working frequency bands
  • the second amplifying module 320 may have multiple working frequency bands
  • the frequency of any working frequency band of the second amplifying module 320 is greater than that of the first amplifying module 320 The frequency of any operating frequency band of the module 310 .
  • the control module 410 is connected to the switch module 210, and the control module 410 is used to detect the working mode of the first amplifying module 310.
  • the control module 410 controls the first switch to be electrically connected to the first power supply
  • the control module 410 controls the first switch to electrically connect the second power module 120 and the first amplifying module 310 .
  • the control module 410 may be a processor of the electronic device or a microprocessor provided in the electronic device, or the like.
  • the control module 410 may detect the current network environment or determine the mode of the first amplifying module 310 according to an instruction provided by the user. For example, if the control module 410 detects that in the current network environment, the operator signal corresponding to the second frequency band mode is strong, it may determine that the first amplifying module 310 needs to work in the second frequency band mode. Or the control module 410 may determine that the first amplifying module 310 needs to work in the first frequency band mode if the operator signal corresponding to the first frequency band mode is strong in the current network environment.
  • control module 410 can determine the working mode of the first amplifying module 310 according to the user's instruction. For example, if it is used to instruct the electronic device to work in the 4G mode, the first amplifying module 310 can work in the first frequency band mode, and the user instructs the electronic device to work. In the 5G mode, the first amplifying module 310 can work in the second frequency band mode.
  • the switch module 210 is respectively connected to the first amplifier module 310 , the control module 410 , the first power module 110 and the second power module 120 .
  • the switch module 210 When the first amplifier module 310 operates in the first frequency band mode, the switch module 210 is electrically connected to the first power module 110 and the first amplifying module 310.
  • the first amplifying module 310 works in response to the first power supply signal.
  • the switch module 210 When the first amplifying module 310 works in the second frequency band mode, the switch module 210 is electrically connected to the second power supply module 120 and the second amplifying module 320.
  • An amplification module 310 operates in response to the second power supply signal.
  • the switch module 210 may include a SPDT switch 211 , the common terminal of the SPDT switch 211 is connected to the first amplifying module 310 , and the first The throw terminal is connected to the first power module 110 , the second throw terminal of the SPDT switch 211 is connected to the second power module 120 , and the control terminal of the SPDT switch 211 is connected to the control module 410 .
  • the SPDT switch 211 is turned on according to the control signal sent by the control module 410.
  • the control module 410 detects that the first amplification module 310 is in the first frequency band mode, the control module 410 sends the first control signal to the SPDT switch 211, The SPDT switch 211 electrically connects the first power supply module 110 and the first amplification module 310 in response to the first control signal, and the first power supply module 110 provides the first power supply signal to the power control terminal of the first amplification module 310; when the control module 410 detects that When the first amplifying module 310 is in the second frequency band mode, the control module 410 sends a second control signal to the SPDT switch 211, and the SPDT switch 211 electrically connects the second power module 120 and the first amplifying module 310 in response to the second control signal , the second power supply module 120 provides the second power supply signal to the power control terminal of the first amplifying module 310 .
  • the switch module 210 may include: a first switch unit 212 and a second switch unit 213 , and the first end of the first switch unit 212 is connected to the first power module 110 , the second end of the first switch unit 212 is connected to the first amplifying module 310, the control end of the first switch unit 212 is connected to the control module 410; the first end of the second switch unit 213 is connected to the second power module 120, and the second switch unit The second end of 213 is connected to the first amplifying module 310 , and the control end of the second switch unit 213 is connected to the control module 410 .
  • the control module 410 When the control module 410 detects that the first amplifying module 310 is in the first frequency band mode, the control module 410 sends a first control signal to the control terminal of the first switch unit 212, and the first switch unit 212 responds to the first control signal to electrically connect to the first power supply module 110 and the first amplification module 310, the first power supply module 110 provides the first power supply signal to the power control terminal of the first amplification module 310; when the control module 410 detects that the first amplification module 310 is in the second frequency band mode, the control module 410 Send a second control signal to the control terminal of the second switch unit 213, the second switch unit 213 responds to the second control signal to electrically connect the second power module 120 and the first amplifying module 310, and the second power module 120 sends the first amplifying module 310 The power control terminal provides the second power supply signal.
  • the first switch unit 212 may include a first MOS transistor
  • the second switch unit 213 may include a second MOS transistor.
  • the first end of the first MOS tube is connected to the first power module 110, the second end of the first MOS tube is connected to the first amplifying module 310, the control end of the first MOS tube is connected to the control module 410; the first end of the second MOS tube
  • the second end of the second MOS transistor connected to the second power module 120 is connected to the first amplifying module 310 , and the control end of the second MOS transistor is connected to the control module 410 .
  • the control module 410 When the control module 410 detects that the first amplifying module 310 is in the first frequency band mode, the control module 410 sends a first control signal to the control terminal of the first MOS transistor, and the first MOS transistor is electrically connected to the first power supply module in response to the first control signal 110 and the first amplifying module 310, the first power supply module 110 provides the first power supply signal to the power control terminal of the first amplifying module 310; when the control module 410 detects that the first amplifying module 310 is in the second frequency band mode, the control module 410 sends The control terminal of the second MOS transistor sends a second control signal, the second MOS transistor electrically connects the second power supply module 120 and the first amplifying module 310 in response to the second control signal, and the second power supply module 120 sends the power control terminal of the first amplifying module 310 A second power supply signal is provided.
  • both the first MOS transistor and the second MOS transistor have a first end, a second end and a control end.
  • the first end of the MOS tube may be the source of the MOS tube
  • the second end of the MOS tube may be the drain of the MOS tube
  • the control end of the MOS tube may be the gate of the MOS tube
  • the first end of the MOS tube may be the gate of the MOS tube
  • the terminal may be the drain of the MOS tube
  • the second terminal of the MOS tube may be the source of the MOS tube
  • the control terminal of the MOS tube may be the gate of the MOS tube.
  • the first MOS transistor and the second MOS transistor provided in the embodiment of the present disclosure may be N-type MOS transistors, and the control signal output by the control module 410 may be a high-level signal, and the first MOS transistor and the second MOS transistor respond to the high level signal.
  • the level signal is turned on; or the first MOS transistor and the second MOS transistor may be P-type MOS transistors, and the control signal output by the control module 410 may be a low-level signal, and the first MOS transistor and the second MOS transistor respond to this The low level signal is turned on.
  • the types of the first MOS transistor and the second MOS transistor may also be different, which are not specifically limited in this embodiment of the present disclosure.
  • the first switch unit 212 and the second switch unit 213 may also be other types of switches, such as thin film transistors, CMOS transistors, electromagnetic switches or relays, etc.
  • a depletion transistor which is not specifically limited in this exemplary embodiment.
  • the first power supply module 110 provides the first power supply signal
  • the second power supply module 120 provides the second power supply signal
  • the switch module 210 operates in the first frequency band mode when the first amplifying module 310
  • the first power supply module 110 and the first amplification module 310 are electrically connected, the first amplification module 310 works in response to the first power supply signal, and the switch module 210 is electrically connected to the second power supply module 120 and the first power supply module 310 when the first amplification module 310 works in the second frequency band mode.
  • the second amplifying module 320 and the first amplifying module 310 work in response to the second power supply signal, realizing the operation of supporting multiple frequency band modes through the same amplifying module, which can reduce the cost of the electronic device and facilitate the thinning of the electronic device.
  • the first power supply module 110 supplies power to the first amplifying module 310
  • the second power supply module 120 supplies power to the second amplifying module 320.
  • the reduction of low power is realized.
  • the envelope tracking power supply under high power is realized, which is beneficial to reduce the cost of the power supply and further reduce the cost of electronic equipment.
  • An exemplary embodiment of the present disclosure further provides a control method for a radio frequency module.
  • the control method for a radio frequency module may include the following steps:
  • Step S710 detecting the working mode of the first amplifying module
  • Step S720 when the working mode of the first amplifying module is the first frequency band mode, the switch module is electrically connected to the first power supply module and the first amplifying module, so as to provide the first power supply signal to the first amplifying module;
  • Step S730 when the working mode of the first amplifying module is the second frequency band mode, the switch module is electrically connected to the second power supply module and the first amplifying module to provide the second power supply signal to the first amplifying module, and the second frequency band mode
  • the transmit power is greater than the first frequency band mode, and the voltage of the second power supply signal is greater than the voltage of the first power supply signal.
  • the switch module 210 is controlled to electrically connect the first power supply module 110 and the first power supply module 110 when the first amplifying module 310 works in the first frequency band mode.
  • An amplifying module 310 the first amplifying module 310 operates in response to the first power supply signal, and controls the switch module 210 to electrically connect the second power supply module 120 and the second amplifying module 320 when the first amplifying module 310 operates in the second frequency band mode, the first The amplifying module 310 operates in response to the second power supply signal, so that the same amplifying module supports multiple frequency band modes, which can reduce the cost of the electronic device and facilitate the thinning of the electronic device.
  • step S710 the working mode of the first amplifying module 310 can be detected.
  • the operation mode of the first amplifying module 310 can be detected by the control module 410, and the control module 410 can detect the current network environment or determine the mode of the first amplifying module 310 according to an instruction provided by the user. For example, if the control module 410 detects that in the current network environment, the operator signal corresponding to the second frequency band mode is strong, it may determine that the first amplifying module 310 needs to work in the second frequency band mode. Or the control module 410 may determine that the first amplifying module 310 needs to work in the first frequency band mode if the operator signal corresponding to the first frequency band mode is strong in the current network environment. Or the control module 410 can determine the working mode of the first amplifying module 310 according to the user's instruction.
  • the first amplifying module 310 can work in the first frequency band mode, and the user instructs the electronic device to work. In the 5G mode, the first amplifying module 310 can work in the second frequency band mode.
  • step S970 when the working mode of the first amplifying module 310 is the first frequency band mode, the switch module 210 may be used to electrically connect the first power supply module 110 and the first amplifying module 310 to reduce the voltage of the power supply signal and obtain the The first power supply signal is provided to the first amplifying module 310 .
  • the switch module 210 when the switch module 210 includes the SPDT switch 211, the SPDT switch 211 is electrically connected according to the control signal sent by the control module 410, and when the control module 410 detects that the first amplification module 310 is in the first frequency band mode, the control module 410 sends a first control signal to the SPDT switch 211, the SPDT switch 211 electrically connects the first power supply module 110 and the first amplification module 310 in response to the first control signal, and the first power supply module 110 controls power to the first amplification module 310 The terminal provides the first power supply signal.
  • the switch module 210 includes the first switch unit 212 and the second switch unit 213
  • the control module 410 detects that the first amplifier module 310 is in the first frequency band mode
  • the control module 410 sends the first control to the control terminal of the first switch unit 212 signal
  • the first switch unit 212 electrically connects the first power module 110 and the first amplifying module 310 in response to the first control signal
  • the first power module 110 provides the first power supply signal to the power control terminal of the first amplifying module 310 .
  • step S730 when the working mode of the first amplifying module 310 is the second frequency band mode, the switch module 210 can be used to electrically connect the second power supply module 120 and the first amplifying module 310, so as to perform envelope tracking processing on the power supply signal.
  • the obtained second power supply signal is provided to the first amplifying module 310 .
  • the switch module 210 includes the SPDT switch 211
  • the control module 410 detects that the first amplification module 310 is in the second frequency band mode
  • the control module 410 sends a second control signal to the SPDT switch 211
  • the SPDT switch 211 electrically connects the second power supply module 120 and the first amplifying module 310 in response to the second control signal
  • the second power supply module 120 provides the second power supply signal to the power control terminal of the first amplifying module 310 .
  • the switch module 210 includes the SPDT switch 211
  • the control module 410 detects that the first amplifier module 310 is in the second frequency band mode
  • the control module 410 sends a second control signal to the control terminal of the second switch unit 213, and the second switch
  • the unit 213 electrically connects the second power supply module 120 and the first amplifying module 310 in response to the second control signal, and the second power supply module 120 provides the second power supply signal to the power control terminal of the first amplifying module 310 .
  • An embodiment of the present disclosure further provides an electronic device.
  • the electronic device includes the above-mentioned radio frequency module 10 .
  • the first power supply module 110 provides the first power supply signal
  • the second power supply module 120 provides the second power supply signal
  • the switch module 210 is electrically connected when the first amplification module 310 operates in the first frequency band mode
  • the switch module 210 is electrically connected to the second power supply module 120 and the second power supply module 210 when the first amplifying module 310 works in the second frequency band mode
  • the amplifying module 320 and the first amplifying module 310 work in response to the second power supply signal, realizing the operation of supporting multiple frequency band modes through the same amplifying module, which can reduce the cost of the electronic device and facilitate the thinning of the electronic device.
  • the first power supply module 110 supplies power to the first amplifying module 310
  • the second power supply module 120 supplies power to the second amplifying module 320.
  • the reduction of low power is realized.
  • the envelope tracking power supply under high power is realized, which is beneficial to reduce the cost of the power supply and further reduce the cost of electronic equipment.
  • the electronic devices in the embodiments of the present disclosure may be electronic devices with wireless communication functions, such as mobile phones, tablet computers, electronic readers, navigators, vehicle computers, notebook computers, wearable devices, and smart home appliances.
  • the electronic device is described in detail below by taking the electronic device as a mobile phone as an example:
  • the electronic device provided by the embodiment of the present disclosure further includes a display screen 60 , a main board 30 , a battery 40 , and a back cover 50 .
  • the display screen 60 is installed on the frame 20 to form a display surface of the terminal device, and the display screen 60 serves as the front shell of the electronic device.
  • the back cover 50 is pasted on the frame by double-sided adhesive tape, and the display screen 60 , the frame 20 and the back cover 50 form an accommodation space for accommodating other electronic components or functional modules of the electronic device.
  • the display screen 60 forms a display surface of the electronic device, and is used to display information such as images and texts.
  • the display screen 60 may be a liquid crystal display (Liquid Crystal Display, LCD) or an organic light-emitting diode display (Organic Light-Emitting Diode, OLED) and other types of display screens.
  • a glass cover plate may be provided on the display screen 60 .
  • the glass cover can cover the display screen 60 to protect the display screen 60 and prevent the display screen 60 from being scratched or damaged by water.
  • the display screen 60 may include a display area 61 and a non-display area 62 .
  • the display area 61 performs the display function of the display screen 60 for displaying information such as images and texts.
  • the non-display area 62 does not display information.
  • the non-display area 62 can be used to set functional modules such as cameras, receivers, and proximity sensors.
  • the non-display area 62 may include at least one area located above and below the display area 61.
  • the display screen 60 may be a full screen. At this time, the display screen 60 can display information in a full screen, so that the electronic device has a larger screen ratio.
  • the display screen 60 includes only the display area 61 and does not include the non-display area. At this time, functional modules such as cameras and proximity sensors in the electronic device can be hidden under the display screen 60, and the fingerprint recognition module of the electronic device can be arranged on the back of the electronic device.
  • the frame 20 may be a hollow frame structure.
  • the material of the frame 20 may include metal or plastic.
  • the main board 30 is installed inside the above-mentioned accommodation space.
  • the main board 30 can be installed on the frame 20 and accommodated in the above-mentioned accommodation space together with the frame 20 .
  • the main board 30 is provided with a ground point to realize the grounding of the main board 30 .
  • the main board 30 may be integrated with one or more functional modules such as a motor, a microphone, a speaker, a receiver, a headphone interface, a universal serial bus interface (USB interface), a camera, a proximity sensor, an ambient light sensor, a gyroscope, and a processor.
  • the display screen 60 may be electrically connected to the main board 30 .
  • the main board 30 is provided with a display control circuit.
  • the display control circuit outputs electrical signals to the display screen 60 to control the display screen 60 to display information.
  • the radio frequency module can be disposed on the mainboard 30 and can be connected to the battery 40 .
  • the output end of the radio frequency module can be connected to an antenna, and the antenna can be arranged on the main board, the back cover or the frame.
  • the battery 40 is installed inside the above-mentioned accommodation space.
  • the battery 40 can be mounted on the frame 20 and housed in the above-mentioned storage space together with the frame 20 .
  • the battery 40 may be electrically connected to the main board 30 to enable the battery 40 to supply power to the electronic device.
  • the mainboard 30 may be provided with a power management circuit.
  • the power management circuit is used to distribute the voltage provided by the battery 40 to the various electronic components in the electronic device.
  • the back cover 50 is used to form the outer contour of the electronic device.
  • the rear cover 50 may be integrally formed.
  • structures such as a rear camera hole, a fingerprint identification module mounting hole and the like may be formed on the back cover 50 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

一种射频模组及其控制方法、电子设备,射频模组包括:第一放大模块、第一电源模块、第二电源模块和开关模块,第一放大模块具有第一频段模式和第二频段模式,第二频段模式的发射功率大于第一频段模式的发射功率;第一电源模块用于输出第一供电信号;第二电源模块用于输出第二供电信号,第二供电信号的电压大于第一供电信号的电压;开关模块分别连接第一放大模块、第一电源模块和第二电源模块,当第一放大模块工作于第一频段模式时开关模块电连接第一电源模块和第一放大模块,当第一放大模块工作于第二频段模式时开关模块电连接第二电源模块和第一放大模块。

Description

射频模组及其控制方法、电子设备
交叉引用
本公开要求于2020年12月18日提交的申请号为202011511722.5名称为“射频模组及其控制方法、电子设备”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及电子设备技术领域,具体而言,涉及一种射频模组及其控制方法、电子设备。
背景技术
随着技术的发展和进步,电子设备通信时用到的射频频段越来越多。在电子设备的射频模组中,通常通过功率放大器对射频信号进行放大。随着电子设备工作时需要的射频频段越来越多,射频模组中的功率放大器和电源模块数量也随之增加,较多的功率放大器和电源模块会提高电子设备的成本,并且不利于电子设备的轻薄化。
在所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
本公开的目的在于提供一种射频模组及其控制方法、电子设备,进而至少一定程度上解决由于相关技术的缺陷而导致的一个或多个问题。
根据本公开的第一方面,提供一种射频模组,所述射频模组包括:
第一放大模块,具有第一频段模式和第二频段模式,所述第二频段模式的发射功率大于所述第一频段模式的发射功率;
第一电源模块,用于输出第一供电信号;
第二电源模块,用于数输出第二供电信号,所述第二供电信号的电压大于所述第二供电信号的电压;
开关模块,分别连接所述第一放大模块、所述第一电源模块和所述第 二电源模块,当所述第一放大模块工作于第一频段模式时所述开关模块电连接所述第一电源模块和所述第一放大模块,所述第一放大模块响应所述第一供电信号工作,当所述第一放大模块工作于第二频段模式时所述开关模块电连接所述第二电源模块和所述第二放大模块,所述第一放大模块响应所述第二供电信号工作。
根据本公开的第二方面,提供一种射频模组的控制方法,所述射频模组的控制方法包括:
检测第一放大模块的工作模式;
当所述第一放大模块的工作模式为第一频段模式时,开关模块电连接第一电源模块和第一放大模块,以将第一供电信号提供给所述第一放大模块;
当所述第一放大模块的工作模式为第二频段模式时,开关模块电连接第二电源模块和第一放大模块,以第二供电信号提供给所述第一放大模块,所述第二频段模式的发射功率大于所述第一频段模式,第二供电信号的电压大于第一供电信号的电压。
根据本公开的第二方面,提供一种电子设备,所述电子设备包括上述的射频模组。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开示例性实施例提供的第一种射频模组的示意图;
图2为本公开示例性实施例提供的第二种射频模组的示意图;
图3为本公开示例性实施例提供的第三种射频模组的示意图;
图4为本公开示例性实施例提供的第四种射频模组的示意图;
图5为本公开示例性实施例提供的第五种射频模组的示意图;
图6为本公开示例性实施例提供的第六种射频模组的示意图;
图7为本公开示例性实施例提供的一种射频模组的控制方法的流程图;
图8为本公开示例性实施例提供的一种电子设备的示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
5G移动带宽增强(eMBB)应用场景下,几何式增加的海量数据需求对个人移动终端数据通信能力提出了前所未有的要求,5G NSA(非独立组网)和SA(独立组网)两大部署方案在提升通信速率方面都有关键方案加持,比如NSA下的1T4R(1路发射4路接收)和SA下的2T4R(2路发射4路接收)都是为了提升通讯速率,尤其是下行通信速率,在个人大数据应用比如短视频、视频电影等应用,对于下行速率要求更高。
由于目前5G基站覆盖范围小,所以覆盖LTE相同面积,需要的5G基站数量在4G基站的3倍以上,建网成本骤然增加。由于全球范围内经济发展不均,以及各国不同的4G到5G演进策略,所以全球范围内 ENDC(E-UTRA NR Dual Connectivity,4G和5G双连接技术)方案将会在未来的一段时间内成为重要的5G覆盖方案,即采用4G和5G双连接的方案保证在5G信号不稳定或者未覆盖区域的信号连续性。
本公开示例性实施例首先提供一种射频模组10,如图1所示,射频模组10包括:第一放大模块310、第一电源模块110、第二电源模块120和开关模块210,第一放大模块310具有第一频段模式和第二频段模式,第二频段模式的发射功率大于第一频段模式的发射功率;第一电源模块110用于输出第一供电信号;第二电源模块120用于输出第二供电信号,第二供电信号的电压大于第一供电信号电压;开关模块210分别连接第一放大模块310、第一电源模块110和第二电源模块120,当第一放大模块310工作于第一频段模式时开关模块210电连接第一电源模块110和第一放大模块310,第一放大模块310响应第一供电信号工作,当第一放大模块310工作于第二频段模式时开关模块210电连接第二电源模块120和第二放大模块320,第一放大模块310响应第二供电信号工作。
其中,第一放大模块310在第二频段模式的发射功率大于第一频段模式的发射功率,也即是第一放大模块在第二频段模式的电压需求大于第一频段模式的电压需求。
本公开实施例提供的射频模组10,第一放大模块110具有第一频段模式和第二频段模式,第二频段模式的发射功率大于第一频段模式的发射功率,故而第二频段模式的电压需求大于第一频段模式的电压需求。通过第一电源模块110提供第一供电信号,第二电源模块120提供第二供电信号,第二供电信号的电压大于第一供电信号的电压,开关模块210在第一放大模块310工作于第一频段模式时电连接第一电源模块110和第一放大模块310,第一放大模块310响应第一供电信号工作,开关模块210在第一放大模块310工作于第二频段模式时电连接第二电源模块120和第二放大模块320,第一放大模块310响应第二供电信号工作,实现了第一放大模块不同频段模式下的供电信号的匹配,通过同一放大模块支持多个频段模式 的工作,能降低电子设备的成本,并且有利于电子设备的轻薄化。
并且在第一频段模式下通过第一电源模块110向第一放大模块310供电,在第二频段模式下通过第二电源模块120向第二放大模块320供电,一方面实现了低功率下的降压供电,另一方面实现了高功率下包络跟踪供电,有利于降低电源成本,进而进一步的降低电子设备的成本。
进一步的,如图2所示,本公开实施例提供的射频模组10还可以包括:控制模块410,控制模块410和开关模块210连接,控制模块410用于检测第一放大模块310的工作模式,当第一放大模块310工作于第一频段模式时,控制模块410控制第一开关电连接第一电源模块110和第一放大模块310,当第一放大模块310工作于第二频段模式时,控制模块410控制第一开关电连接第二电源模块120和第一放大模块310。
如图3所示,射频模组10还包括:第二放大模块320、第三放大模块330和第四放大模块340,第二放大模块320和第二电源模块120连接,第二放大模块320的工作频段的频率大于第一放大模块310的工作频段的频率。第三放大模块330和第一电源模块110连接;第四放大模块340和第二电源模块120连接。其中,第一放大模块310可以是低频率功率放大模组(LB PAMID/MMPA),第二放大模块320可以是中高频率功率放大模组(MHB PAMID/MMPA),第三放大模块330可以是4G多模多频功率放大器(B1/3/39MMPA),第四放大模块340可以是5G功率放大模组(NR PAMID/PA)。
下面将对本公开实施例提供的射频模组10的各部分进行详细说明:
第一电源模块110和第二电源模块120分别接收电源信号,第一电源模块110用于对电源信号进行降压以输出第一供电信号,第二电源模块120用于对电源信进行包络处理以输出第二供电信号。
第一放大模块310可以包括一个或多个功率放大器。当第一放大模块310包括一个功率放大器时,该功率放大器的输入端可以和射频发生电路连接接收射频信号,该功率放大器的输出端可以和天线连接,比如功率放 大器的输出端可以通过射频连接座和天线连接,功率放大器的功率控制端和开关模块210连接,以接收第一电源模块110输出的第一供电信号或者第二电源模块120输出的第二供电信号。
当第一放大模块310包括多个功率放大器时,多个功率放大器可以是串联连接,第一级功率放大器的输入端和射频发生电路连接,接收射频信号,第一级功率放大器的输出端连接第二级功率放大器的输入端,依次类推,最后一级功率放大器的输出端连接天线,比如功率放大器的输出端可以通过射频连接座和天线连接。多个功率放大器的功率控制端连接开关模块210,在第一频段模式时,开关模块210将第一供电信号传输至多个功率放大器的功率控制端;在第二频段模式时,开关模块210将第二供电信号传输至多个功率放大器的功率控制端。
第一放大模块310可以具有第一频段模式和第二频段模式,第一频段模式和第二频段模式均为低频率工作模式,比如,第一放大模块310可以工作于600MHz-900MHz的频段。第二频段模式可以是N28频段,N28频段频率低,天线的效率较低,所以对第一放大模块的发射功率要求比较高。第一频段可以是B5、B8、B71和B82等频段中的一个或多个。第一放大模块310的输入端可以设置有切换模块,切换模块用于切换输入第一放大模块310的信号的频段。
示例的,第一电源模块110能够输出的最大电压为第一预设电压,当第一放大模块310工作于第二频段模式时,第一放大模块310功率控制端的电压需求大于第一预设电压,也即是第一电源模块110提供的电压无法满足第二频段模式下第一放大模块310的需求。此时,可以通过开关模块210切换第二电源模块120向第一放大模块310的功率控制端供电。
如图4所示,第一放大模块310包括:第一功率放大器311和第二功率放大器312,第一功率放大器311的功率控制端连接所述开关模块210;第二功率放大器312的输入端连接所述第一功率放大器311的输出端,第二功率放大器312的功率控制端连接所述开关模块210。
如图6所示,第一电源模块110可以包括降压功能电源芯片(BUCK功能电源芯片),第一电源模块110的输入端可以连接电子设备的电池,比如第一电源模块110的输入端直接连接电池,或者第一电源模块110的输入端可以和电源管理芯片连接,电源管理芯片和电池连接。
第一电源模块110内设置有降压电路,比如BUCK电路或者电荷泵降压电路等。BUCK电路的输入端连接电池或者电源管理电路,BUCK电路的输出端连接开关模块210。BUCK电路将输入的高电压信号转为低压信号,该低压信号是用于第一放大模块310处于第一频段模式时对第一放大模块310的功率控制端供电。当然,在实际应用中第一电源模块中110也可以设置有直连通路,直连通路用于将电源信号直接传输至第一放大模块310。
电荷泵降压电路的输入端连接电池或者电源管理电路,电荷泵降压电路的输出端连接开关模块210。电荷泵降压电路将输入的高电压信号转为低压信号,该低压信号是用于第一放大模块310处于第一频段模式时对第一放大模块310的功率控制端供电。电荷泵降压电路可以对输入的电源信号进行成倍的降压。
第二电源模块120可以包括包络跟踪功能电源芯片。第二电源模块120的输入端可以和电子设备的电池连接,或者第二电源模块120的输入端可以和电子设备的电源管理芯片连接,电源管理芯片和电池连接。
包络跟踪功能电源芯片能够实现根据功率放大模块的输入信号向功率放大模块的功率控制端提供合适电压的电源信号。包络跟踪技术通过调节线性功率放大器的电源电压来跟踪射频信号的包络,使功率放大模块尽可能长时间地处于附加功率效率(Power Added Efficiency,PAE)峰值附近,从而显著的提升功率回退区的线性功率放大器的效率。
示例的,一种可行的包络跟踪电源可以包括线性调节器和开关调节器,线性调节器包括多阈值比较器、第一数字控制电路和功率管单元,开关调节器包括第二数字控制电路、驱动电路、功率开关管单元和电感。第一数 字控制电路的第一输入端连接多阈值比较器的第一输出端,第一输出端连接功率管单元的第一输入端,第二输出端连接第二数字控制电路的第一输入端;驱动电路的第一输入端连接第二数字控制电路的第一输出端,第一输出端连接功率开关管单元的第一输入端;功率开关管单元的第一输出端连接电感的输入端。
由于第二电源模块120为包络跟踪电源,第二电源模块120输出的为包络跟踪信号,因此当第一放大模块310工作于第二频段模式(第一电源模块110提供的电压不足)时,可以通过第二电源模块120向第一放大模块310提供功率控制信号。
本公开实施例提供的射频模组10,可以用于ENDC(E-UTRA NR Dual Connectivity,4G和5G双连接技术)通信。在此基础上,射频模组10中同时存在4G模组和5G模组。通常4G通信时功率放大模块(第三放大模块330)的功耗小于5G通信时功率放大模块(第四放大模块340)的功耗,因此可以通过成本较低的第一电源模块110向第三放大模块330供电,可以通过具有包络跟踪功能的第二电源模块120向第四放大模块340供电。第一放大模块310工作于第一频段模式时发射功率较小,可以通过第一电源模块110供电。第一放大模块310工作于第二频段模式时发射功率大,可以通过第二电源模块120供电。也即是第一放大模块310使用了射频模组10所必须的两个电源模块分模式供电,不需要额外设置电源模块供电,能够节约电子设备的成本。
示例的,第一放大模块310可以是低频率功率放大模块(LB PAMID/MMPA),第一放大模块310的工作频段为600MHz-900MHz。第二放大模块320可以是中高频率功率放大模块(MHB PAMID/MMPA),第二放大模块320的工作频段通常大于1.7GHz。第三放大模块330可以是4G多模多频功率放大模块,第三放大模块330的工作频段可以包括B1、B3和B39等,第四放大模块340可以是5G新空口功率放大模块(NR PAMID/PA)
需要说明的是,本公开实施例中第一放大模块310可以具有多个工作 频段,第二放大模块320可以具有多个工作频段,第二放大模块320的任意一个工作频段的频率大于第一放大模块310的任意一个工作频段的频率。
控制模块410和开关模块210连接,控制模块410用于检测第一放大模块310的工作模式,当第一放大模块310工作于第一频段模式时,控制模块410控制第一开关电连接第一电源模块110和第一放大模块310,当第一放大模块310工作于第二频段模式时,控制模块410控制第一开关电连接第二电源模块120和第一放大模块310。
控制模块410可以是电子设备的处理器或者设置于电子设备中的微处理器等。控制模块410可以检测当前的网络环境或者根据用户提供的指令确定第一放大模块310的模式。比如,控制模块410检测到当前网络环境下,第二频段模式对应的运营商信号较强,则可确定第一放大模块310需要工作于第二频段模式。或者控制模块410检测到当前网络环境下,第一频段模式对应的运营商信号较强,则可确定第一放大模块310需要工作于第一频段模式。或者控制模块410可以根据用户的指令确定第一放大模块310的工作模式,比如,用于指令电子设备工作于4G模式,则第一放大模块310可以工作于第一频段模式,用户指令电子设备工作于5G模式,则第一放大模块310可以工作于第二频段模式。
开关模块210分别连接第一放大模块310、控制模块410、第一电源模块110和第二电源模块120,当第一放大模块310工作于第一频段模式时开关模块210电连接第一电源模块110和第一放大模块310,第一放大模块310响应第一供电信号工作,当第一放大模块310工作于第二频段模式时开关模块210电连接第二电源模块120和第二放大模块320,第一放大模块310响应第二供电信号工作。
在本公开一可行的实施方式中,如图4所示,开关模块210可以包括单刀双掷开关211,单刀双掷开关211的公共端连接第一放大模块310,单刀双掷开关211的第一掷位端连接第一电源模块110,单刀双掷开关211的第二掷位端连接第二电源模块120,单刀双掷开关211的控制端连接控 制模块410。
单刀双掷开关211根据控制模块410发送的控制信号进行导通,当控制模块410检测到第一放大模块310处于第一频段模式时,控制模块410向单刀双掷开关211发送第一控制信号,单刀双掷开关211响应第一控制信号电连接第一电源模块110和第一放大模块310,第一电源模块110向第一放大模块310功率控制端提供第一供电信号;当控制模块410检测到第一放大模块310处于第二频段模式时,控制模块410向单刀双掷开关211发送第二控制信号,单刀双掷开关211响应第二控制信号电连接第二电源模块120和第一放大模块310,第二电源模块120向第一放大模块310功率控制端提供第二供电信号。
在本公开另一可行的实施方式中,如图5所示,开关模块210可以包括:第一开关单元212和第二开关单元213,第一开关单元212的第一端连接第一电源模块110,第一开关单元212的第二端连接第一放大模块310,第一开关单元212的控制端连接控制模块410;第二开关单元213的第一端连接第二电源模块120,第二开关单元213的第二端连接第一放大模块310,第二开关单元213的控制端连接控制模块410。
当控制模块410检测到第一放大模块310处于第一频段模式时,控制模块410向第一开关单元212控制端发送第一控制信号,第一开关单元212响应第一控制信号电连接第一电源模块110和第一放大模块310,第一电源模块110向第一放大模块310功率控制端提供第一供电信号;当控制模块410检测到第一放大模块310处于第二频段模式时,控制模块410向第二开关单元213的控制端发送第二控制信号,第二开关单元213响应第二控制信号电连接第二电源模块120和第一放大模块310,第二电源模块120向第一放大模块310功率控制端提供第二供电信号。
其中,第一开关单元212可以包括第一MOS管,第二开关单元213可以包括第二MOS管。第一MOS管的第一端连接第一电源模块110,第一MOS管的第二端连接第一放大模块310,第一MOS管的控制端连接控 制模块410;第二MOS管的第一端连接第二电源模块120第二MOS管的第二端连接第一放大模块310,第二MOS管的控制端连接控制模块410。
当控制模块410检测到第一放大模块310处于第一频段模式时,控制模块410向第一MOS管的控制端发送第一控制信号,第一MOS管响应第一控制信号电连接第一电源模块110和第一放大模块310,第一电源模块110向第一放大模块310功率控制端提供第一供电信号;当控制模块410检测到第一放大模块310处于第二频段模式时,控制模块410向第二MOS管的控制端发送第二控制信号,第二MOS管响应第二控制信号电连接第二电源模块120和第一放大模块310,第二电源模块120向第一放大模块310功率控制端提供第二供电信号。
需要说明的是,第一MOS管和第二MOS管均具有第一端、第二端和控制端。其中,MOS管的第一端可以是MOS管的的源极,MOS管的第二端可以是MOS管的漏极,MOS管的控制端可以是MOS管的栅极;或者MOS管的第一端可以是MOS管的的漏极,MOS管的第二端可以是MOS管的源极极,MOS管的控制端可以是MOS管的栅极。
本公开实施例提供的第一MOS管和第二MOS管可以是N型MOS管,此时控制模块410输出的控制信号可以是高电平信号,第一MOS管和第二MOS管响应该高电平信号导通;或者第一MOS管和第二MOS管可以是P型MOS管,此时控制模块410输出的控制信号可以是低电平信号,第一MOS管和第二MOS管响应该低电平信号导通。当然在实际应用中第一MOS管和第二MOS管的类型也可以不相同,本公开实施例对此不做具体限定。或者在实际应用中,第一开关单元212和第二开关单元213也可以是其他类型的开关,比如薄膜晶体管、CMOS管、电磁开关或者继电器等,此外,各个开关管还可以为增强型晶体管或者耗尽型晶体管,本示例实施方式对此不作具体限定。
本公开实施例提供的射频模组10,通过第一电源模块110提供第一供电信号,第二电源模块120提供第二供电信号,开关模块210在第一放大 模块310工作于第一频段模式时电连接第一电源模块110和第一放大模块310,第一放大模块310响应第一供电信号工作,开关模块210在第一放大模块310工作于第二频段模式时电连接第二电源模块120和第二放大模块320,第一放大模块310响应第二供电信号工作,实现了通过同一放大模块支持多个频段模式的工作,能降低电子设备的成本,并且有利于电子设备的轻薄化。
并且在第一频段模式下通过第一电源模块110向第一放大模块310供电,在第二频段模式下通过第二电源模块120向第二放大模块320供电,一方面实现了低功率下的降压供电,另一方面实现了高功率下包络跟踪供电,有利于降低电源成本,进而进一步的降低电子设备的成本。
本公开示例性实施例还提供一种射频模组的控制方法,如图7所示,射频模组的控制方法可以包括如下步骤:
步骤S710,检测第一放大模块的工作模式;
步骤S720,当第一放大模块的工作模式为第一频段模式时,开关模块电连接第一电源模块和第一放大模块,以将第一供电信号提供给第一放大模块;
步骤S730,当第一放大模块的工作模式为第二频段模式时,开关模块电连接第二电源模块和第一放大模块,以将第二供电信号提供给第一放大模块,第二频段模式的发射功率大于第一频段模式,第二供电信号的电压大于第一供电信号的电压。
本公开实施例提供的射频模组的控制方法,通过检测第一放大模块310的工作模式,控制开关模块210在第一放大模块310工作于第一频段模式时电连接第一电源模块110和第一放大模块310,第一放大模块310响应第一供电信号工作,控制开关模块210在第一放大模块310工作于第二频段模式时电连接第二电源模块120和第二放大模块320,第一放大模块310响应第二供电信号工作,实现了通过同一放大模块支持多个频段模式的工作,能降低电子设备的成本,并且有利于电子设备的轻薄化。
在步骤S710中,可以检测第一放大模块310的工作模式。
其中,可以通过控制模块410检测第一放大模块310的工作模式,控制模块410可以检测当前的网络环境或者根据用户提供的指令确定第一放大模块310的模式。比如,控制模块410检测到当前网络环境下,第二频段模式对应的运营商信号较强,则可确定第一放大模块310需要工作于第二频段模式。或者控制模块410检测到当前网络环境下,第一频段模式对应的运营商信号较强,则可确定第一放大模块310需要工作于第一频段模式。或者控制模块410可以根据用户的指令确定第一放大模块310的工作模式,比如,用于指令电子设备工作于4G模式,则第一放大模块310可以工作于第一频段模式,用户指令电子设备工作于5G模式,则第一放大模块310可以工作于第二频段模式。
在步骤S970中,当第一放大模块310的工作模式为第一频段模式时,可以利用开关模块210电连接第一电源模块110和第一放大模块310,以将电源信号进行降压后获得的第一供电信号提供给第一放大模块310。
其中,开关模块210包括单刀双掷开关211时,单刀双掷开关211根据控制模块410发送的控制信号进行电连接,当控制模块410检测到第一放大模块310处于第一频段模式时,控制模块410向单刀双掷开关211发送第一控制信号,单刀双掷开关211响应第一控制信号电连接第一电源模块110和第一放大模块310,第一电源模块110向第一放大模块310功率控制端提供第一供电信号。
开关模块210包括第一开关单元212和第二开关单元213时,当控制模块410检测到第一放大模块310处于第一频段模式时,控制模块410向第一开关单元212控制端发送第一控制信号,第一开关单元212响应第一控制信号电连接第一电源模块110和第一放大模块310,第一电源模块110向第一放大模块310功率控制端提供第一供电信号。
在步骤S730中,当第一放大模块310的工作模式为第二频段模式时,可以利用开关模块210电连接第二电源模块120和第一放大模块310,以 将电源信号进行包络跟踪处理后得到的第二供电信号提供给第一放大模块310。
其中,开关模块210包括单刀双掷开关211时,当控制模块410检测到第一放大模块310处于第二频段模式时,控制模块410向单刀双掷开关211发送第二控制信号,单刀双掷开关211响应第二控制信号电连接第二电源模块120和第一放大模块310,第二电源模块120向第一放大模块310功率控制端提供第二供电信号。
开关模块210包括单刀双掷开关211时,当控制模块410检测到第一放大模块310处于第二频段模式时,控制模块410向第二开关单元213的控制端发送第二控制信号,第二开关单元213响应第二控制信号电连接第二电源模块120和第一放大模块310,第二电源模块120向第一放大模块310功率控制端提供第二供电信号。
本公开实施例还提供一种电子设备,如图8所示,电子设备包括上述的射频模组10。
射频模组10包括:第一放大模块310、第一电源模块110、第二电源模块120和开关模块210,第一放大模块310具有第一频段模式和第二频段模式,第二频段模式的发射功率大于第一频段模式的发射功率;第一电源模块110用于对电源信号进行降压,并输出降压后的第一供电信号;第二电源模块120用于对电源信号进行包络跟踪处理,并输出处理后的第二供电信号;开关模块210分别连接第一放大模块310、第一电源模块110和第二电源模块120,当第一放大模块310工作于第一频段模式时开关模块210电连接第一电源模块110和第一放大模块310,第一放大模块310响应第一供电信号工作,当第一放大模块310工作于第二频段模式时开关模块210电连接第二电源模块120和第二放大模块320,第一放大模块310响应第二供电信号工作。
本公开实施例提供的电子设备,通过第一电源模块110提供第一供电信号,第二电源模块120提供第二供电信号,开关模块210在第一放大模 块310工作于第一频段模式时电连接第一电源模块110和第一放大模块310,第一放大模块310响应第一供电信号工作,开关模块210在第一放大模块310工作于第二频段模式时电连接第二电源模块120和第二放大模块320,第一放大模块310响应第二供电信号工作,实现了通过同一放大模块支持多个频段模式的工作,能降低电子设备的成本,并且有利于电子设备的轻薄化。
并且在第一频段模式下通过第一电源模块110向第一放大模块310供电,在第二频段模式下通过第二电源模块120向第二放大模块320供电,一方面实现了低功率下的降压供电,另一方面实现了高功率下包络跟踪供电,有利于降低电源成本,进而进一步的降低电子设备的成本。
本公开实施例中的电子设备可以是手机、平板电脑、电子阅读器、导航仪、车载电脑、笔记本电脑、可穿戴设备和智能家电等具有无线通信功能的电子设备。下面以电子设备为手机为例对电子设备进行详细说明:
本公开实施例提供的电子设备还包括显示屏60、主板30、电池40以及后盖50。其中,显示屏60安装在边框20上,以形成终端设备的显示面,显示屏60作为电子设备的前壳。后盖50通过双面胶粘贴在边框上,显示屏60、边框20与后盖50形成一收容空间,用于容纳电子设备的其他电子元件或功能模块。同时,显示屏60形成电子设备的显示面,用于显示图像、文本等信息。显示屏60可以为液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管显示屏(OrganicLight-Emitting Diode,OLED)等类型的显示屏。
显示屏60上可以设置有玻璃盖板。其中,玻璃盖板可以覆盖显示屏60,以对显示屏60进行保护,防止显示屏60被刮伤或者被水损坏。
显示屏60可以包括显示区域61以及非显示区域62。其中,显示区域61执行显示屏60的显示功能,用于显示图像、文本等信息。非显示区域62不显示信息。非显示区域62可以用于设置摄像头、受话器、接近传感器等功能模块。在一些实施例中,非显示区域62可以包括位于显示区域 61上部和下部的至少一个区域。
显示屏60可以为全面屏。此时,显示屏60可以全屏显示信息,从而电子设备具有较大的屏占比。显示屏60只包括显示区域61,而不包括非显示区域。此时,电子设备中的摄像头、接近传感器等功能模块可以隐藏在显示屏60下方,而电子设备的指纹识别模组可以设置在电子设备的背面。
边框20可以为中空的框体结构。其中,边框20的材质可以包括金属或塑胶。主板30安装在上述收容空间内部。例如,主板30可以安装在边框20上,并随边框20一同收容在上述收容空间中。主板30上设置有接地点,以实现主板30的接地。主板30上可以集成有马达、麦克风、扬声器、受话器、耳机接口、通用串行总线接口(USB接口)、摄像头、接近传感器、环境光传感器、陀螺仪以及处理器等功能模块中的一个或多个。同时,显示屏60可以电连接至主板30。
主板30上设置有显示控制电路。显示控制电路向显示屏60输出电信号,以控制显示屏60显示信息。射频模组可以设置于主板30,并可以和电池40连接。射频模组的输出端可以连接天线,天线可以设于主板、后盖或者边框。
电池40安装在上述收容空间内部。例如,电池40可以安装在边框20上,并随边框20一同收容在上述收容空间中。电池40可以电连接至主板30,以实现电池40为电子设备供电。其中,主板30上可以设置有电源管理电路。电源管理电路用于将电池40提供的电压分配到电子设备中的各个电子元件。
后盖50用于形成电子设备的外部轮廓。后盖50可以一体成型。在后盖50的成型过程中,可以在后盖50上形成后置摄像头孔、指纹识别模组安装孔等结构。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适 应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (20)

  1. 一种射频模组,所述射频模组包括:
    第一放大模块,具有第一频段模式和第二频段模式,所述第二频段模式的发射功率大于所述第一频段模式的发射功率;
    第一电源模块,用于输出第一供电信号;
    第二电源模块,用于输出第二供电信号,所述第二供电信号的电压大于所述第一供电信号的电压;
    开关模块,分别连接所述第一放大模块、所述第一电源模块和所述第二电源模块,当所述第一放大模块工作于第一频段模式时所述开关模块电连接所述第一电源模块和所述第一放大模块,所述第一放大模块响应所述第一供电信号工作,当所述第一放大模块工作于第二频段模式时所述开关模块电连接所述第二电源模块和所述第二放大模块,所述第一放大模块响应所述第二供电信号工作。
  2. 如权利要求1所述的射频模组,所述第一电源模块和所述第二电源模块分别接收电源信号,所述第一电源模块用于对所述电源信号进行降压以输出第一供电信号,所述第二电源模块用于对所述电源信进行包络跟踪处理以输出第二供电信号。
  3. 如权利要求2所述的射频模组,所述第一电源模块包括降压功能电源芯片,所述降压功能电源芯片的输入端连接电子设备的电池。
  4. 如权利要求2所述的射频模组,所述第二电源模块包括包络跟踪功能电源芯片,所述包络跟踪功能电源芯片的输入端连接电子设备的电池。
  5. 如权利要求1所述的射频模组,所述射频模组还包括:
    控制模块,和所述开关模块连接,所述控制模块用于检测所述第一放大模块的工作模式,当所述第一放大模块工作于第一频段模式时,所述控制模块控制所述第一开关电连接所述第一电源模块和所述第一放大模块,当所述第一放大模块工作于第二频段模式时,所述控制模块控制所述第一 开关电连接所述第二电源模块和所述第一放大模块。
  6. 如权利要求5所述的射频模组,所述开关模块包括:
    单刀双掷开关,公共端连接所述第一放大模块,第一掷位端连接所述第一电源模块,第二掷位端连接所述第二电源模块,控制端连接所述控制模块。
  7. 如权利要求5所述的射频模组,所述开关模块包括:
    第一开关单元,第一端连接第一电源模块,第二端连接所述第一放大模块,控制端连接所述控制模块;
    第二开关单元,第一端连接所述第二电源模块,第二端连接所述第一放大模块,控制端连接所述控制模块。
  8. 如权利要求1所述的射频模组,所述第一放大模块包括:
    第一功率放大器,所述第一功率放大器的功率控制端连接所述开关模块;
    第二功率放大器,所述第二功率放大器的输入端连接所述第一功率放大器的输出端,所述第二功率放大器的功率控制端连接所述开关模块。
  9. 如权利要求1所述的射频模组,所述第一放大模块为低频率功率放大模块,所述第一放大模块的工作频段为600MHz-900MHz。
  10. 如权利要求9所述的射频模组,所述第一放大模块的第二频段模式为N28频段模式。
  11. 如权利要求10所述的射频模组,所述第一频段为B5、B8、B71和B82等频段中的一个或多个。
  12. 如权利要求1所述的射频模组,所述射频模块还包括:
    第二放大模块,和所述第二电源模块连接,所述第二放大模块工作频段的频率大于所述第一放大模块工作频段的频率。
  13. 如权利要求12所述的射频模组,所述射频模组还包括:
    第三放大模块,和所述第一电源模块连接;
    第四放大模块,和所述第二电源模块连接。
  14. 如权利要求13所述的射频模组,所述第三放大模块用于B1/3/39频段的功率放大,所述第四放大模块用于5G新空口频段的功率放大。
  15. 一种射频模组的控制方法,所述射频模组的控制方法包括:
    检测第一放大模块的工作模式;
    当所述第一放大模块的工作模式为第一频段模式时,开关模块电连接第一电源模块和第一放大模块,以将第一供电信号提供给所述第一放大模块;
    当所述第一放大模块的工作模式为第二频段模式时,开关模块电连接第二电源模块和第一放大模块,以将第二供电信号提供给所述第一放大模块,所述第二频段模式的发射功率大于所述第一频段模式,所述第二供电信号的电压大于所述第一供电信号的电压。
  16. 如权利要求15所述的射频模组的控制方法,所述第一电源模块和所述第二电源模块分别接收电源信号,所述第一电源模块用于对所述电源信号进行降压以输出第一供电信号,所述第二电源模块用于对所述电源信进行包络跟踪处理以输出第二供电信号。
  17. 如权利要求15所述的射频模组的控制方法,所述第一放大模块的第二频段模式为N28频段模式。
  18. 如权利要求17所述的射频模组的控制方法,所述第一频段为B5、B8、B71和B82等频段中的一个或多个。
  19. 一种电子设备,所述电子设备包括权利要求1-14任一所述的射频模组。
  20. 如权利要求19所述的电子设备,所述电子设备还包括:
    天线,所述天线和第一放大模块连接。
PCT/CN2021/129383 2020-12-18 2021-11-08 射频模组及其控制方法、电子设备 WO2022127438A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011511722.5 2020-12-18
CN202011511722.5A CN114650069A (zh) 2020-12-18 2020-12-18 射频模组及其控制方法、电子设备

Publications (1)

Publication Number Publication Date
WO2022127438A1 true WO2022127438A1 (zh) 2022-06-23

Family

ID=81990918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129383 WO2022127438A1 (zh) 2020-12-18 2021-11-08 射频模组及其控制方法、电子设备

Country Status (2)

Country Link
CN (1) CN114650069A (zh)
WO (1) WO2022127438A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117040549B (zh) * 2023-06-26 2024-08-09 荣耀终端有限公司 射频系统及其改造方法、电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070113363A (ko) * 2006-05-23 2007-11-29 엘지이노텍 주식회사 다중밴드 프론트 앤드모듈
US20090270137A1 (en) * 2008-04-25 2009-10-29 Robert Sorensen Radio frequency communications circuitry with power supply voltage and gain control
CN101836364A (zh) * 2007-11-05 2010-09-15 高通股份有限公司 用于多模式通信的可切换电平电压供应
CN105634417A (zh) * 2016-01-28 2016-06-01 锐迪科微电子(上海)有限公司 多频带射频功率放大器
CN111092621A (zh) * 2019-11-13 2020-05-01 维沃移动通信有限公司 射频电路、控制方法及电子设备
CN111294214A (zh) * 2020-01-21 2020-06-16 Oppo广东移动通信有限公司 供电方法及相关产品

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714852A (zh) * 2009-09-22 2010-05-26 锐迪科微电子(上海)有限公司 双频射频功率放大器电路芯片
US8571498B2 (en) * 2010-08-25 2013-10-29 Rf Micro Devices, Inc. Multi-mode/multi-band power management system
CN102355221A (zh) * 2011-06-17 2012-02-15 雷良军 多频带功率放大器及输出匹配电路
CN103178791A (zh) * 2011-12-26 2013-06-26 深圳富泰宏精密工业有限公司 功率放大电路及具有该功率放大电路的无线通信装置
JP5848974B2 (ja) * 2012-01-19 2016-01-27 株式会社五洋電子 無線受信機
WO2015001851A1 (ja) * 2013-07-04 2015-01-08 株式会社村田製作所 電力増幅モジュール
US9391567B2 (en) * 2014-06-16 2016-07-12 Skyworks Solutions, Inc. Apparatus and methods for power amplifier output matching
KR102468952B1 (ko) * 2016-03-07 2022-11-22 삼성전자주식회사 신호를 송수신하는 전자 장치 및 방법
JP2018042100A (ja) * 2016-09-07 2018-03-15 株式会社村田製作所 送信モジュール及び送受信モジュール
CN206181021U (zh) * 2016-11-19 2017-05-17 杭州步聚信息科技有限公司 一种无线通信模块
CN107395221A (zh) * 2017-08-09 2017-11-24 惠州Tcl移动通信有限公司 一种lte频段切换装置、切换方法及移动终端
JP2020145613A (ja) * 2019-03-07 2020-09-10 株式会社村田製作所 高周波回路および通信装置
US11374538B2 (en) * 2019-04-09 2022-06-28 Skyworks Solutions, Inc. Apparatus and methods for envelope tracking
JP2020182090A (ja) * 2019-04-24 2020-11-05 株式会社村田製作所 電力増幅回路
JP2020202528A (ja) * 2019-06-13 2020-12-17 株式会社村田製作所 高周波回路および通信装置
CN111342862B (zh) * 2019-12-17 2021-09-17 锐石创芯(重庆)科技有限公司 支持lte/nr双连接的射频前端模组及移动终端
CN211266879U (zh) * 2020-02-27 2020-08-14 深圳市泰衡诺科技有限公司 用于4g/5g标准的射频模块和移动终端
CN111917429B (zh) * 2020-07-24 2021-05-18 锐石创芯(深圳)科技有限公司 一种射频前端架构、天线装置及通信终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070113363A (ko) * 2006-05-23 2007-11-29 엘지이노텍 주식회사 다중밴드 프론트 앤드모듈
CN101836364A (zh) * 2007-11-05 2010-09-15 高通股份有限公司 用于多模式通信的可切换电平电压供应
US20090270137A1 (en) * 2008-04-25 2009-10-29 Robert Sorensen Radio frequency communications circuitry with power supply voltage and gain control
CN105634417A (zh) * 2016-01-28 2016-06-01 锐迪科微电子(上海)有限公司 多频带射频功率放大器
CN111092621A (zh) * 2019-11-13 2020-05-01 维沃移动通信有限公司 射频电路、控制方法及电子设备
CN111294214A (zh) * 2020-01-21 2020-06-16 Oppo广东移动通信有限公司 供电方法及相关产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHUN-WEN PAUL HUANG ; PHILIP ANTOGNETTI ; LUI LAM ; TONY QUAGLIETTA ; MARK DOHERTY ; WILLIAM VAILLANCOURT: "A highly integrated dual-band SiGe power amplifier that enables 256 QAM 802.11ac WLAN radio front-end designs", 2012 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM (RFIC); �MONTREAL, QC, CANADA; 17-19 JUNE 2012, IEEE, PISCATAWAY, NJ, USA, 17 June 2012 (2012-06-17), Piscataway, NJ, USA , pages 225 - 228, XP032203342, ISBN: 978-1-4673-0413-9, DOI: 10.1109/RFIC.2012.6242269 *

Also Published As

Publication number Publication date
CN114650069A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
US9960489B2 (en) Electronic device and method of operating the same
CN102710817B (zh) 移动终端
CN110661954A (zh) 摄像头模组和终端设备
CN215771542U (zh) 一种三模宽带终端天线和终端设备
CN105337052A (zh) 一种移动终端的天线装置和移动终端
WO2022062541A1 (zh) 射频架构及终端设备
KR20150115201A (ko) 케이스를 이용한 전자 장치의 안테나
CN112202468B (zh) 射频电路及其控制方法、终端设备、放大器系统
CN113301190B (zh) 压力传感器和电子设备
WO2022127438A1 (zh) 射频模组及其控制方法、电子设备
US20230208156A1 (en) Method for switching connection status of cell, power supply system, and electronic device
CN102170499B (zh) 一种移动终端及其电源控制系统
CN105428788A (zh) 一种移动终端的天线装置和移动终端
CN215869770U (zh) 天线组件及电子设备
US9445366B2 (en) Beacon device and control method thereof
CN113286230B (zh) 发声电路及终端
CN108767431B (zh) 天线组件及电子设备
US8193985B2 (en) Radio frequency positioning system and method
CN110708447A (zh) 摄像头模组和终端设备
CN215421136U (zh) 电子设备
CN214153186U (zh) 天线模组和电子设备
KR101801185B1 (ko) 이동통신 단말기
KR20140062855A (ko) 이동 단말기
CN115036675B (zh) 终端配件及移动终端
CN213816409U (zh) 天线组件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905367

Country of ref document: EP

Kind code of ref document: A1